Sample records for groundwater level variations

  1. Mapping groundwater level and aquifer storage variations from InSAR measurements in the Madrid aquifer, Central Spain (United States)

    Béjar-Pizarro, Marta; Ezquerro, Pablo; Herrera, Gerardo; Tomás, Roberto; Guardiola-Albert, Carolina; Ruiz Hernández, José M.; Fernández Merodo, José A.; Marchamalo, Miguel; Martínez, Rubén


    Groundwater resources are under stress in many regions of the world and the future water supply for many populations, particularly in the driest places on Earth, is threatened. Future climatic conditions and population growth are expected to intensify the problem. Understanding the factors that control groundwater storage variation is crucial to mitigate its adverse consequences. In this work, we apply satellite-based measurements of ground deformation over the Tertiary detritic aquifer of Madrid (TDAM), Central Spain, to infer the spatio-temporal evolution of water levels and estimate groundwater storage variations. Specifically, we use Persistent Scatterer Interferometry (PSI) data during the period 1992-2010 and piezometric time series on 19 well sites covering the period 1997-2010 to build groundwater level maps and quantify groundwater storage variations. Our results reveal that groundwater storage loss occurred in two different periods, 1992-1999 and 2005-2010 and was mainly concentrated in a region of ∼200 km2. The presence of more compressible materials in that region combined with a long continuous water extraction can explain this volumetric deficit. This study illustrates how the combination of PSI and piezometric data can be used to detect small aquifers affected by groundwater storage loss helping to improve their sustainable management.

  2. The impact of groundwater depletion on spatial variations in sea level change during the past century

    National Research Council Canada - National Science Library

    Veit, Emeline; Conrad, Clinton P


    .... The mass unloading associated with this depletion locally uplifts Earth's solid surface and depresses the geoid, leading to slower relative sea level rise near areas of significant groundwater loss...

  3. Decadal variations in groundwater quality

    DEFF Research Database (Denmark)

    Jessen, Søren; Postma, Dieke; Thorling, Lærke


    Twenty-five years of groundwater quality monitoring in a sandy aquifer beneath agricultural fields showed large temporal and spatial variations in major ion groundwater chemistry, which were linked closely to the nitrate (NO3) content of agricultural recharge. Between 1988 and 2013, the NO3 content...... loading. Agriculture thus is an important determinant of major ion groundwater chemistry. Temporal and spatial variations in the groundwater quality were simulated using a 2D reactive transport model, which combined effects of the historical NO3 leaching and denitrification, with dispersive mixing...... into the pristine groundwater residing deeper in the aquifer. Reactant-to-product ratios across reaction fronts are altered by dispersive mixing and transience in reactant input functions. Modelling therefore allowed a direct comparison of observed and simulated ratios of concentrations of NO3 (reactant...

  4. Comparison of Terrestrial Water Storage Variations from GRACE With In-Situ Soil Moisture and Groundwater Level Measurements in Semiarid Irrigated Systems: Case Study High Plains Aquifer, USA (United States)

    Strassberg, G.; Scanlon, B. R.; Chambers, D.


    Depletion of groundwater storage in semiarid regions as a result of intensive irrigation is a critical water resource issue. Many of these systems are poorly monitored, such as the North China Plain and western India. The objective of this study was to evaluate the ability of the Gravity Recovery and Climate Experiment (GRACE) to quantify changes in groundwater storage using detailed monitoring records available for the High Plains aquifer (450,000 km2 area). This study presents a comparison of terrestrial water storage changes derived from GRACE gravity measurements between 2003 and 2006 with in-situ soil moisture and groundwater level measurements covering the High Plains aquifer. Soil moisture measurements from 80 shallow (~1 m depth) mesonet stations from Texas, Oklahoma, and Nebraska, were combined with data from deeper (up to 7 m) monitoring sites to estimate temporal and spatial variations in soil moisture over the High Plains. Anomalies in soil moisture were compared with soil moisture changes simulated by the Noah Land surface model. Groundwater storage variations over the aquifer were estimated by assimilating groundwater level measurements from multiple state and federal agencies. Good correspondence between soil moisture storage from the ground based networks and the Noah land surface model increased confidence in the soil moisture storage variations. Terrestrial water storage (TWS) changes from GRACE compared favorably with TWS (approximated as changes in soil moisture + groundwater storage) from the monitoring networks. Results from this study demonstrate the potential for the GRACE satellites to monitor water storage variations in semiarid irrigated systems, where mining of groundwater resources is a critical issue.


    African Journals Online (AJOL)


    This study assessed the spatial pollution of groundwater around Karu abattoir by the abattoir effluents by analysing the ... them into the environment. Keywords: Spatial variation, Groundwater, Pollution, Abattoir, Effluents, Water quality. Introduction ... substances, bones, horns, hairs and aborted fetuses. The liquid waste is ...

  6. Data-Driven Techniques for Regional Groundwater Level Forecasts (United States)

    Chang, F. J.; Chang, L. C.; Tsai, F. H.; Shen, H. Y.


    Data-Driven Techniques for Regional Groundwater Level Forecasts Fi-John Changa, Li-Chiu Changb, Fong He Tsaia, Hung-Yu Shenba Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC. b Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City 25137, Taiwan, ROC..Correspondence to: Fi-John Chang (email: alluvial fan of the Zhuoshui River in Taiwan is a good natural recharge area of groundwater. However, the over extraction of groundwater occurs in the coastland results in serious land subsidence. Groundwater systems are heterogeneous with diverse temporal-spatial patterns, and it is very difficult to quantify their complex processes. Data-driven methods can effectively capture the spatial-temporal characteristics of input-output patterns at different scales for accurately imitating dynamic complex systems with less computational requirements. In this study, we implement various data-driven methods to suitably predict the regional groundwater level variations for making countermeasures in response to the land subsidence issue in the study area. We first establish the relationship between regional rainfall, streamflow as well as groundwater levels and then construct intelligent groundwater level prediction models for the basin based on the long-term (2000-2013) regional monthly data sets collected from the Zhuoshui River basin. We analyze the interaction between hydrological factors and groundwater level variations; apply the self-organizing map (SOM) to obtain the clustering results of the spatial-temporal groundwater level variations; and then apply the recurrent configuration of nonlinear autoregressive with exogenous inputs (R-NARX) to predicting the monthly groundwater levels. As a consequence, a regional intelligent groundwater level prediction model can be constructed based on the adaptive results of the SOM. Results demonstrate that the development

  7. Spatial-temporal variation of groundwater and land subsidence evolution in Beijing area

    Directory of Open Access Journals (Sweden)

    K. Lei


    Full Text Available Precipitation is the main recharge source of groundwater in the plain of Beijing, China. Rapid expansion of urbanization has resulted in increased built-up area and decreased amount of effective recharge of precipitation to groundwater, indirectly leading to the long-term over-exploitation of groundwater, and induced regional land subsidence. Based on the combination of meteorological data, groundwater level data, interferometric synthetic aperture radar (InSAR; specifically persistent scatterer interferometry, PSI, geographic information system (GIS spatial analysis method and rainfall recharge theory, this paper presents a systematic analysis of spatial-temporal variation of groundwater level and land subsidence evolution. Results show that rainfall has been decreasing annually, while the exploitation of groundwater is increasing and the groundwater level is declining, which is has caused the formation and evolution of land subsidence. Seasonal and interannual variations exist in the evolution of land subsidence; the subsidence is uneven in both spatial and temporal distribution. In 2011, at the center of mapped subsidence the subsidence rate was greater than 120 mm a−1. The results revealed good correlation between the spatial distribution of groundwater level declines and subsidence. The research results show that it is beneficial to measure the evolution of land subsidence to dynamic variations of groundwater levels by combining InSAR or PSI, groundwater-level data, and GIS. This apprpach provides improved information for environmental and hydrogeologic research and a scientific basis for regional land subsidence control.

  8. Seasonal variations in groundwater quality of Valsad District of ...

    African Journals Online (AJOL)

    Groundwater is an important precious natural resource. For optimum utilization of water resources, it is necessary to know both the quality as well as quantity of water. The present investigation is focused on seasonal variation in groundwater quality of Valsad district of south Gujarat (India). Groundwater samples from fifteen ...

  9. Evaluation of Groundwater Storage Variations in Northern China Using GRACE Data

    Directory of Open Access Journals (Sweden)

    Wenjie Yin


    Full Text Available Dynamic change of groundwater storage is one of the most important topics in the sustainable management of groundwater resources. Groundwater storage variations are firstly isolated from the terrestrial water storage change using the Global Land Data Assimilation System (GLDAS. Two datasets are used: (1 annual groundwater resources and (2 groundwater storage changes estimated from point-based groundwater level data in observation wells. Results show that the match between the GRACE-derived groundwater storage variations and annual water resources variation is not good in six river basins of Northern China. However, it is relatively good between yearly GRACE-derived groundwater storage data and groundwater storage change dataset in Huang-Huai-Hai Plain and the Song-Liao Plain. The mean annual depletion rate of groundwater storage in the Northern China was approximately 1.70 billion m3 yr−1 from 2003 to 2012. In terms of provinces, the yearly depletion rate is higher in Jing-Jin-Ji (Beijing, Tianjin, and Hebei province and lowest in Henan province from 2003 to 2012, with the rate of 0.70 and 0.21 cm yr−1 Equivalent Water Height (EWH, respectively. Different land surface models suggest that the patterns from different models almost remain the same, and soil moisture variations are generally bigger than snow water equivalent variations.

  10. Analysis of Groundwater level Changes in Wells Sensitive to Earthquakes (United States)

    Liu, C.; Lee, C.; Chia, Y.; Hsiao, C.; Kuo, K.


    Earthquake-related groundwater level changes have often been observed in many places in Taiwan which is located at the boundary between the Erasian plate and the Phillipine Sea plate. For instance, more than 160 monitoring wells stations recorded coseismic changes during the 1999 Chi-Chi earthquake. These stations, which consist of one to five wells of different depths, were installed in the coastal plain or hillsides. In this study, we analyze monitoring data from four well stations (Pingding, Chukou, Yuanlin and Donher) to investigate the sensitivity of well water level to earthquakes. The variation of groundwater level with natural and human factors, such as rainfall, barometric pressure, earth tides and pumping were studied to understand the background changes in these wells. We found various relations between the magnitude and the epicentral distance of earthquakes to the co-seismic groundwater level changes at different wells. The sensitivity of monitoring wells was estimated from the ratio of the number of co-seismic groundwater level changes to the number of large earthquakes during the recording period. Earthquake related co-seismic groundwater level changes may reflect the redistribution of crustal stress and strain. However, coseismic changes in multiple-well monitoring stations may vary with depth. Also, water level data from wells of higher sampling rate show more details in co-seismic and background changes. Therefore, high-resolution and high-frequency data are essential for future study of groundwater level changes in response to earthquakes or fault movement.

  11. Groundwater levels and dolomite - nuisance or necessity

    CSIR Research Space (South Africa)

    Hobbs, PJ


    Full Text Available The significance and importance of groundwater level data in a karst environment, whilst acknowledged by geotechnical engineers and engineering geologists, is often not afforded the recognition it deserves. Within the ambit of a geotechnical site...

  12. Investigation of Seasonal Variation of groundwater Quality in Jimeta ...

    African Journals Online (AJOL)


    Seasonal variation of groundwater quality in Jimeta-Yola area was investigated using selected chemical contaminants. The results indicated that ... source for human consumption and changes in quality with subsequent contamination can, ...... groundwater quality in Western Australia. Improving Integrated. Surface Water ...

  13. Using groundwater levels to estimate recharge (United States)

    Healy, R.W.; Cook, P.G.


    Accurate estimation of groundwater recharge is extremely important for proper management of groundwater systems. Many different approaches exist for estimating recharge. This paper presents a review of methods that are based on groundwater-level data. The water-table fluctuation method may be the most widely used technique for estimating recharge; it requires knowledge of specific yield and changes in water levels over time. Advantages of this approach include its simplicity and an insensitivity to the mechanism by which water moves through the unsaturated zone. Uncertainty in estimates generated by this method relate to the limited accuracy with which specific yield can be determined and to the extent to which assumptions inherent in the method are valid. Other methods that use water levels (mostly based on the Darcy equation) are also described. The theory underlying the methods is explained. Examples from the literature are used to illustrate applications of the different methods.

  14. Recharge signal identification based on groundwater level observations. (United States)

    Yu, Hwa-Lung; Chu, Hone-Jay


    This study applied a method of the rotated empirical orthogonal functions to directly decompose the space-time groundwater level variations and determine the potential recharge zones by investigating the correlation between the identified groundwater signals and the observed local rainfall records. The approach is used to analyze the spatiotemporal process of piezometric heads estimated by Bayesian maximum entropy method from monthly observations of 45 wells in 1999-2007 located in the Pingtung Plain of Taiwan. From the results, the primary potential recharge area is located at the proximal fan areas where the recharge process accounts for 88% of the spatiotemporal variations of piezometric heads in the study area. The decomposition of groundwater levels associated with rainfall can provide information on the recharge process since rainfall is an important contributor to groundwater recharge in semi-arid regions. Correlation analysis shows that the identified recharge closely associates with the temporal variation of the local precipitation with a delay of 1-2 months in the study area.


    African Journals Online (AJOL)


    Feb 5, 2015 ... countries, where proper waste disposal measures are not followed. Determination of physico-chemical characteristics of water is essential for assessing the suitability of water for various purposes like drinking, domestic, industrial and agriculture. The groundwater quality may also vary with seasonal ...

  16. Arsenic levels in groundwater aquifer

    African Journals Online (AJOL)

    Miodrag Jelic

    Varying levels of arsenic in both industrial and sanitary waters were determined, indicating water pollution with arsenic compounds. The horizontal ...... Geochem. 113: 163-181. Thu LT, Quang Toan ET (2001). Country Report of Vietnam. Workshop on Drinking Water Quality Surveillance and Safety, Kuala Lumpur: pp. 42-48 ...

  17. Ground-water level changes to multiple distant earthquakes at earthquake-groundwater monitoring stations in Jeju Island, Korea (United States)

    Park, E.; Kang, T. S.


    Hydrological responses caused by earthquakes have been documented for thousands of years and recently many studies have been conducted for investigating its underlying mechanisms. Such responses include level changes, temperature changes, chemical composition variation, and liquefaction. Among these phenomena, this study focuses on ground-water level changes. There are two kinds of ground-water level changes: one is co-seismic change that occurs simultaneously with earthquake, and the other is gradual change that occurs gradually after earthquake. A temporary seismograph network which is consisting of 20 broadband seismographs has been operated in Jeju Island since October 2013, and all these seismographs are colocated with some of ground-water monitoring stations distributed in the island. Continuous simultaneous observations of such two different physical quantities provide a good chance for direct comparison between them. Sampling rate of seismographs was set to 200Hz and ground-water monitoring time interval was set to 1 minute. Raw data from the ground-water monitoring stations were corrected for the effects of atmospheric pressure and earth tide to get only ground-water level changes. On May 30, 2015, an earthquake of M 7.8 occurred at Chichi-shima, Japan. In response to the earthquake, ground-water level changes were observed at both the earthquake and groundwater monitoring stations in Jeju Island. Ground-water level began to change after three minutes of the earthquake origin time. The largest change with the maximum amplitude of 8.1 cm was observed after six minutes after the origin time. Seismograms at the same stations were compared with the ground-water level data. The results will be presented and the physical relationship between earthquake ground motions and the corresponding hydrogeological response will be discussed.

  18. Groundwater levels in the Kabul Basin, Afghanistan, 2004-2013 (United States)

    Taher, Mohammad R.; Chornack, Michael P.; Mack, Thomas J.


    The Afghanistan Geological Survey, with technical assistance from the U.S. Geological Survey, established a network of wells to measure and monitor groundwater levels to assess seasonal, areal, and potentially climatic variations in groundwater characteristics in the Kabul Basin, Afghanistan, the most populous region in the country. Groundwater levels were monitored in 71 wells in the Kabul Basin, Afghanistan, starting as early as July 2004 and continuing to the present (2013). The monitoring network is made up exclusively of existing production wells; therefore, both static and dynamic water levels were recorded. Seventy wells are in unconsolidated sediments, and one well is in bedrock. Water levels were measured periodically, generally monthly, using electric tape water-level meters. Water levels in well 64 on the grounds of the Afghanistan Geological Survey building were measured more frequently. This report provides a 10-year compilation of groundwater levels in the Kabul Basin prepared in cooperation with the Afghanistan Geological Survey. Depths to water below land surface range from a minimum of 1.47 meters (m) in the Shomali subbasin to a maximum of 73.34 m in the Central Kabul subbasin. The Logar subbasin had the smallest range in depth to water below land surface (1.5 to 12.4 m), whereas the Central Kabul subbasin had the largest range (2.64 to 73.34 m). Seasonal water-level fluctuations can be estimated from the hydrographs in this report for wells that have depth-to-water measurements collected under static conditions. The seasonal water-level fluctuations range from less than 1 m to a little more than 7 m during the monitoring period. In general, the hydrographs for the Deh Sabz, Logar, Paghman and Upper Kabul, and Shomali subbasins show relatively little change in the water-level trend during the period of record, whereas hydrographs for the Central Kabul subbasin show water level decreases of several meters to about 25 m.

  19. A generalized regression model of arsenic variations in the shallow groundwater of Bangladesh (United States)

    Taylor, Richard G.; Chandler, Richard E.


    Abstract Localized studies of arsenic (As) in Bangladesh have reached disparate conclusions regarding the impact of irrigation‐induced recharge on As concentrations in shallow (≤50 m below ground level) groundwater. We construct generalized regression models (GRMs) to describe observed spatial variations in As concentrations in shallow groundwater both (i) nationally, and (ii) regionally within Holocene deposits where As concentrations in groundwater are generally high (>10 μg L−1). At these scales, the GRMs reveal statistically significant inverse associations between observed As concentrations and two covariates: (1) hydraulic conductivity of the shallow aquifer and (2) net increase in mean recharge between predeveloped and developed groundwater‐fed irrigation periods. Further, the GRMs show that the spatial variation of groundwater As concentrations is well explained by not only surface geology but also statistical interactions (i.e., combined effects) between surface geology and mean groundwater recharge, thickness of surficial silt and clay, and well depth. Net increases in recharge result from intensive groundwater abstraction for irrigation, which induces additional recharge where it is enabled by a permeable surface geology. Collectively, these statistical associations indicate that irrigation‐induced recharge serves to flush mobile As from shallow groundwater. PMID:27524841

  20. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil


    groundwater table observations, and with estimates of total water storage variations from the GRACE satellites mission. Due to the difficulty in estimating area-averaged seasonal groundwater storage variations from point observations of groundwater levels, it is uncertain whether WaterGAP underestimates actual variations or not. We conclude that WaterGAP possibly overestimates water withdrawals in the High Plains aquifer where impact of human water use on water storage is readily discernible based on WaterGAP calculations and groundwater observations. No final conclusion can be drawn regarding the possibility of monitoring water withdrawals in the High Plains aquifer using GRACE. For the less intensively irrigated Mississippi basin, observed and modeled seasonal groundwater storage reveals a discernible impact of water withdrawals in the basin, but this is not the case for total water storage such that water withdrawals at the scale of the whole Mississippi basin cannot be monitored by GRACE.

  1. Groundwater Level Prediction using M5 Model Trees (United States)

    Nalarajan, Nitha Ayinippully; Mohandas, C.


    Groundwater is an important resource, readily available and having high economic value and social benefit. Recently, it had been considered a dependable source of uncontaminated water. During the past two decades, increased rate of extraction and other greedy human actions have resulted in the groundwater crisis, both qualitatively and quantitatively. Under prevailing circumstances, the availability of predicted groundwater levels increase the importance of this valuable resource, as an aid in the planning of groundwater resources. For this purpose, data-driven prediction models are widely used in the present day world. M5 model tree (MT) is a popular soft computing method emerging as a promising method for numeric prediction, producing understandable models. The present study discusses the groundwater level predictions using MT employing only the historical groundwater levels from a groundwater monitoring well. The results showed that MT can be successively used for forecasting groundwater levels.

  2. Groundwater level status report for 2008, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah


    The status of groundwater level monitoring at Los Alamos National Laboratory in 2008 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 45 regional aquifer wells, 28 intermediate wells, 8 regional/intermediate wells, 106 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 166 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

  3. Groundwater level status report for 2010, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah


    The status of groundwater level monitoring at Los Alamos National Laboratory in 2010 is provided in this report. This report summarizes groundwater level data for 194 monitoring wells, including 63 regional aquifer wells (including 10 regional/intermediate wells), 34 intermediate wells, 97 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 162 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells and seasonal responses to snowmelt runoff observed in intermediate wells.

  4. Groundwater level status report for 2009, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah


    The status of groundwater level monitoring at Los Alamos National Laboratory in 2009 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 55 regional aquifer wells (including 11 regional/intermediate wells), 26 intermediate wells, 98 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 161 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

  5. Response of groundwater level and surface-water/groundwater interaction to climate variability: Clarence-Moreton Basin, Australia (United States)

    Cui, Tao; Raiber, Matthias; Pagendam, Dan; Gilfedder, Mat; Rassam, David


    Understanding the response of groundwater levels in alluvial and sedimentary basin aquifers to climatic variability and human water-resource developments is a key step in many hydrogeological investigations. This study presents an analysis of groundwater response to climate variability from 2000 to 2012 in the Queensland part of the sedimentary Clarence-Moreton Basin, Australia. It contributes to the baseline hydrogeological understanding by identifying the primary groundwater flow pattern, water-level response to climate extremes, and the resulting dynamics of surface-water/groundwater interaction. Groundwater-level measurements from thousands of bores over several decades were analysed using Kriging and nonparametric trend analysis, together with a newly developed three-dimensional geological model. Groundwater-level contours suggest that groundwater flow in the shallow aquifers shows local variations in the close vicinity of streams, notwithstanding general conformance with topographic relief. The trend analysis reveals that climate variability can be quickly reflected in the shallow aquifers of the Clarence-Moreton Basin although the alluvial aquifers have a quicker rainfall response than the sedimentary bedrock formations. The Lockyer Valley alluvium represents the most sensitively responding alluvium in the area, with the highest declining (-0.7 m/year) and ascending (2.1 m/year) Sen's slope rates during and after the drought period, respectively. Different surface-water/groundwater interaction characteristics were observed in different catchments by studying groundwater-level fluctuations along hydrogeologic cross-sections. The findings of this study lay a foundation for future water-resource management in the study area.

  6. Monitoring of the temporal and spatial variation of groundwater storage in the Three Gorges area based on the CORS network (United States)

    Wang, Wei; Zhang, Chuanyin; Liang, Shiming; Yang, Qiang; Hu, MinZhang; Feng, Wei


    The variation of groundwater storage is not well understood due to the complex hydrodynamic environment in the Three Gorges area. The variation of monthly groundwater storage from January 2011 to June 2015 was directly inverted in the Three Gorges area of China based on 26 Continuously Operating Reference Station (CORS) and eight gravity stations with a resolution of 2‧ × 2‧ using the Earth's gravity field and the load deformation theory. The results were then compared with the water level from groundwater monitoring wells. The comparison indicates that it is possible to calculate the temporal and spatial variation of groundwater with high precision based on the continuous observation data of CORS and a small amount of gravity stations. Our analysis shows that the groundwater storage was consistent in the Three Gorges area from 2011 to 2014. The Three Gorges Reservoir has a large impact on the variation of groundwater storage. The variation of the groundwater storage derived from CORS agrees well with that of the groundwater monitoring wells. The new data are important references for the research of hydrodynamic environmental change in the Three Gorges area and for the analysis of the impact of water impoundment and drainage in the Three Gorges Reservoir.

  7. Sea level and climate variations

    NARCIS (Netherlands)

    Oerlemans, J.


    Review paper, ESA Symposium on Application of Satellite Data to Climate Modelling. Alpbach (Austria) Sea level is an essential component of the climate system, on which many human activities in the coastal zone depend. Climate variations leading to changes in relative sea level are

  8. Examining the Relationship between Drought Indices and Groundwater Levels

    Directory of Open Access Journals (Sweden)

    Navaratnam Leelaruban


    Full Text Available Thorough characterization of the response of finite water resources to climatic factors is essential for water monitoring and management. In this study, groundwater level data from U.S. Geological Survey Ground-Water Climate Response Network wells were used to analyze the relationship between selected drought indices and groundwater level fluctuation. The drought episodes included in this study were selected using climate division level drought indices. Indices included the Palmer Drought Severity Index, Palmer Hydrological Drought Index, and Standardized Precipitation Index (SPI-6, 9, 12, 24. Precipitation and the average temperature were also used. SPI-24 was found to correlate best with groundwater levels during drought. For 17 out of 32 wells, SPI-24 showed the best correlation amongst all of the indices. For 12 out of 32 wells, SPI-24 showed correlation coefficients of −0.6 or stronger; and for other wells, reasonably good correlation was demonstrated. The statistical significance of SPI-24 in predicting groundwater level was also tested. The correlation of average monthly groundwater levels with SPI-24 does not change much throughout the timeframe, for all of the studied wells. The duration of drought also had a significant correlation with the decline of groundwater levels. This study illustrates how drought indices can be used for a rapid assessment of drought impact on groundwater level.


    Directory of Open Access Journals (Sweden)

    Agnieszka Kamińska


    Full Text Available This paper compares two spatial interpolation techniques – Radial Basis Functions (RBF and Inverse Distance Weighting (IDW – with the goal of determining which method creates the best representation of reality for measured groundwater levels in catchment area. The study used the results of research and field observations from the year 2011, in Sosnowica (West Polesie. The data set consists of groundwater levels measured at 15 points in three series of tests. Surface generation was obtained for each method. The water prediction maps showed spatial variation in the groundwater level in the study area and they are quite different. RBF method resulted in a smoother map. The analysis of the methods of interpolation of analyzed data with the help of cross validation statistics and plots showed that Radial Basis Functions creates better representation of reality for measured groundwater levels.

  10. Characterizing Groundwater Level and Flow Pattern in a Shallow ...

    African Journals Online (AJOL)

    The static water level, groundwater flow direction, surface profile and 3-D elevation model of the study area were produced from the data collected using ArcGis 9.3 and surfer 8 GIS software. The groundwater flow direction in the study is towards the southwestern part of the study area with few exceptions as the case of Ikota ...

  11. Covariance correction for estimating groundwater level using ...

    African Journals Online (AJOL)

    The main problem in developing a groundwater model is to determine model parameters, particularly hydrogeologic coefficients, in a precise way. In this research, Deterministic Ensemble Kalman Filter (DEnKF) is described as a modern sequential method for data assimilation and a localization scheme within the ...

  12. 2012 Water Levels - Mojave River and the Morongo Groundwater Basins (United States)

    U.S. Geological Survey, Department of the Interior — During 2012, the U.S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and Morongo groundwater basins....

  13. Temporal variations of groundwater tables and implications for submarine groundwater discharge: a 3-decade case study in central Japan

    Directory of Open Access Journals (Sweden)

    B. Zhang


    Full Text Available Fresh submarine groundwater discharge (SGD is the key pathway of flux and nutrients for the groundwater from land to the ocean. SGD flux is a current issue of discussion and a means to clarify the coastal marine system under climate change. SGD flux accounts for about one-quarter of the river runoff in the Katakai alluvial fan in Uozu, Toyama, Japan, which is an ideal area to study SGD flux considering the need for a rapid response to climate change and the prior research on SGD there. In this paper, the monthly groundwater table's condition over 30 years is analyzed using monthly rainfall, snowfall, and the climate change index. Rainfall has been on an upward trend, but the snowfall has decreased over 40 years. Furthermore, the groundwater table at monitoring wells in the coastal area increased, as a result of the increased rainfall. However, the relationship between snowfall and groundwater is negative. As expected by Darcy's law, SGD flux was controlled by the hydraulic gradient of the coastal groundwater. The estimated historic SGD flux by groundwater table variation shows an upward trend of SGD. Considering the increase in precipitation and the groundwater table, SGD flux may increase under climate change.

  14. Effect of Different Groundwater Levels on Seismic Dynamic Response and Failure Mode of Sandy Slope (United States)

    Huang, Shuai; Lv, Yuejun; Peng, Yanju; Zhang, Lifang; Xiu, Liwei


    Heavy seismic damage tends to occur in slopes when groundwater is present. The main objectives of this paper are to determine the dynamic response and failure mode of sandy slope subjected simultaneously to seismic forces and variable groundwater conditions. This paper applies the finite element method, which is a fast and efficient design tool in modern engineering analysis, to evaluate dynamic response of the slope subjected simultaneously to seismic forces and variable groundwater conditions. Shaking table test is conducted to analyze the failure mode and verify the accuracy of the finite element method results. The research results show that dynamic response values of the slope have different variation rules under near and far field earthquakes. And the damage location and pattern of the slope are different in varying groundwater conditions. The destruction starts at the top of the slope when the slope is in no groundwater, which shows that the slope appears obvious whipping effect under the earthquake. The destruction starts at the toe of the slope when the slope is in the high groundwater levels. Meanwhile, the top of the slope shows obvious seismic subsidence phenomenon after earthquake. Furthermore, the existence of the groundwater has a certain effect of damping. PMID:26560103

  15. Effect of Different Groundwater Levels on Seismic Dynamic Response and Failure Mode of Sandy Slope. (United States)

    Huang, Shuai; Lv, Yuejun; Peng, Yanju; Zhang, Lifang; Xiu, Liwei


    Heavy seismic damage tends to occur in slopes when groundwater is present. The main objectives of this paper are to determine the dynamic response and failure mode of sandy slope subjected simultaneously to seismic forces and variable groundwater conditions. This paper applies the finite element method, which is a fast and efficient design tool in modern engineering analysis, to evaluate dynamic response of the slope subjected simultaneously to seismic forces and variable groundwater conditions. Shaking table test is conducted to analyze the failure mode and verify the accuracy of the finite element method results. The research results show that dynamic response values of the slope have different variation rules under near and far field earthquakes. And the damage location and pattern of the slope are different in varying groundwater conditions. The destruction starts at the top of the slope when the slope is in no groundwater, which shows that the slope appears obvious whipping effect under the earthquake. The destruction starts at the toe of the slope when the slope is in the high groundwater levels. Meanwhile, the top of the slope shows obvious seismic subsidence phenomenon after earthquake. Furthermore, the existence of the groundwater has a certain effect of damping.

  16. Effect of Different Groundwater Levels on Seismic Dynamic Response and Failure Mode of Sandy Slope.

    Directory of Open Access Journals (Sweden)

    Shuai Huang

    Full Text Available Heavy seismic damage tends to occur in slopes when groundwater is present. The main objectives of this paper are to determine the dynamic response and failure mode of sandy slope subjected simultaneously to seismic forces and variable groundwater conditions. This paper applies the finite element method, which is a fast and efficient design tool in modern engineering analysis, to evaluate dynamic response of the slope subjected simultaneously to seismic forces and variable groundwater conditions. Shaking table test is conducted to analyze the failure mode and verify the accuracy of the finite element method results. The research results show that dynamic response values of the slope have different variation rules under near and far field earthquakes. And the damage location and pattern of the slope are different in varying groundwater conditions. The destruction starts at the top of the slope when the slope is in no groundwater, which shows that the slope appears obvious whipping effect under the earthquake. The destruction starts at the toe of the slope when the slope is in the high groundwater levels. Meanwhile, the top of the slope shows obvious seismic subsidence phenomenon after earthquake. Furthermore, the existence of the groundwater has a certain effect of damping.

  17. Groundwater management based on monitoring of land subsidence and groundwater levels in the Kanto Groundwater Basin, Central Japan (United States)

    Furuno, K.; Kagawa, A.; Kazaoka, O.; Kusuda, T.; Nirei, H.


    Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.

  18. Groundwater Level Changes Due to Extreme Weather—An Evaluation Tool for Sustainable Water Management

    Directory of Open Access Journals (Sweden)

    Jadwiga R. Ziolkowska


    Full Text Available In the past decade, extreme and exceptional droughts have significantly impacted many economic sectors in the US, especially in California, Oklahoma, and Texas. The record drought of 2011–2014 affected almost 90% of Texas areas and 95% of Oklahoma state areas. In 2011 alone, around $1.6 billion in agricultural production were lost as a result of drought in Oklahoma, and $7.6 billion in Texas. The agricultural sectors in Oklahoma and Texas rely mainly on groundwater resources from the non-replenishable Ogallala Aquifer in Panhandle and other aquifers around the states. The exceptional droughts of 2011–2014 not only caused meteorologically induced water scarcity (due to low precipitation, but also prompted farmers to overuse groundwater to maintain the imperiled production. Comprehensive studies on groundwater levels, and thus the actual water availability/scarcity across all aquifers in Oklahoma and Texas are still limited. Existing studies are mainly focused on a small number of selected sites or aquifers over a short time span of well monitoring, which does not allow for a holistic geospatial and temporal evaluation of groundwater level variations. This paper aims at addressing those issues with the proposed geospatial groundwater visualization model to assess availability of groundwater resources for agricultural, industrial, and municipal uses both in Oklahoma and Texas in the time frame of 2003–2014. The model is an evaluation tool that can be used by decision-makers for designing sustainable water management practices and by teachers and researchers for educational purposes.

  19. Comparison of selection methods to deduce natural background levels for groundwater units

    NARCIS (Netherlands)

    Griffioen, J.; Passier, H.F.; Klein, J.


    Establishment of natural background levels (NBL) for groundwater is commonly performed to serve as reference when assessing the contamination status of groundwater units. We compare various selection methods to establish NBLs using groundwater quality data forfour hydrogeologically different areas

  20. Response to recharge variation of thin rainwater lenses and their mixing zone with underlying saline groundwater

    NARCIS (Netherlands)

    Eeman, S.; Zee, van der S.E.A.T.M.; Leijnse, A.; Louw, de P.G.B.; Maas, C.


    In coastal zones with saline groundwater, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not

  1. Spatial and temporal small-scale variation in groundwater quality of a shallow sandy aquifer

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Christensen, Thomas Højlund


    The groundwater quality of a shallow unconfined sandy aquifer has been characterized for pH, alkalinity, chloride, nitrate, sulfate, calcium, magnesium, sodium and potassium in terms of vertical and horizontal variations (350 groundwater samples). The test area is located within a farmland lot...

  2. Arsenic levels in groundwater aquifer of the Neoplanta source area ...

    African Journals Online (AJOL)

    As part of a survey on the groundwater aquifer at the Neoplanta source site, standard laboratory analysis of water quality and an electromagnetic geophysical method were used for long-term quantitative and qualitative monitoring of arsenic levels. This study presents only the results of research conducted in the ...

  3. Extreme groundwater levels caused by extreme weather conditions - the highest ever measured groundwater levels in Middle Germany and their management (United States)

    Reinstorf, Frido; Kramer, Stefanie; Koch, Thomas; Seifert, Sven; Monninkhoff, Bertram; Pfützner, Bernd


    Extreme weather conditions during the years 2009 - 2011 in combination with changes in the regional water management and possible impacts of climate change led to maximum groundwater levels in large areas of Germany in 2011. This resulted in extensive water logging, with problems especially in urban areas near rivers, where water logging produced huge problems for buildings and infrastructure. The acute situation still exists in many areas and requires the development of solution concepts. Taken the example of the Elbe-Saale-Region in the Federal State of Saxony-Anhalt, were a pilot research project was carried out, the analytical situation, the development of a management tool and the implementation of a groundwater management concept are shown. The central tool is a coupled water budget - groundwater flow model. In combination with sophisticated multi-scale parameter estimation, a high resolution groundwater level simulation was carried out. A decision support process with a very intensive stakeholder interaction combined with high resolution simulations enables the development of a management concept for extreme groundwater situations in consideration of sustainable and environmentally sound solutions mainly on the base of passive measures.

  4. Analysis of 1997–2008 groundwater level changes in the upper Deschutes Basin, Central Oregon (United States)

    Gannett, Marshall W.; Lite, Kenneth E.


    Groundwater-level monitoring in the upper Deschutes Basin of central Oregon from 1997 to 2008 shows water-level declines in some places that are larger than might be expected from climate variations alone, raising questions regarding the influence of groundwater pumping, canal lining (which decreases recharge), and other human influences. Between the mid-1990s and mid-2000s, water levels in the central part of the basin near Redmond steadily declined as much as 14 feet. Water levels in the Cascade Range, in contrast, rose more than 20 feet from the mid-1990s to about 2000, and then declined into the mid-2000s, with little or no net change. An existing U.S. Geological Survey regional groundwater-flow model was used to gain insights into groundwater-level changes from 1997 to 2008, and to determine the relative influence of climate, groundwater pumping, and irrigation canal lining on observed water-level trends. To utilize the model, input datasets had to be extended to include post-1997 changes in groundwater pumping, changes in recharge from precipitation, irrigation canal leakage, and deep percolation of applied irrigation water (also known as on-farm loss). Mean annual groundwater recharge from precipitation during the 1999–2008 period was 25 percent less than during the 1979–88 period because of drying climate conditions. This decrease in groundwater recharge is consistent with measured decreases in streamflow and discharge to springs. For example, the mean annual discharge of Fall River, which is a spring-fed stream, decreased 12 percent between the 1979–88 and 1999–2008 periods. Between the mid-1990s and late 2000s, groundwater pumping for public-supply and irrigation uses increased from about 32,500 to 52,000 acre-feet per year, partially because of population growth. Between 1997 and 2008, the rate of recharge from leaking irrigation canals decreased by about 58,000 acre-feet per year as a result of lining and piping of canals. Decreases in recharge

  5. Statistical analysis of interaction between lake seepage rates and groundwater and lake levels (United States)

    Ala-aho, P.; Rossi, P. M.; Klöve, B.


    In Finland, the main sources of groundwater are the esker deposits from the last ice age. Small lakes imbedded in the aquifer with no outlets or inlets are typically found in eskers. Some lakes at Rokua esker, in Northern Finland, have been suffering from changes in water stage and quality. A possible permanent decline of water level has raised considerable concern as the area is also used for recreation and tourism. Rare biotypes supported by the oligotrophic lakes can also be endangered by the level decline. Drainage of peatlands located in the discharge zone of the aquifer is a possible threat for the lakes and the whole aquifer. Drainage can potentially lower the aquifer water table which can have an effect on the groundwater-lake interaction. The aim of this study was to understand in more detail the interaction of the aquifer and the lake systems so potential causes for the lake level variations could be better understood and managed. In-depth understanding of hydrogeological system provides foundation to study the nutrient input to lakes affecting lake ecosystems. A small lake imbedded the Rokua esker aquifer was studied in detail. Direct measurements of seepage rate between the lake and the aquifer were carried out using seepage meters. Seepage was measured from six locations for eight times during May 2010 - November 2010. Precipitation was recorded with a tipping bucket rain gauge adjacent to the lake. Lake stage and groundwater levels from three piezometers were registered on an hourly interval using pressure probes. Statistical methods were applied to examine relationship between seepage measurements and levels of lake and groundwater and amount of precipitation. Distinct areas of inseepage and outseepage of the lake were distinguished with seepage meter measurements. Seepage rates showed only little variation within individual measurement locations. Nevertheless analysis revealed statistically significant correlation of seepage rate variation in four

  6. Groundwater. (United States)

    Braids, Olin C.; Gillies, Nola P.


    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  7. Investigation of seasonal variation of groundwater quality in Jimeta ...

    African Journals Online (AJOL)

    The groundwater is fresh and varied from slightly acidic to alkaline in both the dry and rainy seasons. The mean values of BOD, COD and chloride exceeded the recommended standards of drinking water quality in the rainy season from the shallow and deep aquifers (hand-dug wells and boreholes). Nitrate and ammonium ...

  8. Separation of base flow from streamflow using groundwater levels - illustrated for the Pang catchment (UK)

    NARCIS (Netherlands)

    Peters, E.; Lanen, van H.A.J.


    A new filter to separate base flow from streamflow has developed that uses observed groundwater levels. To relate the base flow to the observed groundwater levels, a non-linear relation was used. This relation is suitable for unconfined aquifers with deep groundwater levels that do not respond to

  9. Research on critical groundwater level under the threshold value of land subsidence in the typical region of Beijing

    Directory of Open Access Journals (Sweden)

    Y. Jiang


    Full Text Available Groundwater in Beijing has been excessively exploited in a long time, causing the groundwater level continued to declining and land subsidence areas expanding, which restrained the economic and social sustainable development. Long years of study show good time-space corresponding relationship between groundwater level and land subsidence. To providing scientific basis for the following land subsidence prevention and treatment, quantitative research between groundwater level and settlement is necessary. Multi-linear regression models are set up by long series factual monitoring data about layered water table and settlement in the Tianzhu monitoring station. The results show that: layered settlement is closely related to water table, water level variation and amplitude, especially the water table. Finally, according to the threshold value in the land subsidence prevention and control plan of China (45, 30, 25 mm, the minimum allowable layered water level in this region while settlement achieving the threshold value is calculated between −18.448 and −10.082 m. The results provide a reasonable and operable control target of groundwater level for rational adjustment of groundwater exploited horizon in the future.

  10. Theoretical Analysis and Experimental Study of Subgrade Moisture Variation and Underground Antidrainage Technique under Groundwater Fluctuations

    Directory of Open Access Journals (Sweden)

    Liu Jie


    Full Text Available Groundwater is a main natural factor impacting the subgrade structure, and it plays a significant role in the stability of the subgrade. In this paper, the analytical solution of the subgrade moisture variations considering groundwater fluctuations is derived based on Richards’ equation. Laboratory subgrade model is built, and three working cases are performed in the model to study the capillary action of groundwater at different water tables. Two types of antidrainage materials are employed in the subgrade model, and their anti-drainage effects are discussed. Moreover, numerical calculation is conducted on the basis of subgrade model, and the calculate results are compared with the experimental measurements. The study results are shown. The agreement between the numerical and the experimental results is good. Capillary action is obvious when the groundwater table is rising. As the groundwater table is falling, the moisture decreases in the position of the subgrade near the water table and has no variations in the subgrade where far above the table. The anti-drainage effect of the sand cushion is associated with its thickness and material properties. New waterproofing and drainage material can prevent groundwater entering the subgrade effectively, and its anti-drainage effect is good.

  11. Contribution of global groundwater depletion since 1900 to sea-level rise

    National Research Council Canada - National Science Library

    Leonard F. Konikow


    ... of groundwater withdrawals, but global depletion is not well characterized. Cumulative groundwater depletion represents a transfer of mass from land to the oceans that contributes to sea-level rise...

  12. Effects of Soil and Water Conservation Measures on Groundwater Levels and Recharge


    Hong Wang; Jianen Gao; Xinghua Li; Hongjie Wang; Yuanxing Zhang


    Measures of soil and water conservation (SWC) could affect the hydrological process. The impacts of typical measures on groundwater recharge, levels and flow were analyzed based on simulated rainfall experiments and a groundwater model. The three-dimensional finite-difference groundwater flow model (MODFLOW) was calibrated and verified for bare slope, grassland and straw mulching scenarios based on the experiments. The results of the verification in groundwater balance, levels, runoff and fl...

  13. Seasonal variations in groundwater chemistry of a phreatic coastal and crystalline terrain of central Kerala, India

    Digital Repository Service at National Institute of Oceanography (India)

    Laluraj, C.M.; Gopinath, G.; DineshKumar, P.K.; Seralathan, P.

    parameters showed marginal variation. The trilinear diagram reveals that most of the groundwater samples from the crystalline terrain, which is of type IV (Ca sup(2+) -Mg sup(2+) -Cl sup(-) -SO sub(4) sup(2-)) during the premonsoon period, changed character...


    Directory of Open Access Journals (Sweden)

    K. Zh. Seminsky


    Full Text Available This study aimed to provide a systematic overview of water sources in the Baikal region and Transbaikalia by the content of radon (Q and establish regularities in variations of Q values in space and time.We collected and analyzed our evaluations of Q and the available published Q values for many dozens of water sources in the study area (Fig. 1, and reviewed the monitoring data of eight water sources that belong to the Angarsky fault impact zone in Southern Priangarie (Fig. 5. Radon content in water samples was measured in accordance with the standard procedure using a RRA-01M-03 radiometer (sensitivity of at least 1.4∙10–4 s–1∙Bq–1∙m3; maximum allowable relative error of 30 %.Based on the frequency patterns of Q values measured in the Baikal region and Transbaikalia (Fig. 2 and the analysis of the known classifications of the water sources by radioactivity, we propose a uniform regional classification of groundwaters with respect to 222Rn content (Table 1. In seismically active Baikal region, wherein water sources with Q>185 Bq/l are practically lacking, we distinguish the first three groups with the following Q ranges: Group I – Q≤15 Bq/l, Group II – 16≤Q≤99 Bq/l, and Group III – 100≤Q≤184 Bq/l. Most of the water sources sampled in the Baikal region and Transbaikalia belong to Groups I and II, which allows us to recommend an objectively existing value of 100 Bq/l as the level of intervention in the preparation of drinking water in this region, instead of the limit of 60 Bq/l that is now approved in Russia.In order to identify the special patterns of groundwater sources in the Baikal region and Transbaikalia, which belong to different radioactivity groups, we sampled these sources along the transect from Bayanday to Muhorshibir, across the Baikal rift and other large regional tectonic structures (Fig. 4. On a larger scale, we analysed the radon content variability in the groundwater sources within the zones

  15. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis (United States)

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo


    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602

  16. 450,000 years of groundwater (234U/238U)0 variations in SW Nevada, USA (United States)

    Wendt, Kathleen A.; Moseley, Gina E.; Pythoud, Mathieu; Dublyansky, Yuri; Edwards, R. Lawrence; Spötl, Christoph


    Subaqueous speleothems represent a unique archive for geochemical variations in regional groundwater systems. Devils Hole 2 cave, located in SW Nevada, USA, is an open fault zone intersecting the Ash Meadows groundwater flow system. Speleothem layers that coat the submerged walls of Devils Hole 2 cave record the isotopic composition of groundwater uranium at the time of precipitation. Past variations of 234U/238U initial activity ratios in groundwater may provide insight into paleohydrological conditions, such as changes to groundwater flow rates or source inputs. We aim to reconstruct 450 ka of groundwater (234U/238U)0 variations at Devils Hole 2 cave. To do so, an 80 cm-long core was drilled from the cave wall. Over 100 (234U/238U) and U-Th ages were measured in order to calculate initial activity ratios. Despite relatively constant uranium concentrations and growth rates throughout the core, preliminary results show a range in values (2.851 -2.616) deviating from modern day groundwater (234U/238U)0 which we measured to 2.762 (±0.002). (234U/238U)0 variations appear to follow interglacial-glacial cycles from 450 ka to present day, such that maximum (234U/238U)0 ratios identified at roughly 43, 185, 289, 374, and 449 ka correspond to glacial periods, while minimum (234U/238U)0 ratios at roughly 5, 121, 239, 336 and 422 ka correspond to interglacial periods. Focusing on the last 200 ka, we observe increasing (234U/238U)0 ratios coupled with depleted Devils Hole 2 δ18O values and water table high-stands (Moseley et al. 2016, Science 2016). We suggest that (234U/238U)0 variations are positively correlated to precipitation amount, contrary to dripstone speleothem records in the Great Basin region. Mechanisms driving the fluctuation in (234U/238U)0 values are still uncertain, but may be due to increased inputs of additional minor groundwater sources to the Ash Meadows flow system during pluvial periods.

  17. Application of vector autoregressive model for rainfall and groundwater level analysis (United States)

    Keng, Chai Yoke; Shan, Fam Pei; Shimizu, Kunio; Imoto, Tomoaki; Lateh, Habibah; Peng, Koay Swee


    Groundwater is a crucial water supply for industrial, agricultural and residential use, hence it is important to understand groundwater system. Groundwater is a dynamic natural resource and can be recharged. The amount of recharge depends on the rate and duration of rainfall, as rainfall comprises an important component of the water cycle and is the prime source of groundwater recharge. This study applies Vector Autoregressive (VAR) model in the analysis of rainfall and groundwater level. The study area that is focused in the study is along the East-West Highway, Gerik-Jeli, Malaysia. The VAR model with optimum lag length 8, VAR(8) is selected to model the rainfall and groundwater level in the study area. Result of Granger causality test shows significant influence of rainfall to groundwater level. Impulse Response Function reveals that changes in rainfall significantly affect changes in groundwater level after some time lags. Moreover, Variance Decomposition reported that rainfall contributed to the forecast of the groundwater level. The VAR(8) model is validated by comparing the actual value with the in-sample forecasted value and the result is satisfied with all forecasted groundwater level values lies inside the confidence interval which indicate that the model is reliable. Furthermore, the closeness of both actual and forecasted groundwater level time series plots implies the high degree of accurateness of the estimated model.

  18. Climate Forcings on Groundwater Variations in Utah and the Great Basin


    Hakala, Kirsti A.


    Groundwater levels over northern Utah have undergone a declining trend since the 1960’s. This trend has made apparent the need to understand the relationship between climate and groundwater resources. Such necessary information is already in dire need in places such as California. At the close of 2013, California had experienced its driest year in recorded history, with severe drought continuing for the foreseeable future. Utah is the second driest state in the U.S., and therefore has been pa...

  19. Comparison of stochastic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins. (United States)

    Varouchakis, Epsilon A; Hristopulos, D T


    In sparsely monitored basins, accurate mapping of the spatial variability of groundwater level requires the interpolation of scattered data. This paper presents a comparison of deterministic interpolation methods, i.e. inverse distance weight (IDW) and minimum curvature (MC), with stochastic methods, i.e. ordinary kriging (OK), universal kriging (UK) and kriging with Delaunay triangulation (DK). The study area is the Mires Basin of Mesara Valley in Crete (Greece). This sparsely sampled basin has limited groundwater resources which are vital for the island's economy; spatial variations of the groundwater level are important for developing management and monitoring strategies. We evaluate the performance of the interpolation methods with respect to different statistical measures. The Spartan variogram family is applied for the first time to hydrological data and is shown to be optimal with respect to stochastic interpolation of this dataset. The three stochastic methods (OK, DK and UK) perform overall better than the deterministic counterparts (IDW and MC). DK, which is herein for the first time applied to hydrological data, yields the most accurate cross-validation estimate for the lowest value in the dataset. OK and UK lead to smooth isolevel contours, whilst DK and IDW generate more edges. The stochastic methods deliver estimates of prediction uncertainty which becomes highest near the southeastern border of the basin.

  20. Reliable groundwater levels: failures and lessons learned from modeling and monitoring studies (United States)

    Van Lanen, Henny A. J.


    Adequate management of groundwater resources requires an a priori assessment of impacts of intended groundwater abstractions. Usually, groundwater flow modeling is used to simulate the influence of the planned abstraction on groundwater levels. Model performance is tested by using observed groundwater levels. Where a multi-aquifer system occurs, groundwater levels in the different aquifers have to be monitored through observation wells with filters at different depths, i.e. above the impermeable clay layer (phreatic water level) and beneath (artesian aquifer level). A reliable artesian level can only be measured if the space between the outer wall of the borehole (vertical narrow shaft) and the observation well is refilled with impermeable material at the correct depth (post-drilling phase) to prevent a vertical hydraulic connection between the artesian and phreatic aquifer. We were involved in improper refilling, which led to impossibility to monitor reliable artesian aquifer levels. At the location of the artesian observation well, a freely overflowing spring was seen, which implied water leakage from the artesian aquifer affected the artesian groundwater level. Careful checking of the monitoring sites in a study area is a prerequisite to use observations for model performance assessment. After model testing the groundwater model is forced with proposed groundwater abstractions (sites, extraction rates). The abstracted groundwater volume is compensated by a reduction of groundwater flow to the drainage network and the model simulates associated groundwater tables. The drawdown of groundwater level is calculated by comparing the simulated groundwater level with and without groundwater abstraction. In lowland areas, such as vast areas of the Netherlands, the groundwater model has to consider a variable drainage network, which means that small streams only carry water during the wet winter season, and run dry during the summer. The main streams drain groundwater

  1. Anomalous frequency characteristics of groundwater level before major earthquakes in Taiwan

    Directory of Open Access Journals (Sweden)

    C.-H. Chen


    Full Text Available Unusual decreases of water levels were consistently observed in 78% (= 42/54 of wells in the Choshuichi Alluvial Fan of central Taiwan about 250 days before the Chi-Chi earthquake (M = 7.6 on 20 September 1999 while possible factors of barometric pressure, earth tides, precipitation as well as artificial pumping were removed. Variations in groundwater levels measured on anomalous wells from 1 August 1997 to 19 September 1999, which covers the 250 day unusual decreases, were transferred into the frequency domain to unveil frequency characteristics associated with the Chi-Chi earthquake. Analytical results show that amplitudes at the frequency band between 0.02 day−1 and 0.04 day−1 generally maintained at the low stage and were apparently enhanced a few weeks before the Chi-Chi earthquake. Variations of amplitude at this particular frequency band were further examined along with other Taiwan earthquakes (M > 6 from 1 August 1997 to 31 December 2009. Features of the enhanced amplitudes at the frequency band are consistently observed prior to the other two earthquakes (the Rei-Li and Ming-Jian earthquakes during the 12.5 yr study period. In addition, surface displacements recorded from GPS, which provides insights into understanding stress status in subsurface during the Chi-Chi earthquake, are also inspected. The result confirms that abnormal rise and fall changes in groundwater level yield an agreement with forward and backward surface displacements around the epicentre prior to the Chi-Chi earthquake.

  2. Spatial-temporal pattern recognition of groundwater head variations for recharge zone identification (United States)

    Tsai, Jui-Pin; Chang, Liang-Cheng; Chang, Ping-Yu; Lin, Yuan-Chien; Chen, You-Cheng; Wu, Meng-Ting; Yu, Hwa-Lung


    The delineation of groundwater recharge zones is crucial for the conservation of groundwater quality and quantity. To objectively estimate groundwater recharge zones, many field surveys are required that are costly in both time and money. To facilitate the assessment of recharge zones with high efficiency and low expense, this study proposes a 'fast-filter' approach based on empirical orthogonal function analysis and applies it in a synthetic case study and to Taiwan's Yilan Plain. In the synthetic case study, we demonstrate that the proposed method can effectively identify the recharge area by considering the head variations driven by rainfall recharge. For the case of Yilan Plain application, the field investigations (i.e., collected wellbore logs and electrical resistivity tomography [ERT] surveys) and a groundwater simulation model support the recharge zones estimated by the proposed method. The study results show that within the estimated recharge zone, all of the collected wellbore logs consist of coarse grains, and thick and continuous high resistivity zones were shown in the ERT profile images. Moreover, the groundwater model indicates that the recharge within the estimated recharge zone is 57.6% of the total recharge despite that the area of the estimated zone is only 26.8% of the study area. Therefore, the proposed method is shown to delineate recharge zones at low cost.

  3. Study of Seasonal Variation in Groundwater Quality of Sagar City (India by Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Hemant Pathak


    Full Text Available Groundwater is one of the major resources of the drinking water in Sagar city (India.. In this study 15 sampling station were selected for the investigations on 14 chemical parameters. The work was carried out during different months of the pre-monsoon, monsoon and post-monsoon seasons in June 2009 to June 2010. The multivariate statistics such as principal component and cluster analysis were applied to the datasets to investigate seasonal variations in groundwater quality. Principal axis factoring has been used to observe the mode of association of parameters and their interrelationships, for evaluating water quality. Average value of BOD, COD, ammonia and iron was high during entire study period. Elevated values of BOD and ammonia in monsoon, slightly more value of BOD in post-monsoon, BOD, ammonia and iron in pre-monsoon period reflected contribution on temporal effect on groundwater. Results of principal component analysis evinced that all the parameters equally and significantly contribute to groundwater quality variations. Factor 1 and factor 2 analysis revealed the DO value deteriorate due to organic load (BOD/Ammonia in different seasons. Hierarchical cluster analysis grouped 15 stations into four clusters in monsoon, five clusters in post-monsoon and five clusters in pre-monsoon with similar water quality features. Clustered group at monsoon, post-monsoon and pre-monsoon consisted one station exhibiting significant spatial variation in physicochemical composition. The anthropogenic nitrogenous species, as fallout from modernization activities. The study indicated that the groundwater sufficiently well oxygenated and nutrient-rich in study places.

  4. Estimating the hydraulic parameters of a confined aquifer based on the response of groundwater levels to seismic Rayleigh waves (United States)

    Sun, Xiaolong; Xiang, Yang; Shi, Zheming


    Groundwater flow models implemented to manage regional water resources require aquifer hydraulic parameters. Traditional methods for obtaining these parameters include laboratory experiments, field tests, and model inversions, and each are potentially hindered by their unique limitations. Here, we propose a methodology for estimating hydraulic conductivity and storage coefficients using the spectral characteristics of the coseismic groundwater-level oscillations and seismic Rayleigh waves. The results from Well X10 are consistent with the variations and spectral characteristics of the water-level oscillations and seismic waves and present an estimated hydraulic conductivity of approximately 1 × 10-3 m/s and storativity of 15 × 10-6. The proposed methodology for estimating hydraulic parameters in confined aquifers is a practical and novel approach for groundwater management and seismic precursor anomaly analyses.

  5. The GEO Water Strategy: Advances in Monitoring, Modeling, and Predicting Groundwater Variations at Regional to Local Scales (United States)

    Miller, N. L.; Heinrich, L.; Kukuri, N.; Plag, H.; Famiglietti, J. S.; Rodell, M.


    Groundwater remains one of the most important freshwater resources, especially during droughts and as global warming increases. For informed decisions on managing these resources sustainably, it is important to have sound assessments of the current state of groundwater resources as well as future predictions. This requires reliable groundwater quantity and quality data. However global access to this data is limited. As part of the GEOSS Water Strategy, the International Groundwater Assessment Centre (IGRAC) is therefore implementing the Global Groundwater Monitoring Network (GGMN). The GGMN facilitates periodic assessments of changes in groundwater quantity and quality by aggregating data and information from existing groundwater monitoring networks and regional hydrogeological knowledge (Fig. 1). The GGMN is a participatory process that relies upon contributions from regional and national networks of groundwater experts. Such observation data, along with local well data, surface displacements observed by and GPS data and InSAR, and local in situ gravity data, are necessary for evaluation and simulation of groundwater, leading to improved understanding and prediction of groundwater variations. In conjunction with these observations, regional scale groundwater variations are derived as a residual from land surface-groundwater models through extraction of the total mass of water using geo-rectified Gravity Recovery and Climate Experiment (GRACE) data. Such model-based studies have quantified overdraft and regions at risk of groundwater depletion in parts of Asia, US, and Africa (Fig. 2).We provide an overview of these systems, planned missions, and new model-based approaches toward local-scale methods for assimilation of well data for several regions.igure 1. Example of GGMN (Example of Botswana with fictitious data, with local precipitation map) igure 2. GRACE-derived groundwater storage in northwestern India for 2002 - 2008, relative to the mean. Deviations from

  6. Regulation of drainage canals on the groundwater level in a typical coastal wetlands (United States)

    Liu, Qiang; Mou, Xia; Cui, Baoshan; Ping, Fan


    Activities related to reclamation alter wetland hydrological regimes and inevitably cause changes to groundwater level, which can result in the ecological degradation of coastal wetlands. Decreasing the groundwater level by the construction of drainage canals is an approach that has been widely used to control levels of root zone soil salinity as well as to protect freshwater wetlands or to expand agricultural land area in coastal wetlands. In this study, we assessed the influences of different drainage canal designs on the groundwater level using the Visual MODFLOW (VMOD) interface. We also provided an optimized drainage canal design suitable for the Yellow River Delta (YRD). Results showed that: (i) the groundwater level decreased in areas close to drainage canals, while only negligible effects were found on the groundwater level in areas with no drainage canals; (ii) the influence of drainage canals on the groundwater level decreased as distance increased; and (iii) a drainage canal network design of a depth of 5 m, with canal configuration of north-south direction and canal spacing of 1000 m was more effective in reducing the groundwater level in the study area. Our findings indicated that changes in groundwater level by the construction of drainage canals could help in our understanding of how groundwater influences freshwater wetlands and also aid in maintaining the integrity of coastal wetlands.

  7. Impacts of Future Climate Change and Baltic Sea Level Rise on Groundwater Recharge, Groundwater Levels, and Surface Leakage in the Hanko Aquifer in Southern Finland

    Directory of Open Access Journals (Sweden)

    Samrit Luoma


    Full Text Available The impact of climate change and Baltic Sea level rise on groundwater resources in a shallow, unconfined, low-lying coastal aquifer in Hanko, southern Finland, was assessed using the UZF1 model package coupled with the three-dimensional groundwater flow model MODFLOW to simulate flow from the unsaturated zone through the aquifer. The snow and PET models were used to calculate the surface water availability for infiltration from the precipitation data used in UZF1. Infiltration rate, flow in the unsaturated zone and groundwater recharge were then simulated using UZF1. The simulation data from climate and sea level rise scenarios were compared with present data. The results indicated changes in recharge pattern during 2071–2100, with recharge occurring earlier in winter and early spring. The seasonal impacts of climate change on groundwater recharge were more significant, with surface overflow resulting in flooding during winter and early spring and drought during summer. Rising sea level would cause some parts of the aquifer to be under sea level, compromising groundwater quality due to intrusion of sea water. This, together with increased groundwater recharge, would raise groundwater levels and consequently contribute more surface leakage and potential flooding in the low-lying aquifer.

  8. Modelling the response of shallow groundwater levels to combined climate and water-diversion scenarios in Beijing-Tianjin-Hebei Plain, China (United States)

    Li, Xue; Ye, Si-Yuan; Wei, Ai-Hua; Zhou, Peng-Peng; Wang, Li-Heng


    A three-dimensional groundwater flow model was implemented to quantify the temporal variation of shallow groundwater levels in response to combined climate and water-diversion scenarios over the next 40 years (2011-2050) in Beijing-Tianjin-Hebei (Jing-Jin-Ji) Plain, China. Groundwater plays a key role in the water supply, but the Jing-Jin-Ji Plain is facing a water crisis. Groundwater levels have declined continuously over the last five decades (1961-2010) due to extensive pumping and climate change, which has resulted in decreased recharge. The implementation of the South-to-North Water Diversion Project (SNWDP) will provide an opportunity to restore the groundwater resources. The response of groundwater levels to combined climate and water-diversion scenarios has been quantified using a groundwater flow model. The impacts of climate change were based on the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset for future high (A2), medium (A1B), and low (B1) greenhouse gas scenarios; precipitation data from CMIP3 were applied in the model. The results show that climate change will slow the rate of decrease of the shallow groundwater levels under three climate-change scenarios over the next 40 years compared to the baseline scenario; however, the shallow groundwater levels will rise significantly (maximum of 6.71 m) when considering scenarios that combine climate change and restrictions on groundwater exploitation. Restrictions on groundwater exploitation for water resource management are imperative to control the decline of levels in the Jing-Jin-Ji area.

  9. Groundwater isotopic variations in a uranium mining site: subsidies for contamination studies

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, V. P. de [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Divisao de Engenharia Nuclear; Sobrinho, G.A.N.; Freitas, L.D.; Franklin, M.R., E-mail: [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)


    The Caetite Experimental Basin (CEB), located in the semi-arid region of Northeastern Brazil, faces not only the challenges associated with water scarcity but also the potential contamination processes due to mining activity. The only active uranium production center in Brazil (URA) is located in this watershed and the sustainability of mining and milling operations, as well as the survival of the local community, is highly dependent on the availability of groundwater resources. This paper analyzes the stable isotopes variation of Deuterium ({sup 2}H) and Oxygen-18 ({sup 18}O) in CEB's groundwater to investigate its dynamics and mixing of water sources as part of initial efforts to characterize the hydrogeology of this area for future contamination and recharge studies. Measurements of δ{sup 2}H, δ{sup 18}O, total dissolved solids (TDS), pH, and electrical conductivity (EC) were carried out in water samples from 27 wells. A total of 98 groundwater samples were analyzed during the dry and wet seasons from 2012 to 2014. All the groundwater samples plotted below the local meteoric line toward more enriched δ{sup 18}O values, an indicative of evaporation process. {sup 2}H and {sup 18}O data suggests that the main source of groundwater recharge is local precipitation and there is no mixing of infiltrating rainwater with older groundwater. These results provide evidence that the aquifer system in the CEB has a relatively fast turnover time, which contribute to the vulnerability of the aquifer to contamination. These findings are corroborated by the low TDS and EC values indicative of short time in water-rock interaction. (author)

  10. Assessment of groundwater level estimation uncertainty using sequential Gaussian simulation and Bayesian bootstrapping (United States)

    Varouchakis, Emmanouil; Hristopulos, Dionissios


    Space-time geostatistical approaches can improve the reliability of dynamic groundwater level models in areas with limited spatial and temporal data. Space-time residual Kriging (STRK) is a reliable method for spatiotemporal interpolation that can incorporate auxiliary information. The method usually leads to an underestimation of the prediction uncertainty. The uncertainty of spatiotemporal models is usually estimated by determining the space-time Kriging variance or by means of cross validation analysis. For de-trended data the former is not usually applied when complex spatiotemporal trend functions are assigned. A Bayesian approach based on the bootstrap idea and sequential Gaussian simulation are employed to determine the uncertainty of the spatiotemporal model (trend and covariance) parameters. These stochastic modelling approaches produce multiple realizations, rank the prediction results on the basis of specified criteria and capture the range of the uncertainty. The correlation of the spatiotemporal residuals is modeled using a non-separable space-time variogram based on the Spartan covariance family (Hristopulos and Elogne 2007, Varouchakis and Hristopulos 2013). We apply these simulation methods to investigate the uncertainty of groundwater level variations. The available dataset consists of bi-annual (dry and wet hydrological period) groundwater level measurements in 15 monitoring locations for the time period 1981 to 2010. The space-time trend function is approximated using a physical law that governs the groundwater flow in the aquifer in the presence of pumping. The main objective of this research is to compare the performance of two simulation methods for prediction uncertainty estimation. In addition, we investigate the performance of the Spartan spatiotemporal covariance function for spatiotemporal geostatistical analysis. Hristopulos, D.T. and Elogne, S.N. 2007. Analytic properties and covariance functions for a new class of generalized Gibbs

  11. Groundwater-level trends and implications for sustainable water use in the Kabul Basin, Afghanistan (United States)

    Mack, Thomas J.; Chornack, Michael P.; Taher, Mohammad R.


    The Kabul Basin, which includes the city of Kabul, Afghanistan, with a population of approximately 4 million, has several Afghan, United States, and international military installations that depend on groundwater resources for a potable water supply. This study examined groundwater levels in the Kabul Basin from 2004 to 2012. Groundwater levels have increased slightly in rural areas of the Kabul Basin as a result of normal precipitation after the drought of the early 2000s. However, groundwater levels have decreased in the city of Kabul due to increasing water use in an area with limited recharge. The rate of groundwater-level decrease in the city is greater for the 2008–2012 period (1.5 meters per year (m/yr) on average) than for the 2004–2008 period (0–0.7 m/yr on average). The analysis, which is corroborated by groundwater-flow modeling and a non-governmental organization decision-support model, identified groundwater-level decreases and associated implications for groundwater sustainability in the city of Kabul. Military installations in the city of Kabul (the Central Kabul subbasin) are likely to face water management challenges resulting from long-term groundwater sustainability concerns, such as the potential drying of shallow water-supply wells. Installations in the northern part of the Kabul Basin may have fewer issues with long-term water sustainability. Groundwater-level monitoring and groundwater-flow simulation can be valuable tools for assessing groundwater management options to improve the sustainability of water resources in the Kabul Basin.

  12. Determination of polycyclic aromatic hydrocarbon levels of groundwater in Ife north local government area of Osun state, Nigeria

    Directory of Open Access Journals (Sweden)

    Abolanle Saheed Adekunle

    Full Text Available This study determined the presence and levels of Polycyclic Aromatic Hydrocarbons (PAHs of groundwater in Moro, Edun-Abon, Yakoyo and Ipetumodu communities in Ife-North Local Government Area of Osun State. This was with a view to create public awareness about the safety of groundwater as a source for domestic purposes (e.g., drinking, cooking etc. in non-industrial area. Water samples were collected on seasonal basis, comprising of three months (August–October in the wet season and three months (December–February in the dry season. The PAHs in the water samples were extracted with n-hexane using liquid–liquid extraction method, while their qualitative identifications and quantitative estimations were carried out with the use of gas chromatography. Levels of PAHs detected showed predominance of light PAHs (less than four fused rings for both wet and the dry seasons. Higher concentrations of PAHs were recorded during the wet season than the dry season. The study concluded that the groundwater in the communities was contaminated with light PAHs and the total PAHs in this area exceeded the maximum permissible limit of 10 μg L−1 recommended by World Health Organization (WHO for safety of groundwater. Keywords: Polycyclic aromatic hydrocarbons, Groundwater, Water quality, Seasonal variation, Health impact

  13. Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, northwest China. (United States)

    Xiao, Yong; Gu, Xiaomin; Yin, Shiyang; Shao, Jingli; Cui, Yali; Zhang, Qiulan; Niu, Yong


    Based on the geo-statistical theory and ArcGIS geo-statistical module, datas of 30 groundwater level observation wells were used to estimate the decline of groundwater level in Beijing piedmont. Seven different interpolation methods (inverse distance weighted interpolation, global polynomial interpolation, local polynomial interpolation, tension spline interpolation, ordinary Kriging interpolation, simple Kriging interpolation and universal Kriging interpolation) were used for interpolating groundwater level between 2001 and 2013. Cross-validation, absolute error and coefficient of determination (R(2)) was applied to evaluate the accuracy of different methods. The result shows that simple Kriging method gave the best fit. The analysis of spatial and temporal variability suggest that the nugget effects from 2001 to 2013 were increasing, which means the spatial correlation weakened gradually under the influence of human activities. The spatial variability in the middle areas of the alluvial-proluvial fan is relatively higher than area in top and bottom. Since the changes of the land use, groundwater level also has a temporal variation, the average decline rate of groundwater level between 2007 and 2013 increases compared with 2001-2006. Urban development and population growth cause over-exploitation of residential and industrial areas. The decline rate of the groundwater level in residential, industrial and river areas is relatively high, while the decreasing of farmland area and development of water-saving irrigation reduce the quantity of water using by agriculture and decline rate of groundwater level in agricultural area is not significant.

  14. Assessing the suitability of extreme learning machines (ELM for groundwater level prediction

    Directory of Open Access Journals (Sweden)

    Yadav Basant


    Full Text Available Fluctuation of groundwater levels around the world is an important theme in hydrological research. Rising water demand, faulty irrigation practices, mismanagement of soil and uncontrolled exploitation of aquifers are some of the reasons why groundwater levels are fluctuating. In order to effectively manage groundwater resources, it is important to have accurate readings and forecasts of groundwater levels. Due to the uncertain and complex nature of groundwater systems, the development of soft computing techniques (data-driven models in the field of hydrology has significant potential. This study employs two soft computing techniques, namely, extreme learning machine (ELM and support vector machine (SVM to forecast groundwater levels at two observation wells located in Canada. A monthly data set of eight years from 2006 to 2014 consisting of both hydrological and meteorological parameters (rainfall, temperature, evapotranspiration and groundwater level was used for the comparative study of the models. These variables were used in various combinations for univariate and multivariate analysis of the models. The study demonstrates that the proposed ELM model has better forecasting ability compared to the SVM model for monthly groundwater level forecasting.

  15. Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S. (United States)

    Sahoo, S.; Russo, T. A.; Elliott, J.; Foster, I.


    Climate, groundwater extraction, and surface water flows have complex nonlinear relationships with groundwater level in agricultural regions. To better understand the relative importance of each driver and predict groundwater level change, we develop a new ensemble modeling framework based on spectral analysis, machine learning, and uncertainty analysis, as an alternative to complex and computationally expensive physical models. We apply and evaluate this new approach in the context of two aquifer systems supporting agricultural production in the United States: the High Plains aquifer (HPA) and the Mississippi River Valley alluvial aquifer (MRVA). We select input data sets by using a combination of mutual information, genetic algorithms, and lag analysis, and then use the selected data sets in a Multilayer Perceptron network architecture to simulate seasonal groundwater level change. As expected, model results suggest that irrigation demand has the highest influence on groundwater level change for a majority of the wells. The subset of groundwater observations not used in model training or cross-validation correlates strongly (R > 0.8) with model results for 88 and 83% of the wells in the HPA and MRVA, respectively. In both aquifer systems, the error in the modeled cumulative groundwater level change during testing (2003-2012) was less than 2 m over a majority of the area. We conclude that our modeling framework can serve as an alternative approach to simulating groundwater level change and water availability, especially in regions where subsurface properties are unknown.

  16. Erodibility of soil above the groundwater level: some test results

    Directory of Open Access Journals (Sweden)

    Shidlovskaya Anna


    Full Text Available The paper presents a study on erodibility of soil above the groundwater level where the water is in tension. Such soils particularly clays are very sensitive to moisture and temperature changes and can be eroded significantly by water flow. The erosion of clay and sand samples from the US National Geotechnical Experimentation Site at Texas A&M University is studied. Two sets of experiments are done with the clay and the sand. The first set was performed on sample collected in November 2014 and the second set on samples from June 2014. The depth of the samples varied from 0.6 to 3.6 m where water content and density changes. A series of erosion tests was performed in the Erosion Function apparatus (EFA with the intact clay and then with the sand reconstructed to the field density and field water content. The erosion tests are performed at different flow velocities varying from 0.5 m/s to 5.5 m/s. The erodibility is quantified by the relationship between the erosion rate and the water velocity called the erosion function. Some relationships between the critical velocity and common soil properties are discussed. The collapse of the clay structure when inundated (soaking is studied.

  17. Response to recharge variation of thin rainwater lenses and their mixing zone with underlying saline groundwater

    Directory of Open Access Journals (Sweden)

    S. Eeman


    Full Text Available In coastal zones with saline groundwater, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not constant, which may adversely affect agricultural and natural vegetation if saline water reaches the root zone during the growing season. In this paper, we study the response of thin lenses and their mixing zone to variation of recharge. The recharge is varied using sinusoids with a range of amplitudes and frequencies. We vary lens characteristics by varying the Rayleigh number and Mass flux ratio of saline and fresh water, as these dominantly influence the thickness of thin lenses and their mixing zone. Numerical results show a linear relation between the normalised lens volume and the main lens and recharge characteristics, enabling an empirical approximation of the variation of lens thickness. Increase of the recharge amplitude causes increase and the increase of recharge frequency causes a decrease in the variation of lens thickness. The average lens thickness is not significantly influenced by these variations in recharge, contrary to the mixing zone thickness. The mixing zone thickness is compared to that of a Fickian mixing regime. A simple relation between the travelled distance of the centre of the mixing zone position due to variations in recharge and the mixing zone thickness is shown to be valid for both a sinusoidal recharge variation and actual records of daily recharge data. Starting from a step response function, convolution can be used to determine the effect of variable recharge in time. For a sinusoidal curve, we can determine delay of lens movement compared to the recharge curve as well as the lens amplitude, derived from the convolution integral. Together the proposed equations provide us with a first order approximation of lens

  18. Response to recharge variation of thin rainwater lenses and their mixing zone with underlying saline groundwater (United States)

    Eeman, S.; van der Zee, S. E. A. T. M.; Leijnse, A.; de Louw, P. G. B.; Maas, C.


    In coastal zones with saline groundwater, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not constant, which may adversely affect agricultural and natural vegetation if saline water reaches the root zone during the growing season. In this paper, we study the response of thin lenses and their mixing zone to variation of recharge. The recharge is varied using sinusoids with a range of amplitudes and frequencies. We vary lens characteristics by varying the Rayleigh number and Mass flux ratio of saline and fresh water, as these dominantly influence the thickness of thin lenses and their mixing zone. Numerical results show a linear relation between the normalised lens volume and the main lens and recharge characteristics, enabling an empirical approximation of the variation of lens thickness. Increase of the recharge amplitude causes increase and the increase of recharge frequency causes a decrease in the variation of lens thickness. The average lens thickness is not significantly influenced by these variations in recharge, contrary to the mixing zone thickness. The mixing zone thickness is compared to that of a Fickian mixing regime. A simple relation between the travelled distance of the centre of the mixing zone position due to variations in recharge and the mixing zone thickness is shown to be valid for both a sinusoidal recharge variation and actual records of daily recharge data. Starting from a step response function, convolution can be used to determine the effect of variable recharge in time. For a sinusoidal curve, we can determine delay of lens movement compared to the recharge curve as well as the lens amplitude, derived from the convolution integral. Together the proposed equations provide us with a first order approximation of lens characteristics using

  19. Response to recharge variation of thin lenses and their mixing zone with underlying saline groundwater (United States)

    Eeman, S.; van der Zee, S. E. A. T. M.; Leijnse, A.; de Louw, P. G. B.; Maas, C.


    In coastal zones with saline groundwater, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not constant, which may adversely affect agricultural and natural vegetation if saline water reaches the root zone during the growing season. In this paper, we study the response of thin lenses and their mixing zone to variation of recharge. The recharge is varied using sinusoids with a range of amplitudes and frequencies. We vary lens characteristics by varying the Rayleigh number and Mass flux ratio of saline and fresh water, as these dominantly influence the thickness of thin lenses and their mixing zone. Numerical results show a linear relation between the normalized lens volume and the main lens and recharge characteristics, enabling an analytical approximation of the variation of lens thickness. Increase of the recharge amplitude causes increase, and increase of recharge frequency causes decrease in the variation of lens thickness. The average lens thickness is not significantly influenced by these variations in recharge, contrary to the mixing zone thickness. The mixing zone thickness is compared to that of a Fickian mixing regime. A simple relation between the travelled distance of the center of the mixing zone position due to variations in recharge and the mixing zone thickness is shown to be valid for both a sinusoidal recharge variation and actual records of daily recharge data. Starting from a step response function, convolution can be used to determine the effect of variable recharge in time. For a sinusoidal curve, we can determine delay of lens movement compared to the recharge curve as well as the lens amplitude, derived from the convolution integral. Together the proposed equations provide us with a first order approximation of lens characteristics using basic

  20. Groundwater level prediction by Artificial Neural Network model in Eastern Jeju Island, Korea (United States)

    Chung, Il-Moon; Lee, Jeongwoo; Chang, Sunwoo


    The size of rainfall In the Jeju Island (Republic of Korea) is largest in whole country. Due to the rapid recharge of deep aquifers through highly permeable volcanic basalt rock, most streams dry up shortly after rainfall events. For this reason, accurate estimation of hydrologic components is challenging even with conventional watershed hydrologic model. People in this island rely greatly upon the groundwater resources by pumping for agricultural water use. However, local government has to control the maximum use of agricultural groundwater especially in drought period to avoid groundwater depletion. To adapt this status the groundwater level prediction model is developed by using artificial neural network algorithm. The model uses rainfall and groundwater level data for training and calibration by back propagation and then predicts the groundwater level with predicted rainfall data sets made based on the various scenarios applying drought conditions. For the 10 groundwater stations in eastern area, we performed 6 months prediction successfully. These results can be used for monthly groundwater level prediction for severe drought period in this island. ACKNOWLEDGMENTS: This work was supported by a grant (17RDRP-B076272-03) from Infrastructure and transportation technology promotion research Program funded by the Ministry of Land, Infrastructure and Transport of Korean government.

  1. 1:750,000-scale static ground-water levels of Nevada (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of static ground-water levels for the State of Nevada based on a 1974 ground-water map (Rush, 1974) published by the Nevada Department of...

  2. Seasonal Variation in Fluoride Content in Groundwaters of Langtang Area, Northcentral Nigeria (United States)

    Dibal, H. U.; Dajilak, W. N.; Lekmang, I. C.; Nimze, L. W.; Yenne, E. Y.


    Thirty groundwater samples were collected at the peak of the rainy season and analysed for fluoride and other cations and anions in drinking water sources of Langtang area. For comparative purposes, thirty seven groundwater samples were collected in the dry season. The aim of the study was to determine variation in fluoride content with respect to the seasons. Fluoride in water was determined by the Ion Selective Electrode (ISE) and the cations by the Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The anion (sulphate) was determined by Multi - Ion Colorimeter, bicarbonate and chloride by titration method. In addition fluorine content in aquifer materials from a borehole section were determined by Fusion method. The two seasons show variation in content of fluoride in groundwater. Fluoride content in groundwater is higher in the dry season ranging from 0.13 - 10.3 mg/l compared to the 0.06 - 4.60 mg/l values in the rainy season. Content of fluorine (0.01 wt %) in the aquifer materials (sands) is low from depth of 0 to 7.95 m. However, fluorine content increases with depth, from 7.95 to 10.60 m with concentration of 0.04 wt %, 0.05 wt % from 10.60 to 13.25m, and 0.07 wt % from 13.25 to 15.70 m, the content of fluorine however, decreased at depth 15.70 to18.55m with concentration of 0.02 wt % even with fluorite mineral in the aquifer material at this depth. Dilution of fluoride ion as a result of rain input which recharges the aquifer may be the main reason for lower values recorded in the rainy season. Over fifty and sixty percent of waters in both dry and rainy season have fluoride concentration above the WHO upper limit of 1.5 mg/l. Consumption of these elevated values of fluoride in groundwater of the study area, clearly manifests as symptoms of dental fluorosis.

  3. Accuracy testing of steel and electric groundwater-level measuring tapes: Test method and in-service tape accuracy (United States)

    Fulford, Janice M.; Clayton, Christopher S.


    The accuracy of groundwater-level tapes was investigated by developing a tape calibration method and device and testing the accuracy of a sample of groundwater-level tapes with the calibration method and device. The sample of tapes included in-service U.S. Geological Survey (USGS) Water Science Center steel and electric groundwater-level tapes.

  4. Geomorphic interaction among climate, sea levels and karst groundwater: the Taranto area (South of Italy) (United States)

    Spilotro, Giuseppe; Fidelibus, Maria Dolores; Argentiero, Ilenia; Pellicani, Roberta; Parisi, Alessandro; Di Modugno, Antonella


    The area of Taranto (Apulia region, Italy) has an extraordinary environmental and landscape value, which derives from its specific geological, geomorphological and hydrogeological conditions: they represent the effect of a complex mechanism of interaction in the geological time among the sea, its level variations and stands driven by climate changes, karst groundwater and the geo lithological frame. The knowledge of this interaction spans over two very different time duration: the first is subsequent to the sedimentary pleistocenic deposition and diagenesis and lasts until the late Holocene; the second spans over a more limited time durations, from the LIA until today, and its knowledge is mainly based on hystorical topographic records and reports. The general geological and stratigraphical setting is represented by marine deposits, which fill the Bradanic Trough, shaped in the upper part as marine terraces bordering the W and SW side of the Murgian carbonate platform (Apulia, South of Italy) as well. This latter constitutes an important karst hydro-structure, fed by precipitation, bordered on the opposite side of the Bradanic Trough by the Adriatic Sea. Fresh groundwater hosted in the huge coastal aquifer freely flows towards the Adriatic coast, while on the opposite W-NW side, the continuous confinement by the impermeable filling of the trough, forces the underground drainage of the aquifer towards the Ionian Sea just in the Taranto area. The overall flow rate of the groundwater through submarine and subaerial coastal springs, according to the current sea level, is significant and currently estimated in about 18 m3/sec. Climate changes have forced over geological time, but also in shorter periods, sea level changes and stands, consequently correlated to groundwater levels. This allowed genesis of selected karst levels, of regional extension, both at the surface or underground, which arise as typical forms, namely polje and karst plane inland, terraces on the sea

  5. Assessment of groundwater inundation as consequence of sea-level rise (United States)

    Rotzoll, K.; Fletcher, C. H.


    Strong evidence on climate change underscores the need for actions to reduce the impacts of sea-level rise. It has been largely unrecognized that low-lying coastal areas are more vulnerable to inundation from groundwater than marine flooding because the groundwater elevation is typically higher than mean sea level. Field measurements of the coastal groundwater elevation and tidal influence in urban Honolulu, Hawaii, allow estimates of the generalized distribution of the mean water table, which was used in conjunction with digital elevation maps to assess vulnerability to groundwater inundation from sea-level rise. We find that 0.6 m of potential sea-level rise causes substantial flooding, and 1 m sea-level rise inundates 10% of a 1-km wide coastal zone. This has wide-reaching consequences for decision-makers, resource managers, and urban planners and is applicable to many low-lying coastal areas.

  6. Spatial analyses of groundwater levels using universal kriging

    Indian Academy of Sciences (India)

    This study aims to determine which of these empirical semivariogram models will be best matched with the experimental models obtained from groundwater-table values collected from Mustafakemalpasa left bank irrigation scheme in 2002. The model having the least error was selected by comparing the observed ...

  7. Characterizing Groundwater Level and Flow Pattern in a Shallow ...

    African Journals Online (AJOL)


    This study characterize groundwater yield and flow pattern on a shallow overburden aquifers of a basement complex .... 2.2 Data Analysis. The methods used to analyze the data generated from the field work are the following. 1) Descriptive statistics such as Mean was used to generalize characteristics of the wells collected ...

  8. Groundwater-level trends in the U.S. glacial aquifer system, 1964-2013 (United States)

    Hodgkins, Glenn A.; Dudley, Robert W.; Nielsen, Martha G.; Renard, Benjamin; Qi, Sharon L.


    The glacial aquifer system in the United States is a major source of water supply but previous work on historical groundwater trends across the system is lacking. Trends in annual minimum, mean, and maximum groundwater levels for 205 monitoring wells were analyzed across three regions of the system (East, Central, West Central) for four time periods: 1964-2013, 1974-2013, 1984-2013, and 1994-2013. Trends were computed separately for wells in the glacial aquifer system with low potential for human influence on groundwater levels and ones with high potential influence from activities such as groundwater pumping. Generally there were more wells with significantly increasing groundwater levels (levels closer to ground surface) than wells with significantly decreasing levels. The highest numbers of significant increases for all four time periods were with annual minimum and/or mean levels. There were many more wells with significant increases from 1964 to 2013 than from more recent periods, consistent with low precipitation in the 1960s. Overall there were low numbers of wells with significantly decreasing trends regardless of time period considered; the highest number of these were generally for annual minimum groundwater levels at wells with likely human influence. There were substantial differences in the number of wells with significant groundwater-level trends over time, depending on whether the historical time series are assumed to be independent, have short-term persistence, or have long-term persistence. Mean annual groundwater levels have significant lag-one-year autocorrelation at 26.0% of wells in the East region, 65.4% of wells in the Central region, and 100% of wells in the West Central region. Annual precipitation across the glacial aquifer system, on the other hand, has significant autocorrelation at only 5.5% of stations, about the percentage expected due to chance.

  9. Groundwater-level trends in the U.S. glacial aquifer system, 1964-2013 (United States)

    Hodgkins, G. A.; Dudley, R. W.; Nielsen, M. G.; Renard, B.; Qi, S. L.


    The glacial aquifer system in the United States is a major source of water supply but previous work on historical groundwater trends across the system is lacking. Trends in annual minimum, mean, and maximum groundwater levels for 205 monitoring wells were analyzed across three regions of the system (East, Central, West Central) for four time periods: 1964-2013, 1974-2013, 1984-2013, and 1994-2013. Trends were computed separately for wells in the glacial aquifer system with low potential for human influence on groundwater levels and ones with high potential influence from activities such as groundwater pumping. Generally there were more wells with significantly increasing groundwater levels (levels closer to ground surface) than wells with significantly decreasing levels. The highest numbers of significant increases for all four time periods were with annual minimum and/or mean levels. There were many more wells with significant increases from 1964 to 2013 than from more recent periods, consistent with low precipitation in the 1960s. Overall there were low numbers of wells with significantly decreasing trends regardless of time period considered; the highest number of these were generally for annual minimum groundwater levels at wells with likely human influence. There were substantial differences in the number of wells with significant groundwater-level trends over time, depending on whether the historical time series are assumed to be independent, have short-term persistence, or have long-term persistence. Mean annual groundwater levels have significant lag-one-year autocorrelation at 26.0% of wells in the East region, 65.4% of wells in the Central region, and 100% of wells in the West Central region. Annual precipitation across the glacial aquifer system, on the other hand, has significant autocorrelation at only 5.5% of stations, about the percentage expected due to chance.

  10. Recent Changes in Land Water Storage and Its Contribution to Sea Level Variations (United States)

    Wada, Yoshihide; Reager, John T.; Chao, Benjamin F.; Wang, Jida; Lo, Min-Hui; Song, Chunqiao; Li, Yuwen; Gardner, Alex S.


    Sea level rise is generally attributed to increased ocean heat content and increased rates glacier and ice melt. However, human transformations of Earth's surface have impacted water exchange between land, atmosphere, and ocean, ultimately affecting global sea level variations. Impoundment of water in reservoirs and artificial lakes has reduced the outflow of water to the sea, while river runoff has increased due to groundwater mining, wetland and endorheic lake storage losses, and deforestation. In addition, climate-driven changes in land water stores can have a large impact on global sea level variations over decadal timescales. Here, we review each component of negative and positive land water contribution separately in order to highlight and understand recent changes in land water contribution to sea level variations.

  11. Forecasting of Groundwater Level using Artificial Neural Network by incorporating river recharge and river bank infiltration

    Directory of Open Access Journals (Sweden)

    Nizar Shamsuddin Mohd Khairul


    Full Text Available Groundwater tables forecasting during implemented river bank infiltration (RBI method is important to identify adequate storage of groundwater aquifer for water supply purposes. This study illustrates the development and application of artificial neural networks (ANNs to predict groundwater tables in two vertical wells located in confined aquifer adjacent to the Langat River. ANN model was used in this study is based on the long period forecasting of daily groundwater tables. ANN models were carried out to predict groundwater tables for 1 day ahead at two different geological materials. The input to the ANN models consider of daily rainfall, river stage, water level, stream flow rate, temperature and groundwater level. Two different type of ANNs structure were used to predict the fluctuation of groundwater tables and compared the best forecasting values. The performance of different models structure of the ANN is used to identify the fluctuation of the groundwater table and provide acceptable predictions. Dynamics prediction and time series of the system can be implemented in two possible ways of modelling. The coefficient correlation (R, Mean Square Error (MSE, Root Mean Square Error (RMSE and coefficient determination (R2 were chosen as the selection criteria of the best model. The statistical values for DW1 are 0.8649, 0.0356, 0.01, and 0.748 respectively. While for DW2 the statistical values are 0.7392, 0.0781, 0.0139, and 0.546 respectively. Based on these results, it clearly shows that accurate predictions can be achieved with time series 1-day ahead of forecasting groundwater table and the interaction between river and aquifer can be examine. The findings of the study can be used to assist policy marker to manage groundwater resources by using RBI method.

  12. Sea-level rise and coastal groundwater inundation and shoaling at select sites in California, USA (United States)

    Hoover, Daniel J.; Odigie, Kingsley; Swarzenski, Peter W.; Barnard, Patrick


    Study regionThe study region spans coastal California, USA, and focuses on three primary sites: Arcata, Stinson Beach, and Malibu Lagoon.Study focus1 m and 2 m sea-level rise (SLR) projections were used to assess vulnerability to SLR-driven groundwater emergence and shoaling at select low-lying, coastal sites in California. Separate and combined inundation scenarios for SLR and groundwater emergence were developed using digital elevation models of study site topography and groundwater surfaces constructed from well data or published groundwater level contours.New hydrological insights for the regionSLR impacts are a serious concern in coastal California which has a long (∼1800 km) and populous coastline. Information on the possible importance of SLR-driven groundwater inundation in California is limited. In this study, the potential for SLR-driven groundwater inundation at three sites (Arcata, Stinson Beach, and Malibu Lagoon) was investigated under 1 m and 2 m SLR scenarios. These sites provide insight into the vulnerability of Northern California coastal plains, coastal developments built on beach sand or sand spits, and developed areas around coastal lagoons associated with seasonal streams and berms. Northern California coastal plains with abundant shallow groundwater likely will see significant and widespread groundwater emergence, while impacts along the much drier central and southern California coast may be less severe due to the absence of shallow groundwater in many areas. Vulnerability analysis is hampered by the lack of data on shallow coastal aquifers, which commonly are not studied because they are not suitable for domestic or agricultural use. Shallow saline aquifers may be present in many areas along coastal California, which would dramatically increase vulnerability to SLR-driven groundwater emergence and shoaling. Improved understanding of the extent and response of California coastal aquifers to SLR will help in preparing for mitigation

  13. Groundwater levels and water quality during a 96-hour aquifer test in Pickaway County, Ohio, 2012 (United States)

    Haefner, Ralph J.; Runkle, Donna L.; Mailot, Brian E.


    During October–November 2012, a 96-hour aquifer test was performed at a proposed well field in northern Pickaway County, Ohio, to investigate groundwater with elevated nitrate concentrations. Earlier sampling done by the City of Columbus revealed that some wells had concentrations of nitrate that approached 10 milligrams per liter (mg/L), whereas other wells and the nearby Scioto River had concentrations from 2 to 6 mg/L. The purpose of the current test was to examine potential changes in water quality that may be expected if the site was developed into a public water-supply source; therefore, water-transmitting properties determined during a previous test were not determined a second time. Before and during the test, water-level data and water-quality samples were obtained from observation wells while a test production well was pumped at 1,300 gallons per minute. Before the test, local groundwater levels indicated that groundwater was being discharged to the nearby Scioto River, but during the test, the stream was losing streamflow owing to infiltration. Water levels declined in the pumping well, in adjacent observation wells, and in a nearby streambed piezometer as pumping commenced. The maximum drawdown in the pumping well was 29.75 feet, measured about 95 hours after pumping began. Water-quality data, including analyses for field parameters, major and trace elements, nutrients, and stable isotopes of oxygen and nitrogen in nitrate, demonstrated only small variations before and during the test. Concentrations of nitrate in five samples from the pumping well ranged from about 5.10 to 5.42 mg/L before and during the test, whereas concentrations of nitrate in five samples on or about the same sampling dates and times at a monitoring site on the Scioto River adjacent to the pumping well ranged from 3.46 to 4.97 mg/L. Water from two nearby observation wells had nitrate concentrations approaching 10 mg/L, which is the U.S. Environmental Protection Agency’s Maximum

  14. Assessment of groundwater inundation as a consequence of sea-level rise (United States)

    Rotzoll, Kolja; Fletcher, Charles H.


    Strong evidence on climate change underscores the need for actions to reduce the impacts of sea-level rise. Global mean sea level may rise 0.18-0.48m by mid-century and 0.5-1.4m by the end of the century. Besides marine inundation, it is largely unrecognized that low-lying coastal areas may also be vulnerable to groundwater inundation, which is localized coastal-plain flooding due to a rise of the groundwater table with sea level. Measurements of the coastal groundwater elevation and tidal influence in urban Honolulu, Hawaii, allow estimates of the mean water table, which was used to assess vulnerability to groundwater inundation from sea-level rise. We find that 0.6m of potential sea-level rise causes substantial flooding, and 1m sea-level rise inundates 10% of a 1-km wide heavily urbanized coastal zone. The flooded area including groundwater inundation is more than twice the area of marine inundation alone. This has consequences for decision-makers, resource managers and urban planners, and may be applicable to many low-lying coastal areas, especially where groundwater withdrawal is not substantial.

  15. Groundwater level responses to precipitation variability in Mediterranean insular aquifers (United States)

    Lorenzo-Lacruz, Jorge; Garcia, Celso; Morán-Tejeda, Enrique


    Groundwater is one of the largest and most important sources of fresh water on many regions under Mediterranean climate conditions, which are exposed to large precipitation variability that includes frequent meteorological drought episodes, and present high evapotranspiration rates and water demand during the dry season. The dependence on groundwater increases in those areas with predominant permeable lithologies, contributing to aquifer recharge and the abundance of ephemeral streams. The increasing pressure of tourism on water resources in many Mediterranean coastal areas, and uncertainty related to future precipitation and water availability, make it urgent to understand the spatio-temporal response of groundwater bodies to precipitation variability, if sustainable use of the resource is to be achieved. We present an assessment of the response of aquifers to precipitation variability based on correlations between the Standardized Precipitation Index (SPI) at various time scales and the Standardized Groundwater Index (SGI) across a Mediterranean island. We detected three main responses of aquifers to accumulated precipitation anomalies: (i) at short time scales of the SPI (24 months). The differing responses were mainly explained by differences in lithology and the percentage of highly permeable rock strata in the aquifer recharge areas. We also identified differences in the months and seasons when aquifer storages are more dependent on precipitation; these were related to climate seasonality and the degree of aquifer exploitation or underground water extraction. The recharge of some aquifers, especially in mountainous areas, is related to precipitation variability within a limited spatial extent, whereas for aquifers located in the plains, precipitation variability influence much larger areas; the topography and geological structure of the island explain these differences. Results indicate large spatial variability in the response of aquifers to precipitation in

  16. Regional and temporal variation in minor ions in groundwater of a part of a large river delta, southern India. (United States)

    Elumalai, Vetrimurugan; Brindha, K; Elango, L


    Impact of agricultural activities on groundwater can be determined from the concentration of nutrients present in groundwater. This study was carried out with the aim to assess the minor ions content of groundwater and to identify its sources, spatial, and seasonal variations in a part of the Cauvery River basin, southern India. Groundwater samples were collected from July 2007 to September 2009 and were analyzed for minor ions. These ions were in the order of dominance of nitrate> phosphate> bromide> fluoride> ammonium= nitrite> lithium. The concentration of ions tends to increase towards the coast except for fluoride. Increased concentration of ions identified in shallow wells than in deep wells with an exception of few locations indicates the impact of human activities. Relatively high concentration of agriculture-sourced nitrate was identified which pose a threat to groundwater suitability for agriculture and domestic usage. Combined influence of use of agrochemicals, improper sewage disposal, aquaculture activities, seawater intrusion due to heavy pumping near the coast, and natural weathering of aquifer materials are the major sources. Also, fine grain sediments of this area aid in poor flushing of the ions towards the sea resulting in accumulation of higher concentration of ions. A sustainable management strategy is essential to control the concentration of these ions, especially nitrate. Reduced use of fertilizers, increasing the rainfall recharge for diluting the pollutants in groundwater and maintaining the river flow for sufficiently longer period to reduce dependence on groundwater for irrigation can help to improve the situation.

  17. Determination of trigger levels for groundwater quality in landfills located in historically human-impacted areas. (United States)

    Stefania, Gennaro A; Zanotti, Chiara; Bonomi, Tullia; Fumagalli, Letizia; Rotiroti, Marco


    Landfills are one of the most recurrent sources of groundwater contamination worldwide. In order to limit their impacts on groundwater resources, current environmental regulations impose the adoption of proper measures for the protection of groundwater quality. For instance, in the EU member countries, the calculation of trigger levels for identifying significant adverse environmental effects on groundwater generated by landfills is required by the Landfill Directive 99/31/EC. Although the derivation of trigger levels could be relatively easy when groundwater quality data prior to the construction of a landfill are available, it becomes challenging when these data are missing and landfills are located in areas that are already impacted by historical contamination. This work presents a methodology for calculating trigger levels for groundwater quality in landfills located in areas where historical contaminations have deteriorated groundwater quality prior to their construction. This method is based on multivariate statistical analysis and involves 4 steps: (a) implementation of the conceptual model, (b) landfill monitoring data collection, (c) hydrochemical data clustering and (d) calculation of the trigger levels. The proposed methodology was applied on a case study in northern Italy, where a currently used lined landfill is located downstream of an old unlined landfill and others old unmapped waste deposits. The developed conceptual model stated that groundwater quality deterioration observed downstream of the lined landfill is due to a degrading leachate plume fed by the upgradient unlined landfill. The methodology led to the determination of two trigger levels for COD and NH 4 -N, the former for a zone representing the background hydrochemistry (28 and 9 mg/L for COD and NH 4 -N, respectively), the latter for the zone impacted by the degrading leachate plume from the upgradient unlined landfill (89 and 83 mg/L for COD and NH 4 -N, respectively). Copyright

  18. Application of RBFN network and GM (1, 1) for groundwater level simulation (United States)

    Li, Zijun; Yang, Qingchun; Wang, Luchen; Martín, Jordi Delgado


    Groundwater is a prominent resource of drinking and domestic water in the world. In this context, a feasible water resources management plan necessitates acceptable predictions of groundwater table depth fluctuations, which can help ensure the sustainable use of a watershed's aquifers for urban and rural water supply. Due to the difficulties of identifying non-linear model structure and estimating the associated parameters, in this study radial basis function neural network (RBFNN) and GM (1, 1) models are used for the prediction of monthly groundwater level fluctuations in the city of Longyan, Fujian Province (South China). The monthly groundwater level data monitored from January 2003 to December 2011 are used in both models. The error criteria are estimated using the coefficient of determination ( R 2), mean absolute error (E) and root mean squared error (RMSE). The results show that both the models can forecast the groundwater level with fairly high accuracy, but the RBFN network model can be a promising tool to simulate and forecast groundwater level since it has a relatively smaller RMSE and MAE.

  19. Investigation of the climate-driven periodicity of shallow groundwater level fluctuations in a Central-Eastern European agricultural region (United States)

    Garamhegyi, Tamás; Kovács, József; Pongrácz, Rita; Tanos, Péter; Hatvani, István Gábor


    The distribution and amount of groundwater, a crucial source of Earth's drinking and irrigation water, is changing due to climate-change effects. Therefore, it is important to understand groundwater behavior in extreme scenarios, e.g. drought. Shallow groundwater (SGW) level fluctuation under natural conditions displays periodic behavior, i.e. seasonal variation. Thus, the study aims to investigate (1) the periodic behavior of the SGW level time series of an agriculturally important and drought-sensitive region in Central-Eastern Europe - the Carpathian Basin, in the north-eastern part of the Great Hungarian Plain, and (2) its relationship to the European atmospheric pressure action centers. Data from 216 SGW wells were studied using wavelet spectrum analysis and wavelet coherence analyses for 1961-2010. Locally, a clear relationship exists between the absence of annual periodic behavior in the SGW level and the periodicity of droughts, as indicated by the self-calibrating Palmer Drought Severity Index and the Aridity Index. During the non-periodic intervals, significant drops in groundwater levels (average 0.5 m) were recorded in 89% of the wells. This result links the meteorological variables to the periodic behavior of SGW, and consequently, drought. On a regional scale, Mediterranean cyclones from the Gulf of Genoa (northwest Italy) were found to be a driving factor in the 8-yr periodic behavior of the SGW wells. The research documents an important link between SGW levels and local/regional climate variables or indices, thereby facilitating the necessary adaptation strategies on national and/or regional scales, as these must take into account the predictions of drought-related climatic conditions.

  20. Monthly variations of the Caspian sea level and solar activity. (United States)

    Romanchuk, P. R.; Pasechnik, M. N.

    The connection between 11-year cycle of solar activity and the Caspian sea level is investigated. Seasonal changes of the Caspian sea level and annual variations of the sea level with variations of solar activity are studied. The results of the verifications of the sea level forecasts obtained with application of the rules discovered by the authors are given.

  1. Application of artificial neural network model for groundwater level forecasting in a river island with artificial influencing factors (United States)

    Lee, Sanghoon; Yoon, Heesung; Park, Byeong-Hak; Lee, Kang-Kun


    Groundwater use has been increased for various purposes like agriculture, industry or drinking water in recent years, the issue related to sustainability on the groundwater use also has been raised. Accordingly, forecasting the groundwater level is of great importance for planning sustainable use of groundwater. In a small island surrounded by the Han River, South Korea, seasonal fluctuation of the groundwater level is characterized by multiple factors such as recharge/discharge event of the Paldang dam, Water Curtain Cultivation (WCC) during the winter season, operation of Groundwater Heat Pump System (GWHP). For a period when the dam operation is only occurred in the study area, a prediction of the groundwater level can be easily achieved by a simple cross-correlation model. However, for a period when the WCC and the GWHP systems are working together, the groundwater level prediction is challenging due to its unpredictable operation of the two systems. This study performed Artificial Neural Network (ANN) model to forecast the groundwater level in the river area reflecting the various predictable/unpredictable factors. For constructing the ANN models, two monitoring wells, YSN1 and YSO8, which are located near the injection and abstraction wells for the GWHP system were selected, respectively. By training with the groundwater level data measured in January 2015 to August 2015, response of groundwater level by each of the surface water level, the WCC and the GWHP system were evaluated. Consequentially, groundwater levels in December 2015 to March 2016 were predicted by ANN models, providing optimal fits in comparison to the observed water levels. This study suggests that the ANN model is a useful tool to forecast the groundwater level in terms of the management of groundwater. Acknowledgement : Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003) This research was

  2. Sensitivity of GRACE-derived estimates of groundwater-level changes in southern Ontario, Canada (United States)

    Hachborn, Ellen; Berg, Aaron; Levison, Jana; Ambadan, Jaison Thomas


    Amidst changing climates, understanding the world's water resources is of increasing importance. In Ontario, Canada, low water conditions are currently assessed using only precipitation and watershed-based stream gauges by the Conservation Authorities in Ontario and the Ministry of Natural Resources and Forestry. Regional groundwater-storage changes in Ontario are not currently measured using satellite data by research institutes. In this study, contributions from the Gravity Recovery and Climate Experiment (GRACE) data are compared to a hydrogeological database covering southern Ontario from 2003 to 2013, to determine the suitability of GRACE total water storage estimates for monitoring groundwater storage in this location. Terrestrial water storage data from GRACE were used to determine monthly groundwater storage (GWS) anomaly values. GWS values were also determined by multiplying groundwater-level elevations (from the Provincial Groundwater Monitoring Network wells) by specific yield. Comparisons of GRACE-derived GWS to well-based GWS data determined that GRACE is sufficiently sensitive to obtain a meaningful signal in southern Ontario. Results show that GWS values produced by GRACE are useful for identifying regional changes in groundwater storage in areas with limited available hydrogeological characterization data. Results also indicate that GRACE may have an ability to forecast changes in groundwater storage, which will become useful when monitoring climate shifts in the near future.

  3. Decomposing Firm-level Sales Variation

    DEFF Research Database (Denmark)

    Munch, Jakob Roland; Nguyen, Daniel Xuyen

    We measure the contribution of firm-specific effects to overall sales variation within a destination and find it remarkably low. Our empirical decomposition is structurally motivated by a heterogeneity model of exporting involving destination-specific, firm-specific, and firm-destination-specific...

  4. Impact of Hydrogeological Characteristics on Earthquake-Triggered Groundwater-Level Changes (United States)

    Liu, C. Y.; Zheng, D. Q.; Chia, Y.; Liu, C. W.; Kuo, K. W.


    Earthquake-triggered groundwater-level changes have been recorded worldwide. Sustained and oscillatory changes are two types of earthquake- triggered groundwater-level changes that can often be observed. Sustained groundwater-level changes during earthquakes, primarily induced by the co-seismic strain due to fault displacement, are usually observed in a well tapping a confined aquifer. Oscillatory groundwater-level changes due to the dynamic strain triggered by passing earthquake waves can only be recorded by high-frequency data logger. Such high-frequency data may reveal the insight of co-seismic changes associated with the hydraulic properties of the aquifer. While co-seismic changes can quickly recovered in an unconfined aquifer, they may sustain for months or longer in a confined aquifer. The hydraulic conductivity of the confining layer affects the recovery rate of the earthquake-triggered groundwater-level changes in the confined aquifer. Long-term co-seismic groundwater-level changes at single wells are also presented. Results indicated that both the direction and magnitude of co-seismic changes varies with geologic conditions of the well site. Simulation of pore pressure changes induced by fault displacements, compression and extension, during earthquakes are conducted using finite element software ABAQUS. The process of pore pressure changes after fault displacement are presented in three models: unconfined, confined and artesian aquifer models. The largest pore pressure change occurred after the displacement, and different dissipation behaviors could be observed in the unconfined and confined aquifers. The simulation results can explain the observation of field phenomena. The groundwater-level in the monitoring well will return to equilibrium after the earthquake, and the time required to reach that equilibrium is controlled by hydraulic conductivity.

  5. Evaluation of groundwater levels in the South Platte River alluvial aquifer, Colorado, 1953-2012, and design of initial well networks for monitoring groundwater levels (United States)

    Wellman, Tristan


    The South Platte River and underlying alluvial aquifer form an important hydrologic resource in northeastern Colorado that provides water to population centers along the Front Range and to agricultural communities across the rural plains. Water is regulated based on seniority of water rights and delivered using a network of administration structures that includes ditches, reservoirs, wells, impacted river sections, and engineered recharge areas. A recent addendum to Colorado water law enacted during 2002-2003 curtailed pumping from thousands of wells that lacked authorized augmentation plans. The restrictions in pumping were hypothesized to increase water storage in the aquifer, causing groundwater to rise near the land surface at some locations. The U.S. Geological Survey (USGS), in cooperation with the Colorado Water Conservation Board and the Colorado Water Institute, completed an assessment of 60 years (yr) of historical groundwater-level records collected from 1953 to 2012 from 1,669 wells. Relations of "high" groundwater levels, defined as depth to water from 0 to 10 feet (ft) below land surface, were compared to precipitation, river discharge, and 36 geographic and administrative attributes to identify natural and human controls in areas with shallow groundwater.

  6. A Monte Carlo approach for improved estimation of groundwater level spatial variability in poorly gauged basins (United States)

    Varouchakis, Emmanouil; Hristopulos, Dionissios


    estimates. Since pumping tests are not available, we determine the radius of influence using an empirical equation (Bear 1979) that involves the drawdown at the well face, the hydraulic conductivity around the pumping well, and the initial saturated thickness. Since the local variation of the drawdown and the hydraulic conductivity is not known, we use uniform values based on the Monte Carlo analysis below. The initial saturated thickness for all 70 wells is assumed to follow a linear trend estimated from the 10 piezometer readings and from the geological cross-sections available for the basin. Using linear regression analysis of the mean annual groundwater level, we estimate the rate of mean annual level decrease at 1.85 m/yr, with the 95% confidence interval at [1.60-2.10] m/yr. The optimal hydraulic conductivity over the drawdown and the hydraulic conductivity parameter space is determined by means of Monte Carlo sensitivity analysis and leave-one-out cross validation that focus on the reproduction of the measured head values. The removed head values during the validation procedure are estimated using RK. The mean absolute error (MAE) is used as the criterion of optimal performance. The hydraulic head trend function is estimated for each combination of the hydraulic conductivity and the drawdown. The residuals are modeled using several semivariogram models for each realization of the hydraulic conductivity and the drawdown tested. The Monte Carlo simulations show that the MAE is primarily sensitive to the variation of the hydraulic conductivity and less to the drawdown. The minimum MAE is obtained for a hydraulic conductivity of 0.00015 m/s and a drawdown equal to 1.85 m. The recently proposed Spartan semivariogram models for the residuals provide the most accurate estimates. Based on the above procedure, the range of the radius of influence is determined between 105 m and 160 m. The approach described above improves the MAE by 14% and the RMSE by 10% compared to similar

  7. Preliminary investigation of the effects of sea-level rise on groundwater levels in New Haven, Connecticut (United States)

    Bjerklie, David M.; Mullaney, John R.; Stone, Janet R.; Skinner, Brian J.; Ramlow, Matthew A.


    Global sea level rose about 0.56 feet (ft) (170 millimeters (mm)) during the 20th century. Since the 1960s, sea level has risen at Bridgeport, Connecticut, about 0.38 ft (115 mm), at a rate of 0.008 ft (2.56 mm + or - 0.58 mm) per year. With regional subsidence, and with predicted global climate change, sea level is expected to continue to rise along the northeast coast of the United States through the 21st century. Increasing sea levels will cause groundwater levels in coastal areas to rise in order to adjust to the new conditions. Some regional climate models predict wetter climate in the northeastern United States under some scenarios. Scenarios for the resulting higher groundwater levels have the potential to inundate underground infrastructure in lowlying coastal cities. New Haven is a coastal city in Connecticut surrounded and bisected by tidally affected waters. Monitoring of water levels in wells in New Haven from August 2009 to July 2010 indicates the complex effects of urban influence on groundwater levels. The response of groundwater levels to recharge and season varied considerably from well to well. Groundwater temperatures varied seasonally, but were warmer than what was typical for Connecticut, and they seem to reflect the influence of the urban setting, including the effects of conduits for underground utilities. Specific conductance was elevated in many of the wells, indicating the influence of urban activities or seawater in Long Island Sound. A preliminary steady-state model of groundwater flow for part of New Haven was constructed using MODFLOW to simulate current groundwater levels (2009-2010) and future groundwater levels based on scenarios with a rise of 3 ft (0.91 meters (m)) in sea level, which is predicted for the end of the 21st century. An additional simulation was run assuming a 3-ft rise in sea level combined with a 12-percent increase in groundwater recharge. The model was constructed from existing hydrogeologic information for the

  8. Seasonal and spatial variations in microbial activity at various phylogenetic resolutions at a groundwater – surface water interface

    DEFF Research Database (Denmark)

    Yu, Ran; Smets, Barth F.; Gan, Ping


    We investigated the seasonal and spatial variation in activity and density of the metabolically active in situ microbial community (AIMC) at a landfill leachate-impacted groundwater – surface water interface (GSI). A series of AIMC traps were designed and implemented for AIMC sampling and microbial...

  9. The Importance of Institutional Design for Distributed Local-Level Governance of Groundwater: The Case of California’s Sustainable Groundwater Management Act

    Directory of Open Access Journals (Sweden)

    Michael Kiparsky


    Full Text Available In many areas of the world, groundwater resources are increasingly stressed, and unsustainable use has become common. Where existing mechanisms for governing groundwater are ineffective or nonexistent, new ones need to be developed. Local level groundwater governance provides an intriguing alternative to top-down models, with the promise of enabling management to better match the diversity of physical and social conditions in groundwater basins. One such example is emerging in California, USA, where new state law requires new local agencies to self-organize and act to achieve sustainable groundwater management. In this article, we draw on insights from research on common pool resource management and natural resources governance to develop guidelines for institutional design for local groundwater governance, grounded in California’s developing experience. We offer nine criteria that can be used as principles or standards in the evaluation of institutional design for local level groundwater governance: scale, human capacity, funding, authority, independence, representation, participation, accountability, and transparency. We assert that local governance holds promise as an alternative to centralized governance in some settings but that its success will depend heavily on the details of its implementation. Further, for local implementation to achieve its promise, there remain important complementary roles for centralized governance. California’s developing experience with local level groundwater management in dozens of basins across the state provides a unique opportunity to test and assess the importance and influence of these criteria.

  10. Pore water pressure variations in Subpermafrost groundwater : Numerical modeling compared with experimental modeling


    Rivière, Agnès; GONCALVES, Julio; Jost, Anne; Font, Marianne


    International audience; Development and degradation of permafrost directly affect numerous hydrogeological processes such as thermal regime, exchange between river and groundwater, groundwater flows patterns and groundwater recharge (Michel, 1994). Groundwater in permafrost area is subdivided into two zones: suprapermafrost and subpermafrost which are separated by permafrost. As a result of the volumetric expansion of water upon freezing and assuming ice lenses and frost heave do not form fre...

  11. Indicative effects of climate change on groundwater levels in Estonian raised bogs over 50 years

    Directory of Open Access Journals (Sweden)

    E. Lode


    Full Text Available Analyses of 50-year (1962–2011 monthly air temperature and precipitation data indicated substantial climate change in the locations of two raised bogs (Linnusaare and Männikjärve in central-east Estonia. During recent years the cross-year winter air temperature increased by 1.7 ºC, while the cold-season precipitation increased by 4 mm. The fluctuation amplitude of temperature and precipitation values decreased. Snow depth proved to be the most sensitive variable to winter warming, followed by groundwater levels together with mean and maximum soil frosts. Long-term groundwater levels on the domes of the bogs and in the forested/treed lagg areas were 0.3−0.4 m and 0.4−0.8 m below the soil surface, respectively. Warming caused changes in groundwater level amplitude of 3−22 cm in the bog domes and 3−14 cm in the forested lagg zones. The lowest groundwater levels in ridge-pool ecotopes at Männikjärve rose by 6−10 cm (i.e. these ecotopes became wetter; but the incidence of low groundwater levels increased in most ecotopes, indicating a more general trend towards drier conditions in the bog.

  12. Groundwater Age in Multi-Level Water Quality Monitor Wells on California Central Valley Dairies (United States)

    Esser, B. K.; Visser, A.; Hillegonds, D. J.; Singleton, M. J.; Moran, J. E.; Harter, T.


    Dairy farming in California's Central Valley is a significant source of nitrate to underlying aquifers. One approach to mitigation is to implement farm-scale management plans that reduce nutrient loading to groundwater while sustaining crop yield. While the effect of different management practices on crop yield is easily measured, their effect on groundwater quality has only infrequently been evaluated. Documenting and predicting the impact of management on water quality requires a quantitative assessment of transport (including timescale and mixing) through the vadose and saturated zones. In this study, we measured tritium, helium isotopic composition, and noble gas concentrations in groundwater drawn from monitor wells on several dairies in the Lower San Joaquin Valley and Tulare Lake Basin of California's Central Valley in order to predict the timescales on which changes in management may produce observable changes in groundwater quality. These dairies differ in age (from 100 years old), thickness of the vadose zone (from irrigation water (surface or groundwater). All of the dairies use manure wastewater for irrigation and fertilization. Three of the dairies have implemented management changes designed to reduce nutrient loading and/or water usage. Monitor wells in the southern Tulare Lake Basin dairies were installed by UC-Davis as multi-level nested wells allowing depth profiling of tritium and noble gases at these sites. Tritium/helium-3 groundwater ages, calculated using a simple piston-flow model, range from 50 years. Initial tritium (the sum of measured tritium and tritiogenic helium-3) is close to or slightly above precipitation in the calculated recharge year for young samples; and significantly above the precipitation curve for older samples. This pattern is consistent with the use of 20-30 year old groundwater recharged before 1980 for irrigation, and illustrates how irrigation with groundwater can complicate the use of tritium alone for age dating

  13. Recent Arctic Sea Level Variations from Satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Piccioni, Gaia


    Sea level monitoring in the Arctic region has always been an extreme challenge for remote sensing, and in particular for satellite altimetry. Despite more than two decades of observations, altimetry is still limited in the inner Arctic Ocean. We have developed an updated version of the Danish Tec...

  14. Effects of the proximity of groundwater level on short and long normal logging measurements (United States)

    Nam, Myung Jin; Hwang, Seho


    Resistivity logging instruments were designed to measure electrical resistivity of formation, which can be directly interpreted to provide water-saturation profile. Using short and long normal logging, Korea institute of geosciences and mineral resources (KIGAM) has monitored seawater intrusion in a coastal aquifer, Yeonggwang, Jeonnam, Korea, and groundwater distribution in Korea including Jeju Island. Short and long normal logging measurements are made under groundwater level. In some investigation sites, groundwater level reaches to a depth of a few hundred meters. It has come to attention that the proximity of groundwater level might distort short and long normal logging readings, when the measurements are made near groundwater level, owing to the proximity of an insulating air. In this study, to investigate the effects of the proximity of groundwater level (and also the proximity of earth surface) on short and long normal logging measurements, we simulate normal logging measurements near groundwater level. In the simulation, we consider all the details of real logging situation, i.e., the presence of wellbore including casing, the tool mandrel with current and monitoring electrodes, and current return and reference potential electrodes. We also model the air to include the earth's surface in the simulation rather than the customary choice of imposing a boundary condition. To compute the voltage at a monitoring electrode, we subtract the potential at a reference potential electrode from the potential at the monitoring electrode. Note that the actual tool also measures the voltage, i.e., the difference of potential at a monitoring electrode with respect to the potential at the reference potential electrode. The simulation is challenging since we have large contrast in dimension (the large computation domain, which can be several kilometers, and small size of an electrode, which is several centimeters) and in resistivity (the resistivity of conductive electrode

  15. Simulation of the effects of rainfall and groundwater use on historical lake water levels, groundwater levels, and spring flows in central Florida (United States)

    O'Reilly, Andrew M.; Roehl, Edwin A.; Conrads, Paul; Daamen, Ruby C.; Petkewich, Matthew D.


    The urbanization of central Florida has progressed substantially in recent decades, and the total population in Lake, Orange, Osceola, Polk, and Seminole Counties more than quadrupled from 1960 to 2010. The Floridan aquifer system is the primary source of water for potable, industrial, and agricultural purposes in central Florida. Despite increases in groundwater withdrawals to meet the demand of population growth, recharge derived by infiltration of rainfall in the well-drained karst terrain of central Florida is the largest component of the long-term water balance of the Floridan aquifer system. To complement existing physics-based groundwater flow models, artificial neural networks and other data-mining techniques were used to simulate historical lake water level, groundwater level, and spring flow at sites throughout the area. Historical data were examined using descriptive statistics, cluster analysis, and other exploratory analysis techniques to assess their suitability for more intensive data-mining analysis. Linear trend analyses of meteorological data collected by the National Oceanic and Atmospheric Administration at 21 sites indicate 67 percent of sites exhibited upward trends in air temperature over at least a 45-year period of record, whereas 76 percent exhibited downward trends in rainfall over at least a 95-year period of record. Likewise, linear trend analyses of hydrologic response data, which have varied periods of record ranging in length from 10 to 79 years, indicate that water levels in lakes (307 sites) were about evenly split between upward and downward trends, whereas water levels in 69 percent of wells (out of 455 sites) and flows in 68 percent of springs (out of 19 sites) exhibited downward trends. Total groundwater use in the study area increased from about 250 million gallons per day (Mgal/d) in 1958 to about 590 Mgal/d in 1980 and remained relatively stable from 1981 to 2008, with a minimum of 559 Mgal/d in 1994 and a maximum of 773

  16. A Study of the Groundwater Level Spatial Variability in the Messara Valley of Crete (United States)

    Varouchakis, E. A.; Hristopulos, D. T.; Karatzas, G. P.


    The island of Crete (Greece) has a dry sub-humid climate and marginal groundwater resources, which are extensively used for agricultural activities and human consumption. The Messara valley is located in the south of the Heraklion prefecture, it covers an area of 398 km2, and it is the largest and most productive valley of the island. Over-exploitation during the past thirty (30) years has led to a dramatic decrease of thirty five (35) meters in the groundwater level. Possible future climatic changes in the Mediterranean region, potential desertification, population increase, and extensive agricultural activity generate concern over the sustainability of the water resources of the area. The accurate estimation of the water table depth is important for an integrated groundwater resource management plan. This study focuses on the Mires basin of the Messara valley for reasons of hydro-geological data availability and geological homogeneity. The research goal is to model and map the spatial variability of the basin's groundwater level accurately. The data used in this study consist of seventy (70) piezometric head measurements for the hydrological year 2001-2002. These are unevenly distributed and mostly concentrated along a temporary river that crosses the basin. The range of piezometric heads varies from an extreme low value of 9.4 meters above sea level (masl) to 62 masl, for the wet period of the year (October to April). An initial goal of the study is to develop spatial models for the accurate generation of static maps of groundwater level. At a second stage, these maps should extend the models to dynamic (space-time) situations for the prediction of future water levels. Preliminary data analysis shows that the piezometric head variations are not normally distributed. Several methods including Box-Cox transformation and a modified version of it, transgaussian Kriging, and Gaussian anamorphosis have been used to obtain a spatial model for the piezometric head. A

  17. Land subsidence induced by groundwater extraction and building damage level assessment - a case study of Datun, China

    Energy Technology Data Exchange (ETDEWEB)

    Qi-yan Feng; Gang-jun Liu; Lei Meng; Er-jiang Fu; Hai-rong Zhang; Ke-fei Zhang [China University of Mining and Technology, Xuzhou (China). Jiangsu Key Laboratory of Resources and Environmental Information Engineering


    As in many parts of the world, long-term excessive extraction of groundwater has caused significant land-surface subsidence in the residential areas of Datun coal mining district in East China. The recorded maximum level of subsidence in the area since 1976 to 2006 is 863 mm, and the area with an accumulative subsidence more than 200 mm reached 33.1 km{sup 2} by the end of 2006. Over ten cases of building crack due to ground subsidence have already been observed. Spatial variation in ground subsidence often leads to a corresponding pattern of ground deformation. Buildings and underground infrastructures have been under a higher risk of damage in locations with greater differential ground deformation. Governmental guideline in China classifies building damages into four different levels, based on the observable measures such as the width of wall crack, the degree of door and window deformation, the degree of wall inclination and the degree of structural destruction. Building damage level (BDL) is estimated by means of ground deformation analysis in terms of variations in slope gradient and curvature. Ground deformation analysis in terms of variations in slope gradient has shown that the areas of BDL III and BDL II sites account for about 0.013 km{sup 2} and 0.284 km{sup 2} respectively in 2006, and the predicted areas of BDL (define this first) III and II sites will be about 0.029 km{sup 2} and 0.423 km{sup 2} respectively by 2010. The situation is getting worse as subsidence continues. That calls for effective strategies for subsidence mitigation and damage reduction, in terms of sustainable groundwater extraction, enhanced monitoring and the establishment of early warning systems. 12 refs., 6 figs., 1 tab.

  18. Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge (United States)

    Constantz, Jim; Thomas, Carole L.; Zellweger, Gary W.


    We demonstrate that for losing reaches with significant diurnal variations in stream temperature, the effect of stream temperature on streambed seepage is a major factor contributing to reduced afternoon streamflows. An explanation is based on the effect of stream temperature on the hydraulic conductivity of the streambed, which can be expected to double in the 0° to 25°C temperature range. Results are presented for field experiments in which stream discharge and temperature were continuously measured for several days over losing reaches at St. Kevin Gulch, Colorado, and Tijeras Arroyo, New Mexico. At St. Kevin Gulch in July 1991, the diurnal stream temperature in the 160-m study reach ranged from about 4° to 18°C, discharges ranged from 10 to 18 L/s, and streamflow loss in the study reach ranged from 2.7 to 3.7 L/s. On the basis of measured stream temperature variations, the predicted change in conductivity was about 38%; the measured change in stream loss was about 26%, suggesting that streambed temperature varied less than the stream temperature. At Tijeras Arroyo in May 1992, diurnal stream temperature in the 655-m study reach ranged from about 10° to 25°C and discharge ranged from 25 to 55 L/s. Streamflow loss was converted to infiltration rates by factoring in the changing stream reach surface area and streamflow losses due to evaporation rates as measured in a hemispherical evaporation chamber. Infiltration rates ranged from about 0.7 to 2.0 m/d, depending on time and location. Based on measured stream temperature variations, the predicted change in conductivity was 29%; the measured change in infiltration was also about 27%. This suggests that high infiltration rates cause rapid convection of heat to the streambed. Evapotranspiration losses were estimated for the reach and adjacent flood plain within the arroyo. On the basis of these estimates, only about 5% of flow loss was consumed via stream evaporation and stream-side evapotranspiration

  19. Decadal variations in groundwater quality: A legacy from nitrate leaching and denitrification by pyrite in a sandy aquifer (United States)

    Jessen, Søren; Postma, Dieke; Thorling, Lærke; Müller, Sascha; Leskelä, Jari; Engesgaard, Peter


    Twenty-five years of groundwater quality monitoring in a sandy aquifer beneath agricultural fields showed large temporal and spatial variations in major ion groundwater chemistry, which were linked closely to the nitrate (NO3) content of agricultural recharge. Between 1988 and 2013, the NO3 content of water in the oxidized zone of the aquifer nearly halved, following implementation of action plans to reduce N leaching from agriculture. However, due to denitrification by pyrite oxidation in the aquifer, a plume of sulfate-rich water migrates through the aquifer as a legacy of the historical NO3 loading. Agriculture thus is an important determinant of major ion groundwater chemistry. Temporal and spatial variations in the groundwater quality were simulated using a 2D reactive transport model, which combined effects of the historical NO3 leaching and denitrification, with dispersive mixing into the pristine groundwater residing deeper in the aquifer. Reactant-to-product ratios across reaction fronts are altered by dispersive mixing and transience in reactant input functions. Modelling therefore allowed a direct comparison of observed and simulated ratios of concentrations of NO3 (reactant) in the oxidized zone to those of SO4 (product) in the reduced zone, which aided a stoichiometric assessment of the mechanisms of denitrification. Denitrification by pyrite in the Rabis Creek aquifer results in oxidation of S-1 and Fe2+ in pyrite to S6+ in dissolved SO4 and Fe3+ in Fe-oxide. Neither precipitation of elemental sulfur (S0), nor of jarosite, was supported by observations, and adsorption of sulfate was also dismissed.

  20. Lake volume and groundwater storage variations in Tibetan Plateau's endorheic basin (United States)

    Zhang, Guoqing; Yao, Tandong; Shum, C. K.; Yi, Shuang; Yang, Kun; Xie, Hongjie; Feng, Wei; Bolch, Tobias; Wang, Lei; Behrangi, Ali; Zhang, Hongbo; Wang, Weicai; Xiang, Yang; Yu, Jinyuan


    The Tibetan Plateau (TP), the highest and largest plateau in the world, with complex and competing cryospheric-hydrologic-geodynamic processes, is particularly sensitive to anthropogenic warming. The quantitative water mass budget in the TP is poorly known. Here we examine annual changes in lake area, level, and volume during 1970s-2015. We find that a complex pattern of lake volume changes during 1970s-2015: a slight decrease of -2.78 Gt yr-1 during 1970s-1995, followed by a rapid increase of 12.53 Gt yr-1 during 1996-2010, and then a recent deceleration (1.46 Gt yr-1) during 2011-2015. We then estimated the recent water mass budget for the Inner TP, 2003-2009, including changes in terrestrial water storage, lake volume, glacier mass, snow water equivalent (SWE), soil moisture, and permafrost. The dominant components of water mass budget, namely, changes in lake volume (7.72 ± 0.63 Gt yr-1) and groundwater storage (5.01 ± 1.59 Gt yr-1), increased at similar rates. We find that increased net precipitation contributes the majority of water supply (74%) for the lake volume increase, followed by glacier mass loss (13%), and ground ice melt due to permafrost degradation (12%). Other term such as SWE (1%) makes a relatively small contribution. These results suggest that the hydrologic cycle in the TP has intensified remarkably during recent decades.

  1. Atoll groundwater movement and its response to climatic and sea-level fluctuations (United States)

    Oberle, Ferdinand; Swarzenski, Peter; Storlazzi, Curt


    Groundwater resources of low-lying atoll islands are threatened due to short-term and long-term changes in rainfall, wave climate, and sea level. A better understanding of how these forcings affect the limited groundwater resources was explored on Roi-Namur in the Republic of the Marshall Islands. As part of a 16-month study, a rarely recorded island-overwash event occurred and the island’s aquifer’s response was measured. The findings suggest that small-scale overwash events cause an increase in salinity of the freshwater lens that returns to pre-overwash conditions within one month. The overwash event is addressed in the context of climate-related local sea-level change, which suggests that overwash events and associated degradations in freshwater resources are likely to increase in severity in the future due to projected rises in sea level. Other forcings, such as severe rainfall events, were shown to have caused a sudden freshening of the aquifer, with salinity levels retuning to pre-rainfall levels within three months. Tidal forcing of the freshwater lens was observed in electrical resistivity profiles, high-resolution conductivity, groundwater-level well measurements and through submarine groundwater discharge calculations. Depth-specific geochemical pore water measurements further assessed and confirmed the distinct boundaries between fresh and saline water masses in the aquifer. The identification of the freshwater lens’ saline boundaries is essential for a quantitative evaluation of the aquifers freshwater resources and help understand how these resources may be impacted by climate change and anthropogenic activities.

  2. A Comparison of Groundwater Storage Using GRACE Data, Groundwater Levels, and a Hydrological Model in Californias Central Valley (United States)

    Kuss, Amber; Brandt, William; Randall, Joshua; Floyd, Bridget; Bourai, Abdelwahab; Newcomer, Michelle; Skiles, Joseph; Schmidt, Cindy


    The Gravity Recovery and Climate Experiment (GRACE) measures changes in total water storage (TWS) remotely, and may provide additional insight to the use of well-based data in California's agriculturally productive Central Valley region. Under current California law, well owners are not required to report groundwater extraction rates, making estimation of total groundwater extraction difficult. As a result, other groundwater change detection techniques may prove useful. From October 2002 to September 2009, GRACE was used to map changes in TWS for the three hydrological regions (the Sacramento River Basin, the San Joaquin River Basin, and the Tulare Lake Basin) encompassing the Central Valley aquifer. Net groundwater storage changes were calculated from the changes in TWS for each of the three hydrological regions and by incorporating estimates for additional components of the hydrological budget including precipitation, evapotranspiration, soil moisture, snow pack, and surface water storage. The calculated changes in groundwater storage were then compared to simulated values from the California Department of Water Resource's Central Valley Groundwater- Surface Water Simulation Model (C2VSIM) and their Water Data Library (WDL) Geographic Information System (GIS) change in storage tool. The results from the three methods were compared. Downscaling GRACE data into the 21 smaller Central Valley sub-regions included in C2VSIM was also evaluated. This work has the potential to improve California's groundwater resource management and use of existing hydrological models for the Central Valley.

  3. Natural spatial and temporal variations in groundwater chemistry in fractured, sedimentary rocks: scale and implications for solute transport

    Energy Technology Data Exchange (ETDEWEB)

    Hoven, Stephen J. van der [Department of Geography-Geology, Illinois State University, Campus Box 4400, Normal, IL 61761 (United States)]. E-mail:; Kip Solomon, D. [Department of Geology and Geophyics, University of Utah, 135 S. 1460 E., Room 719, Salt Lake City, UT 84112 (United States); Moline, Gerilynn R. [10 Victorian Heights, Thackeray Road, London SW8 3TD (United Kingdom)


    Natural tracers (major ions, {delta} {sup 18}O, and O{sub 2}) were monitored to evaluate groundwater flow and transport to a depth of 20 m below the surface in fractured sedimentary (primarily shale and limestone) rocks. Large temporal variations in these tracers were noted in the soil zone and the saprolite, and are driven primarily by individual storm events. During nonstorm periods, an upward flow brings water with high TDS, constant {delta} {sup 18}O, and low dissolved O{sub 2} to the water table. During storm events, low TDS, variable {delta} {sup 18}O, and high dissolved O{sub 2} water recharges through the unsaturated zone. These oscillating signals are rapidly transmitted along fracture pathways in the saprolite, with changes occurring on spatial scales of several meters and on a time scale of hours. The variations decreased markedly below the boundary between the saprolite and less weathered bedrock. Variations in the bedrock units occurred on time scales of days and spatial scales of at least 20 m. The oscillations of chemical conditions in the shallow groundwater are hypothesized to have significant implications for solute transport. Solutes and colloids that adsorb onto aquifer solids can be released into solution by decreases in ionic strength and pH. The decreases in ionic strength also cause thermodynamic undersaturation of the groundwater with respect to some mineral species and may result in mineral dissolution. Redox conditions are also changing and may result in mineral dissolution/precipitation. The net result of these chemical variations is episodic transport of a wide range of dissolved solutes or suspended particles, a phenomenon rarely considered in contaminant transport studies.

  4. Forecasting monthly groundwater level fluctuations in coastal aquifers using hybrid Wavelet packet–Support vector regression

    Directory of Open Access Journals (Sweden)

    N. Sujay Raghavendra


    Full Text Available This research demonstrates the state-of-the-art capability of Wavelet packet analysis in improving the forecasting efficiency of Support vector regression (SVR through the development of a novel hybrid Wavelet packet–Support vector regression (WP–SVR model for forecasting monthly groundwater level fluctuations observed in three shallow unconfined coastal aquifers. The Sequential Minimal Optimization Algorithm-based SVR model is also employed for comparative study with WP–SVR model. The input variables used for modeling were monthly time series of total rainfall, average temperature, mean tide level, and past groundwater level observations recorded during the period 1996–2006 at three observation wells located near Mangalore, India. The Radial Basis function is employed as a kernel function during SVR modeling. Model parameters are calibrated using the first seven years of data, and the remaining three years data are used for model validation using various input combinations. The performance of both the SVR and WP–SVR models is assessed using different statistical indices. From the comparative result analysis of the developed models, it can be seen that WP–SVR model outperforms the classic SVR model in predicting groundwater levels at all the three well locations (e.g. NRMSE(WP–SVR = 7.14, NRMSE(SVR = 12.27; NSE(WP–SVR = 0.91, NSE(SVR = 0.8 during the test phase with respect to well location at Surathkal. Therefore, using the WP–SVR model is highly acceptable for modeling and forecasting of groundwater level fluctuations.

  5. Relations between vegetation and water level in groundwater dependent terrestrial ecosystems (GWDTEs)

    DEFF Research Database (Denmark)

    Munch Johansen, Ole; Andersen, Dagmar Kappel; Ejrnæs, Rasmus


    Indicator scores of moisture, pH and nutrients were calculated for each site. The water level correlates with the number of typical fen species of vascular plants, whereas bryophytes are closer connected to the stable water level conditions provided by groundwater seepage. The water level variability...... is proved to be a significant limiting factor for species diversity in wetlands, which should be considered along with the fertility in order to access the habitat quality. The study provides new insight in the water level preferences for GWDTEs which is highly needed in the management and assessment...

  6. Characterizing the spatiotemporal variability of groundwater levels of alluvial aquifers in different settings using drought indices (United States)

    Haas, Johannes Christoph; Birk, Steffen


    To improve the understanding of how aquifers in different alluvial settings respond to extreme events in a changing environment, we analyze standardized time series of groundwater levels (Standardized Groundwater level Index - SGI), precipitation (Standardized Precipitation Index - SPI), and river stages of three subregions within the catchment of the river Mur (Austria). Using correlation matrices, differences and similarities between the subregions, ranging from the Alpine upstream part of the catchment to its shallow foreland basin, are identified and visualized. Generally, river stages exhibit the highest correlations with groundwater levels, frequently affecting not only the wells closest to the river, but also more distant parts of the alluvial aquifer. As a result, human impacts on the river are transferred to the aquifer, thus affecting the behavior of groundwater levels. Hence, to avoid misinterpretation of groundwater levels in this type of setting, it is important to account for the river and human impacts on it. While the river is a controlling factor in all of the subregions, an influence of precipitation is evident too. Except for deep wells found in an upstream Alpine basin, groundwater levels show the highest correlation with a precipitation accumulation period of 6 months (SPI6). The correlation in the foreland is generally higher than that in the Alpine subregions, thus corresponding to a trend from deeper wells in the Alpine parts of the catchment towards more shallow wells in the foreland. Extreme events are found to affect the aquifer in different ways. As shown with the well-known European 2003 drought and the local 2009 floods, correlations are reduced under flood conditions, but increased under drought. Thus, precipitation, groundwater levels and river stages tend to exhibit uniform behavior under drought conditions, whereas they may show irregular behavior during floods. Similarly, correlations are found to be weaker in years with little

  7. Potential effects of existing and proposed groundwater withdrawals on water levels and natural groundwater discharge in Snake Valley and surrounding areas, Utah and Nevada (United States)

    Masbruch, Melissa D.; Brooks, Lynette E.


    discharge, to future stresses at a point in the area represented by the model. In this way, these maps can be used as a tool to determine the source of water to, and potential effects at specific areas from, future well withdrawals.Downward trends in water levels measured in wells indicate that existing groundwater withdrawals in Snake Valley are affecting water levels. The numerical model simulates similar downward trends in water levels; simulated drawdowns in the model, however, are generally less than observed water-level declines. At the groundwater discharge sites of interest to the DOI agencies, simulated drawdowns from existing well withdrawals (projected into the future) range from 0 to about 50 feet. Following the addition of the proposed withdrawals, simulated drawdowns at some sites increase by 25 feet. Simulated drawdown resulting from the proposed withdrawals began in as few as 5 years after 2014 at several of the sites. At the groundwater discharge sites of interest to the DOI agencies, simulated capture of natural discharge resulting from the existing withdrawals ranged from 0 to 87 percent. Following the addition of the proposed withdrawals, simulated capture at several of the sites reached 100 percent, indicating that groundwater discharge at that site would cease. Simulated capture following the addition of the proposed withdrawals increased in as few as 5 years after 2014 at several of the sites.

  8. On-line continuous monitoring of groundwater radon levels at L’Aquila fault, Italy (United States)

    Tsabaris, C.; Lampousis, A.


    This work describes in situ radon progeny measurements in the Gran Sasso National Laboratory (LNGS) of L’Aquila region, located 60 miles north-east of Rome, Italy, conducted in December 2007. The marine radon progeny monitor KATERINA (i.e., Hellenic Centre for Marine Research patent July 2008) was submerged inside a tank filled with groundwater from the Gran Sasso Mountain. The measured spectra obtained through KATERINA exhibited photopeaks of the main gamma emitters (214Pb and 214Bi) of the primordial nucleus 238U (222Rn). High background levels of radionuclides (i.e., inside the mountain) emitting high energy gamma rays affected the measurement. In order to correct and deduce the final volumetric activities of radon progenies (214Pb and 214Bi) the system was calibrated using the simulation tool GEANT4. The first day of deployment an averaged value of radon progenies amounted to a value of (3.1 ± 0.3) Bq/l. The second day the averaged values of radon progenies were reduced by 30% due to the loss of noble gas radon from the tank. Additional spectra were recorded successfully after removing background airborne radon present in the LNGS laboratory. KATERINA operated reliably during its in situ radon monitoring. This was confirmed by further calibration using off line measurements performed in collaboration with the Marine Environmental Laboratory of the International Atomic Energy Agency (IAEA). Future work includes the development of a continuous radon monitoring tool to further study the L’Aquila fault. By implementing a continuous inflow and outflow system and by controlling the radon levels both inside and outside the water tank, radon variations will be correlated with other geophysical/geochemical parameters like microseismicity, slip rates, pH, H2S, CO2, and He. Additional contributions include an increased understanding of the correlations between radon levels in the proximity of active faults and regional seismic activity. If indeed this proves to be an

  9. Applying Factor Analysis Combined with Kriging and Information Entropy Theory for Mapping and Evaluating the Stability of Groundwater Quality Variation in Taiwan (United States)

    Shyu, Guey-Shin; Cheng, Bai-You; Chiang, Chi-Ting; Yao, Pei-Hsuan; Chang, Tsun-Kuo


    In Taiwan many factors, whether geological parent materials, human activities, and climate change, can affect the groundwater quality and its stability. This work combines factor analysis and kriging with information entropy theory to interpret the stability of groundwater quality variation in Taiwan between 2005 and 2007. Groundwater quality demonstrated apparent differences between the northern and southern areas of Taiwan when divided by the Wu River. Approximately 52% of the monitoring wells in southern Taiwan suffered from progressing seawater intrusion, causing unstable groundwater quality. Industrial and livestock wastewaters also polluted 59.6% of the monitoring wells, resulting in elevated EC and TOC concentrations in the groundwater. In northern Taiwan, domestic wastewaters polluted city groundwater, resulting in higher NH3-N concentration and groundwater quality instability was apparent among 10.3% of the monitoring wells. The method proposed in this study for analyzing groundwater quality inspects common stability factors, identifies potential areas influenced by common factors, and assists in elevating and reinforcing information in support of an overall groundwater management strategy. PMID:21695030

  10. Nitrogen and Oxygen Isotopes of Low-Level Nitrate in Groundwater For Environmental Forensics (United States)

    Wang, Y.


    Sources of nitrate in water from human activities include fertilizers, animal feedlots, septic systems, wastewater treatment lagoons, animal wastes, industrial wastes and food processing wastes. Nitrogen and Oxygen isotopic analysis of nitrate in groundwater is essential to source identification and environmental forensics as nitrate from different sources carry distinctly different N and O isotopic compositions. Nitrate is extracted from groundwater samples and converted into AgNO3 using ion exchange techniques. The purified AgNO3 is then broken down into N2 and CO for N and O isotopic measurement. Since nitrate concentrations in natural ground waters are usually less than 2 mg/L, however, such method has been limited by minimum sample size it requires, in liters, which is highly nitrate concentration dependent. Here we report a TurboVap- Denitrifier method for N and O isotopic measurement of low-level dissolved nitrate, based on sample evaporation and isotopic analysis of nitrous oxide generated from nitrate by denitrifying bacteria that lack N2O- reductase activity. For most groundwater samples with mg/L-level of nitrate direct injection of water samples in mLs is applied. The volume of sample is adjusted according to its nitrate concentration to achieve a final sample size optimal for the system. For water samples with ug/L-level of nitrate, nitrate is highly concentrated using a TurboVap evaporator, followed by isotopic measurement with Denitrifier method. Benefits of TurboVap- Denitrifier method include high sensitivity and better precision in both isotopic data. This method applies to both freshwater and seawater. The analyses of isotopic reference materials in nitrate-free de-ionized water and seawater are included as method controls to correct for any blank effects. The isotopic data from groundwater and ocean profiles demonstrate the consistency of the data produced by the TurboVap-Denitrifier method.

  11. Forecasting the probability of future groundwater levels declining below specified low thresholds in the conterminous U.S. (United States)

    Dudley, Robert W.; Hodgkins, Glenn A.; Dickinson, Jesse


    We present a logistic regression approach for forecasting the probability of future groundwater levels declining or maintaining below specific groundwater-level thresholds. We tested our approach on 102 groundwater wells in different climatic regions and aquifers of the United States that are part of the U.S. Geological Survey Groundwater Climate Response Network. We evaluated the importance of current groundwater levels, precipitation, streamflow, seasonal variability, Palmer Drought Severity Index, and atmosphere/ocean indices for developing the logistic regression equations. Several diagnostics of model fit were used to evaluate the regression equations, including testing of autocorrelation of residuals, goodness-of-fit metrics, and bootstrap validation testing. The probabilistic predictions were most successful at wells with high persistence (low month-to-month variability) in their groundwater records and at wells where the groundwater level remained below the defined low threshold for sustained periods (generally three months or longer). The model fit was weakest at wells with strong seasonal variability in levels and with shorter duration low-threshold events. We identified challenges in deriving probabilistic-forecasting models and possible approaches for addressing those challenges.

  12. Cigarette price level and variation in five Southeast Asian countries. (United States)

    Liber, Alex C; Ross, Hana; Ratanachena, Sophapan; Dorotheo, E Ulysses; Foong, Kin


    To monitor and analyse impacts of the interaction between tobacco excise tax policy and industry price strategy, on the price level and variation of cigarettes sold in five Southeast Asian countries (Indonesia, Cambodia, Lao PDR, the Philippines and Vietnam). Prices of cigarette sold by sticks and packs were collected through an in-person survey of retailers during 2011. Mean cigarette prices and price variation were calculated in each study country for single cigarettes, whole packs and brand groups. Price variation of whole packs was greater in countries with ad-valorem excise tax structures (Cambodia, Lao PDR and Vietnam) than in countries with multitiered specific excise taxes (Indonesia and the Philippines). The price variation for single sticks appeared to be driven by local currency denomination. Cigarettes sold individually cost more per stick than cigarettes sold in whole packs in every brand group except for Indonesia's domestic brands. Tobacco industry strategy and excise tax structure drove the price level and variation of cigarettes sold in packs, while currency denominations influence the selling price of single sticks. To maximise the effectiveness of tobacco tax policies, countries should adopt specific excise tax structures to decrease cigarette price variation, which would minimise opportunities for smokers to 'trade down' to a cheaper brand to avoid a tax-driven price increase. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  13. Comparison of different methods to assess natural backgrond levels in groundwater bodies in southern Europe (United States)

    Preziosi, Elisabetta; Parrone, Daniele; Ghergo, Stefano; Ducci, Daniela; Sellerino, Mariangela; Condesso de Melo, Maria Teresa; Oliveira, Juana; Ribeiro, Luis


    The assessment of the natural background levels (NBLs) of a substance or element is important to distinguish anthropogenic pollution from contamination of natural origin in groundwater bodies. NBLs are the result of different atmospheric, geological, chemical and biological interaction processes during groundwater infiltration and circulation. Rainfall composition, water-rock interactions in both vadose and saturated zone, exchanges with other water bodies and residence time also contribute to determine the groundwater natural composition. Nowadays there are different methods to assess NBLs but the main concern is that they may provide different results. In the European legislative context, the Groundwater Directive (2006/118/EC) requests to EU Member States to derive appropriate threshold values (TV) for several potentially harmful substances, taking into account NBLs when necessary, in order to assess the chemical status of groundwater bodies. In the framework of a common project between Italy (CNR) and Portugal (FCT), several groundwater bodies were taken into account in different regions of Italy (Latium and Campania) and Portugal. The general objective is the definition of a sound comprehensive methodology for NBL assessment at groundwater body scale, suitable to different hydrogeological settings through comparing diverse case studies and different approaches. The Italian case studies are located in volcanic or volcano-sedimentary geological contexts, where high concentrations of substances such as As, F, Fe, Mn among others in groundwater are well known. The Portuguese case studies are located in carbonate and porous media aquifers. Several data sets were explored with the use of statistical as well as mathematical procedures in order to determine a threshold between natural and anthropogenic concentration. Today essentially two groups of methods are proposed, the first ascribed to the probability plots (PP method), the second based on the selection of the

  14. Variation in some haematological parameters and levels of selected ...

    African Journals Online (AJOL)

    Variation in some haematological parameters and levels of selected toxic metals in cosmetologists and heavy cosmetic users in Benin City. ... Also, Exposure to cosmetics-borne chemicals through almost all body cavities (skin, nose, eyes and mouth) was observed in both cosmetologistsand heavy cosmetics users (HCU).

  15. Groundwater capture processes under a seasonal variation in natural recharge and discharge (United States)

    Maddock, Thomas, III.; Vionnet, Leticia Beatriz

    "Capture" is the increase in recharge and the decrease in discharge that occurs when pumping is imposed on an aquifer system that was in a previous state of approximate dynamic equilibrium. Regional groundwater models are usually used to calculate capture in a two-step procedure. A steady-state solution provides an initial-head configuration, a set of flows through the boundaries for the modeled region, and the initial basis for the capture calculation. The transient solutions provide the total change in flows through the boundaries. A difference between the transient and steady-state solutions renders the capture calculation. When seasonality is a modeling issue, the use of a single initial hydraulic head and a single set of boundary flows leads to miscalculations of capture. Instead, an initial condition for each season should be used. This approach may be accomplished by determining steady oscillatory solutions, which vary through the seasons but repeat from year to year. A regional groundwater model previously developed for a portion of the San Pedro River basin, Arizona, USA, is modified to illustrate the effect that different initial conditions have on transient solutions and on capture calculations. Résumé Les "prélèvements" sont constitués par l'augmentation de la recharge et par la diminution de l'écoulement qui se produit lorsqu'un pompage est imposéà un système aquifère qui était auparavant dans un état proche de l'équilibre dynamique. Les modèles régionaux de nappe sont en général utilisés pour calculer les prélèvements dans une procédure à deux étapes. Une solution en régime permanent donne la configuration piézométrique initiale, un jeu de conditions aux limites pour la région modélisée et les données de base pour le calcul des prélèvements. Les solutions transitoires donnent les modifications globales des conditions aux limites. Lorsque des variations saisonnières sont produites en sortie du modèle, le recours à une

  16. Spatial variability of shallow groundwater level, electrical conductivity and nitrate concentration, and risk assessment of nitrate contamination in North China Plain. (United States)

    Hu, Kelin; Huang, Yuangfang; Li, Hong; Li, Baoguo; Chen, Deli; White, Robert Edlin


    In recent years, nitrate (NO3) contamination of groundwater has become a growing concern for people in rural areas in North China Plain (NCP) where groundwater is used as drinking water. The objective of this study was to evaluate groundwater resource level, to determine groundwater quality and to assess the risk of NO3 pollution in groundwater in Quzhou County in the NCP. Ordinary Kriging (OK) method was used to analyze the spatial variability of shallow groundwater level, groundwater electrical conductivity (EC) and NO3-N concentrations, and Indictor Kriging (IK) method was used to analyze the data with NO3-N concentrations equal or greater than the groundwater NO3 pollution threshold (20 mg L(-1)). The results indicated that groundwater level averaged 9.81 m, a level 6 m lower than in 1990. The spatial correlation distances for groundwater level, EC and NO3-N concentration were 21.93, 2.19 and 3.55 km, respectively. The contour map showed that shallow groundwater level areas extended from north to south across the County. Groundwater EC was above 3 dS m(-1) in the most part of the northern county. Groundwater NO3 pollution (NO3-N> or =20 mg L(-1)) mainly occurred in the County Seat areas due to wastewater irrigation and excessive fertilizer leaching from agricultural fields. At Henantuang town, besides suburban of the County Seat, groundwater was also contaminated by NO3 shown by the map generated using the IK method, which was not reflected in the map generated using the OK method. The map generated using the OK method could not reflect correctly the groundwater NO3 pollution status. The IK method is useful to assess the risk of NO3 pollution by giving the conditional probability of NO3 concentration exceeding the threshold value. It is suggested that risk assessment of NO3 pollution is useful for better managing groundwater resource, preventing soil salinization and minimizing NO3 pollution in groundwater.

  17. Long Term Water Level and Chemistry Evolution in Groundwater of the Mississippi Embayment, Arkansas, USA: Preliminary Results (United States)

    Neumann, K.; Dowling, C. B.; Moraru, C.; Hannigan, R. E.


    The Mississippi Embayment, located in the southeastern U.S., is a syncline formed by the northward excursion of the Gulf of Coastal Plain. Structurally, the Mississippi Embayment is a hydrogeological basin consisting of six regional aquifers. These productive aquifers yield good-quality waters. The Mississippi Embayment Regional Ground Water Study group located at Arkansas State University compiled and organized the available water chemistry and groundwater level data from the USGS groundwater monitoring database. The uppermost unconfined horizon forms the Mississippi River Valley Alluvial Aquifer (ALVM), one of the largest unconfined aquifers in the world. The Holocene and Pleistocene ALVM is formed from sand, gravel, and loess. The majority of the groundwater wells (approximately 80%) are drilled in the ALVM. As the groundwater levels have fallen in the unconfined ALVM, more groundwater wells are drilled in the deeper aquifers-the Upper, Middle, and Lower Claiborne Aquifers. The Ecocene Upper Claiborne Aquifer protolith is sand, silt, and clay while the Eocene Middle Claiborne and Lower Claiborne aquifers are sand and minor clay. We focused our investigation of the spatial and temporal evolution of groundwater in the Arkansas section of the Mississippi Embayment by using wells with long term monitoring records (1928 - 2005). Overall, the groundwater levels of the unconfined aquifer (ALVM) have decreased; we have not yet evaluated the lower aquifer water level changes. Attention was paid to rock-water interactions along flowpaths in the ALVM and Upper Claiborne aquifers, and to temporal changes at specific sampling sites. The study is utilizing groundwater pH, cation, anion, and nutrient data in the programs AquaChem and PHREEQE to describe mineral and CO2 saturations in groundwater. First results indicate that the modeling allows the identification of different processes (CO2 pressure, calcite saturation) that control distinct geochemical provinces, e.g. urban

  18. Observations and analysis of free groundwater levels and groundwater pressure in landslide slopes. Jisuberi shamen no jiyu chikasuii, chikasuiatsu no kansoku to kaiseki ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S.; Nakano, T. (Niigata Univ., Niigata (Japan). Faculty of Agriculture); Inaba, K. (Niigata Univ., Niigata (Japan). Graduate School); Sato, O. (Niigata Univ., Niigata (Japan))


    It is well known that the landslides in Tertiary systems abundantly found in Niigata Prefecture, etc., frequently occur especially in the snow melting season or the heavy rain season. For studying the occurrence of such landslides, exploration of the actual condition of groundwater and evaluation of the strength of earth are very important even when the landslide occurring mechanism can be presumed in a relatively simple way about the soil mechanics. Therefore, great importance is attached to the observation and investigation on the groundwater level and pressure at landslide sites and stability analyses have been actively performed. However, it is considered that several fundamental problems still exist in the method for estimating the groundwater level and pressure in landslide slopes from the observation method and data on groundwater levels and pressure (pore pressure). In this paper, these fundamental problems are examined on the basis of concrete observations made by the writers on landslide slopes at Matunoyamagoe and Higashimusikame landslide sites in Niigata Prefecture for the past several years. 6 ref., 6 figs., 2 tabs.

  19. Quantitative Assessment of the Mechanisms of Earthquake-Induced Groundwater-Level Change in the MP Well, Three Gorges Area (United States)

    Zhang, Shouchuan; Shi, Zheming; Wang, Guangcai; Zhang, Zuochen


    Earthquake-induced groundwater-level changes have been widely studied, though the mechanisms causing coseismic responses are still debated. In this study, we employ several models to fit the coseismic groundwater-level changes caused by the 2008 Wenchuan earthquake in the MP well, located in the Three Gorges Dam. The fits for all models are about the same. By comparing the model results with the results from tidal response and baseflow recession analyses, we conclude that a transient permeability model can best describe the coseismic groundwater-level changes in the MP well. The discharge from the Changmutuo fault zone estimated from the one-dimensional groundwater flow model during the 20 days following the earthquake is about 310 ± 90 m3.

  20. Simulation of Groundwater-Level and Salinity Changes in the Eastern Shore, Virginia (United States)

    Sanford, Ward E.; Pope, Jason P.; Nelms, David L.


    Groundwater-level and salinity changes have been simulated with a groundwater model developed and calibrated for the Eastern Shore of Virginia. The Eastern Shore is the southern part of the Delmarva Peninsula that is occupied by Accomack and Northampton Counties in Virginia. Groundwater is the sole source of freshwater to the Eastern Shore, and demands for water have been increasing from domestic, industrial, agricultural, and public-supply sectors of the economy. Thus, it is important that the groundwater supply be protected from overextraction and seawater intrusion. The best way for water managers to use all of the information available is usually to compile this information into a numerical model that can simulate the response of the system to current and future stresses. A detailed description of the geology, hydrogeology, and historical groundwater extractions was compiled and entered into the numerical model. The hydrogeologic framework is composed of a surficial aquifer under unconfined conditions, a set of three aquifers and associated overlying confining units under confined conditions (the upper, middle, and lower Yorktown-Eastover Formation), and an underlying confining unit (the St. Marys Formation). An estimate of the location and depths of two major paleochannels was also included in the framework of the model. Total withdrawals from industrial, commercial, public-supply, and some agricultural wells were compiled from the period 1900 through 2003. Reported pumpage from these sources increased dramatically during the 1960s and 70s, up to currently about 4 million gallons per day. Domestic withdrawals were estimated on the basis of population census districts and were assigned spatially to the model on the assumption that domestic users are located close to roads. A numerical model was created using the U.S. Geological Survey (USGS) code SEAWAT to simulate both water levels and concentrations of chloride (representing salinity). The model was

  1. Microbial Community-Level Physiological Profiles (CLPP) and herbicide mineralization potential in groundwater affected by agricultural land use

    DEFF Research Database (Denmark)

    Janniche, Gry Sander; Spliid, Henrik; Albrechtsen, Hans-Jørgen


    herbicide and nitrate pollution. Based on the Shannon–Wiener and Simpson's diversity indices the diversity in the microbial communities was high. The response from the EcoPlates™ showed which substrates support groundwater bacteria, and all 31 carbon sources were utilized by organisms from at least one......Diffuse groundwater pollution from agricultural land use may impact the microbial groundwater community, which was investigated as Community-Level Physiological Profiles (CLPP) using EcoPlate™. Water was sampled from seven piezometers and a spring in a small agricultural catchment with diffuse...

  2. Groundwater recharge - climatic and vegetation induced variations. Simulations in the Emaan and Aespoe areas in southern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Losjoe, K.; Johansson, Barbro; Bringfelt, B.; Oleskog, I.; Bergstroem, S. [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)


    Climate change and man-made interference will cause an impact on runoff and groundwater recharge in the future. With the aim to give a conception of seasonal variations and the magnitude of the differences, the HBV model has been used as a tool for simulating five climate alternatives in two areas of south-east Sweden. The climate alternatives include both increased and decreased temperature and precipitation. These are not predictions of a future climate change, and should only be regarded as examples. The purpose has been to exemplify a conceivable magnitude of change during temperate/boreal conditions. It has not been within the scope of this report to evaluate the most probable climate change scenarios. The impacts of different climate scenarios on the total groundwater recharge and the deep groundwater recharge have been calculated as long-term mean values and are presented in comparison with model-simulated values with an actual (recorded) climate sequence. The results show great differences between the climate alternatives. An increase in temperature will decrease snow accumulation and increase the evapotranspiration and can totally extinguish the spring snowmelt peak in runoff and groundwater recharge. A decreased temperature, on the contrary, will imply decreased winter runoff and recharge values and an increase in spring and summer values. Evapotranspiration and soil water content play a key role in the runoff and recharge processes. This report makes a review of some literature about work done within the areas of investigation and calculation of evapotranspiration. Research is in progress, not only on formulating future climate scenarios, but also on distinguishing evapotranspiration from different kinds of vegetation. These are complex questions, but vital ones, as a climate change will also affect the vegetation. Until new research results are presented, well-known methods can be used for simulating the effects of logging on runoff and groundwater

  3. Variation in glyphosate and AMPA concentrations of surface water and groundwater (United States)

    Caprile, Ana Clara; Aparicio, Virginia; Sasal, Carolina; Andriulo, Enrique


    The presence of pesticides in various environmental matrices indicate that the soil's ability to function as a bio-physical-chemical reactor is declining. As it operates as an interface between air and water, it causes a negative impact on these two vital resources. Currently, the pampa agriculture is simplified with a marked tendency towards spring-summer crops, where the main crops are RR soybean and corn. Herbicides are neither retained nor degraded in the soil, which results in polluted groundwater and surface waters. The objectives of this study were: a) to verify the presence of glyphosate and aminomethylphosphonic acid (AMPA) in Pergamino stream (a typical representative of the most productive agricultural region of Argentina) under different land use and to detect if in the detections there was a space-time pattern, and b) to verify the detection of these molecules in groundwater of the upper same basin under exclusively rural land use. Surface stream was sampling in six sites (five under rural land use and one under urban-industrial land use) at a rate of one sample by spring, summer and winter seasons (2010-2013, 54 total samples). Groundwater glyphosate and AMPA concentrations were determined in 24 piezometers constructed at two positions of the landscape, across the groundwater flow direction, sampled at two sampling dates (2010 and 2012, 45 total samples). In surface water, glyphosate and AMPA were detected in 54 and 69% of the samples analyzed, respectively. The median concentrations were 0.9 and 0.8 µg L-1 for glyphosate and AMPA and maximal concentrations 258 and 5865 µg L-1, respectively. The sampling site under urban-industrial land use had abnormally high concentrations of glyphosate in the spring (attributed to point pollution), a fact that not allowed to see differences in the remaining sampling times under different land uses. AMPA concentrations under urban-industrial land use were high and higher than rural land use in 3 studied seasons

  4. Water level observations from Unmanned Aerial Vehicles for improving estimates of surface water-groundwater interaction

    DEFF Research Database (Denmark)

    Bandini, Filippo; Butts, Michael; Vammen Jacobsen, Torsten


    . However, traditional river gauging stations are normally spaced too far apart to capture spatial patterns in the water surface, while spaceborne observations have limited spatial and temporal resolution. UAVs (Unmanned Aerial Vehicles) can retrieve river water level measurements, providing: i) high...... spatial resolution; ii) spatially continuous profiles along or across the water body; iii) flexible timing of sampling. A semi-synthetic study was conducted to analyse the value of the new UAV-borne datatype for improving hydrological models, in particular estimates of GW (Groundwater)- SW (Surface Water...

  5. A comparative study of shallow groundwater level simulation with three time series models in a coastal aquifer of South China (United States)

    Yang, Q.; Wang, Y.; Zhang, J.; Delgado, J.


    Accurate and reliable groundwater level forecasting models can help ensure the sustainable use of a watershed's aquifers for urban and rural water supply. In this paper, three time series analysis methods, Holt-Winters (HW), integrated time series (ITS), and seasonal autoregressive integrated moving average (SARIMA), are explored to simulate the groundwater level in a coastal aquifer, China. The monthly groundwater table depth data collected in a long time series from 2000 to 2011 are simulated and compared with those three time series models. The error criteria are estimated using coefficient of determination ( R 2), Nash-Sutcliffe model efficiency coefficient ( E), and root-mean-squared error. The results indicate that three models are all accurate in reproducing the historical time series of groundwater levels. The comparisons of three models show that HW model is more accurate in predicting the groundwater levels than SARIMA and ITS models. It is recommended that additional studies explore this proposed method, which can be used in turn to facilitate the development and implementation of more effective and sustainable groundwater management strategies.

  6. Reconstruction of groundwater circulation after seashore reclamation (United States)

    Zhang, Xiaoying; Hu, Bill; Yang, Lei; Chen, Junbing


    In recent years, the effects of land reclamation on the coastal groundwater system have received increasing attention in China as extensive reclamation activities have altered the original groundwater dynamics and salinity distribution in the coastal subsurface. Previous studies focused on either the steady-state groundwater flow or the large scale numerical simulation after land reclamation, however the short-period variation of groundwater flow and its impacts on hydrogeochemical system have not often been considered. Furthermore, a permeable coastal boundary assumed exclusively in previous work is often not the case in contemporary engineering practice, and an impermeable coastal boundary with dikes has been adopted in this study. We investigate the temporal variation of groundwater levels in the un-reclaimed clay layer and reclaimed layer based on the continuous observation of 14 monitoring wells in Zhoushan island, China. We use the morphological wave analysis method to study the effect of nonstationary tidal signals on groundwater level fluctuations. The results indicate that the method of continuous wavelet transform is suitable for analyzing the groundwater flow pattern, where short period groundwater level fluctuations are affected by tidal activities through pipes built in the reclamation dike. In particular, the method of discrete wavelet transform (DWT) is proved effective in extracting tidal signals from groundwater level time series. The approximation term in the multi-resolution analysis is well in agreement with original groundwater level data, demonstrating the advantages of the DWT method in obtaining the change trends of geological, hydrological, and climate variables. Additionally, an examination of groundwater samples indicates that saltwater exists in entire reclamation regions. Our study reveals some different groundwater features in reclamation regions where the coastal boundary is impermeable, which could provide significant implications

  7. Estimated 2008 groundwater potentiometric surface and predevelopment to 2008 water-level change in the Santa Fe Group aquifer system in the Albuquerque area, central New Mexico (United States)

    Falk, Sarah E.; Bexfield, Laura M.; Anderholm, Scott K.


    The water-supply requirements of the Albuquerque metropolitan area of central New Mexico have historically been met almost exclusively by groundwater withdrawal from the Santa Fe Group aquifer system. Previous studies have indicated that the large quantity of groundwater withdrawal relative to recharge has resulted in water-level declines in the aquifer system throughout the metropolitan area. Analysis of the magnitude and pattern of water-level change can help improve understanding of how the groundwater system responds to withdrawals and variations in the management of the water supply and can support water-management agencies' efforts to minimize future water-level declines and improve sustainability. This report, prepared by the U.S. Geological Survey in cooperation with the Albuquerque Bernalillo County Water Utility Authority, presents the estimated groundwater potentiometric surface during winter (from December to March) of the 2008 water year and the estimated changes in water levels between predevelopment and water year 2008 for the production zone of the Santa Fe Group aquifer system in the Albuquerque and surrounding metropolitan and military areas. Hydrographs from selected wells are included to provide details of historical water-level changes. In general, water-level measurements used for this report were measured in small-diameter observation wells screened over short intervals and were considered to best represent the potentiometric head in the production zone-the interval of the aquifer, about 300 feet below land surface to 1,100 feet or more below land surface, in which production wells generally are screened. Water-level measurements were collected by various local and Federal agencies. The 2008 water year potentiometric surface map was created in a geographic information system, and the change in water-level elevation from predevelopment to water year 2008 was calculated. The 2008 water-level contours indicate that the general direction of

  8. Evaluation of drought impact on groundwater recharge rate using SWAT and Hydrus models on an agricultural island in western Japan

    Directory of Open Access Journals (Sweden)

    G. Jin


    Full Text Available Clarifying the variations of groundwater recharge response to a changing non-stationary hydrological process is important for efficiently managing groundwater resources, particularly in regions with limited precipitation that face the risk of water shortage. However, the rate of aquifer recharge is difficult to evaluate in terms of large annual-variations and frequency of flood events. In our research, we attempt to simulate related groundwater recharge processes under variable climate conditions using the SWAT Model, and validate the groundwater recharge using the Hydrus Model. The results show that annual average groundwater recharge comprised approximately 33% of total precipitation, however, larger variation was found for groundwater recharge and surface runoff compared to evapotranspiration, which fluctuated with annual precipitation variations. The annual variation of groundwater resources is shown to be related to precipitation. In spatial variations, the upstream is the main surface water discharge area; the middle and downstream areas are the main groundwater recharge areas. Validation by the Hydrus Model shows that the estimated and simulated groundwater levels are consistent in our research area. The groundwater level shows a quick response to the groundwater recharge rate. The rainfall intensity had a great impact on the changes of the groundwater level. Consequently, it was estimated that large spatial and temporal variation of the groundwater recharge rate would be affected by precipitation uncertainty in future.

  9. Revealing textural variations at the groundwater-surface water interface using induced polarisation techniques (United States)

    McLachlan, P.; Binley, A. M.; Chambers, J. E.


    The groundwater-surface water (GW-SW) interface actively governs the transfer of water, nutrients and contaminants between groundwater systems and surface water environments. It is capable of mitigating environmental pollution by attenuating and transforming contaminants transported by groundwater discharging to the surface or by surface water recharging to the subsurface. The ability of the GW-SW interface to mitigate pollution is linked to its hydrological and physiochemical properties, the presence of grain surfaces, and its consequent ability to host diverse microbial populations. Despite its importance, characterising the GW-SW interface remains a challenge as traditional methods are often intrusive, environmentally damaging or labour intensive and so they often provide spatially sparse, or spatially restricted, information. There is therefore a requirement for methods which can provide information about the GW-SW interface at high spatial resolution and over large areas. In recent years there has been increased interest in using induced polarisation in field based exploration to characterise grain surface properties of unconsolidated geological materials. Induced polarisation may offer the potential to interrogate textural properties of the GW-SW interface, such as cation exchange and grain surface area which are important for determining the biogeochemical properties of the subsurface. Here we demonstrate the ability of induced polarisation measurements to reveal contrasts in the textural properties of two sites on a 200 m river meander (River Leith, Cumbria, UK). Previous work has revealed that both sites are distinctive in terms of their hydrology, fluvial deposits and biogeochemistry. We present in-stream induced polarisation measurements in addition to lab based measurements of induced polarisation, cation exchange capacity, grain size distribution and surface area on samples obtained from drilling.

  10. Groundwater monitoring in the Savannah River Plant Low Level Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.


    This document describes chemical mechanisms that may affect trace-level radionuclide migration through acidic sandy clay soils in a humid environment, and summarizes the extensive chemical and radiochemical analyses of the groundwater directly below the SRP Low-Level Waste (LLW) Burial Ground (643-G). Anomalies were identified in the chemistry of individual wells which appear to be related to small amounts of fission product activity that have reached the water table. The chemical properties which were statistically related to trace level transport of Cs-137 and Sr-90 were iron, potassium, sodium and calcium. Concentrations on the order of 100 ppM appear sufficient to affect nuclide migration. Several complexation mechanisms for plutonium migration were investigated.

  11. Wavelet coupled MARS and M5 Model Tree approaches for groundwater level forecasting (United States)

    Rezaie-balf, Mohammad; Naganna, Sujay Raghavendra; Ghaemi, Alireza; Deka, Paresh Chandra


    In this study, two different machine learning models, Multivariate Adaptive Regression Splines (MARS) and M5 Model Trees (MT) have been applied to simulate the groundwater level (GWL) fluctuations of three shallow open wells within diverse unconfined aquifers. The Wavelet coupled MARS and MT hybrid models were developed in an attempt to further increase the GWL forecast accuracy. The Discrete Wavelet Transform (DWT) which is particularly effective in dealing with non-stationary time-series data was employed to decompose the input time series into various sub-series components. Historical data of 10 years (August-1996 to July-2006) comprising monthly groundwater level, rainfall, and temperature were used to calibrate and validate the models. The models were calibrated and tested for one, three and six months ahead forecast horizons. The wavelet coupled MARS and MT models were compared with their simple counterpart using standard statistical performance evaluation measures such as Root Mean Square Error (RMSE), Normalized Nash-Sutcliffe Efficiency (NNSE) and Coefficient of Determination (R2) . The wavelet coupled MARS and MT models developed using multi-scale input data performed better compared to their simple counterpart and the forecast accuracy of W-MARS models were superior to that of W-MT models. Specifically, the DWT offered a better discrimination of non-linear and non-stationary trends that were present at various scales in the time series of the input variables thus crafting the W-MARS models to provide more accurate GWL forecasts.

  12. Residual ground-water levels of the neonicotinoid thiacloprid perturb chemosensing of Caenorhabditis elegans. (United States)

    Hopewell, Hannah; Floyd, Kieran G; Burnell, Daniel; Hancock, John T; Allainguillaume, Joel; Ladomery, Michael R; Wilson, Ian D


    This study investigated the neurological effects of residual ground-water levels of thiacloprid on the non-target organism Caenorhabditis elegans. Nematodes treated with thiacloprid showed a dose-dependent and significantly increased twitch response at concentrations above 50 ng mL -1 that disabled their forward locomotion in liquid culture. In comparison with untreated controls, 10 ng mL -1 thiacloprid perturbed the chemosensory ability of C. elegans such that the nematodes no longer demonstrated positive chemotaxis towards a NaCl chemo-attractant, reducing their chemotaxis index from +0.48 to near to zero. Nematodes also exhibited a locomotion characteristic of those devoid of chemo-attraction, making significantly more pirouetting turns of ≥90° than the untreated controls. Compared to the untreated controls, expression of the endocytosis-associated gene, Rab-10, was also increased in C. elegans that had developed to adulthood in the presence of 10 ng mL -1 thiacloprid, suggesting their active engagement in increased recycling of affected cellular components, such as their nAChRs. Thus, even residual, low levels of this less potent neonicotinoid that may be found in field ground-water had measurable effects on a beneficial soil organism which may have environmental and ecological implications that are currently poorly understood.

  13. [Seasonal variations of community structures phytoplankton in groundwater discharge areas along the Northern Yucatán Peninsula coast]. (United States)

    Alvarez-Góngora, Cynthia Catalina; Liceaga-Correa, Maria de los Angeles; Herrera-Silveira, Jorge Alfredo


    The highly touristic Yucatán Peninsula is principally constituted with coastal marine environments. Like other coastal areas, this has been affected by the increase of waste water discharge, hydrological modifications and land use changes in the area. The phytoplankton community structure is one of the main components of coastal ecosystems and the most affected in hydrological processes. In order to follow the seasonal variations, the phytoplankton was characterized to follow the hydrological variability in two sites (Dzilam and Progreso) of the Northern Yucatán Peninsula. For this, cruises were carried out monthly during one year, from April 2004 to March 2005, with two samplings per season (dry, rainy and "nortes"). Hydrological variability was associated with seasonality and directly linked to groundwater discharges in the Dzilam area, and waste water discharges in the Progreso area. The highest nutrient concentrations occurred mainly during the rainy season. The phytoplankton community changes observed throughout the year suggested that the hydrological and chemical variability associated with seasonality and anthropogenic impacts have a strong influence. The substitution of diatoms by dinoflagellates as the dominant group in Progreso was the result of seasonal variability itself, but also could have been caused by eutrophic processes; while in Dzilam, the major presence of diatoms could have been favored by groundwater discharges. The results of this study can be used to understand the linkages between stressors from the anthropogenic activities and coastal water quality and changes.

  14. Management of water resources to control groundwater levels in the southern area of the western Nile delta, Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed M. Sobeih


    Full Text Available The present study was initiated with the objective of simulating and predicting the effect of future development on the groundwater flow and levels. This supports applications for future planning and wise management of water resources. The study area extends south of El Nubariya canal including Sadat City area and its vicinities in the western Nile delta region. A numerical groundwater flow model (MODFLOW has been employed to simulate flow and get the budget of groundwater in the study area. The model showed that about 28,101,041 m3/day of surface water is infiltrated to groundwater dominantly from canals and excess irrigation water. About the same quantity (28,101,052 m3/day, is discharged from groundwater through production wells, open drains and through some reaches of canals. Three development scenarios were simulated to give predictions of the impact of future increasing recharge, construction of new canal and new open drains, and also increased pumping on the groundwater levels in the study area.

  15. Optimisation of groundwater level monitoring networks using geostatistical modelling based on the Spartan family variogram and a genetic algorithm method (United States)

    Parasyris, Antonios E.; Spanoudaki, Katerina; Kampanis, Nikolaos A.


    Groundwater level monitoring networks provide essential information for water resources management, especially in areas with significant groundwater exploitation for agricultural and domestic use. Given the high maintenance costs of these networks, development of tools, which can be used by regulators for efficient network design is essential. In this work, a monitoring network optimisation tool is presented. The network optimisation tool couples geostatistical modelling based on the Spartan family variogram with a genetic algorithm method and is applied to Mires basin in Crete, Greece, an area of high socioeconomic and agricultural interest, which suffers from groundwater overexploitation leading to a dramatic decrease of groundwater levels. The purpose of the optimisation tool is to determine which wells to exclude from the monitoring network because they add little or no beneficial information to groundwater level mapping of the area. Unlike previous relevant investigations, the network optimisation tool presented here uses Ordinary Kriging with the recently-established non-differentiable Spartan variogram for groundwater level mapping, which, based on a previous geostatistical study in the area leads to optimal groundwater level mapping. Seventy boreholes operate in the area for groundwater abstraction and water level monitoring. The Spartan variogram gives overall the most accurate groundwater level estimates followed closely by the power-law model. The geostatistical model is coupled to an integer genetic algorithm method programmed in MATLAB 2015a. The algorithm is used to find the set of wells whose removal leads to the minimum error between the original water level mapping using all the available wells in the network and the groundwater level mapping using the reduced well network (error is defined as the 2-norm of the difference between the original mapping matrix with 70 wells and the mapping matrix of the reduced well network). The solution to the

  16. Diurnal variations of serum erythropoietin at sea level and altitude

    DEFF Research Database (Denmark)

    Klausen, T; Poulsen, T D; Fogh-Andersen, N


    and during 4 days at an altitude of 4350 m. Median sea level serum-EPO concentration was 6 (range 6-13) U.l-1. Serum-EPO concentration increased after 18 and 42 h at altitude, [58 (range 39-240) and 54 (range 36-340) U.l-1, respectively], and then decreased after 64 and 88 h at altitude [34 (range 18...... in 2, 3 diphosphoglycerate. After 64 h at altitude, six of the nine subjects had down-regulated their serum-EPO concentrations so that median values were three times above those at sea level. These six subjects had significant diurnal variations of serum-EPO concentration at sea level; the nadir...... occurred between 0800-1600 hours [6 (range 4-13) U.l-1], and peak concentrations occurred at 0400 hours [9 (range 8-14) U.l-1, P = 0.02]. After 64 h at altitude, the subjects had significant diurnal variations of serum-EPO concentration; the nadir occurred at 1600 hours [20 (range 16-26) U.l-1], and peak...

  17. Spatial variation in background groundwater geochemistry of the Gurinai Wetland, Gobi Desert, Inner Mongolia (United States)

    Gu, Weizu; Peters, N.E.


    Age dating of groundwater from several hand-dug wells in the Gurinai Wetland of the Badajilin-Gobi Desert, north-central China, indicated a continuum from present to 7625??155 years B.P. Water age correlates with concentration for some constituents. In general, concentrations of Fe, Cr, Se and Sr increase with increasing age, whereas Ca, Br, Zn and Rb decrease. Compared to concentration ranges reported for freshwaters, several constituents were much more concentrated including Na, Cl, Mg, Br and Th, and many others extended the upper concentration limit including Sr, Mo, Rb, Cr, U, Se, Nb and Ce. For Th, the maximum observed concentration extends the previously summarized maximum by more than an order of magnitude.


    Directory of Open Access Journals (Sweden)

    I. C. NICU


    Full Text Available Determination of the ground-water level by modern non-dis¬tructive methods (ground-penetrating radar technology. Ground Penetrating Radar (GPR is now a well-accepted geophysical technique, which unfortunately in our country its less used. Historically, the development of GPR comes from the use of radio echosounding to determine ice thickness and it was only a short step to enlarge the domain of research such as permafrost, geological investigation (bedrock, sedimentology, environmental assessment and hydrogeophysical studies (under-ground water location, soil water content. The GPR method measures the travel time of electromagnetic impulses in subsurface materials. An impulse radar system radiates repetitive electromagnetic impulses into the soil. A bandwidth antenna is usually placed in close proximity and electromagnetic coupled to the ground surface. It detects and measures the depth of reflecting discontinuities in subsurface soils and other earth materials to within a few centimeters depending of antenna frequency. For over 30 years, GPR has been used extensively for hydropedological investigations. Our research aims to determine the groundwater to estimate the degree of evolution of hydro-geomorphological processes.

  19. Effects of reservoirs water level variations on fish recruitment

    Directory of Open Access Journals (Sweden)

    Fabíula T. de Lima


    Full Text Available ABSTRACT The construction of hydroelectric power plants has many social and environmental impacts. Among them, the impacts on fish communities, which habitats are drastically modified by dams, with consequences across the ecosystem. This study aimed to assess the influence of water level (WL variations in the reservoirs of the Itá and Machadinho hydroelectric plants on the recruitment of fish species from the upper Uruguay River in southern Brazil. The data analyzed resulted from the WL variation produced exclusively by the hydroelectric plants generation and were collected between the years 2001 and 2012. The results showed significant correlations between the abundance of juvenile fish and the hydrological parameters only for some reproductive guilds. The species that spawn in nests showed, in general, a clear preference for the stability in the WL of the reservoirs, while the species that spawn in macrophytes or that release demersal eggs showed no significant correlation between the abundance of juvenile fish and hydrological parameters. A divergence of results between the two reservoirs was observed between the species that release semi-dense eggs; a positive correlation with a more stable WL was only observed in the Machadinho reservoir. This result can be driven by a wider range of WL variation in Machadinho reservoir.

  20. Space-Time Modelling of Groundwater Level Using Spartan Covariance Function (United States)

    Varouchakis, Emmanouil; Hristopulos, Dionissios


    Geostatistical models often need to handle variables that change in space and in time, such as the groundwater level of aquifers. A major advantage of space-time observations is that a higher number of data supports parameter estimation and prediction. In a statistical context, space-time data can be considered as realizations of random fields that are spatially extended and evolve in time. The combination of spatial and temporal measurements in sparsely monitored watersheds can provide very useful information by incorporating spatiotemporal correlations. Spatiotemporal interpolation is usually performed by applying the standard Kriging algorithms extended in a space-time framework. Spatiotemoral covariance functions for groundwater level modelling, however, have not been widely developed. We present a new non-separable theoretical spatiotemporal variogram function which is based on the Spartan covariance family and evaluate its performance in spatiotemporal Kriging (STRK) interpolation. The original spatial expression (Hristopulos and Elogne 2007) that has been successfully used for the spatial interpolation of groundwater level (Varouchakis and Hristopulos 2013) is modified by defining the following space-time normalized distance h = °h2r-+-α h2τ, hr=r- ξr, hτ=τ- ξτ; where r is the spatial lag vector, τ the temporal lag vector, ξr is the correlation length in position space (r) and ξτ in time (τ), h the normalized space-time lag vector, h = |h| is its Euclidean norm of the normalized space-time lag and α the coefficient that determines the relative weight of the time lag. The space-time experimental semivariogram is determined from the biannual (wet and dry period) time series of groundwater level residuals (obtained from the original series after trend removal) between the years 1981 and 2003 at ten sampling stations located in the Mires hydrological basin in the island of Crete (Greece). After the hydrological year 2002-2003 there is a significant

  1. Method for the Preparation of Hazard Map in Urban Area Using Soil Depth and Groundwater Level (United States)

    Kim, Sung-Wook; Choi, Eun-Kyeong; Cho, Jin Woo; Lee, Ju-Hyoung


    The hazard maps for predicting collapse on natural slopes consists of a combination of topographic, hydrological, and geological factors. Topographic factors are extracted from DEM, including aspect, slope, curvature, and topographic index. Hydrological factors, such as distance to drainage, drainage density, stream-power index, and wetness index are most important factors for slope instability. However, most of the urban areas are located on the plains and it is difficult to apply the hazard map using the topography and hydrological factors. In order to evaluate the risk of collapse of flat and low slope areas, soil depth and groundwater level data were collected and used as a factor for interpretation. In addition, the reliability of the hazard map was compared with the disaster history of the study area (Gangnam-gu and Yeouido district). In the disaster map of the disaster prevention agency, the urban area was mostly classified as the stable area and did not reflect the collapse history. Soil depth, drainage conditions and groundwater level obtained from boreholes were added as input data of hazard map, and disaster vulnerability increased at the location where the actual collapse points. In the study area where damage occurred, the moderate and low grades of the vulnerability of previous hazard map were 12% and 88%, respectively. While, the improved map showed 2% high grade, moderate grade 29%, low grade 66% and very low grade 2%. These results were similar to actual damage. Keywords: hazard map, urban area, soil depth, ground water level Acknowledgement This research was supported by a Grant from a Strategic Research Project (Horizontal Drilling and Stabilization Technologies for Urban Search and Rescue (US&R) Operation) funded by the Korea Institute of Civil Engineering and Building Technology.

  2. Screening-level risk assessment for styrene-acrylonitrile (SAN) trimer detected in soil and groundwater. (United States)

    Kirman, C R; Gargas, M L; Collins, J J; Rowlands, J C


    A screening-level risk assessment was conducted for styrene-acrylonitrile (SAN) Trimer detected at the Reich Farm Superfund site in Toms River, NJ. Consistent with a screening-level approach, on-site and off-site exposure scenarios were evaluated using assumptions that are expected to overestimate actual exposures and hazards at the site. Environmental sampling data collected for soil and groundwater were used to estimate exposure point concentrations. Several exposure scenarios were evaluated to assess potential on-site and off-site exposures, using parameter values for exposures to soil (oral, inhalation of particulates, and dermal contact) and groundwater (oral, dermal contact) to reflect central tendency exposure (CTE) and reasonable maximum exposure (RME) conditions. Three reference dose (RfD) values were derived for SAN Trimer for short-term, subchronic, and chronic exposures, based upon its effects on the liver in exposed rats. Benchmark (BMD) methods were used to assess the relationship between exposure and response, and to characterize appropriate points of departure (POD) for each RfD. An uncertainty factor of 300 was applied to each POD to yield RfD values of 0.1, 0.04, and 0.03 mg/kg-d for short-term, subchronic, and chronic exposures, respectively. Because a chronic cancer bioassay for SAN Trimer in rats (NTP 2011a) does not provide evidence of carcinogenicity, a cancer risk assessment is not appropriate for this chemical. Potential health hazards to human health were assessed using a hazard index (HI) approach, which considers the ratio of exposure dose (i.e., average daily dose, mg/kg-d) to toxicity dose (RfD, mg/kg-d) for each scenario. All CTE and RME HI values are well below 1 (where the average daily dose is equivalent to the RfD), indicating that there is no concern for potential noncancer effects in exposed populations even under the conservative assumptions of this screening-level assessment.

  3. Long term trend in groundwater levels and watershed condition in the Kurobe River alluvial fan in Japan (United States)

    Tebakari, T.


    The Kurobe River alluvial fan is one of the most popular alluvial fans in Japan. The difference in elevation from Aimoto where is the top of the alluvial fan to seashore is approximately 130m, and the slope of the alluvial fan is approximately 10 degrees. The Kurobe River alluvial fan is consisted of conglomerate layers and has had many flowing wells. Groundwater has been used for domestic and agricultural water in the Kurobe River alluvial fan since a long time ago. In recent years, groundwater usage has been increased caused by the water use for industrial purpose and snow removal operation. National and local governments have installed and observed 19 observation wells in the Kurobe River alluvial fan. Trends in the decrease of groundwater levels were observed in the Kurobe River alluvial fan during 1986-2009. Using groundwater level data at observation wells, these annual and seasonal trends were statistically checked by the Kendall rank correlation test in this study. Moreover, relationships between precipitation, snow depth, land use, river discharge and groundwater levels were investigated using the correlation coefficient. As a result of statistical analysis, groundwater levels at 9 observation wells have been gradually decreasing at significant level 5%. The data and analysis from 2 other wells show that ground water levels have been decreasing significantly at the 1% level. Between the river water level at the Aimoto W.L. station and groundwater levels of observation wells near the river had the strong correlations. Precipitation and snow depth did not show any significant annual/seasonal trend over the Kurobe River alluvial fan. There is not substantial land use/cover change in the Kurobe River alluvial fan. However, the Unazuki Dam gate that is located upstream of Aimoto and used for flood control had been constructed since 1979 and has been operated since 2001. After the dam construction, flood discharge has been decreased drastically in the Kurobe

  4. Modeling Groundwater Flow and Infiltration at Potential Low-Level Radioactive Waste Disposal Sites in Taiwan (United States)

    Arnold, B. W.; Lee, C.; Ma, C.; Knowlton, R. G.


    Taiwan is evaluating representative sites for the potential disposal of low-level radioactive waste (LLW), including consideration of shallow land burial and cavern disposal concepts. A representative site for shallow land burial is on a small island in the Taiwan Strait with basalt bedrock. The shallow land burial concept includes an engineered cover to limit infiltration into the waste disposal cell. A representative site for cavern disposal is located on the southeast coast of Taiwan. The tunnel system for this disposal concept would be several hundred meters below the mountainous land surface in argillite bedrock. The LLW will consist of about 966,000 drums, primarily from the operation and decommissioning of four nuclear power plants. Sandia National Laboratories and the Institute of Nuclear Energy Research have collaborated to develop performance assessment models to evaluate the long-term safety of LLW disposal at these representative sites. Important components of the system models are sub-models of groundwater flow in the natural system and infiltration through the engineered cover for the shallow land burial concept. The FEHM software code was used to simulate groundwater flow in three-dimensional models at both sites. In addition, a higher-resolution two-dimensional model was developed to simulate flow through the engineered tunnel system at the cavern site. The HELP software was used to simulate infiltration through the cover at the island site. The primary objective of these preliminary models is to provide a modeling framework, given the lack of site-specific data and detailed engineering design specifications. The steady-state groundwater flow model at the island site uses a specified recharge boundary at the land surface and specified head at the island shoreline. Simulated groundwater flow vectors are extracted from the FEHM model along a cross section through one of the LLW disposal cells for utilization in radionuclide transport simulations in

  5. Movement of a tritium plume in shallow groundwater at a legacy low-level radioactive waste disposal site in eastern Australia. (United States)

    Hughes, C E; Cendón, D I; Harrison, J J; Hankin, S I; Johansen, M P; Payne, T E; Vine, M; Collins, R N; Hoffmann, E L; Loosz, T


    Between 1960 and 1968 low-level radioactive waste was buried in a series of shallow trenches near the Lucas Heights facility, south of Sydney, Australia. Groundwater monitoring carried out since the mid 1970s indicates that with the exception of tritium, no radioactivity above typical background levels has been detected outside the immediate vicinity of the trenches. The maximum tritium level detected in ground water was 390 kBq/L and the median value was 5400 Bq/L, decay corrected to the time of disposal. Since 1968, a plume of tritiated water has migrated from the disposal trenches and extends at least 100 m from the source area. Tritium in rainfall is negligible, however leachate from an adjacent and fill represents a significant additional tritium source. Study data indicate variation in concentration levels and plume distribution in response to wet and dry climatic periods and have been used to determine pathways for tritium migration through the subsurface.

  6. Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas (United States)

    Warner, Nathaniel R.; Kresse, Timothy M.; Hays, Phillip D.; Down, Adrian; Karr, Jonathan D.; Jackson, R.B.; Vengosh, Avner


    0.7166), C (δ13CDIC = −21.3‰ to −4.7‰), and B (δ11B = 3.9–32.9‰) isotopes clearly reflect water–rock interactions within the aquifer rocks, while the stable O and H isotopic composition mimics the local meteoric water composition. Overall, there was a geochemical gradient from low-mineralized recharge water to more evolved Ca–HCO3, and higher-mineralized Na–HCO3 composition generated by a combination of carbonate dissolution, silicate weathering, and reverse base-exchange reactions. The chemical and isotopic compositions of the bulk shallow groundwater samples were distinct from the Na–Cl type Fayetteville flowback/produced waters (TDS ∼10,000–20,000 mg/L). Yet, the high Br/Cl variations in a small subset of saline shallow groundwater suggest that they were derived from dilution of saline water similar to the brine in the Fayetteville Shale. Nonetheless, no spatial relationship was found between CH4 and salinity occurrences in shallow drinking water wells with proximity to shale-gas drilling sites. The integration of multiple geochemical and isotopic proxies shows no direct evidence of contamination in shallow drinking-water aquifers associated with natural gas extraction from the Fayetteville Shale.

  7. Variations in chemical and isotopic compositions of groundwaters from the Otobaru landslide in the area of hydrothermal alteration, Beppu City

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Ryuma; Kitaoka, Koichi; Kamiyama, Kokichi (Kyoto Univ., Uji (Japan). Disaster Prevention Research Inst.)


    The landslide at the Otobaru area, Beppu City, occurred twice in 1943 and 1969. A part of this area, even now, is affected considerably by thermal activities. Variations in chemical and isotopic compositions of waters from the Otobaru area and its vicinity were investigated from 1977 to 1983 and 1986 to 1987. The results are as follows: (1) electric conductivity data suggest that the two kinds of low-concentration water and high-concentration water exist in the landslide area, (2) the existence-of two groundwater aquifer in the landslide area and its vicinity is inferred from tritium data, (3) variations chemical composition of waters from the horizontal borehole are accompanied by the rise and decline of water table, (4) the waters from the landslide area and its vicinity are in equilibrium with montmorillonite, (5) the most waters under 10{sup -1} atm. of P{sub co2} are saturated or supersaturated with calcite, and (6) there is no detectable contribution of geothermal water to the waters from the landslide and its vicinity. And our hypothesis on the mechanism for the formation of calcium sulfate type water is also presented. (author).

  8. Investigation of Groundwater Flow Variations near a Recharge Pond with Repeat Deliberate Tracer Experiments

    Directory of Open Access Journals (Sweden)

    Jordan F Clark


    Full Text Available Determining hydraulic connections and travel times between recharge facilities and production wells has become increasingly important for permitting and operating managed aquifer recharge (MAR sites, a water supply strategy that transfers surface water into aquifers for storage and later extraction. This knowledge is critical for examining water quality changes and assessing the potential for future contamination. Deliberate tracer experiments are the best method for determining travel times and identifying preferential flow paths between recharge sites over the time scales of weeks to a few years. This paper compares the results of two deliberate tracer experiments at Kraemer Basin, Orange County, CA, USA. Results from the first experiment, which was conducted in October 1998, showed that a region of highly transmissive sedimentary material extends down gradient from the basin for more than 3 km [1]. Mean groundwater velocities were determined to be approximately 2 km/year in this region based on the arrival time of the tracer center of mass. A second experiment was initiated in January 2008 to determine if travel times from this basin to monitoring and production wells changed during the past decade in response to new recharge conditions. Results indicate that flow near Kraemer Basin was stable, and travel times to most wells determined during both experiments agree within the experimental uncertainty.

  9. How geomorphology and groundwater level affect the spatio-temporal variability of riverine cold water patches? (United States)

    Wawrzyniak, Vincent; Piégay, Hervé; Allemand, Pascal; Vaudor, Lise; Goma, Régis; Grandjean, Philippe


    Temperature is a key factor for river ecosystems. In summer, patches of cold water are formed in the river by groundwater seepage. These patches have strong ecological significance and extend to the surface water in a well-mixed riverine system. These patches can serve as thermal refuges for some fish species during summer. In this study, the temporal variability and spatial distribution of cold water patches were explored along a 50 km river reach (the lower Ain River, France) using thermal infrared airborne remote sensing. This study examines a new range of processes acting on cold water patches at different scales that have not previously been touched upon in the literature. Three airborne campaigns were conducted during the summers of 2010, 2011 and 2014. Based on these images, a large number of cold water patches were identified using an automated method. Four types of patches were observed: tributary plumes, cold side channels (former channels or point-bar backwater channels), side seeps (located directly in the river channel) and gravel bar seeps (occurring at the downstream end of gravel bars). Logistic regression was used to analyse the longitudinal distribution of cold water patches according to geomorphologic indicators reflecting current or past fluvial process. Side seeps were found to be related to the local geology. Cold side channels were correlated to contemporary and past lateral river mobility. Gravel bar seeps were related to the current development of bars and are more prevalent in wandering reaches than in single-bed incised and paved reaches. The logistic model was subsequently used to evaluate gravel bar seep variability in the past. The model suggests larger numbers of seeps in the mid-20th century when bar surface area was higher. Interannual variability in the occurrence and spatial extent of side seeps and gravel bar seeps appear to be related to groundwater level fluctuations. Cold side channels exhibited greater interannual stability

  10. Detailed balance efficiency limits with quasi-Fermi level variations

    Energy Technology Data Exchange (ETDEWEB)

    Bremner, S.P.; Corkish, R.; Honsberg, C.B.


    A central assumption in detailed balance efficiency limit calculations has been that the light generated carriers are collected by drift transport processes and have an infinite mobility, giving rise to constant quasi-Fermi levels (QFL's) across the solar cell. However, recent experimental and theoretical results for quantum well (QW) devices indicate that the QFL's need not be constant across the device. It is shown in this paper that transport mechanisms which cause a variation in the difference between the electron and hole QFL's give an increase in the limiting efficiency compared to previous detailed balance calculations. Further, QW solar cells which employ hot carrier transport across a well will have an efficiency limit in excess of a tandem solar cell while using the same number of semiconductor materials.

  11. Long-period sea-level variations in the Mediterranean (United States)

    Zerbini, Susanna; Raicich, Fabio; Bruni, Sara; del Conte, Sara; Errico, Maddalena; Prati, Claudio; Santi, Efisio


    Since the beginning of its long-lasting lifetime, the Wegener initiative has devoted careful consideration to studying sea-level variations/changes across the Mediterranean Sea. Our study focuses on several long-period sea-level time series (from end of 1800 to 2012) acquired in the Mediterranean by tide gauge stations. In general, the analysis and interpretation of these data sets can provide an important contribution to research on climate change and its impacts. We have analyzed the centennial sea-level time series of six fairly well documented tide gauges. They are: Marseille, in France, Alicante in Spain, Genoa, Trieste, Venice and Marina di Ravenna (formerly Porto Corsini), in Italy. The data of the Italian stations of Marina di Ravenna and Venice clearly indicate that land subsidence is responsible for most of the observed rate of relative sea level rise. It is well known that, in the two areas, subsidence is caused by both natural processes and human activities. For these two stations, using levelling data of benchmarks at, and/or close to, the tide gauges, and for the recent years, also GPS and InSAR height time series, modelling of the long-period non-linear behavior of subsidence was successfully accomplished. After removing the land vertical motions, the estimate of the linear long-period sea-level rise at all six stations yielded remarkably consistent values, between +1,2 and +1,3 mm/yr, with associated errors ranging from ±0,2 to ±0,3 mm/yr (95% confidence interval), which also account for the statistical autocorrelation of the time series. These trends in the Mediterranean area are lower than the global mean rate of 1,7±0,2 mm/yr (1901-2010) presented by the IPCC in its 5th Assessment Report; however, they are in full agreement with a global mean sea-level rise estimate, over the period 1901-1990, recently published by Hay et al. (2015, doi:10.1038/nature14093) and obtained using probabilistic techniques that combine sea-level records with physics

  12. GIS-based assessment of groundwater level on extensive karst areas (United States)

    Kopecskó, Zsanett; Józsa, Edina


    Karst topographies represent unique geographical regions containing caves and extensive underground water systems developed especially on soluble rocks such as limestone, marble and gypsum. The significance of these areas is evident considering that 12% of the ice-free continental area consists of landscapes developed on carbonate rocks and 20-25% of the global population depends mostly on groundwater obtained from these systems. Karst water reservoirs already give the 25% of the freshwater resources globally. Comprehensive studies considering these regions are the key to explore chances of the exploitation and to analyze the consequences of contamination, anthropogenic effects and natural processes within these specific hydro-geological characteristics. For the proposed work we chose several of the largest karst regions over the ice-free part of continents, representing diverse climatic and topographic characteristics. An important aspect of the study is that there are no available in situ hydrologic measurements over the entire research area that would provide discrete sampling of soil, ground and surface water. As replacement for the detailed surveys, multi remote sensing data (Gravity Recovery and Climate Experiment (GRACE) satellite derivatives products, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products and Tropical Rainfall Measuring Mission (TRMM) monthly rainfalls satellite datasets) are used along with model reanalysis data (Global Precipitation Climate Center data (GPCC) and Global Land Data Assimilation System (GLDAS)) to study the variation on extensive karst areas in response to the changing climate and anthropogenic effects. The analyses are carried out within open source software environment to enable sharing of the proposed algorithm. The GRASS GIS geoinformatic software and the R statistical program proved to be adequate choice to collect and analyze the above mentioned datasets by taking advantage of their interoperability

  13. Microbial Community-Level Physiological Profiles (CLPP) and herbicide mineralization potential in groundwater affected by agricultural land use (United States)

    Janniche, Gry Sander; Spliid, Henrik; Albrechtsen, Hans-Jørgen


    Diffuse groundwater pollution from agricultural land use may impact the microbial groundwater community, which was investigated as Community-Level Physiological Profiles (CLPP) using EcoPlate™. Water was sampled from seven piezometers and a spring in a small agricultural catchment with diffuse herbicide and nitrate pollution. Based on the Shannon-Wiener and Simpson's diversity indices the diversity in the microbial communities was high. The response from the EcoPlates™ showed which substrates support groundwater bacteria, and all 31 carbon sources were utilized by organisms from at least one water sample. However, only nine carbon sources were utilized by all water samples: D-Mannitol, N-acetyl-D-glucosamine, putrescine, D-galacturonic acid, itaconic acid, 4-hydroxy benzoic acid, tween 40, tween 80, and L-asparagine. In all water samples the microorganisms preferred D-mannitol, D-galacturonic acid, tween 40, and 4-hydroxy benzoic acid as substrates, whereas none preferred 2-hydroxy benzoic acid, α-D-lactose, D,L-α-glycerol phosphate, α-ketobutyric acid, L-threonine and glycyl-L-glutamic acid. Principal Component Analysis of the CLPP's clustered the most agriculturally affected groundwater samples, indicating that the agricultural land use affects the groundwater microbial communities. Furthermore, the ability to mineralize atrazine and isoproturon, which have been used in the catchment, was also associated with this cluster.

  14. Cosmic ray charged component variations at sea level (United States)

    Charakhchyan, T. N.; Okhlopkov, V. P.; Krasotkin, A. F.; Svirzhevskij, N. S.; Charakhchyan, L. A.

    Results of measuring the cosmic ray charged component using devices installed at the Olen'ya station (the Murmansk region), in Dolgoprudny town (the Moscow region), and in Mirny (Antarctic continent) are investigated. The analysis has shown that apart from solar origin and seasonal variations there are annual variations of cosmic ray charged component. By results of comparing annual variations of the charged component on the Earth surface to data of neutron and muon components a conclusion is made that annual variations of the charge component on the Earth surface appear to be a manifestation of cosmic ray zonal modulation and are not connected with variations of galactic cosmic rays.

  15. Development of a model to simulate groundwater inundation induced by sea-level rise and high tides in Honolulu, Hawaii. (United States)

    Habel, Shellie; Fletcher, Charles H; Rotzoll, Kolja; El-Kadi, Aly I


    Many of the world's largest cities face risk of sea-level rise (SLR) induced flooding owing to their limited elevations and proximities to the coastline. Within this century, global mean sea level is expected to reach magnitudes that will exceed the ground elevation of some built infrastructure. The concurrent rise of coastal groundwater will produce additional sources of inundation resulting from narrowing and loss of the vertical unsaturated subsurface space. This has implications for the dense network of buried and low-lying infrastructure that exists across urban coastal zones. Here, we describe a modeling approach that simulates narrowing of the unsaturated space and groundwater inundation (GWI) generated by SLR-induced lifting of coastal groundwater. The methodology combines terrain modeling, groundwater monitoring, estimation of tidal influence, and numerical groundwater-flow modeling to simulate future flood scenarios considering user-specified tide stages and magnitudes of SLR. We illustrate the value of the methodology by applying it to the heavily urbanized and low-lying Waikiki area of Honolulu, Hawaii. Results indicate that SLR of nearly 1 m generates GWI across 23% of the 13 km2 study area, threatening $5 billion of taxable real estate and 48 km of roadway. Analysis of current conditions reveals that 86% of 259 active cesspool sites in the study area are likely inundated. This suggests that cesspool effluent is currently entering coastal groundwater, which not only leads to degradation of coastal environments, but also presents a future threat to public health as GWI would introduce effluent at the ground surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Evaluation of the seasonal variation on the geochemical parameters and quality assessment of the groundwater in the proximity of River Cooum, Chennai, India. (United States)

    Giridharan, L; Venugopal, T; Jayaprakash, M


    The seasonal variations of the chemical budget of ions were determined from the hydrochemical investigation of the groundwater. Though the effect of monsoon does not change the order of abundance of cations, but it does change the concentration of various ions and it is found that there was a considerable change in the case of all major ions. The unique characteristic of the ground water is the linear relationship among the principal ions. Hydrochemical characteristics of ions in the groundwater were studied using 1:1 equiline diagrams. The nature of the water samples were determined using the piper diagram. The correlation studies and R-mode factor analysis were carried out on the various groundwater parameters. The study of factor scores reveals the extent of influence of each factors on the overall water chemistry at each sampling stations. The trace metal concentration in the water was determined. The quality of the groundwater in the study area has been assessed using Percent sodium, SAR and Wilcox diagrams. The groundwater results of the premonsoon shows the dominance of excessive evaporation, silicate weathering and anthropogenic activities whereas in postmonsoon, dilution predominates over that of other factors.

  17. Diversity, variation and fairness: Equivalence in national level language assessments

    Directory of Open Access Journals (Sweden)

    Albert Weideman


    Full Text Available The post-1994 South African constitution proudly affirms the language diversity of the country, as do subsequent laws, while ministerial policies, both at further and higher education level, similarly promote the use of all 11 official languages in education. However, such recognition of diversity presents several challenges to accommodate potential variation. In language education at secondary school, which is nationally assessed, the variety being promoted immediately raises issues of fairness and equivalence. The final high-stakes examination of learners’ ability in home language at the exit level of their pre-tertiary education is currently contentious in South Africa. It is known, for example, that in certain indigenous languages, the exit level assessments barely discriminate among learners with different abilities, while in other languages they do. For that reason, the Council for Quality Assurance in General and Further Education, Umalusi, has commissioned several reports to attempt to understand the nature of the problem. This article will deal with a discussion of a fourth attempt by Umalusi to solve the problem. That attempt, undertaken by a consortium of four universities, has already delivered six interim reports to this statutory body, and the article will consider some of their content and methodology. In their reconceptualisation of the problem, the applied linguists involved first sought to identify the theoretical roots of the current curriculum in order to articulate more sharply the construct being assessed. That provides the basis for a theoretical justification of the several solutions being proposed, as well as for the preliminary designs of modifications to current, and the introduction of new assessments. The impact of equivalence of measurement as a design requirement will be specifically discussed, with reference to the empirical analyses of results of a number of pilots of equivalent tests in different languages.

  18. Using Hydrologic Data from Africa in a Senior-Level Course in Groundwater Hydrology (Invited) (United States)

    Silliman, S. E.


    Ongoing research efforts in Benin, West Africa, and Uganda, East Africa, have provided substantial data sets involving groundwater quality, applied geophysics, water use, and response of local populations / government agencies to challenges related to water development, protection and management. Ranging from characterization of coastal salt-water encroachment to a major well field to nitrate and microbial contamination of rural water supplies, these data sets were developed by interdisciplinary / international teams that included both undergraduate and graduate students. The present discussion focuses on the integration of the resulting data sets into a senior-level (and lower-level graduate student) course in Groundwater Hydrology. The data sets are employed in multiple ways, including: (i) support of concepts introduced during lectures, (ii) problem sets involving analysis of the data, and (iii) foundation material for open-ended discussions on comparative water resource strategies in developed and developing countries. Most significant in terms of the use of these data sets to advance educational opportunities, the African case studies have been integrated into semester-long projects completed by teams of students as a significant component of their final grade as well as one of their engineering design experiences used to fulfill ABET requirements. During the 2009-2010 academic year, these data sets (as well as published data bases by other agencies) were used by individual groups to design water development strategies for rural villages. During the present semester, two teams of students are pursuing long-term sustainability analyses, the first focused on an aquifer system in northern Indiana (USA) and the second focused on a coastal aquifer system serving Cotonou, Benin. The goal of pursuing these parallel projects is to illustrate to the students the similarities and differences involved in water resource management / protection in different parts of the

  19. Identification of temporal and small-scale spatial variations of phosphate concentration in the near-shore groundwater of an oligotrophic lake (United States)

    Pöschke, Franziska; Schlichting, Hendrik; Lewandowski, Jörg


    Lake Stechlin is one of the last oligotrophic lakes in the German North-Eastern Lake District. In recent years there was some worry over a small but continuous increase of phosphate concentrations in the open water body. The reasons remain unclear. Since the lake obtains its water only from groundwater and precipitation there is the assumption that the former can be a significant source of phosphate inputs into the lake. In the present study, three different groundwater sampling settings on different scales in time and space were used to investigate the phosphate concentration in the near-shore groundwater. A multi-level sampling grid of twelve samplers and 60 sampling ports was installed to study the temporal small-scale fluctuations of P concentration in the groundwater and the interstitial water. Furthermore, a one-time sampling campaign of shallow near-shore groundwater was conducted every 500 m along the lake shore. Additionally, nests of permanent groundwater wells were sampled monthly for one year to identify concentration patterns in the deeper aquifer. The results indicate a large spatial and small temporal heterogeneity of P concentrations. The range of P concentration is catchment belongs since 1938 to a natural protected area other anthropogenic impacts are quite unlikely. Hence, the main source for phosphate is probably the decomposition of naturally present organic material under anaerobic and warm conditions.

  20. Process-based modelling to evaluate simulated groundwater levels and frequencies in a Chalk catchment in south-western England

    Directory of Open Access Journals (Sweden)

    S. Brenner


    Full Text Available Chalk aquifers are an important source of drinking water in the UK. Due to their properties, they are particularly vulnerable to groundwater-related hazards like floods and droughts. Understanding and predicting groundwater levels is therefore important for effective and safe water management. Chalk is known for its high porosity and, due to its dissolvability, exposed to karstification and strong subsurface heterogeneity. To cope with the karstic heterogeneity and limited data availability, specialised modelling approaches are required that balance model complexity and data availability. In this study, we present a novel approach to evaluate simulated groundwater level frequencies derived from a semi-distributed karst model that represents subsurface heterogeneity by distribution functions. Simulated groundwater storages are transferred into groundwater levels using evidence from different observations wells. Using a percentile approach we can assess the number of days exceeding or falling below selected groundwater level percentiles. Firstly, we evaluate the performance of the model when simulating groundwater level time series using a spilt sample test and parameter identifiability analysis. Secondly, we apply a split sample test to the simulated groundwater level percentiles to explore the performance in predicting groundwater level exceedances. We show that the model provides robust simulations of discharge and groundwater levels at three observation wells at a test site in a chalk-dominated catchment in south-western England. The second split sample test also indicates that the percentile approach is able to reliably predict groundwater level exceedances across all considered timescales up to their 75th percentile. However, when looking at the 90th percentile, it only provides acceptable predictions for long time periods and it fails when the 95th percentile of groundwater exceedance levels is considered. By modifying the historic

  1. Interim Status Groundwater Monitoring Plan for Low-Level Waste Management Areas 1 to 4, RCRA Facilities, Hanford,Washington

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P Evan


    This document describes the monitoring plan to meet the requirements for interim status groundwater monitoring at Hanford Site low-level waste burial grounds as specified by 40 CFR 265, incorporated by reference in WAC 173-303-400. The monitoring will take place at four separate low-level waste management areas in the 200-West and 200-East Areas, in the central part of the site. This plan replaces the previous monitoring plan.

  2. Plant traits in response to raising groundwater levels in wetland restoration: evidence from three case studies.

    NARCIS (Netherlands)

    van Bodegom, P.M.; Grootjans, A.P.; Sorrell, B.K.; Bekker, R.M.; Bakker, C.; Ozinga, W.A.


    Question: Is raising groundwater tables successful as a wetland restoration strategy? Location: Kennemer dunes, The Netherlands; Moksloot dunes, The Netherlands and Bullock Creek fen, New Zealand. Methods: Generalizations were made by analysing soil dynamics and the responsiveness of integrative

  3. Monthly Variations in Sea Level at the Island of Zanzibar | Mahongo ...

    African Journals Online (AJOL)

    Monthly Variations in Sea Level at the Island of Zanzibar. ... Meteorological and tide gauge data were used to analyze correlations between climatic parameters and variations in mean sea level at Zanzibar for the period 1985-2004. ... Keywords: Zanzibar, sea level variations, climate, spectral analysis, multiple regression.

  4. Effects of decreased ground-water withdrawal on ground-water levels and chloride concentrations in Camden County, Georgia, and ground-water levels in Nassau County, Florida, from September 2001 to May 2003 (United States)

    Peck, Michael F.; McFadden, Keith W.; Leeth, David C.


    During October 2002, the Durango Paper Company formerly Gillman Paper Company) in St. Marys, Georgia, shut down paper-mill operations; the shutdown resulted in decreased ground-water withdrawal in Camden County by 35.6 million gallons per day. The decrease in withdrawal resulted in water-level rise in wells completed in the Floridan aquifer system and the overlying surficial and Brunswick aquifer systems; many wells in the St. Marys area flowed for the first time since the mill began operations during 1941. Pumping at the mill resulted in the development of a cone of depression that coalesced with a larger adjacent cone of depression at Fernandina Beach, Florida. Since closure of the mill, the cone at St. Marys is no longer present, although the cone still exists at Fernandina Beach, Florida. Historical water-level data from the production wells at the mill indicate that the pumping water level ranged from 68 to 235 feet (ft) below North American Vertical Datum of 1988 (NAVD 88) and averaged about 114 ft when the mill was operating. Since the shutdown, it is estimated that water levels at the mill have risen about 140 ft and are now at about 30 ft above NAVD 88. The water-level rise in wells in outlying areas in Camden County was less pronounced and ranged from about 5 to 10 ft above NAVD 88. Because of the regional upward water-level trend in the Upper Floridan aquifer that started during 19992000 in most of the coastal area, combined with a steeper upward trend beginning during October 2002, it was not possible to determine if the 510 ft rise in water levels in wells away from St. Marys was due to the mill closure. In addition to water-level rise of 2226 ft in the Floridan aquifer system, water-level rises in the overlying surficial and Brunswick aquifer systems at St. Marys after the shutdown indicate upward leakage of water. Water levels had stabilized in the confined surficial and Upper and Lower Floridan aquifers by AprilMay 2003; however, the water level in

  5. Comparison of specific-yield estimates for calculating evapotranspiration from diurnal groundwater-level fluctuations (United States)

    Gribovszki, Zoltán


    Methods that use diurnal groundwater-level fluctuations are commonly used for shallow water-table environments to estimate evapotranspiration (ET) and recharge. The key element needed to obtain reliable estimates is the specific yield (Sy), a soil-water storage parameter that depends on unsaturated soil-moisture and water-table fluxes, among others. Soil-moisture profile measurement down to the water table, along with water-table-depth measurements, can provide a good opportunity to calculate Sy values even on a sub-daily scale. These values were compared with Sy estimates derived by traditional techniques, and it was found that slug-test-based Sy values gave the most similar results in a sandy soil environment. Therefore, slug-test methods, which are relatively cheap and require little time, were most suited to estimate Sy using diurnal fluctuations. The reason for this is that the timeframe of the slug-test measurement is very similar to the dynamic of the diurnal signal. The dynamic characteristic of Sy was also analyzed on a sub-daily scale (depending mostly on the speed of drainage from the soil profile) and a remarkable difference was found in Sy with respect to the rate of change of the water table. When comparing constant and sub-daily (dynamic) Sy values for ET estimation, the sub-daily Sy application yielded higher correlation, but only a slightly smaller deviation from the control ET method, compared with the usage of constant Sy.

  6. Seasonal groundwater turnover


    Nordell, Bo; Engström, Maria


      Seasonal air temperature variations and corresponding changes in groundwater temperature cause convective movements in groundwater similar to the seasonal turnover in lakes. Numerical simulations were performed to investigate the natural conditions for thermally driven groundwater convection to take place. Thermally driven convection could be triggered by a horizontal groundwater flow, Convection then starts at a considerably lower Rayleigh number (Ra) than the general critical Rayleigh ...

  7. Sea-level rise and coastal groundwater inundation and shoaling at select sites in California, USA

    Directory of Open Access Journals (Sweden)

    Daniel J. Hoover


    New hydrological insights for the region: SLR impacts are a serious concern in coastal California which has a long (∼1800 km and populous coastline. Information on the possible importance of SLR-driven groundwater inundation in California is limited. In this study, the potential for SLR-driven groundwater inundation at three sites (Arcata, Stinson Beach, and Malibu Lagoon was investigated under 1 m and 2 m SLR scenarios. These sites provide insight into the vulnerability of Northern California coastal plains, coastal developments built on beach sand or sand spits, and developed areas around coastal lagoons associated with seasonal streams and berms. Northern California coastal plains with abundant shallow groundwater likely will see significant and widespread groundwater emergence, while impacts along the much drier central and southern California coast may be less severe due to the absence of shallow groundwater in many areas. Vulnerability analysis is hampered by the lack of data on shallow coastal aquifers, which commonly are not studied because they are not suitable for domestic or agricultural use. Shallow saline aquifers may be present in many areas along coastal California, which would dramatically increase vulnerability to SLR-driven groundwater emergence and shoaling. Improved understanding of the extent and response of California coastal aquifers to SLR will help in preparing for mitigation and adaptation.

  8. The response of fluid-saturated reservoirs to lunisolar tides: Part 1. Background parameters of tidal components in ground displacements and groundwater level (United States)

    Besedina, A. N.; Vinogradov, E. A.; Gorbunova, E. M.; Kabychenko, N. V.; Svintsov, I. S.; Pigulevskiy, P. I.; Svistun, V. K.; Shcherbina, S. V.


    The first part of this work is dedicated to the response of different-age structures to lunisolar tides, which can be considered as a sounding signal for monitoring the state of fluid-saturated reservoirs. The complex approach to processing the data obtained at the testing sites of the Institute of Geosphere Dynamics of the Russian Academy of Sciences, Institute of Geophysics of the National Academy of Sciences of Ukraine, and KIEV station of the IRIS seismic network is applied for recognizing the tides against the hydrogeological, barometric, and seismic series. The comparative analysis of the experimental and theoretical values of the diurnal and semidiurnal tidal components in the time series of ground displacements is carried out. The tidal variations in the groundwater level are compared with the tidal components revealed in the ground displacement of the different-age structure of the Moscow Basin and Ukrainian Shield, which are parts of the East European artesian region. The differences in the tidal responses of the groundwater level and ground displacement probably suggest that the state of the massif is affected by certain additional factors associated, e.g., with the passage of earthquake-induced seismic waves and the changes in the hydrogeodynamic environment.

  9. Simulation and assessment of groundwater flow and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2003 through 2013: Chapter B of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015 (United States)

    Jones, Perry M.; Roth, Jason L.; Trost, Jared J.; Christenson, Catherine A.; Diekoff, Aliesha L.; Erickson, Melinda L.


    Water levels during 2003 through 2013 were less than mean water levels for the period 1925–2013 for several lakes in the northeast Twin Cities Metropolitan Area in Minnesota. Previous periods of low lake-water levels generally were correlated with periods with less than mean precipitation. Increases in groundwater withdrawals and land-use changes have brought into question whether or not recent (2003–13) lake-water-level declines are solely caused by decreases in precipitation. A thorough understanding of groundwater and surface-water exchanges was needed to assess the effect of water-management decisions on lake-water levels. To address this need, the U.S. Geological Survey, in cooperation with the Metropolitan Council and the Minnesota Department of Health, developed and calibrated a three-dimensional, steady-state groundwater-flow model representing 2003–13 mean hydrologic conditions to assess groundwater and lake-water exchanges, and the effects of groundwater withdrawals and precipitation on water levels of 96 lakes in the northeast Twin Cities Metropolitan Area.Lake-water budgets for the calibrated groundwater-flow model indicated that groundwater is flowing into lakes in the northeast Twin Cities Metropolitan Area and lakes are providing water to underlying aquifers. Lake-water outflow to the simulated groundwater system was a major outflow component for Big Marine Lake, Lake Elmo, Snail Lake, and White Bear Lake, accounting for 45 to 64 percent of the total outflows from the lakes. Evaporation and transpiration from the lake surface ranged from 19 to 52 percent of the total outflow from the four lakes. Groundwater withdrawals and precipitation were varied from the 2003‒13 mean values used in the calibrated model (30-percent changes in groundwater withdrawals and 5-percent changes in precipitation) for hypothetical scenarios to assess the effects of groundwater withdrawals and precipitation on water budgets and levels in Big Marine Lake, Snail Lake

  10. Groundwater level and specific conductance monitoring at Marine Corps Base, Camp Lejeune, Onslow County, North Carolina, 2007-2008 (United States)

    McSwain, Kristen Bukowski


    The U.S. Geological Survey, in cooperation with the Marine Corps Base, Camp Lejeune, monitored water-resources conditions in the surficial, Castle Hayne, Peedee, and Black Creek aquifers in Onslow County, North Carolina, from November 2007 through September 2008. To comply with North Carolina Central Coastal Plain Capacity Use Area regulations, large-volume water suppliers in Onslow County must reduce their dependency on the Black Creek aquifer as a water-supply source and have, instead, proposed using the Castle Hayne aquifer as an alternative water-supply source. The Marine Corps Base, Camp Lejeune, uses water obtained from the unregulated surficial and Castle Hayne aquifers for drinking-water supply. Water-level data were collected and field measurements of physical properties were made at 19 wells at 8 locations spanning the Marine Corps Base, Camp Lejeune. These wells were instrumented with near real-time monitoring equipment to collect hourly measurements of water level. Additionally, specific conductance and water temperature were measured hourly in 16 of the 19 wells. Graphs are presented relating altitude of groundwater level to water temperature and specific conductance measurements collected during the study, and the relative vertical gradients between aquifers are discussed. The period-of-record normal (25th to 75th percentile) monthly mean groundwater levels at two well clusters were compared to median monthly mean groundwater levels at these same well clusters for 2008 to determine groundwater-resources conditions. In 2008, water levels were below normal in the 3 wells at one of the well clusters and were normal in 4 wells at the other cluster.

  11. Spatial and temporal variation of groundwater quality and its suitability for irrigation and drinking purpose using GIS and WQI in an urban fringe (United States)

    Dhanasekarapandian, M.; Chandran, S.; Devi, D. Saranya; Kumar, V.


    This study is aimed at evaluating the groundwater quality within the urban reach of Gridhumal river sub-basin. 29 groundwater samples were collected with different categorization during post-monsoon (POM) and summer (SUM) seasons respectively. Various physical and chemical parameters viz., pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Total Hardness (TH), Total Alkalinity, cations such as, Ca2+, Mg2+, Na+, anions such as NO3-, SO42-, F-, Cl- were analyzed and were compared with the standard guidelines recommended by WHO, ICMR, BIS. GIS techniques were used to find out the distribution of groundwater quality on land use pattern. Results indicated that the EC, TDS, TH, Na+, Cl-, NO3- level in groundwater samples was above critical limits, and it was found to be very high in wastewater irrigated areas in the urban reach of Gridhumal river sub-basin. Geochemical analysis of groundwater samples shows the predominance of Na-Cl and NaHCO3 types. The geochemical data was interpreted using WQI for drinking water quality and were found not suitable for drinking purposes. With Wilcox diagram, only 30% and 21% groundwater samples show suitability for irrigation for post monsoon and summer season. The US Salinity Laboratory Staff plot depicted that all the post monsoon groundwater sources are C3-S3, C4-S4 type and C4-S4 for the summer season. 17% samples show C3-S1 type for both the season. From the HC analysis in the groundwater samples have been classified into two groups, one is ionic and another metals group. PCA results revealed the existence of seven significant principal components indicating how processes like rock-water interaction and anthropogenic activities influence groundwater quality. Seven factors which together explain 83.33% and 77.85% of the total variance in the post monsoon and summer season respectively. In comparing heavy metal contents present in water samples with BIS/WHO standards, Pb, Cr and Cd concentrations were found to be present

  12. Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models. (United States)

    Barzegar, Rahim; Fijani, Elham; Asghari Moghaddam, Asghar; Tziritis, Evangelos


    Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and to combine different wavelet based models for forecasting the GWL for one, two and three months step-ahead in the Maragheh-Bonab plain, NW Iran, as a case study. The research used totally 367 monthly GWLs (m) datasets (Sep 1985-Mar 2016) which were split into two subsets; the first 312 datasets (85% of total) were used for model development (training) and the remaining 55 ones (15% of total) for model evaluation (testing). The stepwise selection was used to select appropriate lag times as the inputs of the proposed models. The performance criteria such as coefficient of determination (R2), root mean square error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSC) were used for assessing the efficiency of the models. The results indicated that the ELM models outperformed GMDH models. To construct the hybrid wavelet based models, the inputs and outputs were decomposed into sub-time series employing different maximal overlap discrete wavelet transform (MODWT) functions, namely Daubechies, Symlet, Haar and Dmeyer of different orders at level two. Subsequently, these sub-time series were served in the GMDH and ELM models as an input dataset to forecast the multi-step-ahead GWL. The wavelet based models improved the performances of GMDH and ELM models for multi-step-ahead GWL forecasting. To combine the advantages of different wavelets, a least squares boosting (LSBoost) algorithm was applied. The use of the boosting multi-WA-neural network models provided the best performances for GWL forecasts in comparison with single WA-neural network-based models. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Assessment of fluoride level in groundwater and prevalence of dental fluorosis in Didwana block of Nagaur district, Central Rajasthan, India. (United States)

    Arif, M; Husain, I; Hussain, J; Kumar, S


    In India, for the high concentration of fluoride in groundwater, people are at risk of dental fluorosis. The problem is common in various states of India. The condition in Rajasthan is worse where all districts have such a problem. To study the fluoride concentration in groundwater and prevalence of dental fluorosis in Didwana block of Nagaur district, Central Rajasthan, India. The fluoride concentration in water of 54 villages was measured electrochemically, using fluoride ion selective electrode. Dental fluorosis was assessed in 1136 people residing in study area by Dean's classification for dental fluorosis. The fluoride concentration in groundwater in studied sites ranged from 0.5 to 8.5 mg/L. The concentration of fluoride was more than the maximum permissible limit set by WHO and Bureau of Indian Standards (1 mg/L) in 48 groundwater sources. Of 1136 people studied, 788 (69.4%; 95% CI: 66.7%-72.1%) had dental fluoros---252 had mild and 74 had severe dental fluorosis. High level of fluoride in drinking water of Didwana block of Nagaur district, Central Rajasthan, India, causes dental fluorosis in most people in the region and is an important health problem that needs prompt attention.

  14. Assessment of Fluoride Level in Groundwater and Prevalence of Dental Fluorosis in Didwana Block of Nagaur District, Central Rajasthan, India

    Directory of Open Access Journals (Sweden)

    M Arif


    Full Text Available Background: In India, for the high concentration of fluoride in groundwater, people are at risk of dental fluorosis. The problem is common in various states of India. The condition in Rajasthan is worse where all districts have such a problem. Objective: To study the fluoride concentration in groundwater and prevalence of dental fluorosis in Didwana block of Nagaur district, Central Rajasthan, India. Methods: The fluoride concentration in water of 54 villages was measured electrochemically, using fluoride ion selective electrode. Dental fluorosis was assessed in 1136 people residing in study area by Dean's classification for dental fluorosis. Results: The fluoride concentration in groundwater in studied sites ranged from 0.5 to 8.5 mg/L. The concentration of fluoride was more than the maximum permissible limit set by WHO and Bureau of Indian Standards (1 mg/L in 48 groundwater sources. Of 1136 people studied, 788 (69.4%; 95% CI: 66.7%–72.1% had dental fluorosis—252 had mild and 74 had severe dental fluorosis. Conclusion: High level of fluoride in drinking water of Didwana block of Nagaur district, Central Rajasthan, India, causes dental fluorosis in most people in the region and is an important health problem that needs prompt attention.

  15. Groundwater and Terrestrial Water Storage (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.


    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of

  16. Spatial analysis of groundwater levels using Fuzzy Logic and geostatistical tools (United States)

    Theodoridou, P. G.; Varouchakis, E. A.; Karatzas, G. P.


    The spatial variability evaluation of the water table of an aquifer provides useful information in water resources management plans. Geostatistical methods are often employed to map the free surface of an aquifer. In geostatistical analysis using Kriging techniques the selection of the optimal variogram is very important for the optimal method performance. This work compares three different criteria to assess the theoretical variogram that fits to the experimental one: the Least Squares Sum method, the Akaike Information Criterion and the Cressie's Indicator. Moreover, variable distance metrics such as the Euclidean, Minkowski, Manhattan, Canberra and Bray-Curtis are applied to calculate the distance between the observation and the prediction points, that affects both the variogram calculation and the Kriging estimator. A Fuzzy Logic System is then applied to define the appropriate neighbors for each estimation point used in the Kriging algorithm. The two criteria used during the Fuzzy Logic process are the distance between observation and estimation points and the groundwater level value at each observation point. The proposed techniques are applied to a data set of 250 hydraulic head measurements distributed over an alluvial aquifer. The analysis showed that the Power-law variogram model and Manhattan distance metric within ordinary kriging provide the best results when the comprehensive geostatistical analysis process is applied. On the other hand, the Fuzzy Logic approach leads to a Gaussian variogram model and significantly improves the estimation performance. The two different variogram models can be explained in terms of a fractional Brownian motion approach and of aquifer behavior at local scale. Finally, maps of hydraulic head spatial variability and of predictions uncertainty are constructed for the area with the two different approaches comparing their advantages and drawbacks.

  17. Superalloy microstructural variations induced by gravity level during directional solidification (United States)

    Johnston, M. H.; Curreri, P. A.; Parr, R. A.; Alter, W. S.


    The Ni-base superalloy MAR-M246 (Hf) was directionally solidified during low gravity maneuvers aboard a NASA KC-135 aircraft. Gravity force variations during this process yielded a concomitant variation in microstructure and microsegregation. Secondary dendrite arm spacings are noted to be larger in the low-g portion; this, in turn, decreases the extent of interdendritic segregation. The amount of Hf in both the carbides and interdendritic eutectic increases as the gravity force diminishes. Fewer carbides are present in the low-g regions.

  18. Spatiotemporal variation of the surface water effect on the groundwater recharge in a low-precipitation region: Application of the multi-tracer approach to the Taihang Mountains, North China (United States)

    Sakakibara, Koichi; Tsujimura, Maki; Song, Xianfang; Zhang, Jie


    Groundwater recharge variations in time and space are crucial for effective water management, especially in low-precipitation regions. To determine comprehensive groundwater recharge processes in a catchment with large seasonal hydrological variations, intensive field surveys were conducted in the Wangkuai Reservoir watershed located in the Taihang Mountains, North China, during three different times of the year: beginning of the rainy season (June 2011), mid-rainy season (August 2012), and dry season (November 2012). Oxygen and hydrogen isotope and chemical analyses were conducted on the groundwater, spring water, stream water, and reservoir water of the Wangkuai Reservoir watershed. The results were processed using endmember mixing analysis to determine the amount of contribution of the groundwater recharging processes. Similar isotopic and chemical signatures between the surface water and groundwater in the target area indicate that the surface water in the mountain-plain transitional area and the Wangkuai Reservoir are the principal groundwater recharge sources, which result from the highly permeable geological structure of the target area and perennial large-scale surface water, respectively. Additionally, the widespread and significant effect of the diffuse groundwater recharge on the Wangkuai Reservoir was confirmed with the deuterium (d) excess indicator and the high contribution throughout the year, calculated using endmember mixing analysis. Conversely, the contribution of the stream water to the groundwater recharge in the mountain-plain transitional area clearly decreases from the beginning of the rainy season to the mid-rainy season, whereas that of the precipitation increases. This suggests that the main groundwater recharge source shifts from stream water to episodic/continuous heavy precipitation in the mid-rainy season. In other words, the surface water and precipitation commonly affect the groundwater recharge in the rainy season, whereas the

  19. Interaction of Peat Soil and Sulphidic Material Substratum: Role of Peat Layer and Groundwater Level Fluctuations on Phosphorus Concentration

    Directory of Open Access Journals (Sweden)

    Benito Heru Purwanto


    Full Text Available Phosphorus (P often becomes limiting factor for plants growth. Phosphorus geochemistry in peatland soil is associated with the presence of peat layer and groundwater level fluctuations. The research was conducted to study the role of peat layer and groundwater level fluctuations on P concentration in peatland. The research was conducted on deep, moderate and shallow peat with sulphidic material as substratum, peaty acid sulphate soil, and potential acid sulphate soil. While P concentration was observed in wet season, in transition from wet to dry season, and in dry season. Soil samples were collected by using peat borer according to interlayer and soil horizon. The results showed that peat layer might act as the main source of P in peatland with sulphidic material substratum. The upper peat layer on sulphidic material caused by groundwater level fluctuations had no directly effect on P concentration in the peat layers. Increased of P concentration in the lowest sulphidic layer might relate to redox reaction of iron in the sulphidic layer and precipitation process. Phosphorus concentration in peatland with sulphidic material as substratum was not influenced by peat thickness. However, depletion or disappearance of peat layer decreased P concentration in soil solution. Disappearance of peat layer means loss of a natural source of P for peatland with sulphidic material as substratum, therefore peat layer must be kept in order to maintain of peatlands.

  20. Geographical variation and the determinants of domestic endotoxin levels in mattress dust in Europe

    NARCIS (Netherlands)

    Chen, C.M.; Thiering, E.; Doekes, G.|info:eu-repo/dai/nl/070079803; Zock, J.P.|info:eu-repo/dai/nl/095184309; Bakolis, I.; Norbäck, D.; Sunyer, J.; Villani, S.; Verlato, G.; Täubel, M.; Jarvis, D.


    Endotoxin exposures have manifold effects on human health. The geographical variation and determinants of domestic endotoxin levels in Europe have not yet been extensively described. To investigate the geographical variation and determinants of domestic endotoxin concentrations in mattress dust in

  1. Population-level analysis of gut microbiome variation

    NARCIS (Netherlands)

    Falony, Gwen; Joossens, Marie; Vieira-Silva, Sara; Wang, Jun; Darzi, Youssef; Faust, Karoline; Kurilshchikov, Aleksandr; Bonder, Marc Jan; Valles-Colomer, Mireia; Vandeputte, Doris; Tito, Raul Y.; Chaffron, Samuel; Rymenans, Leen; Verspecht, Chlo; De Sutter, Lise; Lima-Mendez, Gipsi; D'hoe, Kevin; Jonckheere, Karl; Homola, Daniel; Garcia, Roberto; Tigchelaar, Ettje F.; Eeckhaudt, Linda; Fu, Jingyuan; Henckaerts, Liesbet; Zhernakova, Alexandra; Wijmenga, Cisca; Raes, Jeroen


    Fecal microbiome variation in the average, healthy population has remained under-investigated. Here, we analyzed two independent, extensively phenotyped cohorts: the Belgian Flemish Gut Flora Project (FGFP; discovery cohort; N = 1106) and the Dutch LifeLines-DEEP study (LLDeep; replication; N =

  2. Diurnal variations of serum erythropoietin at sea level and altitude

    DEFF Research Database (Denmark)

    Klausen, T; Poulsen, T D; Fogh-Andersen, N


    This study tested the hypothesis that the diurnal variations of serum-erythropoietin concentration (serum-EPO) observed in normoxia also exist in hypoxia. The study also attempted to investigate the regulation of EPO production during sustained hypoxia. Nine subjects were investigated at sea leve...

  3. Simulated water-level responses, ground-water fluxes, and storage changes for recharge scenarios along Rillito Creek, Tucson, Arizona (United States)

    Hoffmann, John P.; Leake, Stanley A.


    A local ground-water flow model is used to simulate four recharge scenarios along Rillito Creek in northern Tucson to evaluate mitigating effects on ground-water deficits and water-level declines in Tucson's Central Well Field. The local model, which derives boundary conditions from a basin-scale model, spans the 12-mile reach of Rillito Creek and extends 9 miles south into the Central Well Field. Recharge scenarios along Rillito Creek range from 5,000 to 60,000 acre-feet per year and are simulated to begin in 2005 and extend through 2225 to estimate long-term changes in ground-water level, ground-water storage, ground-water flux, and evapotranspiration. The base case for comparison of simulated water levels and flows, referred to as scenario A, uses a long-term recharge rate of 5,000 acre-feet per year to 2225. Scenario B, which increases the recharge along Rillito Creek by 9,500 acre-feet per year, has simulated water-level rises beneath Rillito Creek that range from about 53 feet to 86 feet. Water-level rises within the Central Well Field range from about 60 feet to 80 feet. More than half of these rises occur by 2050, and more than 95 percent occur by 2188. Scenario C, which increases the recharge along Rillito Creek by 16,700 acre-feet per year relative to scenario A, has simulated water-level rises beneath Rillito Creek that range from about 71 feet to 102 feet. Water-level rises within the Central Well Field range from about 80 feet to 95 feet. More than half of the rises occur by 2036, and more than 95 percent occur by 2100. Scenario D, which initially increases the recharge rate by about 55,000 acre-feet per year relative to scenario A, resulted in simulated water levels that rise to land surface along Rillito Creek. This rise in water level resulted in rejected recharge. As the water table continued to rise, the area of stream-channel surface intersected by the water table increased causing continual decline in the recharge rate until a long-term recharge

  4. Influence of irrigation on the level, salinity and flow of groundwater at ...

    African Journals Online (AJOL)


    Mar 31, 2010 ... ISSN 1816-7950 (On-line) = Water SA Vol. ... Keywords: Drainage, irrigation and scheduling, soil water quality, water and salt balance ..... lines developed. The general groundwater flow direction is the same as that of the surface water towards the Harts River. The direction change at the south-west border ...

  5. Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables (United States)

    Varouchakis, E. A.; Hristopulos, D. T.


    This work aims to present new modeling tools that help to better monitor and predict the groundwater level in sparsely gauged basins. The working area is the Mires basin of Mesara valley in the island of Crete (Greece). Efficient groundwater management in the basin is crucial in light of regional climate change model estimates showing a substantial risk of desertification for Crete. We propose that the prediction of the hydraulic head spatial variability in Mires basin can be improved by incorporating in the trend the distance of the prediction points from a temporary river crossing the basin and a component based on the generalized Thiem's equation for multiple wells as well as using the flexible Spartan semivariogram family to perform Residual Kriging. Our proposal is supported by the results of cross validation analysis. Our results are applicable to other unconfined aquifers.

  6. Environmental Data Science: Discovering Hidden System of Spatiotemporal Groundwater (United States)

    Lee, C. H.; Yu, H. L.


    Groundwater has been well known as one of the major water resources in the regions with water scarcity problems. As the results of the increasing water shortage concerns around the world recently, it is essential to realize the spatial and temporal variation of groundwater levels for water resources management. In general, hydrological models have been developed to describe groundwater flow system across space and time. Since hydrological models are simplified and conceptual representations, both parameter and model uncertainties play important roles while constructing. The performance of hydrological models depends on the subjective of hydrologists due to the uncertainties. However, environmental data like groundwater level observations is abundant and prevalent nowadays. It provides an opportunity to enhance previous subjective modeling in hydrological research. The present study will conduct feature extraction on groundwater levels to identify the spatiotemporal characteristics of groundwater. A three-dimensional groundwater model (MODFLOW) is used to create artificial cases that make sure the results will conform to the physical laws. By tuning parameters in model, the extracted features can show natural and anthropogenic disturbances under different scenarios. The data-driven analysis can effectively reveal insights of interactions between important variables of groundwater system. With a better view of spatiotemporal groundwater variations, it is useful for governmental agency to manage water resources.

  7. Hydrogeology, groundwater levels, and generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system, 2010–14, in the northern Green River structural basin (United States)

    Bartos, Timothy T.; Hallberg, Laura L.; Eddy-Miller, Cheryl


    In cooperation with the Bureau of Land Management, groundwater levels in wells located in the northern Green River Basin in Wyoming, an area of ongoing energy development, were measured by the U.S. Geological Survey from 2010 to 2014. The wells were completed in the uppermost aquifers of the Green River Basin lower Tertiary aquifer system, which is a complex regional aquifer system that provides water to most wells in the area. Except for near perennial streams, groundwater-level altitudes in most aquifers generally decreased with increasing depth, indicating a general downward potential for groundwater movement in the study area. Drilled depth of the wells was observed as a useful indicator of depth to groundwater such that deeper wells typically had a greater depth to groundwater. Comparison of a subset of wells included in this study that had historical groundwater levels that were measured during the 1960s and 1970s and again between 2012 and 2014 indicated that, overall, most of the wells showed a net decline in groundwater levels.

  8. Geospatial Data Used in Water-Level and Land-Subsidence Studies in the Mojave River and Morongo Groundwater Basins for 2006 (United States)

    U.S. Geological Survey, Department of the Interior — During 2006, the U.S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and Morongo ground-water basins....

  9. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, P.J.; Wu, L.; Van Nostrand, J.D.; Schadt, C.W.; Watson, D.B.; Jardine, P.M.; Palumbo, A.V.; Hazen, T.C.; Zhou, J.


    To understand how contaminants affect microbial community diversity, heterogeneity, and functional structure, six groundwater monitoring wells from the Field Research Center of the U.S. Department of Energy Environmental Remediation Science Program (ERSP; Oak Ridge, TN), with a wide range of pH, nitrate, and heavy metal contamination were investigated. DNA from the groundwater community was analyzed with a functional gene array containing 2006 probes to detect genes involved in metal resistance, sulfate reduction, organic contaminant degradation, and carbon and nitrogen cycling. Microbial diversity decreased in relation to the contamination levels of the wells. Highly contaminated wells had lower gene diversity but greater signal intensity than the pristine well. The microbial composition was heterogeneous, with 17-70% overlap between different wells. Metal-resistant and metal-reducing microorganisms were detected in both contaminated and pristine wells, suggesting the potential for successful bioremediation of metal-contaminated groundwaters. In addition, results of Mantel tests and canonical correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p < 0.05) effect on microbial community structure. This study provides an overall picture of microbial community structure in contaminated environments with functional gene arrays by showing that diversity and heterogeneity can vary greatly in relation to contamination.

  10. Evaluation of the influence of mountain peat bogs restoration measures on the groundwater level: case study Rokytka peat bog, the Šumava Mts., Czech Republic

    Directory of Open Access Journals (Sweden)

    Tomáš Doležal


    Full Text Available The paper evaluates measures taken to restore mountain Peat Bogs and their effect on hydrological regime, with the main focus on groundwater levels. The level of groundwater is a key factor in maintaining the character of mountain Peat Bogs and the main objective of restoration is to increase and stabilize the groundwater level in disturbed Peat Bogs. At the same time, the paper provides a complex overview of the topic, which is being often discussed nowadays, mostly due to a big retention potential of mountain Peat Bogs. The paper is based on detailed measurements of groundwater levels in a selected experimental drainage ditch in the catchment of the Rokytka stream. Basic statistical characteristics, the equation of Penman-Montheit or antecedent precipitation index were used to show the dependence of groundwater level on precipitation or evapotranspiration. The results show a positive influence of the restoration measures on Peat Bogs. In this case it has been confirmed that restoration measures cause increase of groundwater level and decrease its fluctuation in the Peat Bog.

  11. Deepening Democracy: Explaining Variations in the Levels of Democracy (United States)


    neighbors adopted increased levels of democracy. Level of: M ex ic o Ph ili pp in es Se ne ga l Income High Medium Low Industrialization High Low...Informacion Estadistica Sector Salud y Seguridad Social, Cauderno No. 4, Mexico City: INEGI, 1985. 276 THIS PAGE INTENTIONALLY LEFT BLANK

  12. Levelling-out and register variation in the translations of ...

    African Journals Online (AJOL)

    Explicitation, simplification, normalisation and levelling-out, the four features of translation proposed by Baker (1996), have attracted considerable attention in translation studies. Although the first three have been studied extensively, levelling-out has been the subject of less empirical investigation. Furthermore, there are no ...

  13. Enhancing arsenic removal from groundwater at household level with naturally occurring iron

    Directory of Open Access Journals (Sweden)

    Anitha Kumari Sharma


    Full Text Available A supply of drinking water low in Arsenic (As prevents arsenic poisoning. The presence of high concentrations of iron (Fe in groundwater under the alluvial plains of the large rivers in Southeast Asia is a prerequisite for the simple removal of As. This study investigated the mechanisms and possibilities for enhancing As removal with naturally occurring Fe in a reliable, low cost and sustainable way. The results of the study show that As removal with Fe is greatly enhanced by the addition of an oxidizing agent (preferably KMnO4 immediately after the pumping of groundwater. Further enhancement of As removal in the presence of Fe can be achieved by adding a small volume of a concentrated basic solution of MnO4- and AlO2-, which has a combined oxidation, coagulation and buffering capacity. Best results were obtained when this solution was mixed with the groundwater immediately after its pumping until a pale pink color appeared. Maximum required reaction time was 10 minutes and subsequent filtration of the water was able to reduce the As concentration to near zero. Concentrations of MnO4- and AlO2- can be varied in the solution to achieve sufficient As removal to suit different Fe/As ratios and the presence of interfering co-occurring anions.

  14. [Study on the variation of arsenic concentration in groundwater and chemical characteristics of arsenic in sediment cores at the areas with endemic arsenic poison disease in Jianghan Plain]. (United States)

    Zhou, Suhua; Ye, Hengpeng; Li, Mingjian; Xiong, Peisheng; Du, Dongyun; Wang, Jingwen


    To understand the variation of arsenic concentration in underground water at the endemic arsenic poison disease area of Jianghan Plain so as to better understand the spatial distribution of high arsenic groundwater, hydro-chemical evolution and source of arsenic in this region. Thirty underground water samples were collected respectively around 3 km radius of the two houses where arsenic poisoning patients lived, in Xiantao and Honghu. Sediment cores of three drillings were collected as well. Both paired t-test or paired Wilcoxon Signed Ranking Test were used to compare the arsenic concentration of water. The arsenic concentration in 2011-2012 appeared lower than that in 2006-2007 at the Nanhong village of Xiantao (t = 4.645 3, P arsenic concentration and Cl, HCO3(-), Fe, Mn. However, negative correlations were found between As and SO4(2-), NO3(-). The range of arsenic content in the sediment was 1.500 mg/kg to 17.289 mg/kg. The maximum arsenic content existed in the soil layer, while the minimum arsenic content existed in the sand layer. The concentration of arsenic varied widely with time and space at endemic arsenic poison disease area of Jianghan Plain. Characteristics of these water chemicals showed significant differences, when compared to the groundwater from Datong Basin, Shanxi Shanyin and Hetao Plain of Inner Mongolia, which presented a typical environment with high arsenic contents in the groundwater. The arsenic content in the sediment samples seemed related to the lithologic structure.

  15. System-Level Analysis Modeling of Impacts of Operation Schemes of Geologic Carbon Dioxide Storage on Deep Groundwater and Carbon Dioxide Leakage Risk (United States)

    Park, S.; Lee, S.; Park, J.; Kim, J.; Kihm, J.


    The objectives of this study are to predict quantitatively groundwater and carbon dioxide flow in deep saline sandstone aquifers under various carbon dioxide injection schemes (injection rate, injection period) and to analyze integratively impacts of such carbon dioxide injection schemes on deep groundwater (brine) and carbon dioxide leakage risk through abandoned wells or faults. In order to achieve the first objective, a series of process-level prediction modeling of groundwater and carbon dioxide flow in a deep saline sandstone aquifer under several carbon dioxide injection schemes was performed using a multiphase thermo-hydrological numerical model TOUGH2 (Pruess et al., 1999). The prediction modeling results show that the extent of carbon dioxide plume is significantly affected by such carbon dioxide injection schemes. In order to achieve the second objective, a series of system-level analysis modeling of deep groundwater and carbon dioxide leakage risk through an abandoned well or a fault under several carbon dioxide injection schemes was then performed using a brine and carbon dioxide leakage risk analysis model CO2-LEAK (Kim, 2012). The analysis modeling results show that the rates and amounts of deep groundwater and carbon dioxide leakage through an abandoned well or a fault increase as the carbon dioxide injection rate increases. However, the rates and amounts of deep groundwater and carbon dioxide leakage through an abandoned well or a fault decrease as the carbon dioxide injection period increases. These system-level analysis modeling results for deep groundwater and carbon dioxide leakage risk can be utilized as baseline data for establishing guidelines to mitigate anticipated environmental adverse effects on shallower groundwater systems (aquifers) when deep groundwater and carbon dioxide leakage occur. This work was supported by the Geo-Advanced Innovative Action (GAIA) Program funded by the Korea Environmental Industry and Technology Institute

  16. Seasonal variations in groundwater upwelling zones in a Danish lowland stream analyzed using Distributed Temperature Sensing (DTS)

    DEFF Research Database (Denmark)

    Matheswaran, Karthikeyan; Blemmer, Morten; Rosbjerg, Dan


    The distribution of groundwater inflows in a stream reach plays a major role in controlling the stream temperature, a vital component shaping the riverine ecosystem. In this study, the Distributed Temperature Sensing (DTS) system was installed in a small Danish lowland stream, Elverdamsåen, to as...

  17. Genetic variation in 5-hydroxytryptamine transporter expression causes adaptive changes in 5-HT4 receptor levels

    DEFF Research Database (Denmark)

    Jennings, Katie Ann; Licht, Cecilie Löe; Bruce, Aynsley


    Genetic variation in 5-HT transporter (5-HTT) expression is a key risk factor for psychiatric disorder and has been linked to changes in the expression of certain 5-HT receptor subtypes. This study investigated the effect of variation in 5-HTT expression on 5-HT4 receptor levels in both 5-HTT......). Together, these findings suggest that variation in 5-HTT expression causes adaptive changes in 5-HT4 receptor levels which are directly linked to alterations in 5-HT availability....

  18. Toxic Levels of Some Heavy Metals in Drinking Groundwater in Dakahlyia Governorate, Egypt in the Year 2010

    Directory of Open Access Journals (Sweden)

    RA Mandour


    Full Text Available Fifty-four drinking groundwater samples were collected in April 2010 from some districts of the Dakahlyia governorate, Egypt. The water samples were analyzed by atomic absorption spectrophotometer for iron, manganese, lead, nickel, chromium, zinc, copper, cobalt and cadmium concentrations. All samples but two were found suitable for drinking; from the water sample from Aga district showed slightly higher levels of cadmium and nickel (Ikhtab and Feshbena than other areas; the concentrations were higher than the permissible limits of Egyptian Ministry of Health and World Health Organization.

  19. Variation in diosgenin level in seed kernels among different ...

    African Journals Online (AJOL)

    Its seed kernel is used for oil extraction and the oil is used for human consumption and cosmetics. However, the oil cake is regarded as unsuitable for feeding because of the presence of many toxic substances. In this study, a spectrophotometric determination of diosgenin level and subsequent oil percentage analyses were ...

  20. Long-Term Ground-Water Levels and Transmissivity in the Blackstone River Basin, Northern Rhode Island (United States)

    Eggleston, Jack R.; Church, Peter E.; Barbaro, Jeffrey R.


    Ground water provides about 7.7 million gallons per day, or 28 percent of total water use in the Rhode Island part of the Blackstone River Basin. Primary aquifers in the basin are stratified glacial deposits, composed mostly of sand and gravel along valley bottoms. The ground-water and surface-water system in the Blackstone River Basin is under stress due to population growth, out-of-basin water transfers, industrialization, and changing land-use patterns. Streamflow periodically drops below the Aquatic Base Flow standard, and ground-water withdrawals add to stress on aquatic habitat during low-flow periods. Existing hydrogeologic data were reviewed to examine historical water-level trends and to generate contour maps of water-table altitudes and transmissivity of the sand and gravel aquifer in the Blackstone River Basin in Rhode Island. On the basis of data from four long-term observation wells, water levels appear to have risen slightly in the study area during the past 55 years. Analysis of available data indicates that increased rainfall during the same period is a likely contributor to the water-level rise. Spatial patterns of transmissivity are shown over larger areas and have been refined on the basis of more detailed data coverage as compared to previous mapping studies.

  1. Speakers’ comfort and voice level variation in classrooms: Laboratory research

    DEFF Research Database (Denmark)

    Pelegrin Garcia, David; Brunskog, Jonas


    from 0.93 dB/dB, with free speech, to 0.1 dB/dB with other less demanding communication tasks as reading and talking at short distances. The room effect for some individuals can be as strong as 1.7 dB/dB. A questionnaire investigation showed that the acoustic comfort for talking in classrooms......Teachers adjust their voice levels under different classroom acoustics conditions, even in the absence of background noise. Laboratory experiments have been conducted in order to understand further this relationship and to determine optimum room acoustic conditions for speaking. Under simulated...

  2. Variations in hydrostratigraphy and groundwater quality between major geomorphic units of the Western Ganges Delta plain, SW Bangladesh (United States)

    Mahmud, Md. Ilias; Sultana, Sarmin; Hasan, M. Aziz; Ahmed, Kazi Matin


    Relationships among geomorphology, hydrostratigraphy, and groundwater quality with special emphasis on arsenic and salinity have been analyzed in the Bangladesh part of the Western Ganges Delta (WGD). On the basis of the presence of characteristic geomorphic features, the study area is divided into two geomorphic units: fluvial deltaic plain (FDP) and fluvio-tidal deltaic plain (FTDP). Lithostratigraphic sections demonstrate that FDP is composed predominately of sandy material whereas FTDP is characterized by alternation of sand and clay/silty clay material. Hydrostratigraphically, FDP is characterized as a single aquifer system, whereas FTDP is a complex multi-aquifer system. Spatial distributions of arsenic concentrations in groundwater reveal that elevated arsenic (>0.01 mg/l) occurs mostly in the FDP. Occurrences of high arsenic in deeper part of the aquifer system (>100 m) in the FDP, particularly in the south-western part, is probably due to the absence of any prominent impermeable layer between the shallow and deeper part of the aquifer system. Distributions of chloride concentrations show an increasing trend in groundwater salinity from north to south, i.e., from FDP to FTDP.

  3. Study of variation in groundwater quality in a coastal aquifer in north-eastern Tunisia using multivariate factor analysis

    KAUST Repository

    Charfi, Sihem


    This work focuses on the Grombalia aquifer which constitutes the main water resource in Northeast Tunisia, Cap Bon Peninsula. The recharge of this aquifer is ensured mainly by direct infiltration of rainwater through permeable layers. Under semi-arid climatic conditions and increasing water demand for irrigation, about 80% of the Grombalia aquifer system shows different vulnerabilities to anthropogenic activities. The total dissolved solids values range from 0.75 to 5.6g/l.Isotopic characterization with stable isotopes (δ2H and δ18O) of Grombalia aquifer system identified geochemistry processes that control water chemistry. In addition, the multivariate statistical technique (Principal Component Analysis) was used to identify the origin, the recharge mode and geochemical processes controlling groundwater quality. The principal reactions responsible for the hydrochemical evolution in the Grombalia groundwater fall into three categories: (1) denitrification process; (2) dissolution of salts; and (3) irrigation return flow process. Tritium data in groundwater from the study area suggest the existence of pre1950 and post1960 recharge. © 2012 Elsevier Ltd and INQUA.

  4. Status of groundwater levels and storage volume in the Equus Beds aquifer near Wichita, Kansas, January 2016 (United States)

    Klager, Brian J.


    The Equus Beds aquifer in south-central Kansas, which is part of the High Plains aquifer, serves as a source of water for municipal and agricultural users in the area. The city of Wichita has used the Equus Beds aquifer as one of its primary water sources since the 1940s. The aquifer in and around Wichita’s well field reached historically low water levels in 1993, prompting the city to adopt new water-use and conservation strategies to ensure future water supply needs were met. Part of the plan was to initiate a managed aquifer recharge program called the Equus Beds Aquifer Storage and Recovery project. The goal of the managed aquifer recharge program is to artificially recharge the Equus Beds aquifer with treated water from the Little Arkansas River. As part of the Equus Beds Aquifer Storage and Recovery project, the city of Wichita and the U.S. Geological Survey have partnered in a long-term cooperative study to monitor and describe the quantity and quality of the water in the Equus Beds aquifer and the Little Arkansas River.The city of Wichita, the Equus Beds Groundwater Management District No. 2, the Kansas Department of Agriculture–Division of Water Resources, and the U.S. Geological Survey collected groundwater levels in numerous wells screened in the Equus Beds aquifer in the area in and around Wichita’s well field in January 2016. The measurements were used to interpolate potentiometric surfaces for shallow and deep parts of the aquifer in the study area. These potentiometric surfaces were compared with potentiometric surfaces from previous years to estimate changes in water levels and storage volume in the study area.Groundwater levels were generally higher in January 2016 than they were in January 2015. On average, in January 2016, groundwater levels in the shallow part of the aquifer were about 3.4 feet higher and groundwater levels in the deep part of the aquifer were about 3.8 feet higher than in January 2015. The volume of water stored in the

  5. Groundwater levels, geochemistry, and water budget of the Tsala Apopka Lake system, west-central Florida, 2004–12 (United States)

    McBride, W. Scott; Metz, Patricia A.; Ryan, Patrick J.; Fulkerson, Mark; Downing, Harry C.


    , and the Upper Floridan aquifer; and to estimate an annual water budget for each pool and for the entire lake system for 2004–12. The hydrologic interactions were evaluated using hydraulic head and geochemical data. Geochemical data, including major ion, isotope, and age-tracer data, were used to evaluate sources of water and to distinguish flow paths. Hydrologic connection of the surficial environment (lakes, ponds, wetlands, and the surficial aquifer) was quantified on the basis of a conceptualized annual water-budget model. The model included the change in surface water and groundwater storage, precipitation, evapotranspiration, surface-water inflow and outflow, and net groundwater exchange with the underlying Upper Floridan aquifer. The control volume for each pool extended to the base of the surficial aquifer and covered an area defined to exceed the maximum inundated area for each pool during 2004–12 by 0.5 foot. Net groundwater flow was computed as a lumped value and was either positive or negative, with a negative value indicating downward or lateral leakage from the control volume and a positive value indicating upward leakage to the control volume.The annual water budget for Tsala Apopka Lake was calculated using a combination of field observations and remotely sensed data for each of three pools and for the composite three pool area. A digital elevation model at a 5-foot grid spacing and bathymetric survey data were used to define the land-surface elevation and volume of each pool and to calculate the changes in inundated area with change in lake stage. Continuous lake-stage and groundwater-level data were used to define the change in storage for each pool. The rainfall data used in the water-budget calculations were based on daily radar reflectance data and measured rainfall from weather stations. Evapotranspiration was computed as a function of reference evapotranspiration, adjusted to actual evapotranspiration using a monthly land-cover coefficient

  6. Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. (United States)

    Springer, Nathan M; Ying, Kai; Fu, Yan; Ji, Tieming; Yeh, Cheng-Ting; Jia, Yi; Wu, Wei; Richmond, Todd; Kitzman, Jacob; Rosenbaum, Heidi; Iniguez, A Leonardo; Barbazuk, W Brad; Jeddeloh, Jeffrey A; Nettleton, Daniel; Schnable, Patrick S


    Following the domestication of maize over the past approximately 10,000 years, breeders have exploited the extensive genetic diversity of this species to mold its phenotype to meet human needs. The extent of structural variation, including copy number variation (CNV) and presence/absence variation (PAV), which are thought to contribute to the extraordinary phenotypic diversity and plasticity of this important crop, have not been elucidated. Whole-genome, array-based, comparative genomic hybridization (CGH) revealed a level of structural diversity between the inbred lines B73 and Mo17 that is unprecedented among higher eukaryotes. A detailed analysis of altered segments of DNA conservatively estimates that there are several hundred CNV sequences among the two genotypes, as well as several thousand PAV sequences that are present in B73 but not Mo17. Haplotype-specific PAVs contain hundreds of single-copy, expressed genes that may contribute to heterosis and to the extraordinary phenotypic diversity of this important crop.

  7. Effect of sea-level rise and climate change on groundwater salinity and agro-hydrology in a low coastal region of the Netherlands

    NARCIS (Netherlands)

    Stuyt, L.C.P.M.; Kabat, P.; Postma, J.; Pomper, A.B.


    Scenario studies were carried out to predict the effects of doubled carbon dioxide levels, a 1 °C temperature increase and a 1.2 m sea level rise on seepage, groundwater and crop production. Climatic change was simulated, showing increased precipitation. Simulation of effects of sea level rise on

  8. Fiber-optic liquid level sensor based on coupling optical path length variation. (United States)

    Nath, Pabitra; Singh, Hidam Kumarjit; Tiwari, Dhananjay; Basumatry, Tenisen


    The concept for a new and simple fiber-optic liquid level sensor is presented and experimental results are shown to demonstrate the principle. The sensing principle is based on light intensity modulation when rising and falling mode of liquid level causes coupling optical path distance variation between two optical fibers. Near continuous mode of liquid level variation could be monitored with resolution as low as 1 mm can be measured in the length scale of 25 cm.

  9. Comparison of different assimilation methodologies of groundwater levels to improve predictions of root zone soil moisture with an integrated terrestrial system model (United States)

    Zhang, Hongjuan; Kurtz, Wolfgang; Kollet, Stefan; Vereecken, Harry; Franssen, Harrie-Jan Hendricks


    The linkage between root zone soil moisture and groundwater is either neglected or simplified in most land surface models. The fully-coupled subsurface-land surface model TerrSysMP including variably saturated groundwater dynamics is used in this work. We test and compare five data assimilation methodologies for assimilating groundwater level data via the ensemble Kalman filter (EnKF) to improve root zone soil moisture estimation with TerrSysMP. Groundwater level data are assimilated in the form of pressure head or soil moisture (set equal to porosity in the saturated zone) to update state vectors. In the five assimilation methodologies, the state vector contains either (i) pressure head, or (ii) log-transformed pressure head, or (iii) soil moisture, or (iv) pressure head for the saturated zone only, or (v) a combination of pressure head and soil moisture, pressure head for the saturated zone and soil moisture for the unsaturated zone. These methodologies are evaluated in synthetic experiments which are performed for different climate conditions, soil types and plant functional types to simulate various root zone soil moisture distributions and groundwater levels. The results demonstrate that EnKF cannot properly handle strongly skewed pressure distributions which are caused by extreme negative pressure heads in the unsaturated zone during dry periods. This problem can only be alleviated by methodology (iii), (iv) and (v). The last approach gives the best results and avoids unphysical updates related to strongly skewed pressure heads in the unsaturated zone. If groundwater level data are assimilated by methodology (iii), EnKF fails to update the state vector containing the soil moisture values if for (almost) all the realizations the observation does not bring significant new information. Synthetic experiments for the joint assimilation of groundwater levels and surface soil moisture support methodology (v) and show great potential for improving the representation

  10. Development og groundwater flow modeling techniques for the low-level radwaste disposal (III)

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dae-Seok; Kim, Chun-Soo; Kim, Kyung-Soo; Park, Byung-Yoon; Koh, Yong-Kweon; Park, Hyun-Soo [Korea Atomic Energy Research Institute, Taejeon (Korea)


    The project amis to establish the methodology of hydrogeologic assessment by the field application of the evaluation techniques gained and accumulated from the previous hydrogeological research works in Korea. The results of the project and their possible areas for application are (1) acquisition of detailed hydrogeologic information by using a borehole televiewer and a multipacker system, (2) establishing an integrated hydrogeological assessment method for fractured rocks, (3) acquisition of the fracture parameters for fracture modeling, (4) an inversion analysis of hydraulic parameters from fracture network modeling, (5) geostatistical methods for the spatial assignment of hydraulic parameters for fractured rocks, and (6) establishing the groundwater flow modeling procedure for a repository. 75 refs., 72 figs., 34 tabs. (Author)

  11. Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS

    Directory of Open Access Journals (Sweden)

    Nevenka Djurovic


    Full Text Available Water table forecasting plays an important role in the management of groundwater resources in agricultural regions where there are drainage systems in river valleys. The results presented in this paper pertain to an area along the left bank of the Danube River, in the Province of Vojvodina, which is the northern part of Serbia. Two soft computing techniques were used in this research: an adaptive neurofuzzy inference system (ANFIS and an artificial neural network (ANN model for one-month water table forecasts at several wells located at different distances from the river. The results suggest that both these techniques represent useful tools for modeling hydrological processes in agriculture, with similar computing and memory capabilities, such that they constitute an exceptionally good numerical framework for generating high-quality models.

  12. Water-level changes and directions of ground-water flow in the shallow aquifer, Fallon area, Churchill County, Nevada (United States)

    Seiler, R.L.; Allander, K.K.


    The Truckee-Carson-Pyramid Lake Water Rights Settlement Act of 1990 directed the U.S. Fish and Wildlife Service to acquire water rights for wetland areas in the Carson Desert, Nevada. The public is concerned that htis acquisition of water rights and delivery of the water directly to wildlife areas would result in less recharge to the shallow ground water in the Fallon area and cause domestic wells to go dry. In January 1992, the U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife Service, began a study of the shallow ground-water system in the Fallon area in Churchill County, Nevada. A network of 126 wells in the study area was monitored. Between January and November 1992, water levels in most wells declined, usually less than 2 feet. The maximum measured decline over this period was 2.68 feet in a well near Stillwater Marsh. Between April and July, however, water levels rose in irrigated areas, typically 1 to 2 feet. Newlands Project water deliveries to the study area began soon after the turn of the century. Since then, water levels have risen more than 15 feet across much of the study area. Water lost from unlined irrigtiaon canals caused the stage in Big Soda Lake to rise nearly 60 feet; ground-water levels near the lake have risen 30 to 40 feet. The depth to water in most irrigated areas is now less than 10 feet. The altitude of the water table ranges from 4.025 feet above sea level 11 miles west of Fallon to 3,865 feet in the Stillwater Marsh area. Ground water flows eastward and divides; some flow goes to the northeast toward the Carson Sink and Stillwater areas, and some goes southeastward to Carson Lake.

  13. Bored boys, graffiti, and YouTube - tracing recent groundwater level changes in a Saudi Arabian cave (United States)

    Michelsen, Nils; Dirks, Heiko; Schulz, Stephan; Kempe, Stephan; Schüth, Christoph


    The Dahl Hith cave is located approximately 30 km southeast of Riyadh, the capital of Saudi Arabia. In the past decades, the groundwater table exposed inside the cave became subject to appreciable changes. After a decline due to agricultural water abstraction for irrigation purposes, the water table exhibited a rapid rise in the last few years. Considering that most of the aquifers of the country show a depletion of the largely fossil groundwater, the mentioned rise is quite unusual. The area does not host an observation well, i.e., reliable data on the piezometric changes is hitherto not available. Hence, two uncommon data sources were used to reconstruct the water level changes: (1) YouTube videos and (2) graffiti inscriptions. (1) The cave is frequently visited by locals and expats from Riyadh and many visitors are willing to share their cave adventures on YouTube. Identifying certain reference points in the uploaded videos (e.g. specific boulders, cave graffiti) and estimating their position relative to the water table allows for an approximate reconstruction of the recent groundwater rise. Information on the observation time is derived from the uploading date. Occasionally, also the exact date of the visit is provided as part of the footage description. (2) Some people documented their visit by graffiti inscriptions. These do not only serve as a marker in the videos, but also contain genuine data on historic water levels: if written on parts of the cave wall, which are only accessible from the water, they indicate the water level at the time of their creation. Fortunately, some graffiti also feature the date of the visit. In order to improve the reliability of the water level estimations, measurements conducted in the course of own site visits in the past few years were considered for the evaluation. Also photographs taken during these surveys helped to improve the quality of the water level reconstruction. The described "Youtube Approach" could be interpreted

  14. Levels of genetic variation in trees: influence of life history characteristics (United States)

    J. L Hamrick; J. B. Milton; Y. B. Linhart


    In a previous study, levels of genetic variation, as measured by isozyme analyses, were compared for 113 taxa of vascular plants. Each species was classified for 12 life history and ecological traits and three measures of genetic variation were calculated. Plants with large ranges, high fecundities, an outcrossing mode of reproduction, wind pollination, a long...

  15. 41 CFR 50-204.35 - Application for variations from radiation levels. (United States)


    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Application for variations from radiation levels. 50-204.35 Section 50-204.35 Public Contracts and Property Management Other... FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.35 Application for variations from radiation...

  16. Ground-water development and the effects on ground-water levels and water quality in the town of Atherton, San Mateo County, California (United States)

    Metzger, Loren F.; Fio, John L.


    measured hydraulic heads in the study area from April 1993 through September 1995 were above sea level indicates that saltwater intrusion was unlikely during this period. The chemistry of 20 well-water samples is characterized as a calcium magnesium carbonate bicarbonate type water. There is no evidence of saltwater intrusion from San Francisco Bay; how ever, water samples from wells nearest the bay and bedrock assemblages indicate a greater concentra tion of dissolved constituents and salinity. Dissolved-solids concentrations of water samples from wells in these areas exceeded 1,000 milli grams per liter, and several samples contained a substantial fraction of sodium and chloride. Water hardness for the 20 wells sampled averaged 471 milligrams per liter as calcium carbonate, which is classified as very hard. One well sample exceeded the primary maximum contaminant level for drinking water in nitrate, several wells exceeded the secondary maximum contaminant level for chloride and sulfate, and all wells sampled exceeded the secondary maximum contaminant level for total dissolved solids. Land-subsidence and the resultant damage because of excessive ground-water pumping, in combination with periodic drought, have a well- documented history in the south San Francisco Bay area. Land-elevation surveying data from 1934 to 1967 indicate that subsidence ranged from 0.1 to approximately 0.5 foot in the vicinity of the study area. It could not be determined from land- surface elevation surveying data from 1993 whether subsidence is currently occurring in the study area.

  17. Cross-species toxicogenomic analyses and phenotypic anchoring in response to groundwater low-level pollution. (United States)

    Porreca, Immacolata; D'Angelo, Fulvio; Gentilcore, Daniela; Carchia, Emanuele; Amoresano, Angela; Affuso, Andrea; Ceccarelli, Michele; De Luca, Pasquale; Esposito, Libera; Guadagno, Francesco M; Mallardo, Massimo; Nardone, Antonio; Maccarone, Sergio; Pane, Francesca; Scarfò, Marzia; Sordino, Paolo; De Felice, Mario; Ambrosino, Concetta


    Comparison of toxicogenomic data facilitates the identification of deregulated gene patterns and maximizes health risk prediction in human. Here, we performed phenotypic anchoring on the effects of acute exposure to low-grade polluted groundwater using mouse and zebrafish. Also, we evaluated two windows of chronic exposure in mouse, starting in utero and at the end of lactation. Bioinformatic analysis of livers microarray data showed that the number of deregulated biofunctions and pathways is higher after acute exposure, compared to the chronic one. It also revealed specific profiles of altered gene expression in all treatments, pointing to stress response/mitochondrial pathways as major players of environmental toxicity. Of note, dysfunction of steroid hormones was also predicted by bioinformatic analysis and verified in both models by traditional approaches, serum estrogens measurement and vitellogenin mRNA determination in mice and zebrafish, respectively. In our report, phenotypic anchoring in two vertebrate model organisms highlights the toxicity of low-grade pollution, with varying susceptibility based on exposure window. The overlay of zebrafish and mice deregulated pathways, more than single genes, is useful in risk identification from chemicals implicated in the observed effects.

  18. Evaluation of Elevated Tritium Levels in Groundwater Downgradient from the 618-11 Burial Ground Phase I Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Smith, R.M.; Williams, B.A.; Thompson, C.J.; Evans, J.C.; Hulstrom, L.C.


    This report describes the results of the preliminary investigation of elevated tritium in groundwater discovered near the 618-11 burial ground, located in the eastern part of the Hanford Site. Tritium in one well downgradient of the burial ground was detected at levels up to 8,140,000 pCi/L. The 618-11 burial ground received a variety of radioactive waste from the 300 Area between 1962 and 1967. The burial ground covers 3.5 hectare (8.6 acre) and contains trenches, large diameter caissons, and vertical pipe storage units. The burial ground was stabilized with a native sediment covering. The Energy Northwest reactor complex was constructed immediately east of the burial ground.

  19. Bi-decadal groundwater level trends in a semi-arid south indian region: Declines, causes and management

    Directory of Open Access Journals (Sweden)

    Rajendra P. Sishodia


    New hydrological insights for the region: Contrary to common perception of widespread groundwater declines only 22–36% of the wells showed statistically significant declines. The use of well depth during dry well periods may slightly underestimate the number of declining wells (by 1% and rate of decline. Increase in groundwater irrigated area combined with rainfall and power subsidy policy, were the main causative factors for the decline. Groundwater decline after implementation of free-electricity policy in 2004 confirmed the nexus between power subsidy and groundwater. These declines are likely to worsen due to future well drillings. Trends in other regions with similar hydro-geologic conditions need to be analyzed to verify groundwater declines and its linkages with power subsidy. Once established, reforms in power subsidy and well permit policy along with conversion to efficient micro–irrigation may be needed to maintain or enhance groundwater availability in the crystalline aquifer region of India (240 million ha.

  20. Diurnal variation of human sweet taste recognition thresholds is correlated with plasma leptin levels. (United States)

    Nakamura, Yuki; Sanematsu, Keisuke; Ohta, Rie; Shirosaki, Shinya; Koyano, Kiyoshi; Nonaka, Kazuaki; Shigemura, Noriatsu; Ninomiya, Yuzo


    It has recently been proposed that the peripheral taste organ is one of the targets for leptin. In lean mice, leptin selectively suppresses gustatory neural and behavioral responses to sweet compounds without affecting responses to other taste stimuli, whereas obese diabetic db/db mice with defects in leptin receptor lack this leptin suppression on sweet taste. Here, we further examined potential links between leptin and sweet taste in humans. A total of 91 nonobese subjects were used to determine recognition thresholds using a standard stair-case methodology for various taste stimuli. Plasma leptin levels were determined by an enzyme-linked immunosorbent assay at several timepoints during the day under normal and restricted-meal conditions. The recognition thresholds for sweet compounds exhibited a diurnal variation from 0800 to 2200 h that parallels variation for leptin levels, with the lowest thresholds in the morning and the highest thresholds at night. This diurnal variation is sweet-taste selective-it was not observed in thresholds for other taste stimuli (NaCl, citric acid, quinine, and mono-sodium glutamate). The diurnal variation for sweet thresholds in the normal feeding condition (three meals) was independent of meal timing and thereby blood glucose levels. Furthermore, when leptin levels were phase-shifted following imposition of one or two meals per day, the diurnal variation of thresholds for sweet taste shifted in parallel. This synchronization of diurnal variation in leptin levels and sweet taste recognition thresholds suggests a mechanistic connection between these two variables in humans.

  1. The role of sediment compaction and groundwater withdrawal in local sea-level rise, Sandy Hook, New Jersey, USA (United States)

    Johnson, Christopher S.; Miller, Kenneth G.; Browning, James V.; Kopp, Robert E.; Khan, Nicole S.; Fan, Ying; Stanford, Scott D.; Horton, Benjamin P.


    The rate of relative sea-level (RSL) rise at Sandy Hook, NJ (4.0 ± 0.5 mm/yr) was higher than The Battery, NY (3.0 ± 0.3 mm/yr) from 1900 to 2012 despite being separated by just 26 km. The difference cannot be explained by differential glacial isostatic adjustment (GIA; 1.4 ± 0.4 and 1.3 ± 0.4 mm/yr RSL rise, respectively) alone. We estimate the contribution of sediment compaction to subsidence at Sandy Hook using high-resolution grain size, percent organic matter, and porosity data from three upper Quaternary (≤13,350 cal yr) cores. The organic matter content (<2%) is too low to contribute to local subsidence. However, numerical modeling of the grain size-depth-age-porosity relationship indicates that compaction of deglacial silts likely reduced the column thickness by 10-20% over the past 13,350 cal yrs. While compaction rates were high immediately after the main silt deposition (13,350-13,150 cal yrs BP), rates decreased exponentially after deposition to an average 20th century rate of 0.16 mm/yr (90% Confidence Interval (C.I.), 0.06-0.32 mm/yr). The remaining ∼0.7 mm/yr (90% C.I. 0.3-1.2 mm/yr) difference in subsidence between Sandy Hook and The Battery is likely due to anthropogenic groundwater withdrawal. Historical data from Fort Hancock wells (2 km to the southeast of the Sandy Hook tide gauge) and previous regional work show that local and regional water extraction lowered the water levels in the aquifers underlying Sandy Hook. We suggest that the modern order of contribution to subsidence (highest to lowest) appears to be GIA, local/regional groundwater extraction, and compaction of thick Quaternary silts.

  2. Ground-water protection, low-level waste, and below regulatory concern: What`s the connection?

    Energy Technology Data Exchange (ETDEWEB)

    Gruhlke, J.M.; Galpin, F.L. [Environmental Protection Agency, Washington, DC (United States). Office of Radiation Programs


    The Environmental Protection Agency (EPA) has a responsibility to protect ground water and drinking water under a wide variety of statutes. Each statute establishes different but specific requirements for EPA and applies to diverse environmental contaminants. Radionuclides are but one of the many contaminants subject to this regulatory matrix. Low-level radioactive waste (LLW) and below regulatory concern (BRC) are but two of many activities falling into this regulatory structure. The nation`s ground water serves as a major source of drinking water, supports sensitive ecosystems, and supplies the needs of agriculture and industry. Ground water can prove enormously expensive to clean up. EPA policy for protecting ground water has evolved considerably over the last ten years. The overall goal is to prevent adverse effects to human health, both now and in the future, and to protect the integrity of the nation`s ground-water resources. The Agency uses the Maximum Contaminant Levels (MCLs) under the Safe Drinking Water Act as reference points for protection in both prevention and remediation activities. What`s the connection? Both low-level waste management and disposal activities and the implementation of below regulatory concern related to low-level waste disposal have the potential for contaminating ground water. EPA is proposing to use the MCLs as reference points for low-level waste disposal and BRC disposal in order to define limits to the environmental contamination of ground water that is, or may be, used for drinking water.

  3. Hydraulic pressure variations of groundwater in the Gran Sasso underground laboratory during Amatrice earthquake of August 24th, 2016

    Directory of Open Access Journals (Sweden)

    Gaetano De Luca


    Full Text Available Since May 2015, hydraulic pressure, temperature and electrical conductivity of groundwater are in continuos recording near the deep underground laboratories of Gran Sasso of INFN. We used the S13 borehole that have pressure varying in the range of 24-28 bar during the year; these values mean that we have at least 300 m of water table above. The sampling of these parameters was brought until to 50 Hz using a 3 channels 24-bit ADC. During the period May 2015 – September 2016 (17 months we detected hydraulic pressure signals from 12 earthquakes at different surface distances (from 12.000 to 30 km and different magnitudes (from 8.3 to 4.3 Mw. For the Amatrice mainshock, we present, as first results, the hydroseismograph recorded at the S13 hydraulic pressure device compared to the time history recorded at GIGS station located both in the deep core of the Gran Sasso chain.

  4. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans (United States)

    Cenik, Can; Cenik, Elif Sarinay; Byeon, Gun W.; Grubert, Fabian; Candille, Sophie I.; Spacek, Damek; Alsallakh, Bilal; Tilgner, Hagen; Araya, Carlos L.; Tang, Hua; Ricci, Emiliano; Snyder, Michael P.


    Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy—many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation. PMID:26297486

  5. Hydrologic conditions in urban Miami-Dade County, Florida, and the effect of groundwater pumpage and increased sea level on canal leakage and regional groundwater flow (United States)

    Hughes, Joseph D.; White, Jeremy T.


    The extensive and highly managed surface-water system in southeastern Florida constructed during the 20th Century has allowed for the westward expansion of urban and agricultural activities in Miami-Dade County. In urban areas of the county, the surface-water system is used to (1) control urban flooding, (2) supply recharge to production well fields, and (3) control seawater intrusion. Previous studies in Miami-Dade County have determined that on a local scale, leakage from canals adjacent to well fields can supply a large percentage (46 to 78 percent) of the total groundwater pumpage from production well fields. Canals in the urban areas also receive seepage from the Biscayne aquifer that is derived from a combination of local rainfall and groundwater flow from Water Conservation Area 3 and Everglades National Park, which are west of urban areas of Miami-Dade County.

  6. Seasonal Variations and Correlations between Vitamin D and Total Testosterone Levels. (United States)

    Sim, Moo-Yeol; Kim, Soo-Hyun; Kim, Kwang-Min


    Some studies have provided evidence for a possible association between vitamin D and testosterone levels; however, the evidence from studies in Koreans is inconsistent. In addition, insufficient evidence is available to support an association between seasonal variations in vitamin D and testosterone levels in Koreans. Therefore, we aimed to investigate the association between vitamin D and testosterone levels, and between seasonal variations in these levels in Korean men. This cross-sectional study included 1,559 men, aged 25-86 years, who underwent a medical examination. We measured serum 25-hydroxyvitamin D (25[OH]D) and total testosterone levels, and compared other laboratory test results and patient lifestyle characteristics. On the basis of sample collection time, we categorized patients into four seasons, and analyzed seasonal variability in 25(OH)D and total testosterone levels. The average participant age (±standard deviation) was 53.3±8.8 years, and the average serum 25(OH)D and total testosterone levels were 15.9±7.0 ng/mL and 5.1±1.6 ng/mL, respectively. In the analysis of variance (ANOVA) model, no significant association was found between 25(OH)D and testosterone levels (P=0.51). ANOVA of the average 25(OH)D levels in season-based groups revealed significant seasonal variations in 25(OH)D levels (P-value for trend <0.001). No significant association was found between seasonal variations in total testosterone levels (P=0.06). However, after adjustment for confounding variables, total testosterone and 25(OH)D showed significant seasonal variability (P=0.007 and P<0.001, respectively). We found no significant correlation between serum 25(OH)D and total testosterone levels in Korean men. Moreover, serum 25(OH)D and total testosterone levels showed significant seasonal variations.

  7. Integration of subsidence, deformation, and groundwater-level measurements to characterize land subsidence in the San Joaquin Valley, California, USA (United States)

    Sneed, M.; Solt, M.; Brandt, J.


    Extensive groundwater withdrawal from unconsolidated deposits in the San Joaquin Valley caused widespread aquifer-system compaction and resultant land subsidence that locally exceeded 8 meters (m) from 1926 to 1970. The importation of surface water in the early 1970s resulted in decreased pumping, recovery of water levels, and a reduced rate of compaction in some areas. However, reduced surface-water availability during droughts (1976-77, 1987-92, and 2007-09) caused increased pumping, water-level declines, and renewed compaction. Land subsidence resulting from this compaction has reduced freeboard and flow capacity of the Delta-Mendota Canal (DMC), the California Aqueduct, and other canals that deliver irrigation water and transport floodwater. The location and magnitude of vertical land-surface changes during 2006-11 in the northwestern and central San Joaquin Valley were determined using Interferometric Synthetic Aperture Radar (InSAR), Global Positioning System (GPS), and extensometer techniques. Results of the InSAR analysis indicate that a 3,200 square-kilometer area, including parts of the DMC, the San Joaquin River, and the Eastside Bypass, was affected by at least 20 millimeters (mm) of subsidence during 2008-10. Within that area, InSAR analysis also indicates a localized maximum subsidence of at least 540 mm. Furthermore, InSAR results for 2006-10 indicate that subsidence rates doubled around 2008. GPS surveys in 2008 and 2010 confirm the high rates of subsidence measured using InSAR; GPS surveys in late 2011 indicate that these high rates continued through the next year. A comparison of data from extensometers (anchored near the top of the Corcoran Clay) and a continuous GPS station near Mendota indicates that most of the aquifer-system compaction occurred below the top of the Corcoran Clay (CC). The lack of correlation between continuous GPS data near Los Banos, which show subsidence, and water levels from nearby wells screened above the CC, which show

  8. Use of Multi-Level Wells in Developing a 3-Dimensional Understanding of Groundwater Flow and Contaminant Migration at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K M; Nichols, R L; Flach, G P; Sappington, F; Simmons, J L; Betivas, C R; Shoffner, L R; Falise, F R


    Understanding the flow of groundwater and contaminants in 3-dimensions, along with hydraulic properties, is instrumental in selection and implementation of successful remediation efforts. Advances in multi-level groundwater monitoring at the Savannah River Site (SRS) are enabling engineers and geologists to collect the needed characterization data in an efficient, cost-effective manner. The SRS has developed a new multi-level groundwater monitoring well, "StrataSampler", which is being deployed for characterization and monitoring at several large groundwater plumes on the SRS. The installation method used allowed collection of data during the drilling process allowing optimization of screen placement within the aquifers and minimization of drilling costs and waste generation. Data generated during the installation of the StrataSamplers along with data collected from the installed wells is being used to understand the 3-dimensional nature of contaminant fate and transport. The L-Area Southern Groundwater Operable Unit is the first full-scale deployment of StrataSampler wells at SRS. Twenty-two StrataSampler wells with a total of 52 sampling zones were installed. The installation, development, hydraulic testing, sampling of the StrataSamplers at this unit and the resulting understanding of the contaminant plumes will be discussed in the paper and presentation.

  9. Changes in groundwater levels and the response of natural vegetation to transfer of water to the lower reaches of the Tarim River. (United States)

    Xu, Hai-liang; Ye, Mao; Li, Ji-mei


    Restoration and reconstruction of the degraded Tarim River ecosystem is an important challenge. A goal of an ecological water conveyance project is to protect and restore the natural vegetation in the lower reaches of Tarim River by transferring water from Bosten Lake, through the river channel, to the lower reaches. This study describes the changes in groundwater depth during the water transfer and the respondence of riparian vegetation to alterations in groundwater levels. The results indicate that groundwater depth along the Tarim River channel has a significant spatial-temporal component. Groundwater levels closest to the river channel show the most immediate and pronounced changes as a response to water transfer while those further away respond more slowly, although the observed change appears to be longer in duration. With a rise in the groundwater level, natural vegetation responded with higher growth rates, biomass and biodiversity. These favorable changes show that it is feasible to protect and restore the degraded natural vegetation by raising the groundwater depth. Plant communities are likely to reflect the hysteresis phenomenon, requiring higher water levels to initiate and stimulate desired growth than what may be needed to maintain the plant community. Because different species have different ecologies, including different root depths and densities and water needs, their response to increasing water availability will be spatially and temporally heterogenous. The response of vegetation is also influenced by microtopography and watering style. This paper discusses strategies for the protection and restoration of the degraded vegetation in the lower reaches of the Tarim River and provides information to complement ongoing theoretical research into ecological restoration in arid or semi-arid ecosystems.

  10. Groundwater-level change and evaluation of simulated water levels for irrigated areas in Lahontan Valley, Churchill County, west-central Nevada, 1992 to 2012 (United States)

    Smith, David W.; Buto, Susan G.; Welborn, Toby L.


    The acquisition and transfer of water rights to wetland areas of Lahontan Valley, Nevada, has caused concern over the potential effects on shallow aquifer water levels. In 1992, water levels in Lahontan Valley were measured to construct a water-table map of the shallow aquifer prior to the effects of water-right transfers mandated by the Fallon Paiute-Shoshone Tribal Settlement Act of 1990 (Public Law 101-618, 104 Stat. 3289). From 1992 to 2012, approximately 11,810 water-righted acres, or 34,356 acre-feet of water, were acquired and transferred to wetland areas of Lahontan Valley. This report documents changes in water levels measured during the period of water-right transfers and presents an evaluation of five groundwater-flow model scenarios that simulated water-level changes in Lahontan Valley in response to water-right transfers and a reduction in irrigation season length by 50 percent.Water levels measured in 98 wells from 2012 to 2013 were used to construct a water-table map. Water levels in 73 of the 98 wells were compared with water levels measured in 1992 and used to construct a water-level change map. Water-level changes in the 73 wells ranged from -16.2 to 4.1 feet over the 20-year period. Rises in water levels in Lahontan Valley may correspond to annual changes in available irrigation water, increased canal flows after the exceptionally dry and shortened irrigation season of 1992, and the increased conveyance of water rights transferred to Stillwater National Wildlife Refuge. Water-level declines generally occurred near the boundary of irrigated areas and may be associated with groundwater pumping, water-right transfers, and inactive surface-water storage reservoirs. The largest water-level declines were in the area near Carson Lake.Groundwater-level response to water-right transfers was evaluated by comparing simulated and observed water-level changes for periods representing water-right transfers and a shortened irrigation season in areas near Fallon

  11. Radon levels in groundwaters and natural radioactivity in soils of the volcanic region of La Garrotxa, Spain. (United States)

    Moreno, V; Bach, J; Baixeras, C; Font, Ll


    Groundwater radon level and soil radionuclide concentration have been measured in the volcanic region of La Garrotxa (Catalonia, Spain) to further research on the origin and dynamics of high radon levels over volcanic materials found in this region. Water samples from different aquifers have been collected from wells and springs and the water radon levels obtained have been lower than 30 Bq l(-1). Soil samples have been collected from different geological formations (volcanic and non-volcanic), being Quaternary sedimentary deposits those that have presented the highest mean values of (40)K, (226)Ra and (232)Th concentrations (448 ± 70 Bq kg(-1), 35 ± 5 Bq kg(-1) and 38 ± 5 Bq kg(-1), respectively). Additionally, indoor/outdoor terrestrial radiation absorbed dose rate in air have been measured to better characterize the region from the radiological point of view. Terrestrial radiation absorbed dose rates measurement points have been chosen on the basis of geological and demographical considerations and the results obtained, from 27 to 91 nGy h(-1), show a clear relation with geological formation materials. The highest terrestrial gamma absorbed dose rate is observed over Quaternary sedimentary deposits as well. All these results help to better understand previous surveys related with indoor and outdoor radon levels and to reinforce the hypotheses of a radon transport through the fissure network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Groundwater Contamination (United States)

    ... Payment Methods Shipping & Handling Donate Potential Threats to Groundwater The Basics What is Groundwater The Hydrologic Cycle ... Quick Facts Read The Aquifer Get Our Newsletters Groundwater Contamination Over 50% of the United States population ...

  13. Retinal vessel diameters in relation to hematocrit variation during acclimatization of highlanders to sea level altitude

    DEFF Research Database (Denmark)

    Kofoed, Peter Kristian; Sander, Birgit; Zubieta-Calleja, Gustavo


    PURPOSE: To examine variations in retinal vessel diameters during acclimatization of native highlanders to normobaric normoxia at sea level. METHODS: Fifteen healthy residents of the greater La Paz region in Bolivia (3600 m above sea level) were examined thrice over a 72-day period, after having ...

  14. Monthly Variations in Sea Level at the Island of Zanzibar | Mahongo ...

    African Journals Online (AJOL)

    Meteorological and tide gauge data were used to analyze correlations between climatic parameters and variations in mean sea level at Zanzibar for the period 1985-2004. This involved spectral and multiple regression analysis of the monthly variables, as well as harmonic analysis of hourly sea level. Air pressure and ...

  15. Marine water from mid-Holocene sea level highstand trapped in a coastal aquifer: Evidence from groundwater isotopes, and environmental significance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Stephen [School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne (Australia); Currell, Matthew, E-mail: [School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne (Australia); Cendón, Dioni I. [Australian Nuclear Science and Technology Organisation, Kirrawee (Australia); Connected Water Initiative, School of Biological, Earth and Environmental Sciences, University of New South Wales (UNSW), Sydney (Australia)


    A multi-layered coastal aquifer in southeast Australia was assessed using environmental isotopes, to identify the origins of salinity and its links to palaeo-environmental setting. Spatial distribution of groundwater salinity (electrical conductivity values ranging from 0.395 to 56.1 mS/cm) was examined along the coastline along with geological, isotopic and chemical data. This allowed assessment of different salinity sources and emplacement mechanisms. Molar chloride/bromide ratios range from 619 to 1070 (621 to 705 in samples with EC > 15 mS/cm), indicating salts are predominantly marine. Two distinct vertical salinity profiles were observed, one with increasing salinity with depth and another with saline shallow water overlying fresh groundwater. The saline shallow groundwater (EC = 45.4 to 55.7 mS/cm) has somewhat marine-like stable isotope ratios (δ{sup 18}O = − 2.4 to − 1.9 ‰) and radiocarbon activities indicative of middle Holocene emplacement (47.4 to 60.4 pMC). This overlies fresher groundwater with late Pleistocene radiocarbon ages and meteoric stable isotopes (δ{sup 18}O = − 5.5 to − 4.6‰). The configuration suggests surface inundation of the upper sediments by marine water during the mid-Holocene (c. 2–8 kyr BP), when sea level was 1–2 m above today's level. Profiles of chloride, stable isotopes, and radiocarbon indicate mixing between this pre-modern marine water and fresh meteoric groundwater to varying degrees around the coastline. Mixing calculations using chloride and stable isotopes show that in addition to fresh-marine water mixing, some salinity is derived from transpiration by halophytic vegetation (e.g. mangroves). The δ{sup 13}C ratios in saline water (− 17.6 to − 18.4‰) also have vegetation/organic matter signatures, consistent with emplacement by surface inundation and extensive interaction between vegetation and recharging groundwater. Saline shallow groundwater is preserved only in areas where low

  16. Sodium and chloride levels in rainfall, mist, streamwater and groundwater at the Plynlimon catchments, mid-Wales: inferences on hydrological and chemical controls

    Directory of Open Access Journals (Sweden)

    C. Neal


    Full Text Available Variations in sodium and chloride in atmospheric inputs (rainfall and mist, stream runoff and groundwater stores are documented for the upper Severn River (Afon Hafren and Afon Hore catchments, Plynlimon, mid-Wales. The results show five salient features. Sodium and chloride concentrations are highly variable and highly correlated in rainfall and mist. The sodium-chloride relationship in rainfall has a slope close to the sodium/chloride ratio in sea-water, and an intercept that is not significantly different from zero. This indicates that sea-salt is the dominant source of both sodium and chloride in rainfall, which would be expected given the maritime nature of the metrology. For mist, there is also a straight line with near-zero intercept, but with a slightly higher gradient than the sea-salt ratio, presumably due to small additional sodium inputs from other sources. There is an approximate input-output balance for both sodium and chloride, with the exception of one groundwater well, in which high chemical weathering results in an anomalous high Na/Cl ratio. Thus, atmospheric deposition is the dominant source of both sodium and chloride in groundwater and streamflow. The fluctuations in sodium and chloride concentrations in the streams and groundwaters are strongly damped compared to those in the rain and the mist, reflecting the storage and mixing of waters in the subsurface. On all timescales, from weeks to years, sodium fluctuations are more strongly damped than chloride fluctuations in streamflow. The additional damping of sodium is consistent with ion exchange buffering of sodium in the catchment soils.  Sodium and chloride concentrations are linearly correlated in the streams and groundwaters, but the slope is almost universally less than the sea-salt ratio and there is a non-zero intercept. The Na/Cl ratio in streamflow and groundwater is higher than the sea-salt ratio when salinity is low and lower than the sea-salt ratio when

  17. Spatial variability of the shallow groundwater level and its chemistry characteristics in the low plain around the Bohai Sea, North China. (United States)

    Zhou, Zaiming; Zhang, Guanghui; Yan, Mingjiang; Wang, Jinzhe


    To characterize the spatial distribution of groundwater level (GWL) and its chemistry characteristics in the low plain around the Bohai Sea, shallow groundwater depth of 130 wells were determined. Water soluble ions composition, total dissolved solid (TDS), electric conductivity (EC), total hardness (TH), total alkalinity (TA), and total salt content (TS) of 128 representative groundwater samples were also measured. Classical statistics, geostatistical method combined with GIS technique were then used to analyze the spatial variability and distribution of GWL and groundwater chemical properties. Results show that GWL, TDS, EC, TH, TA, and TS all presented a lognormal distribution and could be fitted by different semivariogram models (spherical, exponential, and Gaussian). Spatial structure of GWL, TDS, EC, TH, TA, and TS changed obviously. GWL decreased from west inland plain to the east coastal plain, however, TDS, EC, and TS increased from west to east, TH and TA were higher in the middle and coastal plain area. Groundwater chemical type in the coastal plain was SO (4) (2-) ·Cl(-)-Na(+) while chemical types in the inland plain were SO (4) (2-) ·Cl(-)-Ca(2+)·Mg(2+) and HCO (3) (-) -Ca(2+)·Mg(2+).

  18. Multi-element compound specific stable isotope analysis of volatile organic compounds at trace levels in groundwater samples (United States)

    Herrero-Martín, Sara; Nijenhuis, Ivonne; Schmidt, Marie; Wolfram, Diana; Richnow, Hans. H.; Gehre, Matthias


    Groundwater pollution remains one of the major environmental and health concerns. A thorough understanding of sources, sinks and transformation processes of groundwater contaminants is needed to improve risk management evaluation, and to design efficient remediation and water treatment strategies. Isotopic tools provide unique information for an in-depth understanding of the fate of organic chemicals in the environment. During the last decades compound specific isotope analysis (CSIA) of complex mixtures, using gas chromatography-isotope ratio mass spectrometry (GC-IRMS), has gained popularity for the characterization and risk assessment of hazardous waste sites and for isotope forensics of organic contaminants. Multi-element isotope fingerprinting of organic substances provides a more robust framework for interpretation than the isotope analysis of only one element. One major challenge for application of CSIA is the analysis of trace levels of organic compounds in environmental matrices. It is necessary to inject 1 nmol carbon or 8 nmol hydrogen on column, to obtain an accurate and precise measurement of the isotope ratios, which is between two and three orders of magnitude larger than the amount of compound needed for conventional analysis of compound concentrations. Therefore, efficient extraction and pre-concentration techniques have to be integrated with GC-IRMS. Further research is urgently needed in this field, to evaluate the potential of novel and environmental-friendly sample pre-treatment techniques for CSIA to lower the detection limits and extending environmental applications. In this study, the novel coupling of a headspace autosampler (HS) with a programmed temperature vaporizer (PTV), allowing large volume injection of headspace samples, is proposed to improve the sensitivity of CSIA. This automatic, fast and solvent free strategy provides a significant increase on the sensitivity of GC-based methods maintaining the simple headspace instrumentation

  19. Limits to global groundwater consumption (United States)

    de Graaf, I.; Van Beek, L. P.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.


    Groundwater is the largest accessible freshwater resource worldwide and is of critical importance for irrigation, and so for global food security. For many regions of the world where groundwater abstraction exceeds groundwater recharge, persistent groundwater depletion occurs. A direct consequence of depletion is falling groundwater levels, reducing baseflows to rivers, harming ecosystems. Also, pumping costs increase, wells dry up and land subsidence can occur. Water demands are expected to increase further due to growing population, economic development and climate change, posing the urgent question how sustainable current water abstractions are worldwide and where and when these abstractions approach conceivable limits with all the associated problems. Here, we estimated past and future trends (1960-2050) in groundwater levels resulting from changes in abstractions and climate and predicted when limits of groundwater consumption are reached. We explored these limits by predicting where and when groundwater levels drop that low that groundwater becomes unattainable for abstractions and how river flows are affected. Water availabilities, abstractions, and lateral groundwater flows are simulated (5 arcmin. resolution) using a coupled version of the global hydrological model PCR-GLOBWB and a groundwater model based on MODFLOW. The groundwater model includes a parameterization of the worlds confined and unconfined aquifer systems, needed for a realistic simulation of groundwater head dynamics. Results show that, next to the existing regions experiencing groundwater depletion (like India, Pakistan, Central Valley) new regions will develop, e.g. Southern Europe, the Middle East, and Africa. Using a limit that reflects present-day feasibility of groundwater abstraction, we estimate that in 2050 groundwater becomes unattainable for 20% of the global population, mainly in the developing countries and pumping cost will increase significantly. Largest impacts are found

  20. Monthly mean sea level variations at Cochin, southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    DineshKumar, P.K.

    and Annual Mean Sea Level Variations Figure 3 shows mean monthly values of sea level at Cochin for the 50 year period, 1949-1998. The climato- logical seasonal cycle derived from the data has a range of nearly 19 cm, the increase from the lowest... of mean sea level can only remove short-term fluctuations caused by tides and seasonal climatological changes; it cannot effectively remove other factors caused by long-term changes in meteoro- logic, hydrographic, oceanographic, eustatic, astronomic...

  1. Description and effects of 1988 drought on ground-water levels, streamflow, and reservoir levels in Indiana (United States)

    Fowler, K.K.


    Documentation of the 1988 drought in Indiana was undertaken to aid water-management agencies and planners concerned with periods of below-normal precipitation and their effect on commercial, agricultural, and residential water use. Precipitation, temperature, Palmer Drought Severity Indices, and ground- and surface-water levels from water years 1988 and 1989 were compared to the historical record to evaluate severity, extent, and duration of the 1988 drought in Indiana.

  2. Diurnal variation of the melanin-concentrating hormone level in the hypothalamus. (United States)

    Gerics, Balázs; Szalay, Ferenc; Sótonyi, Péter; Jancsik, Veronika


    Melanin-concentrating hormone (MCH), the neuropeptide produced mainly in the hypothalamus, plays an operative role in regulating food intake and the sleep/wake cycle. Considering that these physiological functions pursue diurnal variations, we checked whether the total hypothalamic MCH level depends on the time of the day. The aggregated MCH peptide content of the whole MCH neuron population was significantly higher at the end of the sleeping period (lights on), than at the end of the active period (lights off). This result, together with earlier observations, indicates that in contrast to the MCH gene expression, the level of MCH peptide is object of circadian variation in the hypothalamus.

  3. Modeling flow through the sand pack: implications for groundwater sampling from multi- level monitoring wells in fractured bedrock aquifers. (United States)

    Kozuskanich, J.; Novakowski, K.; Anderson, B.


    Multi-level piezometers are often used in groundwater studies to monitor multiple zones within a single borehole. In the fractured rock setting the monitoring intervals are typically designed to isolate discrete fracture features (single fractures or fracture zones). This can be very useful for determining vertical connectivity and the distribution of a contaminant within a fractured rock aquifer. A simple and inexpensive method for completing a bedrock borehole as a multi-level piezometer is to use PVC screen and riser, a sand pack around the screened section, and bentonite to isolate each interval. Flow into the borehole is dominantly confined to the intersecting discrete fracture features. The objective of this study is to examine the nature of the flow through the sand pack and screen slots as water travels from the fracture to the pump intake under pumping conditions. Our conceptual model suggests only a portion of the sand pack in the vicinity of the fractures should be hydraulically active in this scenario. Thus, portions of the wellbore may remain stagnant during pumping depending on the location of the pump intake with respect to the fractures. Flow paths in the sand pack may be controlled by the relationship between the transmissivity of the fracture and screen slots. HydroGeoSphere, a numerical model for flow and solute transport in discrete fractures and porous media, will be used to validate the conceptual model and define the head and velocity profiles in a multi-level interval under various pumping rate and discrete fracture aperture scenarios. The results of this study could have implications for defining a "well volume" in sampling protocols designed for multi-level piezometers in bedrock aquifer systems. The results may also be a useful tool for interpreting the significance of the sand pack as a source of bacteria in water quality monitoring studies that use multi-level piezometer construction of this sort.

  4. Data Driven Models to Forecast Groundwater Level in Response to Hydro-climatological Conditions and Agricultural Water Demand (United States)

    Amaranto, Alessandro; Corzo Perez, Gerald; Solomatine, Dimitri; Meyer, George; Munoz-Arriola, Francisco


    Water table forecasts are important for development of water management plans, especially in areas where groundwater is the main resource for irrigation. This study aims to investigate the capability of different data-driven models to forecast water table levels from one to five months ahead. Five different models (Random Forest, Support Vector Machines, Artificial Neural Networks, Deep Neural Networks and Genetic Programming) are developed to predict the water table level in response to hydro-climatological variables (precipitation, snowmelt and evapotranspiration) in an intensively corn-cultivated area in the Platte River Basin (Nebraska, USA). Corn water demand and precipitation forecasts are also considered as possible inputs to the model. Four error statistics (root mean squared error, coefficient of determination, percent bias and Nash-Sutcliffe index) and two baseline references models (autoregressive and naïve) are used to compare the accuracy of the different models. Results for the case under investigation show that all considered data-driven models predict water table depth with high accuracy up to two months ahead. When the prediction horizon increases, a model using genetic programming is showing better results than the other modelling techniques, in particular when the corn water demand and the forecasted precipitation are included as inputs.

  5. Linking Organic Matter Deposition And Iron Mineral Transformations to Groundwater Arsenic Levels in the Mekong Delta, Cambodia

    Energy Technology Data Exchange (ETDEWEB)

    Quicksall, A.N.; Bostick, B.C.; Sampson, M.L.


    Enriched As in drinking water wells in south and Southeast Asia has increased the risk of cancer for nearly 100 million people. This enrichment is generally attributed to the reductive dissolution of Fe oxides; however, the complex expression of As enrichment in these areas is not yet well understood. Here, the coupled sedimentological and geochemical factors that contribute to the extent and spatial distribution of groundwater As concentrations in the Mekong River delta, Cambodia in an avulsed scroll bar sequence are examined. X-Ray absorption spectroscopy (XAS) was used to determine Fe and As speciation in redox preserved sediment collected from drilled cores. Dissolved As, Fe and S solution concentrations in existing and newly drilled wells (cores) differed considerably depending on their source sedimentology. The rapid burial of organic matter in the scroll bar sequence facilitated the development of extensive Fe-reducing conditions, and As release into the aquifer. In older features organic C levels are high enough to sustain extensive Fe reduction and provide ample SO{sub 4} which is reduced to sulfide. This S reduction impacts As levels; As is sequestered in sulfide minerals outside of the scrollbar sequence, decreasing pore water concentrations. In contrast, As is depleted in sediments from the scroll sequence, and associated with elevated pore water aqueous concentrations. The concentration and form of organic C in the scrollbar sequence is related to depositional environment, and can facilitate Fe and S mineral transformations, distinct sedimentary environments explain a portion of the inherent heterogeneity of aquifer As concentrations.

  6. Excel Spreadsheet Tools for Analyzing Groundwater Level Records and Displaying Information in ArcMap (United States)

    Tillman, Fred D


    When beginning hydrologic investigations, a first action is often to gather existing sources of well information, compile this information into a single dataset, and visualize this information in a geographic information system (GIS) environment. This report presents tools (macros) developed using Visual Basic for Applications (VBA) for Microsoft Excel 2007 to assist in these tasks. One tool combines multiple datasets into a single worksheet and formats the resulting data for use by the other tools. A second tool produces summary information about the dataset, such as a list of unique site identification numbers, the number of water-level observations for each, and a table of the number of sites with a listed number of water-level observations. A third tool creates subsets of the original dataset based on user-specified options and produces a worksheet with water-level information for each well in the subset, including the average and standard deviation of water-level observations and maximum decline and rise in water levels between any two observations, among other information. This water-level information worksheet can be imported directly into ESRI ArcMap as an 'XY Data' file, and each of the fields of summary well information can be used for custom display. A separate set of VBA tools distributed in an additional Excel workbook creates hydrograph charts of each of the wells in the data subset produced by the aforementioned tools and produces portable document format (PDF) versions of the hydrograph charts. These PDF hydrographs can be hyperlinked to well locations in ArcMap or other GIS applications.

  7. Controlling gray-level variation in contrast-enhanced digital mammography: design of a calibration procedure (United States)

    Jeunehomme, Fanny; Iordache, Razvan; Muller, Serge L.; Mawdsley, Gordon E.; Yaffe, Martin J.


    Ideally, the gray level changes in a Contrast-Enhanced Digital Mammography (CEDM) sequence reflect the uptake and wash-out of contrast medium in the breast. While insignificant in standard mammography, gray level variations with time caused both by patient and system related factors, have been observed in clinical CEDM sequences. We have acquired phantom image series on digital mammography systems using a Mo/Cu anode-filter combination and a tube voltage between 45 and 49 kVp, in order to derive a model for gray level change with time as a function of system parameters. The gray level variation exhibits a fair degree of inter-series repeatability, and strongly depends on the dose received by the detector and timing of the image acquisition series. Moreover, for tissue-equivalent compositions, the relative gray level change with respect to the first image does not depend on the composition. We designed a calibration procedure that can be used to compensate for the tiny system-dependent signal variation that has been observed. A global reduction of 80-93% of the variation has been demonstrated in sequences acquired on a breast shaped phantom. Local improvement is effective across the whole field of view. When imaging iodine inserts (0.5-2 mg/cm2 concentration), the calibration increases the constancy with time of iodine signal on subtracted sequences by a factor of 4 (median value).

  8. Influence of irrigation on the level, salinity and flow of groundwater at ...

    African Journals Online (AJOL)

    was installed to monitor the water levels and electrical conductivity (EC) over a period of 1 year. It was found that the leaching requirement to ensure sustainable irrigation is 611.5 mm/a. According to the water balance this requirement is 562 mm/a. Salt deposited through irrigation water amounts to 4.65 t/ha per annum.

  9. Sea Levels Online: Sea Level Variations of the United States Derived from National Water Level Observation Network Stations (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water level records are a combination of the fluctuations of the ocean and the vertical land motion at the location of the station. Monthly mean sea level (MSL)...

  10. Western USA groundwater drilling (United States)

    Jasechko, S.; Perrone, D.


    Groundwater in the western US supplies 40% of the water used for irrigated agriculture, and provides drinking water to individuals living in rural regions distal to perennial rivers. Unfortunately, current groundwater use is not sustainable in a number of key food producing regions. While substantial attention has been devoted to mapping groundwater depletion rates across the western US, the response of groundwater users via well drilling to changing land uses, water demands, pump and drilling technologies, pollution vulnerabilities, and economic conditions remains unknown. Here we analyze millions of recorded groundwater drilling events in the western US that span years 1850 to 2015. We show that groundwater wells are being drilled deeper in some, but not all, regions where groundwater levels are declining. Groundwater wells are generally deeper in arid and mountainous regions characterized by deep water tables (e.g., unconfined alluvial and fractured bedrock aquifers), and in regions that have productive aquifers with high water quality deep under the ground (e.g., confined sedimentary aquifers). Further, we relate water quality and groundwater drilling depths in 40 major aquifer systems across the western US. We show that there is substantial room for improvement to the existing 2-D continental-scale assessments of domestic well water vulnerability to pollution if one considers the depth that the domestic well is screened in addition to pollutant loading, surficial geology, and vertical groundwater flow rates. These new continental-scale maps can be used to (i) better assess economic, water quality, and water balance limitations to groundwater usage, (ii) steer domestic well drilling into productive strata bearing clean and protected groundwater resources, and (iii) assess groundwater management schemes across the western US.

  11. Convenient telemetry system for precise and continuous measurement of groundwater level and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tsunakawa, Hideo; Asada, Toshi


    A telemeter system has been developed, a device easy to manufacture and install and which facilitates data collection and achieves a relative precision to at least 1 cm in underground water level and 5 m deg C in underground water temperature, thus contributing to earthquake prediction. Its underground water level sensor feeds as voltage the differential pressure of a membrane to which a semiconductor sensor chip is attached. The sensor uses a 12V DC power supply and achieves a sensitivity of 8 mV/cm to sense a 0-5 m water level change as a 1-5 V voltage fluctuation. This sensor is put into a 40 mm-diameter, 100 mm-long brass container and dipped in water at a depth of about 2.5 m. To detect underground water temperature sensor, a semiconductor sensor LM35 is placed in a 25 mm-diameter, 50 mm-long brass container and submerged at a desired depth. The system uses a 12-bit data logger. Telemetry takes place at 1,200 bps via modems and NTT's(Nippon Telegraph and Telecommunications) public telephone line. An example of measurement is shown and mentioned. (2 figs, 5 refs)

  12. Stage-Level and Individual-Level distinction in morphological variation

    Directory of Open Access Journals (Sweden)

    Javier Rivas


    Full Text Available This work examines the role of the stage-level (SL/individual-level (IL distinction applied to nouns in a case of morphosyntactic regularization in Spanish: variable reanalysis of the NP argument as subject in the presentational haber construction (había/habían perros. We conduct variationist, quantitative analyses on all instances of existential haber with a plural NP in corpora of spoken Puerto Rican Spanish (>500,000 words to determine the linguistic factor groups that promote reanalysis and, hence, pluralized forms. Results of variable rule analyses reveal that the SL-IL distinction constrains the regularization. IL predicates significantly favor haber regularization (e.g., habían muchas personas de las Antillas ‘there were a lot of people from the Antillas’ whereas SL predicates significantly disfavor pluralized forms (este año hubo menos tiros que en años pasados ‘this year there were fewer shots fired than previous years’. These results are interpreted from within a usage-based framework in which the status of the noun introduced in the [haber + NP] construction, as either a likely or unlikely subject for haber, influences the analogical leveling. IL predicates are more prototypical nouns than SL predicates because the former are temporally persistent. IL predicates promote nouns’ candidacy as subjects over direct objects because prototypical subjects present two temporally-persistent characteristics: independence existence and referentiality. As a result, IL predicates increase the likelihood of reanalyzing the direct object as subject, thus triggering agreement of the verbal form with plural NPs. SL predicates, on the other hand, because they display low temporal stability, inhibit regularization.

  13. Information Entropy Evolution for Groundwater Flow System: A Case Study of Artificial Recharge in Shijiazhuang City, China

    Directory of Open Access Journals (Sweden)

    Wei Xu


    Full Text Available The groundwater flow system is typical dissipative structure system, and its evolution can be described with system information entropies. The information entropies of groundwater in Shijiazhuang City had been calculated between 1960 and 2005, and the results show that the entropies have a decreasing trend throughout the research period, and they can be divided into our stages based on the groundwater flow system entropy variation as follows: entropy steady period (1960–1965, entropy decreasing period (1965–1980, entropy increasing period (1980–1995 and secondary entropy decreasing period (1995–2005; understanding the major and significant driving the pattern changing forces of groundwater levels is essential to groundwater management,. A new method of grey correlation analysis has been presented, and the results show that, the grey correlation grade between groundwater flow system information entropies and precipitation series is γ01 = 0.749, the grey correlation grade between groundwater flow system information entropies and groundwater withdrawal series is γ02 = 0.814, as the groundwater withdrawal is the main driving force of groundwater flow system entropy variation; based on the numerical simulation results, information entropy increased with artificial recharge, and a smaller recharge water volume would enhance the information entropy drastically, but then doubled water would not increase the information correspondingly, which could be useful to assess the health state of groundwater flow systems.

  14. Wind-Driven Sea-Level Variation Influences Dynamics of Salt Marsh Vegation

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairns, David; Bartholdy, Jesper


    Long-term variation of mean sea level has been considered the primary exogenous factor of vegetation dynamics in salt marshes. In this study, we address the importance of short-term, wind-induced rise of the sea surface in such biogeographic changes. There was an unusual opportunity for examining...... field data on plant species frequency, sea-level variation, and sedimentation acquired from the Skallingen salt marsh in Denmark since the 1930s. The environmental and floristic history of Skallingen was summarized as (1) continuous sea-level rise with temporal variability (2.3–5.0 mm yr-1), (2......) continuous sedimentation with spatial variability (2.0–4.0 mm yr-1), (3) increased frequency of over-marsh flooding events, and (4) contemporary dominance of Halimione portulacoides, indicating little progressive succession toward a later phase. Conventionally, recent eustatic sea-level rise was believed...

  15. Variations in levels of care within a hospital provided to acute ...

    African Journals Online (AJOL)

    5 to theatre. Conclusion. Significant variations exist in the level of obser- vations of vital signs between different geographical loca- tions within the hospital. This is problematic ... porters unaccompanied by medical staff in 3 cases. One patient .... must be completed and stuck onto the patient's file would force staff to formally ...

  16. Genetic variation within IL18 is associated with insulin levels, insulin resistance and postprandial measures

    NARCIS (Netherlands)

    Smart, M C; Dedoussis, G; Yiannakouris, N; Grisoni, M L; Dror, G K; Yannakoulia, M; Papoutsakis, C; Louizou, E; Mantzoros, C S; Melistas, L; Kontogianni, M D; Cooper, J A; Humphries, S E; Talmud, P J; Vidra, Nikoletta

    BACKGROUND AND AIMS: IL-18 expression is up-regulated in atherosclerotic plaques, and higher levels are seen in obese and Type 2 Diabetic individuals. More recently, a possible role for IL-18 in glucose and energy homeostasis has been suggested. METHODS AND RESULTS: We investigated variation within

  17. Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels

    NARCIS (Netherlands)

    G. Draisma (Gerrit); R. Pool (Reńe); M. Kobl (Michael); R. Jansen (Rick); A.K. Petersen; A.A.M. Vaarhorst (Anika); I. Yet (Idil); T. Haller (Toomas); A. Demirkan (Ayşe); T. Esko (Tõnu); G. Zhu (Gu); S. Böhringer (Stefan); M. Beekman (Marian); J.B. van Klinken (Jan Bert); W. Römisch-Margl (Werner); C. Prehn (Cornelia); J. Adamski (Jerzy); A.J.M. De Craen (Anton J. M.); E.M. van Leeuwen (Elisa); N. Amin (Najaf); H. Dharuri (Harish); H.J. Westra (Harm-Jan); L. Franke (Lude); E.J.C. de Geus (Eco); J.J. Hottenga (Jouke Jan); G.A.H.M. Willemsen (Gonneke); A.K. Henders (Anjali); G.W. Montgomery (Grant); A.S. Dimas (Antigone); J.B. Whitfield (John B.); B.W.J.H. Penninx (Brenda); T.D. Spector (Timothy); A. Metspalu (Andres); P. Eline Slagboom; K.W. Van Dijk (Ko Willems); P.A.C. 't Hoen (Peter); K. Strauch (Konstantin); N.G. Martin (Nicholas); G.J. van Ommen (Gert); T. Illig (Thomas); J.T. Bell (Jordana); M. Mangino (Massimo); K. Suhre (Karsten); M.I. McCarthy (Mark); C. Gieger (Christian); A. Isaacs (Aaron); C.M. van Duijn (Cornelia); D.I. Boomsma (Dorret)


    textabstractMetabolites are small molecules involved in cellular metabolism, which can be detected in biological samples using metabolomic techniques. Here we present the results of genome-wide association and meta-analyses for variation in the blood serum levels of 129 metabolites as measured by

  18. Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels

    NARCIS (Netherlands)

    Draisma, Harmen H. M.; Pool, Rene; Kobl, Michael; Jansen, Rick; Petersen, Ann-Kristin; Vaarhorst, Anika A. M.; Yet, Idil; Haller, Toomas; Demirkan, Ayse; Esko, Tonu; Zhu, Gu; Boehringer, Stefan; Beekman, Marian; van Klinken, Jan Bert; Roemisch-Margl, Werner; Prehn, Cornelia; Adamski, Jerzy; de Craen, Anton J. M.; van Leeuwen, Elisabeth M.; Amin, Najaf; Dharuri, Harish; Westra, Harm-Jan; Franke, Lude; de Geus, Eco J. C.; Hottenga, Jouke Jan; Willemsen, Gonneke; Henders, Anjali K.; Montgomery, Grant W.; Nyholt, Dale R.; Whitfield, John B.; Penninx, Brenda W.; Spector, Tim D.; Metspalu, Andres; Slagboom, P. Eline; van Dijk, Ko Willems; 't Hoen, Peter A. C.; Strauch, Konstantin; Martin, Nicholas G.; van Ommen, Gert-Jan B.; Illig, Thomas; Bell, Jordana T.; Mangino, Massimo; Suhre, Karsten; McCarthy, Mark I.; Gieger, Christian; Isaacs, Aaron; van Duijn, Cornelia M.; Boomsma, Dorret I.

    Metabolites are small molecules involved in cellular metabolism, which can be detected in biological samples using metabolomic techniques. Here we present the results of genome-wide association and meta-analyses for variation in the blood serum levels of 129 metabolites as measured by the Biocrates

  19. Variation in Fasting in Blood Sugar Levels of Pregnant and non ...

    African Journals Online (AJOL)

    This is a descriptive study on variation in fasting blood sugar level of pregnant and non-pregnant women attending Federal Medical Centre (FMC) Yenagoa, Nigeria in March 2008. Blood sample was taken under strict aseptic technique and tested for fasting blood sugar. The findings were analyzed using t-test and ...

  20. Salivary Biomarker Levels and Diurnal Variation: Associations with Medications Prescribed to Control Children's Problem Behavior (United States)

    Hibel, Leah C.; Granger, Douglas A.; Cicchetti, Dante; Rogosch, Fred


    This study examined associations between medications prescribed to control children's problem behaviors and levels of, and diurnal variation in, salivary cortisol (C), testosterone (T), and dehydroepiandrosterone (DHEA). Saliva was collected in the morning, midday, and afternoon from 432 children ages 6-13 years. Relative to a no-medication…

  1. Removal of elevated level of chromium in groundwater by the fabricated PANI/Fe3O4 nanocomposites. (United States)

    Ramachandran, Aruna; Prasankumar, T; Sivaprakash, S; Wiston, Biny R; Biradar, Santhosh; Jose, Sujin


    In this work, we report the reduction of chromium concentration in the polluted groundwater samples from Madurai Kamaraj University area, India, where the dissolved salts in groundwater are reported as serious health hazards for its inhabitants. The water samples have intolerable amounts of total dissolved solids (TDS) and chromium is a prominent pollutant among them. Chromium reduction was achieved by treating the polluted groundwater with PANI/Fe3O4 nanocomposites synthesized by in situ polymerization method. Further experimentation showed that the nanocomposites exhibit better chromium removal characteristics upon increasing the aniline concentration during the synthesis. We were able to reduce chromium concentration in the samples from 0.295 mg L-1 to a tolerable amount of 0.144 mg L-1. This work is expected to open doors for chromium-free groundwater in various regions of India, when improved to an industrial scale.

  2. Culture, climate change and farm-level groundwater management: An Australian case study (United States)

    Sanderson, Matthew R.; Curtis, Allen L.


    Cultural factors - values, beliefs, and norms - provide important insights into the environmental attitudes, risk perceptions, and behaviors of the general population. Little is known, however, about the ostensibly complex relationships linking those elements of culture to climate change risk perceptions, especially in the context of farm level decision in the ground water context. This paper addresses that gap through an analysis of survey data provided by irrigators in the Namoi catchment of Australia's Murray-Darling Basin. We use Values-Beliefs-Norms theory to construct multivariate models of the relationship between ground water irrigators' interpretations of climate change risks and their implementation of adaptive water conservation practices. Results indicate that these cultural factors are important explanations of irrigators' climate change risk perceptions, and these risk perceptions are related to adaptive ground water management strategies at the farm level. The implications of the findings are discussed for research on the culture-environment nexus and for outreach designed to encourage agricultural adaptations to climate change.


    Directory of Open Access Journals (Sweden)

    Que Yun


    Full Text Available In order to reveal the fluctuation effect of equilibrium moisture content of low subgrade in hot and humid climatic regions, the effect of temperature on the fluctuation of the equilibrium moisture content of subgrade was analysed. Taking the typical climate and the subgrade soil in Fujian province as an example, three technological methods - theoretical analysis, numerical simulation and indoor simulation experiment - were adopted in the investigation of the fluctuation effect of equilibrium moisture content of subgrade. The results show that, computing results from the formula of the equilibrium moisture content of subgrade, the numerical simulation results are closer to each other in consideration of the temperature effect. The test results can not reflect the relationship between the equilibrium moisture content and the height of embankment. The maximum fluctuation range of the equilibrium moisture content of the cement concrete pavement is less than 2 percent in Fujian area, and this phenomenon presents the effect of the moist-hot climate on the equilibrium moisture content. Equilibrium moisture content presents a declining trend with the increment of the temperature and the compactness. So, if matric potential considering temperature indirectly reflects the influence of thermal potential, then the equilibrium moisture content of low subgrade under high groundwater level can be estimated approximately. The fluctuation range of equilibrium moisture content in different layers of subgrade can be reduced effectively with the increment of the roadbed compaction degree.

  4. Effects of variations in hydraulic conductivity and flow conditions on groundwater flow and solute transport in peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Kellner, Erik [Dept. of Forest Ecology, Univ. of Helsinki (Finland)


    In this report it is examined to what extent the variation in hydraulic conductivity within a peatland and adjoining sediments would affect the flow patterns within it under some certain hydraulic-head gradients and other certain border conditions. The first part of the report contains a short review of organic and mineral-soil sediment types and characteristics and what we know about present peatlands and underlying sediments in the SKB investigation areas today. In the next part, a 2-dimensional model is used to simulate flows and transports in different settings of a peatland, with the objective of studying the effects of some particular factors: 1. The magnitude of the hydraulic conductivity of the peat and of underlying layers. 2. Presence and positions of cracks in underlying clay layers. 3. Anisotropy and heterogeneity in peat hydraulic conductivity. 4. The size of the water recharge at the peatland surface. 5. The seasonal variation of the water recharge. The modelling results show that the importance of flow direction decreases with decreasing hydraulic conductivity in the peatland. This occurs as the convective flux is slowed down and the transport is taken over by the diffusive flux. Because the lowest hydraulic conductivity layer to large extent determines the size of the flow, presence of a low-conductivity layer, such as a layer of clay, is an important factor. Presence of cracks in such tight layers can increase the transport of solutes into the peat. The highest inflow rates are reached when such cracks occur in discharge areas with strong upward flow. On the other hand, a conservative solute can spread efficiently if there is a crack in low-flow locations. The effect of anisotropy is found to be small, partly because the horizontal gradients become smaller as distances are larger. The effect of layers with high or low permeability varies depending on the location and the prevailing gradients. One tight layer has a strong effect on the flow pattern

  5. Analysis of groundwater anomalies using GRACE over various districts of Jharkhand (United States)

    Verma, Arpita; Kumar, Anant; Kumar, Sanjay


    Groundwater is an important requirement for the massive population of India. Generally the groundwater level is monitored by using monitoring wells. In this study, Gravity Recovery and Climate Experiment (GRACE) Terrestrial Water Storage (TWS), Land surface state variable GLDAS and Soil Moisture (SM) data were tested for estimating ground water information and based on these groundwater assessments were carried out over the years 2003 to 2012 for Jharkhand State. Additionally, Tropical Rainfall Measuring Mission (TRMM) accumulated rainfall data was also used for the year's 2008 to 2012.From the study over 120 months span of various districts the maximum depletion in storage of groundwater averaged over the six districts is +/-5cm/yr in the year 2010 and maximum storage year (in term of Equivalent water thickness) groundwater average over the six districts is +/-4.4cm in the year 2003. The study also utilized ground based Seasonal changes in the groundwater resource over 287 monitoring wells and estimated groundwater data using map analysis over Jharkhand. This study analyzed seasonal water level variations based on groundwater anomaly. Remote sensing generated result compared with well data shows R2 = 0.6211 and RMSE = 39.46 cm at average seasonal cycle. Also information of different time periods of rainfall (i.e., pre-monsoon and post-monsoon) was analyzed. The trend analysis of rainfall and estimated groundwater gives the basic knowledge that groundwater storage loss and gain showed similarities with increase and decrease in rainfall.

  6. Application of water quality index to evaluate groundwater quality (temporal and spatial variation) of an intensively exploited aquifer (Puebla valley, Mexico). (United States)

    Salcedo-Sánchez, Edith R; Garrido Hoyos, Sofía E; Esteller Alberich, Ma Vicenta; Martínez Morales, Manuel


    The spatial and temporal variation of water quality in the urban area of the Puebla Valley aquifer was evaluated using historical and present data obtained during this investigation. The current study assessed water quality based on the Water Quality Index developed by the Canadian Council of Ministers of the Environment (CCME-WQI), which provides a mathematical framework to evaluate the quality of water in combination with a set of conditions representing quality criteria, or limits. This index is flexible regarding the type and number of variables used by the evaluation given that the variables of interest are selected according to the characteristics and objectives of development, conservation and compliance with regulations. The CCME-WQI was calculated using several variables that assess the main use of the wells in the urban area that is public supply, according to criteria for human use and consumption established by Mexican law and international standards proposed by the World Health Organization. The assessment of the index shows a gradual deterioration in the quality of the aquifer over time, as the amount of wells with excellent quality have decreased and those with lower index values (poor quality) have increased throughout the urban area of the Puebla Valley aquifer. The parameters affecting groundwater quality are: total dissolved solids, sulfate, calcium, magnesium and total hardness.

  7. Geographic variation and effect of area-level poverty rate on colorectal cancer screening

    Directory of Open Access Journals (Sweden)

    Schootman Mario


    Full Text Available Abstract Background With a secular trend of increasing colorectal cancer (CRC screening, concerns about disparities in CRC screening also have been rising. It is unclear if CRC screening varies geographically, if area-level poverty rate affects CRC screening, and if individual-level characteristics mediate the area-level effects on CRC screening. Methods Using 2006 Missouri Behavioral Risk Factor Surveillance System (BRFSS data, a multilevel study was conducted to examine geographic variation and the effect of area-level poverty rate on CRC screening use among persons age 50 or older. Individuals were nested within ZIP codes (ZIP5 areas, which in turn, were nested within aggregations of ZIP codes (ZIP3 areas. Six groups of individual-level covariates were considered as potential mediators. Results An estimated 51.8% of Missourians aged 50 or older adhered to CRC screening recommendations. Nearly 15% of the total variation in CRC screening lay between ZIP5 areas. Persons residing in ZIP5 areas with ≥ 10% of poverty rate had lower odds of CRC screening use than those residing in ZIP5 areas with Conclusion Large geographic variation of CRC screening exists in Missouri. Area-level poverty rate, independent of individual-level characteristics, is a significant predictor of CRC screening, but it only explains a small portion of the geographic heterogeneity of CRC screening. Individual-level factors we examined do not mediate the effect of the area-level poverty rate on CRC screening. Future studies should identify other area- and individual-level characteristics associated with CRC screening in Missouri.

  8. Effect of curing, capillary action, and groundwater level increment on geotechnical properties of lime concrete: Experimental and prediction studies

    Directory of Open Access Journals (Sweden)

    Mohammad Saberian


    Full Text Available Lime concrete and lime treatment are two attractive techniques for geotechnical engineers. However, researches have rarely been carried out to study the effects of moisture and capillary action due to increasing groundwater level on geotechnical properties of lime concrete. The aim of this study is to investigate the effects of curing time and degree of saturation on some of geotechnical properties of lime concrete such as unconfined compressive strength (UCS, secant modulus (Es, failure strain, brittleness index (IB, and deformability index (ID using unconfined compression tests. First of all, geotechnical and chemical properties of used materials were determined. After curing times of 14 d, 28 d, 45 d, and 60 d in laboratory condition, the specimens were exposed to saturation levels ranging from 0 to 100%. The results showed that the moisture and curing time have significant effects on the properties of lime concrete. Based on the results of scanning electron micrograph (SEM test, it was observed that the specimen was characterized by a rather well-structured matrix since both the filling of a large proportion of the coarse-grained soil voids by clay and the pozzolanic activity of lime led to retaining less pore water in the specimen, increasing the UCS and Es, and consequently resisting against swelling and shrinkage of the clay soil. Moreover, due to the pozzolanic reactions and reduction of water, by increasing the curing time and decreasing the degrees of saturation, UCS, Es, and IB increased, and ID decreased. Based on the experimental results, a phenomenological model was used to develop equations for predicting the properties in relation to the ratio of degree of saturation/curing time. The results showed that there was a good correlation (almost R2 > 90% between the measured parameters and the estimated ones given by the predicted equations.

  9. Application of a Coupled Vegetation Competition and Groundwater Simulation Model to Study Effects of Sea Level Rise and Storm Surges on Coastal Vegetation

    Directory of Open Access Journals (Sweden)

    Su Yean Teh


    Full Text Available Global climate change poses challenges to areas such as low-lying coastal zones, where sea level rise (SLR and storm-surge overwash events can have long-term effects on vegetation and on soil and groundwater salinities, posing risks of habitat loss critical to native species. An early warning system is urgently needed to predict and prepare for the consequences of these climate-related impacts on both the short-term dynamics of salinity in the soil and groundwater and the long-term effects on vegetation. For this purpose, the U.S. Geological Survey’s spatially explicit model of vegetation community dynamics along coastal salinity gradients (MANHAM is integrated into the USGS groundwater model (SUTRA to create a coupled hydrology–salinity–vegetation model, MANTRA. In MANTRA, the uptake of water by plants is modeled as a fluid mass sink term. Groundwater salinity, water saturation and vegetation biomass determine the water available for plant transpiration. Formulations and assumptions used in the coupled model are presented. MANTRA is calibrated with salinity data and vegetation pattern for a coastal area of Florida Everglades vulnerable to storm surges. A possible regime shift at that site is investigated by simulating the vegetation responses to climate variability and disturbances, including SLR and storm surges based on empirical information.

  10. Declining Groundwater Levels in North India: Understanding Sources of Irrigation Inefficiency (United States)

    O'Keeffe, J.; Buytaert, W.; Mijic, A.; Brozovic, N.


    Over the last half century, the green revolution has transformed India from a famine-prone, drought-susceptible country, into the world's third largest grain producer and one of the most intensely irrigated regions on the planet. This is in no small part due to the country's vast water resources along with an increase in tubewells and more advanced abstraction methods. While agricultural intensification has had undeniable benefits, it has, and continues to have a significant impact on water resources. Unless solutions which take into consideration the ever evolving socio-economic, hydrological and climatic conditions are found, India's agricultural future looks bleak.This research examines the irrigation behaviour of farmers, using data collected during field work in the State of Uttar Pradesh within the Ganges Basin of North India. Significant differences in farmer behaviour and irrigation practices are highlighted, not only between State districts but between individual farmers. This includes the volume of irrigation water applied and the price paid, as well as differences in the yields of crops produced. Analyses of results suggest that this is due to a number of factors, particularly the source of irrigation water. Study areas which had access to cheaper, but crucially less reliable, canal water were found to invest in more efficient water saving technologies in order to reduce the overall cost of irrigation during periods where less expensive canal water is not available. As a result, overall water use and irrigation cost is lower and yields are higher despite very similar climatic conditions. While cheap canal water is not an option for all farmers, the results show that the introduction of more efficient water saving technologies, despite the significant capital expenditure is a viable option for many farmers and costs can be recovered in a relatively short space of time. In addition, the reduction of declining water levels mean that water is abstracted from

  11. Physical-level synthesis for digital lab-on-a-chip considering variation, contamination, and defect. (United States)

    Liao, Chen; Hu, Shiyan


    Microfluidic lab-on-a-chips have been widely utilized in biochemical analysis and human health studies due to high detection accuracy, high timing efficiency, and low cost. The increasing design complexity of lab-on-a-chips necessitates the computer-aided design (CAD) methodology in contrast to the classical manual design methodology. A key part in lab-on-a-chip CAD is physical-level synthesis. It includes the lab-on-a-chip placement and routing, where placement is to determine the physical location and the starting time of each operation and routing is to transport each droplet from the source to the destination. In the lab-on-a-chip design, variation, contamination, and defect need to be considered. This work designs a physical-level synthesis flow which simultaneously considers variation, contamination, and defect of the lab-on-a-chip design. It proposes a maze routing based, variation, contamination, and defect aware droplet routing technique, which is seamlessly integrated into an existing placement technique. The proposed technique improves the placement solution for routing and achieves the placement and routing co-optimization to handle variation, contamination, and defect. The simulation results demonstrate that our technique does not use any defective/contaminated grids, while the technique without considering contamination and defect uses 17.0% of the defective/contaminated grids on average. In addition, our routing variation aware technique significantly improves the average routing yield by 51.2% with only 3.5% increase in completion time compared to a routing variation unaware technique.

  12. Climate variability, extremes and trends of total sea level variations of the Baltic Sea (United States)

    Lehmann, Andreas; Herrford, Josefine; Höflich, Katharina; Getzlaff, Klaus


    The total sea level change of the Baltic Sea is a combination of wind-driven large volume changes (LVCs), local sea level variations (water level raised by wind and seiche) and wind waves including the sea level change by climatic-driven water density changes and the global sea level rise. The ocean surface velocity is a combination of Ekman surface flow, baroclinic and barotropic flow components and Stokes drift. The first two components can be calculated by standard hydrodynamic 3-dimensional ocean circulation models. But the calculation of the Stokes drift needs an additional approach. The Stokes velocity is a function of the significant wave height and period. It is important for the generation of Langmuir circulation which in turn contributes to the vertical mixing near the ocean surface and to the wind-driven surface transport. We used the Kiel Baltic Sea ice-ocean model (BSIOM) coupled with a simple fully integrated wave model to determine total sea level changes of the entire Baltic Sea for the period 1979-2016. BSIOM has been forced by ERA-Interim reanalysis data (1979-2016). The coupled model system allows the calculation of the total sea level change on a 2.5 km model grid of the entire Baltic Sea as a combination of large volume changes (LVCs), local sea level variations and wind waves including the sea level rise due to climatic-driven water density changes. Thus, combining sea level changes of different time and space scales. Different areas of the Baltic Sea show different trends in significant wave heights over different seasons. During winter, an increase of significant wave height is mainly associated with the retreat of the sea ice cover. There is also an increase of significant wave height of about 5 cm/decade in the eastern Gotland basin during winter. In summer and autumn we found negative trends strongest in the south-western Baltic Sea. Extreme total sea level variations occur if LVCs coincide with local sea level variations and wind waves.

  13. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03 (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.


    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  14. Monitoring Vertical Crustal Deformation and Gravity Variations during Water Level Changes at the Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    WANG Wei


    Full Text Available Monitoring vertical crustal deformation and gravity changes during water level changes at the Three Gorges reservoir is important for the safe operation of the Three Gorges Dam and for the monitoring and prevention of a regional geological disaster. In this study, we determined vertical crustal deformation and gravity changes during water level variations of the Three Gorges reservoir from direct calculations and actual measurements and a comprehensive solution. We used water areas extracted image data from the ZY-3 satellite and water level data to calculate gravity changes and vertical crustal deformation caused by every 5 m change in the water level due to storage and drainage of the Three Gorges reservoir from 145 m to 175 m. The vertical crustal deformation was up to 30 mm. The location of gravity change above 20 μ Gal(1 Gal=10-2 m/s2 was less than 2 km from the centerline of the Yangtze River. The CORS ES13 in Badong, near the reservoir, measured the vertical crustal deformation during water level changes. Because of the small number of CORS and gravity stations in the Three Gorges reservoir area, monitoring deformation and gravity related to changes in the Three Gorges reservoir water level cannot be closely followed. Using 26 CORS and some of the gravity stations in the Three Gorges area and based on loading deformation and the spherical harmonic analysis method, an integrated solution of vertical deformation and gravity variations during water level changes of the reservoir was determined, which is consistent with the actual CORS monitoring results. By comparison, we found that an integrated solution based on a CORS network can effectively enhance the capability of monitoring vertical crustal deformation and gravity changes during water level variations of the reservoir.

  15. Identification and level of organochlorine insecticide contamination in groundwater and iridology analysis for people in Upper Citarum cascade (United States)

    Oginawati, K.; Pratama, M. A.


    Organochlorines are the main pollutants in the class of persistent organic pollutants which are types of pollutants that are being questioned worldwide due to chronic persistence, toxicity and bioaccumulation. Human around the Citarum River are still using groundwater as a drinking source. It is very risky for people health that consume groundwater because in 2009 the application of organochlorine still found in the Upper Citarum watershed rice field and had potential to contaminate groundwater. Groundwater was analyzed with nine species belonging to the organochlorine pollutants Organic Peristent types. 7 types of organochlorinesAldrin was detected with an average concentration of 0.09 ppb, dieldrin with an average concentration of 24 ppb, heptaklor with an average concentration of 0.51 ppb, with concentrations of endosulfan on average 0.73 ppb, DDT with average concentration of 0.13 ppb, Lindan with an average concentration of 1.2 ppb, endrin with an average concentration of 0.03 ppb. Types with the highest concentration of organochlorine a lindan and endosulfan. Residues of aldrin, dieldrin and heptaklor in groundwater already exceeds the quality standards for drinking water Permenkes 492/2010. Based on the iridology analysis obtained several systems are expected to nervous, immune and reproductive system disorders and toxin deposits under the skin.

  16. Investigating variations in implementation fidelity of an organizational-level occupational health intervention. (United States)

    Augustsson, Hanna; von Thiele Schwarz, Ulrica; Stenfors-Hayes, Terese; Hasson, Henna


    The workplace has been suggested as an important arena for health promotion, but little is known about how the organizational setting influences the implementation of interventions. The aims of this study are to evaluate implementation fidelity in an organizational-level occupational health intervention and to investigate possible explanations for variations in fidelity between intervention units. The intervention consisted of an integration of health promotion, occupational health and safety, and a system for continuous improvements (Kaizen) and was conducted in a quasi-experimental design at a Swedish hospital. Implementation fidelity was evaluated with the Conceptual Framework for Implementation Fidelity and implementation factors used to investigate variations in fidelity with the Framework for Evaluating Organizational-level Interventions. A multi-method approach including interviews, Kaizen notes, and questionnaires was applied. Implementation fidelity differed between units even though the intervention was introduced and supported in the same way. Important differences in all elements proposed in the model for evaluating organizational-level interventions, i.e., context, intervention, and mental models, were found to explain the differences in fidelity. Implementation strategies may need to be adapted depending on the local context. Implementation fidelity, as well as pre-intervention implementation elements, is likely to affect the implementation success and needs to be assessed in intervention research. The high variation in fidelity across the units indicates the need for adjustments to the type of designs used to assess the effects of interventions. Thus, rather than using designs that aim to control variation, it may be necessary to use those that aim at exploring and explaining variation, such as adapted study designs.

  17. Geostatistical analysis of groundwater level using Euclidean and non-Euclidean distance metrics and variable variogram fitting criteria (United States)

    Theodoridou, Panagiota G.; Karatzas, George P.; Varouchakis, Emmanouil A.; Corzo Perez, Gerald A.


    Groundwater level is an important information in hydrological modelling. Geostatistical methods are often employed to map the free surface of an aquifer. In geostatistical analysis using Kriging techniques the selection of the optimal variogram model is very important for the optimal method performance. This work compares three different criteria, the least squares sum method, the Akaike Information Criterion and the Cressie's Indicator, to assess the theoretical variogram that fits to the experimental one and investigates the impact on the prediction results. Moreover, five different distance functions (Euclidean, Minkowski, Manhattan, Canberra, and Bray-Curtis) are applied to calculate the distance between observations that affects both the variogram calculation and the Kriging estimator. Cross validation analysis in terms of Ordinary Kriging is applied by using sequentially a different distance metric and the above three variogram fitting criteria. The spatial dependence of the observations in the tested dataset is studied by fitting classical variogram models and the Matérn model. The proposed comparison analysis performed for a data set of two hundred fifty hydraulic head measurements distributed over an alluvial aquifer that covers an area of 210 km2. The study area is located in the Prefecture of Drama, which belongs to the Water District of East Macedonia (Greece). This area was selected in terms of hydro-geological data availability and geological homogeneity. The analysis showed that a combination of the Akaike information Criterion for the variogram fitting assessment and the Brays-Curtis distance metric provided the most accurate cross-validation results. The Power-law variogram model provided the best fit to the experimental data. The aforementioned approach for the specific dataset in terms of the Ordinary Kriging method improves the prediction efficiency in comparison to the classical Euclidean distance metric. Therefore, maps of the spatial

  18. Estimating hydraulic parameters of a heterogeneous aquitard using long-term multi-extensometer and groundwater level data (United States)

    Zhuang, Chao; Zhou, Zhifang; Illman, Walter A.; Guo, Qiaona; Wang, Jinguo


    The classical aquitard-drainage model COMPAC has been modified to simulate the compaction process of a heterogeneous aquitard consisting of multiple sub-units (Multi-COMPAC). By coupling Multi-COMPAC with the parameter estimation code PEST++, the vertical hydraulic conductivity ( K v) and elastic ( S ske) and inelastic ( S skp) skeletal specific-storage values of each sub-unit can be estimated using observed long-term multi-extensometer and groundwater level data. The approach was first tested through a synthetic case with known parameters. Results of the synthetic case revealed that it was possible to accurately estimate the three parameters for each sub-unit. Next, the methodology was applied to a field site located in Changzhou city, China. Based on the detailed stratigraphic information and extensometer data, the aquitard of interest was subdivided into three sub-units. Parameters K v, S ske and S skp of each sub-unit were estimated simultaneously and then were compared with laboratory results and with bulk values and geologic data from previous studies, demonstrating the reliability of parameter estimates. Estimated S skp values ranged within the magnitude of 10-4 m-1, while K v ranged over 10-10-10-8 m/s, suggesting moderately high heterogeneity of the aquitard. However, the elastic deformation of the third sub-unit, consisting of soft plastic silty clay, is masked by delayed drainage, and the inverse procedure leads to large uncertainty in the S ske estimate for this sub-unit.

  19. Change in lameness risk estimates in piglets due to the modelling of herd-level variation

    DEFF Research Database (Denmark)

    Josiassen, M.K.; Christensen, J.


    In a previous study (Christensen, 1996. Prev. Vet. Med. 26, 107-118), an effect parameter changed from positive to negative depending on the model used. The study considered lameness in suckling piglets and the dataset included 7632 litters from 35 herds from the Health and Production Surveillance...... farrowing but before lameness or weaning occurred. This is, therefore, an example where not only the variances but also the effect parameters changed when we accounted for herd-level variation....

  20. Hospital-level variation in the percentage of admissions originating in the emergency department. (United States)

    Studnicki, James; Platonova, Elena A; Fisher, John W


    Well over half of all US hospital patients are now admitted directly through the emergency department (ED) rather than scheduled through the admissions department by a referring member of the medical staff. This study sought to understand hospital-level variation in the percentage of admissions originating in the ED. This was a retrospective, cross-sectional analysis of 5 748 375 ED visits and 2 265 478 inpatient discharge occurring in 192 short-term acute Florida hospitals in calendar year 2005. Hospitals with increasing percentages of patients admitted through the ED are smaller in scale with fewer admissions, beds, and smaller medical staffs but admit a higher percentage of their ED visits to the hospital. Patients in these hospitals are increasingly Hispanic, older, Medicare insured, and likely to represent a preventable ambulatory sensitive condition. The increasing rate of admissions from the ED department is a national trend, but there is substantial variation at the hospital level. In Florida, measures of hospital scale and an older population with some limitations in access to, or the quality of, primary care are the factors influencing hospital-level variation. Factors implicated in increased ED use such as ED visit acuity, lack of insurance, and race are not important contributory variables. The process of admission and, particularly, the role of the organized medical staff in this process are evolving, and the consequences of these changes require further research. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Effects of groundwater levels and headwater wetlands on streamflow in the Charlie Creek basin, Peace River watershed, west-central Florida (United States)

    Lee, T.M.; Sacks, L.A.; Hughes, J.D.


    The Charlie Creek basin was studied from April 2004 to December 2005 to better understand how groundwater levels in the underlying aquifers and storage and overflow of water from headwater wetlands preserve the streamflows exiting this least-developed tributary basin of the Peace River watershed. The hydrogeologic framework, physical characteristics, and streamflow were described and quantified for five subbasins of the 330-square mile Charlie Creek basin, allowing the contribution of its headwaters area and tributary subbasins to be separately quantified. A MIKE SHE model simulation of the integrated surface-water and groundwater flow processes in the basin was used to simulate daily streamflow observed over 21 months in 2004 and 2005 at five streamflow stations, and to quantify the monthly and annual water budgets for the five subbasins including the changing amount of water stored in wetlands. Groundwater heads were mapped in Zone 2 of the intermediate aquifer system and in the Upper Floridan aquifer, and were used to interpret the location of artesian head conditions in the Charlie Creek basin and its relation to streamflow. Artesian conditions in the intermediate aquifer system induce upward groundwater flow into the surficial aquifer and help sustain base flow which supplies about two-thirds of the streamflow from the Charlie Creek basin. Seepage measurements confirmed seepage inflow to Charlie Creek during the study period. The upper half of the basin, comprised largely of the Upper Charlie Creek subbasin, has lower runoff potential than the lower basin, more storage of runoff in wetlands, and periodically generates no streamflow. Artesian head conditions in the intermediate aquifer system were widespread in the upper half of the Charlie Creek basin, preventing downward leakage from expansive areas of wetlands and enabling them to act as headwaters to Charlie Creek once their storage requirements were met. Currently, the dynamic balance between wetland

  2. MODFLOW-NWT model used to evaluate the potential effect of groundwater pumpage and increased sea level on canal leakage and regional groundwater flow in Miami-Dade County, Florida (United States)

    U.S. Geological Survey, Department of the Interior — A three-dimensional, surface-water/groundwater model (MODFLOW-NWT with the Surface-Water Routing Process) was developed to the predict the effects of groundwater...

  3. High levels of faecal contamination in drinking groundwater and recreational water due to poor sanitation, in the sub-rural neighbourhoods of Kinshasa, Democratic Republic of the Congo. (United States)

    Kayembe, John M; Thevenon, Florian; Laffite, Amandine; Sivalingam, Periyasamy; Ngelinkoto, Patience; Mulaji, Crispin K; Otamonga, Jean-Paul; Mubedi, Josué I; Poté, John


    In many urban and peri-urban areas of developing countries, shallow wells and untreated water from urban rivers are used for domestic purposes, including drinking water supply, population bathing and irrigation for urban agriculture. The evaluation and monitoring of water quality are therefore necessary for preventing potential human risk associated with the exposure to contaminated water. In this study, physicochemical and bacteriological parameters were assessed in an urban river (named Kokolo Canal/Jerusalem River) draining the municipality of Lingwala (City of Kinshasa, Democratic Republic of the Congo) and in two shallow wells used as drinking water supplies, during the wet and dry seasons in order to estimate the seasonal variation of contamination. The faecal indicator bacteria (FIB) isolated strains (Escherichia coli (E. coli) and Enterococcus (ENT)) from water and surface sediment, were characterized for human-specific bacteroides by molecular approach. The results revealed very high faecal contamination of water from the shallow wells, and of water and sediments from the river, during both wet and dry seasons. During the wet season, E. coli reached the values of 18.6 × 10 5 and 4.9 × 10 5  CFU 100 mL -1 in Kokolo Canal and shallow wells, respectively; and Enterococcus reached the values of 7.4 × 10 4 and 2.7 × 10 4  CFU 100 mL -1 . Strong mutually positive correlation was observed between E. coli and ENT, with the range of R-value being 0.93 < r < 0.97 (p-value < 0.001, n = 15). The PCR assays for human-specific Bacteroides indicated that more than 98% of 500 isolated FIB strains were of human origin, pointing out the effect of poor household sanitation practices on surface water but also on groundwater contamination. The water samples from the shallow wells and Kokolo Canal were highly polluted with faecal matter in both seasons. However, the pollution level was significantly higher during the wet season

  4. Spatial and temporal variations of mercury levels in Okefenokee invertebrates: Southeast Georgia

    Energy Technology Data Exchange (ETDEWEB)

    George, Bagie M. [Department of Entomology, University of Georgia, 413 Biological Sciences Building, Athens, GA 30602 (United States)], E-mail:; Batzer, Darold [Department of Entomology, University of Georgia, 413 Biological Sciences Building, Athens, GA 30602 (United States)


    Accumulation of mercury in wetland ecosystems has raised concerns about impacts on wetland food webs. This study measured concentrations of mercury in invertebrates of the Okefenokee Swamp in Georgia, focusing on levels in amphipods, odonates, and crayfish. We collected and analyzed total mercury levels in these invertebrates from 32 sampling stations across commonly occurring sub-habitats. Sampling was conducted in December, May, and August over a two-year period. The highest levels of mercury were detected in amphipods, with total mercury levels often in excess of 20 ppm. Bioaccumulation pathways of mercury in invertebrates of the Okefenokee are probably complex; despite being larger and higher in the food chain, levels in odonates and crayfish were much lower than in amphipods. Mercury levels in invertebrates varied temporally with the highest levels detected in May. There was a lack of spatial variation in mercury levels which is consistent with aerial deposition of mercury. - This study measured mercury levels in invertebrates and found the highest levels in amphipods.

  5. Africanized honey bee (Apis mellifera) venom profiling: Seasonal variation of melittin and phospholipase A(2) levels. (United States)

    Ferreira Junior, Rui S; Sciani, Juliana M; Marques-Porto, Rafael; Junior, Airton Lourenço; Orsi, Ricardo de O; Barraviera, Benedito; Pimenta, Daniel C


    Apis mellifera venom is comprised basically of melittin, phospholipase A(2), histamine, hyaluronidase, catecholamine and serotonin. Some of these components have been associated with allergic reactions, amongst several other symptoms. On the other hand, bee mass stinging, caused by Africanized honey bee (AHB), is increasingly becoming a serious public health issue in Brazil; therefore, the development of efficient serum-therapies has become necessary. In this work, we have analyzed the venom composition of AHB in Brazil through one year. In order to verify the homogeneity of this venom, one specific hive was selected and the correlation with climatic parameters was assessed. It was possible to perceive a seasonal variation on the venom contents of melittin and phospholipase A(2). Moreover, both compounds presented a synchronized variation of their levels, with an increased production in the same months. This variation does not correlate or synchronize with any climatic parameter. Data on the variation of the AHB venom composition is necessary to guide future intra and inter species studies. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Variational Level Set Method for Two-Stage Image Segmentation Based on Morphological Gradients

    Directory of Open Access Journals (Sweden)

    Zemin Ren


    Full Text Available We use variational level set method and transition region extraction techniques to achieve image segmentation task. The proposed scheme is done by two steps. We first develop a novel algorithm to extract transition region based on the morphological gradient. After this, we integrate the transition region into a variational level set framework and develop a novel geometric active contour model, which include an external energy based on transition region and fractional order edge indicator function. The external energy is used to drive the zero level set toward the desired image features, such as object boundaries. Due to this external energy, the proposed model allows for more flexible initialization. The fractional order edge indicator function is incorporated into the length regularization term to diminish the influence of noise. Moreover, internal energy is added into the proposed model to penalize the deviation of the level set function from a signed distance function. The results evolution of the level set function is the gradient flow that minimizes the overall energy functional. The proposed model has been applied to both synthetic and real images with promising results.

  7. Magnetic storms and variations in hormone levels among residents of North Polar area - Svalbard (United States)

    Breus, T. K.; Boiko, E. R.; Zenchenko, T. A.


    In the present work four examinations (January, March, June, October 1991-1992) of the blood concentration of adrenal hormones (cortisol) and thyroid hormones (triiodothyronine (T3) and thyroxine T4) and their dependence on space and terrestrial weather parameters have been done for large groups of healthy inhabitants of high latitudes (Svalbard, the most northerly in the world year-round inhabited settlements). The aim of this study was to find the possible sensitivity of these biochemical parameters to variations of external natural factors at high latitudes in three independent groups of people living in this region (miners and people working underground (364 samples), the men working on the ground (274 samples) and women working on the ground (280 samples)). The obtained data indicate that the most expressed dependence of concentration of the three studied hormones is on the level of geomagnetic activity (GMA) - Kp, Ap, Kpmax - 3h. For two of the four seasons (June and October) with increasing levels of GMA a significant (p independent groups of people was observed. Range of increases in cortisol concentration in different groups were about 30% of the observed variation in the average intragroup concentration in June and from 16% to 38% in October. For T3 dependence was found only in June: drop in hormone secretion with increasing levels of GMA from 18 to 30% of the average range of intragroup variations. Thus it was shown for the first time that at high geographical latitudes with increased level of GMA a significant change in the level of secretion of several hormones leads to the type of adaptive stress reaction.

  8. Derivation of Threshold Values for Groundwater in Romania, in order to distinguish Point & Diffuse pollution from natural background levels

    NARCIS (Netherlands)

    Schipper, P.N.M.; Radu, E.; Vliegenthart, F.; Balaet, R.


    Romania aims to adopt and implement the European Union's legislation, also including that for the field of water management. Like other countries, groundwater in Romania is locally polluted from point sources, such as leaking landfills, as well as from diffuse pollution sources, include fertilizers,

  9. Future Flows Hydrology: an ensemble of daily river flow and monthly groundwater levels for use for climate change impact assessment across Great Britain

    Directory of Open Access Journals (Sweden)

    C. Prudhomme


    Full Text Available The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels'' to provide a consistent set of transient daily river flow and monthly groundwater level projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate–hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961–1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice

  10. Sea Level Changes Due to Water Mass Variations in the Gulf of Mexico (United States)

    Karpytchev, M.


    Previous studies have demonstrated that interannual sea level variations on the shelfof the Gulf of Mexico are weakly correlated with the sea level over the Gulf deep waters.This has been shown to be due to a complex interplay between the Loop Currentdriving sea level changes in the deeper part of the Gulf with the shelf waves propagatingfrom the North Atlantic. In this study, we, first, examine the relationship between the low-frequency sea levelfluctuations deduced from satellite altimetry observations and from tide gauge recordsand, then, focus on evaluating water mass changes in the Gulf of Mexico.We compare the estimates obtained from satellite altimetry corrected forthermosteric effects with the changes in water mass observed by GRACEand discuss the importance of water mass changes for the low-frequency sea level fluctuationsin the Gulf.

  11. Sea Level Rise and Decadal Variations in the Ligurian Sea Inferred from the Medimaremetre Measurements. (United States)

    Karpytchev, M.; Coulomb, A.; Vallee, M.


    Estimations of sea level rise over the last centuries are mostly based on the rare historical sea level records from tide gauge stations usually designed for navigational purposes. In this study, we examine the quality of sea level measurements performed by a mean sea level gauge operated in Nice from 1887 to 1909 and transferred to the nearby town of Villefranche-sur-Mer in 1913 where it stayed in operation untill 1974. The mean sea level gauges, called medimaremetres, were invented for geodetic studies and installed in many French ports since the end of the XIX century. By construction, the medimaremetre was connected to the sea through a porous porcelain crucible in order to filter out the tides and higher frequency sea level oscillations. Ucontrolled properties of the crucible and some systematic errors made the medimaremetre data to be ignored in the current sea level researches. We demonstrate that the Nice-Villefranche medimaremetre measurements are coherent with two available historical tide gauge records from Marseille and Genova and a new century-scale sea level series can be build up by combining the medimaremetre data with the those recorded by a tide gauge operating in Nice since the 1980s. We analyse the low frequency variabilities in Marseille, Nice-Villefranche and Genova and get new insights on the decadal sea level variations in the Ligurian Sea since the end of the XIX century.

  12. Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA (United States)

    Scanlon, B. R.; Longuevergne, L.; Long, D.


    There is increasing interest in using Gravity Recovery and Climate Experiment (GRACE) satellite data to remotely monitor groundwater storage variations; however, comparisons with ground-based well data are limited but necessary to validate satellite data processing, especially when the study area is close to or below the GRACE footprint. The Central Valley is a heavily irrigated region with large-scale groundwater depletion during droughts. Here we compare updated estimates of groundwater storage changes in the California Central Valley using GRACE satellites with storage changes from groundwater level data. A new processing approach was applied that optimally uses available GRACE and water balance component data to extract changes in groundwater storage. GRACE satellites show that groundwater depletion totaled ˜31.0 ± 3.0 km3 for Groupe de Recherche de Geodesie Spatiale (GRGS) satellite data during the drought from October 2006 through March 2010. Groundwater storage changes from GRACE agreed with those from well data for the overlap period (April 2006 through September 2009) (27 km3 for both). General correspondence between GRACE and groundwater level data validates the methodology and increases confidence in use of GRACE satellites to monitor groundwater storage changes.

  13. Spatiotemporal Characteristics of Groundwater Drought and Its Response to Meteorological Drought in Jiangsu Province, China

    Directory of Open Access Journals (Sweden)

    Bo Liu


    Full Text Available In this study, the temporal and spatial variations of groundwater drought using a Standardized Groundwater Level Index (SGI were analyzed based on 40 monthly groundwater level observation wells from 1989 to 2012 in Jiangsu Province, China. Meteorological drought, calculated by the Standardized Precipitation Index (SPI, was also included to reveal its propagation and impact on the groundwater drought process. Results showed that the southern region of Jiangsu faced more frequent groundwater droughts and lower intensity, while the northern region faced less frequent groundwater drought with higher intensity. Furthermore, the cross-correlation between the spatial average of SGI and SPI for SPI accumulation periods of q = 1 to 12 was computed. The relationship between SGI and SPI varied in different regions. Detailed analysis of the characteristics of groundwater and meteorological drought for each region showed that meteorological droughts happened more frequently than groundwater drought in Jiangsu Province during the study period, while the mean duration and mean magnitude of groundwater droughts were longer and larger than those of meteorological droughts. It is expected that this study will provide useful information for drought monitoring and mitigation in Jiangsu and similar areas.

  14. Intraspecific variation shapes community-level behavioral responses to urbanization in spiders. (United States)

    Dahirel, Maxime; Dierick, Jasper; De Cock, Maarten; Bonte, Dries


    Urban areas are an extreme example of human-changed environments, exposing organisms to multiple and strong selection pressures. Adaptive behavioral responses are thought to play a major role in animals' success or failure in such new environments. Approaches based on functional traits have proven especially valuable to understand how species communities respond to environmental gradients. Until recently, they have, however, often ignored the potential consequences of intraspecific trait variation (ITV). When ITV is prevalent, it may highly impact ecological processes and resilience against stressors. This may be especially relevant in animals, in which behavioral traits can be altered very flexibly at the individual level to track environmental changes. We investigated how species turnover and ITV influenced community-level behavioral responses in a set of 62 sites of varying levels of urbanization, using orb web spiders and their webs as models of foraging behavior. ITV alone explained around one-third of the total trait variation observed among communities. Spider web structure changed according to urbanization, in ways that increase the capture efficiency of webs in a context of smaller urban prey. These trait shifts were partly mediated by species turnover, but ITV increased their magnitude, potentially helping to buffer the effects of environmental changes on communities. The importance of ITV varied depending on traits and on the spatial scale at which urbanization was considered. Despite being neglected from community-level analyses in animals, our results highlight the importance of accounting for intraspecific trait variation to fully understand trait responses to (human-induced) environmental changes and their impact on ecosystem functioning. © 2017 by the Ecological Society of America.

  15. Community-level cardiovascular risk factors impact geographic variation in cardiovascular disease hospitalizations for women. (United States)

    Rodriguez, Fátima; Wang, Yun; Naderi, Sahar; Johnson, Caitlin E; Foody, JoAnne M


    Prior work has shown significant geographic variation in cardiovascular (CV) risk factors including metabolic syndrome, obesity, and hypercholesterolemia. However, little is known about how variations in CV risk impact cardiovascular disease (CVD)-related hospitalizations. Community-level CV risk factors (hypertension, dyslipidemia, hyperglycemia, and elevated waist circumference) were assessed from community-wide health screenings sponsored by Sister to Sister (STS) from 2008 to 2009 in 17 major US cities. Using data from the Healthcare Cost and Utilization Project's Nationwide Inpatient Sample (HCUP-NIS), CVD hospitalizations were identified based on ICD-9 codes for acute myocardial infarction (AMI), congestive heart failure (CHF), and stroke. We linked STS data with HCUP-NIS hospitalizations based on common cities and restricted the analysis to women discharged from hospitals inside the STS cities. Using hierarchical models with city as the random intercept, we assessed the impact of city-specific CV risk factors on between-city variance of AMI, CHF, and stroke. Analyses were also adjusted for patient age and clinical comorbidities. Our analysis yielded a total of 742,445 all-cause discharges across 70 hospitals inside of 13 linked cities. The overall city-specific range proportion of AMI, CHF, and stroke hospitalizations were 1.13 % (0.75-1.59 %), 2.57 % (1.44-3.92 %), and 1.24 % (0.66-1.84 %), respectively. After adjusting for city-specific CV risk factors, between-city variation was no longer statistically significant for all CVD conditions explored. In conclusion, we found that geographic variations in AMI, CHF, and stroke hospitalizations for women may be partially explained by community-level CV risk factors. This finding suggests that interventions to reduce CVD should be tailored to the unique risk profile and needs of high-risk communities.

  16. Variational modularity at the cell level: insights from the sperm head of the house mouse. (United States)

    Medarde, Nuria; Muñoz-Muñoz, Francesc; López-Fuster, María José; Ventura, Jacint


    Modularity is an important feature in the evolvability of organisms, since it allows the occurrence of complex adaptations at every single level of biological systems. While at the cellular level the modular organization of molecular interactions has been analyzed in detail, the phenotypic modularity (or variational modularity) of cell shape remains unexplored. The mammalian spermatozoon constitutes one of the most complex and specialized cell types found in organisms. The structural heterogeneity found in the sperm head suggests an association between its inner composition, shape and specificity of function. However, little is known about the extent of the connections between these features. Taking advantage of the house mouse sperm morphology, we analyzed the variational modularity of the sperm head by testing several hypotheses related to its structural and functional organization. Because chromosomal rearrangements can affect the genotype-phenotype map of individuals and thus modify the patterns of covariation between traits, we also evaluate the effect of Robertsonian translocations on the modularity pattern of the sperm head. The results indicated that the house mouse sperm head is divided into three variational modules (the acrosomal, post-acrosomal and ventral spur module), which correspond to the main regions of the cytoskeletal mesh beneath the plasma membrane, i.e., the perinuclear theca. Most of the covariation is concentrated between the ventral spur and the acrosomal and post-acrosomal modules. Although the Rb fusions did not alter the main modularity pattern, they did affect the percentages of covariation between pairs of modules. The structural heterogeneity of the cytoskeleton is responsible for the modular organization of the sperm head shape, corroborating the role that this structure has in maintaining the cell shape. The reduction in percentages of shape covariation between pairs of modules in Rb sperms suggests that chromosomal rearrangements

  17. Temporal and spatial variations in groundwater quality resulting from policy-induced reductions in nitrate leaching to the Rabis Creek aquifer, Denmark (United States)

    Jessen, Søren; Engesgaard, Peter; Thorling, Lærke; Müller, Sascha; Leskelä, Jari; Postma, Dieke


    Twenty-five years of annual groundwater quality monitoring data from the sandy unconfined Rabis Creek aquifer were used to assess the effects of political actions aimed to reduce nitrate leaching to the aquifer. Data were collected from eight multilevel samplers along a ˜3 km transect, which follows the general direction of groundwater flow. Each multilevel sampler comprises 20 screens placed with a 1 m vertical distance from near the water table downwards. The transect covers areas of livestock, plantation & heath, and agriculture. The history of nitrate leaching to the aquifer was assessed using data from screens close to the water table of multilevel samplers placed within agricultural areas. According to these data, nitrate concentrations of infiltrating 'agricultural' water peaked at 2-3 mM (120-180 mg/L) in the year 1989, and then gradually decreased and stabilized at 0.25-1.0 mM (15-60 mg/L) from year 2000. Local farmers declare having used the maximum fertilization rate allowed during the period. The timing of the observed decrease therefore suggests a direct link to the political action plans implemented in the same period. Parallel to the development in nitrate leaching, although with a transport time lag, the average concentration of nitrate in the oxic zone of the aquifer was roughly halved between 2000 and 2013. As a response to political initiatives of the late 1980'ies, part of the area covering the aquifer was changed from agriculture to non-fertilized grass for livestock; the data shows that this effectively remediated the aquifer underneath in less than 20 years, to become nitrate-free and attain background sulfate levels. The oxidized and pyritic reduced zone of the aquifer is separated by a iron is precipitated. Nickel (Ni2+) is released at the redoxcline resulting in concentrations more than twice the 20 μg/L Danish drinking water limit. The data clearly indicate that this Ni2+ contamination can be ascribed to the agricultural nitrate loading

  18. Intraspecific Variation among Social Insect Colonies: Persistent Regional and Colony-Level Differences in Fire Ant Foraging Behavior.

    Directory of Open Access Journals (Sweden)

    Alison A Bockoven

    Full Text Available Individuals vary within a species in many ecologically important ways, but the causes and consequences of such variation are often poorly understood. Foraging behavior is among the most profitable and risky activities in which organisms engage and is expected to be under strong selection. Among social insects there is evidence that within-colony variation in traits such as foraging behavior can increase colony fitness, but variation between colonies and the potential consequences of such variation are poorly documented. In this study, we tested natural populations of the red imported fire ant, Solenopsis invicta, for the existence of colony and regional variation in foraging behavior and tested the persistence of this variation over time and across foraging habitats. We also reared single-lineage colonies in standardized environments to explore the contribution of colony lineage. Fire ants from natural populations exhibited significant and persistent colony and regional-level variation in foraging behaviors such as extra-nest activity, exploration, and discovery of and recruitment to resources. Moreover, colony-level variation in extra-nest activity was significantly correlated with colony growth, suggesting that this variation has fitness consequences. Lineage of the colony had a significant effect on extra-nest activity and exploratory activity and explained approximately half of the variation observed in foraging behaviors, suggesting a heritable component to colony-level variation in behavior.

  19. Quantifying the link between crop production and mined groundwater irrigation in China. (United States)

    Grogan, Danielle S; Zhang, Fan; Prusevich, Alexander; Lammers, Richard B; Wisser, Dominik; Glidden, Stanley; Li, Changsheng; Frolking, Steve


    In response to increasing demand for food, Chinese agriculture has both expanded and intensified over the past several decades. Irrigation has played a key role in increasing crop production, and groundwater is now an important source of irrigation water. Groundwater abstraction in excess of recharge (which we use here to estimate groundwater mining) has resulted in declining groundwater levels and could eventually restrict groundwater availability. In this study we used a hydrological model, WBMplus, in conjunction with a process based crop growth model, DNDC, to evaluate Chinese agriculture's recent dependence upon mined groundwater, and to quantify mined groundwater-dependent crop production across a domain that includes variation in climate, crop choice, and management practices. This methodology allowed for the direct attribution of crop production to irrigation water from rivers and reservoirs, shallow (renewable) groundwater, and mined groundwater. Simulating 20 years of weather variability and circa year 2000 crop areas, we found that mined groundwater fulfilled 20%-49% of gross irrigation water demand, assuming all demand was met. Mined groundwater accounted for 15%-27% of national total crop production. There was high spatial variability across China in irrigation water demand and crop production derived from mined groundwater. We find that climate variability and mined groundwater demand do not operate independently; rather, years in which irrigation water demand is high due to the relatively hot and dry climate also experience limited surface water supplies and therefore have less surface water with which to meet that high irrigation water demand. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Variations in tidal level in the Gulf of Mexico and implications for tidal wetlands (United States)

    Stumpf, R.P.; Haines, J.W.


    Tidal wetland environments have an ecological zonation that corresponds with tide levels, in particular with mean high water. However, mean sea level (MSL), which has shown a persistent rise in the Gulf of Mexico during this century, is the most common reference for water level change. We examine here the relationship between mean sea level and mean high water in describing water level changes in the Gulf of Mexico. The records of monthly mean water level for four stations, Galveston, Pensacola, Cedar Key and Key West, are partitioned into the annual cycle, the long-term trend, and a low-frequency (> 10 year period) fluctuation. The trend is the same for MSL and mean higher high water (MHHW) for all stations investigated except Cedar Key, Florida, where MHHW has increased more rapidly than MSL. The low-frequency fluctuations are similar between the stations and the tidal datums. MSL can predict MHHW with discrepancies of up to 5 cm owing to the lunar nodal cycle and an annual tidal signal. Low-frequency climatic fluctuations produce greater variations than the nodal cycle, but the difference in frequency can lead to interference between the two in MHHW. The combination of the two can produce sea-level rises in excess of 1 cm year-1 over several year periods, even in areas having long-term trends of 0.2 cm year-1 or less.

  1. Analysis of power gating in different hierarchical levels of 2MB cache, considering variation (United States)

    Jafari, Mohsen; Imani, Mohsen; Fathipour, Morteza


    This article reintroduces power gating technique in different hierarchical levels of static random-access memory (SRAM) design including cell, row, bank and entire cache memory in 16 nm Fin field effect transistor. Different structures of SRAM cells such as 6T, 8T, 9T and 10T are used in design of 2MB cache memory. The power reduction of the entire cache memory employing cell-level optimisation is 99.7% with the expense of area and other stability overheads. The power saving of the cell-level optimisation is 3× (1.2×) higher than power gating in cache (bank) level due to its superior selectivity. The access delay times are allowed to increase by 4% in the same energy delay product to achieve the best power reduction for each supply voltages and optimisation levels. The results show the row-level power gating is the best for optimising the power of the entire cache with lowest drawbacks. Comparisons of cells show that the cells whose bodies have higher power consumption are the best candidates for power gating technique in row-level optimisation. The technique has the lowest percentage of saving in minimum energy point (MEP) of the design. The power gating also improves the variation of power in all structures by at least 70%.

  2. Variation of Chart Datum Towards Maritime Delimitation due to Rising Sea Level (United States)

    Faizuddin, A. R. M.; Razali, M. M.


    The importance of Chart Datum in hydrographic surveying is inarguable because its determination is part of the process to obtain the actual depth of bathymetry. The Chart Datum has a relationship with the determination of base points because any uncertainty of the base points would definitely cause uncertainty to the determination of the maritime baseline. If there is any doubt on the baselines, it will then cause doubt on the maritime zones as well which includes the equidistant line that forms the border between the two countries. However, due to the ongoing rising sea level, there has been some variations of the Chart Datum in some areas in Malaysia. This research discusses about the variation of Mean Sea Level and Chart Datum for the tide gauge stations at Geting, Cendering, Sedili and Tioman at East Coast and Kukup, Langkawi, Lumut and Penang at the West Coast of Peninsular Malaysia. The tidal analysis was carried out by using the 23 years of data beginning at 1993 to 2015. The observed tidal data for 23 years were processed and analysed by using GeoTide software. In this research, the Harmonic Analysis technique was used in order to calculate the values of Mean Sea Level and the Chart Datum while the slope of the shoreline is modelled by using Global Mapper. The linear trend of the Mean Sea Level and the Chart Datum was analysed to determine the increase of the annual sea level in millimetres accuracy and also to determine the variation of the Chart Datum for each tidal station and its impact towards maritime baseline. The result has shown that the linear trend of sea level rise varies from 24 millimetres per year up to 168 millimetres per year at the East Coast and 24 millimetres per year up to 96 millimetres per year at the West Coast of Peninsular Malaysia. As for the maritime baseline, results has indicated that there exist shifting in the horizontal which are varies from 1.564 metres per year to 3.299 metres per year at the East Coast and from 1


    Directory of Open Access Journals (Sweden)

    A. R. M. Faizuddin


    Full Text Available The importance of Chart Datum in hydrographic surveying is inarguable because its determination is part of the process to obtain the actual depth of bathymetry. The Chart Datum has a relationship with the determination of base points because any uncertainty of the base points would definitely cause uncertainty to the determination of the maritime baseline. If there is any doubt on the baselines, it will then cause doubt on the maritime zones as well which includes the equidistant line that forms the border between the two countries. However, due to the ongoing rising sea level, there has been some variations of the Chart Datum in some areas in Malaysia. This research discusses about the variation of Mean Sea Level and Chart Datum for the tide gauge stations at Geting, Cendering, Sedili and Tioman at East Coast and Kukup, Langkawi, Lumut and Penang at the West Coast of Peninsular Malaysia. The tidal analysis was carried out by using the 23 years of data beginning at 1993 to 2015. The observed tidal data for 23 years were processed and analysed by using GeoTide software. In this research, the Harmonic Analysis technique was used in order to calculate the values of Mean Sea Level and the Chart Datum while the slope of the shoreline is modelled by using Global Mapper. The linear trend of the Mean Sea Level and the Chart Datum was analysed to determine the increase of the annual sea level in millimetres accuracy and also to determine the variation of the Chart Datum for each tidal station and its impact towards maritime baseline. The result has shown that the linear trend of sea level rise varies from 24 millimetres per year up to 168 millimetres per year at the East Coast and 24 millimetres per year up to 96 millimetres per year at the West Coast of Peninsular Malaysia. As for the maritime baseline, results has indicated that there exist shifting in the horizontal which are varies from 1.564 metres per year to 3.299 metres per year at the East Coast

  4. Segmentation of teeth in CT volumetric dataset by panoramic projection and variational level set

    Energy Technology Data Exchange (ETDEWEB)

    Hosntalab, Mohammad [Islamic Azad University, Faculty of Engineering, Science and Research Branch, Tehran (Iran); Aghaeizadeh Zoroofi, Reza [University of Tehran, Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, Tehran (Iran); Abbaspour Tehrani-Fard, Ali [Islamic Azad University, Faculty of Engineering, Science and Research Branch, Tehran (Iran); Sharif University of Technology, Department of Electrical Engineering, Tehran (Iran); Shirani, Gholamreza [Faculty of Dentistry Medical Science of Tehran University, Oral and Maxillofacial Surgery Department, Tehran (Iran)


    Quantification of teeth is of clinical importance for various computer assisted procedures such as dental implant, orthodontic planning, face, jaw and cosmetic surgeries. In this regard, segmentation is a major step. In this paper, we propose a method for segmentation of teeth in volumetric computed tomography (CT) data using panoramic re-sampling of the dataset in the coronal view and variational level set. The proposed method consists of five steps as follows: first, we extract a mask in a CT images using Otsu thresholding. Second, the teeth are segmented from other bony tissues by utilizing anatomical knowledge of teeth in the jaws. Third, the proposed method is followed by estimating the arc of the upper and lower jaws and panoramic re-sampling of the dataset. Separation of upper and lower jaws and initial segmentation of teeth are performed by employing the horizontal and vertical projections of the panoramic dataset, respectively. Based the above mentioned procedures an initial mask for each tooth is obtained. Finally, we utilize the initial mask of teeth and apply a Variational level set to refine initial teeth boundaries to final contours. The proposed algorithm was evaluated in the presence of 30 multi-slice CT datasets including 3,600 images. Experimental results reveal the effectiveness of the proposed method. In the proposed algorithm, the variational level set technique was utilized to trace the contour of the teeth. In view of the fact that, this technique is based on the characteristic of the overall region of the teeth image, it is possible to extract a very smooth and accurate tooth contour using this technique. In the presence of the available datasets, the proposed technique was successful in teeth segmentation compared to previous techniques. (orig.)

  5. Long-term stability and circadian variation in circulating levels of surfactant protein D

    DEFF Research Database (Denmark)

    Hoegh, Silje Vermedal; Sorensen, Grith Lykke; Tornoe, Ida


    Surfactant protein D (SP-D) is an oligomeric calcium-dependent lectin with important roles in innate host defence against infectious microorganisms. Several studies have shown that patients with inflammatory lung disease have elevated levels of circulating SP-D, and serum SP-D has been suggested...... to be used as a biomarker for disease e.g. in COPD. We aimed to investigate the variation of circulating SP-D in healthy individuals in and between days for 6 months. In addition, we studied the SP-D response to a standardized physical exercise programme. SP-D was measured in serum using a 5-layered ELISA...

  6. Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, I.; Vialard, J.; Lengaigne, M.; Han, W.; McCreary, J.P.; Durand, F.; Muraleedharan, P.M.

    1. CSIR-National Institute of Oceanography, Goa, India 2. LOCEAN, IRD/CNRS/UPMC/MNHN, Paris, France 3. Dept. Of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, USA 4. IPRC/SOEST, Univ. Hawaii, Hawaii, USA 5. LEGOS, IRD... version: Geophys. Res. Lett., vol.40(21); 2013; 5740-5744 Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide I. Suresh1, J. Vialard2, M. Lengaigne2, W. Han3, J. McCreary4, F. Durand5, P.M. Muraleedharan1...

  7. Interpretation of Variations in Modis-Measured Greenness Levels of Amazon Forests During 2000 to 2009 (United States)

    Samanta, Arindam; Ganguly, Sangram; Vermote, Eric; Nemani, Ramakrishna R.; Myneni, Ranga B.


    This work investigates variations in satellite-measured greenness of Amazon forests using ten years of NASA Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) data. Corruption of optical remote sensing data with clouds and aerosols is prevalent in this region; filtering corrupted data causes spatial sampling constraints, as well as reducing the record length, which introduces large biases in estimates of greenness anomalies. The EVI data, analyzed in multiple ways and taking into account EVI accuracy, consistently show a pattern of negligible changes in the greenness levels of forests both in the area affected by drought in 2005 and outside it. Small random patches of anomalous greening and browning-especially prominent in 2009-appear in all ten years, irrespective of contemporaneous variations in precipitation, but with no persistence over time. The fact that over 90% of the EVI anomalies are insignificantly small-within the envelope of error (95% confidence interval) in EVI-warrants cautious interpretation of these results: there were no changes in the greenness of these forests, or if there were changes, the EVI data failed to capture these either because the constituent reflectances were saturated or the moderate resolution precluded viewing small-scale variations. This suggests a need for more accurate and spatially resolved synoptic views from satellite data and corroborating comprehensive ground sampling to understand the greenness dynamics of these forests.

  8. Applications of Groundwater Helium (United States)

    Kulongoski, Justin T.; Hilton, David R.


    Helium abundance and isotope variations have widespread application in groundwater-related studies. This stems from the inert nature of this noble gas and the fact that its two isotopes ? helium-3 and helium-4 ? have distinct origins and vary widely in different terrestrial reservoirs. These attributes allow He concentrations and 3He/4He isotope ratios to be used to recognize and quantify the influence of a number of potential contributors to the total He budget of a groundwater sample. These are atmospheric components, such as air-equilibrated and air-entrained He, as well as terrigenic components, including in situ (aquifer) He, deep crustal and/or mantle He and tritiogenic 3He. Each of these components can be exploited to reveal information on a number of topics, from groundwater chronology, through degassing of the Earth?s crust to the role of faults in the transfer of mantle-derived volatiles to the surface. In this review, we present a guide to how groundwater He is collected from aquifer systems and quantitatively measured in the laboratory. We then illustrate the approach of resolving the measured He characteristics into its component structures using assumptions of endmember compositions. This is followed by a discussion of the application of groundwater He to the types of topics mentioned above using case studies from aquifers in California and Australia. Finally, we present possible future research directions involving dissolved He in groundwater.

  9. Trend analysis of ground-water levels and spring discharge in the Yucca Mountain Region, Nevada and California, 1960-2000 (United States)

    Fenelon, Joseph M.; Moreo, Michael T.


    Ground-water level and discharge data from 1960 to 2000 were analyzed for the Yucca Mountain region of southern Nevada and eastern California. Included were water-level data from 37 wells and a fissure (Devils Hole) and discharge data from five springs and from a flowing well. Data were evaluated for variability and for upward, downward, or cyclic trends with an emphasis on the period 1992-2000. Potential factors causing trends in water levels and discharge include ground-water withdrawal, infiltration of precipitation, earthquakes, evapotranspiration, barometric pressure, and earth tides. Statistically significant trends in ground-water levels or spring discharge from 1992 to 2000 were upward at 12 water-level sites and downward at 14 water-level sites and 1 spring-discharge site. In general, the magnitude of the change in water level from 1992 to 2000 was small (less than 2 feet), except where influenced by pumping or local effects such as possible equilibration from well construction or diversion of nearby surface water. Seasonal trends are superimposed on some of the long-term (1992-2000) trends in water levels and discharge. Factors causing seasonal trends include barometric pressure, evapotranspiration, and pumping. The magnitude of seasonal change in water level can vary from as little as 0.05 foot in regional aquifers to greater than 5 feet in monitoring wells near large supply wells in the Amargosa Farms area. Three major episodes of earthquake activity affected water levels in wells in the Yucca Mountain region between 1992 and 2000: the Landers/Little Skull Mountain, Northridge, and Hector Mine earthquakes. The Landers/Little Skull Mountain earthquakes, in June 1992, had the largest observed effect on water levels and on discharge during the study period. Monthly measurements of wells in the study network show that earthquakes affected water levels from a few tenths of a foot to 3.5 feet. In the Ash Meadows area, water levels remained relatively stable

  10. Determination of contaminant levels and remediation efficacy in groundwater at a former in situ recovery uranium mine. (United States)

    Borch, Thomas; Roche, Nicholas; Johnson, Thomas E


    There has been increasing interest in uranium mining in the United States via in situ recovery techniques. One of the main environmental concerns with in situ uranium mining is the potential for spreading groundwater contamination. There is a dearth of detailed analysis and information regarding the outcome of in situ uranium mine remediation to ascertain the environmental impacts. Regulatory measurements performed at a Wyoming in situ uranium mine were collected and analysed to ascertain the efficacy of remediation and potential long term environmental impact. Based on the measurements, groundwater sweeping followed by reverse osmosis (RO) treatment proved to be a highly efficient method of remediation. However, injection of a reductant in the form of H(2)S after groundwater sweeping and RO did not further reduce the aqueous concentration of U, Mn, or Fe. Low concentrations of target species at monitoring wells outside the mined area appear to indicate that in the long term, natural attenuation is likely to play a major role at reductively immobilizing residual (after remediation) concentrations of U(VI) thus preventing it from moving outside the mined area. Our analysis indicates the need for additional monitoring wells and sampling in conjunction with long term monitoring to better understand the impacts of the different remediation techniques.

  11. Bungee force level, stiffness, and variation during treadmill locomotion in simulated microgravity. (United States)

    De Witt, John K; Schaffner, Grant; Ploutz-Snyder, Lori L


    Crewmembers performing treadmill exercise on the International Space Station must wear a harness with an external gravity replacement force that is created by elastomer bungees. The quantification of the total external force, displacement, stiffness, and force variation is important for understanding the forces applied to the crewmember during typical exercise. Data were collected during static trials in the laboratory from a single subject and four subjects were tested while walking at 1.34 m x s(-1) and running at 2.24 m x s(-1) and 3.13 m x s(-1) on a treadmill during simulated microgravity in parabolic flight. The external force was provided by bungees and carabiner clips in configurations commonly used by crewmembers. Total external force, displacement, and force variation in the bungee system were measured, from which stiffness was computed. Mean external force ranged from 431 to 804 N (54-131% bodyweight) across subjects and conditions. Mean displacement was 4 to 8 cm depending upon gait speed. Mean stiffness was affected by bungee configuration and ranged from 1.73 to 29.20 N x cm(-1). Force variation for single bungee configurations was 2.61-4.48% of total external force and between 4.30-57.5% total external force for two-bungee configurations. The external force supplied to crewmembers by elastomer bungees provided a range of loading levels with variations that occur throughout the gait cycle. The quantification of bungee-loading characteristics is important to better define the system currently used by crewmembers during exercise.

  12. Variations in Oxidative Stress Levels in 3 Days Follow-up in Ultramarathon Mountain Race Athletes. (United States)

    Spanidis, Ypatios; Stagos, Dimitrios; Orfanou, Marina; Goutzourelas, Nikolaos; Bar-Or, David; Spandidos, Demetrios; Kouretas, Demetrios


    Spanidis, Y, Stagos, D, Orfanou, M, Goutzourelas, N, Bar-or, D, Spandidos, D, and Kouretas, D. Variations in oxidative stress levels in 3 days follow-up in ultramarathon mountain race athletes. J Strength Cond Res 31(3): 582-594, 2017-The aim of the present study was the monitoring of the redox status of runners participating in a mountain ultramarathon race of 103 km. Blood samples from 12 runners were collected prerace and 24, 48, and 72 hours postrace. The samples were analyzed by using conventional oxidative stress markers, such as protein carbonyls (CARB), thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC) in plasma, as well as glutathione (GSH) levels and catalase (CAT) activity in erythrocytes. In addition, 2 novel markers, the static oxidation-reduction potential marker (sORP) and the capacity oxidation-reduction potential (cORP), were measured in plasma. The results showed significant increase in sORP levels and significant decrease in cORP and GSH levels postrace compared with prerace. The other markers did not exhibit significant changes postrace compared with prerace. Furthermore, an interindividual analysis showed that in all athletes but one sORP was increased, whereas cORP was decreased. Moreover, GSH levels were decreased in all athletes at least at 2 time points postrace compared with prerace. The other markers exhibited great variations between different athletes. In conclusion, ORP and GSH markers suggested that oxidative stress has existed even 3 days post ultramarathon race. The practical applications from these results would be that the most effective markers for short-term monitoring of ultramarathon mountain race-induced oxidative stress were sORP, cORP, and GSH. Also, administration of supplements enhancing especially GSH is recommended during ultramarathon mountain races to prevent manifestation of pathological conditions.

  13. Groundwater in Southwest Bangladesh: Possible Consequences of Climate Change and Water Resource Management Practices (United States)

    Tasich, C. M.; Hornberger, G. M.; Goodbred, S. L.


    Bangladesh serves as a case study of the possible consequences of climate change and water resource management practices on coastal regions. Significant portions of the population rely on groundwater as a primary source of freshwater. Local sea-level rise coupled with changes in surface recharge due to variations in monsoon strength have led to concerns over groundwater salinization. Over-drafting of freshwater aquifers due to population pressures and widespread installation of saline shrimp farms further exacerbate the problem. Analysis of the interconnectivity of surface water and groundwater systems can provide insight into future groundwater conditions under these circumstances. This study shows how the relationship between surface water and groundwater varies spatially and temporally in Bangladesh. The region around the city of Khulna was selected as a case study due to its large population, proximity to the coast, and prevalence of shrimp farming. The relationship between surface water and groundwater was analyzed on a seasonal, yearly, and decadal timescale. A Ghyben-Herzberg model was used to describe the freshwater-saltwater interface beneath Khulna. Spatial analyses via ArcGIS served as the primary tool for investigation. Analyses indicate groundwater amplitudes vary spatially, as a result of distance from stream and tidal channels, and temporally, as a result of seasonal weather patterns and tides. Spatial and temporal variations in groundwater elucidate possible impacts of climate change and water resource management practices within a coastal environment.

  14. A new compliance checking level for nitrate in groundwater : modelling nitrate leaching and the fate of nitrogen in the upper 5 meter of the groundwater system

    NARCIS (Netherlands)

    Groenendijk, P.; Renaud, L.V.; Roelsma, J.; Janssen, G.M.C.M.; Jansen, S.; Heerdink, R.; Griffioen, J.; Grift, van der B.


    Research was conducted on the implications of a possible lowering of the sampling depth for the nitrate compliance checking level in the Netherlands. The STONE model was used to simulate nitrate concentrations and nitrogen balances for the three main sand districts (North, Central, South) and for

  15. Prediction of ppm level electrical failure by using physical variation analysis (United States)

    Hou, Hsin-Ming; Kung, Ji-Fu; Hsu, Y.-B.; Yamazaki, Y.; Maruyama, Kotaro; Toyoshima, Yuya; Chen, Chu-en


    their spatial correlation distance. For local variations (LV) there is no correlation, whereas for global variations (GV) the correlation distance is very large [7]-[9]. This is the first time to certificate the validation of spatial distribution from the affordable bias contour big data fundamental infrastructures. And then apply statistical techniques to dig out the variation sources. The GV come from systematic issue, which could be compensated by adaptive LT condition or OPC correction. But LV comes from random issue, which being considered as intrinsic problem such as structure, material, tool capability… etc. In this paper studying, we can find out the advanced technology node SRAM contact CD local variation (LV) dominates in total variation, about 70%. It often plays significant in-line real time catching WP-DPMO role of the product yield loss, especially for wafer edge is the worst loss within wafer distribution and causes serious reliability concern. The major root cause of variations comes from the PR material induced burr defect (LV), the second one comes from GV enhanced wafer edge short opportunity, which being attributed to three factors, first one factor is wafer edge CD deliberated enlargement for yield improvement as shown in Fig. 10. Second factor is overlaps/AA shifts due to tool capability dealing with incoming wafer's war page issue and optical periphery layout dependent working pitch issue as shown in Fig. 9 (1)., the last factor comes from wafer edge burr enhanced by wafer edge larger Photo Resistance (PR) spin centrifugal force. After implementing KPIs such as GV related AA/CD indexes as shown in Fig. 9 (1) and 10, respectively, and LV related burr index as shown in Fig. 11., we can construct the parts per million (PPM) level short probability model via multi-variables regression, canonical correlation analysis and logistic transformation. The model provides prediction of PPM level electrical failure by using in-line real time physical

  16. Morphodynamics and lake level variations at Paiku Co, southern Tibetan Plateau, China (United States)

    Wünnemann, Bernd; Yan, Dada; Ci, Ren


    /ky, caused by lake level lowering. Tectonic impact cannot be completely ruled out. Since 1976, the glaciers lost ca. 15% in area, accompanied by lake area loss of 3.7% between 1972 and June 2014. Seasonal lake level variations of about 1-2 m in height occur in response to summer monsoon rainfall. Our data show a close interaction between glacial dynamics, fluvial processes, terrace formation, and water budget changes throughout the last 25 cal ky BP in response to the well-known, insolation-driven, ISM-effective moisture supply during the late-glacial and Holocene period. Temperature-driven meltwater dynamics were the controlling factors for variations in water balance of Paiku Co.

  17. Variation in the serum bilirubin levels in newborns according to gender and seasonal changes

    Directory of Open Access Journals (Sweden)

    Jyoti Bala


    Full Text Available Introduction: Bilirubin is a substance that is produced during the process of hemolysis. Gender influences on neonatal illnesses and outcomes have remained a topic of debate and investigation. Empirical neonatological experience suggests that prevalence and degree of neonatal jaundice might be dependent on seasonal variation also. The aim of our study is to interpret the bilirubin levels in newborns according to gender and seasonal variation. Materials and Methods: The study was done from October 2012 to July of 2013 (differentiated by seasonal variation. A total of 1000 jaundiced newborn (500 of each sex diagnosed clinically and divided equally in summer and winter season were studied to assess the total, direct and indirect serum bilirubin levels using colorimetry. Results: Out of total 1676 deliveries (439 were caesarean, 13 were assisted and rest were normal during winter season and 1475 deliveries (399 were Cesarean, 14 were assisted and rest were normal during summer season, 500 male newborn and 500 female newborn were analysed, divided equally in both seasons. Serum bilirubin was higher in males in summers and mainly comprised unconjugated bilirubin while direct bilirubin was higher in females in winters. Raised indirect bilirubin was more common in males born in summer than those born in winters (P = 041. In winters raised direct bilirubin was more common in females as compared to males (P = 0.019. Among female neonates total and indirect bilirubin was significantly raised in those born in summers (P = < 0.001 and <0.001, respectively while direct was raised in those born in winters (P = 0.003. Conclusion: Physiological and pathologic phenomena associated with male gender must be integrated in the frame of understanding of both susceptibility and protection of the male newborn which has not been available for adequate investigation in the past. The higher temperature during the summer, with a greater influence of higher breastfeeding

  18. Genetic variations in FSH action affect sex hormone levels and breast tissue size in infant girls

    DEFF Research Database (Denmark)

    Henriksen, Louise Scheutz; Hagen, Casper P; Assens, Maria


    , especially FSHR -29G>A and FSHR 2039A>G, affect female hormone profile and glandular breast tissue development already during minipuberty. Thus, genetic variations of FSH signaling appear to determine the individual set point of the hypothalamic-pituitary-gonadal axis already early in life.......Context: Single nucleotide polymorphisms altering FSH action (FSHB -211G>T, FSHR -29G>A, and FSHR 2039A>G) are associated with peripubertal and adult levels of reproductive hormones and age at pubertal onset in girls. Objective: To investigate whether genetic polymorphisms altering FSH action...... by PCR using Kompetitive Allele Specific PCR genotyping assays; identification of glandular breast tissue by palpation and measurement of the diameter. Serum levels of anti-Müllerian hormone, FSH, LH, estradiol, inhibin B, and sex hormone-binding globulin were assessed by immunoassays. Results: FSHR -29G...

  19. The Variation of Work Productivity and Muscle Activities at Different Levels of Production Target (United States)

    Nur, Nurhayati Mohd; Dawal, Siti Zawiah Md; Dahari, Mahidzal; Zuhairah Mahmud Zuhudi, Nurul


    This paper aims to investigate the variation of work productivity and muscle activities among workers performing industrial repetitive tasks at four different levels of production target. The work productivity and muscle activities data were recorded from twenty workers at four levels of production target corresponding to “participative (PS1)”, “normal (PS2)”, “high (PS3)” and “very high (PS4)”. The results showed that worker productivity was found to increase at higher production target and there was a significant change (p muscle activities were found to increase at higher production target and correspond to more discomfort and a higher rate of muscle fatigue. The results indicated that working with a higher production target results in higher worker productivity, but could lead to higher risk of WMSDs.

  20. Correlated biogeographic variation of magnesium across trophic levels in a terrestrial food chain.

    Directory of Open Access Journals (Sweden)

    Xiao Sun

    Full Text Available Using samples from eastern China (c. 25 - 41° N and 99 - 123° E and from a common garden experiment, we investigate how Mg concentration varies with climate across multiple trophic levels. In soils, plant tissue (Oriental oak leaves and acorns, and a specialist acorn predator (the weevil Curculio davidi, Mg concentration increased significantly with different slopes from south to north, and generally decreased with both mean annual temperature (MAT and precipitation (MAP. In addition, soil, leaf, acorn and weevil Mg showed different strengths of association and sensitivity with climatic factors, suggesting that distinct mechanisms may drive patterns of Mg variation at different trophic levels. Our findings provide a first step toward determining whether anticipated changes in temperature and precipitation due to climate change will have important consequences for the bioavailability and distribution of Mg in food chain.

  1. Correlated Biogeographic Variation of Magnesium across Trophic Levels in a Terrestrial Food Chain (United States)

    Sun, Xiao; Kay, Adam D.; Kang, Hongzhang; Small, Gaston E.; Liu, Guofang; Zhou, Xuan; Yin, Shan; Liu, Chunjiang


    Using samples from eastern China (c. 25 – 41° N and 99 – 123° E) and from a common garden experiment, we investigate how Mg concentration varies with climate across multiple trophic levels. In soils, plant tissue (Oriental oak leaves and acorns), and a specialist acorn predator (the weevil Curculio davidi), Mg concentration increased significantly with different slopes from south to north, and generally decreased with both mean annual temperature (MAT) and precipitation (MAP). In addition, soil, leaf, acorn and weevil Mg showed different strengths of association and sensitivity with climatic factors, suggesting that distinct mechanisms may drive patterns of Mg variation at different trophic levels. Our findings provide a first step toward determining whether anticipated changes in temperature and precipitation due to climate change will have important consequences for the bioavailability and distribution of Mg in food chain. PMID:24223807

  2. Spatial variation and hot-spots of district level diarrhea incidences in Ghana: 2010–2014

    Directory of Open Access Journals (Sweden)

    Frank Badu Osei


    Full Text Available Abstract Background Diarrhea is a public health menace, especially in developing countries. Knowledge of the biological and anthropogenic characteristics is abundant. However, little is known about its spatial patterns especially in developing countries like Ghana. This study aims to map and explore the spatial variation and hot-spots of district level diarrhea incidences in Ghana. Methods Data on district level incidences of diarrhea from 2010 to 2014 were compiled together with population data. We mapped the relative risks using empirical Bayesian smoothing. The spatial scan statistics was used to detect and map spatial and space-time clusters. Logistic regression was used to explore the relationship between space-time clustering and urbanization strata, i.e. rural, peri-urban, and urban districts. Results We observed substantial variation in the spatial distribution of the relative risk. There was evidence of significant spatial clusters with most of the excess incidences being long-term with only a few being emerging clusters. Space-time clustering was found to be more likely to occur in peri-urban districts than in rural and urban districts. Conclusion This study has revealed that the excess incidences of diarrhea is spatially clustered with peri-urban districts showing the greatest risk of space-time clustering. More attention should therefore be paid to diarrhea in peri-urban districts. These findings also prompt public health officials to integrate disease mapping and cluster analyses in developing location specific interventions for reducing diarrhea.

  3. Indoor and outdoor radon levels and its diurnal variations in Botswana (United States)

    Murty, V. R. K.; King, J. G.; Karunakara, N.; Raju, V. C. C.


    Studies on radon monitoring are essential for countries actively involved in mining activities. Since large-scale mining activities have the potential to enhance the background radiation levels, a detailed study on indoor and outdoor radon levels, its diurnal variation with temperature, pressure and humidity for Botswana is initiated. The study is important because such studies for Botswana are non-existent and the database on indoor and outdoor 222Rn concentration and the resulting inhalation dose to the population of the region is not available. Measurements were carried out using the AlphaGuard (Genitron,Germany) Professional Radon Monitor. The concentration of 226Ra in soil was also measured by gamma spectrometry using a 41% relative efficiency n-type HPGe detector (Canberra, USA). Initial results show that the indoor 222Rn concentration vary in the range 3.0-93.0 Bq m -3 with a mean of 24.5 Bq m -3. Diurnal variation studies show that the concentration is higher in the early morning hours and lower in the early afternoon hours. All the results are presented and discussed in detail in this paper.

  4. Indoor and outdoor radon levels and its diurnal variations in Botswana

    Energy Technology Data Exchange (ETDEWEB)

    Murty, V.R.K., E-mail: murtyvrk@mopipi.ub.b [Radiation Physics Laboratories, Department of Physics, University of Botswana, Private Bag 0022, Gaborone (Botswana); King, J.G. [Radiation Physics Laboratories, Department of Physics, University of Botswana, Private Bag 0022, Gaborone (Botswana); Karunakara, N. [University Science Instrumentation Centre, Mangalore University, Mangalagangotri 574 199 (India); Raju, V.C.C. [Department of Mathematics, University of Botswana, Private Bag 0022, Gaborone (Botswana)


    Studies on radon monitoring are essential for countries actively involved in mining activities. Since large-scale mining activities have the potential to enhance the background radiation levels, a detailed study on indoor and outdoor radon levels, its diurnal variation with temperature, pressure and humidity for Botswana is initiated. The study is important because such studies for Botswana are non-existent and the database on indoor and outdoor {sup 222}Rn concentration and the resulting inhalation dose to the population of the region is not available. Measurements were carried out using the AlphaGuard (Genitron,Germany) Professional Radon Monitor. The concentration of {sup 226}Ra in soil was also measured by gamma spectrometry using a 41% relative efficiency n-type HPGe detector (Canberra, USA). Initial results show that the indoor {sup 222}Rn concentration vary in the range 3.0-93.0 Bq m{sup -3} with a mean of 24.5 Bq m{sup -3}. Diurnal variation studies show that the concentration is higher in the early morning hours and lower in the early afternoon hours. All the results are presented and discussed in detail in this paper.

  5. An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China. (United States)

    Su, Chunli; Wang, Yanxin; Xie, Xianjun; Zhu, Yapeng


    The hydrogeochemical and isotopic investigations of high fluoride (up to 8.26 mg L(-1)) groundwater in the Datong Basin, Northern China were carried out in order to evaluate the geochemical controls on fluoride enrichment. The groundwater fluoride concentration tends to increase along with the regional groundwater flow path away from the basin margins, towards the central parts of the basin. Groundwater with high F concentrations has a distinctive major ion chemistry, being generally HCO3(-)-rich, Na-rich, Ca-poor, and having weak alkaline pH values (7.2 to 8.2) and Na-HCO3 waters. These data indicate that variations in the groundwater major ion chemistry and possibly pH, which are controlled by water-rock interaction processes in the aquifer, are important in mobilizing F. Positive correlations between fluoride with lithogenic sodium (LNa) and HCO3(-) in groundwater show that the high fluoride content and alkaline sodic characteristics of groundwater result from dissolution of fluorine-bearing minerals. The occurrence and behavior of fluorine in groundwater are mainly controlled by fluorite precipitation as a function of Ca(2+) concentration. A positive correlation between fluoride and δ(18)O, low F(-)/Cl(-) ratios, and the low tritium level in the fluoride-rich groundwater indicate the effects of long-term water-rock interactions and intensive evapotranspiration.

  6. Effect of day-to-day variations in adrenal cortex hormone levels on abdominal symptoms

    Directory of Open Access Journals (Sweden)

    Tsumura Hideki


    Full Text Available Abstract Introduction The hypothalamic-pituitary-adrenal axis is known to be related to abdominal symptoms, and the relationship between abdominal pain and cortisol secretory patterns has been previously investigated using a cross-sectional approach. Here, we investigated the effect of day-to-day variations in salivary cortisol and dehydroepiandrosterone-sulfate levels on abdominal symptoms in healthy individuals. Methods Eleven college students (4 males and 7 females participated in this study. The participants were asked to collect their saliva immediately after awakening and before bedtime for eight consecutive days. They also completed a questionnaire about abdominal symptoms before bedtime. The linear mixed model was applied to analyze the effects of the day-by-day variability or the 8-day average adrenal hormone level (at awakening, before bedtime, slope from awakening to bedtime on abdominal symptoms. Results The day-to-day variability of cortisol levels before bedtime was negatively related with loose stool, while the day-to-day variability of the cortisol slope was positively correlated with loose stool. A low 8-day average dehydroepiandrosterone-sulfate level at awakening was positively related with frequent bowel movements, loose stool, and long bouts of severe abdominal pain. Likewise, a low 8-day average dehydroepiandrosterone-sulfate slope was positively related with long bouts of abdominal pain. Conclusions Low cortisol levels before bedtime and a steeper diurnal cortisol slope during the day may be related to bouts of diarrhea during the day.

  7. Visualization of groundwater withdrawals (United States)

    Winston, Richard B.; Goode, Daniel J.


    Generating an informative display of groundwater withdrawals can sometimes be difficult because the symbols for closely spaced wells can overlap. An alternative method for displaying groundwater withdrawals is to generate a “footprint” of the withdrawals. WellFootprint version 1.0 implements the Footprint algorithm with two optional variations that can speed up the footprint calculation. ModelMuse has been modified in order to generate the input for WellFootprint and to read and graphically display the output from WellFootprint.

  8. Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti. (United States)

    Terradas, Gerard; Allen, Scott L; Chenoweth, Stephen F; McGraw, Elizabeth A


    The mosquito vector Aedes aegypti is responsible for transmitting a range of arboviruses including dengue (DENV) and Zika (ZIKV). The global reach of these viruses is increasing due to an expansion of the mosquito's geographic range and increasing urbanization and human travel. Vector control remains the primary means for limiting these diseases. Wolbachia pipientis is an endosymbiotic bacterium of insects that has the ability to block the replication of pathogens, including flaviviruses such as DENV or ZIKV, inside the body of the vector. A strain of Wolbachia called wMel is currently being released into wild mosquito populations to test its potential to limit virus transmission to humans. The mechanism that underpins the virus blocking effect, however, remains elusive. We used a modified full-sib breeding design in conjunction with vector competence assays in wildtype and wMel-infected Aedes aegypti collected from the field. All individuals were injected with DENV-2 intrathoracically at 5-6 days of age. Tissues were dissected 7 days post-infection to allow quantification of DENV and Wolbachia loads. We show the first evidence of family level variation in Wolbachia-mediated blocking in mosquitoes. This variation may stem from either genetic contributions from the mosquito and Wolbachia genomes or environmental influences on Wolbachia. In these families, we also tested for correlations between strength of blocking and expression level for several insect immunity genes with possible roles in blocking, identifying two genes of interest (AGO2 and SCP-2). In this study we show variation in Wolbachia-mediated DENV blocking in Aedes aegypti that may arise from genetic contributions and environmental influences on the mosquito-Wolbachia association. This suggests that Wolbachia-mediated blocking may have the ability to evolve through time or be expressed differentially across environments. The long-term efficacy of Wolbachia in the field will be dependent on the


    Directory of Open Access Journals (Sweden)

    S. V. Rasskazov


    Full Text Available Introduction. Determinations of (234U/238U in groundwater samples are used for monitoring current deformations in active faults (parentheses denote activity ratio units. The cyclic equilibrium of activity ratio 234U/238U≈≈(234U/238U≈γ≈1 corresponds to the atomic ratio ≈5.47×10–5. This parameter may vary due to higher contents of 234U nuclide in groundwater as a result of rock deformation. This effect discovered by P.I. Chalov and V.V. Cherdyntsev was described in [Cherdyntsev, 1969, 1973; Chalov, 1975; Chalov et al., 1990; Faure, 1989]. In 1970s and 1980s, only quite laborious methods were available for measuring uranium isotopic ratios. Today it is possible to determine concentrations and isotopic ration of uranium by express analytical techniques using inductively coupled plasma mass spectrometry (ICP‐MS [Halicz et al., 2000; Shen et al., 2002; Cizdziel et al., 2005; Chebykin et al., 2007]. Sets of samples canbe efficiently analysed by ICP‐MS, and regularly collected uranium isotope values can be systematized at a new quality level for the purposes of earthquake prediction. In this study of (234U/238U in groundwater at the Kultuk polygon, we selected stations of the highest sensitivity, which can ensure proper monitoring of the tectonic activity of the Obruchev and Main Sayan faults. These two faults that limit the Sharyzhalgai block of the crystalline basement of the Siberian craton in the south are conjugated in the territory of the Kultuk polygon (Fig 1. Forty sets of samples taken from 27 June 2012 to 28 January 2014 were analysed, and data on 170 samples are discussed in this paper.Methods. Isotope compositions of uranium and strontium were determined by methods described in [Chebykin et al., 2007; Pin et al., 1992] with modifications. Analyses of uranium by ISP‐MS technique were performed using an Agilent 7500ce quadrapole mass spectrometer of the Ultramicroanalysis Collective Use Centre; analyses of

  10. Updated study reporting levels (SRLs) for trace-element data collected for the California Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project, October 2009-March 2013 (United States)

    Davis, Tracy A.; Olsen, Lisa D.; Fram, Miranda S.; Belitz, Kenneth


    Groundwater samples have been collected in California as part of statewide investigations of groundwater quality conducted by the U.S. Geological Survey for the Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project (PBP). The GAMA-PBP is being conducted in cooperation with the California State Water Resources Control Board to assess and monitor the quality of groundwater resources used for drinking-water supply and to improve public knowledge of groundwater quality in California. Quality-control samples (source-solution blanks, equipment blanks, and field blanks) were collected in order to ensure the quality of the groundwater sample results. Olsen and others (2010) previously determined study reporting levels (SRLs) for trace-element results based primarily on field blanks collected in California from May 2004 through January 2008. SRLs are raised reporting levels used to reduce the likelihood of reporting false detections attributable to contamination bias. The purpose of this report is to identify any changes in the frequency and concentrations of detections in field blanks since the last evaluation and update the SRLs for more recent data accordingly. Constituents analyzed were aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), tungsten (W), uranium (U), vanadium (V), and zinc (Zn). Data from 179 field blanks and equipment blanks collected from March 2006 through March 2013 by the GAMA-PBP indicated that for trace elements that had a change in detection frequency and concentration since the previous review, the shift occurred near October 2009, in conjunction with a change in the capsule filters used by the study. Results for 89 field blanks and equipment blanks collected from October 2009 through March 2013 were

  11. Individual variation in levels of haptoglobin-related protein in children from Gabon.

    Directory of Open Access Journals (Sweden)

    Heather J Imrie

    Full Text Available BACKGROUND: Haptoglobin related protein (Hpr is a key component of trypanosome lytic factors (TLF, a subset of high-density lipoproteins (HDL that form the first line of human defence against African trypanosomes. Hpr, like haptoglobin (Hp can bind to hemoglobin (Hb and it is the Hpr-Hb complexes which bind to these parasites allowing uptake of TLF. This unique form of innate immunity is primate-specific. To date, there have been no population studies of plasma levels of Hpr, particularly in relation to hemolysis and a high prevalence of ahaptoglobinemia as found in malaria endemic areas. METHODS AND PRINCIPAL FINDINGS: We developed a specific enzyme-linked immunosorbent assay to measure levels of plasma Hpr in Gabonese children sampled during a period of seasonal malaria transmission when acute phase responses (APR, malaria infection and associated hemolysis were prevalent. Median Hpr concentration was 0.28 mg/ml (range 0.03-1.1. This was 5-fold higher than that found in Caucasian children (0.049 mg/ml, range 0.002-0.26 with no evidence of an APR. A general linear model was used to investigate associations between Hpr levels, host polymorphisms, parasitological factors and the acute phase proteins, Hp, C-reactive protein (CRP and albumin. Levels of Hpr were associated with Hp genotype, decreased with age and were higher in females. Hpr concentration was strongly correlated with that of Hp, but not CRP. CONCLUSIONS/SIGNIFICANCE: Individual variation in Hpr levels was related to Hp level, Hp genotype, demographics, malaria status and the APR. The strong correlations between plasma levels of Hp and Hpr suggest that they are regulated by similar mechanisms. These population-based observations indicate that a more dynamic view of the relative roles of Hpr and Hpr-Hb complexes needs to be considered in understanding innate immunity to African trypanosomes and possibly other pathogens including the newly discovered Plasmodium spp of humans and

  12. Groundwater simulation and management models for the upper Klamath Basin, Oregon and California (United States)

    Gannett, Marshall W.; Wagner, Brian J.; Lite, Kenneth E.


    major streams and most major tributaries for which a substantial part of the flow comes from groundwater discharge are included in the model. Groundwater discharge to agricultural drains, evapotranspiration from aquifers in areas of shallow groundwater, and groundwater flow to and from adjacent basins also are simulated in key areas. The model has the capability to calculate the effects of pumping and other external stresses on groundwater levels, discharge to streams, and other boundary fluxes, such as discharge to drains. Historical data indicate that the groundwater system in the upper Klamath Basin fluctuates in response to decadal climate cycles, with groundwater levels and spring flows rising and declining in response to wet and dry periods. Data also show that groundwater levels fluctuate seasonally and interannually in response to groundwater pumping. The most prominent response is to the marked increase in groundwater pumping starting in 2001. The calibrated model is able to simulate observed decadal-scale climate-driven fluctuations in the groundwater system as well as observed shorter-term pumping-related fluctuations. Example model simulations show that the timing and location of the effects of groundwater pumping vary markedly depending on the pumping location. Pumping from wells close (within a few miles) to groundwater discharge features, such as springs, drains, and certain streams, can affect those features within weeks or months of the onset of pumping, and the impacts can be essentially fully manifested in several years. Simulations indicate that seasonal variations in pumping rates are buffered by the groundwater system, and peak impacts are closer to mean annual pumping rates than to instantaneous rates. Thus, pumping effects are, to a large degree, spread out over the entire year. When pumping locations are distant (more than several miles) from discharge features, the effects take many years or decades to fully impact those features, and much of

  13. The difference nanocomposite hardness level using LED photoactivation based on curing period variations

    Directory of Open Access Journals (Sweden)

    Hasiana Tatian


    Full Text Available Polimerizatian is the critical stage to determine the quality of composites resin, this involves isolated monomer carbon double bonds being converted to an extended network of single bonds. Physical and mechanical properties of composites are influenced by the level of conversion attained during polymerization. An adequate light intensity and light curing time are important to obtain the degree of polymerization. The objective of this study is to evaluate the difference of the hardness nanocomposites which activated by LED LCU based on the variation of curing times. This study is a true experimental research. The samples were made from nanocomposites material with cylinder form of 4 mm in depth, 6 mm in diameter. This samples divided into 3 groups of curing times. Group, I was cured for 20's curing time as a control due to manufactory recommended; Group II was cured for 30's, and Group III was cured for 40's and the hardness (Rebound hardness tester was determined using Rebound scale (RS and converted by Mohs scale (MS. There was a very significant level of hardness rate from each group using ANOVA test. The result of the study concludes that there were the differences on the nanocomposites hardness level cured under different curing times 20, 30 and 40 sec. The longer of curing times, the higher level of hardness.

  14. Homogenization of a semilinear variational inequality in a thick multi-level junction

    Directory of Open Access Journals (Sweden)

    Taras A Mel’nyk


    Full Text Available Abstract We consider a semilinear variation inequality in a thick multi-level junction Ω ε $\\Omega_{\\varepsilon}$ , which is the union of a domain Ω 0 $\\Omega_{0}$ (the junction’s body and a large number of thin cylinders. The thin cylinders are divided into m classes depending on the geometrical characteristics and the semilinear perturbed boundary conditions of the Signorini type given on their lateral surfaces. In addition, the thin cylinders from each class are ε-periodically alternated along some manifold on the boundary of the junction’s body. The purpose is to study the asymptotic behavior of the solution u ε $u_{\\varepsilon}$ of this variation inequality as ε → 0 $\\varepsilon\\to0$ , i.e. when the number of the thin cylinders from each class infinitely increases and their thickness tends to zero. The passage to the limit is accompanied by special intensity factors { ε α k } k = 1 m $\\{ \\varepsilon^{\\alpha_{k}}\\}_{k=1}^{m}$ in the boundary conditions. We establish two qualitatively different cases in the asymptotic behavior of the solution depending on the value of parameters { α k } k = 1 m $\\{{\\alpha_{k}}\\}_{k=1}^{m}$ . For each case we prove a convergence theorem. As a consequence, we see that u ε $u_{\\varepsilon}$ converges (as ε → 0 $\\varepsilon\\to0$ to the solution of the corresponding nonstandard homogenized problem and show that the semilinear boundary conditions are transformed in the limiting variational inequalities in the region that is filled up by the thin cylinders from each class.

  15. Evaluation of levels of antibiotic resistance in groundwater-derived E. coli isolates in the Midwest of Ireland and elucidation of potential predictors of resistance (United States)

    O'Dwyer, Jean; Hynds, Paul; Pot, Matthieu; Adley, Catherine C.; Ryan, Michael P.


    Antibiotic-resistant (pathogenic and non-pathogenic) organisms and genes are now acknowledged as significant emerging aquatic contaminants with potentially adverse human and ecological health impacts, and thus require monitoring. This study is the first to investigate levels of resistance among Irish groundwater (private wells) samples; Escherichia coli isolates were examined against a panel of commonly prescribed human and veterinary therapeutic antibiotics, followed by determination of the causative factors of resistance. Overall, 42 confirmed E. coli isolates were recovered from a groundwater-sampling cohort. Resistance to the human panel of antibiotics was moderate; nine (21.4%) E. coli isolates demonstrated resistance to one or more human antibiotics. Conversely, extremely high levels of resistance to veterinary antibiotics were found, with all isolates presenting resistance to one or more veterinary antibiotics. Particularly high levels of resistance (93%) were found with respect to the aminoglycoside class of antibiotics. Results of statistical analysis indicate a significant association between the presence of human (multiple) antibiotic resistance ( p = 0.002-0.011) and both septic tank density and the presence of vulnerable sub-populations (Ireland, particularly in rural areas; thus, results of this preliminary study offer a valuable insight into the prevalence of antibiotic resistance in the hydrogeological environment and establish a need for further research with a larger geological diversity.

  16. Genome-wide analysis of nucleotide-level variation in commonly used Saccharomyces cerevisiae strains.

    Directory of Open Access Journals (Sweden)

    Joseph Schacherer


    Full Text Available Ten years have passed since the genome of Saccharomyces cerevisiae-more precisely, the S288c strain-was completely sequenced. However, experimental work in yeast is commonly performed using strains that are of unknown genetic relationship to S288c. Here, we characterized the nucleotide-level similarity between S288c and seven commonly used lab strains (A364A, W303, FL100, CEN.PK, summation 1278b, SK1 and BY4716 using 25mer oligonucleotide microarrays that provide complete and redundant coverage of the approximately 12 Mb Saccharomyces cerevisiae genome. Using these data, we assessed the frequency and distribution of nucleotide variation in comparison to the sequenced reference genome. These data allow us to infer the relationships between experimentally important strains of yeast and provide insight for experimental designs that are sensitive to sequence variation. We propose a rational approach for near complete sequencing of strains related to the reference using these data and directed re-sequencing. These data and new visualization tools are accessible online in a new resource: the Yeast SNPs Browser (YSB; that is available to all researchers.

  17. Spatial variation in level of agricultural development in Bulandshahr district of western Uttar Pradesh (India

    Directory of Open Access Journals (Sweden)

    Gomatee Singh


    Full Text Available In the present paper an attempt has been made to find out the spatial variation in the adaptation of improved agricultural practices to ascertain the level of agricultural development in Bulandshahr district of western Uttar Pradesh. The spatial variation of agricultural development is determined with the help of nine variables viz. net sown area, irrigated area, cropping intensity, crops productivity, area under HYV, agricultural labourers, role of banks and agricultural machinery. Beside this, the development of blocks are taken with their respective categories viz. high, medium and low on the basis of scores (like mean SD of these variables. These analyses have been carried out by transforming and combining the data related to nine variables, using ‘Z’ score to get the composite score. On the basis of Composite Score, developments of blocks have been again categorized in to three categories i.e. high, medium and low. Results of the aforesaid analysis shows that the modern technological inputs have reciprocal relationship with agricultural development in the study area.

  18. Health care supply and county-level variation in attention-deficit hyperactivity disorder prescription medications. (United States)

    Bruckner, Tim A; Hodgson, Ashley; Mahoney, Chris Brown; Fulton, Brent D; Levine, Peter; Scheffler, Richard M


    Although much literature reports small-area variation in medication prescriptions used to treat attention-deficit hyperactivity disorder (ADHD), scant research has examined factors that may drive this variation. We examine, across counties in the USA, whether the use of prescription medications to treat ADHD varies positively with supply-side healthcare characteristics. We retrieved annual prescription data for ADHD medications in 2734 US counties from a nationally representative sample of 35 000 pharmacies in 2001-2003. We used a county-level, multivariable fixed effects analysis to estimate the relation between annual changes in healthcare supply and ADHD medication prescriptions. Methods controlled for time-invariant factors unique to each county as well as ADHD prevalence. From 2001 to 2003, retail prescription purchases for ADHD medications increased 33.2%. In the multivariable analysis, ADHD medication prescriptions move positively with an increase in the concentration of total physicians. In addition, ADHD medication prescriptions move inversely with changes in the percentage of non-Hispanic Black population. Supply-side healthcare factors may contribute to the rise from 2001 to 2003 in ADHD medication prescriptions. This finding warrants attention because it implies that the relative capacity of the healthcare system may influence population prescription rates. We encourage further exploration of the contribution of the supply-side of the healthcare market to secular changes in ADHD medication prescriptions. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Allelic variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels.

    LENUS (Irish Health Repository)

    Fang, Fang


    Commensal lactobacilli frequently produce bile salt hydrolase (Bsh) enzymes whose roles in intestinal survival are unclear. Twenty-six Lactobacillus salivarius strains from different sources all harbored a bsh1 allele on their respective megaplasmids. This allele was related to the plasmid-borne bsh1 gene of the probiotic strain UCC118. A second locus (bsh2) was found in the chromosomes of two strains that had higher bile resistance levels. Four Bsh1-encoding allele groups were identified, defined by truncations or deletions involving a conserved residue. In vitro analyses showed that this allelic variation was correlated with widely varying bile deconjugation phenotypes. Despite very low activity of the UCC118 Bsh1 enzyme, a mutant lacking this protein had significantly lower bile resistance, both in vitro and during intestinal transit in mice. However, the overall bile resistance phenotype of this and other strains was independent of the bsh1 allele type. Analysis of the L. salivarius transcriptome upon exposure to bile and cholate identified a multiplicity of stress response proteins and putative efflux proteins that appear to broadly compensate for, or mask, the effects of allelic variation of bsh genes. Bsh enzymes with different bile-degrading kinetics, though apparently not the primary determinants of bile resistance in L. salivarius, may have additional biological importance because of varying effects upon bile as a signaling molecule in the host.

  20. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China (United States)

    Yang, Zhi; Zhou, Yangxiao; Wenninger, Jochen; Uhlenbrook, Stefan; Wang, Xusheng; Wan, Li


    The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.

  1. Solving the Variational Inequality Problem Defined on Intersection of Finite Level Sets

    Directory of Open Access Journals (Sweden)

    Songnian He


    Full Text Available Consider the variational inequality VI(C,F of finding a point x*∈C satisfying the property 〈Fx*,x-x*〉≥0, for all x∈C, where C is the intersection of finite level sets of convex functions defined on a real Hilbert space H and F:H→H is an L-Lipschitzian and η-strongly monotone operator. Relaxed and self-adaptive iterative algorithms are devised for computing the unique solution of VI(C,F. Since our algorithm avoids calculating the projection PC (calculating PC by computing several sequences of projections onto half-spaces containing the original domain C directly and has no need to know any information of the constants L and η, the implementation of our algorithm is very easy. To prove strong convergence of our algorithms, a new lemma is established, which can be used as a fundamental tool for solving some nonlinear problems.

  2. Groundwater Modelling For Recharge Estimation Using Satellite Based Evapotranspiration (United States)

    Soheili, Mahmoud; (Tom) Rientjes, T. H. M.; (Christiaan) van der Tol, C.


    Groundwater movement is influenced by several factors and processes in the hydrological cycle, from which, recharge is of high relevance. Since the amount of aquifer extractable water directly relates to the recharge amount, estimation of recharge is a perquisite of groundwater resources management. Recharge is highly affected by water loss mechanisms the major of which is actual evapotranspiration (ETa). It is, therefore, essential to have detailed assessment of ETa impact on groundwater recharge. The objective of this study was to evaluate how recharge was affected when satellite-based evapotranspiration was used instead of in-situ based ETa in the Salland area, the Netherlands. The Methodology for Interactive Planning for Water Management (MIPWA) model setup which includes a groundwater model for the northern part of the Netherlands was used for recharge estimation. The Surface Energy Balance Algorithm for Land (SEBAL) based actual evapotranspiration maps from Waterschap Groot Salland were also used. Comparison of SEBAL based ETa estimates with in-situ abased estimates in the Netherlands showed that these SEBAL estimates were not reliable. As such results could not serve for calibrating root zone parameters in the CAPSIM model. The annual cumulative ETa map produced by the model showed that the maximum amount of evapotranspiration occurs in mixed forest areas in the northeast and a portion of central parts. Estimates ranged from 579 mm to a minimum of 0 mm in the highest elevated areas with woody vegetation in the southeast of the region. Variations in mean seasonal hydraulic head and groundwater level for each layer showed that the hydraulic gradient follows elevation in the Salland area from southeast (maximum) to northwest (minimum) of the region which depicts the groundwater flow direction. The mean seasonal water balance in CAPSIM part was evaluated to represent recharge estimation in the first layer. The highest recharge estimated flux was for autumn

  3. Stand-level variation in evapotranspiration in non-water-limited eucalypt forests (United States)

    Benyon, Richard G.; Nolan, Rachael H.; Hawthorn, Sandra N. D.; Lane, Patrick N. J.


    To better understand water and energy cycles in forests over years to decades, measurements of spatial and long-term temporal variability in evapotranspiration (Ea) are needed. In mountainous terrain, plot-level measurements are important to achieving this. Forest inventory data including tree density and size measurements, often collected repeatedly over decades, sample the variability occurring within the geographic and topographic range of specific forest types. Using simple allometric relationships, tree stocking and size data can be used to estimate variables including sapwood area index (SAI), which may be strongly correlated with annual Ea. This study analysed plot-level variability in SAI and its relationship with overstorey and understorey transpiration, interception and evaporation over a 670 m elevation gradient, in non-water-limited, even-aged stands of Eucalyptus regnans F. Muell. to determine how well spatial variation in annual Ea from forests can be mapped using SAI. Over the 3 year study, mean sap velocity in five E. regnans stands was uncorrelated with overstorey sapwood area index (SAI) or elevation: annual transpiration was predicted well by SAI (R2 0.98). Overstorey and total annual interception were positively correlated with SAI (R2 0.90 and 0.75). Ea from the understorey was strongly correlated with vapour pressure deficit (VPD) and net radiation (Rn) measured just above the understorey, but relationships between understorey Ea and VPD and Rn differed between understorey types and understorey annual Ea was not correlated with SAI. Annual total Ea was also strongly correlated with SAI: the relationship being similar to two previous studies in the same region, despite differences in stand age and species. Thus, spatial variation in annual Ea can be reliably mapped using measurements of SAI.

  4. Stress related variations in serum vitamin E and C levels of Murrah buffaloes

    Directory of Open Access Journals (Sweden)

    Joshi, A.


    Full Text Available The study was designed to determine stress related variations in endogenous vitamin E and C levels of Murrah buffaloes. For this purpose, four hundred and fifty healthy adult female Murrah buffaloes between 4 and 12 years of age were sampled to harvest the sera during adverse ambiences viz. moderate, extreme hot and cold ambiences. Animals were broadly divided into non-pregnant milch, pregnant milch, pregnant dry, primipara and multipara. The mean values (µmol L-1 of serum vitamin E and C were 4.31±0.03 and 23.34±0.33, respectively during moderate ambience. The mean values of both the vitamin E and C depressed significantly (p≤0.05 during hot and cold ambiences as compared to moderate ambience. It was observed that decline in each value during hot ambience was greater than that of respective cold ambience. A significant (p≤0.05 variation was observed in the mean values of vitamin E and C in each ambience in the animals of all physiological states. The mean values of both the vitamins of non pregnant milch animals were highest (p≤0.05 whereas they were lowest (p≤0.05 in pregnant dry animals. It could be concluded that extreme ambiences produced oxidative stress in the buffaloes of all physiological states. The depressed levels of endogenous vitamin E and C in the serum showed their depletion in the body probably to combat free radical scavengers. Vitamin E and C should be supplemented to protect the animals from oxidative stress.

  5. Growth Of Female New Zealand Crossbreed Rabbit On Variation Of Feed Protein Level

    Directory of Open Access Journals (Sweden)

    Soedjadi Soedjadi


    Full Text Available The Growth of Female New Zealand White Crossbreed Rabbit on Variation of Feed Protein Level have studied on Experimental Farm Animal Husbandry Faculty, University of Jenderal Soedirman Purwokerto.   On – Station Research by Factorial Pattern based on Two-Way Classification Design, were involved 42 heads rabbit two months of age. Factors examine consist  of : kinds of feed as a first factors (a1 = without fish meal, a2 = fish meal 2%, a3 = fish meal 12%, a2 = fish meal 22%, and body weight as a second factors (b1 = 601-700 gram,b2 = 701-800 gram, b3 = 801-900 gram. Variance analysis showed that there were significance (P< 0.01 interaction between kinds of feed and body weight on daily gain and feed consumption. Increasing feed protein level (2, 12 and 22% of fish meal clearly increase (P<0.01 of daily gain and feed consumption on overall of body weight conditions  (b1,b2 and b3. Daily gain and feed consumption really affected (P<0.01 by body weight on overall of feed protein level. (Animal Production 1(1 : 30-35 (1999.     Key Words : Growth, Rabbit, Protein

  6. Transformer sound level caused by core magnetostriction and winding stress displacement variation (United States)

    Hsu, Chang-Hung; Huang, Yi-Mei; Hsieh, Min-Fu; Fu, Chao-Ming; Adireddy, Shiva; Chrisey, Douglas B.


    Magnetostriction caused by the exciting variation of the magnetic core and the current conducted by the winding wired to the core has a significant result impact on a power transformer. This paper presents the sound of a factory transformer before on-site delivery for no-load tests. This paper also discusses the winding characteristics from the transformer full-load tests. The simulation and the measurement for several transformers with capacities ranging from 15 to 60 MVA and high voltage 132kV to low voltage 33 kV are performed. This study compares the sound levels for transformers by no-load test (core/magnetostriction) and full-load test (winding/displacement ɛ ). The difference between the simulated and the measured sound levels is about 3dB. The results show that the sound level depends on several parameters, including winding displacement, capacity, mass of the core and windings. Comparative results of magnetic induction of cores and the electromagnetic force of windings for no-load and full-load conditions are examined.

  7. Transformer sound level caused by core magnetostriction and winding stress displacement variation

    Directory of Open Access Journals (Sweden)

    Chang-Hung Hsu


    Full Text Available Magnetostriction caused by the exciting variation of the magnetic core and the current conducted by the winding wired to the core has a significant result impact on a power transformer. This paper presents the sound of a factory transformer before on-site delivery for no-load tests. This paper also discusses the winding characteristics from the transformer full-load tests. The simulation and the measurement for several transformers with capacities ranging from 15 to 60 MVA and high voltage 132kV to low voltage 33 kV are performed. This study compares the sound levels for transformers by no-load test (core/magnetostriction and full-load test (winding/displacement ε. The difference between the simulated and the measured sound levels is about 3dB. The results show that the sound level depends on several parameters, including winding displacement, capacity, mass of the core and windings. Comparative results of magnetic induction of cores and the electromagnetic force of windings for no-load and full-load conditions are examined.

  8. Physiological and biotechnological implications of transcript-level variation under abiotic stress. (United States)

    Sanchez, D H


    The discovery of genes that can be used to increase plant tolerance to environmental stress has practical implications for agriculture, since knowledge at the molecular level can potentially be translated from model plants to crops or from tolerant to sensitive cultivars. For more than a decade, researchers have attempted to identify transcriptional and metabolic pathways involved in stress tolerance using functional genomics tools. In some cases, promising results were obtained when a clear causal link was found between transcripts and tolerance/sensitivity to stress. However, recent reports question the global translational power of functional genomics for biotechnological applications, as one of the main limitations seems to be the large variability in gene expression. Transcript-level variability under stress has not been considered of interest in the scientific literature because it is intuitively obvious, but most reports seem to naively overlook the consequences. Here, three case situations are reviewed (variability between genotypes, variability due to environmental interactions and variability between stressors) in support of the concept that inherent transcript-level variation in biological systems may limit our knowledge of environmental plant tolerance and of functional genomics in molecular stress physiology. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Neuropeptide S receptor gene variation modulates anterior cingulate cortex Glx levels during CCK-4 induced panic. (United States)

    Ruland, Tillmann; Domschke, Katharina; Schütte, Valerie; Zavorotnyy, Maxim; Kugel, Harald; Notzon, Swantje; Vennewald, Nadja; Ohrmann, Patricia; Arolt, Volker; Pfleiderer, Bettina; Zwanzger, Peter


    An excitatory-inhibitory neurotransmitter dysbalance has been suggested in pathogenesis of panic disorder. The neuropeptide S (NPS) system has been implicated in modulating GABA and glutamate neurotransmission in animal models and to genetically drive altered fear circuit function and an increased risk of panic disorder in humans. Probing a multi-level imaging genetic risk model of panic, in the present magnetic resonance spectroscopy (MRS) study brain glutamate+glutamine (Glx) levels in the bilateral anterior cingulate cortex (ACC) during a pharmacological cholecystokinin tetrapeptide (CCK-4) panic challenge were assessed depending on the functional neuropeptide S receptor gene (NPSR1) rs324981 A/T variant in a final sample of 35 healthy male subjects. The subjective panic response (Panic Symptom Scale; PSS) as well as cortisol and ACTH levels were ascertained throughout the experiment. CCK-4 injection was followed by a strong panic response. A significant time×genotype interaction was detected (p=.008), with significantly lower ACC Glx/Cr levels in T allele carriers as compared to AA homozygotes 5min after injection (p=.003). CCK-4 induced significant HPA axis stimulation, but no effect of genotype was discerned. The present pilot data suggests NPSR1 gene variation to modulate Glx levels in the ACC during acute states of stress and anxiety, with blunted, i.e. possibly maladaptive ACC glutamatergic reactivity in T risk allele carriers. Our results underline the notion of a genetically driven rapid and dynamic response mechanism in the neural regulation of human anxiety and further strengthen the emerging role of the NPS system in anxiety. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  10. Magnetic storms and variations in hormone levels among residents of North Polar area - Svalbard (United States)

    Breus, Tamara; Zenchenko, Tatiana; Boiko, Evgeni

    It was previously shown that magnetic storms lead to an increase in the level of cortisol and noradrenalin in healthy and sick people with cardiovascular diseases [Breus Rapoport. 2003]. However, in the healthy group in the cited study was only 4 people and it seemed that these results need to be checked. In the present work the 4 examinations (January, March, June, October) of large groups of healthy inhabitants of high latitudes (Svalbard, the most northerly in the world year-round inhabited settlements) on the blood levels of adrenal hormones (cortisol) and thyroid hormones (triiodothyronine (T3 ) and thyroxine T4) have been done. The aim was to study the possible sensitivity of these biochemical parameters in three independent groups of people living in this region (men working underground (364 samples), the men working on the ground (274 samples) and women (280 samples)) to variations in external natural factors of high latitudes. For the analysis we used the following parameters of space and terrestrial weather :index of intensity of solar radio emission at a wavelength 10.7sm (RF10.7), planetary geomagnetic activity index - daily Kp index ( Kp) , the daily average Ap index ( Ap) , the maximum per every 3 -hour Kp index ) as well as the daily average indicators of flow rate of galactic cosmic rays neutron component (N), atmospheric pressure ( RATM ) and its rate of change ( the difference between the Ratm today and yesterday ) according to the geophysical station Oulu (Finland , The obtained data indicate that the most expressed dependence of the level of studied three hormones is from the level of geomagnetic activity (GMA)-Kp, Ap, Kpmax - 3h. For two of the four seasons (June and October) with increasing levels of GMA a significant (p aspects (in Russian), Publ.Co Soviet Sport,.Moscow, 2003, 271p.

  11. Lake-level variations and tides in Lago Argentino, Patagonia: insights from pressure tide gauge records

    Directory of Open Access Journals (Sweden)

    Andreas Richter


    Full Text Available Based on precise pressure tide gauge observations lake-level records are derived for two sites in Lago Argentino, southern Patagonia, of 2.5 and 1 years of duration. Applying the tools of time series analysis, the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle of 1.2 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. Sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in Lago Argentino are dominated by surface seiches reaching 20 cm in amplitude. Lake tides reach a maximum amplitude of 3 mm. The comparison of the tidal signal extracted from the lake-level observations with a model composed of the contributions of body tide and ocean tidal loading indicates a phase shift of 23° which is most likely explained by an 1 hour phase lag of global ocean tide models in the region of the highly fragmented Pacific coast. The comparison of the obtained results with those of a previous study of Lago Fagnano, Tierra del Fuego, allows to relate differences in the hydrological and hydrodynamic processes between both lakes to morphological properties. This leads to a tentative prediction of the lake-level variability to be expected from other great Patagonian lakes. The presented geodetic results shall serve as a starting point for a detailed limnological investigation of these aquatic ecosystems.

  12. Groundwater and Global Palaeoclimate Signals (G@GPS)


    Haldorsen, Sylvi; Ploeg, van der, B.; Cendon, Dioni I.; Chen, Jianyao; Jemaa, Najiba Chkir Ben; Gurdak, Jason J.; Purtschert, Roland; Tujchneider, Ofelia; Vaikmae, Rein; Perez, Marcela; Zouari, Kamel


    Groundwater sources supply fresh drinking water to almost half of the World's population and are a main source of water for irrigation across world. Characterization of groundwater resources, surface groundwater interactions and their link to the global water cycle and modern global change are important themes in hydrogeological research, whereas little attention has been given to the relation between groundwater and past climate variations. A groundwater system's history is vital to assess i...

  13. Changes in groundwater chemistry before two consecutive earthquakes in Iceland

    KAUST Repository

    Skelton, Alasdair


    Groundwater chemistry has been observed to change before earthquakes and is proposed as a precursor signal. Such changes include variations in radon count rates1, 2, concentrations of dissolved elements3, 4, 5 and stable isotope ratios4, 5. Changes in seismic wave velocities6, water levels in boreholes7, micro-seismicity8 and shear wave splitting9 are also thought to precede earthquakes. Precursor activity has been attributed to expansion of rock volume7, 10, 11. However, most studies of precursory phenomena lack sufficient data to rule out other explanations unrelated to earthquakes12. For example, reproducibility of a precursor signal has seldom been shown and few precursors have been evaluated statistically. Here we analyse the stable isotope ratios and dissolved element concentrations of groundwater taken from a borehole in northern Iceland between 2008 and 2013. We find that the chemistry of the groundwater changed four to six months before two greater than magnitude 5 earthquakes that occurred in October 2012 and April 2013. Statistical analyses indicate that the changes in groundwater chemistry were associated with the earthquakes. We suggest that the changes were caused by crustal dilation associated with stress build-up before each earthquake, which caused different groundwater components to mix. Although the changes we detect are specific for the site in Iceland, we infer that similar processes may be active elsewhere, and that groundwater chemistry is a promising target for future studies on the predictability of earthquakes.

  14. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications. (United States)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas


    In Patagonia, the glacial-isostatic adjustment (GIA) to past ice-mass changes (Ivins & James 2004; Klemann et al. 2007) is of particular interest in the context of the determination of the complex regional rheology related to plate subduction in a triple-junction constellation. To further complicate the situation, GIA is overlaid with load deformation not only due to present ice mass changes but also due to water-level changes in the lakes surrounding the icefields and the ocean surrounding Patagonia. These elastic deformations affect the determination of glacial-isostatic uplift rates from GPS observations (Dietrich et al. 2010; Lange et al. 2014). Observations of lake tides and their comparison with the theoretical tidal signal have been used previously to validate predictions of ocean tidal loading and have revealed regional deviations from conventional global elastic earth models (Richter et al. 2009). In this work we investigate the tides and lake-level variations in Lago Argentino, Lago Viedma, Lago San Martín/O'Higgins and Lago Buenos Aires/General Carrera. This allows us to test, among other things, the validity of tidal loading models. We present pressure tide-gauge records from two sites in Lago Argentino extending over 2.5 years (Richter et al. 2015). These observations are complemented by lake-level records provided by the Argentine National Hydrometeorological Network. Based on these lake-level time series the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle exceeding 1 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. In Lago Argentino sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in these lakes are dominated by surface seiches reaching 20 cm in amplitude. A harmonic tidal analysis of the lake-level

  15. Stochastic level-set variational implicit-solvent approach to solute-solvent interfacial fluctuations (United States)

    Zhou, Shenggao; Sun, Hui; Cheng, Li-Tien; Dzubiella, Joachim; McCammon, J. Andrew


    Recent years have seen the initial success of a variational implicit-solvent model (VISM), implemented with a robust level-set method, in capturing efficiently different hydration states and providing quantitatively good estimation of solvation free energies of biomolecules. The level-set minimization of the VISM solvation free-energy functional of all possible solute-solvent interfaces or dielectric boundaries predicts an equilibrium biomolecular conformation that is often close to an initial guess. In this work, we develop a theory in the form of Langevin geometrical flow to incorporate solute-solvent interfacial fluctuations into the VISM. Such fluctuations are crucial to biomolecular conformational changes and binding process. We also develop a stochastic level-set method to numerically implement such a theory. We describe the interfacial fluctuation through the “normal velocity” that is the solute-solvent interfacial force, derive the corresponding stochastic level-set equation in the sense of Stratonovich so that the surface representation is independent of the choice of implicit function, and develop numerical techniques for solving such an equation and processing the numerical data. We apply our computational method to study the dewetting transition in the system of two hydrophobic plates and a hydrophobic cavity of a synthetic host molecule cucurbit[7]uril. Numerical simulations demonstrate that our approach can describe an underlying system jumping out of a local minimum of the free-energy functional and can capture dewetting transitions of hydrophobic systems. In the case of two hydrophobic plates, we find that the wavelength of interfacial fluctuations has a strong influence to the dewetting transition. In addition, we find that the estimated energy barrier of the dewetting transition scales quadratically with the inter-plate distance, agreeing well with existing studies of molecular dynamics simulations. Our work is a first step toward the

  16. Analysis of methylphosphonic acid, ethyl methylphosphonic acid and isopropyl methylphosphonic acid at low microgram per liter levels in groundwater. (United States)

    Sega, G A; Tomkins, B A; Griest, W H


    A method is described for determining methylphosphonic acid, ethyl methylphosphonic acid and isopropyl methylphosphonic acid, which are hydrolysis products of the nerve agents VX (S-2-diisopropylaminoethyl O-ethyl methylphosphonothiolate) and GB (sarin, isopropylmethyl phosphonofluoridate). The analytes are extracted from 50 ml groundwater using a solid-phase extraction column packed with 500 mg of silica with a bonded quaternary amine phase, and are eluted and derivatized with methanolic trimethylphenylammonium hydroxide. Separation and quantitation are achieved using a capillary column gas chromatograph equipped with a flame photometric detector operated in its phosphorus-selective mode. Two independent statistically-unbiased procedures were employed to determine the detection limits, which ranged between 3 and 9 micrograms/l, for the three analytes.

  17. Literacy skills gaps: A cross-level analysis on international and intergenerational variations (United States)

    Kim, Suehye


    The global agenda for sustainable development has centred lifelong learning on UNESCO's Education 2030 Framework for Action. The study described in this article aimed to examine international and intergenerational variations in literacy skills gaps within the context of the United Nations Sustainable Development Goals (SDGs). For this purpose, the author examined the trend of literacy gaps in different countries using multilevel and multisource data from the OECD's Programme for the International Assessment of Adult Competencies (PIAAC) and UNESCO Institute for Lifelong Learning survey data from the third edition of the Global Report on Adult Learning and Education (GRALE III). In this article, particular attention is paid to exploring the specific effects of education systems on literacy skills gaps among different age groups. Key findings of this study indicate substantial intergenerational literacy gaps within countries as well as different patterns of literacy gaps across countries. Young generations generally outscore older adults in literacy skills, but feature bigger gaps when examined by gender and social origin. In addition, this study finds an interesting tendency for young generations to benefit from a system of Recognition, Validation and Accreditation (RVA) in closing literacy gaps by formal schooling at country level. This implies the potential of an RVA system for tackling educational inequality in initial schooling. The article concludes with suggestions for integrating literacy skills as a foundation of lifelong learning into national RVA frameworks and mechanisms at system level.

  18. Impact of Tidal Level Variations on Wave Energy Absorption at Wave Hub

    Directory of Open Access Journals (Sweden)

    Valeria Castellucci


    Full Text Available The energy absorption of the wave energy converters (WEC characterized by a limited stroke length —like the point absorbers developed at Uppsala University—depends on the sea level variation at the deployment site. In coastal areas characterized by high tidal ranges, the daily energy production of the generators is not optimal. The study presented in this paper quantifies the effects of the changing sea level at the Wave Hub test site, located at the south-west coast of England. This area is strongly affected by tides: the tidal height calculated as the difference between the Mean High Water Spring and the Mean Low Water Spring in 2014 was about 6.6 m. The results are obtained from a hydro-mechanic model that analyzes the behaviour of the point absorber at the Wave Hub, taking into account the sea state occurrence scatter diagram and the tidal time series at the site. It turns out that the impact of the tide decreases the energy absorption by 53%. For this reason, the need for a tidal compensation system to be included in the design of the WEC becomes compelling. The economic advantages are evaluated for different scenarios: the economic analysis proposed within the paper allows an educated guess to be made on the profits. The alternative of extending the stroke length of the WEC is investigated, and the gain in energy absorption is estimated.

  19. Variation of weather radar sensitivity at ground level and from space: case studies and possible causes

    Energy Technology Data Exchange (ETDEWEB)

    Joss, J. [Motto, Intragna (Switzerland); Gabella, M.; Perona, G. [Politecnico di Torino - Electronics Dept., Torino (Italy); Michaelides, S.C. [Meteorological Service, Nicosia (Cyprus)


    Firstly, this paper summarizes the procedure for correcting the variation of sensitivity of radars at ground level, using a radar in space for reference, as already described in the literature. Around 10dB have to be added to the measured radar reflectivity Z (in mm{sup 6}/m{sup 3}), when increasing the range from 10 km to 100 km. In other words, instead of an r{sup -2}-dependence (where r is the range, i.e. the distance between the radar and the meteorological target), we find an apparent reduction proportional to r{sup -3}. A similar procedure is used to analyze the dependence of the TRMM radar, using the adjusted data of the radar at ground level for reference. We have to add around 3dB to the measured reflectivity, when increasing the distance from close to Nadir (10 km) to the edge of the swath (100 km). In other words, instead of a constant sensitivity over the swath of the satellite, we find a reduction of sensitivity with the range, proportional to r{sup -0.3}. Secondly, the paper illustrates possible causes of the systematic range dependence of both radars. The old, dominant cause - overshooting of precipitation - is already vastly discussed in literature. We describe the variability of the precipitation with three case studies. The variability of the precipitation is difficult to quantify. It is concluded to be responsible for the variable range dependence and for many disillusions with radar. (orig.)

  20. Office workers' objectively assessed total and prolonged sitting time: Individual-level correlates and worksite variations

    Directory of Open Access Journals (Sweden)

    Nyssa T. Hadgraft


    Full Text Available Sedentary behavior is highly prevalent in office-based workplaces; however, few studies have assessed the attributes associated with this health risk factor in the workplace setting. This study aimed to identify the correlates of office workers' objectively-assessed total and prolonged (≥30 min bouts workplace sitting time. Participants were 231 Australian office workers recruited from 14 sites of a single government employer in 2012–13. Potential socio-demographic, work-related, health-related and cognitive-social correlates were measured through a self-administered survey and anthropometric measurements. Associations with total and prolonged workplace sitting time (measured with the activPAL3 were tested using linear mixed models. Worksites varied significantly in total workplace sitting time (overall mean [SD]: 79% [10%] of work hours and prolonged workplace sitting time (42% [19%], after adjusting for socio-demographic and work-related characteristics. Organisational tenure of 3–5 years (compared to tenure >5 years was associated with more time spent in total and prolonged workplace sitting time, while having a BMI categorised as obese (compared to a healthy BMI was associated with less time spent in total and prolonged workplace sitting time. Significant variations in sitting time were observed across different worksites of the same employer and the variation remained after adjusting for individual-level factors. Only BMI and organisational tenure were identified as correlates of total and prolonged workplace sitting time. Additional studies are needed to confirm the present findings across diverse organisations and occupations.

  1. Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater. (United States)

    Szczuka, Aleksandra; Parker, Kimberly M; Harvey, Cassandra; Hayes, Erin; Vengosh, Avner; Mitch, William A


    Coastal utilities exploiting mildly saline groundwater (Groundwater from North Carolina coastal aquifers is characterized by large variations in concentrations of halides (bromide up to 10,600 μg/L) and dissolved organic carbon (up to 5.7 mg-C/L). Formation of 33 regulated and unregulated halogenated DBPs, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles, haloacetamides, and haloacetaldehydes, was measured after simulated chlorination of 24 coastal North Carolina groundwater samples under typical chlorination conditions. Results of chlorination simulation show that THM levels exceeded the Primary Maximum Contaminant Levels in half of the chlorinated samples. Addition of halides to a low salinity groundwater (110 mg/L chloride) indicated that elevated bromide triggered DBP formation, but chloride was not a critical factor for their formation. DBP speciation, but not overall molar formation, was strongly correlated with bromide variations in the groundwater. THMs and HAAs dominated the measured halogenated DBPs on a mass concentration basis. When measured concentrations were weighted by metrics of toxic potency, haloacetonitriles, and to a lesser degree, haloacetaldehydes and HAAs, were the predominant contributors to calculated DBP-associated toxicity. For some samples exhibiting elevated ammonia concentrations, the addition of chlorine to form chloramines in situ significantly reduced halogenated DBP concentrations and calculated toxicity. HAAs dominated the calculated toxicity of chloraminated waters. Reverse osmosis treatment of saline groundwater (chloride >250 mg/L) can reduce DBP formation by removing halides and organic precursors. However, we show that in a case where reverse osmosis permeate is blended with a separate raw groundwater, the residual bromide level in the permeate could still exceed that in the raw groundwater, and thereby induce DBP formation in the blend. DBP-associated calculated toxicity increased for

  2. Multiple hypotheses explain variation in extra-pair paternity at different levels in a single bird family. (United States)

    Brouwer, Lyanne; van de Pol, Martijn; Aranzamendi, Nataly Hidalgo; Bain, Glen; Baldassarre, Daniel T; Brooker, Lesley C; Brooker, Michael G; Colombelli-Négrel, Diane; Enbody, Erik; Gielow, Kurt; Hall, Michelle L; Johnson, Allison E; Karubian, Jordan; Kingma, Sjouke A; Kleindorfer, Sonia; Louter, Marina; Mulder, Raoul A; Peters, Anne; Pruett-Jones, Stephen; Tarvin, Keith A; Thrasher, Derrick J; Varian-Ramos, Claire W; Webster, Michael S; Cockburn, Andrew


    Extra-pair paternity (EPP), where offspring are sired by a male other than the social male, varies enormously both within and among species. Trying to explain this variation has proved difficult because the majority of the interspecific variation is phylogenetically based. Ideally, variation in EPP should be investigated in closely related species, but clades with sufficient variation are rare. We present a comprehensive multifactorial test to explain variation in EPP among individuals in 20 populations of nine species over 89 years from a single bird family (Maluridae). Females had higher EPP in the presence of more helpers, more neighbours or if paired incestuously. Furthermore, higher EPP occurred in years with many incestuous pairs, populations with many helpers and species with high male density or in which males provide less care. Altogether, these variables accounted for 48% of the total and 89% of the interspecific and interpopulation variation in EPP. These findings indicate why consistent patterns in EPP have been so challenging to detect and suggest that a single predictor is unlikely to account for the enormous variation in EPP across levels of analysis. Nevertheless, it also shows that existing hypotheses can explain the variation in EPP well and that the density of males in particular is a good predictor to explain variation in EPP among species when a large part of the confounding effect of phylogeny is excluded. © 2017 John Wiley & Sons Ltd.

  3. Distribution of Groundwater Recharge in Fractured/Karst Aquifers (United States)

    Dvory, N. Z.; Livshitz, Y.; Adar, E.; Kuznetsov, M.; Yakirevich, A.


    Accurate estimation of groundwater recharge is important to evaluate aquifer's water balance. Spatial and temporal distribution of the recharge depends on variability of hydraulic properties of rock. This variability is larger for sedimentary fractured environments where fast and slow flow paths exist. Therefore, quantifying groundwater fluxes through various rock sections within the vadose zone and into the aquifer is of critical importance for determining aquifers storage deviation. The research objective was to investigate how the lithology changes influence flow in the unsaturated zone and the spatial and temporal variation of groundwater recharge. To assess these variations for the Western Mountain Aquifer (Yarkon-Taninim) of Israel, we considered a range of parameters values for both fractures/karst and porous media, namely; permeability, block size, spacing between fractures, karst volumetric volume, etc. A conceptual model was built for nine monitoring wells sites in the study area. A one-dimensional, dual permeability mathematical model of water flow in a variably saturated, fractured/karst-porous media was applied to simulate water flow in each location. Model parameters were determined by solving the inverse problem using data of groundwater level observations. The results of simulation show that the highest groundwater replenishment occurs in locations where fast flow paths conditions are expected, while the lowest recharges took place in locations containing low permeability layers. The spatial differences in recharge are larger during years with high precipitation which can reach a few hundred percent. Additionally, fast and slow flow paths conditions also influence annual cumulative groundwater recharge dynamic. In areas where fast flow paths exist, most of the groundwater recharge occurs during the rainy season (60-80% of the total recharge for the tested years), while in locations with slow flow path conditions the recharge rate stays relatively

  4. Hydrochemical variations in selected geothermal groundwater and carbonated springs in Korea: a baseline study for early detection of CO2 leakage. (United States)

    Choi, Hanna; Piao, Jize; Woo, Nam C; Cho, Heuynam


    A baseline hydrochemistry of the above zone aquifer was examined for the potential of CO2 early detection monitoring. Among the major ionic components and stable isotope ratios of oxygen, hydrogen, and carbon, components with a relative standard deviation (RSD) of geothermal groundwater from well depths of 400-700 m below the ground surface (bgs) and carbonated springs with a high CO2 content in Korea. Under the natural conditions of inland geothermal groundwater, pH, electrical conductivity (EC), bicarbonate (HCO3), δ18O, δ2H, and δ13C were relatively stable as well as sensitive to the introduction of CO2 (g), thus showing good potential as monitoring parameters for early detection of CO2 leakage. In carbonated springs, the parameters identified were pH, δ18O, and δ2H. Baseline hydrochemistry monitoring could provide information on parameters useful for detecting anomalies caused by CO2 leakage as measures for early warning.

  5. Conceptualization of the predevelopment groundwater flow system and transient water-level responses in Yucca Flat, Nevada National Security Site, Nevada (United States)

    Fenelon, Joseph M.; Sweetkind, Donald S.; Elliott, Peggy E.; Laczniak, Randell J.


    Contaminants introduced into the subsurface of Yucca Flat, Nevada National Security Site, by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a set of contour maps developed to represent the hydraulic-head distribution within the two major aquifer systems underlying the area. Aquifers and confining units within these systems were identified and their extents delineated by merging and analyzing hydrostratigraphic framework models developed by other investigators from existing geologic information. Maps of the hydraulic-head distributions in the major aquifer systems were developed from a detailed evaluation and assessment of available water-level measurements. The maps, in conjunction with regional and detailed hydrogeologic cross sections, were used to conceptualize flow within and between aquifer systems. Aquifers and confining units are mapped and discussed in general terms as being one of two aquifer systems: alluvial-volcanic or carbonate. The carbonate aquifers are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater flow directions, approximated from potentiometric contours, are indicated on the maps and sections and discussed for the alluvial-volcanic and regional carbonate aquifers. Flow in the alluvial-volcanic aquifer generally is constrained by the bounding volcanic confining unit, whereas flow in the regional carbonate aquifer is constrained by the siliceous confining unit. Hydraulic heads in the alluvial-volcanic aquifer typically range from 2,400 to 2,530 feet and commonly are elevated about 20-100 feet above heads in the underlying regional carbonate

  6. Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Annette Schafer, Arthur S. Rood, A. Jeffrey Sondrup


    Groundwater impacts have been analyzed for the proposed remote-handled low-level waste disposal facility. The analysis was prepared to support the National Environmental Policy Act environmental assessment for the top two ranked sites for the proposed disposal facility. A four-phase screening and analysis approach was documented and applied. Phase I screening was site independent and applied a radionuclide half-life cut-off of 1 year. Phase II screening applied the National Council on Radiation Protection analysis approach and was site independent. Phase III screening used a simplified transport model and site-specific geologic and hydrologic parameters. Phase III neglected the infiltration-reducing engineered cover, the sorption influence of the vault system, dispersion in the vadose zone, vertical dispersion in the aquifer, and the release of radionuclides from specific waste forms. These conservatisms were relaxed in the Phase IV analysis which used a different model with more realistic parameters and assumptions. Phase I screening eliminated 143 of the 246 radionuclides in the inventory from further consideration because each had a half-life less than 1 year. An additional 13 were removed because there was no ingestion dose coefficient available. Of the 90 radionuclides carried forward from Phase I, 57 radionuclides had simulated Phase II screening doses exceeding 0.4 mrem/year. Phase III and IV screening compared the maximum predicted radionuclide concentration in the aquifer to maximum contaminant levels. Of the 57 radionuclides carried forward from Phase II, six radionuclides were identified in Phase III as having simulated future aquifer concentrations exceeding maximum contaminant limits. An additional seven radionuclides had simulated Phase III groundwater concentrations exceeding 1/100th of their respective maximum contaminant levels and were also retained for Phase IV analysis. The Phase IV analysis predicted that none of the thirteen remaining

  7. Groundwater level monitoring sampling and analysis plan for the environmental monitoring plan at waste area grouping 6, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)



    This document is the Groundwater Level Monitoring Sampling and Analysis Plan (SAP) for Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory (ORNL). Note that this document is referred to as a SAP even though no sampling and analysis will be conducted. The term SAP is used for consistency. The procedures described herein are part of the Environmental Monitoring Plan (EMP) for WAG 6, which also includes monitoring tasks for seeps and springs, groundwater quality, surface water, and meteorological parameters. Separate SAPs are being issued concurrently to describe each of these monitoring programs. This SAP has been written for the use of the field personnel responsible for implementation of the EMP, with the intent that the field personnel will be able to take these documents to the field and quickly find the appropriate steps required to complete a specific task. In many cases, Field Operations Procedures (FOPs) will define the steps required for an activity. The FOPs for the EMP are referenced and briefly described in the relevant sections of the SAPs, and are contained within the FOP Manual. Both these documents (the SAP and the FOP Manual) will be available to personnel in the field.

  8. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth. (United States)

    Carter, Jennifer L; White, Donald A


    Information on how vegetation adapts to differences in water supply is critical for predicting vegetation survival, growth and water use, which, in turn, has important impacts on site hydrology. Many field studies assess adaptation to water stress by comparing between disparate sites, which makes it difficult to distinguish between physiological or morphological changes and long-term genetic adaptation. When planting trees into new environments, the phenotypic adaptations of a species to water stress will be of primary interest. This study examined the response to water availability of Eucalyptus kochii ssp. borealis (C. Gardner) D. Nicolle, commonly integrated with agriculture in south-western Australia for environmental and economic benefits. By choosing a site where the groundwater depth varied but where climate and soil type were the same, we were able to isolate tree response to water supply. Tree growth, leaf area and stand water use were much larger for trees over shallow groundwater than for trees over a deep water table below a silcrete hardpan. However, water use on a leaf area basis was similar in trees over deep and shallow groundwater, as were the minimum leaf water potential observed over different seasons and the turgor loss point. We conclude that homeostasis in leaf water use and water relations was maintained through a combination of stomatal control and adjustment of sapwood-to-leaf area ratios (Huber value). Differences in the Huber value with groundwater depth were associated with different sapwood-specific conductivity and water use on a sapwood area basis. Knowledge of the coordination between water supply, leaf area, sapwood area and leaf transpiration rate for different species will be important when predicting stand water use.

  9. Pharmaceuticals as Groundwater Tracers - Applications and Limitations (United States)

    Scheytt, T. J.; Mersmann, P.; Heberer, T.


    Pharmaceutically active substances and metabolites are found at concentrations up to the microgram/L-level in groundwater samples from the Berlin (Germany) area and from several other places world wide. Among the compounds detected in groundwater are clofibric acid, propyphenazone, diclofenac, ibuprofen, and carbamazepine. Clofibric acid, the active metabolite of clofibrate and etofibrate (blood lipid regulators) is detected in groundwater at maximum concentrations of 7300 ng/L. Among the most important input paths of drugs are excretion and disposal into the sewage system. Groundwater contamination is likely to be due to leaky sewage systems, influent streams, bank filtration, and irrigation with effluent water from sewage treatment plants. There are no known natural sources of the above mentioned pharmaceuticals. The use of pharmaceuticals as tracers may include: (a) Quantification of infiltration from underground septic tanks (b) Detection of leaky sewage systems / leaky sewage pipes (c) Estimation of the effectiveness of sewage treatment plants (d) Identification of transport pathways of other organic compounds (e) Quantification of surface water / groundwater interaction (f) Characterization of the biodegradation potential. The use of pharmaceuticals as tracers is limited by variations in input. These variations depend on the amount of drugs prescribed and used in the study area, the social structure of the community, the amount of hospital discharge, and temporal concentration variations. Furthermore, the analysis of trace amounts of pharmaceuticals is sophisticated and expensive and may therefore limit the applicability of pharmaceuticals as tracers. Finally, the transport and degradation behavior of pharmaceuticals is not fully understood. Preliminary experiments in the laboratory were conducted using sediment material and groundwater from the Berlin area to evaluate the transport and sorption behavior of selected drugs. Results of the column experiments

  10. Relations between total phosphorus and orthophosphorus concentrations and rainfall, surface-water discharge, and groundwater levels in Big Cypress Seminole Indian Reservation, Florida, 2014–16 (United States)

    McBride, W. Scott; Sifuentes, Dorothy F.


    nearby sites during the same period. Differences in concentrations can likely be explained by differences in sample collection methods, sampling locations, sample collection time, and the hydrology during sampling or by the number of samples collected. A major limitation of this study was the short duration of sample collection, which covers a limited range of hydrologic conditions within the BCSIR.The effect of surface-water and groundwater hydrologic conditions on TP and OP concentrations was assessed by using rainfall data and surface-water stage and discharge records. The highest TP and OP concentrations occurred during peak surface-water flows in the canals following long dry periods. Concentrations of TP and OP increased internal to the BCSIR in the western half of the BCSIR during wet periods, but increased concentrations tended to lag behind rainfall events, likely because control structures upstream of sampling sites do not release flows until the water levels in the canals reach predetermined levels. This pattern may indicate that bed sediments in the canals contain high concentrations of phosphorus that becomes resuspended during high flows or that phosphorus salts that had accumulated on dry land during dry periods are carried into the canals by runoff. The largest TP spikes usually occurred at the beginning of high-flow events, but then quickly tapered off even when flows remained high.Groundwater flows were assessed in the BCSIR by using groundwater level observations from two preexisting USGS monitoring well clusters, each characterized by a shallow well installed in the surficial aquifer system and a deeper well installed in the intermediate aquifer system. Groundwater levels were evaluated with respect to surface-water levels and discharge in the BCSIR during the period of surface-water sampling. During dry conditions water levels in canals were often higher than groundwater levels in the surficial aquifer, indicating the potential for surface water to

  11. Groundwater animals


    Maurice, Louise; Bloomfield, John; Robertson, Anne; Allen, Debbie


    Groundwater animals are adapted to live in environments with no light and limited nutrients, They can provide insights into fundamental questions of evolution, ecology and biodiversity. They also have an important role to play in informing the reconstruction of past changes in geomorphology and climate, and can be used for characterising aquifers. The BGS is undertaking a systematic survey of selected areas and lithologies in the UK where groundwater animals have not been inves...

  12. Functional variation in the arginine vasopressin 2 receptor as a modifier of human plasma von Willebrand factor levels

    DEFF Research Database (Denmark)

    Nossent, Anne Yaël; Robben, J H; Deen, P M T


    SUMMARY OBJECTIVES: Stimulation of arginine vasopressin 2 receptor (V2R) with arginine vasopressin (AVP) results in a rise in von Willebrand factor (VWF) and factor VIII plasma levels. We hypothesized that gain-of-function variations in the V2R gene (AVPR2) would lead to higher plasma levels of V...

  13. Electronic structures of 1-ML C84/Ag(111): Energy level alignment and work function variation (United States)

    Wang, Peng; Zhao, Li-Li; Zhang, Jin-Juan; Li, Wen-Jie; Liu, Wei-Hui; Chen, Da; Sheng, Chun-Qi; Wang, Jia-Ou; Qian, Hai-Jie; Ibrahim, Kurash; Li, Hong-Nian


    The electronic structures of fullerene/metal interface are critical to the performance of devices based on fullerene in molecular electronics and organic electronics. Herein, we investigate the electronic structures at the interface between C84 and Ag(111) by photoelectron spectroscopy and soft X-ray absorption spectroscopy techniques. It is observed that C84 monolayer on Ag(111) surface (1-ML C84/Ag(111)) has metallic nature. A charge transfer from substrate to the unoccupied states of C84 is determined to be 1.3 electrons per molecule. However, the work function of 1-ML C84 (4.72 eV) is observed slightly larger than that of the clean Ag(111) substrate (4.50 eV). A bidirectional charge transfer model is introduced to understand the work function variation of the fullerene/metal system. In addition to the charge transfer from substrate to the adsorbate's unoccupied states, there exists non-negligible back charge transfer from fullerene occupied molecular orbital to the metal substrate through interfacial hybridization. The Fermi level will be pinned at ∼4.72 eV for C84 monolayer on coinage metal substrate.

  14. Spatiotemporal Variation of Ambient Noise Levels and Cross-Correlations observed in Gujarat, India (United States)

    Liang, W. T.; Singh, A.; Chen, K. X.; Zhao, L.


    To understand the correlation between the environmental turbulence imposed by the monsoon activity and the seismic microseisms, we have analyzed the seismic ambient noise levels at 39 broadband seismic stations in Gujarat, India. The results suggest a strong temporal variation of the power of secondary microseism (2-10 s), which may be an indication of the intensities of monsoons at least in Gujarat. The ambient noise CCF also presents a similar pattern, in which the energy in the period band of secondary microseism is much stronger during the monsoon season. A precursory signal of the CCFs around the zero lag-time is observed, but it disappears during the monsoon season. Possible mechanisms responsible for this observation remain unclear. In addition, 589 CCFs among these 39 stations have been retrieved as the empirical green's functions. We applied a multi-scale inversion scheme to derive 2-D tomographic images for both group and phase velocities at various periods. The result may reflect the heterogeneity of the geological regions in Gujarat, India.

  15. Regional Variations of Credits Obtained by LEED 2009 Certified Green Buildings—A Country Level Analysis

    Directory of Open Access Journals (Sweden)

    Peng Wu


    Full Text Available Leadership in Energy and Environmental Design (LEED is one of the most widely recognized green building rating systems. With more than 20% of the projects certified in non-United States (US countries, LEED’s global impact has been increasing and it is critically important for developers and regulatory authorities to understand LEED’s performance at the country level to facilitate global implementation. This study therefore aims to investigate the credit achievement pattern of LEED 2009, which is one of the well-developed versions of LEED, by using 4021 certified projects in the US, China, Turkey, and Brazil. The results show that significant differences can be identified on most rating categories, including sustainable sites, water efficiency, energy and atmosphere, indoor environmental quality, and innovation in design. Using a post hoc analysis, country-specific credit allocation patterns are also identified to help developers to understand existing country-specific green building practices. In addition, it is also found that there is unbalanced achievement of regional priority credits. The study offers a useful reference and benchmark for international developers and contractors to understand the regional variations of LEED 2009 and for regulatory authorities, such as the U.S. Green Building Council, to improve the rating system, especially on designing regional priority credits.

  16. Renewable Energy Potentials along the Bay of Bengal due to Tidal Water Level Variation

    Directory of Open Access Journals (Sweden)

    Ahmad Myisha


    Full Text Available The projected increase in energy demand coupled with concerns regarding present reliance on fossil fuel and associated environmental concerns had led to increased interest in exploiting renewable energy sources. Among different renewable energy sources, tidal energy is unique and most suitable because of its predictable nature and capability to ensure supply security. Tide consists of both kinetic and potential energy which can be converted to electricity using well-proven technology. The potential energy of tides - the principal focus of the study, is stored due to rise and fall of the sea level. Head difference created due to tidal variation between basin side and sea side of a barrage stores potential energy which is converted into fast-moving water that rotates turbine and generates electricity. Bangladesh with its long coastline has promising prospects of tidal energy resource development. The study focuses on tidal energy resource exploration and exploitation along several competent locations of the Bengal coastline. Tidal records of flood and ebb tide of these locations are analyzed to calculate the potential energy. Finally, available potential techniques of energy extraction are evaluated for annually generated energy estimation. This study investigates the prospect and utilization of tidal energy concept and reviews the possibilities and opportunities of employment of the technology for sustainable development and climate change mitigation in context of Bangladesh.

  17. Pseudomonas viridiflava, a multi host plant pathogen with significant genetic variation at the molecular level.

    Directory of Open Access Journals (Sweden)

    Panagiotis F Sarris

    Full Text Available The pectinolytic species Pseudomonas viridiflava has a wide host range among plants, causing foliar and stem necrotic lesions and basal stem and root rots. However, little is known about the molecular evolution of this species. In this study we investigated the intraspecies genetic variation of P. viridiflava amongst local (Cretan, as well as international isolates of the pathogen. The genetic and phenotypic variability were investigated by molecular fingerprinting (rep-PCR and partial sequencing of three housekeeping genes (gyrB, rpoD and rpoB, and by biochemical and pathogenicity profiling. The biochemical tests and pathogenicity profiling did not reveal any variability among the isolates studied. However, the molecular fingerprinting patterns and housekeeping gene sequences clearly differentiated them. In a broader phylogenetic comparison of housekeeping gene sequences deposited in GenBank, significant genetic variability at the molecular level was found between isolates of P. viridiflava originated from different host species as well as among isolates from the same host. Our results provide a basis for more comprehensive understanding of the biology, sources and shifts in genetic diversity and evolution of P. viridiflava populations and should support the development of molecular identification tools and epidemiological studies in diseases caused by this species.

  18. Diurnal variation of gonadotropin levels in girls with early stages of puberty. (United States)

    Kang, Yu Sun; Yoo, Dong-Yoon; Chung, In Hyuk; Yoo, Eun-Gyong


    Pubertal gonadotropin secretion shows circadian pattern and the luteinizing hormone (LH) levels tend to rise in later stages of puberty in girls. We studied the usefulness of basal LH in the evaluation of central precocious puberty with emphasis on the influence of sampling time. Medical records of 334 girls that underwent gonadotropin-releasing hormone stimulation test (GnRHST) were reviewed. Auxological and laboratory data were compared between those with early morning (EM, before 10 AM) and late morning/afternoon (LM/A, after 10 AM) basal samples. Among those in sexual maturity rating (SMR) 2, EM samples showed higher basal LH (P=0.004) compare to LM/A samples, whereas those in SMR 3 showed no difference in LH levels between EM and LM/A samples. Among girls with pubertal response, EM group showed higher basal LH (P=0.031) and follicular stimulating hormone (P=0.008) than LM/A group. The EM basal LH was more closely related with the peak stimulated LH than the LM/A basal LH did (rs=0.871 vs. rs=0.524). The optimal basal LH cutoffs to predict a pubertal response to GnRHST were 0.11 IU/L with a sensitivity of 66.7% and a specificity of 78.7% in EM group, and 0.07 IU/L with a sensitivity of 60.0% and a specificity of 78.9% in LM/A group, respectively. In girls with early stages of puberty, EM basal LH is a more sensitive screening tool than the LM/A basal LH. Diurnal variation should be considered in evaluating children with precocious puberty.

  19. Seasonal variations in the level of plant constituents in greenhouse production of cherry tomatoes. (United States)

    Slimestad, Rune; Verheul, Michèl J


    The content of selected plant constituents was measured in cherry tomatoes (Lycopersicon esculentumMill. cv. Jennita) during conventional Norwegian tomato production in a greenhouse from May until October 2004. Samples were collected according to standard production procedure with orange-yellow colored fruits at weight in the range of 12.4-19.3 g and size in the range of 28.9-33.0 mm (diameter). The content of selected compounds based on 100 g FW were found to vary in the following range during the season: 7.38-28.38 mg of chalconaringenin, 0.32-0.92 mg of rutin, 0.24-1.06 mg of chlorogenic acid, 5.60-20.02 mg of ascorbic acid, 1.60-5.54 mg of lycopene, and 0.37-0.55 mg beta-carotene. Only minute amounts of naringenin together with kaempferol 3-rutinoside and caffeic acid, which previously have been reported from tomatoes, were detected. The content of chalconaringenin to rutin and that of lycopene to beta-carotene showed a strong correlation during the season (p < 0.001). The content of total phenolics and methanol-soluble antioxidants also showed a correlation (p < 0.001), and were found in the range 14.6-32.6 mg of gallic acid equivalents (GAE)/100 g fresh weight (FW) and 445-737 micromol of Fe(II)/100 g FW, respectively. Seasonal variation in the level of plant constituents is shown to be related to photon flux density and fertilization level.

  20. Assessment of spatial variation of ambient volatile organic compound levels at a power station in Kuwait. (United States)

    Ramadan, Ashraf


    Twenty-four-hour integrated ambient air samples were collected in canisters at 10 locations within Kuwait's major power station: Doha West Power Station to assess the spatial distribution of volatile organic compounds (VOCs) within the perimeter of the station. A total of 30 samples, i.e., three samples per location, were collected during February and March. The samples were analyzed using a gas chromatography with flame ionization detection (GC-FID) system and following the U.S. EPA Method TO-14A with modification. The results reflected the emission activities on the site and the meteorological conditions during sampling. Generally speaking, there was a negative correlation between the ambient temperature and the VOC concentrations, which indicates the sources were local. The halogenated compounds formed the highest proportion (i.e. 50-75 %) of the total VOC concentrations at the ten locations. 1,2,4-Trichlorobenzene and Vinyl Chloride concentrations were the highest amongst the other halogenated compounds. The aromatic compounds formed the least proportion (i.e. 1-4%) of the total VOC levels at all locations with Toluene having the highest concentrations amongst the aromatic compounds at seven locations. Propene, which is a major constituent of the fuel used, was the highest amongst the aliphatic compounds. The findings of this study and other relevant work suggests the measured VOC levels were the highest over the year, nevertheless, further work is required to assess the precisely temporal variation of VOC due to change in meteorological conditions and the emission rates. Assessment of VOC concentrations around a power plant in Kuwait during the peak season showed halogenated compounds to be the dominant group. The calculated indoor concentrations were lower than those reported in a residential area about 12 km away.

  1. Temporal variation in the biochemical ecology of lower trophic levels in the Northern California Current (United States)

    Miller, J. A.; Peterson, W. T.; Copeman, L. A.; Du, X.; Morgan, C. A.; Litz, M. N. C.


    There is strong correlative evidence that variation in the growth and survival of secondary consumers is related to the copepod species composition within the Northern California Current. Potential mechanisms driving these correlations include: (1) enhanced growth and survival of secondary consumers when lipid-rich, boreal copepod species are abundant, with cascading effects on higher trophic levels; (2) the regulation of growth and condition of primary and secondary consumers by the relative proportion of certain essential fatty acids (FAs) in primary producers; or (3) a combination of these factors. Disentangling the relative importance of taxonomic composition, lipid quantity, and FA composition on the nutritional quality of copepods requires detailed information on both the consumer and primary producers. Therefore, we collected phytoplankton and copepods at an oceanographic station for 19 months and completed species community analyses and generated detailed lipid profiles, including lipid classes and FAs, for both groups. There was strong covariation between species and biochemistry within and across trophic levels and distinct seasonal differences. The amount of total lipid within both the phytoplankton and copepod communities was twice as high in spring and summer than in fall and winter, and certain FAs, such as diatom indicators 20:5ω3 and 16:1ω7, comprised a greater proportion of the FA pool in spring and summer. Indicators of bacterial production within the copepod community were proportionally twice as high during fall and winter than spring and summer. Seasonal transitions in copepod FA composition were consistently offset from transitions in copepod species composition by approximately two weeks. The timing of the seasonal transition in copepod FAs reflected seasonal shifts in the species composition and/or biochemistry of primary producers more than seasonal shifts in the copepod species composition. These results emphasize the importance of

  2. Tools for quantifying isotopic niche space and dietary variation at the individual and population level. (United States)

    Newsome, Seth D.; Yeakel, Justin D.; Wheatley, Patrick V.; Tinker, M. Tim


    Ecologists are increasingly using stable isotope analysis to inform questions about variation in resource and habitat use from the individual to community level. In this study we investigate data sets from 2 California sea otter (Enhydra lutris nereis) populations to illustrate the advantages and potential pitfalls of applying various statistical and quantitative approaches to isotopic data. We have subdivided these tools, or metrics, into 3 categories: IsoSpace metrics, stable isotope mixing models, and DietSpace metrics. IsoSpace metrics are used to quantify the spatial attributes of isotopic data that are typically presented in bivariate (e.g., δ13C versus δ15N) 2-dimensional space. We review IsoSpace metrics currently in use and present a technique by which uncertainty can be included to calculate the convex hull area of consumers or prey, or both. We then apply a Bayesian-based mixing model to quantify the proportion of potential dietary sources to the diet of each sea otter population and compare this to observational foraging data. Finally, we assess individual dietary specialization by comparing a previously published technique, variance components analysis, to 2 novel DietSpace metrics that are based on mixing model output. As the use of stable isotope analysis in ecology continues to grow, the field will need a set of quantitative tools for assessing isotopic variance at the individual to community level. Along with recent advances in Bayesian-based mixing models, we hope that the IsoSpace and DietSpace metrics described here will provide another set of interpretive tools for ecologists.

  3. [Temporal and spatial variation of water nutrient level after exogenous nutrient input]. (United States)

    Fu, Ling; Zhao, Kai; Wang, Guo-Xiang; Ou, Yuan; Fan, Zhou; Mao, Li-Na; Zhang, Jia; Han, Rui-Ming


    In order to study the spatial and temporal variations of nitrogen (N) and phosphorous (P) nutrition in artificial wetlands after a single exogenous nutrient input, 6 mosaic communities of 7 plant species were set up in a cement channel in the greenhouse. After the addition of N and P nutritional solutions, the concentrations of dissolved total nitrogen (DTN), dissolved total phosphorous (DTP), ammonia nitrogen (NH4(+)-N), nitrate nitrogen (NO3(-) -N) and nitrite nitrogen (NO2(-) -N) in the surface, middle, and bottom layers of the bulk water were determined regularly within 22 days. The results show that: (1) the water depth and measuring date have significant effects on nutritional contents while the type of plant communities have no such an influence; (2) the diffusion of nutrient from surface to the middle water layers is relatively slow, which costs 6 days under the current experimental condition; (3) in the bottom water layer, nutritional concentrations had no significant changes except for NO2-N, thus the exogenous nutrient input mainly affects the nutrient contents of surface and middle-level bulk water; (4) DTP and NH4(+) -N contents gradually decline to similar levels that before the nutritional input event until the end of experimental period, though DTN and NO3(-) -N content decrease much more slowly; (5) the fact that NO2(-) -N contents rise in water layers of all depths demonstrates that nitrification and denitrification in the process of N circulation are enhanced. It is concluded that exogenous nutrient inputs not only harm aquatic ecosystems but also directly threat human health.

  4. MODFLOW-2000 model used to evaluate potential effects of existing and proposed groundwater withdrawals on water levels and natural groundwater discharge in Snake Valley and surrounding areas, Utah and Nevada (United States)

    U.S. Geological Survey, Department of the Interior — A previously developed three-dimensional steady-state numerical groundwater-flow model was modified to transient conditions with respect to well withdrawals, and...

  5. Tracing groundwater recharge in the San Luis Valley, Colorado: Groundwater contamination susceptibility in an agricultural watershed (United States)

    Patel, Tanya; Hindshaw, Ruth; Singer, Michael


    media, Topography, Influence of the vadose zone and hydraulic Conductivity). Each variable is assigned a weighting and rating, which provides a quantitative assessment of an area's pollution potential. Using this method of investigation, the groundwater vulnerability map produced classifies 5% of the area as having low pollution potential, 34% as having moderate pollution potential, and 61% as having high pollution potential. The groundwater vulnerability map may be used to predict the variation in agricultural contaminant concentrations in the unconfined aquifer. Major ion analyses revealed that nitrate concentrations are highly variable, varying between 0.435 and 949μM/L, and exceed the EPA maximum contaminant level at four sites. The spatial variability in nitrate concentrations, as well as sulphate and phosphate concentrations, is much greater than the differences predicted by the model. This suggests that this variability is not a result of differences in the hydrogeology between sites, but instead may be related to individual farm practices or a result of point sources such as animal waste, septic tanks and sewage release. Understanding the impact of commercial irrigation on groundwater quality and availability is vital for developing effective strategies to stabilise groundwater levels, and protect the farmers and local population that rely on this water.

  6. Intra and Interspecific Variations of Gene Expression Levels in Yeast Are Largely Neutral: (Nei Lecture, SMBE 2016, Gold Coast). (United States)

    Yang, Jian-Rong; Maclean, Calum J; Park, Chungoo; Zhao, Huabin; Zhang, Jianzhi


    It is commonly, although not universally, accepted that most intra and interspecific genome sequence variations are more or less neutral, whereas a large fraction of organism-level phenotypic variations are adaptive. Gene expression levels are molecular phenotypes that bridge the gap between genotypes and corresponding organism-level phenotypes. Yet, it is unknown whether natural variations in gene expression levels are mostly neutral or adaptive. Here we address this fundamental question by genome-wide profiling and comparison of gene expression levels in nine yeast strains belonging to three closely related Saccharomyces species and originating from five different ecological environments. We find that the transcriptome-based clustering of the nine strains approximates the genome sequence-based phylogeny irrespective of their ecological environments. Remarkably, only ∼0.5% of genes exhibit similar expression levels among strains from a common ecological environment, no greater than that among strains with comparable phylogenetic relationships but different environments. These and other observations strongly suggest that most intra and interspecific variations in yeast gene expression levels result from the accumulation of random mutations rather than environmental adaptations. This finding has profound implications for understanding the driving force of gene expression evolution, genetic basis of phenotypic adaptation, and general role of stochasticity in evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 1. Guideline approach

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, C.S.; Cole, C.R.


    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. This volume includes specific recommendations for decision-making managers and site operators on how to use these guidelines. The more detailed discussions about the code selection approach are provided. 242 refs., 6 figs.

  8. Groundwater pesticides: interactive effects of low concentrations of carbamates aldicarb and methomyl and the triazine metribuzin on thyroxine and somatotropin levels in white rats. (United States)

    Porter, W P; Green, S M; Debbink, N L; Carlson, I


    Using full-factorial design experiments for three variables at two levels each and center replicates, we examined the effects of common agricultural carbamate insecticides, aldicarb and methomyl, and a triazine herbicide, metribuzin, on hormone levels in Sprague-Dawley rats. Fifty-four female rats were sampled at 2 and 6 wk during a 6-wk exposure to individual chemicals or to combinations of them. Some main effects and interaction effects were significant. For example, rats treated with the herbicide (metribuzin) were hyperthyroid. The interactions of all three chemicals also significantly increased thyroxine levels. One year later, we repeated these experiments for 16 wk using 54 male rats; the results were very similar. Metribuzin alone significantly increased thyroxine throughout the second study (at 7, 13, and 16 wk). Somatotropin levels were significantly altered after 13 wk of exposure. The same concentrations and mixtures of these three pesticides have now been shown to be implicated in learning impairment and other neurological functions, immune parameter changes, and endocrine changes. These findings support the concept of the interconnectedness of the nervous, endocrine, and immune systems and raise the likelihood of impacts on all three systems if one is shown to be affected. Development, growth, and reproduction all depend on the proper function of these three systems. These results strongly suggest the need to reassess currently allowed "safe" levels of chemicals based on adult dosages that are accepted in ground-water and in our food supplies.

  9. Seasonal variations in TSH serum levels in athyreotic patients under L-thyroxine replacement monotherapy. (United States)

    Gullo, Damiano; Latina, Adele; Frasca, Francesco; Squatrito, Sebastiano; Belfiore, Antonino; Vigneri, Riccardo


    Whether serum TSH undergoes seasonal fluctuations in euthyroid and hypothyroid residents of temperate climates is controversial. Monthly TSH and thyroid hormone levels were cross-sectionally analysed in a large cohort of euthyroid subjects (n=11 806) and L-thyroxine (L-T4)-treated athyreotic patients (n=3 934). Moreover, in a small group (n=119) of athyreotic patients treated with an unchanged dosage of L-T4 monotherapy, hormones were measured both in the coldest and in the hottest seasons of the same year (longitudinal study). No seasonal hormone change was observed in the euthyroid subjects except for a small FT3 increase in winter (+2.9%, PL-T4-treated athyreotic patients had significantly higher serum TSH values in the cold season when the FT4 values were significantly lower. The differences were more notable in the longitudinal series (TSH, 0.80 vs. 0.20 mU/L and FT4, 16.3 vs. 17.8 pmol/L in December-March vs. June-September, respectively). In these patients also serum FT3 values significantly decreased in winter (in the longitudinal series, 3.80 in winter vs 4.07 pmol/L in summer). Regression analysis showed that in athyreotic subjects, a greater FT4 change is required to obtain a TSH change similar to that of euthyroid controls and that this effect is more pronounced in the summer. Athyreotic patients undergoing L-T4 monotherapy have abnormal seasonal variations in TSH. These changes are secondary to the FT4 and FT3 serum decreases in winter, which occur in spite of the constant treatment. The underlying mechanisms are unclear, but in some cases, these changes may be clinically relevant. © 2017 John Wiley & Sons Ltd.

  10. Repeated Dribbling Ability in Young Soccer Players: Reproducibility and Variation by the Competitive Level. (United States)

    Duarte, João P; Tavares, Óscar; Valente-Dos-Santos, João; Severino, Vítor; Ahmed, Alexis; Rebelo-Gonçalves, Ricardo; Pereira, João R; Vaz, Vasco; Póvoas, Susana; Seabra, André; Cumming, Sean P; Coelho-E-Silva, Manuel J


    The intermittent nature of match performance in youth soccer supports relevance of ability to repeatedly produce high-intensity actions with short recovery periods. This study was aimed to examine the reproducibility of a repeated dribbling ability protocol and, additionally, to estimate the contribution of concurrent tests to explain inter-individual variability in repeated dribbling output. The total sample comprised 98 players who were assessed as two independent samples: 31 players were assessed twice to examine reliability of the protocol; and 67 juveniles aged 16.1 ± 0.6 years were compared by the competitive level (local, n = 34; national, n = 33) to examine construct validity. All single measurements appeared to be reasonably reliable: total (ICC = 0.924; 95%CI: 0.841 to 0.963); ideal (ICC = 0.913; 95%CI: 0.820 to 0.958); worst (ICC = 0.813; 95%CI: 0.611 to 0.910). In addition, the percentage of the coefficient of variation was below the critical value of 5% for total (%CV = 3.84; TEM = 2.51 s); ideal (%CV = 3.90, TEM = 2.48 s). Comparisons between local and national players suggested magnitude effects as follows: moderate (d-value ranged from 0.63 to 0.89) for all repeated sprint ability scores; large for total (d = 1.87), ideal (d = 1.72), worst (d = 1.28) and moderate for composite scores: the fatigue index (d = 0.69) and the decrement score (d = 0.67). In summary, the dribbling protocol presented reasonable reproducibility properties and output extracted from the protocol seemed to be independent from biological maturation.

  11. Repeated Dribbling Ability in Young Soccer Players: Reproducibility and Variation by the Competitive Level

    Directory of Open Access Journals (Sweden)

    Duarte João P.


    Full Text Available The intermittent nature of match performance in youth soccer supports relevance of ability to repeatedly produce high-intensity actions with short recovery periods. This study was aimed to examine the reproducibility of a repeated dribbling ability protocol and, additionally, to estimate the contribution of concurrent tests to explain inter-individual variability in repeated dribbling output. The total sample comprised 98 players who were assessed as two independent samples: 31 players were assessed twice to examine reliability of the protocol; and 67 juveniles aged 16.1 ± 0.6 years were compared by the competitive level (local, n = 34; national, n = 33 to examine construct validity. All single measurements appeared to be reasonably reliable: total (ICC = 0.924; 95%CI: 0.841 to 0.963; ideal (ICC = 0.913; 95%CI: 0.820 to 0.958; worst (ICC = 0.813; 95%CI: 0.611 to 0.910. In addition, the percentage of the coefficient of variation was below the critical value of 5% for total (%CV = 3.84; TEM = 2.51 s; ideal (%CV = 3.90, TEM = 2.48 s. Comparisons between local and national players suggested magnitude effects as follows: moderate (d-value ranged from 0.63 to 0.89 for all repeated sprint ability scores; large for total (d = 1.87, ideal (d = 1.72, worst (d = 1.28 and moderate for composite scores: the fatigue index (d = 0.69 and the decrement score (d = 0.67. In summary, the dribbling protocol presented reasonable reproducibility properties and output extracted from the protocol seemed to be independent from biological maturation.

  12. Proportion of third-level variation in multi-level studies: A note on an interval estimation procedure. (United States)

    Raykov, Tenko


    An interval estimation procedure is outlined that can be used for evaluating the proportion of observed variance in a response variable, which is due to the third level of nesting in a hierarchical design. The approach is also useful when it is of concern to address the necessity of including a third level in analyses of data from a multi-level study, relative to an alternative of proceeding with two-level modelling. The proposed method is illustrated with an empirical example.

  13. High levels of genetic variation in Indian field and house mice

    National Research Council Canada - National Science Library

    Singh, S; Sharma, T


    Genetic variation in the Indian pygmy field miceMus booduga and theMus terricolor complex and in the house mouseMus musculus tytleri was analysed electro phoretically at 20 enzymatic and nonenzymatic protein loci...


    Energy Technology Data Exchange (ETDEWEB)

    Augusto, C. R. A.; Kopenkin, V.; Navia, C. E.; Tsui, K. H.; Shigueoka, H. [Instituto de Fisica, Universidade Federal Fluminense, 24210-346, Niteroi, RJ (Brazil); Fauth, A. C.; Kemp, E.; Manganote, E. J. T. [Instituto de Fisica Gleb Wathagin, Universidade Estadual de Campinas, Campinas, SP (Brazil); Leigui de Oliveira, M. A. [Centro de Ciencias Naturais e Humanas da Universidade Federal do ABC, Santo Andre, SP (Brazil); Miranda, P.; Ticona, R.; Velarde, A. [Instituto de Investigaciones Fisicas, UMSA, La Paz Bolivia (United States)


    We present the results of an ongoing survey on the association between the muon flux variation at ground level (3 m above sea level) registered by the Tupi telescopes (Niteri-Brazil, 22.{sup 0}9S, 43.{sup 0}2W, 3 m) and the Earth-directed transient disturbances in the interplanetary medium propagating from the Sun (such as coronal mass ejections (CME), and corotating interaction regions (CIRs)). Their location inside the South Atlantic Anomaly region enables the muon telescopes to achieve a low rigidity of response to primary and secondary charged particles. The present study is primarily based on experimental events obtained by the Tupi telescopes in the period from 2010 August to 2011 December. This time period corresponds to the rising phase of solar cycle 24. The Tupi events are studied in correlation with data obtained by space-borne detectors (SOHO, ACE, GOES). Identification of interplanetary structures and associated solar activity was based on the nomenclature and definitions given by the satellite observations, including an incomplete list of possible interplanetary shocks observed by the CELIAS/MTOF Proton Monitor on the Solar and Heliospheric Observatory (SOHO) spacecraft. Among 29 experimental events reported in the present analysis, there are 15 possibly associated with the CMEs and sheaths, and 3 events with the CIRs (forward or reverse shocks); the origin of the remaining 11 events has not been determined by the satellite detectors. We compare the observed time (delayed or anticipated) of the muon excess (positive or negative) signal on Earth (the Tupi telescopes) with the trigger time of the interplanetary disturbances registered by the satellites located at Lagrange point L1 (SOHO and ACE). The temporal correlation of the observed ground-based events with solar transient events detected by spacecraft suggests a real physical connection between them. We found that the majority of observed events detected by the Tupi experiment were delayed in

  15. Geostatistical analysis of groundwater chemistry in Japan. Evaluation of the base case groundwater data set

    Energy Technology Data Exchange (ETDEWEB)

    Salter, P.F.; Apted, M.J. [Monitor Scientific LLC, Denver, CO (United States); Sasamoto, Hiroshi; Yui, Mikazu


    The groundwater chemistry is one of important geological environment for performance assessment of high level radioactive disposal system. This report describes the results of geostatistical analysis of groundwater chemistry in Japan. Over 15,000 separate groundwater analyses have been collected of deep Japanese groundwaters for the purpose of evaluating the range of geochemical conditions for geological radioactive waste repositories in Japan. The significance to issues such as radioelement solubility limits, sorption, corrosion of overpack, behavior of compacted clay buffers, and many other factors involved in safety assessment. It is important therefore, that a small, but representative set of groundwater types be identified so that defensible models and data for generic repository performance assessment can be established. Principal component analysis (PCA) is used to categorize representative deep groundwater types from this extensive data set. PCA is a multi-variate statistical analysis technique, similar to factor analysis or eigenvector analysis, designed to provide the best possible resolution of the variability within multi-variate data sets. PCA allows the graphical inspection of the most important similarities (clustering) and differences among samples, based on simultaneous consideration of all variables in the dataset, in a low dimensionality plot. It also allows the analyst to determine the reasons behind any pattern that is observed. In this study, PCA has been aided by hierarchical cluster analysis (HCA), in which statistical indices of similarity among multiple samples are used to distinguish distinct clusters of samples. HCA allows the natural, a priori, grouping of data into clusters showing similar attributes and is graphically represented in a dendrogram Pirouette is the multivariate statistical software package used to conduct the PCA and HCA for the Japanese groundwater dataset. An audit of the initial 15,000 sample dataset on the basis of

  16. Environmental isotopes investigation in groundwater of Challaghatta ...

    African Journals Online (AJOL)

    Radiogenic isotopes (3H and 14C) and stable isotope (18O) together with TDS, EC and salinity of water were used to discriminate qualitative and quantitative groundwater age, probable recharge time, flow respectively in groundwater of Challaghatta valley, Bangalore. The variations between TDS and EC values of sewage ...

  17. Geoelectrical Exploration For Groundwater In A Crystalline ...

    African Journals Online (AJOL)

    Vertical electric sounding (VES) method using schlumberger electrode configuration was used to conduct a survey for groundwater in Obudu area, S.E. Nigeria, in an attempt to define the geoelectric structure, variation in thickness and potential groundwater zones in the subsurface of the area. The survey area is located ...

  18. Sequence variation and genetic evolution at the human F12 locus: mapping quantitative trait nucleotides that influence FXII plasma levels. (United States)

    Calafell, Francesc; Almasy, Laura; Sabater-Lleal, Maria; Buil, Alfonso; Mordillo, Carolina; Ramírez-Soriano, Anna; Sikora, Martin; Souto, Juan Carlos; Blangero, John; Fontcuberta, Jordi; Soria, José Manuel


    The level of Factor XII (FXII) is an important phenotype that exhibits a high genetic component and is associated with thrombotic disease. In a genome-wide linkage scan, we demonstrated that the F12 gene represents a quantitative trait locus (QTL) that influences FXII levels. The current study investigated the genetic architecture of the F12 gene to locate polymorphism(s) responsible for the variation of FXII levels. Re-sequencing of the F12 gene in 40 unrelated individuals (selected from the tails of normal distribution of FXII levels) identified 26 polymorphisms which were genotyped in 398 individuals belonging to 21 families from the GAIT Project. By a measured genotype association analysis, eight of 26 SNPs showed significant P-values less than 10(-5) (after multiple test correction) with FXII levels. In addition, the Bayesian Quantitative Trait Nucleotide method, which infers those polymorphisms most likely to have a direct influence on the trait under study, provided evidence that only rs1801020 variation accounted for the variance attributed to this QTL. Moreover, we have analyzed the evolutionary processes that produced the variation in F12 gene and concluded that is evolutionarily neutral and that the T allele of the rs1801020 appeared approximately 100 000 years ago and spread to most human populations rising to high frequencies by genetic drift. Our study provides a template for future genetic studies of human quantitative traits, as we move beyond QTL localization to the polymorphisms responsible for the variation of important biomedical phenotypes.

  19. Calibrating Treasure Valley Groundwater Model using MODFLOW (United States)

    Hernandez, J.; Tan, K.


    In Idaho, groundwater plays an especially important role in the state. According to the Idaho Department of Environmental Quality, groundwater supplies 95% of the state's drinking water (2011). The USGS estimates that Idaho withdraws 117 million cubic meters (95,000 acre-feet) per year from groundwater sources for domestic usage which includes drinking water. The same report from the USGS also estimates that Idaho withdraws 5,140 million cubic meters (4,170,000 acre-feet) per year from groundwater sources for irrigation usage. Quantifying and managing that resource and estimating groundwater levels in the future is important for a variety of socio-economic reasons. As the population within the Treasure Valley continues to grow, the demand of clean usable groundwater increases. The objective of this study was to develop and calibrate a groundwater model with the purpose of understanding short- and long-term effects of existing and alternative land use scenarios on groundwater changes. Hydrologic simulations were done using the MODFLOW-2000 model. The model was calibrated for predevelopment period by reproducing and comparing groundwater levels of the years before 1925 using steady state boundary conditions representing no change in the land use. Depending on the reliability of the groundwater source, the economic growth of the area can be constrained or allowed to flourish. Mismanagement of the groundwater source can impact its sustainability, quality and could hamper development by increasing operation and maintenance costs. Proper water management is critical because groundwater is such a limited resource.

  20. Tehran Groundwater Chemical Pollution

    Directory of Open Access Journals (Sweden)

    M- Shariatpanahi


    Full Text Available Seventy eight wells water sample of Tehran plain were examined to determine r its groundwaters chemical pollution. Tehran s groundwaters are slightly acidic and their total dissolved solids are high and are in the hard water category."nThe nitrate concentration of wells water of west region is less than per¬missible level of W.H.O. standard, whereas, the nitrate concentration of some of the other regions wells exceed W.H.O. standard which is indication of pollution"nwith municipal wastewaters. The concentration of toxic elements Cr, Cd, As, Hg and"ni Pb of some of the west, east and south regions wells of Tehran is more than per¬missible level of W.H.O. standard, whereas, the concentration of Cu, Zn,Mn and detergents is below W.H.O. standard."n1"nIn general, the amount of dissolved materials of Tehran s groundwaters and also"ni the potential of their contamination with nitrate is increased as Tehran s ground-"nwaters move further to the south, and even though, Tehran s groundwaters contamination with toxic elements is limited to the industrial west district, industrial-residential east and south districts, but»with regard to the disposal methods of"nt municipal and industrial wastewaters, if Tehran s groundwaters pollution continues,"nlocal contamination of groundwaters is likely to spread. So that finally their quality changes in such a way that this water source may become unfit for most domestic, industrial and agricultural uses. This survey shows the necessity of collection and treatment of Tehran s wastewaters and Prevention of the disposal of untreated wastewaters into the environment.

  1. Appropriate threshold levels of cardiac beat-to-beat variation in semi-automatic analysis of equine ECG recordings

    DEFF Research Database (Denmark)

    Madsen, Mette Flethøj; Kanters, Jørgen K.; Pedersen, Philip Juul


    Background: Although premature beats are a matter of concern in horses, the interpretation of equine ECG recordings is complicated by a lack of standardized analysis criteria and a limited knowledge of the normal beat-to-beat variation of equine cardiac rhythm. The purpose of this study...... was to determine the appropriate threshold levels of maximum acceptable deviation of RR intervals in equine ECG analysis, and to evaluate a novel two-step timing algorithm by quantifying the frequency of arrhythmias in a cohort of healthy adult endurance horses. Results: Beat-to-beat variation differed......, range 1–24). Conclusions: Beat-to-beat variation of equine cardiac rhythm varies according to HR, and threshold levels in equine ECG analysis should be adjusted accordingly. Standardization of the analysis criteria will enable comparisons of studies and follow-up examinations of patients. A small number...

  2. Study on the groundwater sustainable problem by numerical ...

    Indian Academy of Sciences (India)

    Assessing sustainability of coastal groundwater is significant for groundwater management as coastal groundwater is vulnerable to over-exploitation and contamination. To address the issues of serious groundwater level drawdown and potential seawater intrusion risk of a multi-layered coastal aquifer system in Zhanjiang, ...

  3. Study on the groundwater sustainable problem by numerical ...

    Indian Academy of Sciences (India)

    Pengpeng Zhou


    Oct 7, 2017 ... Assessing sustainability of coastal groundwater is significant for groundwater management as coastal groundwater is vulnerable to over-exploitation and contamination. To address the issues of serious groundwater level drawdown and potential seawater intrusion risk of a multi-layered coastal aquifer.

  4. Feathers as a Tool to Assess Mercury Contamination in Gentoo Penguins: Variations at the Individual Level. (United States)

    Pedro, Sara; Xavier, José C; Tavares, Sílvia; Trathan, Phil N; Ratcliffe, Norman; Paiva, Vitor H; Medeiros, Renata; Pereira, Eduarda; Pardal, Miguel A


    Feathers have been widely used to assess mercury contamination in birds as they reflect metal concentrations accumulated between successive moult periods: they are also easy to sample and have minimum impact on the study birds. Moult is considered the major pathway for mercury excretion in seabirds. Penguins are widely believed to undergo a complete, annual moult during which they do not feed. As penguins lose all their feathers, they are expected to have a low individual-variability in feather mercury concentration as all feathers are formed simultaneously from the same somatic reserves. This assumption is central to penguin studies that use feathers to examine the annual or among-individual variation in mercury concentrations in penguins. To test this assumption, we measured the mercury concentrations in 3-5 body feathers of 52 gentoo penguins (Pygoscelis papua) breeding at Bird Island, South Georgia (54°S 38°W). Twenty-five percent of the penguins studied showed substantial within-individual variation in the amount of mercury in their feathers (Coefficient of Variation: 34.7-96.7%). This variation may be caused by differences in moult patterns among individuals within the population leading to different interpretations in the overall population. Further investigation is now needed to fully understand individual variation in penguins' moult.

  5. Feathers as a Tool to Assess Mercury Contamination in Gentoo Penguins: Variations at the Individual Level.

    Directory of Open Access Journals (Sweden)

    Sara Pedro

    Full Text Available Feathers have been widely used to assess mercury contamination in birds as they reflect metal concentrations accumulated between successive moult periods: they are also easy to sample and have minimum impact on the study birds. Moult is considered the major pathway for mercury excretion in seabirds. Penguins are widely believed to undergo a complete, annual moult during which they do not feed. As penguins lose all their feathers, they are expected to have a low individual-variability in feather mercury concentration as all feathers are formed simultaneously from the same somatic reserves. This assumption is central to penguin studies that use feathers to examine the annual or among-individual variation in mercury concentrations in penguins. To test this assumption, we measured the mercury concentrations in 3-5 body feathers of 52 gentoo penguins (Pygoscelis papua breeding at Bird Island, South Georgia (54°S 38°W. Twenty-five percent of the penguins studied showed substantial within-individual variation in the amount of mercury in their feathers (Coefficient of Variation: 34.7-96.7%. This variation may be caused by differences in moult patterns among individuals within the population leading to different interpretations in the overall population. Further investigation is now needed to fully understand individual variation in penguins' moult.

  6. Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)

    Energy Technology Data Exchange (ETDEWEB)

    Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.


    In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.


    Directory of Open Access Journals (Sweden)

    Mladen Zelenika


    Full Text Available Groundwater in the aquifers in river valleys is the mot important resource for supply of drinking water in many regions. There are intensive human activities, such as construction and operation hydroelectric power and industrial plants, forest clearance, irrigation and cropping of land, water supply and sanitation works, and particularly the accidental pollution in one town or country can reduce water availability to itself, and to another (downstream town or country. Observation wells are not commonly used for sampling of groundwater, but in many instances it may still be the only way to collect sample of groundwater. This paper deals with the construction of observation wells installed and developed in confined or unconfined aquifer to observe and monitor time depending data, such as water level, groundwater quality and indications of contaminant transport in groundwater flow.

  8. Present day sea level changes: observation and causes; Les variations actuelles du niveau de la mer: observations et causes

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, A


    Whereas sea level has changed little over the last 2000 years, it has risen at a rate of about 2 mm/year during the 20. century. This unexpected sea level rise has been attributed to the anthropogenic global warming, recorded over several decades. Sea level variations have been measured globally and precisely for about 12 years due to satellite altimeter missions Topex/Poseidon and Jason-1. These observations indicate a global mean sea level rise of about 3 mm/year since 1993, a value significantly larger than observed during previous decades. Recent observations have allowed us to quantify the various climatic factors contributing to observed sea level change: thermal expansion of sea water due to ocean warming, melting of mountain glaciers and ice sheets, and changes in the land water reservoirs. A water budget based on these new observations allows us to partly explain the observed sea level rise. In particular, we show that the thermal expansion explains only 25% of the secular sea level rise as recorded by tide-gauges over the last 50 years, while it contributes about 50% of sea level rise observed over the last decade. Meanwhile, recent studies show that glacier and ice sheet melting could contribute the equivalent of 1 mm/year in sea level rise over the last decade. In addition, the high regional variability of sea level trends revealed by satellite altimetry is mainly due to thermal expansion. There is also an important decadal spatio-temporal variability in the ocean thermal expansion over the last 50 years, which seems to be controlled by natural climate fluctuations. We question for the first time the link between the decadal fluctuations in the ocean thermal expansion and in the land reservoirs, and indeed their climatic contribution to sea level change. Finally a preliminary analysis of GRACE spatial gravimetric observations over the oceans allows us to estimate the seasonal variations in mean sea level due to ocean water mass balance variations

  9. Variation of Student Numerical and Figural Reasoning Approaches by Pattern Generalization Type, Strategy Use and Grade Level (United States)

    El Mouhayar, Rabih; Jurdak, Murad


    This paper explored variation of student numerical and figural reasoning approaches across different pattern generalization types and across grade level. An instrument was designed for this purpose. The instrument was given to a sample of 1232 students from grades 4 to 11 from five schools in Lebanon. Analysis of data showed that the numerical…

  10. Complex patterns of geographic variation in heat tolerance and Hsp70 expression levels in the common frog Rana temporaria

    DEFF Research Database (Denmark)

    Sørensen, Jesper Givskov; Pekkonen, Minna; Lindgren, Beatrice


    1. We tested for geographical variation in heat tolerance and Hsp70 expression levels of Rana temporaria tadpoles along a 1500 km long latitudinal gradient in Sweden.   2. Temperature tolerance of the hatchling tadpoles did not differ among populations, but they tolerated stressful hot temperatur...

  11. Colony-level behavioural variation correlates with differences in expression of the foraging gene in red imported fire ants. (United States)

    Bockoven, Alison A; Coates, Craig J; Eubanks, Micky D


    Among social insects, colony-level variation is likely to be widespread and has significant ecological consequences. Very few studies, however, have documented how genetic factors relate to behaviour at the colony level. Differences in expression of the foraging gene have been associated with differences in foraging and activity of a wide variety of organisms. We quantified expression of the red imported fire ant foraging gene (sifor) in workers from 21 colonies collected across the natural range of Texas fire ant populations, but maintained under standardized, environmentally controlled conditions. Colonies varied significantly in their behaviour. The most active colonies had up to 10 times more active foragers than the least active colony and more than 16 times as many workers outside the nest. Expression differences among colonies correlated with this colony-level behavioural variation. Colonies with higher sifor expression in foragers had, on average, significantly higher foraging activity, exploratory activity and recruitment to nectar than colonies with lower expression. Expression of sifor was also strongly correlated with worker task (foraging vs. working in the interior of the nest). These results provide insight into the genetic and physiological processes underlying collective differences in social behaviour. Quantifying variation in expression of the foraging gene may provide an important tool for understanding and predicting the ecological consequences of colony-level behavioural variation. © 2017 John Wiley & Sons Ltd.

  12. Ethnic variation in adiponectin and leptin levels and their association with adiposity and insulin resistance. (United States)

    Mente, Andrew; Razak, Fahad; Blankenberg, Stefan; Vuksan, Vlad; Davis, A Darlene; Miller, Ruby; Teo, Koon; Gerstein, Hertzel; Sharma, Arya M; Yusuf, Salim; Anand, Sonia S


    To investigate ethnic differences in adiponectin and leptin concentration and to determine whether these adipokines and a high-glycemic index diet account for ethnic variation in insulin resistance. In 1,176 South Asian, Chinese, Aboriginal, and European Canadians, fasting blood samples were drawn, and clinical history and dietary habits including glycemic index/glycemic load were recorded using standardized questionnaires. Insulin resistance was defined using homeostasis model assessment-insulin resistance (HOMA-IR). Adiponectin concentrations were significantly higher in Europeans (adjusted mean 12.94 [95% CI 2.27-13.64]) and Aboriginal people (11.87 [11.19-12.59]) than in South Asians (9.35 [8.82-9.92]) and Chinese (8.52 [8.03-9.03]) (overall P < 0.001). Serum leptin was significantly higher in South Asians (11.82 [10.72-13.04]) and Aboriginal people (11.13 [10.13-12.23]) than in Europeans (9.21 [8.38-10.12]) and Chinese (8.25 [7.48-9.10]). BMI and waist circumference were inversely associated with adiponectin in every group except the South Asians (P < 0.001 for interaction). Adiponectin was inversely and leptin was positively associated with HOMA-IR (P < 0.001). The increase in HOMA-IR for each given decrease in adiponectin was larger among South Asians (P = 0.01) and Aboriginal people (P < 0.001) than among Europeans. A high glycemic index was associated with a larger decrease in adiponectin among South Asians (P = 0.03) and Aboriginal people (P < 0.001) and a larger increase in HOMA-IR among South Asians (P < 0.05) relative to that in other groups. South Asians have the least favorable adipokine profile and, like the Aboriginal people, display a greater increase in insulin resistance with decreasing levels of adiponectin. Differences in adipokines and responses to glycemic foods parallel the ethnic differences in insulin resistance.

  13. A Spaceborne Multisensory, Multitemporal Approach to Monitor Water Level and Storage Variations of Lakes

    Directory of Open Access Journals (Sweden)

    Alireza Taravat


    Full Text Available Lake Urmia, the second largest saline Lake on earth and a highly endangered ecosystem, is on the brink of a serious environmental disaster similar to the catastrophic death of the Aral Sea. Progressive drying has been observed during the last decade, causing dramatic changes to Lake Urmia’s surface and its regional water supplies. The present study aims to improve monitoring of spatiotemporal changes of Lake Urmia in the period 1975–2015 using the multi-temporal satellite altimetry and Landsat (5-TM, 7-ETM+ and 8-OLI images. In order to demonstrate the impacts of climate change and human pressure on the variations in surface extent and water level, Lake Sevan and Van Lake with different characteristics were studied along with the Urmia Lake. Normalized Difference Water Index-Principal Components Index (NDWI-PCs, Normalized Difference Water Index (NDWI, Modified NDWI (MNDWI, Normalized Difference Moisture Index (NDMI, Water Ratio Index (WRI, Normalized Difference Vegetation Index (NDVI, Automated Water Extraction Index (AWEI, and MultiLayer Perceptron Neural Networks (MLP NNs classifier were investigated for the extraction of surface water from Landsat data. The presented results revealed that MLP NNs has a better performance in the cases where the other models generate poor accuracy. The results show that the area of Lake Sevan and Van Lake have increased while the area of Lake Urmia has decreased by ~65.23% in the past decades, far more than previously reported (~25% to 50%. Urmia Lake’s shoreline has been receding severely between 2010 and 2015 with no sign of recovery, which has been partly blamed on prolonged droughts, aggressive regional water resources development plans, intensive agricultural activities, and anthropogenic changes to the system. The results also indicated that (among the proposed factors changes in inflows due to overuse of surface water resources and constructing dams (mostly during 1995–2005 are the main reasons

  14. Groundwater Pumping and Streamflow in the Yuba Basin, Sacramento Valley, California (United States)

    Moss, D. R.; Fogg, G. E.; Wallender, W. W.


    Water transfers during drought in California's Sacramento Valley can lead to increased groundwater pumping, and as yet unknown effects on stream baseflow. Two existing groundwater models of the greater Sacramento Valley together with localized, monitoring of groundwater level fluctuations adjacent to the Bear, Feather, and Yuba Rivers, indicate cause and effect relations between the pumping and streamflow. The models are the Central Valley Hydrologic Model (CVHM) developed by the U.S. Geological Survey and C2VSIM developed by Department of Water Resources. Using two models which have similar complexity and data but differing approaches to the agricultural water boundary condition illuminates both the water budget and its uncertainty. Water budget and flux data for localized areas can be obtained from the models allowing for parameters such as precipitation, irrigation recharge, and streamflow to be compared to pumping on different temporal scales. Continuous groundwater level measurements at nested, near-stream piezometers show seasonal variations in streamflow and groundwater levels as well as the timing and magnitude of recharge and pumping. Preliminary results indicate that during years with relatively wet conditions 65 - 70% of the surface recharge for the groundwater system comes from irrigation and precipitation and 30 - 35% comes from streamflow losses. The models further indicate that during years with relatively dry conditions, 55 - 60% of the surface recharge for the groundwater system comes from irrigation and precipitation while 40 - 45% comes from streamflow losses. The models irrigation water demand, surface-water and groundwater supply, and deep percolation are integrated producing values for irrigation pumping. Groundwater extractions during the growing season, approximately between April and October, increase by almost 200%. The effects of increased pumping seasonally are not readily evident in stream stage measurements. However, during dry time

  15. Distribution of fluoride in groundwater and its suitability assessment for drinking purpose. (United States)

    Ravindra, Khaiwal; Garg, Vinod K


    Groundwater samples collected either from the bore-wells (forms a part of municipal water supply) or from the hand pumps (direct consumption) were analysed for fluoride in Hisar city, India. The results indicate considerable variations among the analysed groundwater samples and the concentration of fluoride ranged from 0.03--16.6 mg/l. In most of the groundwater samples the concentration of fluoride was found to be moderately higher, when compared to the WHO standard for drinking water, which may lead to associated health risks in urban population, if the groundwater is being used without proper treatment. Furthermore, it is suggested that the sources of municipal water supply must be established in a region where an adequate level of fluoride was observed.

  16. Estimating Groundwater Development area in Jianan Plain using Standardized Groundwater Index (United States)

    Yu, Chang Hsiang; Haw, Lee Cheng


    Taiwan has been facing severe water crises in recent years owing to the effects of extreme weather conditions. Changes in precipitation patterns have also made the drought phenomenon increasingly prominent, which has indirectly affected groundwater recharge. Hence, in the present study, long-term monitoring data were collected from the study area of the Jianan plain. The standardized groundwater index (SGI) and was then used to analyse the region's drought characteristics. To analyse the groundwater level by using SGI, making SGI180 groundwater level be the medium water crises, and SGI360 groundwater level be the extreme water crises. Through the different water crises signal in SGI180 and SGI360, we divide groundwater in Jianan plain into two sections. Thereby the water crises indicators establishing groundwater level standard line in Jianan Plain, then using the groundwater level standard line to find the study area where could be groundwater development area in Jianan plain. Taking into account relatively more water scarcity in dry season, so the study screen out another emergency backup groundwater development area, but the long-term groundwater development area is still as a priority development area. After finding suitable locations, groundwater modeling systems(GMS) software is used to simulate our sites to evaluate development volume. Finally, the result of study will help the government to grasp the water shortage situation immediately and solve the problem of water resources deployment.

  17. Modelling of the effect of a sea-level rise and land subsidence on the evolution of the groundwater density in the subsoil of the northern part of the Netherlands

    NARCIS (Netherlands)

    Meij, J.L. van der; Minnema, B.


    The Province of Friesland is conducting a study on possible future changes in the surface water and groundwater systems of Friesland. The aim of the study is to assess what changes might be caused by land subsidence and a rise in sea level - focusing in particular on the salinization of the surface

  18. Water quality, discharge, and groundwater levels in the Palomas, Mesilla, and Hueco Basins in New Mexico and Texas from below Caballo Reservoir, New Mexico, to Fort Quitman, Texas, 1889-2013 (United States)

    McKean, Sarah E.; Matherne, Anne Marie; Thomas, Nicole


    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, compiled data from various sources to develop a dataset that can be used to conduct an assessment of the total dissolved solids in surface water and groundwater of the Palomas, Mesilla, and Hueco Basins in New Mexico and Texas, from below Caballo Reservoir, N. Mex., to Fort Quitman, Tex. Data include continuous surface-water discharge records at various locations on the Rio Grande; surface-water-quality data for the Rio Grande collected at selected locations in the Palomas, Mesilla, and Hueco Basins; groundwater levels and groundwater-quality data collected from selected wells in the Palomas and Mesilla Basins; and data from several seepage investigations conducted on the Rio Grande and selected drains in the Mesilla Basin.

  19. Isotopic characterization and mass balance reveals groundwater recharge pattern in Chaliyar river basin, Kerala, India

    Directory of Open Access Journals (Sweden)

    A. Shahul Hameed


    New hydrological insights for the region: Based on the spatio-temporal variation in δ18O values of river and groundwater and fluctuation in ground water levels, following important inferences are made: (1 estimated river water contribution to post-monsoon groundwater recharge is ∼16% in the lowland coastal area of the Chaliyar river basin and 29% in midland region; (2 northeast winter monsoon rains contribute to the groundwater of Chaliyar river basin only in an insignificant manner, and with a delayed response; (3 unlike river water samples which exhibit both seasonal and spatial variation of more than 3‰, the groundwater samples vary only marginally (∼1‰ between the seasons and across the physiographic zones; (4 groundwater samples exhibit inverse altitude gradient in δ18O values in the highland zone, in all the three seasons. This may be due to flow of the isotopically depleted groundwater down the gradient and evaporation of residual water in the upper reaches of the basin.

  20. The effects of artificial recharge on groundwater levels and water quality in the west hydrogeologic unit of the Warren subbasin, San Bernardino County, California (United States)

    Stamos, Christina L.; Martin, Peter; Everett, Rhett; Izbicki, John A.


    Between the late 1940s and 1994, groundwater levels in the Warren subbasin, California, declined by as much as 300 feet because pumping exceeded sparse natural recharge. In response, the local water district, Hi-Desert Water District, implemented an artificial-recharge program in early 1995 using imported water from the California State Water Project. Subsequently, the water table rose by as much as 250 feet; however, a study done by the U.S. Geological Survey found that the rising water table entrained high-nitrate septic effluent, which caused nitrate (as nitrogen) concentrations in some wells to increase to more than the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter.. A new artificial-recharge site (site 3) was constructed in 2006 and this study, which started in 2004, was done to address concerns about the possible migration of nitrates in the unsaturated zone. The objectives of this study were to: (1) characterize the hydraulic, chemical, and microbiological properties of the unsaturated zone; (2) monitor changes in water levels and water quality in response to the artificial-recharge program at site 3; (3) determine if nitrates from septic effluent infiltrated through the unsaturated zone to the water table; (4) determine the potential for nitrates within the unsaturated zone to mobilize and contaminate the groundwater as the water table rises in response to artificial recharge; and (5) determine the presence and amount of dissolved organic carbon because of its potential to react with disinfection byproducts during the treatment of water for public use. Two monitoring sites were installed and instrumented with heat-dissipation probes, advanced tensiometers, suction-cup lysimeters, and wells so that the arrival and effects of recharging water from the State Water Project through the 250 to 425 foot-thick unsaturated zone and groundwater system could be closely observed. Monitoring site YVUZ-1 was located between two

  1. Preliminary insights into the level of genetic variation retained in the ...

    African Journals Online (AJOL)

    This study examined a suite of microsatellite markers, originally developed for other parrot species, for their usefulness in providing details about the amount of genetic variation that has been retained in the endangered echo parakeet of Mauritius. Biological samples were available from previous studies and management ...

  2. Variation in levels and removal efficiency of heavy and trace metals ...

    African Journals Online (AJOL)

    Potsdam WWTP showed to be the most effective at heavy metals removal as compared with the other five treatment plants investigated in this study. The effluent metal concentration over time could pose health risk if used for agricultural irrigation. Keywords: Seasonal variation, endocrine disrupting metals, wastewater ...

  3. PPARGC1A sequence variation and cardiovascular risk-factor levels

    DEFF Research Database (Denmark)

    Brito, E C; Vimaleswaran, K S; Brage, S


    AIMS/HYPOTHESIS: The PPARGC1A gene coactivates multiple nuclear transcription factors involved in cellular energy metabolism and vascular stasis. In the present study, we genotyped 35 tagging polymorphisms to capture all common PPARGC1A nucleotide sequence variations and tested for association wi...

  4. Literacy Skills Gaps: A Cross-Level Analysis on International and Intergenerational Variations (United States)

    Kim, Suehye


    The global agenda for sustainable development has centred lifelong learning on UNESCO's Education 2030 Framework for Action. The study described in this article aimed to examine international and intergenerational variations in literacy skills gaps within the context of the United Nations Sustainable Development Goals (SDGs). For this purpose, the…

  5. Relationship between Genetic Variation at PPP1R3B and Liver Glycogen and Triglyceride Levels

    DEFF Research Database (Denmark)

    Stender, Stefan; Smagris, Eriks; Lauridsen, Bo K


    Genetic variation at rs4240624 on chromosome 8 is associated with an attenuated signal on hepatic computerized tomography (CT), which has been attributed to changes in hepatic fat. The closest coding gene to rs4240624, PPP1R3B, encodes a protein that promotes hepatic glycogen synthesis. Here we...

  6. Correlates of National-Level Homicide Variation in Post-Communist East-Central Europe (United States)

    Stamatel, Janet P.


    This article examines whether correlates of cross-national homicide variation tested with data from highly developed, predominantly Western nations could also explain homicide rates in East-Central Europe. Using pooled time-series analyses of data from nine countries from 1990 through 2003, this study found that homicide rates were negatively…

  7. Regional contamination versus regional dietary differences: Understanding geographic variation in brominated and chlorinated contaminant levels in polar bears (United States)

    McKinney, M.A.; Letcher, R.J.; Aars, Jon; Born, E.W.; Branigan, M.; Dietz, R.; Evans, T.J.; Gabrielsen, G.W.; Muir, D.C.G.; Peacock, E.; Sonne, C.


    The relative contribution of regional contamination versus dietary differences to geographic variation in polar bear (Ursus maritimus) contaminant levels is unknown. Dietary variation between Alaska Canada, East Greenland, and Svalbard subpopulations was assessed by muscle nitrogen and carbon stable isotope (?? 15N, ?? 13C) and adipose fatty acid (FA) signatures relative to their main prey (ringed seals). Western and southern Hudson Bay signatures were characterized by depleted ?? 15N and ??13C, lower proportions of C20 and C22 monounsaturated FAs and higher proportions of C18 and longer chain polyunsaturated FAs. East Greenland and Svalbard signatures were reversed relative to Hudson Bay. Alaskan ?? 2011 American Chemical Society.

  8. Hydrogeochemistry and groundwater quality assessment of Ranipet industrial area, Tamil Nadu, India (United States)

    Rao, G. Tamma; Rao, V. V. S. Gurunadha; Ranganathan, K.


    One of the highly polluted areas in India located at Ranipet occupies around 200 tanneries and other small scale chemical industries. Partially treated industrial effluents combined with sewage and other wastes discharged on the surface cause severe groundwater pollution in the industrial belt. This poses a problem of supply of safe drinking water in the rural parts of the country. A study was carried out to assess the groundwater pollution and identify major variables affecting the groundwater quality in Ranipet industrial area. Twenty five wells were monitored during pre- and post-monsoon in 2008 and analyzed for the major physico-chemical variables. The water quality variables such as total dissolved solids (TDS), Iron (Fe2 + ), Hexavalent Chromium (Cr6 + ), at most of the sampling locations exceeded the ISI and WHO guideline levels for drinking water. Multivariate statistical techniques such as factor analysis were applied to identify the major factors (variables) corresponding to the different source of variation in groundwater quality. The water quality of groundwater is influenced by both anthropogenic and chemical weathering. The most serious pollution threat to groundwater is from TDS, Cr6 + and Fe2 + , which are associated with sewage and pollution of tannery waste. The study reveals that the groundwater quality changed due to anthropogenic and natural influences such as agricultural, natural weathering process.

  9. Groundwater Variability Across Temporal and Spatial Scales in the Central and Northeastern U.S. (United States)

    Li, Bailing; Rodell, Matthew; Famiglietti, James S.


    Depth-to-water measurements from 181 monitoring wells in unconfined or semi-confined aquifers in nine regions of the central and northeastern U.S. were analyzed. Groundwater storage exhibited strong seasonal variations in all regions, with peaks in spring and lows in autumn, and its interannual variability was nearly unbounded, such that the impacts of droughts, floods, and excessive pumping could persist for many years. We found that the spatial variability of groundwater storage anomalies (deviations from the long term mean) increases as a power function of extent scale (square root of area). That relationship, which is linear on a log-log graph, is common to other hydrological variables but had never before been shown with groundwater data. We describe how the derived power function can be used to determine the number of wells needed to estimate regional mean groundwater storage anomalies with a desired level of accuracy, or to assess uncertainty in regional mean estimates from a set number of observations. We found that the spatial variability of groundwater storage anomalies within a region often increases with the absolute value of the regional mean anomaly, the opposite of the relationship between soil moisture spatial variability and mean. Recharge (drainage from the lowest model soil layer) simulated by the Variable Infiltration Capacity (VIC) model was compatible with observed monthly groundwater storage anomalies and month-to-month changes in groundwater storage.

  10. PATHS groundwater hydrologic model

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.W.; Schur, J.A.


    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  11. Relationship between Late Pleistocene sea-level variations, carbonate platform morphology and aragonite production (Maldives, Indian Ocean)

    DEFF Research Database (Denmark)

    Paul, A.; Reijmer, J.J.G.; Fürstenau, J.


    A piston core from the Maldives carbonate platform was investigated for carbonate mineralogy, grain-size distributions, calcium carbonate content and organic carbon. The sedimentary record was linked to Late Pleistocene sea-level variations, using an age model based on oxygen isotopes obtained from...... of the atolls of the Maldives carbonate platform. Platform flooding events were characterized by strongly increased deposition of aragonite and mud within the Inner Sea of the Maldives. Exposure events, in contrast, can be recognized by rapid decreases in the values of both proxy records. The results show...... that sediments on the Maldives carbonate platform contain a continuous record of Pleistocene sea-level variations. These sediments may, therefore, contribute to a better understanding of regional and even global sea-level changes, and yield new insights into the interplay between ocean currents and carbonate...

  12. Income level and regional policies, underlying factors associated with unwarranted variations in conservative breast cancer surgery in Spain

    Directory of Open Access Journals (Sweden)

    Peiró-Moreno Salvador


    Full Text Available Abstract Background Geographical variations in medical practice are expected to be small when the evidence about the effectiveness and safety of a particular technology is abundant. This would be the case of the prescription of conservative surgery in breast cancer patients. In these cases, when variation is larger than expected by need, socioeconomic factors have been argued as an explanation. Objectives: Using an ecologic design, our study aims at describing the variability in the use of surgical conservative versus non-conservative treatment. Additionally, it seeks to establish whether the socioeconomic status of the healthcare area influences the use of one or the other technique. Methods 81,868 mastectomies performed between 2002 and 2006 in 180 healthcare areas were studied. Standardized utilization rates of breast cancer conservative (CS and non-conservative (NCS procedures were estimated as well as the variation among areas, using small area statistics. Concentration curves and dominance tests were estimated to determine the impact of income and instruction levels in the healthcare area on surgery rates. Multilevel analyses were performed to determine the influence of regional policies. Results Variation in the use of CS was massive (4-fold factor between the highest and the lowest rate and larger than in the case of NCS (2-fold, whichever the age group. Healthcare areas with higher economic and instruction levels showed highest rates of CS, regardless of the age group, while areas with lower economic and educational levels yielded higher rates of NCS interventions. Living in a particular Autonomous Community (AC, explained a substantial part of the CS residual variance (up to a 60.5% in women 50 to 70. Conclusion The place where a woman lives -income level and regional policies- explain the unexpectedly high variation found in utilization rates of conservative breast cancer surgery.

  13. The effect of loading efficiency on the groundwater response to water level changes in shallow lakes and streams

    NARCIS (Netherlands)

    Bakker, M.


    The loading efficiency (sometimes called the tidal efficiency) is often neglected when simulating the head response in an aquifer to water level changes in lakes and streams. This is not appropriate when the lake or stream only partially penetrates the aquifer. In such cases, the aquifer extends

  14. A detection-level hazardous waste ground-water monitoring compliance plan for the 200 areas low-level burial grounds and retrievable storage units

    Energy Technology Data Exchange (ETDEWEB)


    This plan defines the actions needed to achieve detection-level monitoring compliance at the Hanford Site 200 Areas Low-Level Burial Grounds (LLBG) in accordance with the Resource Conservation and Recovery Act (RCRA). Compliance will be achieved through characterization of the hydrogeology and monitoring of the ground water beneath the LLBG located in the Hanford Site 200 Areas. 13 refs., 20 figs.

  15. A temporal and spatial analysis of ground-water levels for effective monitoring in Huron County, Michigan (United States)

    Holtschlag, David J.; Sweat, M.J.


    Quarterly water-level measurements were analyzed to assess the effectiveness of a monitoring network of 26 wells in Huron County, Michigan. Trends were identified as constant levels and autoregressive components were computed at all wells on the basis of data collected from 1993 to 1997, using structural time series analysis. Fixed seasonal components were identified at 22 wells and outliers were identified at 23 wells. The 95- percent confidence intervals were forecast for water-levels during the first and second quarters of 1998. Intervals in the first quarter were consistent with 92.3 percent of the measured values. In the second quarter, measured values were within the forecast intervals only 65.4 percent of the time. Unusually low precipitation during the second quarter is thought to have contributed to the reduced reliability of the second-quarter forecasts. Spatial interrelations among wells were investigated on the basis of the autoregressive components, which were filtered to create a set of innovation sequences that were temporally uncorrelated. The empirical covariance among the innovation sequences indicated both positive and negative spatial interrelations. The negative covariance components are considered to be physically implausible and to have resulted from random sampling error. Graphical modeling, a form of multivariate analysis, was used to model the covariance structure. Results indicate that only 29 of the 325 possible partial correlations among the water-level innovations were statistically significant. The model covariance matrix, corresponding to the model partial correlation structure, contained only positive elements. This model covariance was sequentially partitioned to compute a set of partial covariance matrices that were used to rank the effectiveness of the 26 monitoring wells from greatest to least. Results, for example, indicate that about 50 percent of the uncertainty of the water-level innovations currently monitored by the 26

  16. Molecular-level variation affects population growth in a butterfly metapopulation.

    Directory of Open Access Journals (Sweden)

    Ilkka Hanski


    Full Text Available The dynamics of natural populations are thought to be dominated by demographic and environmental processes with little influence of intraspecific genetic variation and natural selection, apart from inbreeding depression possibly reducing population growth in small populations. Here we analyse hundreds of well-characterised local populations in a large metapopulation of the Glanville fritillary butterfly (Melitaea cinxia, which persists in a balance between stochastic local extinctions and recolonisations in a network of 4,000 discrete habitat patches. We show that the allelic composition of the glycolytic enzyme phosphoglucose isomerase (Pgi has a significant effect on the growth of local populations, consistent with previously reported effects of allelic variation on flight metabolic performance and fecundity in the Glanville fritillary and Colias butterflies. The strength and the sign of the molecular effect on population growth are sensitive to the ecological context (the area and spatial connectivity of the habitat patches, which affects genotype-specific gene flow and the influence of migration on the dynamics of local populations. The biological significance of the results for Pgi is underscored by lack of any association between population growth and allelic variation at six other loci typed in the same material. In demonstrating, to our knowledge for the first time, that molecular variation in a candidate gene affects population growth, this study challenges the perception that differential performance of individual genotypes, leading to differential fitness, is irrelevant to population dynamics. These results also demonstrate that the spatial configuration of habitat and spatial dynamics of populations contribute to maintenance of Pgi polymorphism in this species.

  17. Pyrrolizidine alkaloid variation in Jacobaea plants: from plant organ to cell level


    Nuringtyas, Tri Rini


    The aim of this thesis is to understand the diversity of pyrrolizidine alkaloids (PAs) in Jacobaea plants with respect to their spatial distribution and its consequences for generalist insects. Chapter 2 reports on the role of endophytes in the production of PAs in Jacobaea. Plants were treated with different systemic fungicides to eliminate endophytic fungi and the effect on PA concentration and composition was determined. Chapter 3, 4 and 5 deal with the variation of PA distribution at orga...

  18. Groundwater flood or groundwater-induced flood?


    Robins, N.S.; Finch, J.W.


    A number of ‘groundwater flood’ events have been recorded over the Chalk aquifer in southern England since the 1994 occurrence at Chichester, Sussex. Reporting of this event and subsequent groundwater floods indica