WorldWideScience

Sample records for groundwater level monitoring

  1. Groundwater Level Monitoring using Levelogger and the Importance of Long-Term Groundwater Level Data

    International Nuclear Information System (INIS)

    Nazran Harun; Ahmad Hasnulhadi Che Kamaruddin

    2016-01-01

    This review paper is focused on groundwater level monitoring using levelogger and the importance of long-term groundwater level data. The levelogger provides an inexpensive and convenient method to measure level, temperature and conductivity all in one probe. It can provide real time view as data is being recorded by the connected data logger. Water-level measurements from observation wells are the principal source of information about the hydrologic stresses acting on aquifers and how these stresses affect ground-water recharge, storage, and discharge. Long-term and systematic measurements of water levels provide essential data needed to evaluate changes in the resource over time to develop ground-water models, forecast trends and monitor the effectiveness of groundwater management. A significant advantage of this method of data collection and reporting are the groundwater level data can be updated real time. The accessibility of water level data is greatly enhanced by the Geographic Information System (GIS) to visually illustrate the locations of observation wells relative to relevant topographic, geologic, or hydrologic features. GIS and internet greatly enhance the capability for retrieval and transmittal of water-level data to potential users. (author)

  2. Groundwater management based on monitoring of land subsidence and groundwater levels in the Kanto Groundwater Basin, Central Japan

    Science.gov (United States)

    Furuno, K.; Kagawa, A.; Kazaoka, O.; Kusuda, T.; Nirei, H.

    2015-11-01

    Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.

  3. Optimisation of groundwater level monitoring networks using geostatistical modelling based on the Spartan family variogram and a genetic algorithm method

    Science.gov (United States)

    Parasyris, Antonios E.; Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2016-04-01

    Groundwater level monitoring networks provide essential information for water resources management, especially in areas with significant groundwater exploitation for agricultural and domestic use. Given the high maintenance costs of these networks, development of tools, which can be used by regulators for efficient network design is essential. In this work, a monitoring network optimisation tool is presented. The network optimisation tool couples geostatistical modelling based on the Spartan family variogram with a genetic algorithm method and is applied to Mires basin in Crete, Greece, an area of high socioeconomic and agricultural interest, which suffers from groundwater overexploitation leading to a dramatic decrease of groundwater levels. The purpose of the optimisation tool is to determine which wells to exclude from the monitoring network because they add little or no beneficial information to groundwater level mapping of the area. Unlike previous relevant investigations, the network optimisation tool presented here uses Ordinary Kriging with the recently-established non-differentiable Spartan variogram for groundwater level mapping, which, based on a previous geostatistical study in the area leads to optimal groundwater level mapping. Seventy boreholes operate in the area for groundwater abstraction and water level monitoring. The Spartan variogram gives overall the most accurate groundwater level estimates followed closely by the power-law model. The geostatistical model is coupled to an integer genetic algorithm method programmed in MATLAB 2015a. The algorithm is used to find the set of wells whose removal leads to the minimum error between the original water level mapping using all the available wells in the network and the groundwater level mapping using the reduced well network (error is defined as the 2-norm of the difference between the original mapping matrix with 70 wells and the mapping matrix of the reduced well network). The solution to the

  4. The backend design of an environmental monitoring system upon real-time prediction of groundwater level fluctuation under the hillslope.

    Science.gov (United States)

    Lin, Hsueh-Chun; Hong, Yao-Ming; Kan, Yao-Chiang

    2012-01-01

    The groundwater level represents a critical factor to evaluate hillside landslides. A monitoring system upon the real-time prediction platform with online analytical functions is important to forecast the groundwater level due to instantaneously monitored data when the heavy precipitation raises the groundwater level under the hillslope and causes instability. This study is to design the backend of an environmental monitoring system with efficient algorithms for machine learning and knowledge bank for the groundwater level fluctuation prediction. A Web-based platform upon the model-view controller-based architecture is established with technology of Web services and engineering data warehouse to support online analytical process and feedback risk assessment parameters for real-time prediction. The proposed system incorporates models of hydrological computation, machine learning, Web services, and online prediction to satisfy varieties of risk assessment requirements and approaches of hazard prevention. The rainfall data monitored from the potential landslide area at Lu-Shan, Nantou and Li-Shan, Taichung, in Taiwan, are applied to examine the system design.

  5. A Low-Level Real-Time In Situ Monitoring System for Tritium in Groundwater and Vadose Zone

    Science.gov (United States)

    Santo, J. T.; Levitt, D. G.

    2002-12-01

    Tritium is a radioactive isotope of hydrogen produced as a by-product of the nuclear fuel cycle. It is also an integral part of the nuclear weapons industry and has been released into the environment through both the production and testing of nuclear weapons. There are many sites across the DOE complex where tritium has been released into the subsurface through the disposal of radioactive waste and at the Nevada Test Site, through the underground testing of nuclear weapons. Numerous DOE facilities have an on-going regulatory need to be able to monitor tritium concentrations in groundwater within deep hydrologic zones and in the shallower non-saturated vadose zone beneath waste disposal pits and shafts and other release sites. Typical access to groundwater is through deep monitoring wells and situated in remote locations. In response to this need, Science and Engineering Associates, Inc. (SEA) and its subcontractor, the University of Nevada Las Vegas (UNLV) Harry Reid Center (HRC) for Environmental Studies has conducted the applied research and engineering and produced a real time, in situ monitoring system for the detection and measurement of low levels of tritium in the groundwater and in the shallower vadose zone. The monitoring system has been deployed to measure tritium in both the vadose zone near a subsurface radioactive waste package and the groundwater in a deep hydrologic reservoir at the Nevada Test Site. The monitoring system has been designed to detect tritium in the subsurface below federal and/or state regulatory limits for safe drinking water and has been successfully demonstrated. The development effort is being funded through the U.S. Department of Energy, National Energy Technology Laboratory and the DOE Nevada Operations Office Advanced Monitoring Systems Initiative (AMSI).

  6. Groundwater level monitoring sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This Sampling and Analysis Plan addresses groundwater level monitoring activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Groundwater level monitoring will be conducted at 129 sites within the WAG. All of the sites will be manually monitored on a semiannual basis. Forty-five of the 128 wells, plus one site in White Oak Lake, will also be equipped with automatic water level monitoring equipment. The 46 sites are divided into three groups. One group will be equipped for continuous monitoring of water level, conductivity, and temperature. The other two groups will be equipped for continuous monitoring of water level only. The equipment will be rotated between the two groups. The data collected from the water level monitoring will be used to support determination of the contaminant flux at WAG 6.

  7. Groundwater level monitoring sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-04-01

    This Sampling and Analysis Plan addresses groundwater level monitoring activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Groundwater level monitoring will be conducted at 129 sites within the WAG. All of the sites will be manually monitored on a semiannual basis. Forty-five of the 128 wells, plus one site in White Oak Lake, will also be equipped with automatic water level monitoring equipment. The 46 sites are divided into three groups. One group will be equipped for continuous monitoring of water level, conductivity, and temperature. The other two groups will be equipped for continuous monitoring of water level only. The equipment will be rotated between the two groups. The data collected from the water level monitoring will be used to support determination of the contaminant flux at WAG 6

  8. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions

  9. Evaluation of groundwater levels in the South Platte River alluvial aquifer, Colorado, 1953-2012, and design of initial well networks for monitoring groundwater levels

    Science.gov (United States)

    Wellman, Tristan

    2015-01-01

    The South Platte River and underlying alluvial aquifer form an important hydrologic resource in northeastern Colorado that provides water to population centers along the Front Range and to agricultural communities across the rural plains. Water is regulated based on seniority of water rights and delivered using a network of administration structures that includes ditches, reservoirs, wells, impacted river sections, and engineered recharge areas. A recent addendum to Colorado water law enacted during 2002-2003 curtailed pumping from thousands of wells that lacked authorized augmentation plans. The restrictions in pumping were hypothesized to increase water storage in the aquifer, causing groundwater to rise near the land surface at some locations. The U.S. Geological Survey (USGS), in cooperation with the Colorado Water Conservation Board and the Colorado Water Institute, completed an assessment of 60 years (yr) of historical groundwater-level records collected from 1953 to 2012 from 1,669 wells. Relations of "high" groundwater levels, defined as depth to water from 0 to 10 feet (ft) below land surface, were compared to precipitation, river discharge, and 36 geographic and administrative attributes to identify natural and human controls in areas with shallow groundwater.

  10. Groundwater monitoring in the Savannah River Plant Low Level Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.

    1983-12-31

    This document describes chemical mechanisms that may affect trace-level radionuclide migration through acidic sandy clay soils in a humid environment, and summarizes the extensive chemical and radiochemical analyses of the groundwater directly below the SRP Low-Level Waste (LLW) Burial Ground (643-G). Anomalies were identified in the chemistry of individual wells which appear to be related to small amounts of fission product activity that have reached the water table. The chemical properties which were statistically related to trace level transport of Cs-137 and Sr-90 were iron, potassium, sodium and calcium. Concentrations on the order of 100 ppM appear sufficient to affect nuclide migration. Several complexation mechanisms for plutonium migration were investigated.

  11. Monitoring probe for groundwater flow

    Science.gov (United States)

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  12. Groundwater level monitoring sampling and analysis plan for the environmental monitoring plan at waste area grouping 6, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document is the Groundwater Level Monitoring Sampling and Analysis Plan (SAP) for Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory (ORNL). Note that this document is referred to as a SAP even though no sampling and analysis will be conducted. The term SAP is used for consistency. The procedures described herein are part of the Environmental Monitoring Plan (EMP) for WAG 6, which also includes monitoring tasks for seeps and springs, groundwater quality, surface water, and meteorological parameters. Separate SAPs are being issued concurrently to describe each of these monitoring programs. This SAP has been written for the use of the field personnel responsible for implementation of the EMP, with the intent that the field personnel will be able to take these documents to the field and quickly find the appropriate steps required to complete a specific task. In many cases, Field Operations Procedures (FOPs) will define the steps required for an activity. The FOPs for the EMP are referenced and briefly described in the relevant sections of the SAPs, and are contained within the FOP Manual. Both these documents (the SAP and the FOP Manual) will be available to personnel in the field.

  13. Groundwater level monitoring sampling and analysis plan for the environmental monitoring plan at waste area grouping 6, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    This document is the Groundwater Level Monitoring Sampling and Analysis Plan (SAP) for Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory (ORNL). Note that this document is referred to as a SAP even though no sampling and analysis will be conducted. The term SAP is used for consistency. The procedures described herein are part of the Environmental Monitoring Plan (EMP) for WAG 6, which also includes monitoring tasks for seeps and springs, groundwater quality, surface water, and meteorological parameters. Separate SAPs are being issued concurrently to describe each of these monitoring programs. This SAP has been written for the use of the field personnel responsible for implementation of the EMP, with the intent that the field personnel will be able to take these documents to the field and quickly find the appropriate steps required to complete a specific task. In many cases, Field Operations Procedures (FOPs) will define the steps required for an activity. The FOPs for the EMP are referenced and briefly described in the relevant sections of the SAPs, and are contained within the FOP Manual. Both these documents (the SAP and the FOP Manual) will be available to personnel in the field

  14. Current Status of Groundwater Monitoring Networks in Korea

    OpenAIRE

    Jin-Yong Lee; Kideok D. Kwon

    2016-01-01

    Korea has been operating groundwater monitoring systems since 1996 as the Groundwater Act enacted in 1994 enforces nationwide monitoring. Currently, there are six main groundwater monitoring networks operated by different government ministries with different purposes: National Groundwater Monitoring Network (NGMN), Groundwater Quality Monitoring Network (GQMN), Seawater Intrusion Monitoring Network (SIMN), Rural Groundwater Monitoring Network (RGMN), Subsidiary Groundwater Monitoring Network ...

  15. Groundwater level status report for 2010, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2011-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2010 is provided in this report. This report summarizes groundwater level data for 194 monitoring wells, including 63 regional aquifer wells (including 10 regional/intermediate wells), 34 intermediate wells, 97 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 162 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells and seasonal responses to snowmelt runoff observed in intermediate wells.

  16. Groundwater level status report for 2009, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2010-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2009 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 55 regional aquifer wells (including 11 regional/intermediate wells), 26 intermediate wells, 98 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 161 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

  17. Analysis on the Change in Shallow Groundwater Level based on Monitoring Electric Energy Consumption - A Case Study in the North China Plain

    Science.gov (United States)

    Wang, L.; Wolfgang, K.; Steiner, J. F.

    2016-12-01

    Groundwater has been over-pumped for irrigation in the North China Plain in the past decades causing a drastic decrease in the groundwater level. Shallow groundwater can be recharged by rainfall, and the aquifer could be rehabilitated for sustainable use. However, understanding and maintaining the balance of the aquifer - including climatic as well as anthropogenic influences - are fundamental to enable such a sustainable groundwater management. This is still severely obstructed by a lack of measurements of recharge and exploitation. A project to measure groundwater pumping rate at the distributed scale based on monitoring electric energy consumption is going on in Guantao County (456 km2) located in the southern part of the North China Plain. Considerably less costly than direct measurements of the pumping rate, this approach enables us to (a) cover a larger area and (b) use historic electricity data to reconstruct water use in the past. Pumping tests have been carried out to establish a relation between energy consumption and groundwater exploitation. Based on the results of the pumping tests, the time series of the pumping rate can be estimated from the historical energy consumption and serves as the input for a box model to reconstruct the water balance of the shallow aquifer for recent years. This helps us to determine the relative contribution of recharge due to rainfall as well as drawdown due to groundwater pumping for irrigation. Additionally, 100 electric meters have been installed at the electric transformers supplying power for irrigation. With insights gained from the pumping tests, real-time monitoring of the groundwater exploitation is achieved by converting the measured energy consumption to the water use, and pumping control can also be achieved by limiting the energy use. A monitoring and controlling system can then be set up to implement the strategy of sustainable groundwater use.

  18. Groundwater pollution: Are we monitoring appropriate parameters ...

    African Journals Online (AJOL)

    Groundwater pollution is a worldwide phenomenon with potentially disastrous consequences. Prevention of pollution is the ideal approach. However, in practice groundwater quality monitoring is the main tool for timely detection of pollutants and protection of groundwater resources. Monitoring groundwater quality is a ...

  19. Nested-scale discharge and groundwater level monitoring to improve predictions of flow route discharges and nitrate loads

    Science.gov (United States)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.; van Geer, F. C.; Torfs, P. J. J. F.; de Louw, P. G. B.

    2010-10-01

    Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for predictions of catchment-scale discharge and nitrate loads. In order to relate field-site measurements to the catchment-scale an upscaling approach is introduced that assumes that scale differences in flow route fluxes originate from differences in the relationship between groundwater storage and the spatial structure of the groundwater table. This relationship is characterized by the Groundwater Depth Distribution (GDD) curve that relates spatial variation in groundwater depths to the average groundwater depth. The GDD-curve was measured for a single field site (0.009 km2) and simple process descriptions were applied to relate the groundwater levels to flow route discharges. This parsimonious model could accurately describe observed storage, tube drain discharge, overland flow and groundwater flow simultaneously with Nash-Sutcliff coefficients exceeding 0.8. A probabilistic Monte Carlo approach was applied to upscale field-site measurements to catchment scales by inferring scale-specific GDD-curves from hydrographs of two nested catchments (0.4 and 6.5 km2). The estimated contribution of tube drain effluent (a dominant source for nitrates) decreased with increasing scale from 76-79% at the field-site to 34-61% and 25-50% for both catchment scales. These results were validated by demonstrating that a model conditioned on nested-scale measurements simulates better nitrate loads and better predictions of extreme discharges during validation periods compared to a model that was conditioned on catchment discharge only.

  20. F-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    1992-06-01

    This progress report from the Savannah River Plant for first quarter 1992 includes discussion on the following topics: description of facilities; hydrostratigraphic units; monitoring well nomenclature; integrity of the monitoring well network; groundwater monitoring data; analytical results exceeding standards; tritium, nitrate, and pH time-trend data; water levels; groundwater flow rates and directions; upgradient versus downgradient results

  1. F-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    1992-09-01

    This progress report from the Savannah River Plant for second quarter 1992 includes discussion on the following topics: description of facilities; hydrostratigraphic units; monitoring well nomenclature; integrity of the monitoring well network; groundwater monitoring data; analytical results exceeding standards; tritium, nitrate, and pH time-trend data; water levels; groundwater flow rates and directions; upgradient versus downgradient results

  2. Continuous Groundwater Monitoring Collocated at USGS Streamgages

    Science.gov (United States)

    Constantz, J. E.; Eddy-Miller, C.; Caldwell, R.; Wheeer, J.; Barlow, J.

    2012-12-01

    USGS Office of Groundwater funded a 2-year pilot study collocating groundwater wells for monitoring water level and temperature at several existing continuous streamgages in Montana and Wyoming, while U.S. Army Corps of Engineers funded enhancement to streamgages in Mississippi. To increase spatial relevance with in a given watershed, study sites were selected where near-stream groundwater was in connection with an appreciable aquifer, and where logistics and cost of well installations were considered representative. After each well installation and surveying, groundwater level and temperature were easily either radio-transmitted or hardwired to existing data acquisition system located in streamgaging shelter. Since USGS field personnel regularly visit streamgages during routine streamflow measurements and streamgage maintenance, the close proximity of observation wells resulted in minimum extra time to verify electronically transmitted measurements. After field protocol was tuned, stream and nearby groundwater information were concurrently acquired at streamgages and transmitted to satellite from seven pilot-study sites extending over nearly 2,000 miles (3,200 km) of the central US from October 2009 until October 2011, for evaluating the scientific and engineering add-on value of the enhanced streamgage design. Examination of the four-parameter transmission from the seven pilot study groundwater gaging stations reveals an internally consistent, dynamic data suite of continuous groundwater elevation and temperature in tandem with ongoing stream stage and temperature data. Qualitatively, the graphical information provides appreciation of seasonal trends in stream exchanges with shallow groundwater, as well as thermal issues of concern for topics ranging from ice hazards to suitability of fish refusia, while quantitatively this information provides a means for estimating flux exchanges through the streambed via heat-based inverse-type groundwater modeling. In June

  3. Nested-scale discharge and groundwater level monitoring to improve predictions of flow route discharges and nitrate loads

    NARCIS (Netherlands)

    Velde, Y. van der; Rozemeijer, J.C.; Rooij, G.H.de; Geer, F.C. van; Torfs, P.J.J.F.; Louw, P.G.B. de

    2010-01-01

    Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for predictions of catchment-scale

  4. Transfer of European Approach to Groundwater Monitoring in China

    Science.gov (United States)

    Zhou, Y.

    2007-12-01

    Major groundwater development in North China has been a key factor in the huge economic growth and the achievement of self sufficiency in food production. Groundwater accounts for more than 70 percent of urban water supply and provides important source of irrigation water during dry period. This has however caused continuous groundwater level decline and many associated problems: hundreds of thousands of dry wells, dry river beds, land subsidence, seawater intrusion and groundwater quality deterioration. Groundwater levels in the shallow unconfined aquifers have fallen 10m up to 50m, at an average rate of 1m/year. In the deep confined aquifers groundwater levels have commonly fallen 30m up to 90m, at an average rate of 3 to 5m/year. Furthermore, elevated nitrate concentrations have been found in shallow groundwater in large scale. Pesticides have been detected in vulnerable aquifers. Urgent actions are necessary for aquifer recovery and mitigating groundwater pollution. Groundwater quantity and quality monitoring plays a very important role in formulating cost-effective groundwater protection strategies. In 2000 European Union initiated a Water Framework Directive (2000/60/EC) to protect all waters in Europe. The objective is to achieve good water and ecological status by 2015 cross all member states. The Directive requires monitoring surface and groundwater in all river basins. A guidance document for monitoring was developed and published in 2003. Groundwater monitoring programs are distinguished into groundwater level monitoring and groundwater quality monitoring. Groundwater quality monitoring is further divided into surveillance monitoring and operational monitoring. The monitoring guidance specifies key principles for the design and operation of monitoring networks. A Sino-Dutch cooperation project was developed to transfer European approach to groundwater monitoring in China. The project aims at building a China Groundwater Information Centre. Case studies

  5. The Savannah River Site's groundwater monitoring program

    International Nuclear Information System (INIS)

    1991-01-01

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents

  6. Why is the Groundwater Level Rising? A Case Study Using HARTT to Simulate Groundwater Level Dynamic.

    Science.gov (United States)

    Yihdego, Yohannes; Danis, Cara; Paffard, Andrew

    2017-12-01

    Groundwater from a shallow unconfined aquifer at a site in coastal New South Wales has been causing recent water logging issues. A trend of rising groundwater level has been anecdotally observed over the last 10 years. It was not clear whether the changes in groundwater levels were solely natural variations within the groundwater system or whether human interference was driving the level up. Time series topographic images revealed significant surrounding land use changes and human modification to the environment of the groundwater catchment. A statistical model utilising HARTT (multiple linear regression hydrograph analysis method) simulated the groundwater level dynamics at five key monitoring locations and successfully showed a trend of rising groundwater level. Utilising hydrogeological input from field investigations, the model successfully simulated the rise in the water table over time to the present day levels, whilst taking into consideration rainfall and land changes. The underlying geological/land conditions were found to be just as significant as the impact of climate variation. The correlation coefficient for the monitoring bores (MB), excluding MB4, show that the groundwater level fluctuation can be explained by the climate variable (rainfall) with the lag time between the atypical rainfall and groundwater level ranging from 4 to 7 months. The low R2 value for MB4 indicates that there are factors missing in the model which are primarily related to human interference. The elevated groundwater levels in the affected area are the result of long term cumulative land use changes, instigated by humans, which have directly resulted in detrimental changes to the groundwater aquifer properties.

  7. Groundwater pollution: are we monitoring appropriate parameters?

    CSIR Research Space (South Africa)

    Tredoux, G

    2004-01-01

    Full Text Available Groundwater pollution is a worldwide phenomenon with potentially disastrous consequences. Prevention of pollution is the ideal approach. However, in practice groundwater quality monitoring is the main tool for timely detection of pollutants...

  8. Technical support to environmental restoration division for groundwater level monitoring effort at entombed Hallam Nuclear Power Facility. Final report, August 1, 1993--July 31, 1993

    International Nuclear Information System (INIS)

    1994-01-01

    This report provides an interim summary of information from a water-level monitoring program. The information was collected by the US Geological Survey (USGS) over a 6-month period. The monitoring program between the US DOE and the USGS was set up to measure water levels in 16 observation wells at the Hallam Nuclear Facility in Hallam, Nebraska. The summary of USGS data includes: (1) a description of the USGS monitoring program; (2) a description of the collection of continuous water-level data; (3) a description of the collection of monthly water-level data; (4) table of observation well number, latitude, longitude, and depth; (5) table of monthly ground-water levels data; (6) table of recorder wells, rainfall, and barometric pressure values; (7) table of recorder well, rainfall, and barometric pressure daily values; and (8) hydrographs of selected wells. 7 figs., 3 tabs

  9. Hanford Site ground-water monitoring for 1995

    International Nuclear Information System (INIS)

    Dresel, P.E.; Rieger, J.T.; Webber, W.D.; Thorne, P.D.; Gillespie, B.M.; Luttrell, S.P.; Wurstner, S.K.; Liikala, T.L.

    1996-08-01

    This report presents the results of the Groundwater Surveillance Project monitoring for calendar year 1995 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that impacted groundwater quality on the site. Monitoring of water levels and groundwater chemistry is performed to track the extent of contamination, to note trends in contaminant concentrations,a nd to identify emerging groundwater quality problems. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of onsite groundwater quality. A three- dimensional, numerical, groundwater model is being developed to improve predictions of contaminant transport. The existing two- dimensional model was applied to predict contaminant flow paths and the impact of changes on site conditions. These activities were supported by limited hydrogeologic characterization. Water level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Radiological monitoring results indicated that many radioactive contaminants were above US Environmental Protection Agency or State of Washington drinking water standards at the Hanford Site. Nitrate, fluoride, chromium, cyanide, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichloroethylene were present in groundwater samples at levels above their US EPA or State of Washington maximum contaminant levels

  10. Calendar Year 2016 Annual Groundwater Monitoring Report.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jackson, Timmie Okchumpulla [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Li, Jun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Michael Marquand [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractoroperated laboratory. National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., manages and operates SNL/NM for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. Two types of groundwater surveillance monitoring are conducted at SNL/NM: (1) on a site-wide basis as part of the SNL/NM Long-Term Stewardship (LTS) Program’s Groundwater Monitoring Program (GMP) Groundwater Surveillance Task and (2) on a site-specific groundwater monitoring at LTS/Environmental Restoration (ER) Operations sites with ongoing groundwater investigations. This Annual Groundwater Monitoring Report summarizes data collected during groundwater monitoring events conducted at GMP locations and at the following SNL/NM sites through December 31, 2016: Burn Site Groundwater Area of Concern (AOC); Chemical Waste Landfill; Mixed Waste Landfill; Technical Area-V Groundwater AOC; and the Tijeras Arroyo Groundwater AOC. Environmental monitoring and surveillance programs are required by the New Mexico Environment Department (NMED) and DOE Order 436.1, Departmental Sustainability, and DOE Order 231.1B, Environment, Safety, and Health Reporting.

  11. Anisotropic analysis for seismic sensitivity of groundwater monitoring wells

    Science.gov (United States)

    Pan, Y.; Hsu, K.

    2011-12-01

    Taiwan is located at the boundaries of Eurasian Plate and the Philippine Sea Plate. The movement of plate causes crustal uplift and lateral deformation to lead frequent earthquakes in the vicinity of Taiwan. The change of groundwater level trigged by earthquake has been observed and studied in Taiwan for many years. The change of groundwater may appear in oscillation and step changes. The former is caused by seismic waves. The latter is caused by the volumetric strain and reflects the strain status. Since the setting of groundwater monitoring well is easier and cheaper than the setting of strain gauge, the groundwater measurement may be used as a indication of stress. This research proposes the concept of seismic sensitivity of groundwater monitoring well and apply to DonHer station in Taiwan. Geostatistical method is used to analysis the anisotropy of seismic sensitivity. GIS is used to map the sensitive area of the existing groundwater monitoring well.

  12. Well-Construction, Water-Level, and Water-Quality Data for Ground-Water Monitoring Wells for the J4 Hydrogeologic Study, Arnold Air Force Base, Tennessee

    National Research Council Canada - National Science Library

    Haugh, Connor J

    1996-01-01

    ...) in Coffee County, Tennessee. The wells ranged from 28 to 289 feet deep and were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality...

  13. Developing A National Groundwater-Monitoring Network In Korea

    Science.gov (United States)

    Kim, N. J.; Cho, M. J.; Woo, N. C.

    1995-04-01

    Since the 1960's, the groundwater resources of Korea have been developed without a proper regulatory system for monitoring and preservation, resulting in significant source depletion, land subsidence, water contamination, and sea-water intrusion. With the activation of the "Groundwater Law" in June 1994, the government initiated a project to develop a groundwater-monitoring network to describe general groundwater quality, to define its long-term changes, and to identify major factors affecting changes in groundwater quality and yield. In selecting monitoring locations nationwide, criteria considered are 1) spatial distribution, 2) aquifer characteristics of hydrogeologic units, 3) local groundwater flow regime, 4) linkage with surface hydrology observations, 5) site accessibility, and 6) financial situations. A total of 310 sites in 78 small hydrologic basins were selected to compose the monitoring network. Installation of monitoring wells is scheduled to start in 1995 for 15 sites; the remainder are scheduled to be completed by 2001. At each site, a nest of monitoring wells was designed; shallow and deep groundwater will be monitored for water temperature, pH, EC, DO and TDS every month. Water-level fluctuations will also be measured by automatic recorders equipped with pressure transducers. As a next step, the government plans to develop a groundwater-database management system, which could be linked with surface hydrologic data.

  14. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  15. Hanford Site ground-water monitoring for 1994

    International Nuclear Information System (INIS)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  16. High-resolution monitoring across the soil-groundwater interface - Revealing small-scale hydrochemical patterns with a novel multi-level well

    Science.gov (United States)

    Gassen, Niklas; Griebler, Christian; Stumpp, Christine

    2016-04-01

    Biogeochemical turnover processes in the subsurface are highly variable both in time and space. In order to capture this variability, high resolution monitoring systems are required. Particular in riparian zones the understanding of small-scale biogeochemical processes is of interest, as they are regarded as important buffer zones for nutrients and contaminants with high turnover rates. To date, riparian research has focused on influences of groundwater-surface water interactions on element cycling, but little is known about processes occurring at the interface between the saturated and the unsaturated zone during dynamic flow conditions. Therefore, we developed a new type of high resolution multi-level well (HR-MLW) that has been installed in the riparian zone of the Selke river. This HR-MLW for the first time enables to derive water samples both from the unsaturated and the saturated zone across one vertical profile with a spatial vertical resolution of 0.05 to 0.5 m to a depth of 4 m b.l.s. Water samples from the unsaturated zone are extracted via suction cup sampling. Samples from the saturated zone are withdrawn through glass filters and steel capillaries. Both, ceramic cups and glass filters, are installed along a 1" HDPE piezometer tube. First high resolution hydrochemical profiles revealed a distinct depth-zonation in the riparian alluvial aquifer. A shallow zone beneath the water table carried a signature isotopically and hydrochemically similar to the nearby river, while layers below 1.5 m were influenced by regional groundwater. This zonation showed temporal dynamics related to groundwater table fluctuations and microbial turnover processes. The HR-MLW delivered new insight into mixing and turnover processes between riverwater and groundwater in riparian zones, both in a temporal and spatial dimension. With these new insights, we are able to improve our understanding of dynamic turnover processes at the soil - groundwater interface and of surface

  17. A detection-level hazardous waste ground-water monitoring compliance plan for the 200 areas low-level burial grounds and retrievable storage units

    International Nuclear Information System (INIS)

    1987-02-01

    This plan defines the actions needed to achieve detection-level monitoring compliance at the Hanford Site 200 Areas Low-Level Burial Grounds (LLBG) in accordance with the Resource Conservation and Recovery Act (RCRA). Compliance will be achieved through characterization of the hydrogeology and monitoring of the ground water beneath the LLBG located in the Hanford Site 200 Areas. 13 refs., 20 figs

  18. Pickering Nuclear site wide groundwater monitoring system

    International Nuclear Information System (INIS)

    DeWilde, J.; Chin-Cheong, D.; Lledo, C.; Wootton, R.; Belanger, D.; Hansen, K.

    2001-01-01

    Ontario Power Generation Inc. (OPG) is continuing its efforts to understand the chemical and physical characteristics of the groundwater flow systems beneath the Pickering Nuclear Generating Station (PNGS). To this end, OPG constructed a site-wide Groundwater Monitoring System (GMS) at the PNGS to provide support to other ongoing environmental investigations and to provide a means to monitor current and future groundwater environmental issues. This paper will present the results of this work, including the development of a state-of-the-art data management system for storage and retrieval of environmental data for the site, which has applications for other power generation facilities. (author)

  19. Hanford Site groundwater monitoring for fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

  20. Hanford Site groundwater monitoring for fiscal year 1996

    International Nuclear Information System (INIS)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V.

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems

  1. Updated study reporting levels (SRLs) for trace-element data collected for the California Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project, October 2009-March 2013

    Science.gov (United States)

    Davis, Tracy A.; Olsen, Lisa D.; Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater samples have been collected in California as part of statewide investigations of groundwater quality conducted by the U.S. Geological Survey for the Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project (PBP). The GAMA-PBP is being conducted in cooperation with the California State Water Resources Control Board to assess and monitor the quality of groundwater resources used for drinking-water supply and to improve public knowledge of groundwater quality in California. Quality-control samples (source-solution blanks, equipment blanks, and field blanks) were collected in order to ensure the quality of the groundwater sample results. Olsen and others (2010) previously determined study reporting levels (SRLs) for trace-element results based primarily on field blanks collected in California from May 2004 through January 2008. SRLs are raised reporting levels used to reduce the likelihood of reporting false detections attributable to contamination bias. The purpose of this report is to identify any changes in the frequency and concentrations of detections in field blanks since the last evaluation and update the SRLs for more recent data accordingly. Constituents analyzed were aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), tungsten (W), uranium (U), vanadium (V), and zinc (Zn). Data from 179 field blanks and equipment blanks collected from March 2006 through March 2013 by the GAMA-PBP indicated that for trace elements that had a change in detection frequency and concentration since the previous review, the shift occurred near October 2009, in conjunction with a change in the capsule filters used by the study. Results for 89 field blanks and equipment blanks collected from October 2009 through March 2013 were

  2. Ground-Water Protection and Monitoring Program

    International Nuclear Information System (INIS)

    Dresel, P.E.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options

  3. Ground-Water Protection and Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  4. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  5. Hanford Site ground-water monitoring for 1993

    International Nuclear Information System (INIS)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices

  6. Hanford Site groundwater monitoring for Fiscal Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E. [eds.] [and others

    1998-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium`s ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level.

  7. Hanford Site groundwater monitoring for Fiscal Year 1997

    International Nuclear Information System (INIS)

    Hartman, M.J.; Dresel, P.E.

    1998-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium's ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level

  8. Groundwater monitoring for deep-well injection

    International Nuclear Information System (INIS)

    Chia, Y.; Chiu, J.

    1994-01-01

    A groundwater monitoring system for detecting waste migration would not only enhance confidence in the long-term containment of injected waste, but would also provide early warnings of contamination for prompt responses to protect underground sources of drinking water (USDWs). Field experiences in Florida have demonstrated monitoring water quality and fluid pressure changes in overlying formations is useful in detecting the upward migration of injected waste. Analytical and numerical solutions indicate changes in these two monitoring parameters can vary on the basis of hydrogeologic characteristics, operation conditions, and the distances from the injection well to the monitoring wells and to the preferential hydrologic conduits. To detect waste migration through defects around the wellbore or the leaky containment interval, groundwater monitoring wells should be placed as close as possible to an injection well. In the vertical direction, a monitoring well completed in a permeable interbed within the containment interval is expected to have the highest potential for detecting upward migration. Another acceptable horizon for groundwater monitoring is the lower portion of the buffer brine aquifer immediately above the containment interval. Monitoring wells in USDWs may be needed when waste has been detected in deeper formations or when leakage out of well casings poses a concern. A monitoring well open to the injection interval is of little value in alleviating the concerns of long-term upward migration. Moreover, the installation of the well could create additional preferential pathways. Complications in groundwater monitoring may arise at existing injection sites, especially with prior releases. It is also important to recognize that monitoring in the vicinity of the wellbore may not be effective for detecting waste migration through unidentified unplugged wells or undetected transmissive fractures

  9. Ground-water monitoring under RCRA

    International Nuclear Information System (INIS)

    Coalgate, J.

    1993-11-01

    In developing a regulatory strategy for the disposal of hazardous waste under the Resource Conservation and Recovery Act (RCRA), protection of ground-water resources was the primary goal of the Environmental Protection Agency (EPA). EPA's ground-water protection strategy seeks to minimize the potential for hazardous wastes and hazardous constituents in waste placed in land disposel units to migrate into the environment. This is achieved through liquids management (limiting the placement of liquid wastes in or on the land, requiring the use of liners beneath waste, installing leachate collection systems and run-on and run-off controls, and covering wastes at closure). Ground-water monitoring serves to detect any failure in EPA's liquids management strategy so that ground-water contamination can be detected and addressed as soon as possible

  10. Arsenic levels in groundwater aquifer

    African Journals Online (AJOL)

    Miodrag Jelic

    resistance (ρ); dielectric constant (ε); magnetic permeability (η); electrochemical activity ..... comprises grey sands of different particle size distribution ..... groundwater: testing pollution mechanisms for sedimentary aquifers in. Bangladesh.

  11. Groundwater monitoring of hydraulic fracturing in California: Recommendations for permit-required monitoring

    Science.gov (United States)

    Esser, B. K.; Beller, H. R.; Carroll, S.; Cherry, J. A.; Jackson, R. B.; Jordan, P. D.; Madrid, V.; Morris, J.; Parker, B. L.; Stringfellow, W. T.; Varadharajan, C.; Vengosh, A.

    2015-12-01

    California recently passed legislation mandating dedicated groundwater quality monitoring for new well stimulation operations. The authors provided the State with expert advice on the design of such monitoring networks. Factors that must be considered in designing a new and unique groundwater monitoring program include: Program design: The design of a monitoring program is contingent on its purpose, which can range from detection of individual well leakage to demonstration of regional impact. The regulatory goals for permit-required monitoring conducted by operators on a well-by-well basis will differ from the scientific goals of a regional monitoring program conducted by the State. Vulnerability assessment: Identifying factors that increase the probability of transport of fluids from the hydrocarbon target zone to a protected groundwater zone enables the intensity of permit-required monitoring to be tiered by risk and also enables prioritization of regional monitoring of groundwater basins based on vulnerability. Risk factors include well integrity; proximity to existing wellbores and geologic features; wastewater disposal; vertical separation between the hydrocarbon and groundwater zones; and site-specific hydrogeology. Analyte choice: The choice of chemical analytes in a regulatory monitoring program is guided by the goals of detecting impact, assuring public safety, preventing resource degradation, and minimizing cost. Balancing these goals may be best served by tiered approach in which targeted analysis of specific chemical additives is triggered by significant changes in relevant but more easily analyzed constituents. Such an approach requires characterization of baseline conditions, especially in areas with long histories of oil and gas development. Monitoring technology: Monitoring a deep subsurface process or a long wellbore is more challenging than monitoring a surface industrial source. The requirement for monitoring multiple groundwater aquifers across

  12. The Savannah River Site's groundwater monitoring program

    International Nuclear Information System (INIS)

    1991-01-01

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results

  13. The Savannah River Site's Groundwater Monitoring Program

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official document of the analytical results

  14. F-Area Seepage Basins groundwater monitoring report, fourth quarter 1991 and 1991 summary

    International Nuclear Information System (INIS)

    1992-03-01

    This progress report for fourth quarter 1991 and 1991 summary fro the Savannah River Plant includes discussion on the following topics: description of facilities; hydrostratigraphic units; monitoring well nomenclature; integrity of the monitoring well network; groundwater monitoring data; analytical results exceeding standards; tritium, nitrate, and pH time-trend data; water levels; groundwater flow rates and directions; upgradient versus downgradient results

  15. Groundwater Monitoring Plan for the Solid Waste Landfill

    International Nuclear Information System (INIS)

    Lindberg, J.W.; Chou, C.J.

    2000-01-01

    The Solid Waste Landfill (SWL) is regulated by the Washington State Department of Ecology under WAC 173-304. Between 1973 and 1976, the landfill received primarily paper waste and construction debris, but it also received asbestos, sewage, and catch tank liquid waste. Groundwater monitoring results indicate the SWL has contaminated groundwater with volatile organic compounds and possibly metals at levels that exceed regulatory limits. DynCorp, Tri-Cities, Inc. operates the facility under an interim closure plan (final closure plan will be released shortly). Pacific Northwest National Laboratory (PNNL) monitors groundwater at the site. This monitoring plan includes well and constituent lists, and summarizes sampling, analytical, and quality control requirements. Changes from the previous monitoring plan include elimination of two radionuclides from the analyte list and some minor changes in the statistical analysis. Existing wells in the current monitoring network only monitor the uppermost portion of the upper-most aquifer. Therefore, two new downgradient wells and one existing upgradient well are proposed to determine whether groundwater waste constituents have reached the lower portion of the uppermost aquifer. The proposed well network includes three upgradient wells and ten downgradient wells. The wells will be sampled quarterly for 14 analytes required by WAC 173-304-490 plus volatile organic compounds and filtered arsenic as site-specific analytes

  16. Groundwater Monitoring Plan for the Solid Waste Landfill

    Energy Technology Data Exchange (ETDEWEB)

    JW Lindberg; CJ Chou

    2000-12-14

    The Solid Waste Landfill (SWL) is regulated by the Washington State Department of Ecology under WAC 173-304. Between 1973 and 1976, the landfill received primarily paper waste and construction debris, but it also received asbestos, sewage, and catch tank liquid waste. Groundwater monitoring results indicate the SWL has contaminated groundwater with volatile organic compounds and possibly metals at levels that exceed regulatory limits. DynCorp, Tri-Cities, Inc. operates the facility under an interim closure plan (final closure plan will be released shortly). Pacific Northwest National Laboratory (PNNL) monitors groundwater at the site. This monitoring plan includes well and constituent lists, and summarizes sampling, analytical, and quality control requirements. Changes from the previous monitoring plan include elimination of two radionuclides from the analyte list and some minor changes in the statistical analysis. Existing wells in the current monitoring network only monitor the uppermost portion of the upper-most aquifer. Therefore, two new downgradient wells and one existing upgradient well are proposed to determine whether groundwater waste constituents have reached the lower portion of the uppermost aquifer. The proposed well network includes three upgradient wells and ten downgradient wells. The wells will be sampled quarterly for 14 analytes required by WAC 173-304-490 plus volatile organic compounds and filtered arsenic as site-specific analytes.

  17. Current Status of Groundwater Monitoring Networks in Korea

    Directory of Open Access Journals (Sweden)

    Jin-Yong Lee

    2016-04-01

    Full Text Available Korea has been operating groundwater monitoring systems since 1996 as the Groundwater Act enacted in 1994 enforces nationwide monitoring. Currently, there are six main groundwater monitoring networks operated by different government ministries with different purposes: National Groundwater Monitoring Network (NGMN, Groundwater Quality Monitoring Network (GQMN, Seawater Intrusion Monitoring Network (SIMN, Rural Groundwater Monitoring Network (RGMN, Subsidiary Groundwater Monitoring Network (SGMN, and Drinking Water Monitoring Network (DWMN. The Networks have a total of over 3500 monitoring wells and the majority of them are now equipped with automatic data loggers and remote terminal units. Most of the monitoring data are available to the public through internet websites. These Networks have provided scientific data for designing groundwater management plans and contributed to securing the groundwater resource particularly for recent prolonged drought seasons. Each Network, however, utilizes its own well-specifications, probes, and telecommunication protocols with minimal communication with other Networks, and thus duplicate installations of monitoring wells are not uncommon among different Networks. This mini-review introduces the current regulations and the Groundwater Monitoring Networks operated in Korea and provides some suggestions to improve the sustainability of the current groundwater monitoring system in Korea.

  18. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    International Nuclear Information System (INIS)

    Hartman, Mary J.; Dresel, P. Evan; Lindberg, Jon W.; Newcomer, Darrell R.; Thornton, Edward C.

    2000-01-01

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently

  19. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    International Nuclear Information System (INIS)

    Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

    1999-01-01

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently

  20. 100-N pilot project: Proposed consolidated groundwater monitoring program

    International Nuclear Information System (INIS)

    Borghese, J.V.; Hartman, M.J.; Lutrell, S.P.; Perkins, C.J.; Zoric, J.P.; Tindall, S.C.

    1996-11-01

    This report presents a proposed consolidated groundwater monitoring program for the 100-N Pilot Project. This program is the result of a cooperative effort between the Hanford Site contractors who monitor the groundwater beneath the 100-N Area. The consolidation of the groundwater monitoring programs is being proposed to minimize the cost, time, and effort necessary for groundwater monitoring in the 100-N Area, and to coordinate regulatory compliance activities. The integrity of the subprograms requirements remained intact during the consolidation effort. The purpose of this report is to present the proposed consolidated groundwater monitoring program and to summarize the process by which it was determined

  1. Groundwater Monitoring and Engineered Geothermal Systems: The Newberry EGS Demonstration

    Science.gov (United States)

    Grasso, K.; Cladouhos, T. T.; Garrison, G.

    2013-12-01

    Engineered Geothermal Systems (EGS) represent the next generation of geothermal energy development. Stimulation of multiple zones within a single geothermal reservoir could significantly reduce the cost of geothermal energy production. Newberry Volcano in central Oregon represents an ideal location for EGS research and development. As such, the goals of the Newberry EGS Demonstration, operated by AltaRock Energy, Inc., include stimulation of a multiple-zone EGS reservoir, testing of single-well tracers and a demonstration of EGS reservoir viability through flow-back and circulation tests. A shallow, local aquifer supplied the approximately 41,630 m3 (11 million gals) of water used during stimulation of NWG 55-29, a deep geothermal well on the western flank of Newberry Volcano. Protection of the local aquifer is of primary importance to both the Newberry EGS Demonstration and the public. As part of the Demonstration, AltaRock Energy, Inc. has developed and implemented a groundwater monitoring plan to characterize the geochemistry of the local aquifer before, during and after stimulation. Background geochemical conditions were established prior to stimulation of NWG 55-29, which was completed in 2012. Nine sites were chosen for groundwater monitoring. These include the water supply well used during stimulation of NWG 55-29, three monitoring wells, three domestic water wells and two hot seeps located in the Newberry Caldera. Together, these nine monitoring sites represent up-, down- and cross-gradient locations. Groundwater samples are analyzed for 25 chemical constituents, stable isotopes, and geothermal tracers used during stimulation. In addition, water level data is collected at three monitoring sites in order to better characterize the effects of stimulation on the shallow aquifer. To date, no significant geochemical changes and no geothermal tracers have been detected in groundwater samples from these monitoring sites. The Newberry EGS Demonstration groundwater

  2. The Savannah River Site's groundwater monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  3. A study of groundwater monitoring data analysis using Artificial Neural Network model

    International Nuclear Information System (INIS)

    Watanabe, Kunio; Gautam, M.R.; Saegusa, Hiromitsu

    2003-05-01

    The results of groundwater flow modeling are to be justified using groundwater monitoring data in the hydrogeological characterization. On the other hand, hydraulic continuities of the geological structures, all of which are considered to have great effect on groundwater flow and/or groundwater quality, are to be estimated using the groundwater flow monitoring data with hydraulic response to some impacts such as borehole drilling, pumping test and so on. Therefore, the groundwater monitoring is important for characterizing the geological and hydrogeological environments. In order to characterize of hydrogeological environment using the monitoring data, it is important to evaluate the influence of artificial and natural impact on the monitoring data. In this study, the following three research works are carried out based on the groundwater monitoring data collected at the Tono area. Artificial Neural Network (ANN) was adopted as the tool for monitoring data analysis. Runoff analysis for assessment of importance of soil moisture on runoff estimation in a catchment. Analysis of water level fluctuation for determination influence factors in the water level fluctuation and for filtering out the influence factors from the water level data . Analysis of hydraulic pressure fluctuation in deep geological formations for hydrogeological characterization and assessment of human influence on the pore pressure in deep formation. Through this study, applicability of ANN for analysis and interpretation of the groundwater monitoring data could be confirmed and methodology for utilization the monitoring data for understanding and characterization of hydrogeological environment could be developed. (author)

  4. Compliance Groundwater Monitoring of Nonpoint Sources - Emerging Approaches

    Science.gov (United States)

    Harter, T.

    2008-12-01

    Groundwater monitoring networks are typically designed for regulatory compliance of discharges from industrial sites. There, the quality of first encountered (shallow-most) groundwater is of key importance. Network design criteria have been developed for purposes of determining whether an actual or potential, permitted or incidental waste discharge has had or will have a degrading effect on groundwater quality. The fundamental underlying paradigm is that such discharge (if it occurs) will form a distinct contamination plume. Networks that guide (post-contamination) mitigation efforts are designed to capture the shape and dynamics of existing, finite-scale plumes. In general, these networks extend over areas less than one to ten hectare. In recent years, regulatory programs such as the EU Nitrate Directive and the U.S. Clean Water Act have forced regulatory agencies to also control groundwater contamination from non-incidental, recharging, non-point sources, particularly agricultural sources (fertilizer, pesticides, animal waste application, biosolids application). Sources and contamination from these sources can stretch over several tens, hundreds, or even thousands of square kilometers with no distinct plumes. A key question in implementing monitoring programs at the local, regional, and national level is, whether groundwater monitoring can be effectively used as a landowner compliance tool, as is currently done at point-source sites. We compare the efficiency of such traditional site-specific compliance networks in nonpoint source regulation with various designs of regional nonpoint source monitoring networks that could be used for compliance monitoring. We discuss advantages and disadvantages of the site vs. regional monitoring approaches with respect to effectively protecting groundwater resources impacted by nonpoint sources: Site-networks provide a tool to enforce compliance by an individual landowner. But the nonpoint source character of the contamination

  5. Groundwater levels and dolomite - nuisance or necessity

    CSIR Research Space (South Africa)

    Hobbs, PJ

    2008-11-01

    Full Text Available The significance and importance of groundwater level data in a karst environment, whilst acknowledged by geotechnical engineers and engineering geologists, is often not afforded the recognition it deserves. Within the ambit of a geotechnical site...

  6. Hanford Site Groundwater Monitoring for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    MJ Hartman; LF Morasch; WD Webber

    2000-05-10

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 1999 on the US. Department of Energy's Hanford Site, Washington. Water-level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Measurements for site-wide maps were conducted in June in past years and are now measured in March to reflect conditions that are closer to average. Water levels over most of the Hanford Site continued to decline between June 1998 and March 1999. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of carbon-14, strontium-90, technetium-99, and uranium also exceeded drinking water standards in smaller plumes. Cesium-137 and plutonium exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in US Department of Energy Order 5400.5 were exceeded for plutonium, strontium-90, tritium, and uranium in small plumes or single wells. Nitrate and carbon tetrachloride are the most extensive chemical contaminants. Chloroform, chromium, cis-1,2dichloroethylene, cyanide, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; however, in most cases, they are believed to represent natural components of groundwater. ''Resource Conservation and Recovery Act of 1976'' groundwater monitoring continued at 25 waste management areas during fiscal year 1999: 16 under detection programs and data indicate that they are not adversely affecting groundwater; 6 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. Another site, the 120-D-1 ponds

  7. Arsenic levels in groundwater aquifer of the Neoplanta source area ...

    African Journals Online (AJOL)

    As part of a survey on the groundwater aquifer at the Neoplanta source site, standard laboratory analysis of water quality and an electromagnetic geophysical method were used for long-term quantitative and qualitative monitoring of arsenic levels. This study presents only the results of research conducted in the ...

  8. Hanford Site Groundwater Monitoring for Fiscal Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J. [and others

    1999-03-24

    This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous

  9. Evaluation of a multiport groundwater monitoring system

    International Nuclear Information System (INIS)

    Gilmore, T.J.; Hall, S.H.; Olsen, K.B.; Spane, F.A. Jr.

    1991-03-01

    In 1988 and 1989, Pacific Northwest Laboratory installed a multiport groundwater monitoring system in two wells on the Hanford Site: one near the 216-B-3 Pond in the center of the Hanford Site and one just north of the 300 Area near the Columbia River. The system was installed to provide the US Department of Energy with needed three-dimensional data on the vertical distribution of contaminants and hydraulic heads on the Hanford Site. This study evaluates the ability of the multiport system to obtain hydrogeologic data at multiple points vertically in a single borehole, and addresses the representativeness of the data. Data collected from the two wells indicate that the multiport system is well suited for groundwater monitoring networks requiring three-dimensional characterization of the hydrogeologic system. A network of these systems could provide valuable information on the hydrogeologic environment. However, the advantages of the multiport system diminish when the system is applied to long-term monitoring networks (30+ years) and to deeper wells (<300 ft). For shallow wells, the multiport system provides data in a cost-effective manner that would not be reasonably obtainable with the conventional methods currently in use at the Hanford Site. 17 refs., 28 figs., 6 tabs

  10. Simple chloride sensors for continuous groundwater monitoring

    DEFF Research Database (Denmark)

    Thorn, Paul; Mortensen, John

    2012-01-01

    The development of chloride sensors which can be used for continuous, on-line monitoring of groundwater could be very valuable in the management of our coastal water resources. However, sensor stability, drift, and durability all need to be addressed in order for the sensors to be used in continu......The development of chloride sensors which can be used for continuous, on-line monitoring of groundwater could be very valuable in the management of our coastal water resources. However, sensor stability, drift, and durability all need to be addressed in order for the sensors to be used...... in continuous application. This study looks at the development of a simple, inexpensive chloride electrode, and evaluates its performance under continuous use, both in the laboratory and in a field test in a monitoring well. The results from the study showed a consistent response to changing chloride...... concentrations over longer periods. The signal was seen to be stable, with regular drift in both laboratory and field test. In the field application, the sensor signal was corrected for drift, and errors were observed to be under 7% of that of conductivity measurements. The study also found that the chloride...

  11. Hanford Site Groundwater Monitoring for Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2007-03-01

    This report presents the results of groundwater monitoring for FY 2006 on DOE's Hanford Site. Results of groundwater remediation, vadose zone monitoring, and characterization are summarized. DOE monitors groundwater at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act (AEA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and Washington Administrative Code (WAC).

  12. Groundwater monitoring systems and groundwater quality in the administrative district of Detmold (North Rhine-Westphalia)

    International Nuclear Information System (INIS)

    Grabau, J.

    1994-01-01

    Two groundwater monitoring systems for areas of different dimensions in the administrative district of Detmold are introduced. Firstly, the monitoring of groundwater and untreated water by the Water Conservation and Waste Disposal Authority (Amt fuer Wasser- und Abfallwirtschaft) in Minden and secondly, the monitoring of groundwater and drinking water by the Water Resources Board (Wasserschutzamt) in Bielefeld. Different approaches and methods are required for the description of groundwater quality on a regional and a local basis, respectively, i.e. for the monitoring of a whole region and the monitoring of parts of such a region. The properties of groundwater in areas of different dimensions are analysed and described by means of an extensive database and with the help of (geo)statistical methods of analysis. Existing hydrochemical data have only limited value as evidence of groundwater properties in the dimensional units ''region'' and ''small investigation area''. They often do not meet the requirements of correct mathematical statistical methods. (orig.)

  13. Groundwater levels in the Kabul Basin, Afghanistan, 2004-2013

    Science.gov (United States)

    Taher, Mohammad R.; Chornack, Michael P.; Mack, Thomas J.

    2014-01-01

    The Afghanistan Geological Survey, with technical assistance from the U.S. Geological Survey, established a network of wells to measure and monitor groundwater levels to assess seasonal, areal, and potentially climatic variations in groundwater characteristics in the Kabul Basin, Afghanistan, the most populous region in the country. Groundwater levels were monitored in 71 wells in the Kabul Basin, Afghanistan, starting as early as July 2004 and continuing to the present (2013). The monitoring network is made up exclusively of existing production wells; therefore, both static and dynamic water levels were recorded. Seventy wells are in unconsolidated sediments, and one well is in bedrock. Water levels were measured periodically, generally monthly, using electric tape water-level meters. Water levels in well 64 on the grounds of the Afghanistan Geological Survey building were measured more frequently. This report provides a 10-year compilation of groundwater levels in the Kabul Basin prepared in cooperation with the Afghanistan Geological Survey. Depths to water below land surface range from a minimum of 1.47 meters (m) in the Shomali subbasin to a maximum of 73.34 m in the Central Kabul subbasin. The Logar subbasin had the smallest range in depth to water below land surface (1.5 to 12.4 m), whereas the Central Kabul subbasin had the largest range (2.64 to 73.34 m). Seasonal water-level fluctuations can be estimated from the hydrographs in this report for wells that have depth-to-water measurements collected under static conditions. The seasonal water-level fluctuations range from less than 1 m to a little more than 7 m during the monitoring period. In general, the hydrographs for the Deh Sabz, Logar, Paghman and Upper Kabul, and Shomali subbasins show relatively little change in the water-level trend during the period of record, whereas hydrographs for the Central Kabul subbasin show water level decreases of several meters to about 25 m.

  14. Using groundwater levels to estimate recharge

    Science.gov (United States)

    Healy, R.W.; Cook, P.G.

    2002-01-01

    Accurate estimation of groundwater recharge is extremely important for proper management of groundwater systems. Many different approaches exist for estimating recharge. This paper presents a review of methods that are based on groundwater-level data. The water-table fluctuation method may be the most widely used technique for estimating recharge; it requires knowledge of specific yield and changes in water levels over time. Advantages of this approach include its simplicity and an insensitivity to the mechanism by which water moves through the unsaturated zone. Uncertainty in estimates generated by this method relate to the limited accuracy with which specific yield can be determined and to the extent to which assumptions inherent in the method are valid. Other methods that use water levels (mostly based on the Darcy equation) are also described. The theory underlying the methods is explained. Examples from the literature are used to illustrate applications of the different methods.

  15. Hanford Site groundwater monitoring: Setting, sources and methods

    International Nuclear Information System (INIS)

    Hartman, M.J.

    2000-01-01

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports

  16. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    Science.gov (United States)

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  17. Hanford Site groundwater monitoring: Setting, sources and methods

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Hartman

    2000-04-11

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports.

  18. Groundwater monitoring in the Savannah River Plant low-level waste burial ground: a summary and interpretation of the analytical data

    International Nuclear Information System (INIS)

    Ryan, J.P.

    1983-01-01

    This document describes chemical mechanisms that may affect trace-level radionuclide migration through acidic sandy clay soils in a humid environment, and summarizes the extensive chemical and radiochemical analyses of the groundwater directly below the SRP Low-Level Waste (LLW) Burial Ground (643-G). Anomalies were identified in the chemistry of individual wells which appear to be related to small amounts of fission product activity that have reached the water table. The chemical properties which were statistically related to trace-level transport of Cs-137 and Sr-90 were iron, potassium, sodium and calcium. Concentrations on the order of 100 ppM appear sufficient to affect nuclide migration. Several complexation mechanisms for plutonium migration were investigated, but most of these were shown to be incapable of mobilizing more than trace quantities of plutonium. The parameters of greatest importance were oxidation-reduction potential, pH, dissolved organic carbon, phosphate and carbonate. Of these, organic and phosphate complexation had the greatest potential for mobilizing plutonium in the SRP groundwater. In the absence of such complexants, plutonium would be essentially immobile in the soil/water system of the SRP burial ground. 50 references, 8 figures, 2 tables

  19. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used to evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  20. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used ito evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  1. Understanding socio-groundwater systems: framework, toolbox, and stakeholders’ efforts for analysis and monitoring groundwater resources

    OpenAIRE

    López Maldonado, Yolanda Cristina

    2018-01-01

    Groundwater, the predominant accessible reservoir of freshwater storage on Earth, plays an important role as a human-natural life sustaining resource. In recent decades there has been an increasing concern that human activities are placing too much pressure on the resource, affecting the health of the ecosystem. However, because groundwater it is out of sight, its monitoring on both global and local scales is challenging. In the field of groundwater monitoring, modelling tools have been devel...

  2. Groundwater monitoring at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Kehrman, R.; Broberg, K.; Tatro, G.; Richardson, R.; Dasczcyszak, W.

    1990-01-01

    This paper discusses the Groundwater Monitoring Program (GMP) being conducted at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The Regulatory and Environmental Programs (REP) section of the Environment, Safety and Health department (ES ampersand H) is responsible for conducting environmental monitoring at the WIPP. Groundwater monitoring is one of the ongoing environmental activities currently taking place. The REP section includes water-quality sampling and water-level monitoring. The WIPP Project is a research and development facility designed to demonstrate the safe disposal of defense-generated TRU and mixed waste in a geologic repository. The Salado Formation of Permian age serves as the repository medium. The Salado Formation consists of bedded salt and associated evaporites. The formation is 602 meters thick at the site area; the top surface is located at a subsurface depth of 262 meters (10). The repository lies at a subsurface depth of 655 meters. Water-quality sampling for physical, chemical, and radiological parameters has been an ongoing activity at the WIPP site for the past six years, and will continue through the life of the project. Data collected from this program to date, has been used by Sandia National Laboratories for site characterization and performance assessment work. The data has also been used to establish a baseline of preoperational radiological and nonradiological groundwater quality. Once the facility begins receiving waste, this baseline will be used to determine if the WIPP facility influences or alters groundwater quality over time. The water quality of a well is determined while the well is continuously pumped. Serial samples of the pumped water are collected and tested for pH, Eh, temperature, specific gravity, specific conductivity, alkalinity, chlorides, divalent cations, ferrous iron, and total iron. 13 refs., 4 figs., 1 tab

  3. Mixed Waste Management Facility (MWMF) groundwater monitoring report

    International Nuclear Information System (INIS)

    1993-06-01

    During first quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste anagement Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults (HWMWDV). As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Tetrachloroethylene, chloroethene, 1,1-dichloroethylene, gross alpha, lead, or nonvolatile beta levels also exceeded standards in one or more wells. The elevated constituents were found primarily in Aquifer Zone IIB 2 (Water Table) and Aquifer Zone IIB 1 , (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contained elevated constituent levels. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to previous quarters

  4. Sampling and Analysis Plan Update for Groundwater Monitoring 1100-EM-1 Operable Unit

    International Nuclear Information System (INIS)

    DR Newcomer

    1999-01-01

    This document updates the sampling and analysis plan (Department of Energy/Richland Operations--95-50) to reflect current groundwater monitoring at the 1100-EM-1Operable Unit. Items requiring updating included sampling and analysis protocol, quality assurance and quality control, groundwater level measurement procedure, and data management. The plan covers groundwater monitoring, as specified in the 1993 Record of Decision, during the 5-year review period from 1995 through 1999. Following the 5-year review period, groundwater-monitoring data will be reviewed by Environmental Protection Agency to evaluate the progress of natural attenuation of trichloroethylene. Monitored natural attenuation and institutional controls for groundwater use at the inactive Horn Rapids Landfill was the selected remedy specified in the Record of Decision

  5. Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Y. E.Townsend

    2001-02-01

    This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

  6. Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    International Nuclear Information System (INIS)

    Y. E.Townsend

    2001-01-01

    This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure

  7. Integrated site investigation and groundwater monitoring in an urban environment

    Science.gov (United States)

    Weatherl, R. K.

    2017-12-01

    Understanding groundwater dynamics around cities and other areas of human influence is of crucial importance for water resource management and protection, especially in a time of environmental and societal change. The human environment presents a unique challenge in terms of hydrological characterization, as the water cycle is generally artificialized and emissions of treated waste and chemical products into the surface- and groundwater system tend to disrupt the natural aqueous signature in significant ways. This project presents an integrated approach for robust characterization and monitoring of an urban aquifer which is actively exploited for municipal water supply. The study is carried out in the town of Fehraltorf, in the canton of Zürich, Switzerland. This particular town encompasses industrial and agricultural zones in addition to its standard urban setting. A minimal amount of data exist at this site, and the data that do exist are spatially and temporally sparse. Making use of traditional hydrogeological methods alongside evolving and emerging technologies, we aim to identify sources of contamination and to define groundwater flow and solute transport through space and time. Chemical and physical indicator parameters are identified for tracing contaminations including micropollutants and plant nutrients. Wireless sensors are installed for continuous on-line monitoring of essential parameters (electrical conductivity, temperature, water level). A wireless sensor network has previously been installed in the sewer system of the study site, facilitating investigation into interactions between sewer water and groundwater. Our approach illustrates the relations between land use, climate, rainfall dynamics, and the groundwater signature through time. At its conclusion, insights gained from this study will be used by municipal authorities to refine protective zones around pumping wells and to direct resources towards updating practices and replacing

  8. Groundwater Monitoring Plan for the Z-Area Saltstone Facility

    International Nuclear Information System (INIS)

    Wells, D.

    2002-01-01

    Groundwater monitoring has been conducted at the Z-Area Saltstone Disposal Facility since 1987. At that time, groundwater monitoring was not required by the industrial landfill regulations, but a modest monitoring program was required by the operating permit. In 1996 SRS proposed a program based on direct push sampling. This program called for biennial direct push sampling within 25 feet of each waste-containing cell with additional samples being taken in areas where excessive cracking had been observed. The direct push proposal was accepted by The South Carolina Department of Health and Environmental Control (SCDHEC). The Industrial Solid Waste Landfill Regulations were revised in 1998 and now include requirements for groundwater monitoring. The major elements of those regulations and their application at Z-Area are discussed. These are a point of compliance, groundwater protection standards, the groundwater monitoring system, sampling and analysis, and data evaluation and reporting

  9. Well-construction, water-level, geophysical, and water-quality data for ground-water monitoring wells for Arnold Air Force Base, Tennessee

    Science.gov (United States)

    Hough, C.J.; Mahoney, E.N.; Robinson, J.A.

    1992-01-01

    Sixty-five wells were installed at 39 sites in the Arnold Air Force Base area in Coffee and Franklin Counties, Tennessee. The wells were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. Well depths ranged from 11 to 384 feet. Water-quality samples were collected from 60 wells and analyzed for common inorganic ions, trace metals, and volatile organic compounds. The median dissolved-solids concentrations were 60 milligrams per liter in the shallow aquifer, 48 million gallons per liter in the Manchester aquifer, 1,235 milligrams per liter in the Fort Payne aquifer, and 1,712 milligrams per liter in the upper Central Basin aquifer. Caliper, temperature, natural gamma, electric, neutron porosity, gamma-gamma density, and acoustic velocity borehole-geophysical logs were obtained for the six deep wells completed below the Chattanooga Shale. Petrographic and modal analysis were performed on rock samples from each deep well. These six deep wells provide the first information in the study area on hydraulic head and water quality from below the Chattanooga Shale.

  10. Mixed Waste Management Facility (MWMF) groundwater monitoring report

    International Nuclear Information System (INIS)

    1993-03-01

    During fourth quarter 1992, nine constituents exceeded final Primary Drinking Water Standards (PDWS) in one or more groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Fifty-seven (48%) of the 120 monitoring wells, contained elevated tritium activities, and 23 (19%) contained elevated trichloroethylene concentrations. Total alpha-emitting radium, tetrachloroethylene, chloroethene, cadmium, 1,1-dichloroethylene, lead, or nonvolatile beta levels exceeded standards in one or more wells. During 1992, elevated levels of 13 constituents were found in one or more of 80 of the 120 groundwater monitoring wells (67%) at the MWMF and adjacent facilities. Tritium and trichloroethylene exceeded their final PDWS more frequently and more consistently than did other constituents. Tritium activity exceeded its final PDWS m 67 wells and trichloroethylene was. elevated in 28 wells. Lead, tetrachloroethylene, total alpha-emitting radium, gross alpha, cadmium, chloroethene, 1,1-dichloroethylene 1,2-dichloroethane, mercury, or nitrate exceeded standards in one or more wells during the year. Nonvolatile beta exceeded its drinking water screening level in 3 wells during the year

  11. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    DB Barnett

    2000-01-01

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  12. The Savannah River Site's Groundwater Monitoring Program: Third quarter 1992

    International Nuclear Information System (INIS)

    Rogers, C.D.

    1993-01-01

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. Table 1 lists those well series with constituents in the groundwater above Flag 2 during third quarter 1992, organized by location. Results from all laboratory analyses are used to generate this table. Specific conductance and pH data from the field also are included in this table

  13. Risk assessment of groundwater level variability using variable Kriging methods

    Science.gov (United States)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2015-04-01

    Assessment of the water table level spatial variability in aquifers provides useful information regarding optimal groundwater management. This information becomes more important in basins where the water table level has fallen significantly. The spatial variability of the water table level in this work is estimated based on hydraulic head measured during the wet period of the hydrological year 2007-2008, in a sparsely monitored basin in Crete, Greece, which is of high socioeconomic and agricultural interest. Three Kriging-based methodologies are elaborated in Matlab environment to estimate the spatial variability of the water table level in the basin. The first methodology is based on the Ordinary Kriging approach, the second involves auxiliary information from a Digital Elevation Model in terms of Residual Kriging and the third methodology calculates the probability of the groundwater level to fall below a predefined minimum value that could cause significant problems in groundwater resources availability, by means of Indicator Kriging. The Box-Cox methodology is applied to normalize both the data and the residuals for improved prediction results. In addition, various classical variogram models are applied to determine the spatial dependence of the measurements. The Matérn model proves to be the optimal, which in combination with Kriging methodologies provides the most accurate cross validation estimations. Groundwater level and probability maps are constructed to examine the spatial variability of the groundwater level in the basin and the associated risk that certain locations exhibit regarding a predefined minimum value that has been set for the sustainability of the basin's groundwater resources. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the

  14. Groundwater monitoring at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Kehrman, R.; Broberg, K.; Tatro, G.; Richardson, R.; Dasczcyszak, W.

    1990-01-01

    This paper discusses the Groundwater Monitoring Program (GPM) being conducted at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The Regulatory and Environmental Programs (REP) section of the Environment, Safety and Health department (ES ampersand H) is responsible for conducting environmental monitoring at the WIPP. Groundwater monitoring is one of the ongoing environmental activities currently taking place. The REP section includes water quality sampling and water level monitoring. The WIPP Project is a research and develop facility designed to demonstrate the safe disposal of defense-generated waste in a geologic repository. Water quality sampling for physical, chemical, and radiological parameters has been an ongoing activity at the WIPP site for the past six years, and will continue through the life of the project. The water quality of a well is sampled while the well is continuously pumped. Serial samples of the pumped water are collected and tested for pH, Eh, temperature, specific gravity, specific conductivity, alkalinity, chlorides, divalent cations, ferrous iron, and total iron. Stabilization of serial sampling parameters determined if a representative sample is being obtained, Representative samples are sent to contract laboratories and analyzed for general chemistry, major cations and anions, and radionuclides. 13 refs., 4 figs., 1 tab

  15. Influences of groundwater extraction on flow dynamics and arsenic levels in the western Hetao Basin, Inner Mongolia, China

    Science.gov (United States)

    Zhang, Zhuo; Guo, Huaming; Zhao, Weiguang; Liu, Shuai; Cao, Yongsheng; Jia, Yongfeng

    2018-04-01

    Data on spatiotemporal variations in groundwater levels are crucial for understanding arsenic (As) behavior and dynamics in groundwater systems. Little is known about the influences of groundwater extraction on the transport and mobilization of As in the Hetao Basin, Inner Mongolia (China), so groundwater levels were recorded in five monitoring wells from 2011 to 2016 and in 57 irrigation wells and two multilevel wells in 2016. Results showed that groundwater level in the groundwater irrigation area had two troughs each year, induced by extensive groundwater extraction, while groundwater levels in the river-diverted (Yellow River) water irrigation area had two peaks each year, resulting from surface-water irrigation. From 2011 to 2016, groundwater levels in the groundwater irrigation area presented a decreasing trend due to the overextraction. Groundwater samples were taken for geochemical analysis each year in July from 2011 to 2016. Increasing trends were observed in groundwater total dissolved solids (TDS) and As. Owing to the reverse groundwater flow direction, the Shahai Lake acts as a new groundwater recharge source. Lake water had flushed the near-surface sediments, which contain abundant soluble components, and increased groundwater salinity. In addition, groundwater extraction induced strong downward hydraulic gradients, which led to leakage recharge from shallow high-TDS groundwater to the deep semiconfined aquifer. The most plausible explanation for similar variations among As, Fe(II) and total organic carbon (TOC) concentrations is the expected dissimilatory reduction of Fe(III) oxyhydroxides.

  16. Annual report of groundwater monitoring at Everest, Kansas, in 2010.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M. (Environmental Science Division)

    2011-03-21

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) began its environmental investigations at Everest, Kansas, in 2000. The work at Everest is implemented on behalf of the CCC/USDA by Argonne National Laboratory, under the oversight of the Kansas Department of Health and Environment (KDHE). The results of the environmental investigations have been reported in detail (Argonne 2001, 2003, 2006a,b). The lateral extent of the carbon tetrachloride in groundwater over the years of investigation has been interpreted as shown in Figure 1.1 (2001-2002 data), Figure 1.2 (2006 data), Figure 1.3 (2008 data), and Figure 1.4 (2009 data). The pattern of groundwater flow and inferred contaminant migration has consistently been to the north-northwest from the former CCC/USDA facility toward the Nigh property, and then west-southwest from the Nigh property (e.g., Figure 1.5 [2008 data] and Figure 1.6 [2009 data]). Both the monitoring data for carbon tetrachloride and the low groundwater flow rates estimated for the Everest aquifer unit (Argonne 2003, 2006a,b, 2008) indicate slow contaminant migration. On the basis of the accumulated findings, in March 2009 the CCC/USDA developed a plan for annual monitoring of the groundwater and surface water. This current monitoring plan (Appendix A in the report of monitoring in 2009 [Argonne 2010]) was approved by the KDHE (2009a). Under this plan, the monitoring wells are sampled by the low-flow procedure, and sample preservation, shipping, and analysis activities are consistent with previous work at Everest. The annual sampling will continue until identified conditions at the site indicate a technical justification for a change. The first annual sampling event under the new monitoring plan took place in April 2009. The results of analyses for volatile organic compounds (VOCs) and water level measurements were consistent with previous observations (Figures 1.1-1.4). No carbon tetrachloride was detected in surface

  17. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-10

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  18. 1998 Comprehensive TNX Area Annual Groundwater and Effectiveness Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-06-02

    Shallow groundwater beneath the TNX Area at the Savannah River Site has been contaminated with chlorinated volatile organic compounds such as trichloroethylene and carbon tetrachloride. The Interim Action T-1 Air Stripper System began operation on September 16, 1996. A comprehensive groundwater monitoring program was initiated to measure the effectiveness of the system. The Interim Action is meeting its objectives and is capable of continuing to do so until the final groundwater remedial action is in place.

  19. CY2003 RCRA GROUNDWATER MONITORING WELL SUMMARY REPORT

    International Nuclear Information System (INIS)

    MARTINEZ, C.R.

    2003-01-01

    This report describes the calendar year (CY) 2003 field activities associated with the installation of two new groundwater monitoring wells in the A-AX Waste Management Area (WMA) and four groundwater monitoring wells in WMA C in the 200 East Area of the Hanford Nuclear Reservation. All six wells were installed by Fluor Hanford Inc. (FH) for CH2M Hill Hanford Group, Inc. (CHG) in support of Draft Hanford Facility Agreement and Consent Order (Tri-Party Agreement) M-24-00 milestones and ''Resource Conservation and Recovery Act of 1976'' (RCRA) groundwater monitoring requirements. Drilling data for the six wells are summarized in Table 1

  20. Groundwater monitoring plan for the 300 Area process trenches

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, J.W.; Chou, C.J.; Johnson, V.G.

    1995-05-23

    This document describes the groundwater monitoring program for the Hanford Site 300 Area Process Trenches (300 APT). The 300 APT are a Resource Conservation and Recovery Act of 1976 (RCRA) regulated unit. The 300 APT are included in the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit No. WA890008967, and are subject to final-status requirements for groundwater monitoring. This document describes a compliance monitoring program for groundwater in the uppermost aquifer system at the 300 APT. This plan describes the 300 APT monitoring network, constituent list, sampling schedule, statistical methods, and sampling and analysis protocols that will be employed for the 300 APT. This plan will be used to meet groundwater monitoring requirements from the time the 300 APT becomes part of the Permit and through the postclosure care period until certification of final closure.

  1. Regional monitoring of temporal changes in groundwater quality

    NARCIS (Netherlands)

    Broers, H.P.; Grift, B. van der

    2004-01-01

    Changes in agricultural practices are expected to affect groundwater quality by changing the loads of nutrients and salts in recharging groundwater, but regional monitoring networks installed to register the changes often fail to detect them and interpretation of trend analysis results is difficult.

  2. Groundwater detection monitoring system design under conditions of uncertainty

    NARCIS (Netherlands)

    Yenigül, N.B.

    2006-01-01

    Landfills represent a wide-spread and significant threat to groundwater quality. In this thesis a methodology was developed for the design of optimal groundwater moni-toring system design at landfill sites under conditions of uncertainty. First a decision analysis approach was presented for optimal

  3. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... water that has not been affected by leakage from a unit. A determination of background quality may... that ensures detection of ground-water contamination in the uppermost aquifer. When physical obstacles... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258...

  4. Concentration of Uranium levels in groundwater

    International Nuclear Information System (INIS)

    Babu, M. N. S.; Somashekar, R. K.; Kumar, S. A.; Shivanna, K.; Krishnamurthy, V.; Eappen, K. P.

    2008-01-01

    The uranium isotopes during their course of their disintegration decay into other radioactive elements and eventually decay into stable lead isotopes. The cause of environmental concern is the emanation of beta and gamma radiation during disintegration. The present study tends to estimate uranium in groundwater trapped in granite and gneiss rocks. Besides, the study aims at estimating the radiation during natural disintegration process. The water samples were collected and analyzed following inductively coupled plasma mass spectrometric technique while water sample collection was given to the regions of Kolar District, South India, due to the representation. The significant finding was the observation of very high levels of uranium in groundwater compared to similar assays reported at other nearby districts. Also, the levels were considerable to those compared to groundwater levels of uranium reported by other scientists, On the basis of this study, it was inferred that the origin of uranium was from granite strata and there was a trend of diffusion observed in the course of flow-path of water in the region

  5. Regulatory requirements for groundwater monitoring networks at hazardous waste sites

    International Nuclear Information System (INIS)

    Keller, J.F.

    1989-10-01

    In the absence of an explicit national mandate to protect groundwater quality, operators of active and inactive hazardous waste sites must use a number of statutes and regulations as guidance for detecting, correcting, and preventing groundwater contamination. The objective of this paper is to provide a framework of the technical and regulatory considerations that are important to the development of groundwater monitoring programs at hazardous waste sites. The technical site-specific needs and regulatory considerations, including existing groundwater standards and classifications, will be presented. 14 refs., 2 tabs

  6. Incorporation of GRACE Data into a Bayesian Model for Groundwater Drought Monitoring

    Science.gov (United States)

    Slinski, K.; Hogue, T. S.; McCray, J. E.; Porter, A.

    2015-12-01

    Groundwater drought, defined as the sustained occurrence of below average availability of groundwater, is marked by below average water levels in aquifers and reduced flows to groundwater-fed rivers and wetlands. The impact of groundwater drought on ecosystems, agriculture, municipal water supply, and the energy sector is an increasingly important global issue. However, current drought monitors heavily rely on precipitation and vegetative stress indices to characterize the timing, duration, and severity of drought events. The paucity of in situ observations of aquifer levels is a substantial obstacle to the development of systems to monitor groundwater drought in drought-prone areas, particularly in developing countries. Observations from the NASA/German Space Agency's Gravity Recovery and Climate Experiment (GRACE) have been used to estimate changes in groundwater storage over areas with sparse point measurements. This study incorporates GRACE total water storage observations into a Bayesian framework to assess the performance of a probabilistic model for monitoring groundwater drought based on remote sensing data. Overall, it is hoped that these methods will improve global drought preparedness and risk reduction by providing information on groundwater drought necessary to manage its impacts on ecosystems, as well as on the agricultural, municipal, and energy sectors.

  7. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  8. Hanford Site Groundwater Monitoring for Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2005-03-01

    This document presents the results of groundwater and vadose zone monitoring for fiscal year 2004 (October 2003 through September 2004)on the U.S. Department of Energy's Hanford Site in southeast Washington State.

  9. Cost Effective Instrumentation for Developing Autonomous Groundwater Monitoring Networks

    Science.gov (United States)

    Viti, T. M.; Garmire, D. G.

    2017-12-01

    Despite a relatively poor understanding of Hawaiian groundwater systems, the State of Hawaii depends almost exclusively on groundwater for its public water supply. Ike Wai, an NSF funded project (EPSCoR Program Award OIA #1557349) at the University of Hawaii, aims to develop new groundwater models for Hawaii's aquifers, including water quality and transport processes. To better understand aquifer properties such as capacity and hydraulic conductivity, we are developing well-monitoring instruments that can autonomously record water parameters such as conductivity, temperature, and hydraulic head level, with sampling frequencies on the order of minutes. We are currently exploring novel methods and materials for solving classical design problems, such as applying dielectric spectroscopy techniques for measuring salinity, and using recycled materials for producing custom cable assemblies. System components are fabricated in house using rapid prototyping (e.g. 3D printing, circuit board milling, and laser cutting), and traditional manufacturing techniques. This approach allows us to produce custom components while minimizing development cost, and maximizing flexibility in the overall system's design.

  10. Groundwater monitoring strategies at the Weldon Spring site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    Meyer, K.A. Jr.

    1988-01-01

    This paper presents groundwater monitoring strategies at the Weldon Spring Site in east-central Missouri. The Weldon Spring Site is former ordnance works and uranium processing facility. In 1987, elevated levels of inorganic anions and nitroaromatics were detected in groundwater beneath the site. Studies are currently underway to characterize the hydrogeologic regime and to define groundwater contamination. The complex hydrogeology at the Weldon Spring Site requires innovative monitoring strategies. Combinations of fracture and conduit flow exist in the limestone bedrock. Perched zones are also present near surface impoundments. Losing streams and springs surround the site. Confronting this complex combination of hydrogeologic conditions is especially challenging

  11. Groundwater levels for selected wells in Upper Kittitas County, Washington

    Science.gov (United States)

    Fasser, E.T.; Julich, R.J.

    2011-01-01

    Groundwater levels for selected wells in Upper Kittitas County, Washington, are presented on an interactive, web-based map to document the spatial distribution of groundwater levels in the study area measured during spring 2011. Groundwater-level data and well information were collected by the U.S. Geological Survey using standard techniques and are stored in the U.S. Geological Survey National Water Information System, Groundwater Site-Inventory database.

  12. Interim Sanitary Landfill Groundwater Monitoring Report. 1997 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Interim Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled semiannually to comply with the South Carolina Department of Health and Environmental Control Modified Municipal Solid Waste Permit 025500-1120 (formerly dWP-087A) and as part of the SRS Groundwater Monitoring Program.

  13. H-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, tritium, nitrate, nonvolatile beta, total alpha-emitting radium (radium-224 and radium-226), gross alpha, antimony, mercury, lead, tetrachloroethylene, arsenic, and cadmium exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the H-Area Seepage Basins (HASB) at the Savannah River Site. This report presents and discusses the groundwater monitoring results in the H-Area for first quarter 1992

  14. Monitoring and Assessing Groundwater Impacts on Vegetation Health in Groundwater Dependent Ecosystems

    Science.gov (United States)

    Rohde, M. M.; Ulrich, C.; Howard, J.; Sweet, S.

    2017-12-01

    Sustainable groundwater management is important for preserving our economy, society, and environment. Groundwater supports important habitat throughout California, by providing a reliable source of water for these Groundwater Dependent Ecosystems (GDEs). Groundwater is particularly important in California since it supplies an additional source of water during the dry summer months and periods of drought. The drought and unsustainable pumping practices have, in some areas, lowered groundwater levels causing undesirable results to ecosystems. The Sustainable Groundwater Management Act requires local agencies to avoid undesirable results in the future, but the location and vulnerabilities of the ecosystems that depend on groundwater and interconnected surface water is often poorly understood. This presentation will feature results from a research study conducted by The Nature Conservancy and Lawrence Berkeley National Laboratory that investigated how changes in groundwater availability along an interconnected surface water body can impact the overall health of GDEs. This study was conducted in California's Central Valley along the Cosumnes River, and situated at the boundary of a high and a medium groundwater basin: South American Basin (Sacramento Hydrologic Region) and Cosumnes Basin (San Joaquin Hydrologic Region). By employing geophysical methodology (electrical resistivity tomography) in this study, spatial changes in groundwater availability were determined under groundwater-dependent vegetation. Vegetation survey data were also applied to this study to develop ecosystem health indicators for groundwater-dependent vegetation. Health indicators for groundwater-dependent vegetation were found to directly correlate with groundwater availability, such that greater availability to groundwater resulted in healthier vegetation. This study provides a case study example on how to use hydrological and biological data for setting appropriate minimum thresholds and

  15. Annual Report of Groundwater Monitoring at Everest, Kansas, in 2012

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-07-01

    In March 2009, the CCC/USDA developed a plan for annual monitoring of the groundwater and surface water (Argonne 2009). Under this plan, approved by the KDHE (2009), monitoring wells are sampled by using the low-flow procedure, and surface water samples are collected at five locations along the intermittent creek. Vegetation sampling is conducted as a secondary indicator of plume migration. Results of annual sampling in 2009-2011 for volatile organic compounds (VOCs) and water level measurements (Argonne 2010a, 2011a,b) were consistent with previous observations (Argonne 2003, 2006a,d, 2008). No carbon tetrachloride was detected in surface water of the intermittent creek or in tree branch samples collected at locations along the creek banks. This report presents the results of the fourth annual sampling event, conducted in 2012.

  16. Groundwater resources monitoring and population displacement in northern Uganda

    Science.gov (United States)

    Chalikakis, K.; Hammache, Y.; Nawa, A.; Slinski, K.; Petropoulos, G.; Muteesasira, A.

    2009-04-01

    provide a guideline for a sustainable exploration of groundwater resources within the investigated regions, relating to population movements and potential of aquifers. To achieve these objectives a) groundwater samples are collected and analyzed (microbiologically, chemically and physically) from all types of water points, boreholes and "protected" springs, during rainy, dry and intermediate seasons, b) a network of piezometers is being installed for monitoring groundwater level, and comparison with available rainfall data will define groundwater balance. During these steps results are compared with the population's displacement and density in order to quantify the consequences towards the groundwater resources. Preliminary results after microbiological analysis show the inadequacy of traditional "protected" springs in providing safe water. Feacal pollution is observed in "protected" springs even though it was not being observed before and during rehabilitation. It is mainly due to recent population concentration around the available water resources and the lack of comprehensive hydrogeological study of the functioning of the near surface aquifers. Accordingly all operations concerning spring rehabilitation are on hold. No evidence regarding microbiological contamination was found from borehole water samples. However, high concentration in ferrous iron and total iron was found in several boreholes. Concentrations in the water of weathered bedrock are expected and specific treatment is necessary.

  17. 1997 Comprehensive TNX Area Annual Groundwater and Effectiveness Monitoring Report

    International Nuclear Information System (INIS)

    Chase, J.

    1998-04-01

    Shallow groundwater beneath the TNX Area at the Savannah River Site (SRS) has been contaminated with chlorinated volatile organic compounds (CVOCs) such as trichloroethylene (TCE) and carbon tetrachloride. In November 1994, an Interim Record of Decision (IROD) was agreed to and signed by the U. S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the South Carolina Department of Health ampersand Environmental Control (SCDHEC). The Interim Record of Decision requires the installation of a hybrid groundwater corrective action (HGCA) to stabilize the plume of groundwater contamination and remove CVOCs dissolved in the groundwater. The hybrid groundwater corrective action included a recovery well network, purge water management facility, air stripper, and an airlift recirculation well. The recirculation well was dropped pursuant to a test that indicated it to be ineffective at the TNX Area. Consequently, the groundwater corrective action was changed from a hybrid to a single action, pump-and-treat approach. The Interim Action (IA) T-1 air stripper system began operation on September 16, 1996. a comprehensive groundwater monitoring program was initiated to measure the effectiveness of the system. As of December 31, 1997, the system has treated 32 million gallons of contaminated groundwater removed 32 pounds of TCE. The recovery well network created a 'capture zone' that stabilized the plume of contaminated groundwater

  18. 1997 Comprehensive TNX Area Annual Groundwater and Effectiveness Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1998-04-01

    Shallow groundwater beneath the TNX Area at the Savannah River Site (SRS) has been contaminated with chlorinated volatile organic compounds (CVOCs) such as trichloroethylene (TCE) and carbon tetrachloride. In November 1994, an Interim Record of Decision (IROD) was agreed to and signed by the U. S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the South Carolina Department of Health {ampersand} Environmental Control (SCDHEC). The Interim Record of Decision requires the installation of a hybrid groundwater corrective action (HGCA) to stabilize the plume of groundwater contamination and remove CVOCs dissolved in the groundwater. The hybrid groundwater corrective action included a recovery well network, purge water management facility, air stripper, and an airlift recirculation well. The recirculation well was dropped pursuant to a test that indicated it to be ineffective at the TNX Area. Consequently, the groundwater corrective action was changed from a hybrid to a single action, pump-and-treat approach. The Interim Action (IA) T-1 air stripper system began operation on September 16, 1996. a comprehensive groundwater monitoring program was initiated to measure the effectiveness of the system. As of December 31, 1997, the system has treated 32 million gallons of contaminated groundwater removed 32 pounds of TCE. The recovery well network created a `capture zone` that stabilized the plume of contaminated groundwater.

  19. Hanford Site Groundwater Monitoring for Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-02-28

    This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and

  20. Hanford Site ground-water monitoring for 1990

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities

  1. Optimizing Groundwater Monitoring Networks Using Integrated Statistical and Geostatistical Approaches

    Directory of Open Access Journals (Sweden)

    Jay Krishna Thakur

    2015-08-01

    Full Text Available The aim of this work is to investigate new approaches using methods based on statistics and geo-statistics for spatio-temporal optimization of groundwater monitoring networks. The formulated and integrated methods were tested with the groundwater quality data set of Bitterfeld/Wolfen, Germany. Spatially, the monitoring network was optimized using geo-statistical methods. Temporal optimization of the monitoring network was carried out using Sen’s method (1968. For geostatistical network optimization, a geostatistical spatio-temporal algorithm was used to identify redundant wells in 2- and 2.5-D Quaternary and Tertiary aquifers. Influences of interpolation block width, dimension, contaminant association, groundwater flow direction and aquifer homogeneity on statistical and geostatistical methods for monitoring network optimization were analysed. The integrated approach shows 37% and 28% redundancies in the monitoring network in Quaternary aquifer and Tertiary aquifer respectively. The geostatistical method also recommends 41 and 22 new monitoring wells in the Quaternary and Tertiary aquifers respectively. In temporal optimization, an overall optimized sampling interval was recommended in terms of lower quartile (238 days, median quartile (317 days and upper quartile (401 days in the research area of Bitterfeld/Wolfen. Demonstrated methods for improving groundwater monitoring network can be used in real monitoring network optimization with due consideration given to influencing factors.

  2. H-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    1992-09-01

    During second quarter 1992, tritium, nitrate, nonvolatile beta, total alpha-emitting radium (radium-224 and radium-226), gross alpha, mercury, lead, tetrachloroethylene, arsenic, and cadmium exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the H-Area Seepage Basins (HASB) at the Savannah River Plant. This report gives the results of the analyses of groundwater from the H-Area Seepage Basin

  3. Liquid effluent retention facility final-status groundwater monitoring plan

    International Nuclear Information System (INIS)

    Sweeney, M.D.; Chou, C.J.; Bjornstad, B.N.

    1997-09-01

    The following sections describe the groundwater-monitoring program for the Liquid Effluent Retention Facility (LERF). The LERF is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The LERF is included in the open-quotes Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit WA890008967close quotes, (referred to herein as the Permit) (Ecology 1994) and is subject to final-status requirements for groundwater monitoring (WAC 173-303-645). This document describes a RCRA/WAC groundwater detection-monitoring program for groundwater in the uppermost aquifer system at the LERF. This plan describes the LERF monitoring network, constituent list, sampling schedule, statistical methods, and sampling and analysis protocols that will be employed for the LERF. This plan will be used to meet the groundwater monitoring requirements from the time the LERF becomes part of the Permit and through the post-closure care period, until certification of final closure

  4. A combined geostatistical-optimization model for the optimal design of a groundwater quality monitoring network

    Science.gov (United States)

    Kolosionis, Konstantinos; Papadopoulou, Maria P.

    2017-04-01

    Monitoring networks provide essential information for water resources management especially in areas with significant groundwater exploitation due to extensive agricultural activities. In this work, a simulation-optimization framework is developed based on heuristic optimization methodologies and geostatistical modeling approaches to obtain an optimal design for a groundwater quality monitoring network. Groundwater quantity and quality data obtained from 43 existing observation locations at 3 different hydrological periods in Mires basin in Crete, Greece will be used in the proposed framework in terms of Regression Kriging to develop the spatial distribution of nitrates concentration in the aquifer of interest. Based on the existing groundwater quality mapping, the proposed optimization tool will determine a cost-effective observation wells network that contributes significant information to water managers and authorities. The elimination of observation wells that add little or no beneficial information to groundwater level and quality mapping of the area can be obtain using estimations uncertainty and statistical error metrics without effecting the assessment of the groundwater quality. Given the high maintenance cost of groundwater monitoring networks, the proposed tool could used by water regulators in the decision-making process to obtain a efficient network design that is essential.

  5. Groundwater-level trends and implications for sustainable water use in the Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Taher, Mohammad R.

    2013-01-01

    The Kabul Basin, which includes the city of Kabul, Afghanistan, with a population of approximately 4 million, has several Afghan, United States, and international military installations that depend on groundwater resources for a potable water supply. This study examined groundwater levels in the Kabul Basin from 2004 to 2012. Groundwater levels have increased slightly in rural areas of the Kabul Basin as a result of normal precipitation after the drought of the early 2000s. However, groundwater levels have decreased in the city of Kabul due to increasing water use in an area with limited recharge. The rate of groundwater-level decrease in the city is greater for the 2008–2012 period (1.5 meters per year (m/yr) on average) than for the 2004–2008 period (0–0.7 m/yr on average). The analysis, which is corroborated by groundwater-flow modeling and a non-governmental organization decision-support model, identified groundwater-level decreases and associated implications for groundwater sustainability in the city of Kabul. Military installations in the city of Kabul (the Central Kabul subbasin) are likely to face water management challenges resulting from long-term groundwater sustainability concerns, such as the potential drying of shallow water-supply wells. Installations in the northern part of the Kabul Basin may have fewer issues with long-term water sustainability. Groundwater-level monitoring and groundwater-flow simulation can be valuable tools for assessing groundwater management options to improve the sustainability of water resources in the Kabul Basin.

  6. Hanford Site Groundwater Monitoring for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2001-03-01

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

  7. Monitoring Your Blood Sugar Level

    Science.gov (United States)

    ... and NutritionHealth Insurance: Understanding What It CoversHigh Homocysteine Level: How It Affects Your Blood VesselsUnderstanding Your Medical ... Health Resources Healthcare Management Monitoring Your Blood Sugar Level Monitoring Your Blood Sugar Level Share Print What ...

  8. Groundwater monitoring plan for the Hanford Site 216-B-3 pond RCRA facility

    International Nuclear Information System (INIS)

    Barnett, D.B.; Chou, C.J.

    1998-06-01

    The 216-B-3 pond system was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In operation since 1945, the B Pond system has been a RCRA facility since 1986, with Resource Conservation and Recovery Act (RCRA) interim-status groundwater monitoring in place since 1988. In 1994, discharges were diverted from the main pond, where the greatest potential for contamination was thought to reside, to the 3C expansion pond. In 1997, all discharges to the pond system were discontinued. In 1990, the B Pond system was elevated from detection groundwater monitoring to an assessment-level status because total organic halogens and total organic carbon were found to exceed critical means in two wells. Subsequent groundwater quality assessment failed to find any specific hazardous waste contaminant that could have accounted for the exceedances, which were largely isolated in occurrence. Thus, it was recommended that the facility be returned to detection-level monitoring

  9. Rulison Site groundwater monitoring report. Fourth quarter, 1997

    International Nuclear Information System (INIS)

    1998-02-01

    This report summarizes the results of the fourth quarter 1997 groundwater sampling event for the Rulison Site, which is located approximately 65 kilometers (km) (40 miles [mi]) northeast of Grand Junction, Colorado. This is the eighth and final sampling event of a quarterly groundwater monitoring program implemented by the U.S. Department of Energy (DOE). This program monitored the effectiveness of remediation of a drilling effluent pond that had been used to store drilling mud during drilling of the emplacement hole for a 1969 gas stimulation test conducted by the U.S. Atomic Energy Commission (AEC) (the predecessor agency to the DOE) and Austral Oil Company (Austral)

  10. Correlation of BTEX levels and toxicity of condensate contaminated groundwater

    International Nuclear Information System (INIS)

    Headley, J.; Goudey, S.; Birkholz, D.; Hardisty, P.

    1995-01-01

    The concentration of BTEX was determined for 60 groundwater samples collected from 6 gas plants in Western Canada, using conventional purge-and-trap GC/MS procedures. The gas plants were selected to cover different types of operations with different amine process chemicals employed for the sweetening of the raw sour-gas condensates. Aliquots of the ground water samples were subjected to toxicity screening tests, specifically, (a) bacterial luminescence (microtox); (b) daphnia mortality and (c) fathead minnow mortality. For the toxicity tests, sample handling procedures were developed to minimize the loss of volatile organics during the experiments. To account for possible losses, the levels of BTEX were monitored at the start and upon completion of these tests. The results indicated that the toxicity of the groundwater was in general, well correlated to the concentration of BTEX (primarily xylene). Approximately 5% of the samples, however, were observed to be toxic although the concentration of BTEX were below the method detection limit (1 microg/1). Thiophenic volatile organics were implicated for the latter. Based on the laboratory results, the remediation of BTEX is expected to correlate with the removal of the toxicity of the groundwater. These findings are of direct relevance to present technologies employed for remediation of ground water at the Sourgas plants

  11. Hanford Site Groundwater Monitoring for Fiscal Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2004-04-12

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon

  12. Quarterly RCRA Groundwater Monitoring Data for the Period April Through June 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.

    2006-11-01

    This report provides information about RCRA groundwater monitoring for the period April through June 2006. Seventeen RCRA sites were sampled during the reporting quarter. Sampled sites include seven monitored under groundwater indicator evaluation (''detection'') programs, eight monitored under groundwater quality assessment programs, and two monitored under final-status programs.

  13. Groundwater monitoring at three Oak Ridge National Laboratory inactive waste impoundments: results after one year

    Energy Technology Data Exchange (ETDEWEB)

    Francis, C. W.; Stansfield, R. G.

    1986-10-01

    To determine if the migration of potential contaminants from three inactive waste impoundments at Oak Ridge National Laboratory poses a threat to groundwater quality, at least one upgradient groundwater monitoring well and threee downgradient monitoring wells were installed at each impoundment in early 1985. These three unlined impoundments, formerly used to collect and, in some instances, treat wastewater are: the 3513 impoundment; the Old Hydrofracture Facility (OHF) impoundment; and the Homogeneous Reactor Experimnt No. 2 impoundment. Groundwater samples were collected quarterly for one year. Analyses were conducted for the groundwater protection parameters promulgated by the Resource Conservation and Recovery Act. The groundwater samples were also analyzed for polychlorinated biphenyls, copper, nickel, zinc, /sup 90/Sr, /sup 137/Cs, and tritium. The contaminants found most often to affect groundwater quality at all three waste impoundments were radionuclides. For example, mean concentrations of gross beta and gross alpha activity exceeded drinking water limits at all three sites. The gross beta limit was exceeded at the 3513 and OHF impoundments by either /sup 90/Sr or tritium levels. At the 3513 impoundment, there was substantial evidence that the downgradient groundwater has been contaminated by chromium and lead and possibly by halogenated organic compounds. At the OHF impoundment, the mean level of tritium measured in the upgradient well (about 91,000 Bq/L as compared with 80,000 Bq/L in the downgradient wells) indicated that the groundwater quality has been affected by the radioactive wastes buried in the low-level radioactive waste burial ground solid waste storage area-5 upgradient of the impoundment. Testing for groundwater contamination, disclosed statistically significant contamination at all three sites.

  14. Groundwater monitoring at three Oak Ridge National Laboratory inactive waste impoundments: results after one year

    International Nuclear Information System (INIS)

    Francis, C.W.; Stansfield, R.G.

    1986-10-01

    To determine if the migration of potential contaminants from three inactive waste impoundments at Oak Ridge National Laboratory poses a threat to groundwater quality, at least one upgradient groundwater monitoring well and threee downgradient monitoring wells were installed at each impoundment in early 1985. These three unlined impoundments, formerly used to collect and, in some instances, treat wastewater are: the 3513 impoundment; the Old Hydrofracture Facility (OHF) impoundment; and the Homogeneous Reactor Experimnt No. 2 impoundment. Groundwater samples were collected quarterly for one year. Analyses were conducted for the groundwater protection parameters promulgated by the Resource Conservation and Recovery Act. The groundwater samples were also analyzed for polychlorinated biphenyls, copper, nickel, zinc, 90 Sr, 137 Cs, and tritium. The contaminants found most often to affect groundwater quality at all three waste impoundments were radionuclides. For example, mean concentrations of gross beta and gross alpha activity exceeded drinking water limits at all three sites. The gross beta limit was exceeded at the 3513 and OHF impoundments by either 90 Sr or tritium levels. At the 3513 impoundment, there was substantial evidence that the downgradient groundwater has been contaminated by chromium and lead and possibly by halogenated organic compounds. At the OHF impoundment, the mean level of tritium measured in the upgradient well (about 91,000 Bq/L as compared with 80,000 Bq/L in the downgradient wells) indicated that the groundwater quality has been affected by the radioactive wastes buried in the low-level radioactive waste burial ground solid waste storage area-5 upgradient of the impoundment. Testing for groundwater contamination, disclosed statistically significant contamination at all three sites

  15. Open Source Platform Application to Groundwater Characterization and Monitoring

    Science.gov (United States)

    Ntarlagiannis, D.; Day-Lewis, F. D.; Falzone, S.; Lane, J. W., Jr.; Slater, L. D.; Robinson, J.; Hammett, S.

    2017-12-01

    Groundwater characterization and monitoring commonly rely on the use of multiple point sensors and human labor. Due to the number of sensors, labor, and other resources needed, establishing and maintaining an adequate groundwater monitoring network can be both labor intensive and expensive. To improve and optimize the monitoring network design, open source software and hardware components could potentially provide the platform to control robust and efficient sensors thereby reducing costs and labor. This work presents early attempts to create a groundwater monitoring system incorporating open-source software and hardware that will control the remote operation of multiple sensors along with data management and file transfer functions. The system is built around a Raspberry PI 3, that controls multiple sensors in order to perform on-demand, continuous or `smart decision' measurements while providing flexibility to incorporate additional sensors to meet the demands of different projects. The current objective of our technology is to monitor exchange of ionic tracers between mobile and immobile porosity using a combination of fluid and bulk electrical-conductivity measurements. To meet this objective, our configuration uses four sensors (pH, specific conductance, pressure, temperature) that can monitor the fluid electrical properties of interest and guide the bulk electrical measurement. This system highlights the potential of using open source software and hardware components for earth sciences applications. The versatility of the system makes it ideal for use in a large number of applications, and the low cost allows for high resolution (spatially and temporally) monitoring.

  16. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-03

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official document of the analytical results.

  17. The Savannah River Site's groundwater monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results.

  18. Hanford Site Groundwater Monitoring for Fiscal Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2003-02-28

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2002 on the U.S. Department of Energy's Hanford Site in Washington State. This report is written to meet the requirements in CERCLA, RCRA, the Atomic Energy Act of 1954, and Washington State Administrative Code.

  19. Statistical application of groundwater monitoring data at the Hanford Site

    International Nuclear Information System (INIS)

    Chou, C.J.; Johnson, V.G.; Hodges, F.N.

    1993-09-01

    Effective use of groundwater monitoring data requires both statistical and geohydrologic interpretations. At the Hanford Site in south-central Washington state such interpretations are used for (1) detection monitoring, assessment monitoring, and/or corrective action at Resource Conservation and Recovery Act sites; (2) compliance testing for operational groundwater surveillance; (3) impact assessments at active liquid-waste disposal sites; and (4) cleanup decisions at Comprehensive Environmental Response Compensation and Liability Act sites. Statistical tests such as the Kolmogorov-Smirnov two-sample test are used to test the hypothesis that chemical concentrations from spatially distinct subsets or populations are identical within the uppermost unconfined aquifer. Experience at the Hanford Site in applying groundwater background data indicates that background must be considered as a statistical distribution of concentrations, rather than a single value or threshold. The use of a single numerical value as a background-based standard ignores important information and may result in excessive or unnecessary remediation. Appropriate statistical evaluation techniques include Wilcoxon rank sum test, Quantile test, ''hot spot'' comparisons, and Kolmogorov-Smirnov types of tests. Application of such tests is illustrated with several case studies derived from Hanford groundwater monitoring programs. To avoid possible misuse of such data, an understanding of the limitations is needed. In addition to statistical test procedures, geochemical, and hydrologic considerations are integral parts of the decision process. For this purpose a phased approach is recommended that proceeds from simple to the more complex, and from an overview to detailed analysis

  20. Measures of Groundwater Drought from the Long-term Monitoring Data in Korea

    Science.gov (United States)

    Chung, E.; Park, J.; Woo, N. C.

    2017-12-01

    Recently, drought has been increased in its severity and frequency along the climate change in Korea. There are several criteria for alarming drought, for instance, based on the no-rainfall days, the amount of stream discharge, and the water levels of reservoirs. However, farmers depending on groundwater still have been suffered in preparing drought especially in the Spring. No-rainfall days continue, groundwater exploitation increases, water table declines, stream discharge decreases, and then the effects of drought become serious. Thus, the drought index based on the groundwater level is needed for the preparedness of drought disaster. Palmer et al.(1965, USGS) has proposed a method to set the threshold for the decline of the groundwater level in 5 stages based on the daily water-level data over the last 30 years. In this study, according to Peters et al.(2003), the threshold of groundwater level was estimated using the daily water-level data at five sites with significant drought experiences in Korea. Water levels and precipitations data were obtained from the national groundwater monitoring wells and the automatic weather stations, respectively, for 10 years from 2005 to 2014. From the water-level changes, the threshold was calculated when the value of the drought criterion (c), the ratio of the deficit below the threshold to the deficit below the average, is 0.3. As a result, the monthly drought days were high in 2009 and 2011 in Uiryeong, and from 2005 to 2008 in Boeun. The validity of the approach and the threshold can be evaluated by comparing calculated monthly drought days with recorded drought in the past. Through groundwater drought research, it is expected that not only surface water also groundwater resource management should be implemented more efficiently to overcome drought disaster.

  1. Fluctuation patterns of groundwater levels in Tokyo caused by the Great East Japan Earthquake

    Science.gov (United States)

    Kawamura, Akira; Ishihara, Shigeyuki; Amaguchi, Hideo; Takasaki, Tadakatsu

    2016-04-01

    The hourly groundwater levels have been observed at 42 sites in Tokyo Metropolis since 1952. The Great East Japan Earthquake occurred at 14:46 JST on March 11, 2011. It was the strongest earthquake on record with a magnitude of 9.0 (Mw) and large fluctuations of unconfined and confined groundwater levels were observed at 102 observation wells in Tokyo, around 400 km away from the epicenter. Abrupt rises and sharp drawdowns of groundwater levels were observed right after the earthquake for most of the wells, although some did not show a change. In this study, taking full advantage of the unique rare case data from the dense groundwater monitoring network in Tokyo, we investigate the fluctuation patterns of unconfined and confined groundwater levels caused by the Great East Japan Earthquake. The groundwater level data used in this study consist of one month time series in March 2011 with one-hour interval. The fluctuation patterns of groundwater levels caused by the earthquake were identified using Self-Organizing Maps (SOM). The SOM, developed by Kohonen, can project high-dimensional, complex target data onto a two-dimensional regularly arranged map in proportion to the degree of properties. In general, the objective of the SOM application is to obtain useful and informative reference vectors. These vectors can be acquired after iterative updates through the training of the SOM. Design of the SOM structure, selection of a proper initialization method, and data transformation methods were carried out in the SOM application process. The reference vectors obtained from the SOM application were fine-tuned using cluster analysis methods. The optimal number of clusters was selected by the Davies-Bouldin index (DBI) using the k-means algorithm. Using the optimal number of cluster, a final fine-tuning cluster analysis was carried out by Ward's method. As a result, the fluctuation patterns of the confined and unconfined groundwater level were classified into eight clusters

  2. Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-12-01

    This document is a compendium of water quality and hydrologic characterization data obtained through December 2005 from the network of groundwater monitoring wells and surface water sampling stations (including springs and building sumps) at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee that have been sampled since January 2003. The primary objectives of this document, hereafter referenced as the Y-12 Groundwater Protection Program (GWPP) Compendium, are to: (1) Serve as a single-source reference for monitoring data that meet the requirements of the Y-12 GWPP, as defined in the Y-12 GWPP Management Plan (BWXT Y-12 L.L.C. [BWXT] 2004); (2) Maintain a detailed analysis and evaluation of the monitoring data for each applicable well, spring, and surface water sampling station, with a focus on results for the primary inorganic, organic, and radiological contaminants in groundwater and surface water at Y-12; and (3) Ensure retention of ''institutional knowledge'' obtained over the long-term (>20-year) history of groundwater and surface water monitoring at Y-12 and the related sources of groundwater and surface water contamination. To achieve these goals, the Y-12 GWPP Compendium brings together salient hydrologic, geologic, geochemical, water-quality, and environmental compliance information that is otherwise disseminated throughout numerous technical documents and reports prepared in support of completed and ongoing environmental contamination assessment, remediation, and monitoring activities performed at Y-12. The following subsections provide background information regarding the overall scope and format of the Y-12 GWPP Compendium and the planned approach for distribution and revision (i.e., administration) of this ''living'' document.

  3. Mixed Waste Management Facility groundwater monitoring report: Third quarter 1994

    International Nuclear Information System (INIS)

    1994-12-01

    Currently, 125 wells monitor groundwater quality in the uppermost aquifer beneath the Mixed Waste Management Facility (MWMF) at the Savannah River Site. Samples from the wells are analyzed for selected heavy metals, herbicides/pesticides, indicator parameters, radionuclides, volatile organic compounds, and other constituents. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents during third quarter 1994. Sixty-four (51%) of the 125 monitoring wells contained elevated tritium activities. Trichloroethylene concentrations exceeded the final PDWS in 22 (18%) wells. Chloroethene, 1,1-dichloroethylene, and tetrachloroethylene, elevated in one or more wells during third quarter 1994, also occurred in elevated levels during second quarter 1994. These constituents generally were elevated in the same wells during both quarters. Gross alpha, which was elevated in only one well during second quarter 1994, was elevated again during third quarter. Mercury, which was elevated during first quarter 1994, was elevated again in one well. Dichloromethane was elevated in two wells for the first time in several quarters

  4. Sensitivity of GRACE-derived estimates of groundwater-level changes in southern Ontario, Canada

    Science.gov (United States)

    Hachborn, Ellen; Berg, Aaron; Levison, Jana; Ambadan, Jaison Thomas

    2017-12-01

    Amidst changing climates, understanding the world's water resources is of increasing importance. In Ontario, Canada, low water conditions are currently assessed using only precipitation and watershed-based stream gauges by the Conservation Authorities in Ontario and the Ministry of Natural Resources and Forestry. Regional groundwater-storage changes in Ontario are not currently measured using satellite data by research institutes. In this study, contributions from the Gravity Recovery and Climate Experiment (GRACE) data are compared to a hydrogeological database covering southern Ontario from 2003 to 2013, to determine the suitability of GRACE total water storage estimates for monitoring groundwater storage in this location. Terrestrial water storage data from GRACE were used to determine monthly groundwater storage (GWS) anomaly values. GWS values were also determined by multiplying groundwater-level elevations (from the Provincial Groundwater Monitoring Network wells) by specific yield. Comparisons of GRACE-derived GWS to well-based GWS data determined that GRACE is sufficiently sensitive to obtain a meaningful signal in southern Ontario. Results show that GWS values produced by GRACE are useful for identifying regional changes in groundwater storage in areas with limited available hydrogeological characterization data. Results also indicate that GRACE may have an ability to forecast changes in groundwater storage, which will become useful when monitoring climate shifts in the near future.

  5. Plan for a groundwater monitoring network in Taiwan

    Science.gov (United States)

    Hsu, Shiang-Kueen

    In Taiwan, rapid economic growth, rising standards of living, and an altered societal structure have in recent years put severe demands on water supplies. Because of its stable quantity and quality, groundwater has long been a reliable source of water for domestic, agricultural, and industrial users, but the establishment of a management program that integrates groundwater and surface-water use has been hampered by the lack of groundwater data. In 1992, the Department of Water Resources (DWR) initiated a program entitled "Groundwater Monitoring Network Plan in Taiwan." Under this program, basic groundwater data, including water-level and water-quality data, are being collected, and a reliable database is being established for the purpose of managing total water resources. This paper introduces the goals, implementation stages, and scope of that plan. The plan calls for constructing 517 hydrogeologic survey stations and 990 groundwater monitoring wells within 17 years. Under this program, water-level fluctuations are continuously monitored, whereas water-quality samples are taken for analysis only at the initial drilling stage and, subsequently, at the time when a monitoring well is being serviced. In 1996, the DWR and the Water Resources Planning Commission were merged to form today's Water Resources Bureau. Résumé A Taïwan, l'expansion économique rapide, l'amélioration des conditions de vie et la transformation de la structure sociale ont provoqué, ces dernières années, une très forte demande en eau. Du fait de sa constance en qualité et en quantité, l'eau souterraine a longtemps été considérée comme une ressource en eau sûre pour les usages domestiques, agricoles et industriels. Mais la mise en place d'un programme de gestion intégrant les utilisations d'eaux souterraines et de surface a été gênée par l'absence de données sur les eaux souterraines. En 1992, le Département des Ressources en Eau a lancé le programme "Plan pour un réseau de

  6. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1995

    International Nuclear Information System (INIS)

    Hartman, M.J.

    1996-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the US Department of Energy's Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1994 and September 1995. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides

  7. Annual report for RCRA groundwater monitoring projects at Hanford site facilities for 1994

    International Nuclear Information System (INIS)

    1995-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the U.S. Department of Energy's Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1993 and September 1994. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides

  8. Application of artificial neural network model for groundwater level forecasting in a river island with artificial influencing factors

    Science.gov (United States)

    Lee, Sanghoon; Yoon, Heesung; Park, Byeong-Hak; Lee, Kang-Kun

    2017-04-01

    Groundwater use has been increased for various purposes like agriculture, industry or drinking water in recent years, the issue related to sustainability on the groundwater use also has been raised. Accordingly, forecasting the groundwater level is of great importance for planning sustainable use of groundwater. In a small island surrounded by the Han River, South Korea, seasonal fluctuation of the groundwater level is characterized by multiple factors such as recharge/discharge event of the Paldang dam, Water Curtain Cultivation (WCC) during the winter season, operation of Groundwater Heat Pump System (GWHP). For a period when the dam operation is only occurred in the study area, a prediction of the groundwater level can be easily achieved by a simple cross-correlation model. However, for a period when the WCC and the GWHP systems are working together, the groundwater level prediction is challenging due to its unpredictable operation of the two systems. This study performed Artificial Neural Network (ANN) model to forecast the groundwater level in the river area reflecting the various predictable/unpredictable factors. For constructing the ANN models, two monitoring wells, YSN1 and YSO8, which are located near the injection and abstraction wells for the GWHP system were selected, respectively. By training with the groundwater level data measured in January 2015 to August 2015, response of groundwater level by each of the surface water level, the WCC and the GWHP system were evaluated. Consequentially, groundwater levels in December 2015 to March 2016 were predicted by ANN models, providing optimal fits in comparison to the observed water levels. This study suggests that the ANN model is a useful tool to forecast the groundwater level in terms of the management of groundwater. Acknowledgement : Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003) This research was

  9. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded final Primary Drinking Water Standards (PDWS) and the Savannah River Site Flag 2 criteria during the quarter. The results for fourth quarter 1992 are fairly consistent with the rest of the year's data. Tetrachloroethylene exceeded the final PDWS in well AMB 4D only two of the four quarters; in the other three wells in which it was elevated, it was present at similar levels throughout the year. Trichloroethylene consistently exceeded its PDWS in wells AMB 4A, 4B, 4D, 5, and 7A during the year. Trichloroethylene was elevated in well AMB 6 only during third and fourth quarters and in well AMB 7 only during fourth quarter. Total alpha-emitting radium was above the final PDWS for total radium in well AMB 5 at similar levels throughout the year and exceeded the PDWS during one of the three quarters it was analyzed for (third quarter 1992) in well AMB 10B

  10. Nitrate variability in groundwater of North Carolina using monitoring and private well data models.

    Science.gov (United States)

    Messier, Kyle P; Kane, Evan; Bolich, Rick; Serre, Marc L

    2014-09-16

    Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. Results show significant differences in the spatial distribution of groundwater NO3- contamination in monitoring versus private wells; high NO3- concentrations in the southeastern plains of North Carolina; and wastewater treatment residuals and swine confined animal feeding operations as local sources of NO3- in monitoring wells. Results are of interest to agencies that regulate drinking water sources or monitor health outcomes from ingestion of drinking water. Lastly, LUR-BME model estimates can be integrated into surface water models for more accurate management of nonpoint sources of nitrogen.

  11. Conception to set up a new groundwater monitoring network in Serbia

    Directory of Open Access Journals (Sweden)

    Stevanović Zoran

    2015-01-01

    Full Text Available The Water Framework Directive of the European Union (WFD adopted in year 2000. outlines number of water policy and management actions, where monitoring is of primary importance. Following WFD principles Serbia adopted new legislation in water sector aiming to conserve or achieve good ecological, chemical and quantitative status of water resources. Serbia, as most of the countries of former Yugoslavia mostly uses groundwater for drinking water supply (over 75%. However, the current situation in monitoring of groundwater quality and quantity is far from satisfactory. Several hundred piezometers for observation of groundwater level under auspices of the Hydrometeorological Service of Serbia are located mostly in alluviums of major rivers, while some 70 piezometers are used by the Serbian Environmental Protection Agency for controlling groundwater quality. Currently only 20% of delineated groundwater bodies are under observation. This paper evaluates current conditions and proposes to expand national monitoring network to cover most of groundwater bodies or their groups, to raise number of observation points to a density of ca. 1 object /200 km2 and to include as much as possible actual waterworks in this network. Priority in selecting sites for new observation piezometers or springs has to be given to groundwater bodies under threats, either to their water reserves or their water chemical quality. For the former, an assessment of available renewable reserves versus exploitation capacity is needed, while to estimate pressures on water quality, the best way is to compare aquifers’ vulnerability against anthropogenic (diffuse and punctual hazards. [Projekat Ministarstva nauke Republike Srbije, br. 176022

  12. The Savannah River Site`s groundwater monitoring program. Third quarter 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  13. Hanford Site ground-water monitoring for 1991

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-10-01

    The Pacific Northwest Laboratory (PNL) monitors the distribution of radionuclides and other hazardous materials in ground water at the Hanford Site for the US Department of Energy (DOE). This work is performed through the Ground-Water Surveillance Project and is designed to meet the requirements of DOE Order 5400.1 that apply to environmental surveillance and ground-water monitoring (DOE 1988). This annual report discusses results of ground-water monitoring at the Hanford Site during 1991. In addition to the general discussion, the following topics are discussed in detail: (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and the 200-West areas; (3) hexavalent chromium contamination in the 100, 200, and 600 areas; (4) trichloroethylene in the vicinity of the Solid Waste Landfill, 100-F Area, and 300 Area; (5) nitrate across the Site; (6) tritium across the Site; and (7) other radionuclide contamination throughout the Site, including gross alpha, gross beta, cobalt-60, strontium-90, technetium-99, iodine-129, cesium-137, uranium, and plutonium

  14. Workshop on methods for siting groundwater monitoring wells: Proceedings

    International Nuclear Information System (INIS)

    Jacobson, E.

    1992-02-01

    The primary purpose of this workshop was to identify methods for the optimum siting of groundwater monitoring wells to minimize the number required that will provide statistically and physically representative samples. In addition, the workshop served to identify information and data gaps, stimulated discussion and provided an opportunity for exchange of ideas between regulators and scientists interested in siting groundwater monitoring wells. These proceedings should serve these objectives and provide a source of relevant information which may be used to evaluate the current state of development of methods for siting groundwater monitoring wells and the additional research needs. The proceedings contain the agenda and list of attendees in the first section. The abstract and viewgraphs for each presentation are given in the second section. For several presentations, abstracts and viewgraphs were not received. After the presentations, four working groups were organized and met for approximately a day. The working group leaders then gave a verbal summary of their sessions. This material was transcribed and is included in the next section of these proceedings. The appendices contain forms describing various methods discussed in the working groups

  15. The Savannah River Site's Groundwater Monitoring Program, third quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  16. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  17. Groundwater monitoring of an open-pit limestone quarry: groundwater characteristics, evolution and their connections to rock slopes.

    Science.gov (United States)

    Eang, Khy Eam; Igarashi, Toshifumi; Fujinaga, Ryota; Kondo, Megumi; Tabelin, Carlito Baltazar

    2018-03-06

    Groundwater flow and its geochemical evolution in mines are important not only in the study of contaminant migration but also in the effective planning of excavation. The effects of groundwater on the stability of rock slopes and other mine constructions especially in limestone quarries are crucial because calcite, the major mineral component of limestone, is moderately soluble in water. In this study, evolution of groundwater in a limestone quarry located in Chichibu city was monitored to understand the geochemical processes occurring within the rock strata of the quarry and changes in the chemistry of groundwater, which suggests zones of deformations that may affect the stability of rock slopes. There are three distinct geological formations in the quarry: limestone layer, interbedded layer of limestone and slaty greenstone, and slaty greenstone layer as basement rock. Although the hydrochemical facies of all groundwater samples were Ca-HCO 3 type water, changes in the geochemical properties of groundwater from the three geological formations were observed. In particular, significant changes in the chemical properties of several groundwater samples along the interbedded layer were observed, which could be attributed to the mixing of groundwater from the limestone and slaty greenstone layers. On the rainy day, the concentrations of Ca 2+ and HCO 3 - in the groundwater fluctuated notably, and the groundwater flowing along the interbedded layer was dominated by groundwater from the limestone layer. These suggest that groundwater along the interbedded layer may affect the stability of rock slopes.

  18. F-Area Hazardous Waste Management Facility groundwater monitoring report, Third and fourth quarters 1995: Volume 1

    International Nuclear Information System (INIS)

    1996-03-01

    Groundwater at the F-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental Control (SCDHEC) Groundwater Protection Standard (GWPS). Historically and currently, gross alpha, nitrates, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceed the GWPS in the groundwater during the second half of 1995, notably cadmium, lead, radium-226, radium-228, strontium-90, and total alpha-emitting radium. The elevated constituents were found primarily in the water table (aquifer zone IIB 2 ), however, several other aquifer unit monitoring wells contained elevated levels of constituents. Water-level maps indicate that the groundwater flow rates and directions at the F-Area HWMF have remained relatively constant since the basins ceased to be active in 1988

  19. Field Tests of Real-time In-situ Dissolved CO2 Monitoring for CO2 Leakage Detection in Groundwater

    Science.gov (United States)

    Yang, C.; Zou, Y.; Delgado, J.; Guzman, N.; Pinedo, J.

    2016-12-01

    Groundwater monitoring for detecting CO2 leakage relies on groundwater sampling from water wells drilled into aquifers. Usually groundwater samples are required be collected periodically in field and analyzed in the laboratory. Obviously groundwater sampling is labor and cost-intensive for long-term monitoring of large areas. Potential damage and contamination of water samples during the sampling process can degrade accuracy, and intermittent monitoring may miss changes in the geochemical parameters of groundwater, and therefore signs of CO2 leakage. Real-time in-situ monitoring of geochemical parameters with chemical sensors may play an important role for CO2 leakage detection in groundwater at a geological carbon sequestration site. This study presents field demonstration of a real-time in situ monitoring system capable of covering large areas for detection of low levels of dissolved CO2 in groundwater and reliably differentiating natural variations of dissolved CO2 concentration from small changes resulting from leakage. The sand-alone system includes fully distributed fiber optic sensors for carbon dioxide detection with a unique sensor technology developed by Intelligent Optical Systems. The systems were deployed to the two research sites: the Brackenridge Field Laboratory where the aquifer is shallow at depths of 10-20 ft below surface and the Devine site where the aquifer is much deeper at depths of 140 to 150 ft. Groundwater samples were periodically collected from the water wells which were installed with the chemical sensors and further compared to the measurements of the chemical sensors. Our study shows that geochemical monitoring of dissolved CO2 with fiber optic sensors could provide reliable CO2 leakage signal detection in groundwater as long as CO2 leakage signals are stronger than background noises at the monitoring locations.

  20. Tailoring groundwater quality monitoring to vulnerability: a GIS procedure for network design.

    Science.gov (United States)

    Preziosi, E; Petrangeli, A B; Giuliano, G

    2013-05-01

    Monitoring networks aiming to assess the state of groundwater quality and detect or predict changes could increase in efficiency when fitted to vulnerability and pollution risk assessment. The main purpose of this paper is to describe a methodology aiming at integrating aquifers vulnerability and actual levels of groundwater pollution in the monitoring network design. In this study carried out in a pilot area in central Italy, several factors such as hydrogeological setting, groundwater vulnerability, and natural and anthropogenic contamination levels were analyzed and used in designing a network tailored to the monitoring objectives, namely, surveying the evolution of groundwater quality relating to natural conditions as well as to polluting processes active in the area. Due to the absence of an aquifer vulnerability map for the whole area, a proxi evaluation of it was performed through a geographic information system (GIS) methodology, leading to the so called "susceptibility to groundwater quality degradation". The latter was used as a basis for the network density assessment, while water points were ranked by several factors including discharge, actual contamination levels, maintenance conditions, and accessibility for periodical sampling in order to select the most appropriate to the network. Two different GIS procedures were implemented which combine vulnerability conditions and water points suitability, producing two slightly different networks of 50 monitoring points selected out of the 121 candidate wells and springs. The results are compared with a "manual" selection of the points. The applied GIS procedures resulted capable to select the requested number of water points from the initial set, evaluating the most confident ones and an appropriate density. Moreover, it is worth underlining that the second procedure (point distance analysis [PDA]) is technically faster and simpler to be performed than the first one (GRID + PDA).

  1. Interim sanitary landfill groundwater monitoring report. 1996 Annual report

    International Nuclear Information System (INIS)

    Bagwell, L.A.

    1997-01-01

    Eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Interim Sanitary Landfill at the Savannah River Site. These wells are sampled semiannually to comply with the South Carolina Department of Health and Environmental Control Modified Municipal Solid Waste Permit 025500-1120 and as part of the SRS Groundwater Monitoring Program. Trichlorofluoromethane and 1,1,1-trichloroethane were elevated in one sidegradient well and one downgradient well during 1996. Zinc was elevated in three downgradient wells and also was detected in the associated laboratory blanks for two of those wells. Specific conductance was elevated in one background well and one sidegradient well. Barium and copper exceeded standards in one sidegradient well, and dichloromethane (a common laboratory contaminant) was elevated in another sidegradient well. Barium, copper, and dichloromethane were detected in the associated blanks for these wells, also. The groundwater flow direction in the Steed Pond Acquifer (Water Table) beneath the Interim Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 210 ft/year during first quarter 1996 and 180 ft/yr during third quarter 1996

  2. Data verification and evaluation techniques for groundwater monitoring programs

    International Nuclear Information System (INIS)

    Mercier, T.M.; Turner, R.R.

    1990-12-01

    To ensure that data resulting from groundwater monitoring programs are of the quality required to fulfill program objectives, it is suggested that a program of data verification and evaluation be implemented. These procedures are meant to supplement and support the existing laboratory quality control/quality assurance programs by identifying aberrant data resulting from a variety of unforeseen circumstances: sampling problems, data transformations in the lab, data input at the lab, data transfer, end-user data input. Using common-sense principles, pattern recognition techniques, and hydrogeological principles, a computer program was written which scans the data for suspected abnormalities and produces a text file stating sample identifiers, the suspect data, and a statement of how the data has departed from the expected. The techniques described in this paper have been developed to support the Y-12 Plant Groundwater Protection Program Management Plan

  3. Interim-status groundwater monitoring plan for the 216-B-63 trench. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, M.D.

    1995-06-13

    This document outlines the groundwater monitoring plan for interim-status detection-level monitoring of the 216-B-63 Trench. This is a revision of the initial groundwater monitoring plan prepared for Westinghouse Hanford Company (WHC) by Bjornstad and Dudziak (1989). The 216-B-63 Trench, located at the Hanford Site in south-central Washington State, is an open, unlined, earthern trench approximately 1.2 m (4 ft) wide at the bottom, 427 m (1400 ft) long, and 3 m (10 ft) deep that received wastewater containing hazardous waste and radioactive materials from B Plant, located in the 200 East Area. Liquid effluent discharge to the 216-B-63 Trench began in March 1970 and ceased in February 1992. The trench is now managed by Waste Tank Operations.

  4. The Savannah River Site`s Groundwater Monitoring Program, second quarter 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1990 (April through June) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1990 are listed in this report.

  5. The Savannah River Site's Groundwater Monitoring Program, second quarter 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1990 (April through June) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1990 are listed in this report.

  6. Interim-status groundwater monitoring plan for the 216-B-63 trench. Revision 1

    International Nuclear Information System (INIS)

    Sweeney, M.D.

    1995-01-01

    This document outlines the groundwater monitoring plan for interim-status detection-level monitoring of the 216-B-63 Trench. This is a revision of the initial groundwater monitoring plan prepared for Westinghouse Hanford Company (WHC) by Bjornstad and Dudziak (1989). The 216-B-63 Trench, located at the Hanford Site in south-central Washington State, is an open, unlined, earthern trench approximately 1.2 m (4 ft) wide at the bottom, 427 m (1400 ft) long, and 3 m (10 ft) deep that received wastewater containing hazardous waste and radioactive materials from B Plant, located in the 200 East Area. Liquid effluent discharge to the 216-B-63 Trench began in March 1970 and ceased in February 1992. The trench is now managed by Waste Tank Operations

  7. The Savannah River Site's Groundwater Monitoring Program, second quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  8. The Savannah River Site`s Groundwater Monitoring Program, second quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  9. Groundwater monitoring plan: 200 Areas treated effluent disposal facility (Project W-049H)

    International Nuclear Information System (INIS)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-04-01

    This groundwater monitoring plan provides information that supports the US Department of Energy's application (DOE-RL 1994) for waste water discharge permit No. WA-ST-4502 from the State of Washington, under the auspices of Washington Administrative Code 173-216. The monitoring plan has two functions: (1) to summarize the results of a 3-yr characterization of the current hydrogeology and groundwater quality of the discharge site and (2) to provide plans for evaluating the effects of the facility's operation on groundwater quality and document compliance with applicable groundwater quality standards. Three wells were drilled to define the stratigraphy, evaluate sediment characteristics, and establish a groundwater monitoring net work for the discharge facility. These wells monitor groundwater quality upgradient and downgradient in the uppermost aquifer. This report proposes plans for continuing the monitoring of groundwater quality and aquifer characteristics after waste water discharges begin

  10. Annual INTEC Groundwater Monitoring Report for Group 5 - Snake River Plain Aquifer (2001)

    International Nuclear Information System (INIS)

    Roddy, M.S.

    2002-01-01

    This report describes the monitoring activities conducted and presents the results of groundwater sampling and water-level measurements from October 2000 to September 2001. Groundwater samples were initially collected from 41 wells from the Idaho Nuclear Technology and Engineering Center and the Central Facilities Area and analyzed for iodine- 129, strontium-90, tritium, gross alpha, gross beta, technetium-99, uranium isotopes, plutonium isotopes, neptunium-237, gamma spectrometry, and mercury. Samples from 41 wells were collected in April and May 2001. Additional sampling was conducted in August 2001 and included in two CFA production wells, the CFA point of compliance for the production wells, one well was previously sampled and five additional monitoring wells. Water-level measurements were taken from in the Idaho Nuclear Technology and Engineering Center, Central Facilities Area, and the area south of Central Facilities Area to evaluate groundwater flow directions. Water-level measurements indicated groundwater flow to the south-southwest from the Idaho Nuclear Technology and Engineering Center

  11. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    International Nuclear Information System (INIS)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs

  12. Monitoring and modelling terbuthylazine and desethyl-terbuthylazine in groundwater.

    Science.gov (United States)

    Fait, G.; Balderacchi, M.; Ferrari, F.; Capri, E.; Trevisan, M.

    2009-04-01

    Protection of ground and surface water quality is critical to human health and environmental quality, as well as economic viability. The presence of contaminants in groundwater is a common phenomenon and derives from many anthropogenic activities. Among these activities most likely to pollute water resources are the use of fertilizers, pesticides, application of livestock, poultry manure, and urban sludge. Therefore, agriculture results to be a significant contributor to diffuse and point sources of groundwater contamination. A study was carried out from April 2005 until December 2007 in order to monitor the concentrations of the herbicide terbuthylazine and one of its metabolite, desethyl-terbuthylazine in shallow groundwater. Terbuthylazine is a widely used herbicide for pre-emergence and post-emergence weed control in several crops. The monitoring study was performed in different Italian areas representative of maize crop. These areas resulted to be in the north of Italy, in the Po Valley area. Inside these representative areas a total of eleven farms were identified; each farm had a plot extended for about 10 hectares, cultivated with maize according to normal agricultural practices, with slope not exceeding 5%, uniform direction of groundwater flow, absence of superficial water bodies. In order to sample groundwater, each plot was equipped with four couples of piezometers. Groundwater samplings were carried out every two months. The results showed that the concentrations of both compounds were in general low, except in a couple of sites, and especially in June and August, the months which follow the treatment, and in October and December, usually rainy months. In general metabolite concentrations were higher than the parent compound. On one hand a monitoring approach is helpful in order to understand the behaviour of a compound in real conditions; however, on the other hand it gives only an instant picture of the present situation without any prevision about

  13. Groundwater Monitoring Plan for the Nonradioactive Dangerous Waste Landfill

    International Nuclear Information System (INIS)

    Lindberg, J.S.; Hartman, M.J.

    1999-01-01

    The Nonradioactive Dangerous Waste Landfill (NRDWL), which received nonradioactive hazardous waste between 1975 and 1985, is located in the central Hanford Site (Figure 1.1) in southeastern Washington State. The Solid Waste Landfill, which is regulated and monitored separately, is adjacent to the NRDWL. The NRDWL is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) and monitored by Pacific Northwest National Laboratory. Monitoring is done under interim-status, indicator-evaluation requirements (WAC 173-303 and by reference, 40 CFR 265.92). The well network includes three upgradient wells (one shared with the Solid Waste Landfill) and six downgradient wells. The wells are sampled semiannually for contaminant indicator parameters and site-specific parameters and annually for groundwater quality parameters

  14. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  15. Groundwater-quality characteristics for the Wyoming Groundwater-Quality Monitoring Network, November 2009 through September 2012

    Science.gov (United States)

    Boughton, Gregory K.

    2014-01-01

    Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron

  16. 2015 Groundwater Monitoring Report Project Shoal Area: Subsurface Correction Unit 447

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, Rick [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-04-01

    The Project Shoal Area in Nevada was the site of a 12-kiloton-yield underground nuclear test in 1963. Although the surface of the site has been remediated, investigation of groundwater contamination resulting from the test is still in the corrective action process. Annual sampling and hydraulic head monitoring are conducted at the site as part of the subsurface corrective action strategy. The corrective action strategy is currently focused on revising the site conceptual model (SCM) and evaluating the adequacy of the monitoring well network. Some aspects of the SCM are known; however, two major concerns are the uncertainty in the groundwater flow direction and the cause of rising water levels in site wells west of the shear zone. Water levels have been rising in the site wells west of the shear zone since the first hydrologic characterization wells were installed in 1996. Although water levels in wells west of the shear zone continue to rise, the rate of increase is less than in previous years. The SCM will be revised, and an evaluation of the groundwater monitoring network will be conducted when water levels at the site have stabilized to the agreement of both the U.S. Department of Energy Office of Legacy Management and the Nevada Division of Environmental Protection.

  17. Devising a groundwater monitoring strategy for a geologic repository for radioactive waste

    International Nuclear Information System (INIS)

    Leonhart, L.S.; DeLuca, F.A.; Sheahan, N.T.; West, L.M.

    1981-01-01

    This paper represents a topical treatment of the subject of groundwater monitoring as it relates to the particular needs of high-level nuclear waste disposal facilities using the Basalt Waste Isolation Project (BWIP) as a specific reference. While the involvement with management of high-level radioactive wastes and the design and operation of repository facilities is presently parochial to the federal government and certain prime contractors, it is believed that the technical aspects involved with this groundwater monitoring example provide an interesting comparison with those encountered at near-surface and underground-injection, hazardous waste disposal operations. In particular, the integration of several program facets ranging from baselining parameters to validation of predictive models into a comprehensive strategy may be of interest. It is hoped that this type of conceptual exchange will be beneficial to all concerned

  18. Low-cost sensors to monitor groundwater drought in Somalia

    Science.gov (United States)

    Buytaert, W.; Ochoa-Tocachi, B. F.; Caniglia, D.; Haibe, K.; Butler, A. P.

    2017-12-01

    Somalia is one of the poorest countries in the world, devastated by conflict and suffering from the most severe droughts in living memory. Over 6 million people are in need of assistance, and about 3 million are threatened with famine. In April 2017, the WHO estimated that more than 25,000 people have been struck by cholera or acute watery diarrhoea and this number is rising quickly. About half a million Somalis have been displaced internally, many of which in search of water. Some 3 million pastoralists have lost 70% of livestock as a result of the drought. Humanitarian organisations and government agencies invest large amounts of resources to alleviate these conditions. It is paramount to inform the design, focus, and optimisation of these interventions by monitoring and quantifying water resources. Yet, regions such as Somalia are extremely sparsely gauged as a result of a combination of lack of resources and technical expertise, as well as the harsh geographical and geopolitical conditions. Low-cost, robust, and reliable sensors may provide a potential solution to this problem. We present the results of a research project that aimed to leverage new developments in sensor, logger, and data transmission technologies to develop low-cost water level sensors to monitor hand-dug groundwater wells in real time. We tested 3 types of sensor types, i.e. pressure transducers, ultrasound-based distance sensors, and lidar, which were coupled to low-cost logging systems. The different designs were tested both in laboratory conditions, and in-situ in hand-dug wells in Somaliland. Our results show that it is technically possible to build sensors with a total cost of around US$250 each, which are fit-for-purpose for the required application. In-situ deployment over a period of 2 months highlights their robustness despite severe logistical and practical challenges, though further tests are required to understand their long-term reliability. Operating the sensors at one

  19. Results of groundwater monitoring and vegetation sampling at Everest, Kansas, in 2009 .

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2010-05-13

    In April 2008, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) conducted groundwater sampling for the analysis of volatile organic compounds (VOCs) in the existing network of monitoring points at Everest, Kansas (Argonne 2008). The objective of the 2008 investigation was to monitor the distribution of carbon tetrachloride contamination in groundwater previously identified in CCC/USDA site characterization and groundwater sampling studies at Everest in 2000-2006 (Argonne 2001, 2003, 2006a,b). The work at Everest is being undertaken on behalf of the CCC/USDA by Argonne National Laboratory, under the oversight of the Kansas Department of Health and Environment (KDHE). The findings of the 2008 investigation were as follows: (1) Measurements of groundwater levels obtained manually and through the use of automatic recorders demonstrated a consistent pattern of groundwater flow - and inferred contaminant migration - to the north-northwest from the former CCC/USDA facility toward the Nigh property, and then west-southwest from the Nigh property toward the intermittent creek that lies west of the former CCC/USDA facility and the Nigh property. (2) The range of concentrations and the areal distribution of carbon tetrachloride identified in the groundwater at Everest in April 2008 were generally consistent with previous results. The results of the 2008 sampling (reflecting the period from 2006 to 2008) and the earlier investigations at Everest (representing the period from 2000 to 2006) show that no significant downgradient extension of the carbon tetrachloride plume occurred from 2000 to 2008. (3) The slow contaminant migration indicated by the monitoring data is qualitatively consistent with the low groundwater flow rates in the Everest aquifer unit estimated previously on the basis of site-specific hydraulic testing (Argonne 2006a,b). (4) The April 2008 and earlier sampling results demonstrate that the limits of the plume have been

  20. R-Area Reactor 1993 annual groundwater monitoring report

    International Nuclear Information System (INIS)

    1994-09-01

    Groundwater was sampled and analyzed during 1993 from wells monitoring the following locations in R Area: Well cluster P20 east of R Area (one well each in the water table and the McBean formation), the R-Area Acid/Caustic Basin (the four water-table wells of the RAC series), the R-Area Ash Basin/Coal Pile (one well of the RCP series in the Congaree formation and one in the water table), the R-Area Disassembly Basin (the three water-table wells of the RDB series), the R-Area Burning/Rubble Pits (the four water-table wells of the RRP series), and the R-Area Seepage Basins (numerous water-table wells in the RSA, RSB, RSC, RSD, RSE, and RSF series). Lead was the only constituent detected above its 50μg/L standard in any but the seepage basin wells; it exceeded that level in one B well and in 23 of the seepage basin wells. Cadmium exceeded its drinking water standard (DWS) in 30 of the seepage basin wells, as did mercury in 10. Nitrate-nitrite was above DWS once each in two seepage basin wells. Tritium was above DWS in six seepage basin wells, as was gross alpha activity in 22. Nonvolatile beta exceeded its screening standard in 29 wells. Extensive radionuclide analyses were requested during 1993 for the RCP series and most of the seepage basin wells. Strontium-90 in eight wells was the only specific radionuclide other than tritium detected above DWS; it appeared about one-half of the nonvolatile beta activity in those wells

  1. Groundwater dating down to the milliliter level

    International Nuclear Information System (INIS)

    Molnar, M.; Janovics, R.; Rinyu, L.

    2010-01-01

    Complete text of publication follows. A novel method was developed for AMS C-14 measurement of carbonate samples using He carrier gas flushing in septum sealed test tubes. The new and powerful pretreatment method can be applied for normal size (0.1-1.0 mg C) and ultra small size (10-100 μg C) carbonate samples. In this study we investigated the applicability of the new method for dissolved inorganic carbonate (DIC) samples for groundwater radiocarbon analysis. The developed pretreatment method does not require vacuum during sample preparation, which significantly reduces the complexity. Reaction time and conditions can be easily controlled as carbon-dioxide content of water samples is extracted by acid addition in He atmosphere using a simple septum sealed test tube. A double needle with flow controlled He carrier gas is used for CO 2 transfer out from the test tube (Fig. 1). Carbon-dioxide is trapped on a zeolite without using liquid N 2 freezing. The new method can be combined with an automatized graphitization system like AGE from ETHZ giving a full automatizable water preparation line for AMS graphite targets. This case the needed typical sample size is between 5-12 ml of water sample. The most powerful application of the new groundwater pretreatment method is to connect it directly to an AMS using gas ion source interface (Fig.2). With a MICADAS type AMS system we demonstrated that you can routinely measure the C-14 content of 1 ml of water sample with better than 1% precision (for a modern sample). This direct C-14 AMS measurement including sample preparation of one water sample takes about 20 minutes.

  2. Effect of Pumping on Groundwater Levels: A Case Study

    Science.gov (United States)

    Sindhu, G.; Vijayachandran, Lekshmi

    2018-03-01

    Groundwater is a major source for drinking and domestic purposes. Nowadays, extensive pumping has become a major issue of concern since pumping has led to rapid decline in the groundwater table, thus imposing landward gradient, leading to saline water intrusion especially in coastal areas. Groundwater pumping has seen its utmost effect on coastal aquifer systems, where the sea-ward gradient gets disturbed due to anthropogenic influences. Hence, a groundwater flow modelling of an aquifer system is essential for understanding the various hydro-geologic conditions, which can be used to study the responses of the aquifer system with regard to various pumping scenarios. Besides, a model helps to predict the water levels for the future period with respect to changing environment. In this study, a finite element groundwater flow model of a coastal aquifer system at Aakulam, Trivandrum district is developed, calibrated and simulated using the software Finite Element subsurface Flow system (FEFLOW 6.2).This simulated model is then used to predict the groundwater levels for a future 5 year period during pre monsoon and post monsoon season.

  3. Effect of Pumping on Groundwater Levels: A Case Study

    Science.gov (United States)

    Sindhu, G.; Vijayachandran, Lekshmi

    2018-06-01

    Groundwater is a major source for drinking and domestic purposes. Nowadays, extensive pumping has become a major issue of concern since pumping has led to rapid decline in the groundwater table, thus imposing landward gradient, leading to saline water intrusion especially in coastal areas. Groundwater pumping has seen its utmost effect on coastal aquifer systems, where the sea-ward gradient gets disturbed due to anthropogenic influences. Hence, a groundwater flow modelling of an aquifer system is essential for understanding the various hydro-geologic conditions, which can be used to study the responses of the aquifer system with regard to various pumping scenarios. Besides, a model helps to predict the water levels for the future period with respect to changing environment. In this study, a finite element groundwater flow model of a coastal aquifer system at Aakulam, Trivandrum district is developed, calibrated and simulated using the software Finite Element subsurface Flow system (FEFLOW 6.2).This simulated model is then used to predict the groundwater levels for a future 5 year period during pre monsoon and post monsoon season.

  4. Groundwater monitoring procedures and evaluation at Nabarlek, N.T

    International Nuclear Information System (INIS)

    Grounds, J.A.

    1983-01-01

    Queensland Mines Limited operates a uranium extraction plant at Nabarlek in the Northern Territory. All water used for the ore processing, sewage waters, or waters generated from runoff in the restricted release zone are contained within water storage structures. Water can only be removed from these structures by evaporation and seepage. The monitoring of the groundwater flow systems adjacent to the plant water management structures is carried out on a regular basis to determine what effects seepage will have both within the operational life of the mine and after mining and rehabilitation have ceased

  5. Groundwater level prediction of landslide based on classification and regression tree

    Directory of Open Access Journals (Sweden)

    Yannan Zhao

    2016-09-01

    Full Text Available According to groundwater level monitoring data of Shuping landslide in the Three Gorges Reservoir area, based on the response relationship between influential factors such as rainfall and reservoir level and the change of groundwater level, the influential factors of groundwater level were selected. Then the classification and regression tree (CART model was constructed by the subset and used to predict the groundwater level. Through the verification, the predictive results of the test sample were consistent with the actually measured values, and the mean absolute error and relative error is 0.28 m and 1.15% respectively. To compare the support vector machine (SVM model constructed using the same set of factors, the mean absolute error and relative error of predicted results is 1.53 m and 6.11% respectively. It is indicated that CART model has not only better fitting and generalization ability, but also strong advantages in the analysis of landslide groundwater dynamic characteristics and the screening of important variables. It is an effective method for prediction of ground water level in landslides.

  6. Monitoring groundwater: optimising networks to take account of cost effectiveness, legal requirements and enforcement realities

    Science.gov (United States)

    Allan, A.; Spray, C.

    2013-12-01

    The quality of monitoring networks and modeling in environmental regulation is increasingly important. This is particularly true with respect to groundwater management, where data may be limited, physical processes poorly understood and timescales very long. The powers of regulators may be fatally undermined by poor or non-existent networks, primarily through mismatches between the legal standards that networks must meet, actual capacity and the evidentiary standards of courts. For example, in the second and third implementation reports on the Water Framework Directive, the European Commission drew attention to gaps in the standards of mandatory monitoring networks, where the standard did not meet the reality. In that context, groundwater monitoring networks should provide a reliable picture of groundwater levels and a ';coherent and comprehensive' overview of chemical status so that anthropogenically influenced long-term upward trends in pollutant levels can be tracked. Confidence in this overview should be such that 'the uncertainty from the monitoring process should not add significantly to the uncertainty of controlling the risk', with densities being sufficient to allow assessment of the impact of abstractions and discharges on levels in groundwater bodies at risk. The fact that the legal requirements for the quality of monitoring networks are set out in very vague terms highlights the many variables that can influence the design of monitoring networks. However, the quality of a monitoring network as part of the armory of environmental regulators is potentially of crucial importance. If, as part of enforcement proceedings, a regulator takes an offender to court and relies on conclusions derived from monitoring networks, a defendant may be entitled to question those conclusions. If the credibility, reliability or relevance of a monitoring network can be undermined, because it is too sparse, for example, this could have dramatic consequences on the ability of a

  7. Temporal scaling and spatial statistical analyses of groundwater level fluctuations

    Science.gov (United States)

    Sun, H.; Yuan, L., Sr.; Zhang, Y.

    2017-12-01

    Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.

  8. Design, placement, and sampling of groundwater monitoring wells for the management of hazardous waste disposal facilities

    International Nuclear Information System (INIS)

    Tsai, S.Y.

    1988-01-01

    Groundwater monitoring is an important technical requirement in managing hazardous waste disposal facilities. The purpose of monitoring is to assess whether and how a disposal facility is affecting the underlying groundwater system. This paper focuses on the regulatory and technical aspects of the design, placement, and sampling of groundwater monitoring wells for hazardous waste disposal facilities. Such facilities include surface impoundments, landfills, waste piles, and land treatment facilities. 8 refs., 4 figs

  9. Comparison of selection methods to deduce natural background levels for groundwater units

    NARCIS (Netherlands)

    Griffioen, J.; Passier, H.F.; Klein, J.

    2008-01-01

    Establishment of natural background levels (NBL) for groundwater is commonly performed to serve as reference when assessing the contamination status of groundwater units. We compare various selection methods to establish NBLs using groundwater quality data forfour hydrogeologically different areas

  10. Shale gas impacts on groundwater resources: insights from monitoring a fracking site in Poland

    Science.gov (United States)

    Montcoudiol, Nelly; Isherwood, Catherine; Gunning, Andrew; Kelly, Thomas; Younger, Paul

    2017-04-01

    Exploitation of shale gas by hydraulic fracturing (fracking) is highly controversial and concerns have been raised regarding induced risks from this technique. The SHEER project, an EU Horizon 2020-funded project, is looking into developing best practice to understand, prevent and mitigate the potential short- and long-term environmental impacts and risks from shale gas exploration and exploitation. Three major potential impacts were identified: groundwater contamination, air pollution and induced seismicity. This presentation will deal with the hydrogeological aspect. As part of the SHEER project, four monitoring wells were installed at a shale gas exploration site in Northern Poland. They intercept the main drinking water aquifer located in Quaternary sediments. Baseline monitoring was carried out from mid-December 2015 to beginning of June 2016. Fracking operations occurred in two horizontal wells, in two stages, in June and July 2016. The monitoring has continued after fracking was completed, with site visits every 4-6 weeks. Collected data include measurements of groundwater level, conductivity and temperature at 15-minute intervals, frequent sampling for laboratory analyses and field measurements of groundwater physico-chemical parameters. Groundwater samples are analysed for a range of constituents including dissolved gases and isotopes. The presentation will focus on the interpretation of baseline monitoring data. The insights gained into the behaviour of the Quaternary aquifer will allow a greater perspective to be place on the initial project understanding draw from previous studies. Short-term impacts will also be discussed in comparison with the baseline monitoring results. The presentation will conclude with discussion of challenges regarding monitoring of shale gas fracking sites.

  11. Fiscal Year 2005 Integrated Monitoring Plan for the Hanford Groundwater Performance Assessment Project

    International Nuclear Information System (INIS)

    Rieger, JoAnne T.; Hartman, Mary J.

    2005-01-01

    Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various purposes, but sampling is coordinated and data are shared among users. DOE manages these activities through the Hanford Groundwater Performance Assessment Project, which is the responsibility of Pacific Northwest National Laboratory. The groundwater project integrates monitoring for various objectives into a single sampling schedule to avoid redundancy of effort and to improve efficiency of sample collection.This report documents the purposes and objectives of groundwater monitoring at the DOE Hanford Site in southeastern Washington State

  12. Groundwater monitoring in the archaeological site of Ostia Antica (Rome, Italy: first results

    Directory of Open Access Journals (Sweden)

    Lucia Mastrorillo

    2016-06-01

    Full Text Available The archaeological site of Ostia Antica hosts the ruins of the ancient roman city called Ostia founded in the VII century B.C. near the mouth of Tiber River. The area was strategically important for Rome, not only for the control of the river, but also for some salt marshes (Ostia Pound. During the XIX century, the whole area was reclaimed and the salt production stopped. Nowadays drainage canals and pumps avoid the flood of zones placed below sea level, keeping dewatering below the ground surface. In February 2014, the site was largely flooded after an exceptional rainfall event and the Superintendence for Archaeological Heritage of Rome ordered the closure for 15 days. Few months later (July 2014 a groundwater monitoring project started with the aim of studying the aquifer response to local rainfall and prevent future damage and groundwater flooding. The activity consisted in water-table monitoring, groundwater electrical conductivity (EC and temperature continuous measurements, coupled with chemical analysis of major ions. Preliminary results shows the link between water table fluctuations and rainfall distributions. The average elevation of the archaeological area is about 2,5 m a.s.l. and the local water-table depth is of about 0,5 m a.s.l.; groundwater flows from the Tiber River to the reclaimed area according to regional flowpath. Groundwater sampled from three wells is Ca-HCO3 freshwater (600 - 1000 μS/cm, while the sample collected from a well located close to ancient salt storage warehouse (now Ostia Antica museum, is Na-Cl brackish water (about 4000 μS/cm. The chemical evolution of groundwater from summer to winter suggested a possible lateral inflow from the Tiber River, affected by salt-wedge intrusion. The inflow of Ca-Cl, SO4 Tiber’s water with an intermediate salinity could determine salinization of Ca-HCO3 freshwaters and refreshing of Na-Cl brackish water.

  13. Quarterly report of RCRA groundwater monitoring data for period April 1, 1993 through June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jungers, D.K.

    1993-10-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control (QC) oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between May 24 and August 20, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from samples collected during the April through June quarter but also data from earlier sampling events that were not previously reported.

  14. Modeling the Effects of Sea-Level Rise on Groundwater Levels in Coastal New Hampshire

    Science.gov (United States)

    Jacobs, J. M.; Knott, J. F.; Daniel, J.; Kirshen, P. H.

    2017-12-01

    Coastal communities with high population density and low topography are vulnerable from sea-level rise (SLR) caused by climate change. Groundwater in coastal communities will rise with sea level impacting water quality, the structural integrity of infrastructure, and natural ecosystem health. SLR-induced groundwater rise has been studied in areas of high aquifer transmissivity and in low-lying areas immediately along the coast. In this regional study, we investigate SLR-induced groundwater rise in a coastal area characterized by shallow unconsolidated deposits overlying fractured bedrock, typical of the glaciated northeast United States. MODFLOW, a numerical groundwater-flow model, is used with groundwater observations, lidar topography, surface-water hydrology, and groundwater withdrawals to investigate SLR-induced changes in groundwater levels and vadose-zone thickness in New Hampshire's Seacoast. The SLR groundwater signal is detected up to 5 km from the coast, more than 3 times farther inland than projected surface-water flooding associated with SLR. Relative groundwater rise ranges from 38 to 98% of SLR within 1 km of the shoreline and drops below 4% between 4 and 5 km from the coast. The largest magnitude of SLR-induced groundwater rise occurs in the marine and estuarine deposits and land areas with tidal water bodies on three sides. In contrast, groundwater rise is dampened near streams. Groundwater inundation caused by 2 m of SLR is projected to contribute 48% of the total land inundation area in the City of Portsmouth with consequences for built and natural resources. Freshwater wetlands are projected to expand 3% by year 2030 increasing to 25% by year 2100 coupled with water-depth increases. These results imply that underground infrastructure and natural resources in coastal communities will be impacted by rising groundwater much farther inland than previously thought when considering only surface-water flooding from SLR.

  15. Rulison Site groundwater monitoring report fourth quarter, 1996. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Project Rulison, a joint US Atomic Energy Commission (AEC) and Austral Oil Company (Austral) experiment, was conducted under the AEC`s Plowshare Program to evaluate the feasibility of using a nuclear device to stimulate natural gas production in low-permeability, gas-producing geologic formations. The experiment was conducted on September 10, 1969, and consisted of detonating a 40-kiloton nuclear device at a depth of 2,568 m below ground surface. This report summarizes the results of the fourth quarter 1996 groundwater sampling event for the Rulison Site, which is located approximately 65 kilometers (km) (40 miles [mi]) northeast of Grand Junction, Colorado. The sampling was performed as part of a quarterly groundwater monitoring program implemented by the US Department of Energy (DOE) to monitor the effectiveness of remediation of a drilling effluent pond located at the site. The effluent pond was used for the storage of drilling mud during drilling of the emplacement hole for a 1969 gas stimulation test.

  16. Pesticide monitoring in surface water and groundwater using passive samplers

    Science.gov (United States)

    Kodes, V.; Grabic, R.

    2009-04-01

    Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.

  17. Remote Monitoring of Groundwater Overdraft Using GRACE and InSAR

    Science.gov (United States)

    Scher, C.; Saah, D.

    2017-12-01

    Gravity Recovery and Climate Experiment (GRACE) data paired with radar-derived analyses of volumetric changes in aquifer storage capacity present a viable technique for remote monitoring of aquifer depletion. Interferometric Synthetic Aperture Radar (InSAR) analyses of ground level subsidence can account for a significant portion of mass loss observed in GRACE data and provide information on point-sources of overdraft. This study summed one water-year of GRACE monthly mass change grids and delineated regions with negative water storage anomalies for further InSAR analyses. Magnitude of water-storage anomalies observed by GRACE were compared to InSAR-derived minimum volumetric changes in aquifer storage capacity as a result of measurable compaction at the surface. Four major aquifers were selected within regions where GRACE observed a net decrease in water storage (Central Valley, California; Mekong Delta, Vietnam; West Bank, occupied Palestinian Territory; and the Indus Basin, South Asia). Interferogram imagery of the extent and magnitude of subsidence within study regions provided estimates for net minimum volume of groundwater extracted between image acquisitions. These volumetric estimates were compared to GRACE mass change grids to resolve a percent contribution of mass change observed by GRACE likely due to groundwater overdraft. Interferograms revealed characteristic cones of depression within regions of net mass loss observed by GRACE, suggesting point-source locations of groundwater overdraft and demonstrating forensic potential for the use of InSAR and GRACE data in remote monitoring of aquifer depletion. Paired GRACE and InSAR analyses offer a technique to increase the spatial and temporal resolution of remote applications for monitoring groundwater overdraft in addition to providing a novel parameter - measurable vertical deformation at the surface - to global groundwater models.

  18. Temporal scaling of groundwater level fluctuations near a stream

    Science.gov (United States)

    Schilling, K.E.; Zhang, Y.-K.

    2012-01-01

    Temporal scaling in stream discharge and hydraulic heads in riparian wells was evaluated to determine the feasibility of using spectral analysis to identify potential surface and groundwater interaction. In floodplains where groundwater levels respond rapidly to precipitation recharge, potential interaction is established if the hydraulic head (h) spectrum of riparian groundwater has a power spectral density similar to stream discharge (Q), exhibiting a characteristic breakpoint between high and low frequencies. At a field site in Walnut Creek watershed in central Iowa, spectral analysis of h in wells located 1 m from the channel edge showed a breakpoint in scaling very similar to the spectrum of Q (~20 h), whereas h in wells located 20 and 40 m from the channel showed temporal scaling from 1 to 10,000 h without a well-defined breakpoint. The spectral exponent (??) in the riparian zone decreased systematically from the channel into the floodplain as groundwater levels were increasingly dominated by white noise groundwater recharge. The scaling pattern of hydraulic head was not affected by land cover type, although the number of analyses was limited and site conditions were variable among sites. Spectral analysis would not replace quantitative tracer or modeling studies, but the method may provide a simple means of confirming potential interaction at some sites. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.

  19. Spatial modeling for groundwater arsenic levels in North Carolina.

    Science.gov (United States)

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E

    2011-06-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area.

  20. Spatial Modeling for Groundwater Arsenic Levels in North Carolina

    Science.gov (United States)

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E.

    2013-01-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area. PMID:21528844

  1. Spatial modeling for groundwater arsenic levels in North Carolina

    Science.gov (United States)

    Kim, D.; Miranda, M.L.; Tootoo, J.; Bradley, P.; Gelfand, A.E.

    2011-01-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area. ?? 2011 American Chemical Society.

  2. Groundwater Monitoring Plan for the Reactor Technology Complex Operable Unit 2-13

    International Nuclear Information System (INIS)

    Richard P. Wells

    2007-01-01

    This Groundwater Monitoring Plan describes the objectives, activities, and assessments that will be performed to support the on-going groundwater monitoring requirements at the Reactor Technology Complex, formerly the Test Reactor Area (TRA). The requirements for groundwater monitoring were stipulated in the Final Record of Decision for Test Reactor Area, Operable Unit 2-13, signed in December 1997. The monitoring requirements were modified by the First Five-Year Review Report for the Test Reactor Area, Operable Unit 2-13, at the Idaho National Engineering and Environmental Laboratory to focus on those contaminants of concern that warrant continued surveillance, including chromium, tritium, strontium-90, and cobalt-60. Based upon recommendations provided in the Annual Groundwater Monitoring Status Report for 2006, the groundwater monitoring frequency was reduced to annually from twice a year

  3. A Bayesian maximum entropy-based methodology for optimal spatiotemporal design of groundwater monitoring networks.

    Science.gov (United States)

    Hosseini, Marjan; Kerachian, Reza

    2017-09-01

    This paper presents a new methodology for analyzing the spatiotemporal variability of water table levels and redesigning a groundwater level monitoring network (GLMN) using the Bayesian Maximum Entropy (BME) technique and a multi-criteria decision-making approach based on ordered weighted averaging (OWA). The spatial sampling is determined using a hexagonal gridding pattern and a new method, which is proposed to assign a removal priority number to each pre-existing station. To design temporal sampling, a new approach is also applied to consider uncertainty caused by lack of information. In this approach, different time lag values are tested by regarding another source of information, which is simulation result of a numerical groundwater flow model. Furthermore, to incorporate the existing uncertainties in available monitoring data, the flexibility of the BME interpolation technique is taken into account in applying soft data and improving the accuracy of the calculations. To examine the methodology, it is applied to the Dehgolan plain in northwestern Iran. Based on the results, a configuration of 33 monitoring stations for a regular hexagonal grid of side length 3600 m is proposed, in which the time lag between samples is equal to 5 weeks. Since the variance estimation errors of the BME method are almost identical for redesigned and existing networks, the redesigned monitoring network is more cost-effective and efficient than the existing monitoring network with 52 stations and monthly sampling frequency.

  4. The impact of groundwater level on soil seed bank survival

    NARCIS (Netherlands)

    Bekker, RM; Oomes, MJM; Bakker, JP

    Seed longevity of plant species is an important topic in restoration management, and little is known about the effects of environmental conditions on seed survival and longevity under natural conditions. Therefore, the effect of groundwater level on the survival of seeds in the soil seed bank of a

  5. Extreme groundwater levels caused by extreme weather conditions - the highest ever measured groundwater levels in Middle Germany and their management

    Science.gov (United States)

    Reinstorf, F.; Kramer, S.; Koch, T.; Pfützner, B.

    2017-12-01

    Extreme weather conditions during the years 2009 - 2011 in combination with changes in the regional water management led to maximum groundwater levels in large areas of Germany in 2011. This resulted in extensive water logging, with problems especially in urban areas near rivers, where water logging produced huge problems for buildings and infrastructure. The acute situation still exists in many areas and requires the development of solution concepts. Taken the example of the Elbe-Saale-Region in the Federal State of Saxony-Anhalt, were a pilot research project was carried out, the analytical situation, the development of a management tool and the implementation of a groundwater management concept are shown. The central tool is a coupled water budget - groundwater flow model. In combination with sophisticated multi-scale parameter estimation, a high-resolution groundwater level simulation was carried out. A decision support process with an intensive stakeholder interaction combined with high-resolution simulations enables the development of a management concept for extreme groundwater situations in consideration of sustainable and environmentally sound solutions mainly on the base of passive measures.

  6. Mixed Waste Management Facility Groundwater Monitoring Report, Fourth Quarter 1998 and 1998 Summary

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    During fourth quarter 1998, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells

  7. Monitoring of the Gasoline Oxygenate MTBE and BTEX Compounds in Groundwater in Catalonia (Northeast Spain

    Directory of Open Access Journals (Sweden)

    J. Fraile

    2002-01-01

    Full Text Available Headspace (HS gas chromatography with flame ionisation detection (HS-GC-FID and purge and trap (P gas chromatography-mass spectrometry (P were used for the determination of methyl-tert-butyl ether (MTBE and benzene, toluene, and xylenes (BTEX in groundwater. In this work, we present the first data on the levels of MTBE and BTEX in different groundwater wells in the area of Catalonia (northeast Spain. This monitoring campaign corresponded to 28 groundwater wells that were located near petrol service stations, oil refinery storage tanks, and/or chemical industry at different locations of Catalonia during the period of 1998/1999. The levels of MTBE detected varied between 4—300 μg/l, but two sites had MTBE levels up to 3 and 13 mg/l. In many cases, the BTEX levels were below 1 μg/l, whereas 7 sites had levels varying from 19 μg/l up to 3 mg/l. Most of them were related to leakage from underground tanks in petrol service stations, while the remaining three corresponded respectively to chemical industrial pollution of undetermined origin and to a leak from high-ground petrol tanks in petrochemical refinery factories. The aquifers involved were constituted by detritus coarse materials, sands, and conglomerates. Piezometric levels were roughly comprised between 3 and 40 m, and permeability (K and transmissivity (T values were estimated from field measurements.

  8. Groundwater Monitoring Plan for the 216-S-10 Pond and Ditch, Interim Change Notice 1

    International Nuclear Information System (INIS)

    Williams, Bruce A.

    2003-01-01

    During 2003, the upgradient well 299-W26-7 went dry and one new groundwater monitoring well was installed downgradient (well 299-W26-14) of the 216-S-10 pond and ditch. This ICN updates the groundwater monitoring wells for the 216-S-10 pond and ditch and adds a revised well location map to the plan

  9. Mixed Waste Management Facility (MWMF) groundwater monitoring report. First quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    During first quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste anagement Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults (HWMWDV). As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Tetrachloroethylene, chloroethene, 1,1-dichloroethylene, gross alpha, lead, or nonvolatile beta levels also exceeded standards in one or more wells. The elevated constituents were found primarily in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contained elevated constituent levels. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to previous quarters.

  10. Review of present groundwater monitoring programs at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hershey, R.L.; Gillespie, D.

    1993-09-01

    Groundwater monitoring at the Nevada Test Site (NTS) is conducted to detect the presence of radionuclides produced by underground nuclear testing and to verify the quality and safety of groundwater supplies as required by the State of Nevada and federal regulations, and by U.S. Department of Energy (DOE) Orders. Groundwater is monitored at water-supply wells and at other boreholes and wells not specifically designed or located for traditional groundwater monitoring objectives. Different groundwater monitoring programs at the NTS are conducted by several DOE Nevada Operations Office (DOE/NV) contractors. Presently, these individual groundwater monitoring programs have not been assessed or administered under a comprehensive planning approach. Redundancy exists among the programs in both the sampling locations and the constituents analyzed. Also, sampling for certain radionuclides is conducted more frequently than required. The purpose of this report is to review the existing NTS groundwater monitoring programs and make recommendations for modifying the programs so a coordinated, streamlined, and comprehensive monitoring effort may be achieved by DOE/NV. This review will be accomplished in several steps. These include: summarizing the present knowledge of the hydrogeology of the NTS and the potential radionuclide source areas for groundwater contamination; reviewing the existing groundwater monitoring programs at the NTS; examining the rationale for monitoring and the constituents analyzed; reviewing the analytical methods used to quantify tritium activity; discussing monitoring network design criteria; and synthesizing the information presented and making recommendations based on the synthesis. This scope of work was requested by the DOE/NV Hydrologic Resources Management Program (HRMP) and satisfies the 1993 (fiscal year) HRMP Groundwater Monitoring Program Review task

  11. Composite use of numerical groundwater flow modeling and geoinformatics techniques for monitoring Indus Basin aquifer, Pakistan.

    Science.gov (United States)

    Ahmad, Zulfiqar; Ashraf, Arshad; Fryar, Alan; Akhter, Gulraiz

    2011-02-01

    The integration of the Geographic Information System (GIS) with groundwater modeling and satellite remote sensing capabilities has provided an efficient way of analyzing and monitoring groundwater behavior and its associated land conditions. A 3-dimensional finite element model (Feflow) has been used for regional groundwater flow modeling of Upper Chaj Doab in Indus Basin, Pakistan. The approach of using GIS techniques that partially fulfill the data requirements and define the parameters of existing hydrologic models was adopted. The numerical groundwater flow model is developed to configure the groundwater equipotential surface, hydraulic head gradient, and estimation of the groundwater budget of the aquifer. GIS is used for spatial database development, integration with a remote sensing, and numerical groundwater flow modeling capabilities. The thematic layers of soils, land use, hydrology, infrastructure, and climate were developed using GIS. The Arcview GIS software is used as additive tool to develop supportive data for numerical groundwater flow modeling and integration and presentation of image processing and modeling results. The groundwater flow model was calibrated to simulate future changes in piezometric heads from the period 2006 to 2020. Different scenarios were developed to study the impact of extreme climatic conditions (drought/flood) and variable groundwater abstraction on the regional groundwater system. The model results indicated a significant response in watertable due to external influential factors. The developed model provides an effective tool for evaluating better management options for monitoring future groundwater development in the study area.

  12. Preliminary investigation of the effects of sea-level rise on groundwater levels in New Haven, Connecticut

    Science.gov (United States)

    Bjerklie, David M.; Mullaney, John R.; Stone, Janet R.; Skinner, Brian J.; Ramlow, Matthew A.

    2012-01-01

    Global sea level rose about 0.56 feet (ft) (170 millimeters (mm)) during the 20th century. Since the 1960s, sea level has risen at Bridgeport, Connecticut, about 0.38 ft (115 mm), at a rate of 0.008 ft (2.56 mm + or - 0.58 mm) per year. With regional subsidence, and with predicted global climate change, sea level is expected to continue to rise along the northeast coast of the United States through the 21st century. Increasing sea levels will cause groundwater levels in coastal areas to rise in order to adjust to the new conditions. Some regional climate models predict wetter climate in the northeastern United States under some scenarios. Scenarios for the resulting higher groundwater levels have the potential to inundate underground infrastructure in lowlying coastal cities. New Haven is a coastal city in Connecticut surrounded and bisected by tidally affected waters. Monitoring of water levels in wells in New Haven from August 2009 to July 2010 indicates the complex effects of urban influence on groundwater levels. The response of groundwater levels to recharge and season varied considerably from well to well. Groundwater temperatures varied seasonally, but were warmer than what was typical for Connecticut, and they seem to reflect the influence of the urban setting, including the effects of conduits for underground utilities. Specific conductance was elevated in many of the wells, indicating the influence of urban activities or seawater in Long Island Sound. A preliminary steady-state model of groundwater flow for part of New Haven was constructed using MODFLOW to simulate current groundwater levels (2009-2010) and future groundwater levels based on scenarios with a rise of 3 ft (0.91 meters (m)) in sea level, which is predicted for the end of the 21st century. An additional simulation was run assuming a 3-ft rise in sea level combined with a 12-percent increase in groundwater recharge. The model was constructed from existing hydrogeologic information for the

  13. Groundwater-level trends and forecasts, and salinity trends, in the Azraq, Dead Sea, Hammad, Jordan Side Valleys, Yarmouk, and Zarqa groundwater basins, Jordan

    Science.gov (United States)

    Goode, Daniel J.; Senior, Lisa A.; Subah, Ali; Jaber, Ayman

    2013-01-01

    Changes in groundwater levels and salinity in six groundwater basins in Jordan were characterized by using linear trends fit to well-monitoring data collected from 1960 to early 2011. On the basis of data for 117 wells, groundwater levels in the six basins were declining, on average about -1 meter per year (m/yr), in 2010. The highest average rate of decline, -1.9 m/yr, occurred in the Jordan Side Valleys basin, and on average no decline occurred in the Hammad basin. The highest rate of decline for an individual well was -9 m/yr. Aquifer saturated thickness, a measure of water storage, was forecast for year 2030 by using linear extrapolation of the groundwater-level trend in 2010. From 30 to 40 percent of the saturated thickness, on average, was forecast to be depleted by 2030. Five percent of the wells evaluated were forecast to have zero saturated thickness by 2030. Electrical conductivity was used as a surrogate for salinity (total dissolved solids). Salinity trends in groundwater were much more variable and less linear than groundwater-level trends. The long-term linear salinity trend at most of the 205 wells evaluated was not increasing, although salinity trends are increasing in some areas. The salinity in about 58 percent of the wells in the Amman-Zarqa basin was substantially increasing, and the salinity in Hammad basin showed a long-term increasing trend. Salinity increases were not always observed in areas with groundwater-level declines. The highest rates of salinity increase were observed in regional discharge areas near groundwater pumping centers.

  14. Nevada National Security Site 2014 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, David [National Security Technologies, LLC. (NSTec), Las Vegas, NV (United States)

    2015-02-01

    analyzed for toxicity characteristic contaminants and polychlorinated biphenyls (PCB). Beginning with the sample from July 31, 2013, pH and specific conductance were also measured. Leachate analysis results show no evidence of contamination. Results for toxicity characteristic contaminants are all below regulatory levels and analysis quantification limits. No quantifiable PCB levels were detected in any sample. Results for pH and specific conductance are also within expected ranges. After analysis, leachate was pumped from the collection tank and used in Cell 18 for dust control. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  15. H-Area Hazardous Waste Management Facility groundwater monitoring report, Third and fourth quarters 1995: Volume 1

    International Nuclear Information System (INIS)

    1996-03-01

    Groundwater at the H-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental control (SCDHEC) Groundwater Protection Standard (GWPS). Historically as well as currently, nitrate-nitrite as nitrogen, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constituents also exceeded the GWPS in the second half of 1995. Elevated constituents were found primarily in the water table (Aquifer Zone IIB 2 ), however, constitutents exceeding standards also occurred in several different aquifer zones monitoring wells. Water-level maps indicate that the groundwater flow rates and directions at the H-Area HWMF have remained relatively constant since the basins ceased to be active in 1988

  16. 2012 Groundwater Monitoring Report Central Nevada Test Area, Subsurface Corrective Action Unit 443

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-01

    The Central Nevada Test Area was the site of a 0.2- to 1-megaton underground nuclear test in 1968. The surface of the site has been closed, but the subsurface is still in the corrective action process. The corrective action alternative selected for the site was monitoring with institutional controls. Annual sampling and hydraulic head monitoring are conducted as part of the subsurface corrective action strategy. The site is currently in the fourth year of the 5-year proof-of-concept period that is intended to validate the compliance boundary. Analytical results from the 2012 monitoring are consistent with those of previous years. Tritium remains at levels below the laboratory minimum detectable concentration in all wells in the monitoring network. Samples collected from reentry well UC-1-P-2SR, which is not in the monitoring network but was sampled as part of supplemental activities conducted during the 2012 monitoring, indicate concentrations of tritium that are consistent with previous sampling results. This well was drilled into the chimney shortly after the detonation, and water levels continue to rise, demonstrating the very low permeability of the volcanic rocks. Water level data from new wells MV-4 and MV-5 and recompleted well HTH-1RC indicate that hydraulic heads are still recovering from installation and testing. Data from wells MV-4 and MV-5 also indicate that head levels have not yet recovered from the 2011 sampling event during which several thousand gallons of water were purged. It has been recommended that a low-flow sampling method be adopted for these wells to allow head levels to recover to steady-state conditions. Despite the lack of steady-state groundwater conditions, hydraulic head data collected from alluvial wells installed in 2009 continue to support the conceptual model that the southeast-bounding graben fault acts as a barrier to groundwater flow at the site.

  17. Recharge signal identification based on groundwater level observations.

    Science.gov (United States)

    Yu, Hwa-Lung; Chu, Hone-Jay

    2012-10-01

    This study applied a method of the rotated empirical orthogonal functions to directly decompose the space-time groundwater level variations and determine the potential recharge zones by investigating the correlation between the identified groundwater signals and the observed local rainfall records. The approach is used to analyze the spatiotemporal process of piezometric heads estimated by Bayesian maximum entropy method from monthly observations of 45 wells in 1999-2007 located in the Pingtung Plain of Taiwan. From the results, the primary potential recharge area is located at the proximal fan areas where the recharge process accounts for 88% of the spatiotemporal variations of piezometric heads in the study area. The decomposition of groundwater levels associated with rainfall can provide information on the recharge process since rainfall is an important contributor to groundwater recharge in semi-arid regions. Correlation analysis shows that the identified recharge closely associates with the temporal variation of the local precipitation with a delay of 1-2 months in the study area.

  18. Prediction of groundwater levels from lake levels and climate data using ANN approach

    OpenAIRE

    Dogan, Ahmet; Demirpence, Husnu; Cobaner, Murat

    2008-01-01

    There are many environmental concerns relating to the quality and quantity of surface and groundwater. It is very important to estimate the quantity of water by using readily available climate data for managing water resources of the natural environment. As a case study an artificial neural network (ANN) methodology is developed for estimating the groundwater levels (upper Floridan aquifer levels) as a function of monthly averaged precipitation, evaporation, and measured levels of Magnolia an...

  19. 2011 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico

    International Nuclear Information System (INIS)

    2012-01-01

    Gnome-Coach was the site of a 3-kiloton underground nuclear test in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and groundwater tracer test performed at the site. The State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. As for the subsurface, monitoring activities that include hydraulic head monitoring and groundwater sampling of the wells onsite are conducted as part of the annual site inspection. These activities were conducted on January 19, 2011. The site roads, monitoring well heads, and the monument at surface ground zero were observed as being in good condition at the time of the site inspection. An evaluation of the hydraulic head data obtained from the site indicates that water levels in wells USGS-4 and USGS-8 appear to respond to the on/off cycling of the dedicated pump in well USGS-1 and that water levels in wells LRL-7 and DD-1 increased during this annual monitoring period. Analytical results obtained from the sampling indicate that concentrations of tritium, strontium-90, and cesium-137 were consistent with concentrations from historical sampling events.

  20. 2011 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-02-01

    Gnome-Coach was the site of a 3-kiloton underground nuclear test in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and groundwater tracer test performed at the site. The State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. As for the subsurface, monitoring activities that include hydraulic head monitoring and groundwater sampling of the wells onsite are conducted as part of the annual site inspection. These activities were conducted on January 19, 2011. The site roads, monitoring well heads, and the monument at surface ground zero were observed as being in good condition at the time of the site inspection. An evaluation of the hydraulic head data obtained from the site indicates that water levels in wells USGS-4 and USGS-8 appear to respond to the on/off cycling of the dedicated pump in well USGS-1 and that water levels in wells LRL-7 and DD-1 increased during this annual monitoring period. Analytical results obtained from the sampling indicate that concentrations of tritium, strontium-90, and cesium-137 were consistent with concentrations from historical sampling events.

  1. Influence of seasonal variations in sea level on the salinity regime of a coastal groundwater-fed wetland.

    Science.gov (United States)

    Wood, Cameron; Harrington, Glenn A

    2015-01-01

    Seasonal variations in sea level are often neglected in studies of coastal aquifers; however, they may have important controls on processes such as submarine groundwater discharge, sea water intrusion, and groundwater discharge to coastal springs and wetlands. We investigated seasonal variations in salinity in a groundwater-fed coastal wetland (the RAMSAR listed Piccaninnie Ponds in South Australia) and found that salinity peaked during winter, coincident with seasonal sea level peaks. Closer examination of salinity variations revealed a relationship between changes in sea level and changes in salinity, indicating that sea level-driven movement of the fresh water-sea water interface influences the salinity of discharging groundwater in the wetland. Moreover, the seasonal control of sea level on wetland salinity seems to override the influence of seasonal recharge. A two-dimensional variable density model helped validate this conceptual model of coastal groundwater discharge by showing that fluctuations in groundwater salinity in a coastal aquifer can be driven by a seasonal coastal boundary condition in spite of seasonal recharge/discharge dynamics. Because seasonal variations in sea level and coastal wetlands are ubiquitous throughout the world, these findings have important implications for monitoring and management of coastal groundwater-dependent ecosystems. © 2014, National Ground Water Association.

  2. Quarterly report of RCRA groundwater monitoring data for period October 1 through December 31, 1994

    International Nuclear Information System (INIS)

    1995-04-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and open-quotes Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilitiesclose quotes (Title 40 Code of Federal Regulations [CFR] Part 265), as amended. Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. The location of each facility is shown. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Performing project management, preparing groundwater monitoring plans, well network design and installation, specifying groundwater data needs, performing quality control (QC) oversight, data management, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between October and December 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the October through December quarter, but also data from earlier sampling events that were not previously reported

  3. Impacts of hydrogeological characteristics on groundwater-level changes induced by earthquakes

    Science.gov (United States)

    Liu, Ching-Yi; Chia, Yeeping; Chuang, Po-Yu; Chiu, Yung-Chia; Tseng, Tai-Lin

    2018-03-01

    Changes in groundwater level during earthquakes have been reported worldwide. In this study, field observations of co-seismic groundwater-level changes in wells under different aquifer conditions and sampling intervals due to near-field earthquake events in Taiwan are presented. Sustained changes, usually observed immediately after earthquakes, are found in the confined aquifer. Oscillatory changes due to the dynamic strain triggered by passing earthquake waves can only be recorded by a high-frequency data logger. While co-seismic changes recover rapidly in an unconfined aquifer, they can sustain for months or longer in a confined aquifer. Three monitoring wells with long-term groundwater-level data were examined to understand the association of co-seismic changes with local hydrogeological conditions. The finite element software ABAQUS is used to simulate the pore-pressure changes induced by the displacements due to fault rupture. The calculated co-seismic change in pore pressure is related to the compressibility of the formation. The recovery rate of the change is rapid in the unconfined aquifer due to the hydrostatic condition at the water table, but slow in the confined aquifer due to the less permeable confining layer. Fracturing of the confining layer during earthquakes may enhance the dissipation of pore pressure and induce the discharge of the confined aquifer. The study results indicated that aquifer characteristics play an important role in determining groundwater-level changes during and after earthquakes.

  4. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Fourth quarter 1992 and 1992 summary

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    During fourth quarter 1992, nine constituents exceeded final Primary Drinking Water Standards (PDWS) in one or more groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Fifty-seven (48%) of the 120 monitoring wells, contained elevated tritium activities, and 23 (19%) contained elevated trichloroethylene concentrations. Total alpha-emitting radium, tetrachloroethylene, chloroethene, cadmium, 1,1-dichloroethylene, lead, or nonvolatile beta levels exceeded standards in one or more wells. During 1992, elevated levels of 13 constituents were found in one or more of 80 of the 120 groundwater monitoring wells (67%) at the MWMF and adjacent facilities. Tritium and trichloroethylene exceeded their final PDWS more frequently and more consistently than did other constituents. Tritium activity exceeded its final PDWS m 67 wells and trichloroethylene was. elevated in 28 wells. Lead, tetrachloroethylene, total alpha-emitting radium, gross alpha, cadmium, chloroethene, 1,1-dichloroethylene 1,2-dichloroethane, mercury, or nitrate exceeded standards in one or more wells during the year. Nonvolatile beta exceeded its drinking water screening level in 3 wells during the year.

  5. Temporal trend analysis of RCRA groundwater monitoring data

    International Nuclear Information System (INIS)

    Need, E.A.

    1994-01-01

    Statistical analysis of RCRA groundwater monitoring data at a uranium hexafluoride processing facility showed a statistically significant increase in the concentration of gross beta activity in monitor wells downgradient of surface impounds storing calcium fluoride sludge and high pH water. Because evidence of leakage had not been detected in lysimeters installed beneath the impounds, the operator sought an evaluation of other potential causes of the result, including natural variability. This study determined that all five data sets showed either long-term excursionary (spike-like), or seasonal forms of temporal variation. Gross beta had an upward long-term trend with multiple excursions that almost appeared to be seasonal. Gross alpha had an upward long-term trend with multiple excursions that were clearly not seasonal. Specific conductance had both upward and downward long-term trends but no other variations. pH had a downward long-term trend with multiple excursions that were clearly not seasonal. Fluoride had a downward long-term trend without excursions but with clear seasonal variations. The gross beta result that appeared to be a significant change was a spike event on the upward long-term trend

  6. F-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993

    International Nuclear Information System (INIS)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the F-Area Seepage Basins (FASB) was monitored in compliance with Module 3, Section C, of South Carolina Hazardous Waste Permit SC1-890-008-989, effective November 2, 1992. The monitoring well network is composed of 87 FSB wells screened in the three hydrostratigraphic units that make up the uppermost aquifer beneath the FASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the F-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning in the first quarter of 1993, the standard for comparison became the SCDHEC Groundwater Protection Standard (GWPS) specified in the approved F-Area Seepage Basins Part B permit. Currently and historically, gross alpha, nitrate, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceeded the GWPS in the groundwater at the FASB during the second half of 1993, notably aluminum, iodine-129, and zinc. The elevated constituents are found primarily in Aquifer Zone 2B 2 and Aquifer Zone 2B 1 wells. However, several Aquifer Unit 2A wells also contain elevated levels of constituents. Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units. Water-level maps indicate that the groundwater flow rates and directions at the FASB have remained relatively constant since the basins ceased to be active in 1988

  7. Refinement of the list of constituents for groundwater monitoring at M-area

    International Nuclear Information System (INIS)

    Wells, D.G.

    1997-11-01

    For several years Westinghouse Savannah River Company (WSRC) has been examining ways of reducing monitoring costs. Most of these efforts have been aimed at reducing the number of wells sampled or reducing sample frequency. With regards to monitoring around the M-Area Settling Basin, we are now examining a possible reduction in the number of constituents analyzed. Constituents that can be dropped entirely are nonhazardous inorganics generally referred to as water quality indicators. Monitoring for these parameters is sensible when a facility is in detection monitoring, but it is much less useful at a facility like the M-Area Basin. The water quality indicators are helpful in detecting whether or not a facility has impacted the environment. But their concentrations are not important in themselves. At M-Area, it is well documented that the facility has impacted groundwater quite seriously with a known group of hazardous constituents. So the concentrations of the nonhazardous constituents are of little interest. At M-Area there are 41 Point of Compliance (POC) wells monitoring an area of about .25 square miles and about 236 plume definition wells monitoring the surround 4 square miles. The POC wells form a picket line around the facility and are intended to detect any constituents leaching from it. They are also intended to determine whether such constituents exceed action levels. Plume definition wells are added to define the plume created a particular set or subset of contaminants. The M-Area plume definition wells were installed in several phases over a ten year time span as SRS struggled to define the extent of a large plume of TCE and PCE. These wells were not located for the purpose of monitoring the numerous inorganics and radionuclides on the unit's monitoring list. Many of the inorganics and radionuclides are relatively immobile in groundwater and cannot be expected to appear in the widely scattered TCE/PCE plume definition wells

  8. The Savannah River Site`s Groundwater Monitoring Program: Third quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-02-04

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. Table 1 lists those well series with constituents in the groundwater above Flag 2 during third quarter 1992, organized by location. Results from all laboratory analyses are used to generate this table. Specific conductance and pH data from the field also are included in this table.

  9. Sensitivity of the Gravity Recovery and Climate Experiment (GRACE) to the complexity of aquifer systems for monitoring of groundwater

    Science.gov (United States)

    Katpatal, Yashwant B.; Rishma, C.; Singh, Chandan K.

    2018-05-01

    The Gravity Recovery and Climate Experiment (GRACE) satellite mission is aimed at assessment of groundwater storage under different terrestrial conditions. The main objective of the presented study is to highlight the significance of aquifer complexity to improve the performance of GRACE in monitoring groundwater. Vidarbha region of Maharashtra, central India, was selected as the study area for analysis, since the region comprises a simple aquifer system in the western region and a complex aquifer system in the eastern region. Groundwater-level-trend analyses of the different aquifer systems and spatial and temporal variation of the terrestrial water storage anomaly were studied to understand the groundwater scenario. GRACE and its field application involve selecting four pixels from the GRACE output with different aquifer systems, where each GRACE pixel encompasses 50-90 monitoring wells. Groundwater storage anomalies (GWSA) are derived for each pixel for the period 2002 to 2015 using the Release 05 (RL05) monthly GRACE gravity models and the Global Land Data Assimilation System (GLDAS) land-surface models (GWSAGRACE) as well as the actual field data (GWSAActual). Correlation analysis between GWSAGRACE and GWSAActual was performed using linear regression. The Pearson and Spearman methods show that the performance of GRACE is good in the region with simple aquifers; however, performance is poorer in the region with multiple aquifer systems. The study highlights the importance of incorporating the sensitivity of GRACE in estimation of groundwater storage in complex aquifer systems in future studies.

  10. A Comparison of Seasonal Patterns Observed in ERS 1 / 2 Differential InSAR, Groundwater Level Data, and Groundwater Production Data in Reno, Nevada, USA.

    Science.gov (United States)

    Oppliger, G. L.; Goudy, C.; Widmer, M.

    2005-12-01

    We report on a comparison of repeating seasonal patterns observed in ERS 1 / 2 differential InSAR, (D-InSAR) groundwater level (GWL) data, and water production volume data in Reno, Nevada, USA. Over the 1992-2002 study period we found municipal groundwater utilization in the Reno study area was associated with centimeter and sub-centimeter surface elevation changes which are distributed over aquifer related zones several kilometers in width. In the central Reno area observations define two active anomaly areas which show cyclical surface deflation and inflation with elevation changes of 10 to 30 millimeters over one to nine years. Seasonal groundwater level change associated with these D-InSAR features ranged between 0.3 and 3 meters. Some D-InSAR pattern perimeters are localized by geologic structure while others are more mobile. Most surface deflation appears to be periodically restored by natural and managed aquifer recharge. The area's of active surface inflation-deflation nominally correspond with the area's most significantly utilized groundwater aquifers. To evaluate evidence for the direct relation between D-InSAR and groundwater production in the study area, comparisons between 1992-2002 groundwater levels, production rates and D-InSAR surface inflation-deflation features were developed. Groundwater level change maps showed good direct correlations with D-InSAR observations only in areas where the GWL changes were relatively large (~10 meters), spatially uniform and sustained over several years. Several factors probably contribute to the weak correlation of many GWL's and D-InSAR features including: incomplete GWL coverages, GWL monitoring data representing different aquifer horizons, proximity to production wells, delayed development of aquifer volume change when water levels are altered, and lateral change in aquifer composition. Consistency of the D-InSAR features suggests atmospheric artifacts were not the source of the discrepancies. Some of the

  11. The study of using earth tide response of groundwater level and rainfall recharge to identify groundwater aquifer

    Science.gov (United States)

    Huang, W. J.; Hsu, C. H.; Chang, L. C.; Chiang, C. J.; Wang, Y. S.; Lu, W. C.

    2017-12-01

    Hydrogeological framework is the most important basis for groundwater analysis and simulation. Conventionally, the core drill is a most commonly adopted skill to acquire the core's data with the help of other research methods to artificially determine the result. Now, with the established groundwater station network, there are a lot of groundwater level information available. Groundwater level is an integrated presentation of the hydrogeological framework and the external pumping and recharge system. Therefore, how to identify the hydrogeological framework from a large number of groundwater level data is an important subject. In this study, the frequency analysis method and rainfall recharge mechanism were used to identify the aquifer where the groundwater level's response frequency and amplitude react to the earth tide. As the earth tide change originates from the gravity caused by the paths of sun and moon, it leads to soil stress and strain changes, which further affects the groundwater level. The scale of groundwater level's change varies with the influence of aquifer pressure systems such as confined or unconfined aquifers. This method has been applied to the identification of aquifers in the Cho-Shui River Alluvial Fan. The results of the identification are compared to the records of core drill and they both are quite consistent. It is shown that the identification methods developed in this study can considerably contribute to the identification of hydrogeological framework.

  12. The Savannah River Site's Groundwater Monitoring Program: Fourth quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-06-02

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During fourth quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from fourth quarter 1991 are listed in this report.

  13. The Savannah River Site`s Groundwater Monitoring Program: Fourth quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-06-02

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During fourth quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from fourth quarter 1991 are listed in this report.

  14. The Savannah River Site's Groundwater Monitoring Program: Second quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-10-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Since 1991, the flagging criteria have been based on the federal Environmental Protection Agency (EPA) drinking water standards and on method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1992 are listed in this report.

  15. The Savannah River Site`s Groundwater Monitoring Program: Second quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-10-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Since 1991, the flagging criteria have been based on the federal Environmental Protection Agency (EPA) drinking water standards and on method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1992 are listed in this report.

  16. The Savannah River Site`s Groundwater Monitoring Program. Second quarter, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-10

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  17. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface

    Science.gov (United States)

    2008-08-01

    seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  18. Analysis of 1997–2008 groundwater level changes in the upper Deschutes Basin, Central Oregon

    Science.gov (United States)

    Gannett, Marshall W.; Lite, Kenneth E.

    2013-01-01

    Groundwater-level monitoring in the upper Deschutes Basin of central Oregon from 1997 to 2008 shows water-level declines in some places that are larger than might be expected from climate variations alone, raising questions regarding the influence of groundwater pumping, canal lining (which decreases recharge), and other human influences. Between the mid-1990s and mid-2000s, water levels in the central part of the basin near Redmond steadily declined as much as 14 feet. Water levels in the Cascade Range, in contrast, rose more than 20 feet from the mid-1990s to about 2000, and then declined into the mid-2000s, with little or no net change. An existing U.S. Geological Survey regional groundwater-flow model was used to gain insights into groundwater-level changes from 1997 to 2008, and to determine the relative influence of climate, groundwater pumping, and irrigation canal lining on observed water-level trends. To utilize the model, input datasets had to be extended to include post-1997 changes in groundwater pumping, changes in recharge from precipitation, irrigation canal leakage, and deep percolation of applied irrigation water (also known as on-farm loss). Mean annual groundwater recharge from precipitation during the 1999–2008 period was 25 percent less than during the 1979–88 period because of drying climate conditions. This decrease in groundwater recharge is consistent with measured decreases in streamflow and discharge to springs. For example, the mean annual discharge of Fall River, which is a spring-fed stream, decreased 12 percent between the 1979–88 and 1999–2008 periods. Between the mid-1990s and late 2000s, groundwater pumping for public-supply and irrigation uses increased from about 32,500 to 52,000 acre-feet per year, partially because of population growth. Between 1997 and 2008, the rate of recharge from leaking irrigation canals decreased by about 58,000 acre-feet per year as a result of lining and piping of canals. Decreases in recharge

  19. Influence of irrigation on the level, salinity and flow of groundwater at ...

    African Journals Online (AJOL)

    2010-03-31

    Mar 31, 2010 ... piezometers had to be measured, all readings were taken within 3 days. Water levels were measured to estab- lish the effect of rainfall, drainage and irrigation on the groundwater level. These levels were also used to gener- ate groundwater contour maps and to determine the groundwater flow directions.

  20. Separation of base flow from streamflow using groundwater levels - illustrated for the Pang catchment (UK)

    NARCIS (Netherlands)

    Peters, E.; Lanen, van H.A.J.

    2005-01-01

    A new filter to separate base flow from streamflow has developed that uses observed groundwater levels. To relate the base flow to the observed groundwater levels, a non-linear relation was used. This relation is suitable for unconfined aquifers with deep groundwater levels that do not respond to

  1. Using Geoscience and Geostatistics to Optimize Groundwater Monitoring Networks at the Savannah River Site

    International Nuclear Information System (INIS)

    Tuckfield, R.C.

    2001-01-01

    A team of scientists, engineers, and statisticians was assembled to review the operation efficiency of groundwater monitoring networks at US Department of Energy Savannah River Site (SRS). Subsequent to a feasibility study, this team selected and conducted an analysis of the A/M area groundwater monitoring well network. The purpose was to optimize the number of groundwater wells requisite for monitoring the plumes of the principal constituent of concern, viz., trichloroethylene (TCE). The project gathered technical expertise from the Savannah River Technology Center (SRTC), the Environmental Restoration Division (ERD), and the Environmental Protection Department (EPD) of SRS

  2. First and second quarters 1999 - TNX Area groundwater and effectiveness monitoring strategy data only report

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    This report presents data of groundwater monitoring conducted during the first and second quarters of 1999 in support of the Interim Remedial Action. The data is from groundwater monitoring wells described in this report as the primary, secondary, and recovery wells of the initial operation of the Effectiveness Monitoring Strategy (EMS) as stipulated in Revision 1.3 (WSRC, 1996), the proposed wells for the full operation of the EMS as described in Revision 1.5 (WSRC, 1999), and general wells pertinent to the report. Also included are data from SRTC projects in the TNX Area that are deemed useful for groundwater characterization

  3. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Science.gov (United States)

    Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter

    2018-01-01

    The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban-agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of

  4. Inspection and monitoring plan, contaminated groundwater seeps 317/319/ENE Area, Argonne National Laboratory

    International Nuclear Information System (INIS)

    1996-01-01

    During the course of completing the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) in the 317/319/East-Northeast (ENE) Area of Argonne National Laboratory-East (ANL-E), groundwater was discovered moving to the surface through a series of groundwater seeps. The seeps are located in a ravine approximately 600 ft south of the ANL-E fence line in Waterfall Glen Forest Preserve. Samples of the seep water were collected and analyzed for selected parameters. Two of the five seeps sampled were found to contain detectable levels of organic contaminants. Three chemical species were identified: chloroform (14--25 microg/L), carbon tetrachloride (56--340 microg/L), and tetrachloroethylene (3--6 microg/L). The other seeps did not contain detectable levels of volatile organics. The nature of the contaminants in the seeps will also be monitored on a regular basis. Samples of surface water flowing through the bottom of the ravine and groundwater emanating from the seeps will be collected and analyzed for chemical and radioactive constituents. The results of the routine sampling will be compared with the concentrations used in the risk assessment. If the concentrations exceed those used in the risk assessment, the risk calculations will be revised by using the higher numbers. This revised analysis will determine if additional actions are warranted

  5. 40 CFR 265 interim status indicator-evaluation ground-water monitoring plan for the 216-B-63 trench

    International Nuclear Information System (INIS)

    Bjornstad, B.N.; Dudziak, S.

    1989-03-01

    This document outlines a ground-water monitoring plan for the 216-B-63 trench located in the northeast corner of the 200-East Area on the Hanford Site in southeastern Washington State. It has been determined that hazardous materials (corrosives) were disposed of to the trench during past operations. Installation of an interim-status ground-water monitoring system is required to determine whether hazardous chemicals are leaching to the ground water from beneath the trench. This document summarizes the existing data that are available from near the 216-B-63 trench and presents a plan to determine the extent of ground-water contamination, if any, derived from the trench. The plan calls for the installation of four new monitoring wells located near the west end of the trench. These wells will be used to monitor ground-water levels and water quality immediately adjacent to the trench. Two existing RCRA monitoring wells, which are located near the trench and hydraulically upgradient of it, will be used as background wells. 46 refs., 15 figs., 12 tabs

  6. Monitoring groundwater quality in South-Africa: Development of a national strategy

    CSIR Research Space (South Africa)

    Parsons, R

    1995-04-01

    Full Text Available Little is known about the temporal distribution of groundwater quality on a national scale in South Africa. The effective management of the country's groundwater resources is thus difficult and a need exists for a national network for monitoring...

  7. Groundwater Levels for Selected Wells in the Chehalis River Basin, Washington

    Science.gov (United States)

    Fasser, E.T.; Julich, R.J.

    2010-01-01

    Groundwater levels for selected wells in the Chehalis River basin, Washington, are presented on an interactive web-based map to document the spatial distribution of groundwater levels in the study area during late summer 2009. Groundwater level data and well information were collected by the U.S. Geological Survey using standard techniques. The data are stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.

  8. High levels of uranium in groundwater of Ulaanbaatar, Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Nriagu, Jerome, E-mail: stoten@umich.edu [Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109 (United States); Nam, Dong-Ha; Ayanwola, Titilayo A. [Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109 (United States); Dinh, Hau [College of Literature, Science and Arts, University of Michigan (United States); Erdenechimeg, Erdenebayar; Ochir, Chimedsuren [Department Of Preventive Medicine, School Of Public Health, Health Science University, Mongolia, Ulaanbaatar (Mongolia); Bolormaa, Tsend-Ayush [Central Water Laboratory of Water Supply and Sewerage Authority (USUG), Ulaanbaatar (Mongolia)

    2012-01-01

    Water samples collected from 129 wells in seven of the nine sub-divisions of Ulaanbaatar were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) using Clean Lab methods. The levels of many trace elements were found to be low with the average concentrations (ranges in brackets) being 0.9 (< 0.1-7.9) {mu}g/L for As; 7.7 (0.12-177) {mu}g/L for Mn; 0.2 (< 0.05-1.9) {mu}g/L for Co; 16 (< 0.1-686) {mu}g/L for Zn; 0.7 (< 0.1-1.8) {mu}g/L for Se; < 0.1 (< 0.02-0.69) {mu}g/L for Cd; and 1.3 (< 0.02-32) {mu}g/L for Pb. The levels of uranium were surprisingly elevated (mean, 4.6 {mu}g/L; range < 0.01-57 {mu}g/L), with the values for many samples exceeding the World Health Organization's guideline of 15 {mu}g/L for uranium in drinking water. Local rocks and soils appear to be the natural source of the uranium. The levels of uranium in Ulaanbaatar's groundwater are in the range that has been associated with nephrotoxicity, high blood pressure, bone dysfunction and likely reproductive impairment in human populations. We consider the risk associated with drinking the groundwater with elevated levels of uranium in Ulaanbaatar to be a matter for some public health concern and conclude that the paucity of data on chronic effects of low level exposure is a risk factor for continuing the injury to many people in this city. - Highlights: Black-Right-Pointing-Pointer We analyzed water samples from wells across the city of Ulaanbaatar, Mongolia for total uranium along with arsenic, manganese, cobalt, zinc, selenium, cadmium and lead. Black-Right-Pointing-Pointer We found that compared to other trace metals and metalloids, the levels of uranium were surprisingly elevated with the values for many samples exceeding the World Health Organization's guideline for drinking water. Black-Right-Pointing-Pointer Local rocks and soils appear to be the natural source of the uranium. Black-Right-Pointing-Pointer The health risk associated with drinking the groundwater

  9. Technical note: Guide to groundwater monitoring for the coal industry

    African Journals Online (AJOL)

    It is well established in literature that the environmental impacts associated with the coal industry are numerous. In respect of South Africa's groundwater resources the major impact of the coal industry is a reduction in groundwater quantity and quality. There is therefore a need to proactively prevent or minimise these ...

  10. Quarterly RCRA Groundwater Monitoring Data for the Period July through September 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.

    2007-02-01

    This report provides information about RCRA groundwater monitoring for the period July through September 2006. Eighteen Resource Conservation and Recovery Act (RCRA) sites were sampled during the reporting quarter.

  11. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  12. 2010 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico

    International Nuclear Information System (INIS)

    2011-02-01

    This report presents the 2010 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Gnome-Coach (Gnome) Site in New Mexico (Figure 1). Groundwater monitoring consisted of collecting hydraulic head data and groundwater samples from the wells on site. Historically, the U.S. Environmental Protection Agency (EPA) had conducted these annual activities under the Long-Term Hydrologic Monitoring Program (LTHMP). LM took over the sampling and data collection activities in 2008 but continues to use the EPA Radiation and Indoor Environments National Laboratory in Las Vegas, Nevada, to analyze the water samples. This report summarizes groundwater monitoring and site investigation activities that were conducted at the site during calendar year 2010.

  13. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Directory of Open Access Journals (Sweden)

    L. Yu

    2018-01-01

    Full Text Available The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN, total phosphorus (TP, NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban–agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88 between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate

  14. Climate change impact on groundwater levels in the Guarani Aquifer outcrop zone

    Science.gov (United States)

    Melo, D. D.; Wendland, E.

    2013-12-01

    The unsustainable use of groundwater in many countries might cause water availability restrictions in the future. Such issue is likely to worsen due to predicted climate changes for the incoming decades. As numerous studies suggest, aquifers recharge rates will be affected as a result of climate change. The Guarani Aquifer System (GAS) is one of the most important transboundary aquifer in the world, providing drinkable water for millions of people in four South American countries (Brazil, Argentina, Uruguay and Paraguay). Considering the GAS relevance and how its recharge rates might be altered by climatic conditions anomalies, the objective of this work is to assess possible climate changes impacts on groundwater levels in this aquifer outcrop zone. Global Climate Models' (GCM) outputs were used as inputs in a transient flux groundwater model created using the software SPA (Simulation of Process in Aquifers), enabling groundwater table fluctuation to be evaluated under distinct climatic scenarios. Six monitoring wells, located in a representative basin (Ribeirão da Onça basin) inside a GAS outcrop zone (ROB), provided water table measurements between 2004 and 2011 to calibrate the groundwater model. Using observed climatic data, a water budget method was applied to estimate recharge in different types of land uses. Statistically downscaled future climate scenarios were used as inputs for that same recharge model, which provided data for running SPA under those scenarios. The results show that most of the GCMs used here predict temperature arises over 275,15 K and major monthly rainfall mean changes to take place in the dry season. During wet seasons, those means might experience around 50% decrease. The transient model results indicate that water table variations, derived from around 70% of the climate scenarios, would vary below those measured between 2004 and 2011. Among the thirteen GCMs considered in this work, only four of them predicted more extreme

  15. The Savannah River site`s groundwater monitoring program: second quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-11-01

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1997, EPD/EMS conducted extensive sampling of monitoring wells. A detailed explanation of the flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1997 are included in this report.

  16. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-17

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  17. The Savannah River Site's Groundwater Monitoring Program, third quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-17

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  18. Reactor Emergency Action Level Monitor

    International Nuclear Information System (INIS)

    Touchton, R.A.

    1987-01-01

    The Reactor Emergency Action Level Monitor (REALM) Expert System is designed to provide assistance in the identification of a nuclear power plant emergency situation and the determination of its severity. REALM has been developed to operate in a real-time processing environment. REALM embodies a hybrid architecture utilizing both rule-based reasoning and object-oriented programming techniques borrowed from the Artificial Intelligence discipline of Computer Sciences. The rulebase consists of event-based rules and symptom-based rules. The symptom-based rules go beyond the current EAL structure to address the more problematic scenarios and entail a more symbolic representation of the plant information. The results to date have been encouraging that expert system technology can provide improved emergency decision-making capability in nuclear power plants

  19. Validation on groundwater flow model including sea level change. Modeling on groundwater flow in coastal granite area

    International Nuclear Information System (INIS)

    Hasegawa, Takuma; Miyakawa, Kimio

    2009-01-01

    It is important to verify the groundwater flow model that reproduces pressure head, water chemistry, and groundwater age. However, water chemistry and groundwater age are considered to be influenced by historical events. In this study, sea level change during glacial-interglacial cycle was taken into account for simulating salinity and groundwater age at coastal granite area. As a result of simulation, salinity movement could not catch up with sea level changes, and mixing zone was formed below the fresh-water zone. This mixing zone was observed in the field measurement, and the observed salinities were agreed with simulated results including sea level change. The simulated residence time including sea level change is one-tenth of steady state. The reason is that the saline water was washed out during regression and modern sea-water was infiltrated during transgression. As mentioned before, considering sea level change are important to reproduce salinity and helium age at coastal area. (author)

  20. HIGH LEVELS OF URANIUM IN GROUNDWATER OF ULAANBAATAR, MONGOLIA

    Science.gov (United States)

    Nriagu, Jerome; Nam, Dong-Ha; Ayanwola, Titilayo A.; Dinh, Hau; Erdenechimeg, Erdenebayar; Ochir, Chimedsuren; Bolormaa, Tsend-Ayush

    2011-01-01

    Water samples collected from 129 wells in seven of the nine sub-divisions of Ulaanbaatar were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) using Clean Lab methods. The levels of many trace elements were found to be very low with the average concentrations (ranges in brackets) being 0.9 (uranium were surprisingly elevated (mean, 4.6 μg/L; range uranium in drinking water. Local rocks and soils appear to be the natural source of the uranium. The levels of uranium in Ulaanbaatar's groundwater are in the range that has been associated with nephrotoxicity, high blood pressure, bone dysfunction and likely reproductive impairment in human populations. We consider the risk associated with drinking the groundwater with elevated levels of uranium in Ulaanbaatar to be a matter for some public health concern and conclude that the paucity of data on chronic effects of low level exposure is a risk factor for continuing the injury to many people in this city. PMID:22142646

  1. Monitoring effects of river restoration on groundwater with radon

    International Nuclear Information System (INIS)

    Hoehn, Eduard

    2007-01-01

    The restoration of the perialpine river Toess in a floodplain of northern Switzerland (Linsental) included the removal of bank reinforcements and tracer studies in the river and in oberservation wells of the adjacent alluvial groundwater. The river water is continuously recharging the aquifer system and the groundwater is used extensively as drinking water. Radon activity concentrations of freshly infiltrated groundwater are interpreted as radon groundwater age between the river and a well. A first flood after the restoration operations resulted in a widening of the river bed and in a reduction of the flow distance to the wells. Sixteen days after a second flood, the results of radon measurements were compared with those from before the restoration. The radon age of the groundwater between the river and the wells decreased, probably as a result of the reduction of the flow distances. Concentrations of autochthonous and coliform bacteria increased after the restoration operation and even more one day after the first flood. Thus the findings on the bacteria corroborate the interpretation of the radon concentrations. The restoration has not yet reduced the quality of the groundwater, which is pumped for drinking water. The study is contributing to the solution of land-use conflicts between river restoration and the supply of drinking water from the alluvial groundwater. (orig.) [de

  2. Experiences of Mass Pig Carcass Disposal Related to Groundwater Quality Monitoring in Taiwan

    Directory of Open Access Journals (Sweden)

    Zeng-Yei Hseu

    2016-12-01

    Full Text Available The pig industry is the most crucial animal industry in Taiwan; 10.7 million pigs were reared for consumption in 1996. A foot and mouth disease (FMD epidemic broke out on 19 March 1997, and 3,850,536 pigs were culled before July in the same year. The major disposal method of pig carcasses from the FMD outbreak was burial, followed by burning and incineration. To investigate groundwater quality, environmental monitoring of burial sites was performed from October 1997 to June 1999; groundwater monitoring of 90–777 wells in 20 prefectures was performed wo to six times in 1998. Taiwanese governmental agencies analyzed 3723 groundwater samples using a budget of US $1.5 million. The total bacterial count, fecal coliform, Salmonella spp., nitrite-N, nitrate-N, ammonium-N, sulfate, non-purgeable organic carbon, total oil, and total dissolved solid were recognized as indicators of groundwater contamination resulting from pig carcass burial. Groundwater at the burial sites was considered to be contaminated on the basis of the aforementioned indicators, particularly groundwater at burial sites without an impermeable cloth and those located at a relatively short distance from the monitoring well. The burial sites selected during outbreaks in Taiwan should have a low surrounding population, be away from water preservation areas, and undergo regular monitoring of groundwater quality.

  3. Groundwater modelling for fractured and porous media: HYDROCOIN Level 1

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    The report describes work carried out as part of the 'Hydrocoin' project to verify some of the models used by the British Geological Survey on its radioactive waste disposal programme. The author's work on Hydrocoin Level 1 concerned groundwater modelling for fractured and porous media. The overall conclusions arising from the work were: a) pressure fields in saturated media can be reliably calculated by existing programmes, b) three techniques for deriving the flow fields are described, and c) severe practical limitations exist as to the ability of current programs to model variably saturated conditions over moderate distances. (U.K.)

  4. Evidence for Legacy Contamination of Nitrate in Groundwater of North Carolina Using Monitoring and Private Well Data Models

    Science.gov (United States)

    Messier, K. P.; Kane, E.; Bolich, R.; Serre, M. L.

    2014-12-01

    Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. Legacy contamination, or past releases of NO3-, is thought to be impacting current groundwater and surface water of North Carolina. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure known as constrained forward nonlinear regression and hyperparameter optimization (CFN-RHO) is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is then used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. The major finding regarding legacy sources NO3- in this study is that the LUR-BME models show the geographical extent of low-level contamination of deeper drinking-water aquifers is beyond that of the shallower monitoring well. Groundwater NO3- in monitoring wells is highly variable with many areas predicted above the current Environmental Protection Agency standard of 10 mg/L. Contrarily, the private well results depict widespread, low-level NO3-concentrations. This evidence supports that in addition to downward transport, there is also a significant outward transport of groundwater NO3- in the drinking water aquifer to areas outside the range of sources. Results indicate that the deeper aquifers are potentially acting as a reservoir that is not only deeper, but also covers a larger geographical area, than the reservoir formed by the shallow aquifers. Results are of interest to agencies that regulate surface water and drinking water sources impacted by the effects of

  5. H-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the H-Area Seepage Basins (HASB) was monitored in compliance with the September 30, 1992, modification of South Carolina Hazardous Waste Permit SC1-890-008-989. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the H-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning first quarter 1993, the HASB`s Groundwater Protection Standard (GWPS), established in Appendix 3D-A of the cited permit, became the standard for comparison. Historically as well as currently, nitrate, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constitutents also exceeded the GWPS in the groundwater at the HASB (notably aluminum, iodine-129, strontium-90, technetium-99, and zinc) during the second half of 1993. Elevated constituents were found primarily in Aquifer Zone 2B{sub 2} and in the upper portion of Aquifer Zone 2B{sub 1}. However, constituents exceeding standards also occurred in several wells screened in the lower portion of Aquifer Zone 2B{sub 1} and Aquifer Unit 2A. Isoconcentration/isoactivity maps include in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during the second half of 1993. Water-level maps indicate that the groundwater flow rates and directions at the HASB have remained relatively constant since the basins ceased to be active in 1988.

  6. H-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993

    International Nuclear Information System (INIS)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the H-Area Seepage Basins (HASB) was monitored in compliance with the September 30, 1992, modification of South Carolina Hazardous Waste Permit SC1-890-008-989. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the H-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning first quarter 1993, the HASB's Groundwater Protection Standard (GWPS), established in Appendix 3D-A of the cited permit, became the standard for comparison. Historically as well as currently, nitrate, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constitutents also exceeded the GWPS in the groundwater at the HASB (notably aluminum, iodine-129, strontium-90, technetium-99, and zinc) during the second half of 1993. Elevated constituents were found primarily in Aquifer Zone 2B 2 and in the upper portion of Aquifer Zone 2B 1 . However, constituents exceeding standards also occurred in several wells screened in the lower portion of Aquifer Zone 2B 1 and Aquifer Unit 2A. Isoconcentration/isoactivity maps include in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during the second half of 1993. Water-level maps indicate that the groundwater flow rates and directions at the HASB have remained relatively constant since the basins ceased to be active in 1988

  7. Response of groundwater level and surface-water/groundwater interaction to climate variability: Clarence-Moreton Basin, Australia

    Science.gov (United States)

    Cui, Tao; Raiber, Matthias; Pagendam, Dan; Gilfedder, Mat; Rassam, David

    2018-03-01

    Understanding the response of groundwater levels in alluvial and sedimentary basin aquifers to climatic variability and human water-resource developments is a key step in many hydrogeological investigations. This study presents an analysis of groundwater response to climate variability from 2000 to 2012 in the Queensland part of the sedimentary Clarence-Moreton Basin, Australia. It contributes to the baseline hydrogeological understanding by identifying the primary groundwater flow pattern, water-level response to climate extremes, and the resulting dynamics of surface-water/groundwater interaction. Groundwater-level measurements from thousands of bores over several decades were analysed using Kriging and nonparametric trend analysis, together with a newly developed three-dimensional geological model. Groundwater-level contours suggest that groundwater flow in the shallow aquifers shows local variations in the close vicinity of streams, notwithstanding general conformance with topographic relief. The trend analysis reveals that climate variability can be quickly reflected in the shallow aquifers of the Clarence-Moreton Basin although the alluvial aquifers have a quicker rainfall response than the sedimentary bedrock formations. The Lockyer Valley alluvium represents the most sensitively responding alluvium in the area, with the highest declining (-0.7 m/year) and ascending (2.1 m/year) Sen's slope rates during and after the drought period, respectively. Different surface-water/groundwater interaction characteristics were observed in different catchments by studying groundwater-level fluctuations along hydrogeologic cross-sections. The findings of this study lay a foundation for future water-resource management in the study area.

  8. Cluster processing business level monitor

    International Nuclear Information System (INIS)

    Muniz, Francisco J.

    2017-01-01

    This article describes a Cluster Processing Monitor. Several applications with this functionality can be freely found doing a search in the Google machine. However, those applications may offer more features that are needed on the Processing Monitor being proposed. Therefore, making the monitor output evaluation difficult to be understood by the user, at-a-glance. In addition, such monitors may add unnecessary processing cost to the Cluster. For these reasons, a completely new Cluster Processing Monitor module was designed and implemented. In the CDTN, Clusters are broadly used, mainly, in deterministic methods (CFD) and non-deterministic methods (Monte Carlo). (author)

  9. Cluster processing business level monitor

    Energy Technology Data Exchange (ETDEWEB)

    Muniz, Francisco J., E-mail: muniz@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    This article describes a Cluster Processing Monitor. Several applications with this functionality can be freely found doing a search in the Google machine. However, those applications may offer more features that are needed on the Processing Monitor being proposed. Therefore, making the monitor output evaluation difficult to be understood by the user, at-a-glance. In addition, such monitors may add unnecessary processing cost to the Cluster. For these reasons, a completely new Cluster Processing Monitor module was designed and implemented. In the CDTN, Clusters are broadly used, mainly, in deterministic methods (CFD) and non-deterministic methods (Monte Carlo). (author)

  10. Automated Groundwater Monitoring of Uranium at the Hanford Site, Washington - 13116

    Energy Technology Data Exchange (ETDEWEB)

    Burge, Scott R. [Burge Environmental, Inc., 6100 South Maple Avenue, no. 114, Tempe, AZ, 85283 (United States); O' Hara, Matthew J. [Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99352 (United States)

    2013-07-01

    An automated groundwater monitoring system for the detection of uranyl ion in groundwater was deployed at the 300 Area Industrial Complex, Hanford Site, Washington. The research was conducted to determine if at-site, automated monitoring of contaminant movement in the subsurface is a viable alternative to the baseline manual sampling and analytical laboratory assay methods currently employed. The monitoring system used Arsenazo III, a colorimetric chelating compound, for the detection of the uranyl ion. The analytical system had a limit of quantification of approximately 10 parts per billion (ppb, μg/L). The EPA's drinking water maximum contaminant level (MCL) is 30 ppb [1]. In addition to the uranyl ion assay, the system was capable of acquiring temperature, conductivity, and river level data. The system was fully automated and could be operated remotely. The system was capable of collecting water samples from four sampling sources, quantifying the uranyl ion, and periodically performing a calibration of the analytical cell. The system communications were accomplished by way of cellular data link with the information transmitted through the internet. Four water sample sources were selected for the investigation: one location provided samples of Columbia River water, and the remaining three sources provided groundwater from aquifer sampling tubes positioned in a vertical array at the Columbia River shoreline. The typical sampling schedule was to sample the four locations twice per day with one calibration check per day. This paper outlines the instrumentation employed, the operation of the instrumentation, and analytical results for a period of time between July and August, 2012. The presentation includes the uranyl ion concentration and conductivity results from the automated sampling/analysis system, along with a comparison between the automated monitor's analytical performance and an independent laboratory analysis. Benefits of using the automated

  11. Automated Groundwater Monitoring of Uranium at the Hanford Site, Washington - 13116

    International Nuclear Information System (INIS)

    Burge, Scott R.; O'Hara, Matthew J.

    2013-01-01

    An automated groundwater monitoring system for the detection of uranyl ion in groundwater was deployed at the 300 Area Industrial Complex, Hanford Site, Washington. The research was conducted to determine if at-site, automated monitoring of contaminant movement in the subsurface is a viable alternative to the baseline manual sampling and analytical laboratory assay methods currently employed. The monitoring system used Arsenazo III, a colorimetric chelating compound, for the detection of the uranyl ion. The analytical system had a limit of quantification of approximately 10 parts per billion (ppb, μg/L). The EPA's drinking water maximum contaminant level (MCL) is 30 ppb [1]. In addition to the uranyl ion assay, the system was capable of acquiring temperature, conductivity, and river level data. The system was fully automated and could be operated remotely. The system was capable of collecting water samples from four sampling sources, quantifying the uranyl ion, and periodically performing a calibration of the analytical cell. The system communications were accomplished by way of cellular data link with the information transmitted through the internet. Four water sample sources were selected for the investigation: one location provided samples of Columbia River water, and the remaining three sources provided groundwater from aquifer sampling tubes positioned in a vertical array at the Columbia River shoreline. The typical sampling schedule was to sample the four locations twice per day with one calibration check per day. This paper outlines the instrumentation employed, the operation of the instrumentation, and analytical results for a period of time between July and August, 2012. The presentation includes the uranyl ion concentration and conductivity results from the automated sampling/analysis system, along with a comparison between the automated monitor's analytical performance and an independent laboratory analysis. Benefits of using the automated system as an

  12. Calendar Year 1999 Groundwater Monitoring Report for the Groundwater Protection Program, U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    2000-01-01

    This report contains the calendar year (CY) 1999 groundwater and surface water quality monitoring data that were obtained at the US Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee, in accordance with the applicable requirements of DOE Order 5400.1. Groundwater and surface water quality monitoring for the purposes of DOE Order 5400.1, as defined in the Environmental Monitoring Plan for the Oak Ridge Reservation (DOE 1996), includes site surveillance monitoring and exit pathway/perimeter monitoring. Site surveillance monitoring is intended to provide data regarding groundwater/surface water quality in areas that are, or could be, affected by operations at the Y-12 Plant. Exit pathway/perimeter monitoring is intended to provide data regarding groundwater and surface water quality where contaminants from the Y-12 Plant are most likely to migrate beyond the boundaries of the DOE Oak Ridge Reservation (ORR)

  13. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments.

    Science.gov (United States)

    Parra, Lorena; Sendra, Sandra; Lloret, Jaime; Bosch, Ignacio

    2015-08-26

    The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring.

  14. Ground-water levels and quality data for Georgia

    Science.gov (United States)

    ,

    1979-01-01

    This report begins a publication format that will present annually both water-level and water-quality data in Georgia. In this format the information is presented in two-page units: the left page includes text which summarizes the information for an area or subject and the right page consists of one or more illustrations. Daily mean water-level fluctuations and trends are shown in hydrographs for the previous year and fluctuations for the monthly mean water level the previous 10 years for selected observation wells. The well data best illustrate the effects of changes in recharge and discharge in the various ground-water reservoirs in the State. A short narrative explains fluctuations and trends in each hydrograph. (Woodard-USGS)

  15. Groundwater monitoring programme. A guide for groundwater sampling and analysis. 2. ed.; Grundwasserueberwachungsprogramm. Leitfaden fuer Probenahme und Analytik von Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Quality assurance guidelines have been developed and introduced in Baden-Wuerttemberg for groundwater monitoring. The contribution contains the fundamentals and technical guides for sampling and measurement of the Baden-Wuerttemberg groundwater monitoring programme, as well as parameter groups and a preliminary assessment of the methods. [German] Bei der Gewinnung von Umweltdaten sind hohe Anforderungen an die Qualitaet der erhobenen Daten zu stellen. Dies trifft in besonderem Masse gerade auch fuer Grundwasseruntersuchungen zu, da hier haeufig Konzentrationen im Bereich der Nachweisgrenze auftreten. Fuer das Grundwassermessnetz Baden-Wuerttemberg sind qualitaetssichernde Regelungen entwickelt und eingefuehrt worden. In der vorliegenden Zusammenstellung sind die Grundsatzpapiere, bzw. Technischen Anleitungen aus dem Grundwasserueberwachungsprogramm Baden-Wuerttemberg fuer die Grundwasserprobennahme sowie zu Messverfahren, Parametergruppen und zur ersten Beurteilung der Messergebnisse enthalten. (orig.)

  16. Evaluation of Pre- and Post- Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells

    International Nuclear Information System (INIS)

    Kamp, Susan; Dayvault, Jalena

    2016-01-01

    -wide assumption that well redevelopment is necessary to increase production or to extend the life of a well, no data in the literature indicate that redevelopment affects chemical signatures in monitoring wells. The comprehensive evaluation undertaken for this study also yielded no evidence that redevelopment has any quantifiable or predictable effect on groundwater sample quality. Both short-term and long-term changes in groundwater chemistry were assessed relative to preceding and subsequent well redevelopment events. Although short-term changes in specific conductance or contaminant concentrations likely attributable to well redevelopment were found at some sites, these cases were limited to a small subset of wells in which chemical stratification had been observed. Redevelopment causes mixing of the well water, resulting in short-term impacts, but not in a consistent direction. Long-term groundwater concentration trends of uranium, the primary contaminant of concern at most LM Uranium Mill Tailings Radiation Control Act (UMTRCA) sites, were evaluated for all 16 sites addressed in this study. Based on the data evaluated, there are no apparent impacts of well redevelopment on uranium trends. In most cases where deviations in trends were found, these could be attributed to water level fluctuations or other factors. A few exceptions were found where spikes or marked decreases in uranium concentrations could potentially be related to the preceding well redevelopment, but apparent impacts were neither predictable nor quantifiable. Summary and Recommendations A catalyst for this project was a concern that there was a need for strict criteria for a program-wide approach to well redevelopment at LM sites. There was also an implicit question as to whether well redevelopment was a necessary practice that was being overlooked at some sites. The primary objective of this study was to determine if there are significant differences in laboratory analytical results between pre- and post

  17. Evaluation of Pre- and Post- Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells

    Energy Technology Data Exchange (ETDEWEB)

    Kamp, Susan [Navarro Reserch and Engineering, Oak Ridge, TN (United States); Dayvault, Jalena [US Department of Energy, Washington, DC (United States). Office of Legacy Management

    2016-05-01

    -wide assumption that well redevelopment is necessary to increase production or to extend the life of a well, no data in the literature indicate that redevelopment affects chemical signatures in monitoring wells. The comprehensive evaluation undertaken for this study also yielded no evidence that redevelopment has any quantifiable or predictable effect on groundwater sample quality. Both short-term and long-term changes in groundwater chemistry were assessed relative to preceding and subsequent well redevelopment events. Although short-term changes in specific conductance or contaminant concentrations likely attributable to well redevelopment were found at some sites, these cases were limited to a small subset of wells in which chemical stratification had been observed. Redevelopment causes mixing of the well water, resulting in short-term impacts, but not in a consistent direction. Long-term groundwater concentration trends of uranium, the primary contaminant of concern at most LM Uranium Mill Tailings Radiation Control Act (UMTRCA) sites, were evaluated for all 16 sites addressed in this study. Based on the data evaluated, there are no apparent impacts of well redevelopment on uranium trends. In most cases where deviations in trends were found, these could be attributed to water level fluctuations or other factors. A few exceptions were found where spikes or marked decreases in uranium concentrations could potentially be related to the preceding well redevelopment, but apparent impacts were neither predictable nor quantifiable. Summary and Recommendations A catalyst for this project was a concern that there was a need for strict criteria for a program-wide approach to well redevelopment at LM sites. There was also an implicit question as to whether well redevelopment was a necessary practice that was being overlooked at some sites. The primary objective of this study was to determine if there are significant differences in laboratory analytical results between pre- and post

  18. H-Area Acid/Caustic Basin Groundwater Monitoring Report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from the four HAC monitoring wells at the H-Area Acid/Caustic Basin received comprehensive analyses. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are the focus of this report. Tritium exceeded the final PDWS in wells HAC 1, 2, 3, and 4 during fourth quarter 1992. Tritium activities in upgradient well HAC 4 were similar to tritium levels in wells HAC 1, 2, and 3. Iron was elevated in well HAC 1, 2, and 3. Specific conductance and manganese were elevated in one downgradient well each. No well samples exceeded the SRS turbidity standard. During 1992, tritium was the only constituent that exceeded the final PDWS. It did so consistently in all four wells during all four quarters, with little variability in activity

  19. Revised ground-water monitoring compliance plan for the 183-H Solar Evaporation Basins

    International Nuclear Information System (INIS)

    1986-09-01

    This document contains ground-water monitoring plans for a mixed waste storage facility located on the Hanford Site in southeastern Washington State. This facility has been used since 1973 for storage of mixed wastes, which contain both chemicals and radionuclides. The ground-water monitoring plans presented here represent revision and expansion of an effort in June 1985. At that time, a facility-specific monitoring program was implemented at the 183-H Basins as part of the regulatory compliance effort being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interimstatus facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The program initially implemented for the 183-H Basins was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. This effort, named the RCRA Compliance Ground-Water Monitoring Project for the 183-H Basins, was implemented. A supporting project involving ground-water flow modeling for the area surrounding the 183-H Basins was also initiated during 1985. Those efforts and the results obtained are described in subsequent chapters of this document. 26 refs., 55 figs., 14 tabs

  20. Groundwater monitoring in the area of open cast Belchatow

    International Nuclear Information System (INIS)

    Zimnicki, R.; Soltyk, W.; Derda, M.; Chmielewski, A.G.; Owczarczyk, A.

    2006-01-01

    Groundwater analyses in the area of the open cast lignite mine Belchatow and Szczercow have been continued since 2000. The field work contains analyses of macro- and microion concentrations as well as measurements of tritium, 222 Rn and mean radioactivity ( 40 K). Complementary to these analyses, isotope ratios of δ 34 S/ 32 S and δ 18 O/ 16 O in SO 4 2- ion and δD in water have been investigated. In 2005 samples of water from boreholes and drains in the area of Szczercow open cast were taken and analyzed. It was found that the groundwater was not polluted, its quality and purity being in agreement with the approved groundwater purity standards

  1. Quarterly report of RCRA groundwater monitoring data for period January 1--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This quarterly report contains data received between January and March 1995, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter, but also data from earlier sampling events that were not previously reported. Nineteen Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring projects are conducted at the Hanford Site. These projects include treatment, storage, and disposal facilities for both solid and liquid waste. The groundwater monitoring programs described in this report comply with the interim-status federal (Title 40 Code of Federal Regulation [CFR] Part 265) and state (Washington Administrative Code [WAC] 173-303-400) regulations. The RCRA projects are monitored under one of three programs: background monitoring, indicator parameter evaluation, or groundwater quality assessment.

  2. Groundwater Monitoring Plan for the 1301-N, 1324-N/NA, and 1325-N RCRA Facilities

    International Nuclear Information System (INIS)

    Hartman, Mary J.

    2001-01-01

    The 1301-N and 1325-N Liquid Waste Disposal Facilities, the 1324-N Surface Impoundment, and the 1324-NA Percolation Pond, located in the 100 N Area of the Hanford Site, are regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The closure plans for these facilities stipulate that groundwater is monitored according to the 100-N Pilot Project: Proposed Consolidated Groundwater Monitoring Program (BHI-00725). This document supplements the consolidated plan by providing information on sampling and analysis protocols, quality assurance, data management, and a conceptual model for the RCRA sites. Monitoring well networks, constituents, and sampling frequency remain the same as in the consolidated plan or the previous groundwater monitoring plan (Hartman 1996)

  3. Sanitary Landfill Groundwater Monitoring Report, Second Quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-07-29

    This report contains analytical data for samples taken during Second Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  4. Sanitary landfill groundwater monitoring report, Third Quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-12-08

    This report contains analytical data for samples taken during Third Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  5. Sanitary landfill groundwater monitoring report. Third quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This report contains analytical data for samples taken during third quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  6. Sanitary landfill groundwater monitoring report, Third Quarter 1999

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    This report contains analytical data for samples taken during Third Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria

  7. Sanitary landfill groundwater monitoring report. Third quarter 1995

    International Nuclear Information System (INIS)

    1995-11-01

    This report contains analytical data for samples taken during third quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria

  8. Interim-status groundwater monitoring plan for the 216-B-63 trench

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, M.D.

    1995-02-09

    This document outlines the groundwater monitoring plan, under RCRA regulations in 40 CFR 265 Subpart F and WAC173-300-400, for the 216-B-63 Trench. This interim status facility is being sampled under detection monitoring criteria and this plan provides current program conditions and requirements.

  9. The Savannah River Site's Groundwater Monitoring Program 1991 well installation report

    International Nuclear Information System (INIS)

    1992-06-01

    This report is a summary of the well and environmental soil boring information compiled for the groundwater monitoring program of the Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) at the Savannah River Site (SRS) during 1991. It includes discussion of environmental soil borings, surveying, well installations, abandonments, maintenance, and stabilization

  10. Metallurgical Laboratory (HWMF) Groundwater Monitoring Report, Fourth Quarter 1994

    International Nuclear Information System (INIS)

    Chase, J.A.

    1995-03-01

    Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Units were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab Hazardous Waste Management Facility. This project began in July 1994 and is complete; however, analytical data from these wells are not yet available

  11. Monitoring and Management of Karstic Coastal Groundwater in a Changing Environment (Southern Italy: A Review of a Regional Experience

    Directory of Open Access Journals (Sweden)

    Maurizio Polemio

    2016-04-01

    Full Text Available The population concentration in coastal areas and the increase of groundwater discharge in combination with the peculiarities of karstic coastal aquifers constitute a huge worldwide problem, which is particularly relevant for coastal aquifers of the Mediterranean basin. This paper offers a review of scientific activities realized to pursue the optimal utilization of Apulian coastal groundwater. Apulia, with a coastline extending for over 800 km, is the Italian region with the largest coastal karst aquifers. Apulian aquifers have suffered both in terms of water quality and quantity. Some regional regulations were implemented from the 1970s with the purpose of controlling the number of wells, well locations, and well discharge. The practical effects of these management criteria, the temporal and spatial trend of recharge, groundwater quality, and seawater intrusion effects are discussed based on long-term monitoring. The efficacy of existing management tools and the development of predictive scenarios to identify the best way to reconcile irrigation and demands for high-quality drinking water have been pursued in a selected area. The Salento peninsula was selected as the Apulian aquifer portion exposed to the highest risk of quality degradation due to seawater intrusion. The capability of large-scale numerical models in groundwater management was tested, particularly for achieving forecast scenarios to evaluate the impacts of climate change on groundwater resources. The results show qualitative and quantitative groundwater trends from 1930 to 2060 and emphasize the substantial decrease of the piezometric level and a serious worsening of groundwater salinization due to seawater intrusion.

  12. Monitoring Groundwater Storage Changes in the Loess Plateau Using GRACE Satellite Gravity Data, Hydrological Models and Coal Mining Data

    Directory of Open Access Journals (Sweden)

    Xiaowei Xie

    2018-04-01

    Full Text Available Monitoring the groundwater storage (GWS changes is crucial to the rational utilization of groundwater and to ecological restoration in the Loess Plateau of China, which is one of the regions with the most extreme ecological environmental damage in the world. In this region, the mass loss caused by coal mining can reach the level of billions of tons per year. For this reason, in this work, in addition to Gravity Recovery and Climate Experiment (GRACE satellite gravity data and hydrological models, coal mining data were also used to monitor GWS variation in the Loess Plateau during the period of 2005–2014. The GWS changes results from different GRACE solutions, that is, the spherical harmonics (SH solutions, mascon solutions, and Slepian solutions (which are the Slepian localization of SH solutions, were compared with in situ GWS changes, obtained from 136 groundwater observation wells, and the aim was to acquire the most robust GWS changes. The results showed that the GWS changes from mascon solutions (mascon-GWS match best with in situ GWS changes, showing the highest correlation coefficient, lowest root mean square error (RMSE values and nearest annual trend. Therefore, the Mascon-GWS changes are used for the spatial-temporal analysis of GWS changes. Based on which, the groundwater depletion rate of the Loess Plateau was −0.65 ± 0.07 cm/year from 2005–2014, with a more severe consumption rate occurring in its eastern region, reaching about −1.5 cm/year, which is several times greater than those of the other regions. Furthermore, the precipitation and coal mining data were used for analyzing the causes of the groundwater depletion: the results showed that seasonal changes in groundwater storage are closely related to rainfall, but the groundwater consumption is mainly due to human activities; coal mining in particular plays a major role in the serious groundwater consumption in eastern region of the study area. Our results will help in

  13. Assessment and Monitoring of Nutrient Management in Irrigated Agriculture for Groundwater Quality Protection

    Science.gov (United States)

    Harter, T.; Davis, R.; Smart, D. R.; Brown, P. H.; Dzurella, K.; Bell, A.; Kourakos, G.

    2017-12-01

    Nutrient fluxes to groundwater have been subject to regulatory assessment and control only in a limited number of countries, including those in the European Union, where the Water Framework Directive requires member countries to manage groundwater basis toward achieving "good status", and California, where irrigated lands will be subject to permitting, stringent nutrient monitoring requirements, and development of practices that are protective of groundwater. However, research activities to rigorously assess agricultural practices for their impact on groundwater have been limited and instead focused on surface water protection. For groundwater-related assessment of agricultural practices, a wide range of modeling tools has been employed: vulnerability studies, nitrogen mass balance assessments, crop-soil-system models, and various statistical tools. These tools are predominantly used to identify high risk regions, practices, or crops. Here we present the development of a field site for rigorous in-situ evaluation of water and nutrient management practices in an irrigated agricultural setting. Integrating groundwater monitoring into agricultural practice assessment requires large research plots (on the order of 10s to 100s of hectares) and multi-year research time-frames - much larger than typical agricultural field research plots. Almonds are among the most common crops in California with intensive use of nitrogen fertilizer and were selected for their high water quality improvement potential. Availability of an orchard site with relatively vulnerable groundwater conditions (sandy soils, water table depth less than 10 m) was also important in site selection. Initial results show that shallow groundwater concentrations are commensurate with nitrogen leaching estimates obtained by considering historical, long-term field nitrogen mass balance and groundwater dynamics.

  14. Oskarshamn site investigation. Monitoring of shallow groundwater chemistry 2009

    Energy Technology Data Exchange (ETDEWEB)

    Ericsson, Ulf (Medins Biologi AB, Moelnlycke (Sweden))

    2010-06-15

    In 2009 sampling of shallow ground water in water wells in soil has been performed in a regular programme at eight sites within the site investigation area at Oskarshamn. The purpose of the activity is to monitor (long term observation) and characterise the shallow ground water in the site investigation area. Some physical and chemical parameters were measured directly in the field but most parameters were analysed at different laboratories. The ground water sampling activity consisted of one programme, chemical programme class 5 (reduced). The large number of sites and parameters analysed have generated a large amount of data, which will later be used for advanced analysis and modelling. In this report the evaluation aims to give a simple overview of the results and to describe the quality of the data sampled 2009. As an addition radon activity was measured at fourteen sites in the area. Seven of these sites were the same as in the regular programme. The results showed a large variation between the wells. The concentrations of major ions and conductivity ranged from low to high or very high values. The concentration of HCO{sub 3} also varied extensively throughout the investigation area, but since the concentrations were above 60 mg/l in most wells the results indicate a good ground water quality with respect to acidification. The concentration of heavy metals and trace elements also varied. High concentration of Pb in some of the wells indicated pollution. Since Pb had a similar relation to Al as most other elements it was argued that high concentrations of lead probably can be explained by the natural composition of minerals within the site investigation area. The ratio of delta18O showed a good relationship with the conductivity. The activity of tritium (3H) was markedly lower in two of the wells. This might be an indication of older groundwater in these wells. The average hydrogen isotope ratio of deuterium (delta2H) varied with similar values in most wells

  15. Oskarshamn site investigation. Monitoring of shallow groundwater chemistry 2009

    International Nuclear Information System (INIS)

    Ericsson, Ulf

    2010-06-01

    In 2009 sampling of shallow ground water in water wells in soil has been performed in a regular programme at eight sites within the site investigation area at Oskarshamn. The purpose of the activity is to monitor (long term observation) and characterise the shallow ground water in the site investigation area. Some physical and chemical parameters were measured directly in the field but most parameters were analysed at different laboratories. The ground water sampling activity consisted of one programme, chemical programme class 5 (reduced). The large number of sites and parameters analysed have generated a large amount of data, which will later be used for advanced analysis and modelling. In this report the evaluation aims to give a simple overview of the results and to describe the quality of the data sampled 2009. As an addition radon activity was measured at fourteen sites in the area. Seven of these sites were the same as in the regular programme. The results showed a large variation between the wells. The concentrations of major ions and conductivity ranged from low to high or very high values. The concentration of HCO 3 also varied extensively throughout the investigation area, but since the concentrations were above 60 mg/l in most wells the results indicate a good ground water quality with respect to acidification. The concentration of heavy metals and trace elements also varied. High concentration of Pb in some of the wells indicated pollution. Since Pb had a similar relation to Al as most other elements it was argued that high concentrations of lead probably can be explained by the natural composition of minerals within the site investigation area. The ratio of δ 18 O showed a good relationship with the conductivity. The activity of tritium ( 3 H) was markedly lower in two of the wells. This might be an indication of older groundwater in these wells. The average hydrogen isotope ratio of deuterium (δ 2 H) varied with similar values in most wells. The

  16. A case study of optimization in the decision process: Siting groundwater monitoring wells

    International Nuclear Information System (INIS)

    Cardwell, H.; Huff, D.; Douthitt, J.; Sale, M.

    1993-12-01

    Optimization is one of the tools available to assist decision makers in balancing multiple objectives and concerns. In a case study of the siting decision for groundwater monitoring wells, we look at the influence of the optimization models on the decisions made by the responsible groundwater specialist. This paper presents a multi-objective integer programming model for determining the location of monitoring wells associated with a groundwater pump-and-treat remediation. After presenting the initial optimization results, we analyze the actual decision and revise the model to incorporate elements of the problem that were later identified as important in the decision-making process. The results of a revised model are compared to the actual siting plans, the recommendations from the initial optimization runs, and the initial monitoring network proposed by the decision maker

  17. Quarterly report of RCRA groundwater monitoring data for period January 1, 1993 through March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. This quarterly report contains data received between March 8 and May 24, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter but also data from earlier sampling events that were not previously reported.

  18. 40 CFR 265 interim-status ground-water monitoring plan for the 2101-M pond

    International Nuclear Information System (INIS)

    Chamness, M.A.; Luttrell, S.P.; Dudziak, S.

    1989-03-01

    This report outlines a ground-water monitoring plan for the 2101-M pond, located in the southwestern part of the 200-East Area on the Hanford Site in south-central Washington State. It has been determined that hazardous materials may have been discharged to the pond. Installation of an interim-status ground-water monitoring system is required under the Resource Conservation and Recovery Act to determine if hazardous chemicals are moving out of the pond. This plan describes the location of new wells for the monitoring system, how the wells are to be completed, the data to be collected, and how those data can be used to determine the source and extent of any ground-water contamination from the 2101-M pond. Four new wells are planned, one upgradient and three downgradient. 35 refs., 12 figs., 9 tabs

  19. [Effects of groundwater level on chlorophyll fluorescence characteristics of Tamarix hispida in lower reaches of Tarim River].

    Science.gov (United States)

    Zhu, Cheng-gang; Li, Wei-hong; Ma, Jian-xin; Ma, Xiao-dong

    2010-07-01

    Based on the monitoring data of groundwater level at the typical sections in lower reaches of Tarim River, three survey plots nearby the ecological monitoring wells with groundwater depths > 6 m were selected to investigate the chlorophyll fluorescence characteristics of Tamarix hispida and its photosynthetic activity of PSII under effects of different groundwater depths. With increasing groundwater depth, the chlorophyll fluorescence parameters such as actual photochemical efficiency of PSII in the light (phi(PSII)), electron transport rate (ETR), and photochemistry quenching (q(p)) of T. hispida decreased, while the non-photochemistry quenching (q(N), NPQ) and the yield for dissipation by down-regulation (Y(NPQ)) increased remarkably, and the maximal photochemical efficiency of PSII (Fv/Fm) maintained an optimum value. All the results suggested that the PSII photosynthetic activity of T. hispida under drought stress declined with increasing groundwater depth, and the greater excess energy could result in more risk of photo-inhibition. However, the good adaptability and drought tolerance of T. hispida could make its PSII not seriously damaged, though the drought stress actually existed.

  20. 2012 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site

    International Nuclear Information System (INIS)

    2013-01-01

    Gnome-Coach was the site of a 3-kiloton underground nuclear test conducted in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and a groundwater tracer test performed at the site. Surface reclamation and remediation began after the underground testing. A Completion Report was prepared, and the State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. Subsurface corrective action activities began in 1972 and have generally consisted of annual sampling and monitoring of wells near the site. In 2008, the annual site inspections were refined to include hydraulic head monitoring and collection of samples from groundwater monitoring wells onsite using the low-flow sampling method. These activities were conducted during this monitoring period on January 18, 2012. Analytical results from this sampling event indicate that concentrations of tritium, strontium-90, and cesium-137 were generally consistent with concentrations from historical sampling events. The exceptions are the decreases in concentrations of strontium-90 in samples from wells USGS-4 and USGS-8, which were more than 2.5 times lower than last year's results. Well USGS-1 provides water for livestock belonging to area ranchers, and a dedicated submersible pump cycles on and off to maintain a constant volume in a nearby water tank. Water levels in wells USGS-4 and USGS-8 respond to the on/off cycling of the water supply pumping from well USGS-1. Well LRL-7 was not sampled in January, and water levels were still increasing when the transducer data were downloaded in September. A seismic reflection survey was also conducted this year. The survey acquired approximately 13.9 miles of seismic reflection data along 7 profiles on and near the site. These activities were conducted from February 23 through March 10, 2012. The site roads, monitoring well heads, and the monument at surface ground zero were in good

  1. 2012 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    Gnome-Coach was the site of a 3-kiloton underground nuclear test conducted in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and a groundwater tracer test performed at the site. Surface reclamation and remediation began after the underground testing. A Completion Report was prepared, and the State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. Subsurface corrective action activities began in 1972 and have generally consisted of annual sampling and monitoring of wells near the site. In 2008, the annual site inspections were refined to include hydraulic head monitoring and collection of samples from groundwater monitoring wells onsite using the low-flow sampling method. These activities were conducted during this monitoring period on January 18, 2012. Analytical results from this sampling event indicate that concentrations of tritium, strontium-90, and cesium-137 were generally consistent with concentrations from historical sampling events. The exceptions are the decreases in concentrations of strontium-90 in samples from wells USGS-4 and USGS-8, which were more than 2.5 times lower than last year's results. Well USGS-1 provides water for livestock belonging to area ranchers, and a dedicated submersible pump cycles on and off to maintain a constant volume in a nearby water tank. Water levels in wells USGS-4 and USGS-8 respond to the on/off cycling of the water supply pumping from well USGS-1. Well LRL-7 was not sampled in January, and water levels were still increasing when the transducer data were downloaded in September. A seismic reflection survey was also conducted this year. The survey acquired approximately 13.9 miles of seismic reflection data along 7 profiles on and near the site. These activities were conducted from February 23 through March 10, 2012. The site roads, monitoring well heads, and the monument at surface ground zero were in

  2. Refinement of the list of constituents for groundwater monitoring at M-area

    Energy Technology Data Exchange (ETDEWEB)

    Wells, D.G.

    1997-11-01

    For several years Westinghouse Savannah River Company (WSRC) has been examining ways of reducing monitoring costs. Most of these efforts have been aimed at reducing the number of wells sampled or reducing sample frequency. With regards to monitoring around the M-Area Settling Basin, we are now examining a possible reduction in the number of constituents analyzed. It is our opinion that many constituents can be dropped entirely. Several others should be dropped from analyses in the plume definition wells, while retained for analyses at the point of compliance (POC) wells. Constituents that can be dropped entirely are nonhazardous inorganics generally referred to as water quality indicators. Monitoring for these parameters is sensible when a facility is in detection monitoring, but it is much less useful at a facility like the M-Area Basin. The water quality indicators are helpful in detecting whether or not a facility has impacted the environment. But their concentrations are not important in themselves. At M-Area, it is well documented that the facility has impacted groundwater quite seriously with a known group of hazardous constituents. So the concentrations of the nonhazardous constituents are of little interest. Obviously, monitoring for the hazardous constituents should continue, but it should only continue at wells that are likely to yield useful data. At M-Area there are 41 Point of Compliance (POC) wells monitoring an area of about .25 square miles and about 236 plume definition wells monitoring the surround 4 square miles. The locations of well clusters and the point of compliance are shown in figure 1. The POC wells and plume definition wells are intended to serve entirely different purposes and should not, necessarily, be monitored for the same things. The POC wells form a picket line around the facility and are intended to detect any constituents leaching from it. They are also intended to determine whether such constituents exceed action levels. Plume

  3. Assessment of groundwater level estimation uncertainty using sequential Gaussian simulation and Bayesian bootstrapping

    Science.gov (United States)

    Varouchakis, Emmanouil; Hristopulos, Dionissios

    2015-04-01

    Space-time geostatistical approaches can improve the reliability of dynamic groundwater level models in areas with limited spatial and temporal data. Space-time residual Kriging (STRK) is a reliable method for spatiotemporal interpolation that can incorporate auxiliary information. The method usually leads to an underestimation of the prediction uncertainty. The uncertainty of spatiotemporal models is usually estimated by determining the space-time Kriging variance or by means of cross validation analysis. For de-trended data the former is not usually applied when complex spatiotemporal trend functions are assigned. A Bayesian approach based on the bootstrap idea and sequential Gaussian simulation are employed to determine the uncertainty of the spatiotemporal model (trend and covariance) parameters. These stochastic modelling approaches produce multiple realizations, rank the prediction results on the basis of specified criteria and capture the range of the uncertainty. The correlation of the spatiotemporal residuals is modeled using a non-separable space-time variogram based on the Spartan covariance family (Hristopulos and Elogne 2007, Varouchakis and Hristopulos 2013). We apply these simulation methods to investigate the uncertainty of groundwater level variations. The available dataset consists of bi-annual (dry and wet hydrological period) groundwater level measurements in 15 monitoring locations for the time period 1981 to 2010. The space-time trend function is approximated using a physical law that governs the groundwater flow in the aquifer in the presence of pumping. The main objective of this research is to compare the performance of two simulation methods for prediction uncertainty estimation. In addition, we investigate the performance of the Spartan spatiotemporal covariance function for spatiotemporal geostatistical analysis. Hristopulos, D.T. and Elogne, S.N. 2007. Analytic properties and covariance functions for a new class of generalized Gibbs

  4. Evaluating impacts of recharging partially treated wastewater on groundwater aquifer in semi-arid region by integration of monitoring program and GIS technique.

    Science.gov (United States)

    Alslaibi, Tamer M; Kishawi, Yasser; Abunada, Ziyad

    2017-05-01

    The current study investigates the impact of recharging of partially treated wastewater through an infiltration basin on the groundwater aquifer quality parameters. A monitoring program supported by a geographic information analysis (GIS) tool was used to conduct this study. Groundwater samples from the entire surrounding boreholes located downstream the infiltration basin, in addition to samples from the recharged wastewater coming from the Beit Lahia wastewater treatment (BLWWTP), were monitored and analysed between 2011 and 2014. The analysis was then compared with the available historical data since 2008. Results revealed a groundwater replenishment with the groundwater level increased by 1.0-2.0 m during the study period. It also showed a slight improvement in the groundwater quality parameters, mainly a decrease in TDS, Cl - and NO 3 - levels by 5.5, 17.1 and 20%, respectively, resulting from the relatively better quality of the recharged wastewater. Nevertheless, the level of boron and ammonium in the groundwater wells showed a significant increase over time by 96 and 100%, respectively. Moreover, the infiltration rate was slowed down in time due to the relatively high level of total suspended solid (TSS) in the infiltrated wastewater.

  5. A quantitative method for groundwater surveillance monitoring network design at the Hanford Site

    International Nuclear Information System (INIS)

    Meyer, P.D.

    1993-12-01

    As part of the Environmental Surveillance Program at the Hanford Site, mandated by the US Department of Energy, hundreds of groundwater wells are sampled each year, with each sample typically analyzed for a variety of constituents. The groundwater sampling program must satisfy several broad objectives. These objectives include an integrated assessment of the condition of groundwater and the identification and quantification of existing, emerging, or potential groundwater problems. Several quantitative network desip objectives are proposed and a mathematical optimization model is developed from these objectives. The model attempts to find minimum cost network alternatives that maximize the amount of information generated by the network. Information is measured both by the rats of change with respect to time of the contaminant concentration and the uncertainty in contaminant concentration. In an application to tritium monitoring at the Hanford Site, both information measures were derived from historical data using time series analysis

  6. Groundwater Monitoring Plan for the Z-Area Saltstone Disposal Facility, Revision 3

    International Nuclear Information System (INIS)

    WELLS, DANIEL

    2005-01-01

    Groundwater monitoring has been conducted at the Z-Area Saltstone Disposal Facility since 1987. At that time, groundwater monitoring was not required by the industrial landfill regulations, but a modest monitoring program was required by the operating permit. At the time of the 1996 permit renewal, it was determined that a more robust monitoring program was needed. The draft permit required new monitoring wells within 25 feet of each active disposal cell. As an alternative, SRS proposed a program based on direct push sampling. This program called for biennial direct push sampling within 25 feet of each waste-containing cell with additional samples being taken in areas where excessive cracking had been observed. The direct push proposal was accepted by The South Carolina Department of Health and Environmental Control (SCDHEC), and was incorporated by reference into the Z-Area Saltstone Industrial Solid Waste Permit, No.025500-1603. The Industrial Solid Waste Landfill Regulations were revised in 1998 and now include specific requirements for groundwater monitoring. SRS's plan for complying with those regulations is discussed below. The plan calls for a return to traditional monitoring with permanent wells. It also proposes a more technically sound monitoring list based on the actual composition of saltstone

  7. Modelling impacts of acid deposition and groundwater level on habitat quality and plant species diversity

    NARCIS (Netherlands)

    Kros, J.; Mol, J.P.; Wamelink, G.W.W.; Reinds, G.J.; Hinsberg, van A.; Vries, de W.

    2016-01-01

    Introduction
    We quantified the effects of the site factors pH and nitrate (NO3) concentration in soil solution and groundwater level on the vegetation of terrestrial ecosystems for the Netherlands in response to changes in atmospheric nitrogen (N) and sulphur (S) deposition and groundwater level

  8. Groundwater Monitoring and Tritium-Tracking Plan for the 200 Area State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent

    2000-08-31

    The 200 Area State-Approved Land Disposal Site (SALDS) is a drainfield which receives treated wastewater, occasionally containing high levels of tritium from treatment of Hanford Site liquid wastes. Only the SALDS proximal wells (699-48-77A, 699-48-77C, and 699-48-77D) have been affected by tritium from the facility thus far; the highest activity observed (2.1E+6 pCi/L) occurred in well 699-48-77D in February 1998. Analytical results of groundwater geochemistry since groundwater monitoring began at the SALDS indicate that all constituents with permit enforcement limits have been below those limits with the exception of one measurement of total dissolved solids (TDS) in 1996. The revised groundwater monitoring sampling and analysis plan eliminates chloroform, acetone, tetrahydrofuran, benzene, and ammonia as constituents. Replicate field measurements will replace laboratory measurements of pH for compliance purposes. A deep companion well to well 699-51-75 will be monitored for tritium deeper in the uppermost aquifer.

  9. Seasonal forecasting of groundwater levels in natural aquifers in the United Kingdom

    Science.gov (United States)

    Mackay, Jonathan; Jackson, Christopher; Pachocka, Magdalena; Brookshaw, Anca; Scaife, Adam

    2014-05-01

    Groundwater aquifers comprise the world's largest freshwater resource and provide resilience to climate extremes which could become more frequent under future climate changes. Prolonged dry conditions can induce groundwater drought, often characterised by significantly low groundwater levels which may persist for months to years. In contrast, lasting wet conditions can result in anomalously high groundwater levels which result in flooding, potentially at large economic cost. Using computational models to produce groundwater level forecasts allows appropriate management strategies to be considered in advance of extreme events. The majority of groundwater level forecasting studies to date use data-based models, which exploit the long response time of groundwater levels to meteorological drivers and make forecasts based only on the current state of the system. Instead, seasonal meteorological forecasts can be used to drive hydrological models and simulate groundwater levels months into the future. Such approaches have not been used in the past due to a lack of skill in these long-range forecast products. However systems such as the latest version of the Met Office Global Seasonal Forecast System (GloSea5) are now showing increased skill up to a 3-month lead time. We demonstrate the first groundwater level ensemble forecasting system using a multi-member ensemble of hindcasts from GloSea5 between 1996 and 2009 to force 21 simple lumped conceptual groundwater models covering most of the UK's major aquifers. We present the results from this hindcasting study and demonstrate that the system can be used to forecast groundwater levels with some skill up to three months into the future.

  10. Monitoring concentration and isotopic composition of methane in groundwater in the Utica Shale hydraulic fracturing region of Ohio.

    Science.gov (United States)

    Claire Botner, E; Townsend-Small, Amy; Nash, David B; Xu, Xiaomei; Schimmelmann, Arndt; Miller, Joshua H

    2018-05-03

    Degradation of groundwater quality is a primary public concern in rural hydraulic fracturing areas. Previous studies have shown that natural gas methane (CH 4 ) is present in groundwater near shale gas wells in the Marcellus Shale of Pennsylvania, but did not have pre-drilling baseline measurements. Here, we present the results of a free public water testing program in the Utica Shale of Ohio, where we measured CH 4 concentration, CH 4 stable isotopic composition, and pH and conductivity along temporal and spatial gradients of hydraulic fracturing activity. Dissolved CH 4 ranged from 0.2 μg/L to 25 mg/L, and stable isotopic measurements indicated a predominantly biogenic carbonate reduction CH 4 source. Radiocarbon dating of CH 4 in combination with stable isotopic analysis of CH 4 in three samples indicated that fossil C substrates are the source of CH 4 in groundwater, with one 14 C date indicative of modern biogenic carbonate reduction. We found no relationship between CH 4 concentration or source in groundwater and proximity to active gas well sites. No significant changes in CH 4 concentration, CH 4 isotopic composition, pH, or conductivity in water wells were observed during the study period. These data indicate that high levels of biogenic CH 4 can be present in groundwater wells independent of hydraulic fracturing activity and affirm the need for isotopic or other fingerprinting techniques for CH 4 source identification. Continued monitoring of private drinking water wells is critical to ensure that groundwater quality is not altered as hydraulic fracturing activity continues in the region. Graphical abstract A shale gas well in rural Appalachian Ohio. Photo credit: Claire Botner.

  11. Sanitary Landfill groundwater monitoring report. Fourth quarterly report and summary 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Fifty-seven wells of the LFW series monitor groundwater quality in Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1993. Benzene, chlorobenzene, chloroethene 1,2 dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, lindane, mercury, tetrachloroethylene, and tritium also exceeded standards in one or more wells. No groundwater contaminants were observed in wells screened in the lower section of Steed Pond Aquifer.

  12. Recovery of soil water, groundwater, and streamwater from acidification at the Swedish integrated monitoring catchments.

    Science.gov (United States)

    Löfgren, Stefan; Aastrup, Mats; Bringmark, Lage; Hultberg, Hans; Lewin-Pihlblad, Lotta; Lundin, Lars; Karlsson, Gunilla Pihl; Thunholm, Bo

    2011-12-01

    Recovery from anthropogenic acidification in streams and lakes is well documented across the northern hemisphere. In this study, we use 1996-2009 data from the four Swedish Integrated Monitoring catchments to evaluate how the declining sulfur deposition has affected sulfate, pH, acid neutralizing capacity, ionic strength, aluminum, and dissolved organic carbon in soil water, groundwater and runoff. Differences in recovery rates between catchments, between recharge and discharge areas and between soil water and groundwater are assessed. At the IM sites, atmospheric deposition is the main human impact. The chemical trends were weakly correlated to the sulfur deposition decline. Other factors, such as marine influence and catchment features, seem to be as important. Except for pH and DOC, soil water and groundwater showed similar trends. Discharge areas acted as buffers, dampening the trends in streamwater. Further monitoring and modeling of these hydraulically active sites should be encouraged.

  13. Sanitary landfill groundwater monitoring report. Fourth quarter 1994 and 1994 summary

    International Nuclear Information System (INIS)

    1995-02-01

    Eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1994. Benzene, chloroethene (vinyl chloride), 1,2-dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, mercury, nonvolatile beta, tetrachloroethylene, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 140 ft/year during first and fourth quarters 1994

  14. Groundwater-level and storage-volume changes in the Equus Beds aquifer near Wichita, Kansas, predevelopment through January 2015

    Science.gov (United States)

    Whisnant, Joshua A.; Hansen, Cristi V.; Eslick, Patrick J.

    2015-10-01

    Development of the Wichita well field began in the 1940s in the Equus Beds aquifer to provide the city of Wichita, Kansas, a new water-supply source. After development of the Wichita well field began, groundwater levels began to decline. Extensive development of irrigation wells that began in the 1970s also contributed to substantial groundwater-level declines. Groundwater-level declines likely enhance movement of brine from past oil and gas production near Burrton, Kansas, and natural saline water from the Arkansas River into the Wichita well field. Groundwater levels reached a historical minimum in 1993 because of drought conditions, irrigation, and the city of Wichita’s withdrawals from the aquifer. In 1993, the city of Wichita adopted the Integrated Local Water Supply Program to ensure that Wichita’s water needs would be met through the year 2050 and beyond as part of its efforts to manage the part of the Equus Beds aquifer Wichita uses. A key component of the Integrated Local Water Supply Program was the Equus Beds Aquifer Storage and Recovery project. The Aquifer Storage and Recovery project’s goal is to store and eventually recover groundwater and help protect the Equus Beds aquifer from oil-field brine water near Burrton, Kansas, and saline water from the Arkansas River. Since 1940, the U.S. Geological Survey has monitored groundwater levels and storage-volume changes in the Equus Beds aquifer to provide data to the city of Wichita in order to better manage its water supply.

  15. Sanitary landfill groundwater monitoring report: First quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    1997-05-01

    This report contains analytical data for samples taken during first quarter 1997 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria. Wells LFW6R, LFW8R, LFW10A, LFW18, LFW21, and LFW23R were not sampled due to their proximity to the Sanitary Landfill Closure Cap activities. Wells LFW61D and LFW62D are Purge Water Containment Wells and contain mercury. These wells were not sampled since the purge water cannot be treated at the M-1 Air Stripper until the NPDES permit for the stripper is modified.

  16. A comparison of groundwater investigation using temporary points versus permanent monitoring wells

    International Nuclear Information System (INIS)

    Thompson, N.T.

    1994-01-01

    Groundwater investigation within the environmental industry is most often conducted using permanent monitoring wells. A monitoring well, as the term suggests, is permanent to the extent that it is fixed in place to monitor groundwater quality in its immediate vicinity at any given time over the course of an environmental project. Because monitoring wells are relatively time consuming and expensive to construct, a minimum number of wells is normally installed as part of a single investigation event. The initial information obtained from monitoring wells could also be obtained from temporary groundwater sampling points. Temporary points generally are smaller in diameter than monitoring wells, are installed to provide a one time snap shot of the subsurface, and are removed at the completion of the investigation. Since temporary points are usually easier to install and less expensive than monitoring wells, more temporary points can be installed over a single investigation event and can often reduce or eliminate subsequent assessment(s). A brief discussion of temporary point installation and sampling is offered before considering two case studies within the context of the above advantages to temporary point installation. One case study focuses on vertical delineation of dissolved petroleum hydrocarbons, while the second case study discusses lateral delineation of light nonaqueous phase liquid (LNAPL)

  17. Fluctuations in groundwater levels related to regional and local withdrawals in the fractured-bedrock groundwater system in northern Wake County, North Carolina, March 2008-February 2009

    Science.gov (United States)

    Chapman, Melinda J.; Almanaseer, Naser; McClenney, Bryce; Hinton, Natalie

    2011-01-01

    A study of dewatering of the fractured-bedrock aquifer in a localized area of east-central North Carolina was conducted from March 2008 through February 2009 to gain an understanding of why some privately owned wells and monitoring wells were intermittently dry. Although the study itself was localized in nature, the resulting water-resources data and information produced from the study will help enable resource managers to make sound water-supply and water-use decisions in similar crystalline-rock aquifer setting in parts of the Piedmont and Blue Ridge Physiographic Provinces. In June 2005, homeowners in a subdivision of approximately 11 homes on lots approximately 1 to 2 acres in size in an unincorporated area of Wake County, North Carolina, reported extremely low water pressure and temporarily dry wells during a brief period. This area of the State, which is in the Piedmont Physiographic Province, is undergoing rapid growth and development. Similar well conditions were reported again in July 2007. In an effort to evaluate aquifer conditions in the area of intermittent water loss, a study was begun in March 2008 to measure and monitor water levels and groundwater use. During the study period from March 2008 through February 2009, regular dewatering of the fractured-bedrock aquifer was documented with water levels in many wells ranging between 100 and 200 feet below land surface. Prior to this period, water levels from the 1980s through the late 1990s were reported to range from 15 to 50 feet below land surface. The study area includes three community wells and more than 30 private wells within a 2,000-foot radius of the dewatered private wells. Although groundwater levels were low, recovery was observed during periods of heavy rainfall, most likely a result of decreased withdrawals owing to less demand for irrigation purposes. Similar areal patterns of low groundwater levels were delineated during nine water-level measurement periods from March 2008 through

  18. Groundwater electrical conductivity and soil radon gas monitoring for earthquake precursory studies in Koyna, India

    International Nuclear Information System (INIS)

    Reddy, D.V.; Nagabhushanam, P.

    2011-01-01

    Research highlights: → It is the first hydrochemical precursory study in the Koyna region, India. → Discrete conductivity measurements indicated progressive increase for 4 years. → Strong precursory EC change observed 40 h before the M 5.1 earthquake. → Precursory increase of soil Rn gas 20 days earlier than earthquakes M 4.7 and 5.1. → On-line monitoring of these parameters may help in earthquake forecast. - Abstract: Hourly monitoring of electrical conductivity (EC) of groundwater along with groundwater levels in the 210 m deep boreholes (specially drilled for pore pressure/earthquake studies) and soil Rn gas at 60 cm below ground level in real time, in the Koyna-Warna region (characterized by basaltic rocks, >1500 m thick, and dotted with several sets of fault systems), western India, provided strong precursory signatures in response to two earthquakes (M 4.7 on 14/11/09, and M 5.1 on 12/12/09) that occurred in the study region. The EC measured in Govare well water showed precursory perturbations about 40 h prior to the M 5.1 earthquake and continued further for about 20 h after the earthquake. In response to the M 4.7 earthquake, there were EC perturbations 8 days after the earthquake. In another well (Koyna) which is located 4 km north of Govare well, no precursory signatures were found for the M 4.7 earthquake, while for M 5.1 earthquake, post-seismic precursors were found 18 days after the earthquake. Increased porosity and reduced pressure head accompanied by mixing of a freshwater component from the top zone due to earthquakes are the suggested mechanisms responsible for the observed anomalies in EC. Another parameter, soil Rn gas showed relatively proportional strength signals corresponding to these two earthquakes. In both the cases, the pre-seismic increase in Rn concentration started about 20 days in advance. The co-seismic drop in Rn levels was less by 30% from its peak value for the M 4.7 earthquake and 50% for the M 5.1 earthquake. The Rn

  19. Characterizing Groundwater Level and Flow Pattern in a Shallow ...

    African Journals Online (AJOL)

    Bheema

    This study characterize groundwater yield and flow pattern on a shallow ... simple process of weathering, fractured fissure systems, networks of joints and ..... lowest yield in wells that are deeper than the mean well depth in the study area.

  20. Assessing the suitability of extreme learning machines (ELM for groundwater level prediction

    Directory of Open Access Journals (Sweden)

    Yadav Basant

    2017-03-01

    Full Text Available Fluctuation of groundwater levels around the world is an important theme in hydrological research. Rising water demand, faulty irrigation practices, mismanagement of soil and uncontrolled exploitation of aquifers are some of the reasons why groundwater levels are fluctuating. In order to effectively manage groundwater resources, it is important to have accurate readings and forecasts of groundwater levels. Due to the uncertain and complex nature of groundwater systems, the development of soft computing techniques (data-driven models in the field of hydrology has significant potential. This study employs two soft computing techniques, namely, extreme learning machine (ELM and support vector machine (SVM to forecast groundwater levels at two observation wells located in Canada. A monthly data set of eight years from 2006 to 2014 consisting of both hydrological and meteorological parameters (rainfall, temperature, evapotranspiration and groundwater level was used for the comparative study of the models. These variables were used in various combinations for univariate and multivariate analysis of the models. The study demonstrates that the proposed ELM model has better forecasting ability compared to the SVM model for monthly groundwater level forecasting.

  1. Groundwater quality sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of energy and managed by martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling.

  2. Groundwater Quality Sampling and Analysis Plan for Environmental Monitoring Waste Area Grouping 6 at Oak Ridge National Laboratory. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-09-01

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling

  3. Groundwater quality sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-03-01

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of energy and managed by martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling

  4. 40 CFR 265.91 - Ground-water monitoring system.

    Science.gov (United States)

    2010-07-01

    ... this paragraph. (b) Separate monitoring systems for each waste management component of a facility are... which circumscribes the several waste management components. (c) All monitoring wells must be cased in a... Section 265.91 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...

  5. Anual Report of Groundwater Monitoring at Centralia, Kansas, in 2015

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    The KDHE (2012) agreed to annual sampling at all locations, beginning with the 2013 monitoring documented previously (Argonne 2014a). This present report documents the results of the annual sampling of the approved monitoring well network on September 27-30, 2015.

  6. The Savannah River Site`s Groundwater Monitoring Program. First quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-03

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.

  7. Monitoring bentazone concentrations in the uppermost groundwater after late season applications

    NARCIS (Netherlands)

    Cornelese AA; Linden AMA vd; LBG

    1998-01-01

    The herbicide bentazone has been detected in groundwater in several monitoring programs with most of the findings possibly be related to applications early in the growth season. Because of a very low sorption constant bentazone can be transported in soil with the waterflow very easily. This means

  8. The Savannah River Site's Groundwater Monitoring Program - Second Quarter 1998 (April through June 1998)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J B

    1999-02-10

    This report summarizes the Groundwater Monitoring Program conducted by SRS during second quarter 1998. It includes the analytical data, field data, data review, quality control, and other documentation for the program; provides a record of the program's activities; and serves as an official record of the analytical results.

  9. The Savannah River Site`s groundwater monitoring program. First quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results.

  10. Quarterly report of RCRA groundwater monitoring data for period April 1 through June 30, 1994

    International Nuclear Information System (INIS)

    1994-10-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and ''Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities,'' as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company manages RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. This quarterly report contains data received between May 20 and August 19, 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the April through June quarter but also data from earlier sampling events that were not previously reported

  11. The Savannah River Site's Groundwater Monitoring Program second quarter 1999 (April through June 1999)

    International Nuclear Information System (INIS)

    Hutchison, J.B.

    1999-01-01

    This report summarizes the Groundwater Monitoring Program conducted by Savannah River Site during first quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results

  12. Autonomous long-term gamma-spectrometric monitoring of submarine groundwater discharge trends in Hawaii

    Czech Academy of Sciences Publication Activity Database

    Dulai, H.; Kameník, Jan; Waters, C. A.; Kennedy, J.; Babinec, J.; Jolly, J.; Williamson, M.

    2016-01-01

    Roč. 307, č. 3 (2016), s. 1865-1870 ISSN 0236-5731. [10th International Conference on Methods and Applications of Radioanalytical Chemistry (MARC). Kailua Kona, 12.04.2015-17.04.2015] Institutional support: RVO:61389005 Keywords : submarine groundwater discharge * long-term SGD monitoring * underwater gammaspectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.282, year: 2016

  13. 40 CFR 264.97 - General ground-water monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... has not been affected by leakage from a regulated unit; (i) A determination of background ground-water...) Represent the quality of ground water passing the point of compliance. (3) Allow for the detection of... elevation each time ground water is sampled. (g) In detection monitoring or where appropriate in compliance...

  14. Micro Ion Mobility Sensor for In Situ Monitoring of Contaminated Groundwater

    Science.gov (United States)

    2012-01-01

    Inset 1: Portable ME GC-DMS monitor; Inset 2: Sending ME assembly to the groundwater well; Inset 3: Bees and their nest located on the cover of the...covered and locked for a period of a few months. During this time a wasp’s nest was built in the outer cover of the well, as shown in Insert 3 of

  15. Groundwater-level data from an earthen dam site in southern Westchester County, New York

    Science.gov (United States)

    Noll, Michael L.; Chu, Anthony

    2018-05-01

    In 2005, the U.S. Geological Survey began a cooperative study with New York City Department of Environmental Protection to characterize the local groundwater-flow system and identify potential sources of seeps on the southern embankment of the Hillview Reservoir in Westchester County, New York. Groundwater levels were collected at 49 wells at Hillview Reservoir, and 1 well in northern Bronx County, from April 2005 through November 2016. Groundwater levels were measured discretely with a chalked steel or electric tape, or continuously with a digital pressure transducer, or both, in accordance with U.S. Geological Survey groundwatermeasurement standards. These groundwater-level data were plotted as time series and are presented in this report as hydrographs. Twenty-eight of the 50 hydrographs have continuous record and discrete field groundwater-level measurements, 22 of the hydrographs contain only discrete measurements.

  16. The Savannah River Site`s Groundwater Monitoring Program: First quarter 1993, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-08-01

    This report summarizes the Savannah River Site (SRS) Groundwater Monitoring Program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the first quarter of 1993. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.

  17. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-17

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the fourth quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities; and serves as an official document of the analytical results.

  18. Monitoring the occurrence of emerging contaminants in treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain).

    Science.gov (United States)

    Cabeza, Y; Candela, L; Ronen, D; Teijon, G

    2012-11-15

    The occurrence of 166 emerging compounds and four heavy metals (Cd, Ni, Hg and Pb) in treated wastewater and groundwater has been monitored at the Llobregat delta (Barcelona, Spain) over a period of 3 years. Selected compounds were pharmaceuticals, personal care products (PCPs), dioxins, polycyclic aromatic hydrocarbons (PAHs) and priority substances included in the 2008/105/CE Directive. Analysis was performed in tertiary treated wastewater (TWW), after an additional treatment of ultrafiltration reverse osmosis and UV disinfection, and groundwater from a deep confined aquifer. This aquifer is artificially recharged with TWW through injection wells. After the advanced treatment, 38 pharmaceuticals, 9 PCPs, 9 pesticides and 7 PAHs still showed a frequency of detection higher than 25% in the TWW, although at low concentration levels (ng/l). Not all active compounds found in the TWW were present in groundwater, indicating possible degradation within the aquifer media after the injection. A number of chemicals, mainly 10 pesticides and 10 pharmaceuticals were only present in groundwater samples, confirming a different origin than the injected TWW, probably agricultural activities and/or infiltration of poorly treated wastewater. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Report on the radiochemical and environmental isotope character for monitoring well UE-1-q: Groundwater Characterization Program

    International Nuclear Information System (INIS)

    Davisson, M.L.; Hudson, G.B.; Kenneally, J.; Nimz, G.J.; Rego, J.H.

    1993-06-01

    Well UE-1-q is located in the northeastern portion of area 1 of the Nevada Test Site in southwestern Nevada, 1244.1 meters above sea level. The well was originally an exploratory hole drilled to a depth of 743 meters below the surface (mbs) by LANL in November of 1980. In May 1992, the Groundwater Characterization Program (GCP) extended the total depth to approximately 792.5 mbs. UE-1-q is cased to a total depth of 749.5 mbs, with the remaining uncased depth exposed exclusively to Paleozoicaged carbonate rock, the principle zone of groundwater sampling. Geologic logging indicates approximately 390 meters of tuffaceous and calcareous alluvium overlies 320 meters of Tertiary-aged volcanic ash-flow and bedded tuffs. Paleozoic carbonate lithology extends from 716 mbs to the total well depth and is separated from the overlying Tertiary volcanic deposits by 6 meters of paleocolluvium. This report outlines the results and interpretations of radiochemical and environmental isotopic analyses of groundwater sampled from UE-1-q on July 10, 1992 during the well pump test following well development. In addition, results of the field tritium monitoring performed during the well drilling are reported in Appendix 1. Sampling, analytical techniques, and analytical uncertainties for the groundwater analyses are presented in Appendix 2

  20. Evaluation of groundwater monitoring results at the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.

    1998-09-01

    The Hanford Site 200 Area Treated Effluent Disposal Facility (TEDF) has operated since June 1995. Groundwater monitoring has been conducted quarterly in the three wells surrounding the facility since 1992, with contributing data from nearby B Pond System wells. Cumulative hydrologic and geochemical information from the TEDF well network and other surrounding wells indicate no discernable effects of TEDF operations on the uppermost aquifer in the vicinity of the TEDF. The lateral consistency and impermeable nature of the Ringold Formation lower mud unit, and the contrasts in hydraulic conductivity between this unit and the vadose zone sediments of the Hanford formation suggest that TEDF effluent is spreading laterally with negligible mounding or downward movement into the uppermost aquifer. Hydrographs of TEDF wells show that TEDF operations have had no detectable effects on hydraulic heads in the uppermost aquifer, but show a continuing decay of the hydraulic mound generated by past operations at the B Pond System. Comparison of groundwater geochemistry from TEDF wells and other, nearby RCRA wells suggests that groundwater beneath TEDF is unique; different from both effluent entering TEDF and groundwater in the B Pond area. Tritium concentrations, major ionic proportions, and lower-than-background concentrations of other species suggest that groundwater in the uppermost aquifer beneath the TEDF bears characteristics of water in the upper basalt confined aquifer system. This report recommends retaining the current groundwater well network at the TEDF, but with a reduction of sampling/analysis frequency and some modifications to the list of constituents sought

  1. Effects of Sea Level Rise on Groundwater Flow Paths in a Coastal Aquifer System

    Science.gov (United States)

    Morrissey, S. K.; Clark, J. F.; Bennett, M. W.; Richardson, E.; Stute, M.

    2008-05-01

    Changes in groundwater flow in the Floridan aquifer system, South Florida, from the rise in sea level at the end of the last glacial period may be indicative of changes coastal aquifers will experience with continued sea level rise. As sea level rises, the hydraulic head near the coast increases. Coastal aquifers can therefore experience decreased groundwater gradients (increased residence times) and seawater intrusion. Stable isotopes of water, dissolved noble gas temperatures, radiocarbon and He concentrations were analyzed in water collected from 68 wells in the Floridan aquifer system throughout South Florida. Near the recharge area, geochemical data along groundwater flow paths in the Upper Floridan aquifer show a transition from recently recharged groundwater to glacial-aged water. Down gradient from this transition, little variation is apparent in the stable isotopes and noble gas recharge temperatures, indicating that most of the Upper Floridan aquifer contains groundwater recharged during the last glacial period. The rapid 120-meter rise in sea level marking the end of the last glacial period increased the hydraulic head in the Floridan aquifer system near the coast, slowing the flow of groundwater from the recharge area to the ocean and trapping glacial-aged groundwater. The raised sea level also flooded half of the Florida platform and caused seawater to intrude into the Lower Floridan. This circulation of seawater in the Lower Floridan continues today as our data indicate that the groundwater is similar to modern seawater with a freshwater component entering vertically from the recharge area to the Upper Floridan.

  2. In Situ Monitoring of Groundwater Contamination Using the Kalman Filter For Sustainable Remediation

    Science.gov (United States)

    Schmidt, F.; Wainwright, H. M.; Faybishenko, B.; Denham, M. E.; Eddy-Dilek, C. A.

    2017-12-01

    Sustainable remediation - based on less intensive passive remediation and natural attenuation - has become a desirable remediation alternative at contaminated sites. Although it has a number of benefits, such as reduced waste and water/energy usage, it carries a significant burden of proof to verify plume stability and to ensure insignificant increase of risk to public health. Modeling of contaminant transport is still challenging despite recent advances in numerical methods. Long-term monitoring has, therefore, become a critical component in sustainable remediation. However, the current approach, which relies on sparse groundwater sampling, is problematic, since it could miss sudden significant changes in plume behavior. A new method is needed to combine existing knowledge about contaminant behavior and latest advances in in situ groundwater sensors. This study presents an example of the effective use of the Kalman filter approach to estimate contaminant concentrations, based on in situ measured water quality parameters (e.g. electrical conductivity and pH) along with the results of sparse groundwater sampling. The Kalman filter can effectively couple physical models and data correlations between the contaminant concentrations and in situ measured variables. We aim (1) to develop a framework capable of integrating different data types to provide accurate contaminant concentration estimates, (2) to demonstrate that these results remain reliable, even when the groundwater sampling frequency is reduced, and (3) to evaluate the future efficacy of this strategy using reactive transport simulations. This framework can also serve as an early warning system for detecting unexpected plume migration. We demonstrate our approach using historical and current groundwater data from the Savannah River Site (SRS) F-Area Seepage Basins to estimate uranium and tritium concentrations. The results show that the developed method can provide reliable estimates of contaminant

  3. Optimal Design of Multitype Groundwater Monitoring Networks Using Easily Accessible Tools.

    Science.gov (United States)

    Wöhling, Thomas; Geiges, Andreas; Nowak, Wolfgang

    2016-11-01

    Monitoring networks are expensive to establish and to maintain. In this paper, we extend an existing data-worth estimation method from the suite of PEST utilities with a global optimization method for optimal sensor placement (called optimal design) in groundwater monitoring networks. Design optimization can include multiple simultaneous sensor locations and multiple sensor types. Both location and sensor type are treated simultaneously as decision variables. Our method combines linear uncertainty quantification and a modified genetic algorithm for discrete multilocation, multitype search. The efficiency of the global optimization is enhanced by an archive of past samples and parallel computing. We demonstrate our methodology for a groundwater monitoring network at the Steinlach experimental site, south-western Germany, which has been established to monitor river-groundwater exchange processes. The target of optimization is the best possible exploration for minimum variance in predicting the mean travel time of the hyporheic exchange. Our results demonstrate that the information gain of monitoring network designs can be explored efficiently and with easily accessible tools prior to taking new field measurements or installing additional measurement points. The proposed methods proved to be efficient and can be applied for model-based optimal design of any type of monitoring network in approximately linear systems. Our key contributions are (1) the use of easy-to-implement tools for an otherwise complex task and (2) yet to consider data-worth interdependencies in simultaneous optimization of multiple sensor locations and sensor types. © 2016, National Ground Water Association.

  4. Research on the contamination levels of norovirus in food facilities using groundwater in South Korea, 2015-2016.

    Science.gov (United States)

    Lee, Jeong Su; Joo, In Sun; Ju, Si Yeon; Jeong, Min Hee; Song, Yun-Hee; Kwak, Hyo Sun

    2018-09-02

    Norovirus (NoV) is a major pathogenic virus that is responsible for foodborne and waterborne gastroenteritis outbreaks. Groundwater is an important source of drinking water and is used in agriculture and food manufacturing processes. This study investigated norovirus contamination of groundwater treatment systems at 1360 sites in seven metropolitan areas and nine provinces in 2015-2016. Temperature, pH, residual chlorine, and turbidity content were assessed to analyze the water quality. In 2015, six sites were positive for the presence of NoV (0.88%) and in 2016, two sites were positive (0.29%); in total, NoV was detected in 8 of the 1360 sample sites (0.59%) investigated. Identified genotypes of NoV in groundwater included GI.5, 9 and GII.4, 6, 13, 17, and 21. GII.17 was the most prevalent genotype in treated groundwater used in the food industry. This dominance of GII.17 was corroborated by NoV infection outbreak cases and the results of a survey of coastal waters in South Korea in 2014-2015. Although a low detection rate was observed in this study, NoV is a pathogen that can spread extensively. Therefore, it is necessary to periodically monitor levels of norovirus which is responsible for food poisoning in groundwater. This is a first report to reveal epidemic genotype shift of norovirus in groundwater treatment system of food facilities in South Korea. Our results may contribute to the enhancement of public health and sanitary conditions by providing molecular epidemiological information on groundwater NoV. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Enhanced Multi-Objective Optimization of Groundwater Monitoring Networks

    DEFF Research Database (Denmark)

    Bode, Felix; Binning, Philip John; Nowak, Wolfgang

    Drinking-water well catchments include many sources for potential contaminations like gas stations or agriculture. Finding optimal positions of monitoring wells for such purposes is challenging because there are various parameters (and their uncertainties) that influence the reliability...... and optimality of any suggested monitoring location or monitoring network. The goal of this project is to develop and establish a concept to assess, design, and optimize early-warning systems within well catchments. Such optimal monitoring networks need to optimize three competing objectives: (1) a high...... be reduced to a minimum. The method is based on numerical simulation of flow and transport in heterogeneous porous media coupled with geostatistics and Monte-Carlo, wrapped up within the framework of formal multi-objective optimization. In order to gain insight into the flow and transport physics...

  6. Prediction of monthly regional groundwater levels through hybrid soft-computing techniques

    Science.gov (United States)

    Chang, Fi-John; Chang, Li-Chiu; Huang, Chien-Wei; Kao, I.-Feng

    2016-10-01

    Groundwater systems are intrinsically heterogeneous with dynamic temporal-spatial patterns, which cause great difficulty in quantifying their complex processes, while reliable predictions of regional groundwater levels are commonly needed for managing water resources to ensure proper service of water demands within a region. In this study, we proposed a novel and flexible soft-computing technique that could effectively extract the complex high-dimensional input-output patterns of basin-wide groundwater-aquifer systems in an adaptive manner. The soft-computing models combined the Self Organized Map (SOM) and the Nonlinear Autoregressive with Exogenous Inputs (NARX) network for predicting monthly regional groundwater levels based on hydrologic forcing data. The SOM could effectively classify the temporal-spatial patterns of regional groundwater levels, the NARX could accurately predict the mean of regional groundwater levels for adjusting the selected SOM, the Kriging was used to interpolate the predictions of the adjusted SOM into finer grids of locations, and consequently the prediction of a monthly regional groundwater level map could be obtained. The Zhuoshui River basin in Taiwan was the study case, and its monthly data sets collected from 203 groundwater stations, 32 rainfall stations and 6 flow stations during 2000 and 2013 were used for modelling purpose. The results demonstrated that the hybrid SOM-NARX model could reliably and suitably predict monthly basin-wide groundwater levels with high correlations (R2 > 0.9 in both training and testing cases). The proposed methodology presents a milestone in modelling regional environmental issues and offers an insightful and promising way to predict monthly basin-wide groundwater levels, which is beneficial to authorities for sustainable water resources management.

  7. Past and future contribution of global groundwater depletion to sea-level rise

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; Sperna Weiland, F.C.; Chao, B.; Wu, Y.-H.; Bierkens, M.F.P.

    2012-01-01

    Recent studies suggest the increasing contribution of groundwater depletion to global sea-level rise. Groundwater depletion has more than doubled during the last decades, primarily due to increase in water demand, while the increase in water impoundments behind dams has been tapering off since

  8. Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-09-30

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure 1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 which provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater sampling (Section 3.0), whereas well granted ''inactive'' status are not used for either purpose. The status designation also determines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 4.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 5.0). This plan applies to groundwater monitoring wells associated with Y-12 and related waste management facilities located within three hydrogeologic regimes (Figure 1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime is directly south of Y-12 and encompasses a section of Chestnut Ridge that is bound to the

  9. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report: Third quarter 1993

    International Nuclear Information System (INIS)

    1993-12-01

    During third quarter 1993, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards; and aluminum, iron, lead, manganese, pH, and total organic halogens exceeded the Savannah River Site Flag 2 criteria in one or more of the wells. Groundwater flow direction and rate in the water-table unit were similar to previous quarters

  10. Monitoring of the Syrian rift valley using radon measurement technique in groundwater

    International Nuclear Information System (INIS)

    Jubeli, Y.; Al-Ali, M.A.; Al-Hilall, M.

    1999-07-01

    Radon concentrations in groundwater were measured from six monitoring stations that were distributed along the Syrian rift valley, with time intervals of one month over a span of more than six years from 1992 to 1998. This set of data was integrated and statistically handled in order to be used as a significant base for estimating the range of natural radon background variations in groundwater along the concerned zone. The results reveal that only few anomalous radon values were recorded during the given time-window, which might be caused by tectonic disturbances or otherwise in the study region. (author)

  11. Study on the Variation of Groundwater Level under Time-varying Recharge

    Science.gov (United States)

    Wu, Ming-Chang; Hsieh, Ping-Cheng

    2017-04-01

    The slopes of the suburbs come to important areas by focusing on the work of soil and water conservation in recent years. The water table inside the aquifer is affected by rainfall, geology and topography, which will result in the change of groundwater discharge and water level. Currently, the way to obtain water table information is to set up the observation wells; however, owing to that the cost of equipment and the wells excavated is too expensive, we develop a mathematical model instead, which might help us to simulate the groundwater level variation. In this study, we will discuss the groundwater level change in a sloping unconfined aquifer with impermeable bottom under time-varying rainfall events. Referring to Child (1971), we employ the Boussinesq equation as the governing equation, and apply the General Integral Transforms Method (GITM) to analyzing the groundwater level after linearizing the Boussinesq equation. After comparing the solution with Verhoest & Troch (2000) and Bansal & Das (2010), we get satisfactory results. To sum up, we have presented an alternative approach to solve the linearized Boussinesq equation for the response of groundwater level in a sloping unconfined aquifer. The present analytical results combine the effect of bottom slope and the time-varying recharge pattern on the water table fluctuations. Owing to the limitation and difficulty of measuring the groundwater level directly, we develop such a mathematical model that we can predict or simulate the variation of groundwater level affected by any rainfall events in advance.

  12. 2008 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-03-01

    This report presents the 2008 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Subsurface Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of the CNTA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof-of-concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 443 that were conducted at the site during fiscal year 2008. This is the second groundwater monitoring report prepared by DOE-LM for the CNTA.

  13. 2008 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443

    International Nuclear Information System (INIS)

    2009-01-01

    This report presents the 2008 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Subsurface Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of the CNTA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof-of-concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 443 that were conducted at the site during fiscal year 2008. This is the second groundwater monitoring report prepared by DOE-LM for the CNTA

  14. Supplemental Assessment of the Y-12 Groundwater Protection Program Using Monitoring and Remediation Optimization System Software

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC; GSI Environmental LLC

    2009-01-01

    A supplemental quantitative assessment of the Groundwater Protection Program (GWPP) at the Y-12 National Security Complex (Y-12) in Oak Ridge, TN was performed using the Monitoring and Remediation Optimization System (MAROS) software. This application was previously used as part of a similar quantitative assessment of the GWPP completed in December 2005, hereafter referenced as the 'baseline' MAROS assessment (BWXT Y-12 L.L.C. [BWXT] 2005). The MAROS software contains modules that apply statistical analysis techniques to an existing GWPP analytical database in conjunction with hydrogeologic factors, regulatory framework, and the location of potential receptors, to recommend an improved groundwater monitoring network and optimum sampling frequency for individual monitoring locations. The goal of this supplemental MAROS assessment of the Y-12 GWPP is to review and update monitoring network optimization recommendations resulting from the 2005 baseline report using data collected through December 2007. The supplemental MAROS assessment is based on the findings of the baseline MAROS assessment and includes only the groundwater sampling locations (wells and natural springs) currently granted 'Active' status in accordance with the Y-12 GWPP Monitoring Optimization Plan (MOP). The results of the baseline MAROS assessment provided technical rationale regarding the 'Active' status designations defined in the MOP (BWXT 2006). One objective of the current report is to provide a quantitative review of data collected from Active but infrequently sampled wells to confirm concentrations at these locations. This supplemental MAROS assessment does not include the extensive qualitative evaluations similar to those presented in the baseline report.

  15. Monitoring the ground water level change during the pump test by using the Electric resistivity tomography

    Science.gov (United States)

    Hsu, H.; Chang, P. Y.; Yao, H. J.

    2017-12-01

    For hydrodynamics study of the unconfined aquifer in gravel formation, a pumping test was established to estimate the hydraulic conductivity in the midstream of Zhoushui River in Taiwan. The hydraulic parameters and the cone of depression could be estimated by monitoring the groundwater drawdown in an observation well which was in a short distance far from the pumping well. In this study we carried out the electric resistivity image monitoring during the whole pumping test. The electric resistivity data was measured with the surface and downhole electrodes which would produce a clear subsurface image of groundwater level through a larger distance than the distance between pumping and observation wells. The 2D electric image could also describe how a cone of depression truly created at subsurface. The continuous records could also show the change of groundwater level during the whole pumping test which could give a larger scale of the hydraulic parameters.

  16. Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex

    International Nuclear Information System (INIS)

    2006-01-01

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure A.1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling (Section 3.0), whereas wells granted ''inactive'' status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 3.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 4.0). This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes (Figure A.1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge directly south of Y-12 that is bound on the

  17. K-Area Acid/Caustic Basin groundwater monitoring report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1992-09-01

    During second quarter 1992, samples from the seven older KAC monitoring wells at the K-Area Acid/Caustic Basin were analyzed for herbicides, indicator parameters, major ions, pesticides, radionuclides, turbidity, and other constituents. New wells FAC 8 and 9 received the first of four quarters of comprehensive analyses and GC/MS VOA (gas chromatograph/ mass spectrometer volatile organic analyses). Monitoring results that exceeded the US Environmental Protection Agency's Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standards during the quarter are discussed in this report

  18. Seismic effects on bedrock and underground constructions. A literature survey of damage on constructions; Changes in groundwater levels and flow; Changes in chemistry in groundwater and gases

    International Nuclear Information System (INIS)

    Roeshoff, Kennert.

    1989-06-01

    This report is a literature review of direct and indirect effects of earthquakes on underground constructions as tunnels, caverns and mines. The direct damage will cause vibrations, shaking and displacement, which may lead to partial or total destruction of the underground facility. Damage caused by shaking has been reported in several studies, and several hundreds of events have been reported both from mines and tunnels. These reports are mainly from active earthquake areas. There are very few reports of damage caused by displacements on an existing fault. The damage, which may be severe, is generally concentrated to the vicinity of the fault zone. The report also includes a review of the effects caused by earthquakes on groundwater level, flow, pressure, chemistry and constituents in the ground. Such changes are mainly reported from studies in wells near active faults. The interesting coupling of changes in groundwater characteristics around an underground construction is, unfortunately, very seldom reported. The groundwater level and pressure changes are discussed in Chapter 4. The bases for this part of the review is taken from the Alaska earthquake 1964. Other observations are reported from wells and reservoirs located near existing faults. Changes of the geochemistry in groundwater and soil gases are reviewed in Chapter 4. The mechanisms of seismochemical anomalies are discussed and examples of short and long term monitoring are given from USA, Soviet Union and China. Gases in ground water and soil is reported in Chapter 5. Radon is so far one of the most studied species and its variation in short, medium and long term with seismic activity is rather well understood. Other gases or isotopes that have been studied include helium, carbon dioxide, hydrogen, argon and methane, radium and uranium. The paper also includes same statements for repository design based on the result of the review. (81 refs.)

  19. An analysis of potential impacts to the groundwater monitoring networks in the Central Plateau. Revision 0

    International Nuclear Information System (INIS)

    1996-01-01

    This report presents the results of an evaluation of potential impacts to the four groundwater monitoring projects operating in the Central Plateau of the Hanford Site. It specifically fulfills Milestone M-15-81A of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). Milestone M-15-81A specifies the evaluation of the potential impacts to the groundwater monitoring well systems in the Central Plateau caused by the following activities: reduction of liquids discharged to soil, proposed and operational liquid treatment facilities, and proposed pump-and-treat systems. For this report, an open-quotes impactclose quotes is defined as a restriction of the ability to draw samples from a well and/or a reduction of the ability of a monitoring well to meet its intended purpose (such as the detection of contaminant seepage from a facility). Approximately 20% (74 wells) of the groundwater monitoring wells potentially will experience sampling problems by the year 2005 due to the declining water table in the Central Plateau. Reduction of discharges to the B Pond complex and operation of the Treated Effluent Disposal System will directly cause four additional wells to potentially experience sampling problems. Approximately 90 monitoring wells (35 of which are Resource Conservation and Recovery Act of 1976 [RCRA] wells) will be potentially affected by the operation of pump-and-treat systems in the 200 West Area. Most of the impacts will be caused by local changes to groundwater flow directions that will potentially reduce the ability of the RCRA well network to monitor a limited number of RCRA facilities

  20. U-234/U-238 ratio: Qualitative estimate of groundwater flow in Rocky Flats monitoring wells

    International Nuclear Information System (INIS)

    Laul, J.C.

    1994-01-01

    Groundwater movement through various pathways is the primary mechanism for the transport of radionuclides and trace elements in a water/rock interaction. About three dozen wells, installed in the Rocky Flats Plant (RFP) Solar Evaporation Ponds (SEP) area, are monitored quarterly to evaluate the extent of any lateral and downgradient migration of contaminants from the Solar Evaporation Ponds: 207-A; 207-B North, 207-B Center, and 207-B South; and 207-C. The Solar Ponds are the main source for the various contaminants: radionuclides (U-238, U-234, Pu-239, 240 and Am-241); anions; and trace metals to groundwaters. The U-238 concentrations in Rocky Flats groundwaters vary from 2 (CO 3 ) 2 2- , because of the predominant bicarbonate medium

  1. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995

    International Nuclear Information System (INIS)

    1995-06-01

    During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters

  2. Development of a model to simulate groundwater inundation induced by sea-level rise and high tides in Honolulu, Hawaii.

    Science.gov (United States)

    Habel, Shellie; Fletcher, Charles H; Rotzoll, Kolja; El-Kadi, Aly I

    2017-05-01

    Many of the world's largest cities face risk of sea-level rise (SLR) induced flooding owing to their limited elevations and proximities to the coastline. Within this century, global mean sea level is expected to reach magnitudes that will exceed the ground elevation of some built infrastructure. The concurrent rise of coastal groundwater will produce additional sources of inundation resulting from narrowing and loss of the vertical unsaturated subsurface space. This has implications for the dense network of buried and low-lying infrastructure that exists across urban coastal zones. Here, we describe a modeling approach that simulates narrowing of the unsaturated space and groundwater inundation (GWI) generated by SLR-induced lifting of coastal groundwater. The methodology combines terrain modeling, groundwater monitoring, estimation of tidal influence, and numerical groundwater-flow modeling to simulate future flood scenarios considering user-specified tide stages and magnitudes of SLR. We illustrate the value of the methodology by applying it to the heavily urbanized and low-lying Waikiki area of Honolulu, Hawaii. Results indicate that SLR of nearly 1 m generates GWI across 23% of the 13 km 2 study area, threatening $5 billion of taxable real estate and 48 km of roadway. Analysis of current conditions reveals that 86% of 259 active cesspool sites in the study area are likely inundated. This suggests that cesspool effluent is currently entering coastal groundwater, which not only leads to degradation of coastal environments, but also presents a future threat to public health as GWI would introduce effluent at the ground surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Comparative Influences of Precipitation and River Stage on Groundwater Levels in Near-River Areas

    Directory of Open Access Journals (Sweden)

    Incheol Kim

    2015-12-01

    Full Text Available The sustainable performance of foundations of various urban buildings and infrastructures is strongly affected by groundwater level (GWL, as GWL causes changes in the stress state within soil. In the present study, the components affecting GWL were investigated, focusing on the effects of precipitation and river stage. These components were analyzed using a six-year database established for hydrological and groundwater monitoring data. Five study regions for which daily measured precipitation, river stage, and GWL data were available were compared. Different periods of precipitation, geographical characteristics, and local surface conditions were considered in the analysis. The results indicated that key influence components on GWL are different depending on the hydrological, geological, and geographical characteristics of the target regions. River stage had the strongest influence on GWL in urban areas near large rivers with a high ratio of paved surface. In rural areas, where the paved surface area ratio and soil permeability were low, the moving average showed a closer correlation to GWL than river stage. A moving average-based method to predict GWL variation with time was proposed for regions with a low ratio of paved surface area and low permeability soils.

  4. Treatment of groundwater contaminated with low levels of military munitions

    International Nuclear Information System (INIS)

    Bricka, R.M.; Sharp, W.

    1993-01-01

    The site of interest is a military base that was established in the late 1800s. In its early history this facility was used as a powder depot to fill projectiles with miximite (a propellant). Since World War I, this facility was used to produce artillery ammunition, bombs, high explosives, pyrotechnics and other ordinances. Weapons production at this facility has ceased, but as a result of the past activities at this facility, contaminants are migrating into the groundwater. One source of drinking water for this installation is a screened well in a stratified-drift aquifer system at a depth of 75-85 feet below land surface. In the 1980s sampling of this well revealed low level contamination of trichloroethylene (TCE), RDX and HMX. TCE levels exceeded drinking water standards and an air stripping column was installed to remove the TCE. RDX and HMX, concentrations were below drinking water standards. Health Advisory (HA) levels for RDX and HMX were published by the U.S. Environmental Protection Agency (USEPA) in November 1988. The lifetime HA levels are 2 ppb and 400 ppb for RDX and HMX, respectively (McLellan et al. 1988a, and McLellan et al. 1988b). It is expected that continuous withdrawals from this well will increase RDX and HMX concentrations. In addition, it is believed that future USEPA regulations will adapt the HA as a drinking water standard. This study was initiated in an effort to have an appropriate cost effective technology ready to meet any such standard. RDX and HMX RDX and HMX are military explosives. RDX (Hexahydro-l,3,5-trinitro-l,3,5-triazine) is a code name for Research Department Explosive. This explosive is described as a white crystalline solid with about 1.3 times the explosive power of trinitrotoluene (TNT). RDX is classified as a EPA Group C compound: Possible Human Carcinogen (McLellan et. al. 1988a). HMX (Octahydro-1, 3, 5, 7- tetranitro-l, 3, 5, 7-tetrazocine) is a code name for High Melting Explosive. This explosive is described as a

  5. Monitoring groundwater storage changes in the highly dynamic Bengal Basin: validation of GRACE measurements

    Science.gov (United States)

    Shamsudduha, M.; Taylor, R. G.; Longuevergne, L.

    2011-12-01

    Monitoring of spatio-temporal changes in terrestrial water storage (ΔTWS) provides valuable information regarding the basin-scale dynamics of hydrological systems. Recent satellite measurements of the ΔTWS under the Gravity Recovery and Climate Experiment (GRACE) enable the derivation of groundwater storage changes (ΔGWS) where in situ data are limited. In the well monitored and highly-dynamic Bengal Basin of Bangladesh, we test the ability of GRACE measurements to trace the seasonality and trend in groundwater storage associated with intensive groundwater abstraction for dry-season irrigation and wet-season (monsoonal) recharge. Two different GRACE products (CSR and GRGS) and data processing methods (gridded and spherical harmonics) are also compared. Results show that GRACE derived estimates of recent (2003 to 2007) ΔGWS correlate well (r=0.77 to 0.93, p-value CSR for these estimates. ΔGWS accounts for 44% of the total variation in ΔTWS in the Bengal Basin. Changes in surface water storage (ΔSWS) estimated from a network of 298 river gauging stations and soil moisture storage (ΔSMS) derived from Land Surface Models explain 22% and 33% of ΔTWS respectively. Groundwater depletion estimated from borehole hydrographs (-0.52±0.30 km3/yr) is within the range of satellite-derived estimates (-0.44 to -2.04 km3/yr) that result from uncertainty associated with ΔSMS (CLM, NOAH, VIC) and GRACE data processing techniques. Recent (2003 to 2007) estimates of groundwater depletion are substantially greater than the long-term (1985 to 2007) mean (-0.21±0.03 km3/yr) and are explained primarily by substantial increases in groundwater abstraction for the dry-season irrigation and drinking water supplies over the last two decades.

  6. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    Science.gov (United States)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  7. Monitoring of Nitrate and Pesticide Pollution in Mnasra, Morocco Soil and Groundwater.

    Science.gov (United States)

    Marouane, Bouchra; Dahchour, Abdelmalek; Dousset, Sylvie; El Hajjaji, Souad

    2015-06-01

    This study evaluates the levels of nitrates and pesticides occurring in groundwater and agricultural soil in the Mnasra, Morocco area, a zone with intensive agricultural activity. A set of 108 water samples and 68 soil samples were collected from ten selected sites in the area during agricultural seasons, from May 2010 to September 2012. The results reveal that 89.7% of water samples exceeded the standard limit of nitrate concentrations for groundwater (50 mg/L). These results can be explained by the prevailing sandy nature of the soil in the area, the frequency of fertilizer usage, and the shallow level of the water table, which favors the leaching of nitrate from field to groundwater. In contrast, the selected pesticide molecules were not detected in the analysed soil and water samples; levels were below the quantification limit in all samples. This situation could be explained by the probable partial or total transformation of the molecules in soil.

  8. Groundwater monitoring program evaluation For A/M Area, Savannah River Site

    International Nuclear Information System (INIS)

    Hiergesell, R.A.; Bollinger, J.S.

    1996-01-01

    This investigation was undertaken with the primary purpose of assessing the groundwater monitoring program within the A/M Area to identify ways in which the monitoring program could be improved. The task was difficult due to the large number of wells located within the A/M Area and the huge database of analytical data. It was recognized early in this investigation that one of the key tasks was to develop a way to gain access to the groundwater databases so that recommendations could be made. To achieve this, geographic information systems (GIS) technology was used to extract pertinent groundwater quality information from the Geochemical Information Management System (GIMS) groundwater database and display the extracted information spatially. GIS technology was also used to determine the location of well screen and annular material zones within the A/M Area hydrostratigraphy and to identify wells that may breach confining units. Recommendations developed from this study address: (1) wells that may not be providing reliable data but continue to be routinely sampled (2) wells that may be inappropriately located but continue to be routinely sampled and (3) further work that should be undertaken, including well development, evaluation of wells that may be breaching confining units, and development of an automated link to GIMS using GIS so that GIMS data can easily be accessed and displayed geographically

  9. Water level monitoring device in nuclear reactor

    International Nuclear Information System (INIS)

    Miura, Kiyohide; Otake, Tomohiro.

    1988-01-01

    Purpose: To monitor the water level in a pressure vessel of BWR type nuclear reactors at high accuracy by improving the compensation functions. Constitution: In the conventional water level monitor in a nuclear reactor, if the pressure vessel is displaced by the change of the pressure in the reactor or the temperature of the reactor water, the relative level of the reference water head in a condensation vessel is changed to cause deviation between the actual water level and the indicated water level to reduce the monitoring accuracy. According to the invention, means for detecting the position of the reference water head and means for detection the position in the condensation vessel are disposed to the pressure vessel. Then, relative positional change between the condensation vessel and the reference water head is calculated based on detection sinals from both of the means. The water level is compensated and calculated by water level calculation means based on the relative positional change, water level signals from the level gage and the pressure signals from the pressure gage. As a result, if the pressure vessel is displaced due to the change of the temperature or pressure, it is possible to measure the reactor water level accurately thereby remakably improve the reliability for the water level control in the nuclear reactor. (Horiuchi, T.)

  10. Groundwater Protection Program Calendar Year 1998 Groundwater Monitoring Report, U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained during calendar year (CY) 1998 by the Lockheed Martin Energy Systems, Inc. Y-12 Plant Groundwater Protection Program (GWPP) at the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant, Groundwater and surface water monitoring during CY 1998 was performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), and the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley (BCV), and the Chestnut Ridge Regime which is located south of the Y-12 Plant.

  11. Groundwater Protection Program Calendar Year 1998 Groundwater Monitoring Report, U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1999-01-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained during calendar year (CY) 1998 by the Lockheed Martin Energy Systems, Inc. Y-12 Plant Groundwater Protection Program (GWPP) at the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant, Groundwater and surface water monitoring during CY 1998 was performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), and the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley (BCV), and the Chestnut Ridge Regime which is located south of the Y-12 Plant

  12. Revised ground-water monitoring compliance plan for the 300 area process trenches

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, R.; Aaberg, R.L.; Bates, D.J.; Carlile, J.V.M.; Freshley, M.D.; Liikala, T.L.; Mitchell, P.J.; Olsen, K.B.; Rieger, J.T.

    1988-09-01

    This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.

  13. Regional Groundwater Flow Assessment in a Prospective High-Level Radioactive Waste Repository of China

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Cao

    2017-07-01

    Full Text Available The production of nuclear energy will result in high-level radioactive waste (HLRW, which brings potential environmental dangers. Selecting a proper disposal repository is a crucial step in the development of nuclear energy. This paper introduces firstly the hydrogeological conditions of the Beishan area in China. Next, a regional groundwater model is constructed using a multiphase flow simulator to analyze the groundwater flow pattern in the Beishan area. Model calibration shows that the simulated and observed hydraulic heads match well, and the simulated regional groundwater flow pattern is similar to the surface flow pattern from the channel network, indicating that the groundwater flow is mainly dependent on the topography. In addition, the simulated groundwater storage over the period from 2003 to 2014 is similar to the trend derived from the Gravity Recovery and Climate Experiment satellite-derived results. Last, the established model is used to evaluate the influences of the extreme climate and regional faults on the groundwater flow pattern. It shows that they do not have a significant influence on the regional groundwater flow patterns. This study will provide a preliminary reference for the regional groundwater flow assessment in the site of the HLRW in China.

  14. Groundwater reorganization in the Floridan aquifer following Holocene sea-level rise

    OpenAIRE

    Morrissey, SK; Clark, JF; Bennett, M; Richardson, E; Stute, M

    2010-01-01

    Sea-level fluctuations, particularly those associated with glacial-interglacial cycles, can have profound impacts on the flow and circulation of coastal groundwater: the water found at present in many coastal aquifers may have been recharged during the last glacial period, when sea level was over 100 m lower than present, and thus is not in equilibrium with present recharge conditions. Here we show that the geochemistry of the groundwater found in the Floridan Aquifer System in south Florida ...

  15. Forecasting of Groundwater Level using Artificial Neural Network by incorporating river recharge and river bank infiltration

    Directory of Open Access Journals (Sweden)

    Nizar Shamsuddin Mohd Khairul

    2017-01-01

    Full Text Available Groundwater tables forecasting during implemented river bank infiltration (RBI method is important to identify adequate storage of groundwater aquifer for water supply purposes. This study illustrates the development and application of artificial neural networks (ANNs to predict groundwater tables in two vertical wells located in confined aquifer adjacent to the Langat River. ANN model was used in this study is based on the long period forecasting of daily groundwater tables. ANN models were carried out to predict groundwater tables for 1 day ahead at two different geological materials. The input to the ANN models consider of daily rainfall, river stage, water level, stream flow rate, temperature and groundwater level. Two different type of ANNs structure were used to predict the fluctuation of groundwater tables and compared the best forecasting values. The performance of different models structure of the ANN is used to identify the fluctuation of the groundwater table and provide acceptable predictions. Dynamics prediction and time series of the system can be implemented in two possible ways of modelling. The coefficient correlation (R, Mean Square Error (MSE, Root Mean Square Error (RMSE and coefficient determination (R2 were chosen as the selection criteria of the best model. The statistical values for DW1 are 0.8649, 0.0356, 0.01, and 0.748 respectively. While for DW2 the statistical values are 0.7392, 0.0781, 0.0139, and 0.546 respectively. Based on these results, it clearly shows that accurate predictions can be achieved with time series 1-day ahead of forecasting groundwater table and the interaction between river and aquifer can be examine. The findings of the study can be used to assist policy marker to manage groundwater resources by using RBI method.

  16. P-Area Acid/Caustic Basin groundwater monitoring report. First quarter 1995

    International Nuclear Information System (INIS)

    Chase, J.A.

    1995-06-01

    During first quarter 1995, groundwater from the six PAC monitoring wells at the P-Area Acid/Caustic Basin was analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, adionuclide indicators, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are discussed in this report. During first quarter 1995, no constituents exceeded the final PDWS. Aluminum exceeded its SRS Flag 2 criterion in all six PAC wells. Iron and manganese exceeded Flag 2 criteria in three wells, while turbidity was elevated in one well. Groundwater flow direction and rate in the water table beneath the P-Area Acid/Caustic Basin were similar to past quarters

  17. Functional design criteria for FY 1993-2000 groundwater monitoring wells

    International Nuclear Information System (INIS)

    Williams, B.A.

    1996-01-01

    The purpose of this revision is to update the Line Item Project, 93-L-GFW-152 Functional Design Criteria (FDC) to reflect changes approved in change control M-24-91-6, Engineering Change Notices (ECNs), and expand the scope to include subsurface investigations along with the borehole drilling. This revision improves the ability and effectiveness of maintaining RCRA and Operational groundwater compliance by combining borehole and well drilling with subsurface data gathering objectives. The total projected number of wells to be installed under this project has decreased from 200 and the scope has been broadened to include additional subsurface investigation activities that usually occur simultaneously with most traditional borehole drilling and monitoring well installations. This includes borehole hydrogeologic characterization activities, and vadose monitoring. These activities are required under RCRA 40 CFR 264 and 265 and WAC 173-303 for site characterization, groundwater and vadose assessment and well placement

  18. Mixed waste management facility groundwater monitoring report. Fourth quarter 1996 and 1996 summary

    International Nuclear Information System (INIS)

    1997-03-01

    During fourth quarter 1996, nine constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Carbon tetrachloride, chloroethene, chloroform, 1,1-dichloroethylene, dichloromethane, gross alpha, and tetrachloroethylene also exceeded final PDWS in one or more wells. Elevated constituents were found in numerous Aquifer Zone llB2 (Water Table) and Aquifer Zone llB1 (Barnwell/McBean) wells and in six Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters

  19. Mixed waste management facility groundwater monitoring report. Fourth quarter 1995 and 1995 summary

    International Nuclear Information System (INIS)

    1996-03-01

    During fourth quarter 1995, seven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Chloroethene, gross alpha, lead, mercury, and tetrachloroethylene also exceeded final PDWS in one or more wells. Elevated constituents were found in numerous Aquifer Zone IIB 2 (Water Table) and Aquifer Zone IIB 1 (Barnwell/McBean) wells and in three Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters

  20. Groundwater level responses to precipitation variability in Mediterranean insular aquifers

    Science.gov (United States)

    Lorenzo-Lacruz, Jorge; Garcia, Celso; Morán-Tejeda, Enrique

    2017-09-01

    Groundwater is one of the largest and most important sources of fresh water on many regions under Mediterranean climate conditions, which are exposed to large precipitation variability that includes frequent meteorological drought episodes, and present high evapotranspiration rates and water demand during the dry season. The dependence on groundwater increases in those areas with predominant permeable lithologies, contributing to aquifer recharge and the abundance of ephemeral streams. The increasing pressure of tourism on water resources in many Mediterranean coastal areas, and uncertainty related to future precipitation and water availability, make it urgent to understand the spatio-temporal response of groundwater bodies to precipitation variability, if sustainable use of the resource is to be achieved. We present an assessment of the response of aquifers to precipitation variability based on correlations between the Standardized Precipitation Index (SPI) at various time scales and the Standardized Groundwater Index (SGI) across a Mediterranean island. We detected three main responses of aquifers to accumulated precipitation anomalies: (i) at short time scales of the SPI (24 months). The differing responses were mainly explained by differences in lithology and the percentage of highly permeable rock strata in the aquifer recharge areas. We also identified differences in the months and seasons when aquifer storages are more dependent on precipitation; these were related to climate seasonality and the degree of aquifer exploitation or underground water extraction. The recharge of some aquifers, especially in mountainous areas, is related to precipitation variability within a limited spatial extent, whereas for aquifers located in the plains, precipitation variability influence much larger areas; the topography and geological structure of the island explain these differences. Results indicate large spatial variability in the response of aquifers to precipitation in

  1. Groundwater monitoring program plan and conceptual site model for the Al-Tuwaitha Nuclear Research Center in Iraq.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John Robin; Cochran, John Russell

    2013-07-01

    The Radiation Protection Center of the Iraqi Ministry of Environment is developing a groundwater monitoring program (GMP) for the Al-Tuwaitha Nuclear Research Center located near Baghdad, Iraq. The Al-Tuwaitha Nuclear Research Center was established in about 1960 and is currently being cleaned-up and decommissioned by Iraqs Ministry of Science and Technology. This Groundwater Monitoring Program Plan (GMPP) and Conceptual Site Model (CSM) support the Radiation Protection Center by providing: A CSM describing the hydrogeologic regime and contaminant issues, recommendations for future groundwater characterization activities, and descriptions of the organizational elements of a groundwater monitoring program. The Conceptual Site Model identifies a number of potential sources of groundwater contamination at Al-Tuwaitha. The model also identifies two water-bearing zones (a shallow groundwater zone and a regional aquifer). The depth to the shallow groundwater zone varies from approximately 7 to 10 meters (m) across the facility. The shallow groundwater zone is composed of a layer of silty sand and fine sand that does not extend laterally across the entire facility. An approximately 4-m thick layer of clay underlies the shallow groundwater zone. The depth to the regional aquifer varies from approximately 14 to 17 m across the facility. The regional aquifer is composed of interfingering layers of silty sand, fine-grained sand, and medium-grained sand. Based on the limited analyses described in this report, there is no severe contamination of the groundwater at Al-Tuwaitha with radioactive constituents. However, significant data gaps exist and this plan recommends the installation of additional groundwater monitoring wells and conducting additional types of radiological and chemical analyses.

  2. Z-Area Saltstone Disposal Facility Groundwater Monitoring Report. 1997 Annual Report

    International Nuclear Information System (INIS)

    Roach, J.L. Jr.

    1997-12-01

    Samples from the ZBG wells at the Z-Area Saltstone Disposal Facility are analyzed for constituents required by South Carolina Department of Health and Environmental Control (SCDHEC) Industrial Solid Waste Permit number-sign 025500-1603 (formerly IWP-217). No constituents were reported above SCDHEC-proposed groundwater monitoring standards or final Primary Drinking Water Standards during first or third quareters 1997. No constituents were detected above SRS flagging criteria during first or third quarters 1997

  3. M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1

    International Nuclear Information System (INIS)

    Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

    1994-05-01

    This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters

  4. Reducing the sampling frequency of groundwater monitoring wells

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, V.M.; Ridley, M.N. [Lawrence Livermore National Lab., CA (United States); Tuckfield, R.C.; Anderson, R.A. [Westinghouse, Savannah River Co., Aiken, SC (United States)

    1996-01-01

    As part of a joint LLNL/SRTC project, a methodology for selecting sampling frequencies is evolving that introduces statistical thinking and cost effectiveness into the sampling schedule selection practices now commonly employed on environmental projects. Our current emphasis is on descriptive rather than inferential statistics. Environmental monitoring data are inherently messy, being plagued by such problems as extremely high variability and left-censoring. As a result, real data often fail to meet the assumptions required for the appropriate application of many statistical methods. Rather than abandon the quantitative approach in these cases, however, the methodology employs simple statistical techniques to bring a measure of objectivity and reproducibility to the process. The techniques are applied within the framework of decision logic, which inrerprets the numerical results from the standpoint of chemistry-related professional judgment and the regulatory context. This paper presents the methodology`s basic concepts together with early implementation results, showing the estimated cost savings. 6 refs., 3 figs.

  5. Groundwater levels and water quality during a 96-hour aquifer test in Pickaway County, Ohio, 2012

    Science.gov (United States)

    Haefner, Ralph J.; Runkle, Donna L.; Mailot, Brian E.

    2014-01-01

    During October–November 2012, a 96-hour aquifer test was performed at a proposed well field in northern Pickaway County, Ohio, to investigate groundwater with elevated nitrate concentrations. Earlier sampling done by the City of Columbus revealed that some wells had concentrations of nitrate that approached 10 milligrams per liter (mg/L), whereas other wells and the nearby Scioto River had concentrations from 2 to 6 mg/L. The purpose of the current test was to examine potential changes in water quality that may be expected if the site was developed into a public water-supply source; therefore, water-transmitting properties determined during a previous test were not determined a second time. Before and during the test, water-level data and water-quality samples were obtained from observation wells while a test production well was pumped at 1,300 gallons per minute. Before the test, local groundwater levels indicated that groundwater was being discharged to the nearby Scioto River, but during the test, the stream was losing streamflow owing to infiltration. Water levels declined in the pumping well, in adjacent observation wells, and in a nearby streambed piezometer as pumping commenced. The maximum drawdown in the pumping well was 29.75 feet, measured about 95 hours after pumping began. Water-quality data, including analyses for field parameters, major and trace elements, nutrients, and stable isotopes of oxygen and nitrogen in nitrate, demonstrated only small variations before and during the test. Concentrations of nitrate in five samples from the pumping well ranged from about 5.10 to 5.42 mg/L before and during the test, whereas concentrations of nitrate in five samples on or about the same sampling dates and times at a monitoring site on the Scioto River adjacent to the pumping well ranged from 3.46 to 4.97 mg/L. Water from two nearby observation wells had nitrate concentrations approaching 10 mg/L, which is the U.S. Environmental Protection Agency’s Maximum

  6. Tritium monitoring in groundwater and evaluation of model predictions for the Hanford Site 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.; Bergeron, M.P.; Cole, C.R.; Freshley, M.D.; Wurstner, S.K.

    1997-08-01

    The Effluent Treatment Facility (ETF) disposal site, also known as the State-Approved Land Disposal Site (SALDS), receives treated effluent containing tritium, which is allowed to infiltrate through the soil column to the water table. Tritium was first detected in groundwater monitoring wells around the facility in July 1996. The SALDS groundwater monitoring plan requires revision of a predictive groundwater model and reevaluation of the monitoring well network one year from the first detection of tritium in groundwater. This document is written primarily to satisfy these requirements and to report on analytical results for tritium in the SALDS groundwater monitoring network through April 1997. The document also recommends an approach to continued groundwater monitoring for tritium at the SALDS. Comparison of numerical groundwater models applied over the last several years indicate that earlier predictions, which show tritium from the SALDS approaching the Columbia River, were too simplified or overly robust in source assumptions. The most recent modeling indicates that concentrations of tritium above 500 pCi/L will extend, at most, no further than ∼1.5 km from the facility, using the most reasonable projections of ETF operation. This extent encompasses only the wells in the current SALDS tritium-tracking network

  7. Selection of Sampling Pumps Used for Groundwater Monitoring at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, Ronald; Webber, William D.; Smith, Ronald M.

    2001-11-05

    The variable frequency drive centrifugal submersible pump, Redi-Flo2a made by Grundfosa, was selected for universal application for Hanford Site groundwater monitoring. Specifications for the selected pump and five other pumps were evaluated against current and future Hanford groundwater monitoring performance requirements, and the Redi-Flo2 was selected as the most versatile and applicable for the range of monitoring conditions. The Redi-Flo2 pump distinguished itself from the other pumps considered because of its wide range in output flow rate and its comparatively moderate maintenance and low capital costs. The Redi-Flo2 pump is able to purge a well at a high flow rate and then supply water for sampling at a low flow rate. Groundwater sampling using a low-volume-purging technique (e.g., low flow, minimal purge, no purge, or micropurgea) is planned in the future, eliminating the need for the pump to supply a high-output flow rate. Under those conditions, the Well Wizard bladder pump, manufactured by QED Environmental Systems, Inc., may be the preferred pump because of the lower capital cost.

  8. Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-04-01

    This report presents the 2007 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of the CNTA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. Requirements for CAU 443 are specified in the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense, and the State of Nevada and includes groundwater monitoring in support of site closure. This is the first groundwater monitoring report prepared by DOE-LM for the CNTA The CNTA is located north of U.S. Highway 6, approximately 30 miles north of Warm Springs in Nye County, Nevada (Figure 1). Three emplacement boreholes, UC-1, UC-3, and UC-4, were drilled at the CNTA for underground nuclear weapons testing. The initial underground nuclear test, Project Faultless, was conducted in borehole UC-1 at a depth of 3,199 feet (ft) (975 meters) below ground surface on January 19, 1968. The yield of the Project Faultless test was estimated to be 0.2 to 1 megaton (DOE 2004). The test resulted in a down-dropped fault block visible at land surface (Figure 2). No further testing was conducted at the CNTA, and the site was decommissioned as a testing facility in 1973.

  9. Combining non-invasive techniques for delimitation and monitoring of chlorinated solvents in groundwater

    Science.gov (United States)

    Sparrenbom, Charlotte; Åkesson, Sofia; Hagerberg, David; Dahlin, Torleif; Holmstrand, Henry; Johansson, Sara

    2016-04-01

    Large numbers of polluted areas cause leakage of hazardous pollutants into our groundwater. Remediated actions are needed in a vast number of areas to prevent degradation of the quality of our water resources. As excavation of polluted masses is problematic as it often moves the pollutants from one site to another (in best case off site treatment is carried out), in-situ remediation and monitoring thereof needs further development. In general, we need to further develop and improve how we retrieve information on the status of the underground system. This is needed to avoid costly and hazardous shipments associated with excavations and to avoid unnecessary exposure when handling polluted masses. Easier, cheaper, more comprehensive and nondestructive monitoring techniques are needed for evaluation of remediation degree, degradation status of the contaminants and the remaining groundwater contaminant plume. We investigate the possibility to combine two investigation techniques, which are invasive to a very low degree and can give a very good visualization and evaluation of pollutant status underground and changes therein in time. The two methods we have combined are Direct Current resistivity and time-domain Induced Polarization tomography (DCIP) and Compound Specific Isotope Analysis (CSIA) and their use within the context of DNAPL contaminated sites. DCIP is a non-invasive and non-destructive geoelectrical measurement method with emerging new techniques for 4D mapping for promising visualization of underground hydrogeochemical structures and spatial distribution of contaminants. The strength of CSIA is that inherent degradation-relatable isotopic information of contaminant molecules remains unaffected as opposed to the commonly used concentration-based studies. Our aim is to evaluate the possibilities of gas sampling on the ground surface for this technique to become non-invasive and usable without interfering ground conditions.Drillings together with soil and

  10. Long-Term Groundwater Monitoring Optimization, Clare Water Supply Superfund Site, Permeable Reactive Barrier and Soil Remedy Areas, Clare, Michigan

    Science.gov (United States)

    This report contains a review of the long-term groundwater monitoring network for the Permeable Reactive Barrier (PRB) and Soil Remedy Areas at the Clare Water Supply Superfund Site in Clare, Michigan.

  11. A Commune-Level Groundwater Potential Map for the Republic of Mali

    Directory of Open Access Journals (Sweden)

    Silvia Díaz-Alcaide

    2017-10-01

    Full Text Available Groundwater represents an essential resource in sub-Saharan Africa, where several hundred million people rely on aquifers for domestic supply. This paper presents a method to map groundwater potential in the Republic of Mali based on a spatially-distributed database of 26,040 boreholes. The database includes exhaustive information on key parameters such as borehole location, success rate of borehole production, depth, yield, static groundwater level or water quality. Representative variables were classified and interpreted jointly to develop a groundwater potential index for each of the 703 communes in Mali. This provides a methodological novelty because groundwater potential studies typically rely on indirect indicators such as lineaments, slope, soil moisture and landforms. Also, such large borehole databases have seldom been used to estimate groundwater potential. The highest indexes were obtained for the areas in and around the River Niger’s Inner Delta, including southern Tombouctou and the central parts of the Ségou and Mopti Regions. The lower Precambrian formations, which include the country’s thoroughly populated southern plateau, had moderate scores. The lowest groundwater potential was found in the northern part of the Kayes and Koulikoro Regions, as well as in the entire region of Kidal. By providing results at the commune scale, these outcomes show that groundwater potential across the country’s geological and hydrogeological units can be highly variable, and that local and regional-scale information may be useful for groundwater management purposes. These results are policy-relevant in a context of rapid change and population growth, where groundwater resources can be expected to be increasingly relied upon in the coming years.

  12. Handbook: Collecting Groundwater Samples from Monitoring Wells in Frenchman Flat, CAU 98

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jenny [Desert Research Inst. (DRI), Reno, NV (United States); Lyles, Brad [Desert Research Inst. (DRI), Reno, NV (United States); Cooper, Clay [Desert Research Inst. (DRI), Reno, NV (United States); Hershey, Ron [Desert Research Inst. (DRI), Reno, NV (United States); Healey, John [Desert Research Inst. (DRI), Reno, NV (United States)

    2015-06-01

    CAU. The sampling plan is designed to ensure that monitoring activities occur in compliance with the UGTA Quality Assurance Plan (DOE, 2012). The sampling plan should be referenced for Quality Assurance (QA) elements and procedures governing sampling activities. The NNSS Integrated Sampling Plan specifies the groundwater monitoring that will occur in CAU 98 until the long-term monitoring program is approved in the Closure Report. The plan specifies the wells that must be monitored and categorizes them by their sampling objective with the associated analytical requirements and frequency. Possible sample collection methods and required standard operating procedures are also presented. The intent of this handbook is to augment the NNSS Integrated Sampling Plan by providing well-specific details for the sampling professional implementing the Sampling Plan in CAU 98, Frenchman Flat. This handbook includes each CAU 98 well designated for sampling in the NNSS Integrated Sampling Plan. The following information is provided in the individual well sections: 1. The purpose of sampling. 2. A physical description of the well. 3. The chemical characteristics of the formation water. 4. Recommended protocols for purging and sampling. The well-specific information has been gathered from numerous historical and current sources cited in each section, but two particularly valuable resources merit special mention. These are the USGS NNSS website (http://nevada.usgs.gov/doe_nv/ntsarea5.cfm) and the UGTA Field Operations website (https://ugta.nv.doe.gov/sites/Field%20Operations/default.aspx). 2 Land surface elevation and measuring point for water level measurements in Frenchman Flat were a focus during CAU investigations (see Appendix B, Attachment 1 in Navarro-Intera, 2014). Both websites listed above provide information on the accepted datum for each well. A summary is found on the home page for the well on the USGS website. Additional information is available through a link in the

  13. Groundwater screening evaluation/monitoring plan: 200 Area Treated Effluent Disposal Facility (Project W-049H). Revision 1

    International Nuclear Information System (INIS)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-05-01

    This report consists of the groundwater screening evaluation required by Section S.8 of the State Waste Discharge Permit for the 200 Area TEDF. Chapter 1.0 describes the purpose of the groundwater monitoring plan. The information in Chapter 2.0 establishes a water quality baseline for the facility and is the groundwater screening evaluation. The following information is included in Chapter 2.0: Facility description;Well locations, construction, and development data; Geologic and hydrologic description of the site and affected area; Ambient groundwater quality and current use; Water balance information; Hydrologic parameters; Potentiometric map, hydraulic gradients, and flow velocities; Results of infiltration and hydraulic tests; Groundwater and soils chemistry sampling and analysis data; Statistical evaluation of groundwater background data; and Projected effects of facility operation on groundwater flow and water quality. Chapter 3.0 defines, based on the information in Chapter 2.0, how effects of the TEDF on the environment will be evaluated and how compliance with groundwater quality standards will be documented in accordance with the terms and conditions of the permit. Chapter 3.0 contains the following information: Media to be monitored; Wells proposed as the point of compliance in the uppermost aquifer; Basis for monitoring well network and evidence of monitoring adequacy; Contingency planning approach for vadose zone monitoring wells; Which field parameters will be measured and how measurements will be made; Specification of constituents to be sampled and analyzed; and Specification of the sampling and analysis procedures that will be used. Chapter 4.0 provides information on how the monitoring results will be reported and the proposed frequency of monitoring and reporting. Chapter 5.0 lists all the references cited in this monitoring plan. These references should be consulted for additional or more detailed information

  14. Long-term observations on the influence of groundwater level variations on BTEX concentrations in groundwater; Langzeituntersuchungen zum Einfluss von Grundwasserschwankungen auf die BTEX-Konzentration im Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    Puettmann, W. [J.W. Goethe-Universitaet Frankfurt a. M., Institut fuer Atmosphaere und Umwelt, AG Umweltanalytik, Frankfurt/Main (Germany); Hettwer, K.; Warrelmann, J. [Universitaet Bremen, Zentrum fuer Umweltforschung und Umwelttechnologie, Bremen (Germany); Gaab, S.

    2007-06-15

    A long-term study on natural attenuation and remediation in soil and groundwater at the former military base Schaeferhof-Sued (Niedersachsen) was performed at a former gasoline filling station. At this locality, a large residual source of benzene, toluene, ethylbenzene, xylenes (BTEX) and additional petroleum hydrocarbons is present in the soil. BTEX-concentrations in the groundwater and their correlation with groundwater level variations were monitored for three years. Within the monitoring period, a very dry summer was recorded, which caused the groundwater level to drop by 1.7 m and the BTEX concentrations to increase from 240 {mu}g/l to 1300 {mu}g/l at the site of contamination. The microbial degradation of BTEX was documented by data on consumption of electron acceptors (oxygen, nitrate or sulphate) and production of reduced products (Fe(II), methane). The degradation is further supported by the detection of metabolites. Therefore, the increasing BTEX concentrations were not a consequence of limited biological degradation. (orig.) [German] Auf dem frueher militaerisch genutzten Gelaende Schaeferhof-Sued (Niedersachsen) wurden im Bereich einer ehemaligen Abfuellstation fuer Kraftstoffe Langzeituntersuchungen zum natuerlichen Schadstoffabbau und -rueckhalt im Boden und Grundwasser durchgefuehrt. Der Standort weist eine hohe Restkontamination der Verbindungen Benzol, Toluol, Ethylbenzol und Xylole (BTEX), sowie Mineraloelkohlenwasserstoffen (MKW) in der ungesaettigten Bodenzone auf. Ueber einen Zeitraum von drei Jahren wurden die BTEX-Konzentrationen im Grundwasser und deren Abhaengigkeit von einer Aenderung des Grundwasserstandes untersucht und eine negative Korrelation der Schadstoffkonzentrationen mit der Hoehe des Grundwasserstandes festgestellt. Im Beobachtungszeitraum lag das sehr trockene Sommerhalbjahr 2003, was im Vergleich zum vorhergehenden Winterhalbjahr eine Absenkung des Grundwasserspiegels um 1,7 m zur Folge hatte und die BTEX-Konzentrationen am

  15. Characteristic groundwater level regimes in the capture zones of radial collector wells and importance of identification (Case study of Belgrade Groundwater Source

    Directory of Open Access Journals (Sweden)

    Božović Đorđije

    2016-01-01

    Full Text Available Assessment of the operating modes of radial collector wells reveals that the pumping levels in the well caissons are very low relative to the depth/elevation of the laterals, which is a common occurrence at Belgrade Groundwater Source. As a result, well discharge capacities vary over a broad range and groundwater levels in the capture zones differ even when the rate of discharge is the same. Five characteristic groundwater level regimes are identified and their origin is analyzed using representative wells as examples. The scope and type of background information needed to identify the groundwater level regime are presented and an interpretation approach is proposed for preliminary assessment of the aquifer potential at the well site for providing the needed amount of groundwater. [Projekat Ministarstva nauke Republike Srbije, br. OI176022, br. TR33039 i br. III43004

  16. 2015 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site

    International Nuclear Information System (INIS)

    Findlay, Rick

    2016-01-01

    The Gnome-Coach, New Mexico, Site was the location of a 3-kiloton-yield underground nuclear test in 1961 and a groundwater tracer test in 1963. The U.S. Geological Survey conducted the groundwater tracer test using four dissolved radionuclides--tritium, iodine-131, strontium-90, and cesium-137--as tracers. Site reclamation and remediation began after the underground testing, and was conducted in several phases at the site. The New Mexico Environment Department (NMED) issued a Conditional Certificate of Completion in September 2014, which documents that surface remediation activities have been successfully completed in accordance with the Voluntary Remediation Program. Subsurface activities have included annual sampling and monitoring of wells at and near the site since 1972. These annual monitoring activities were enhanced in 2008 to include monitoring hydraulic head and collecting samples from the onsite wells USGS-4, USGS-8, and LRL-7 using the low-flow sampling method. In 2010, the annual monitoring was focused to the monitoring wells within the site boundary. A site inspection and annual sampling were conducted on January 27-28, 2015. A second site visit was conducted on April 21, 2015, to install warning/notification signs to fulfill a requirement of the Conditional Certificate of Completion that was issued by the NMED for the surface.

  17. Monitoring groundwater variation by satellite and implications for in-situ gravity measurements

    International Nuclear Information System (INIS)

    Fukuda, Yoichi; Yamamoto, Keiko; Hasegawa, Takashi; Nakaegawa, Toshiyuki; Nishijima, Jun; Taniguchi, Makoto

    2009-01-01

    In order to establish a new technique for monitoring groundwater variations in urban areas, the applicability of precise in-situ gravity measurements and extremely high precision satellite gravity data via GRACE (Gravity Recovery and Climate Experiment) was tested. Using the GRACE data, regional scale water mass variations in four major river basins of the Indochina Peninsula were estimated. The estimated variations were compared with Soil-Vegetation-Atmosphere Transfer Scheme (SVATS) models with a river flow model of 1) globally uniform river velocity, 2) river velocity tuned by each river basin, 3) globally uniform river velocity considering groundwater storage, and 4) river velocity tuned by each river basin considering groundwater storage. Model 3) attained the best fit to the GRACE data, and the model 4) yielded almost the same values. This implies that the groundwater plays an important role in estimating the variation of total terrestrial storage. It also indicates that tuning river velocity, which is based on the in-situ measurements, needs further investigations in combination with the GRACE data. The relationships among GRACE data, SVATS models, and in-situ measurements were also discussed briefly.

  18. Arsenic levels in the groundwater of Korea and the urinary excretion among contaminated area.

    Science.gov (United States)

    Park, Jung-Duck; Choi, Seong-Jin; Choi, Byung-Sun; Lee, Choong-Ryeol; Kim, Heon; Kim, Yong-Dae; Park, Kyung-Soo; Lee, Young-Jo; Kang, Seojin; Lim, Kyung-Min; Chung, Jin-Ho

    2016-09-01

    Drinking water is a main source of human exposure to arsenic. Hence, the determination of arsenic in groundwater is essential to assess its impact on public health. Here, we report arsenic levels in the groundwater of 722 sites covering all six major provinces of Korea. Water was sampled in two occasions (summer, 722 sites and winter, 636 sites) and the arsenic levels were measured with highly sensitive inductively coupled plasma-mass spectrometry method (limit of detection, 0.1 μg/l) to encompass the current drinking water standard (arsenic in groundwater ranged from 0.1 to 48.4 μg/l. A 88.0-89.0% of sites were 10 μg/l. Notably, urinary arsenic excretion of people around these regions was markedly higher compared with non-contaminated areas (arsenic-contaminated groundwater may contribute to its systemic exposure.

  19. Process-based modelling to evaluate simulated groundwater levels and frequencies in a Chalk catchment in south-western England

    Science.gov (United States)

    Brenner, Simon; Coxon, Gemma; Howden, Nicholas J. K.; Freer, Jim; Hartmann, Andreas

    2018-02-01

    Chalk aquifers are an important source of drinking water in the UK. Due to their properties, they are particularly vulnerable to groundwater-related hazards like floods and droughts. Understanding and predicting groundwater levels is therefore important for effective and safe water management. Chalk is known for its high porosity and, due to its dissolvability, exposed to karstification and strong subsurface heterogeneity. To cope with the karstic heterogeneity and limited data availability, specialised modelling approaches are required that balance model complexity and data availability. In this study, we present a novel approach to evaluate simulated groundwater level frequencies derived from a semi-distributed karst model that represents subsurface heterogeneity by distribution functions. Simulated groundwater storages are transferred into groundwater levels using evidence from different observations wells. Using a percentile approach we can assess the number of days exceeding or falling below selected groundwater level percentiles. Firstly, we evaluate the performance of the model when simulating groundwater level time series using a spilt sample test and parameter identifiability analysis. Secondly, we apply a split sample test to the simulated groundwater level percentiles to explore the performance in predicting groundwater level exceedances. We show that the model provides robust simulations of discharge and groundwater levels at three observation wells at a test site in a chalk-dominated catchment in south-western England. The second split sample test also indicates that the percentile approach is able to reliably predict groundwater level exceedances across all considered timescales up to their 75th percentile. However, when looking at the 90th percentile, it only provides acceptable predictions for long time periods and it fails when the 95th percentile of groundwater exceedance levels is considered. By modifying the historic forcings of our model

  20. Simulation of the effects of rainfall and groundwater use on historical lake water levels, groundwater levels, and spring flows in central Florida

    Science.gov (United States)

    O'Reilly, Andrew M.; Roehl, Edwin A.; Conrads, Paul; Daamen, Ruby C.; Petkewich, Matthew D.

    2014-01-01

    The urbanization of central Florida has progressed substantially in recent decades, and the total population in Lake, Orange, Osceola, Polk, and Seminole Counties more than quadrupled from 1960 to 2010. The Floridan aquifer system is the primary source of water for potable, industrial, and agricultural purposes in central Florida. Despite increases in groundwater withdrawals to meet the demand of population growth, recharge derived by infiltration of rainfall in the well-drained karst terrain of central Florida is the largest component of the long-term water balance of the Floridan aquifer system. To complement existing physics-based groundwater flow models, artificial neural networks and other data-mining techniques were used to simulate historical lake water level, groundwater level, and spring flow at sites throughout the area. Historical data were examined using descriptive statistics, cluster analysis, and other exploratory analysis techniques to assess their suitability for more intensive data-mining analysis. Linear trend analyses of meteorological data collected by the National Oceanic and Atmospheric Administration at 21 sites indicate 67 percent of sites exhibited upward trends in air temperature over at least a 45-year period of record, whereas 76 percent exhibited downward trends in rainfall over at least a 95-year period of record. Likewise, linear trend analyses of hydrologic response data, which have varied periods of record ranging in length from 10 to 79 years, indicate that water levels in lakes (307 sites) were about evenly split between upward and downward trends, whereas water levels in 69 percent of wells (out of 455 sites) and flows in 68 percent of springs (out of 19 sites) exhibited downward trends. Total groundwater use in the study area increased from about 250 million gallons per day (Mgal/d) in 1958 to about 590 Mgal/d in 1980 and remained relatively stable from 1981 to 2008, with a minimum of 559 Mgal/d in 1994 and a maximum of 773

  1. Fe and Mn levels regulated by agricultural activities in alluvial groundwaters underneath a flooded paddy field

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kangjoo [School of Civil and Environmental Engineering, Kunsan National University, Jeonbuk 573-701 (Korea, Republic of)], E-mail: kangjoo@kunsan.ac.kr; Kim, Hyun-Jung; Choi, Byoung-Young; Kim, Seok-Hwi; Park, Ki-hoon [School of Civil and Environmental Engineering, Kunsan National University, Jeonbuk 573-701 (Korea, Republic of); Park, Eungyu [Department of Geology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Koh, Dong-Chan [Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Yun, Seong-Taek [Department of Earth and Environmental Sciences, Korea University, Seoul 136-701 (Korea, Republic of)

    2008-01-15

    Iron and Mn concentrations in fresh groundwaters of alluvial aquifers are generally high in reducing conditions reflecting low SO{sub 4} concentrations. The mass balance and isotopic approaches of this study demonstrate that reduction of SO{sub 4}, supplied from agricultural activities such as fertilization and irrigation, is important in lowering Fe and Mn levels in alluvial groundwaters underneath a paddy field. This study was performed to investigate the processes regulating Fe and Mn levels in groundwaters of a point bar area, which has been intensively used for flood cultivation. Four multilevel-groundwater samplers were installed to examine the relationship between geology and the vertical changes in water chemistry. The results show that Fe and Mn levels are regulated by the presence of NO{sub 3} at shallow depths and by SO{sub 4} reduction at the greater depths. Isotopic and mass balance analyses revealed that NO{sub 3} and SO{sub 4} in groundwater are mostly supplied from the paddy field, suggesting that the Fe-and Mn-rich zone of the study area is confined by the agricultural activities. For this reason, the geologic conditions controlling the infiltration of agrochemicals are also important for the occurrence of Fe/Mn-rich groundwaters in the paddy field area.

  2. Particle swarm optimization based artificial neural network model for forecasting groundwater level in Udupi district

    Science.gov (United States)

    Balavalikar, Supreetha; Nayak, Prabhakar; Shenoy, Narayan; Nayak, Krishnamurthy

    2018-04-01

    The decline in groundwater is a global problem due to increase in population, industries, and environmental aspects such as increase in temperature, decrease in overall rainfall, loss of forests etc. In Udupi district, India, the water source fully depends on the River Swarna for drinking and agriculture purposes. Since the water storage in Bajae dam is declining day-by-day and the people of Udupi district are under immense pressure due to scarcity of drinking water, alternatively depend on ground water. As the groundwater is being heavily used for drinking and agricultural purposes, there is a decline in its water table. Therefore, the groundwater resources must be identified and preserved for human survival. This research proposes a data driven approach for forecasting the groundwater level. The monthly variations in groundwater level and rainfall data in three observation wells located in Brahmavar, Kundapur and Hebri were investigated and the scenarios were examined for 2000-2013. The focus of this research work is to develop an ANN based groundwater level forecasting model and compare with hybrid ANN-PSO forecasting model. The model parameters are tested using different combinations of the data. The results reveal that PSO-ANN based hybrid model gives a better prediction accuracy, than ANN alone.

  3. Fe and Mn levels regulated by agricultural activities in alluvial groundwaters underneath a flooded paddy field

    International Nuclear Information System (INIS)

    Kim, Kangjoo; Kim, Hyun-Jung; Choi, Byoung-Young; Kim, Seok-Hwi; Park, Ki-hoon; Park, Eungyu; Koh, Dong-Chan; Yun, Seong-Taek

    2008-01-01

    Iron and Mn concentrations in fresh groundwaters of alluvial aquifers are generally high in reducing conditions reflecting low SO 4 concentrations. The mass balance and isotopic approaches of this study demonstrate that reduction of SO 4 , supplied from agricultural activities such as fertilization and irrigation, is important in lowering Fe and Mn levels in alluvial groundwaters underneath a paddy field. This study was performed to investigate the processes regulating Fe and Mn levels in groundwaters of a point bar area, which has been intensively used for flood cultivation. Four multilevel-groundwater samplers were installed to examine the relationship between geology and the vertical changes in water chemistry. The results show that Fe and Mn levels are regulated by the presence of NO 3 at shallow depths and by SO 4 reduction at the greater depths. Isotopic and mass balance analyses revealed that NO 3 and SO 4 in groundwater are mostly supplied from the paddy field, suggesting that the Fe-and Mn-rich zone of the study area is confined by the agricultural activities. For this reason, the geologic conditions controlling the infiltration of agrochemicals are also important for the occurrence of Fe/Mn-rich groundwaters in the paddy field area

  4. Decomposition of groundwater level fluctuations using transfer modelling in an area with shallow to deep unsaturated zones

    Science.gov (United States)

    Gehrels, J. C.; van Geer, F. C.; de Vries, J. J.

    1994-05-01

    Time series analysis of the fluctuations in shallow groundwater levels in the Netherlands lowlands have revealed a large-scale decline in head during recent decades as a result of an increase in land drainage and groundwater withdrawal. The situation is more ambiguous in large groundwater bodies located in the eastern part of the country, where the unsaturated zone increases from near zero along the edges to about 40 m in the centre of the area. As depth of the unsaturated zone increases, groundwater level reacts with an increasing delay to fluctuations in climate and influences of human activities. The aim of the present paper is to model groundwater level fluctuations in these areas using a linear stochastic transfer function model, relating groundwater levels to estimated precipitation excess, and to separate artificial components from the natural groundwater regime. In this way, the impact of groundwater withdrawal and the reclamation of a 1000 km 2 polder area on the groundwater levels in the adjoining higher ground could be assessed. It became evident that the linearity assumption of the transfer functions becomes a serious drawback in areas with the deepest groundwater levels, because of non-linear processes in the deep unsaturated zone and the non-synchronous arrival of recharge in the saturated zone. Comparison of the results from modelling the influence of reclamation with an analytical solution showed that the lowering of groundwater level is partly compensated by reduced discharge and therefore is less than expected.

  5. Sanitary Landfill Groundwater Monitoring Report, Fourth Quarter 1999 and 1999 Summary

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    A maximum of thirty eight-wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Iron (Total Recoverable), Chloroethene (Vinyl Chloride) and 1,1-Dichloroethane were the most widespread constituents exceeding the Final Primary Drinking Water Standards during 1999. Trichloroethylene, 1,1-Dichloroethylene, 1,2-Dichloroethane, 1,4-Dichlorobenzene, Aluminum (Total Recoverable), Benzene, cis-1,2-Dichloroethylene, Dichlorodifluoromethane, Dichloromethane (Methylene Chloride), Gross Alpha, Mercury (Total Recoverable), Nonvolatile Beta, Tetrachloroethylene, Total Organic Halogens, Trichlorofluoromethane, Tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 144.175 ft/year during first quarter 1999 and 145.27 ft/year during fourth quarter 1999

  6. Nonradiological groundwater quality at low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Goode, D.J.

    1986-04-01

    The NRC is investigating appropriate regulatory options for disposal of low-level radioactive waste containing nonradiological hazardous constituents, as defined by EPA regulations. Standard EPA/RCRA procedures to determine hazardous organics, metals, indicator parameters, and general water quality are applied to samples from groundwater monitoring wells at two commercial low-level radioactive waste disposal sites. At the Sheffield, IL site (nonoperating), several typical organic solvents are identified in elevated concentrations in onsite wells and in an offsite area exhibiting elevated tritium concentrations. At the Barnwell, SC site (operating), only very low concentrations of three organics are found in wells adjacent to disposal units. Hydrocarbons associated with petroleum products are detected at both sites. Hazardous constituents associated with previosuly identified major LLW mixed waste streams, toluene, xylene, chromium, and lead, are at or below detection limits or at background levels in all samples. Review of previously collected data also supports the conclusion that organic solvents are the primary nonradiological contaminants associated with LLW disposal

  7. Calendar Year 2010 Groundwater Monitoring Report, U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2011-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2010 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2010 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2010 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the

  8. Calendar Year 2007 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2008-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2007 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2007 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2007 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT), and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). In December 2007, the BWXT corporate name was changed to Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12), which is applied to personnel and organizations throughout CY 2007 for this report. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2007 monitoring results fulfill requirements of

  9. Calendar Year 2011 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC,

    2012-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2011 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. This report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and known extent of groundwater contamination. The CY 2011 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by the DOE Environmental Management (EM) contractor responsible for environmental cleanup on the ORR. In August 2011, URS | CH2M Oak Ridge LLC (UCOR) replaced Bechtel Jacobs Company LLC (BJC) as the DOE EM contractor. For this report, BJC/UCOR will be referenced as the managing contractor for CY 2011. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC/UCOR (i.e., coordinating sample collection and sharing data) ensures

  10. Integrated ground-water monitoring strategy for NRC-licensed facilities and sites: Case study applications

    Science.gov (United States)

    Price, V.; Temples, T.; Hodges, R.; Dai, Z.; Watkins, D.; Imrich, J.

    2007-01-01

    This document discusses results of applying the Integrated Ground-Water Monitoring Strategy (the Strategy) to actual waste sites using existing field characterization and monitoring data. The Strategy is a systematic approach to dealing with complex sites. Application of such a systematic approach will reduce uncertainty associated with site analysis, and therefore uncertainty associated with management decisions about a site. The Strategy can be used to guide the development of a ground-water monitoring program or to review an existing one. The sites selected for study fall within a wide range of geologic and climatic settings, waste compositions, and site design characteristics and represent realistic cases that might be encountered by the NRC. No one case study illustrates a comprehensive application of the Strategy using all available site data. Rather, within each case study we focus on certain aspects of the Strategy, to illustrate concepts that can be applied generically to all sites. The test sites selected include:Charleston, South Carolina, Naval Weapons Station,Brookhaven National Laboratory on Long Island, New York,The USGS Amargosa Desert Research Site in Nevada,Rocky Flats in Colorado,C-Area at the Savannah River Site in South Carolina, andThe Hanford 300 Area.A Data Analysis section provides examples of detailed data analysis of monitoring data.

  11. Origin and assessment of deep groundwater inflow in the Ca' Lita landslide using hydrochemistry and in situ monitoring

    Directory of Open Access Journals (Sweden)

    F. Cervi

    2012-11-01

    Full Text Available Changes in soil water content, groundwater flow and a rise in pore water pressure are well-known causal or triggering factors for hillslope instability. Rainfall and snowmelt are generally assumed as the main sources of groundwater recharge. This assumption neglects the role of deep water inflow in highly tectonized areas, a factor that can influence long-term pore-pressure regimes and play a role on local slope instability.

    This paper aims to assess the origin of groundwater in the Ca' Lita landslide (northern Italian Apennines and to qualify and quantify the aliquot attributable to deep water inflow. The research is essentially based on in situ monitoring and hydrochemical analyses. It involved 5 yr of continuous monitoring of groundwater levels, electrical conductivity and temperature and with groundwater sampling followed by determination of major ions (Na+, K+, Mg2+, Ca2+, Cl, HCO3, SO42−, tracers (such as Btot and Sr2+, and isotopes (δ18O, δ2H and 3H. Leaching experiments on soil samples, hydrochemical modelling and water recharge estimation were also carried out.

    Results show that the groundwater balance in the Ca' Lita landslide must take into account an inflow of deep and highly mineralised Na-SO4 water (more than 9500 μS cm−1 with non-negligible amounts of Cl (up to 800 mg l−1. The chemical and isotopic fingerprint of this water points to oilfield water hosted at large depths in the Apennine chain and that uprises through a regional fault line crossing the landslide area. It recharges the aquifer hosted in the bedrock underlying the sliding surface (at a rate of about 49 000–85 700 m3 yr−1 and it also partly recharges the landslide body. In both the aquifers, the hydrochemical

  12. Cerenkov Counter for In-Situ Groundwater Monitoring of 90Sr

    Directory of Open Access Journals (Sweden)

    Lindsay C. Todd

    2005-02-01

    Full Text Available Groundwater contamination from 90Sr is an environmental challenge posed topresent and former nuclear weapons related sites. Traditional methods of extractinggroundwater samples and performing laboratory analyses are expensive, time-consumingand induce significant disposal challenges. The authors present here a prototype countercapable of measuring 90Sr groundwater concentrations in-situ at or below the drinking waterlimit of 8 pCi/liter. The 90Y daughter of 90Sr produces high-energy electrons, which cancreate Cerenkov light. Photomultiplier tubes convert the Cerenkov light into an electronicpulse, which then undergoes signal processing with standard electronics. Strontium-90concentrations near the drinking water limit can be measured in a matter of hours if it is insecular equilibrium with the 90Y daughter. The prototype counter is compact, can bedeployed in an American Standard 6-inch, well while operated by a single person, andtransmits the results to a central monitoring location.

  13. Satellite data analysis for identification of groundwater salinization effects on coastal forest for monitoring purposes

    Directory of Open Access Journals (Sweden)

    M. Barbarella

    2015-05-01

    Full Text Available In the phreatic aquifer below the San Vitale pinewood (Ravenna, Italy, natural and anthropogenic land subsidence, the low topography and the artificial drainage system have led to widespread saltwater intrusion. Since changes in the groundwater concentration induce variations in the vegetation properties, recognizable by different spectral bands, a comparison between satellite images, ASTER and Worldview-2, was made using the NDVI. The aim was to identify the portions of pinewood affected by salinization through a procedure that could reduce the expensive and time consuming ground monitoring campaigns. Moreover, the Worldview-2 high resolutions were used to investigate the Thermophilic Deciduous Forest (TDF spectral behaviour without the influence of the allochthonous Pinus pinea species that is scattered throughout the pinewood. The NDVI, calculated with traditional bands, identified the same stressed areas using both satellite data. Instead, the new Red-Edge band of the Worldview-2 image allowed a greater correlation between NDVI and groundwater salinity.

  14. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Fourth quarter 1993 and 1993 summary

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.T.

    1994-03-01

    During fourth quarter 1993, 10 constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Carbon tetrachloride, chloroform, chloroethane (vinyl chloride), 1,1-dichloroethylene, dichloromethane (methylene chloride), lead, mercury, or tetrachloroethylene also exceeded standards in one or more wells. Elevated constituents were found in numerous Aquifer Zone 2B{sub 2} (Water Table) and Aquifer Zone 2B{sub 1}, (Barnwell/McBean) wells and in two Aquifer Unit 2A (Congaree) wells. The groundwater flow direction and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  15. Mixed Waste Management Facility (MWMF) groundwater monitoring report: Third quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    During third quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread constituents Chloroethene (vinyl chloride), 1,1-dichloroethylene, dichloromethane (methylene chloride), lead, mercury, or tetrachloroethylene also exceeded standards in one or more wells. The elevated constituents were found in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1} (Barnwell/McBean) wells. No elevated constituents were exhibited in Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  16. Effect of coupling behavior on groundwater flow for geological disposal of radioactive high level waste

    International Nuclear Information System (INIS)

    Kurikami, Hiroshi; Kobayashi, Akira; Ohnishi, Yuzo; Chijimatsu, Masakazu

    2003-01-01

    In order to estimate the effects of coupled thermal-hydraulic-mechanical phenomena in near-field for geological disposal of high-level radioactive waste on a vast groundwater flow system, a far-field analysis was simulated based on the results of the simulation of coupled phenomena in near-field using averaged tensor and heat flux. From the results of the coupled analyses of near-field and far-field it was clarified that groundwater flow system was influenced by coupled phenomena in near-field. Moreover, it can be said that groundwater flux into a disposal tunnel is regarded as a complement to safety assessment of a disposal because it strongly correlates with traveling time of groundwater. (author)

  17. 2016 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site January 2017

    Energy Technology Data Exchange (ETDEWEB)

    Kreie, Ken [USDOE Office of Legacy Management, Washington, DC (United States); Findlay, Rick [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2017-01-01

    The Gnome-Coach, New Mexico, Site was the location of an underground nuclear test in 1961 and a groundwater tracer test in 1963. Residual contamination remaining in the subsurface from these events requires long-term oversight. The Long-Term Surveillance and Maintenance Plan for the site describes the U.S. Department of Energy Office of Legacy Management’s (LM’s) plan for monitoring groundwater (radiochemical sampling and hydraulic head measurements), inspecting the site, maintaining the site’s institutional controls, evaluating and reporting data, and documenting the site’s records and data management processes. Groundwater monitoring and site inspection activities are conducted annually. This report summarizes the results of these activities conducted during the October 2015 through September 2016 reporting period. The site inspection and annual sampling were conducted on January 27, 2016. At the time of the site inspection, the signs installed near the emplacement shaft, near well USGS-1, and around the perimeter of the site were observed as being in good condition, as were the roads, wellheads, and Project Gnome monument. No new groundwater extraction wells or oil and gas wells were installed during this reporting period on the site or in the sections that surround the site. One new application was received by the New Mexico Oil Conservation Division to install a salt water disposal well approximately 0.8 miles northeast of the Project Gnome monument. The proposed well has a planned completion depth of 15,500 feet below ground surface, but as of November 2016 a drill date has not been established.

  18. The Importance of Institutional Design for Distributed Local-Level Governance of Groundwater: The Case of California’s Sustainable Groundwater Management Act

    Directory of Open Access Journals (Sweden)

    Michael Kiparsky

    2017-09-01

    Full Text Available In many areas of the world, groundwater resources are increasingly stressed, and unsustainable use has become common. Where existing mechanisms for governing groundwater are ineffective or nonexistent, new ones need to be developed. Local level groundwater governance provides an intriguing alternative to top-down models, with the promise of enabling management to better match the diversity of physical and social conditions in groundwater basins. One such example is emerging in California, USA, where new state law requires new local agencies to self-organize and act to achieve sustainable groundwater management. In this article, we draw on insights from research on common pool resource management and natural resources governance to develop guidelines for institutional design for local groundwater governance, grounded in California’s developing experience. We offer nine criteria that can be used as principles or standards in the evaluation of institutional design for local level groundwater governance: scale, human capacity, funding, authority, independence, representation, participation, accountability, and transparency. We assert that local governance holds promise as an alternative to centralized governance in some settings but that its success will depend heavily on the details of its implementation. Further, for local implementation to achieve its promise, there remain important complementary roles for centralized governance. California’s developing experience with local level groundwater management in dozens of basins across the state provides a unique opportunity to test and assess the importance and influence of these criteria.

  19. Simulation of shallow groundwater levels: Comparison of a data-driven and a conceptual model

    Science.gov (United States)

    Fahle, Marcus; Dietrich, Ottfried; Lischeid, Gunnar

    2015-04-01

    Despite an abundance of models aimed at simulating shallow groundwater levels, application of such models is often hampered by a lack of appropriate input data. Difficulties especially arise with regard to soil data, which are typically hard to obtain and prone to spatial variability, eventually leading to uncertainties in the model results. Modelling approaches relying entirely on easily measured quantities are therefore an alternative to encourage the applicability of models. We present and compare two models for calculating 1-day-ahead predictions of the groundwater level that are only based on measurements of potential evapotranspiration, precipitation and groundwater levels. The first model is a newly developed conceptual model that is parametrized using the White method (which estimates the actual evapotranspiration on basis of diurnal groundwater fluctuations) and a rainfall-response ratio. Inverted versions of the two latter approaches are then used to calculate the predictions of the groundwater level. Furthermore, as a completely data-driven alternative, a simple feed-forward multilayer perceptron neural network was trained based on the same inputs and outputs. Data of 4 growing periods (April to October) from a study site situated in the Spreewald wetland in North-east Germany were taken to set-up the models and compare their performance. In addition, response surfaces that relate model outputs to combinations of different input variables are used to reveal those aspects in which the two approaches coincide and those in which they differ. Finally, it will be evaluated whether the conceptual approach can be enhanced by extracting knowledge of the neural network. This is done by replacing in the conceptual model the default function that relates groundwater recharge and groundwater level, which is assumed to be linear, by the non-linear function extracted from the neural network.

  20. Indicative effects of climate change on groundwater levels in Estonian raised bogs over 50 years

    Directory of Open Access Journals (Sweden)

    E. Lode

    2017-08-01

    Full Text Available Analyses of 50-year (1962–2011 monthly air temperature and precipitation data indicated substantial climate change in the locations of two raised bogs (Linnusaare and Männikjärve in central-east Estonia. During recent years the cross-year winter air temperature increased by 1.7 ºC, while the cold-season precipitation increased by 4 mm. The fluctuation amplitude of temperature and precipitation values decreased. Snow depth proved to be the most sensitive variable to winter warming, followed by groundwater levels together with mean and maximum soil frosts. Long-term groundwater levels on the domes of the bogs and in the forested/treed lagg areas were 0.3−0.4 m and 0.4−0.8 m below the soil surface, respectively. Warming caused changes in groundwater level amplitude of 3−22 cm in the bog domes and 3−14 cm in the forested lagg zones. The lowest groundwater levels in ridge-pool ecotopes at Männikjärve rose by 6−10 cm (i.e. these ecotopes became wetter; but the incidence of low groundwater levels increased in most ecotopes, indicating a more general trend towards drier conditions in the bog.

  1. Sensitivity analysis of hydrogeological parameters affecting groundwater storage change caused by sea level rise

    Science.gov (United States)

    Shin, J.; Kim, K.-H.; Lee, K.-K.

    2012-04-01

    Sea level rise, which is one of the representative phenomena of climate changes caused by global warming, can affect groundwater system. The rising trend of the sea level caused by the global warming is reported to be about 3 mm/year for the most recent 10 year average (IPCC, 2007). The rate of sea level rise around the Korean peninsula is reported to be 2.30±2.22 mm/yr during the 1960-1999 period (Cho, 2002) and 2.16±1.77 mm/yr (Kim et al., 2009) during the 1968-2007 period. Both of these rates are faster than the 1.8±0.5 mm/yr global average for the similar 1961-2003 period (IPCC, 2007). In this study, we analyzed changes in the groundwater environment affected by the sea level rise by using an analytical methodology. We tried to find the most effective parameters of groundwater amount change in order to estimate the change in fresh water amount in coastal groundwater. A hypothetical island model of a cylindrical shape in considered. The groundwater storage change is bi-directional as the sea level rises according to the natural and hydrogeological conditions. Analysis of the computation results shows that topographic slope and hydraulic conductivity are the most sensitive factors. The contributions of the groundwater recharge rate and the thickness of aquifer below sea level are relatively less effective. In the island with steep seashore slopes larger than 1~2 degrees or so, the storage amount of fresh water in a coastal area increases as sea level rises. On the other hand, when sea level drops, the storage amount decreases. This is because the groundwater level also rises with the rising sea level in steep seashores. For relatively flat seashores, where the slope is smaller than around 1-2 degrees, the storage amount of coastal fresh water decreases when the sea level rises because the area flooded by the rising sea water is increased. The volume of aquifer fresh water in this circumstance is greatly reduced in proportion to the flooded area with the sea

  2. Background compensation for a radiation level monitor

    Science.gov (United States)

    Keefe, D.J.

    1975-12-01

    Background compensation in a device such as a hand and foot monitor is provided by digital means using a scaler. With no radiation level test initiated, a scaler is down-counted from zero according to the background measured. With a radiation level test initiated, the scaler is up-counted from the previous down-count position according to the radiation emitted from the monitored object and an alarm is generated if, with the scaler having crossed zero in the positive going direction, a particular number is exceeded in a specific time period after initiation of the test. If the test is initiated while the scale is down-counting, the background count from the previous down- count stored in a memory is used as the initial starting point for the up-count.

  3. Monitoring for Pesticides in Groundwater and Surface Water in Nevada, 2008

    Science.gov (United States)

    Thodal, Carl E.; Carpenter, Jon; Moses, Charles W.

    2009-01-01

    Johnson, 1997). Groundwater contamination also may come indirectly by the percolation of agricultural and urban irrigation water through soil layers and into groundwater and from pesticide residue in surface water, such as drainage ditches, streams, and municipal wastewater. To protect surface water and groundwater from pesticide contamination, the USEPA requires that all states establish a pesticide management plan. The Nevada Department of Agriculture (NDOA), with assistance from the USEPA, developed a management program of education (Hefner and Donaldson, 2006), regulation (Johnson and others, 2006), and monitoring (Pennington and others, 2001) to protect Nevada's water resources from pesticide contaminants. Sampling sites are located in areas where urban or agricultural pesticide use may affect groundwater, water bodies, endangered species, and other aquatic life. Information gathered from these sites is used by NDOA to help make regulatory decisions that will protect human and environmental health by reducing and eliminating the occurrence of pesticide contamination. This fact sheet describes current (2008) pesticide monitoring of groundwater and streams by the NDOA in Nevada and supersedes Pennington and others (2001).

  4. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  5. Extent, perception and mitigation of damage due to high groundwater levels in the city of Dresden, Germany

    Directory of Open Access Journals (Sweden)

    H. Kreibich

    2009-07-01

    Full Text Available Flood risk analysis and management plans mostly neglect groundwater flooding, i.e. high groundwater levels. However, rising groundwater may cause considerable damage to buildings and infrastructure. To improve the knowledge about groundwater flooding and support risk management, a survey was undertaken in the city of Dresden (Saxony, Germany, resulting in 605 completed interviews with private households endangered by high groundwater levels. The reported relatively low flood impact and damage of groundwater floods in comparison with mixed floods was reflected by its scarce perception: Hardly anybody thinks about the risk of groundwater flooding. The interviewees thought that public authorities and not themselves, should be mainly responsible for preparedness and emergency response. Up to now, people do not include groundwater risk in their decision processes on self protection. The implementation of precautionary measures does not differ between households with groundwater or with mixed flood experience. However, less households undertake emergency measures when expecting a groundwater flood only. The state of preparedness should be further improved via an intensified risk communication about groundwater flooding by the authorities. Conditions to reach the endangered population are good, since 70% of the interviewed people are willing to inform themselves about groundwater floods. Recommendations for an improved risk communication are given.

  6. Stream seepage and groundwater levels, Wood River Valley, south-central Idaho, 2012-13

    Science.gov (United States)

    Bartolino, James R.

    2014-01-01

    as much as 1.86 feet in 6 wells and declined by as much as 14.28 feet in 77 wells; average decline was 2.9 feet. A map of changes in the water‑table altitude of the unconfined aquifer shows that the largest declines were in tributary canyons and in an area roughly between Baseline and Glendale Roads. From October 2006 to October 2012, the potentiometric-surface altitude in 10 wells completed in the confined aquifer declined between 0.12 and 20.50 feet; average decline was 6.8 feet. A map of changes in the potentiometric-surface altitude of the confined aquifer shows that the largest declines were in the southwestern part of the Bellevue fan. Reduced precipitation prior to the October 2012 water-level measurements likely is partially responsible for 2006–12 water-table declines in the unconfined aquifer; the relative contribution of precipitation deficit and groundwater withdrawals to the declines is not known. Although the confined aquifer may not receive direct recharge from precipitation or streams, groundwater withdrawal from the confined aquifer induces flow from the unconfined aquifer. Declines in the confined aquifer are likely due to groundwater withdrawals and declines in the water table of the unconfined aquifer. A statistical analysis of five long-term monitoring wells (three completed in the unconfined aquifer, one in the confined aquifer, and one outside the aquifer system boundary) showed statistically significant declining trends in four wells.

  7. Monitoring Groundwater Variations from Satellite Gravimetry and Hydrological Models: A Comparison with in-situ Measurements in the Mid-Atlantic Region of the United States

    Directory of Open Access Journals (Sweden)

    Ruya Xiao

    2015-01-01

    Full Text Available Aimed at mapping time variations in the Earth’s gravity field, the Gravity Recovery and Climate Experiment (GRACE satellite mission is applicable to access terrestrial water storage (TWS, which mainly includes groundwater, soil moisture (SM, and snow. In this study, SM and accumulated snow water equivalent (SWE are simulated by the Global Land Data Assimilation System (GLDAS land surface models (LSMs and then used to isolate groundwater anomalies from GRACE-derived TWS in Pennsylvania and New York States of the Mid-Atlantic region of the United States. The monitoring well water-level records from the U.S. Geological Survey Ground-Water Climate Response Network from January 2005 to December 2011 are used for validation. The groundwater results from different combinations of GRACE products (from three institutions, CSR, GFZ and JPL and GLDAS LSMs (CLM, NOAH and VIC are compared and evaluated with in-situ measurements. The intercomparison analysis shows that the solution obtained through removing averaged simulated SM and SWE of the three LSMs from the averaged GRACE-derived TWS of the three centers would be the most robust to reduce the noises, and increase the confidence consequently. Although discrepancy exists, the GRACE-GLDAS estimated groundwater variations generally agree with in-situ observations. For monthly scales, their correlation coefficient reaches 0.70 at 95% confidence level with the RMSE of the differences of 2.6 cm. Two-tailed Mann-Kendall trend test results show that there is no significant groundwater gain or loss in this region over the study period. The GRACE time-variable field solutions and GLDAS simulations provide precise and reliable data sets in illustrating the regional groundwater storage variations, and the application will be meaningful and invaluable when applied to the data-poor regions.

  8. COLLABORATIVE MULTI-LEVEL PLAN MONITORING

    Directory of Open Access Journals (Sweden)

    Mohamad K. ALLOUCHE

    2011-01-01

    Full Text Available The recent worldwide connectivity and the net-centricity of military operations (coalition-based operations are witnessing an increasing need for the monitoring of plan execution for enhanced resource management and decision making. Monitoring of ongoing operations is the process of continuous observation recording and reporting. In this process the plan becomes a resource that needs to be managed effi ciently. The centralized approach to plan monitoring soon reaches its limits when plan execution is distributed across different organizations/countries. We propose a new framework that would allow different monitoring nodes distributed across the network. An effi cient propagation mechanism that allows information exchange between the different nodes would also be needed. The main purpose of this mechanism is to present the right information, to the right person, at the right time. To cope with a rapid increase of information fl ow through the network, an effi cient alarm management mechanism allows the presentation of the information with an appropriate level of details.

  9. Calendar Year 2008 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2009-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2008 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2008 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2008 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2008 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the

  10. Hanford groundwater scenario studies

    International Nuclear Information System (INIS)

    Arnett, R.C.; Gephart, R.E.; Deju, R.A.; Cole, C.R.; Ahlstrom, S.W.

    1977-05-01

    This report documents the results of two Hanford groundwater scenario studies. The first study examines the hydrologic impact of increased groundwater recharge resulting from agricultural development in the Cold Creek Valley located west of the Hanford Reservation. The second study involves recovering liquid radioactive waste which has leaked into the groundwater flow system from a hypothetical buried tank containing high-level radioactive waste. The predictive and control capacity of the onsite Hanford modeling technology is used to evaluate both scenarios. The results of the first study indicate that Cold Creek Valley irrigationis unlikely to cause significant changes in the water table underlying the high-level waste areas or in the movement of radionuclides already in the groundwater. The hypothetical tank leak study showed that an active response (in this case waste recovery) can be modeled and is a possible alternative to passive monitoring of radionuclide movement in the unlikely event that high-level waste is introduced into the groundwater

  11. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring

    Science.gov (United States)

    Watlet, Arnaud; Kaufmann, Olivier; Triantafyllou, Antoine; Poulain, Amaël; Chambers, Jonathan E.; Meldrum, Philip I.; Wilkinson, Paul B.; Hallet, Vincent; Quinif, Yves; Van Ruymbeke, Michel; Van Camp, Michel

    2018-03-01

    Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL) site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT) monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets) and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1) upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2) deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3) a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of the sources of drip

  12. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring

    Directory of Open Access Journals (Sweden)

    A. Watlet

    2018-03-01

    Full Text Available Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1 upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2 deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3 a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of

  13. Ground-water monitoring at the Hanford Site, January-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  14. Autonomous long-term gamma-spectrometric monitoring of submarine groundwater discharge trends in Hawaii

    International Nuclear Information System (INIS)

    Dulai, Henrietta; Waters, Ch.A.; Kennedy, Joseph; Kamenik, Jan; Academy of Sciences of the Czech Republic, Rez; Babinec, James; Jolly, James; Williamson, Mario

    2016-01-01

    We developed a fully autonomous underwater gamma-spectrometer for long-term coastal submarine groundwater discharge (SGD) monitoring. The instrument represents a significant improvement over previous submarine gamma-spectrometers in that it is very robust, has high sensitivity allowing high temporal resolution, and is completely autonomous. Here we describe the technical parameters of the new instrument as well as data collected over its 9-month deployment in Kiholo Bay, HI, USA. We also present methods to convert the measured activities to SGD rates. In Kiholo Bay, the derived SGD matched previous estimates but in addition it revealed previously undocumented short- and long-term patterns in SGD. (author)

  15. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Third quarter, 1994

    International Nuclear Information System (INIS)

    1994-12-01

    During third quarter 1994, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Bis(2-ethylhexyl) phthalate exceeded final PDWS in one well. Aluminum, iron, manganese, tin, and total organic halogens exceeded the Savannah River Site (SRS) Flag 2 criteria. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and is complete; however, analytical data from these wells is not available yet

  16. Monitoring of carbamazepine concentrations in wastewater and groundwater to quantify sewer leakage.

    Science.gov (United States)

    Fenz, R; Blaschke, A P; Clara, M; Kroiss, H; Mascher, D; Zessner, M

    2005-01-01

    Monitoring of carbamazepine concentrations in wastewater and groundwater enables us to identify and quantify sewer exfiltration. The antiepileptic drug carbamazepine is hardly removed in wastewater treatment plants and not or just slightly attenuated during bank infiltration and subsoil flow. Concentrations in wastewater are generally 1000 times higher than the limit of quantification. In contrast to . many other wastewater tracers carbamazepine is discharged to the environment only via domestic wastewater. The results from this study carried out in Linz, Austria indicate an average exfiltration rate of 1%, expressed as percentage of the dry weather flow that is lost to the groundwater on the city-wide scale. This rate is lower than sewage losses reported in most other studies which attempted to quantify exfiltration on the basis of groundwater pollution. However, it was also possible to identify one area with significantly higher sewage losses. This method seems to be very suitable for the verification of leakage models used to assess sewer exfiltration on a regional scale.

  17. Installation of Groundwater Monitoring Wells TAV-MW15 and TAV-MW16.

    Energy Technology Data Exchange (ETDEWEB)

    Lum, Clinton C. L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    This report documents the installation of two groundwater monitoring wells at the Technical Area V Groundwater (TAVG) Area of Concern at Sandia National Laboratories, New Mexico (SNL/NM). SNL/NM is managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA- 0003525. Well installation activities were conducted in accordance with the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB)-approved work plan Revised Treatability Study Work Plan for In-Situ Bioremediation at the Technical Area-V Groundwater Area of Concern (Work Plan) (SNL/NM March 2016). The Work Plan was approved by NMED HWB prior to the start of field work (NMED May 2016). Project activities were performed from November 2016 through January 2017 by SNL/NM Environmental Restoration (ER) Operations personnel, and the SNL/NM drilling contractor Cascade Drilling LP. Drilling activities began with borehole drilling and sampling on November 30, 2016. Well construction and development fieldwork was completed on January 31, 2017. Land surveys to establish the location coordinates and elevations of the two wells were completed on March 23, 2017, and transmitted to SNL/NM personnel on April 17, 2017.

  18. A stream-based methane monitoring approach for evaluating groundwater impacts associated with unconventional gas development.

    Science.gov (United States)

    Heilweil, Victor M; Stolp, Bert J; Kimball, Briant A; Susong, David D; Marston, Thomas M; Gardner, Philip M

    2013-01-01

    Gaining streams can provide an integrated signal of relatively large groundwater capture areas. In contrast to the point-specific nature of monitoring wells, gaining streams coalesce multiple flow paths. Impacts on groundwater quality from unconventional gas development may be evaluated at the watershed scale by the sampling of dissolved methane (CH4 ) along such streams. This paper describes a method for using stream CH4 concentrations, along with measurements of groundwater inflow and gas transfer velocity interpreted by 1-D stream transport modeling, to determine groundwater methane fluxes. While dissolved ionic tracers remain in the stream for long distances, the persistence of methane is not well documented. To test this method and evaluate CH4 persistence in a stream, a combined bromide (Br) and CH4 tracer injection was conducted on Nine-Mile Creek, a gaining stream in a gas development area in central Utah. A 35% gain in streamflow was determined from dilution of the Br tracer. The injected CH4 resulted in a fivefold increase in stream CH4 immediately below the injection site. CH4 and δ(13) CCH4 sampling showed it was not immediately lost to the atmosphere, but remained in the stream for more than 2000 m. A 1-D stream transport model simulating the decline in CH4 yielded an apparent gas transfer velocity of 4.5 m/d, describing the rate of loss to the atmosphere (possibly including some microbial consumption). The transport model was then calibrated to background stream CH4 in Nine-Mile Creek (prior to CH4 injection) in order to evaluate groundwater CH4 contributions. The total estimated CH4 load discharging to the stream along the study reach was 190 g/d, although using geochemical fingerprinting to determine its source was beyond the scope of the current study. This demonstrates the utility of stream-gas sampling as a reconnaissance tool for evaluating both natural and anthropogenic CH4 leakage from gas reservoirs into groundwater and surface water

  19. Cornhusker Army Ammunition Plant Longterm Groundwater Monitoring Health and Safety Plan

    Science.gov (United States)

    1997-06-01

    glands. It is less toxic to humans than most anticholinesterase agents because malathion and its metabolite, malaoxon, are metabolized in the liver to...During the early and middle 1980s, the U.S. army conducted an incineration project designed to excavate and treat soils beneath leachpits and cesspools...contamination, but was unable to remove all contaminated soil . At many locations, remediation action levels could not be achieved before groundwater was

  20. Preconcentration for Improved Long-term Monitoring of Contaminants in Groundwater

    Science.gov (United States)

    2014-04-10

    facilities where waste from weapons manufacture, storage, and reclamation processes has leached into the soil and groundwater. Key contaminants...and current testing and training facilities where waste from weapons manufacture, storage, and reclamation processes has leached into the soil and...scale, bread -board level, prototype was assembled using a peristaltic pump with a 900:1 motor and 0.143” rollers (P625/900.143, Instech Laboratories

  1. Perennial filter strips reduce nitrate levels in soil and shallow groundwater after grassland-to-cropland conversion.

    Science.gov (United States)

    Zhou, Xiaobo; Helmers, Matthew J; Asbjornsen, Heidi; Kolka, Randy; Tomer, Mark D

    2010-01-01

    Many croplands planted to perennial grasses under the Conservation Reserve Program are being returned to crop production, and with potential consequences for water quality. The objective of this study was to quantify the impact of grassland-to-cropland conversion on nitrate-nitrogen (NO3-N) concentrations in soil and shallow groundwater and to assess the potential for perennial filter strips (PFS) to mitigate increases in NO3-N levels. The study, conducted at the Neal Smith National Wildlife Refuge (NSNWR) in central Iowa, consisted of a balanced incomplete block design with 12 watersheds and four watershed-scale treatments having different proportions and topographic positions of PFS planted in native prairie grasses: 100% rowcrop, 10% PFS (toeslope position), 10% PFS (distributed on toe and as contour strips), and 20 PFS (distributed on toe and as contour strips). All treatments were established in fall 2006 on watersheds that were under bromegrass (Bromus L.) cover for at least 10 yr. Nonperennial areas were maintained under a no-till 2-yr corn (Zea mays L.)--soybean [Glycine max. (L.) Merr.] rotation since spring 2007. Suction lysimeter and shallow groundwater wells located at upslope and toeslope positions were sampled monthly during the growing season to determine NO3-N concentration from 2005 to 2008. The results indicated significant increases in NO3-N concentration in soil and groundwater following grassland-to-cropland conversion. Nitrate-nitrogen levels in the vadose zone and groundwater under PFS were lower compared with 100% cropland, with the most significant differences occurring at the toeslope position. During the years following conversion, PFS mitigated increases in subsurface nitrate, but long-term monitoring is needed to observe and understand the full response to land-use conversion.

  2. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, P.J.; Wu, L.; Van Nostrand, J.D.; Schadt, C.W.; Watson, D.B.; Jardine, P.M.; Palumbo, A.V.; Hazen, T.C.; Zhou, J.

    2009-06-15

    To understand how contaminants affect microbial community diversity, heterogeneity, and functional structure, six groundwater monitoring wells from the Field Research Center of the U.S. Department of Energy Environmental Remediation Science Program (ERSP; Oak Ridge, TN), with a wide range of pH, nitrate, and heavy metal contamination were investigated. DNA from the groundwater community was analyzed with a functional gene array containing 2006 probes to detect genes involved in metal resistance, sulfate reduction, organic contaminant degradation, and carbon and nitrogen cycling. Microbial diversity decreased in relation to the contamination levels of the wells. Highly contaminated wells had lower gene diversity but greater signal intensity than the pristine well. The microbial composition was heterogeneous, with 17-70% overlap between different wells. Metal-resistant and metal-reducing microorganisms were detected in both contaminated and pristine wells, suggesting the potential for successful bioremediation of metal-contaminated groundwaters. In addition, results of Mantel tests and canonical correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p < 0.05) effect on microbial community structure. This study provides an overall picture of microbial community structure in contaminated environments with functional gene arrays by showing that diversity and heterogeneity can vary greatly in relation to contamination.

  3. Regional specific groundwater arsenic levels and neuropsychological functioning: a cross-sectional study.

    Science.gov (United States)

    Edwards, Melissa; Johnson, Leigh; Mauer, Cortney; Barber, Robert; Hall, James; O'Bryant, Sid

    2014-01-01

    The purpose of the study was to examine the link between geographic information system (GIS)-estimated regional specific groundwater levels and neuropsychological functioning in a sample of individuals with and without cognitive impairment. This cross-sectional study design analyzed data from 1390 participants (733 Alzheimer's disease, 127 Mild Cognitive Impairment, and 530 with normal cognition) enrolled in the Texas Alzheimer's Research and Care Consortium. GISs analyses were used to estimate regional specific groundwater arsenic concentrations using the Environmental Systems Research Institute and arsenic concentrations from the Texas Water Development Board. In the full cohort, regional specific arsenic concentrations were positively associated with language abilities (p = 0.008), but associated with poorer verbal memory, immediate (p = 0.008), and delayed (p arsenic being related with cognition most prominently among mild cognitive impairment cases. Overall, estimated regional specific groundwater arsenic levels were negatively associated with neuropsychological performance.

  4. Effects of sea-level rise on barrier island groundwater system dynamics: ecohydrological implications

    Science.gov (United States)

    Masterson, John P.; Fienen, Michael N.; Thieler, E. Robert; Gesch, Dean B.; Gutierrez, Benjamin T.; Plant, Nathaniel G.

    2014-01-01

    We used a numerical model to investigate how a barrier island groundwater system responds to increases of up to 60 cm in sea level. We found that a sea-level rise of 20 cm leads to substantial changes in the depth of the water table and the extent and depth of saltwater intrusion, which are key determinants in the establishment, distribution and succession of vegetation assemblages and habitat suitability in barrier islands ecosystems. In our simulations, increases in water-table height in areas with a shallow depth to water (or thin vadose zone) resulted in extensive groundwater inundation of land surface and a thinning of the underlying freshwater lens. We demonstrated the interdependence of the groundwater response to island morphology by evaluating changes at three sites. This interdependence can have a profound effect on ecosystem composition in these fragile coastal landscapes under long-term changing climatic conditions.

  5. Monitoring arid-land groundwater abstraction through optimization of a land surface model with remote sensing-based evaporation

    KAUST Repository

    Lopez Valencia, Oliver Miguel

    2018-02-01

    The increase in irrigated agriculture in Saudi Arabia is having a large impact on its limited groundwater resources. While large-scale water storage changes can be estimated using satellite data, monitoring groundwater abstraction rates is largely non-existent at either farm or regional level, so water management decisions remain ill-informed. Although determining water use from space at high spatiotemporal resolutions remains challenging, a number of approaches have shown promise, particularly in the retrieval of crop water use via evaporation. Apart from satellite-based estimates, land surface models offer a continuous spatial-temporal evolution of full land-atmosphere water and energy exchanges. In this study, we first examine recent trends in terrestrial water storage depletion within the Arabian Peninsula and explore its relation to increased agricultural activity in the region using satellite data. Next, we evaluate a number of large-scale remote sensing-based evaporation models, giving insight into the challenges of evaporation retrieval in arid environments. Finally, we present a novel method aimed to retrieve groundwater abstraction rates used in irrigated fields by constraining a land surface model with remote sensing-based evaporation observations. The approach is used to reproduce reported irrigation rates over 41 center-pivot irrigation fields presenting a range of crop dynamics over the course of one year. The results of this application are promising, with mean absolute errors below 3 mm:day-1, bias of -1.6 mm:day-1, and a first rough estimate of total annual abstractions of 65.8 Mm3 (close to the estimated value using reported farm data, 69.42 Mm3). However, further efforts to address the overestimation of bare soil evaporation in the model are required. The uneven coverage of satellite data within the study site allowed us to evaluate its impact on the optimization, with a better match between observed and obtained irrigation rates on fields with

  6. Groundwater monitoring for remedial investigation in the Oriskany-Whitestown Sand Plain, Oneida County, New York

    International Nuclear Information System (INIS)

    Kewer, R.P.; Birckhead, E.F.

    1992-01-01

    The 50-acre Whitestown Landfill is listed by NYSDEC as a Class 2 inactive hazardous waste disposal site. During Remedial Investigations, a 23-well groundwater monitoring system was installed, exploring Wisconsin age glaciofluvial deposits of the Oriskany-Whitestown sand plain. These were described in the late 19th century as deltaic sediments deposited in a proglacial lake. However, no recent studies and only limited subsurface data were available, prompting a two-phase installation program. The landfill is located above steep bluffs 70 feet above the Mohawk River and Oriskany Creek valleys. Beneath the landfill, Phase I identified a gradational sequence of coarse to fine deltaic sediments with glacial till. This sequence was partly eroded and overlain by alluvium and colluvium in the valleys. The landfill was constructed on surficial deposits of coarse fluviodeltaic gravel. These were underlain by deltaic deposits grading from sand to silt with depth, the lower silts comprising the uppermost aquifer. The silts made identification of the water table difficult during drilling and caused problems in meeting a stringent development criterion for turbidity. Phase I found that the saturated zone, up to 50 feet thick, is perched on glaciolacustrine clays and, locally, tills, which were the lower boundary of the system investigated. Partly influenced by the clays, groundwater and contaminant movement was to the adjoining valley, causing off-site impacts in the shallow alluvial/colluvial aquifer. Therefore, Phase 11 focused on characterizing flow and groundwater quality in the discharge area, particularly with respect to an adjacent residence and wetlands. Contamination was found to extend northward only as far as the Old Erie Canal, which parallels the base of the bluff. Only limited off-site involvement was documented which will be monitored in the post-closure period using the installed well system

  7. Development of a groundwater monitoring system at Horonobe Underground Research Center

    International Nuclear Information System (INIS)

    Nanjo, Isao; Amano, Yuki; Iwatsuki, Teruki; Murakami, Hiroaki; Kunimaru, Takanori; Morikawa, Keita; Hosoya, Shinichi

    2012-03-01

    Japan Atomic Energy Agency (JAEA) develops basic investigation techniques for deep geological environment around Underground Research Laboratory (URL) at Horonobe area, Japan. The observation technique of hydrochemical condition in low permeable sedimentary rock around the facility is one of R and D subjects. We report, 1) development of hydrochemical monitoring system to observe water pressure, pH, electric conductivity, dissolved oxygen, redox potential and temperature, 2) hydrochemical observation results around URL under construction. The applicability of the hydrochemical monitoring system is evaluated for low permeable sedimentary rock bearing abundant dissolved gases. The hydrochemical observation during facility construction demonstrates that pH and redox potential of groundwater almost did not changed even at hydraulic disturbed zone (water pressure decreased zone). A CD-ROM is attached as an appendix. (J.P.N.)

  8. F-Area Acid/Caustic Basin groundwater monitoring report. Second quarter 1994

    International Nuclear Information System (INIS)

    1994-09-01

    During second quarter 1994, samples from the FAC monitoring wells at the F-Area Acid/Caustic Basin were collected and analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclide indicators, volatile organic compounds, and other constituents. Piezometer FAC 5P and monitoring well FAC 6 were dry and could not be sampled. Analytical results that exceeded final Primary Drinking Water Standards (PDWS), other Savannah River Site (SRS) Flag 2 criteria, or the SRS turbidity standard of 50 NTU during the quarter were as follows: gross alpha exceeded the final PDWS and aluminum, iron, manganese, and total organic halogens exceeded the SRS Flag 2 criteria in one or more of the FAC wells. Turbidity exceeded the SRS standard in well FAC 3. Groundwater flow direction and rate in the water table beneath the F-Area Acid/Caustic Basin were similar to past quarters

  9. H-Area Acid/Caustic Basin groundwater monitoring report. Second quarter 1994

    International Nuclear Information System (INIS)

    1994-09-01

    During second quarter 1994, samples collected from the four HAC monitoring wells at the H-Area Acid/Caustic Basin received comprehensive analyses (exclusive of boron and lithium) and turbidity measurements. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are the focus of this report. Tritium exceeded the final PDWS in all four HAC wells during second quarter 1994. Carbon tetrachloride exceeded the final PDWS in well HAC 4. Aluminum exceeded its Flag 2 criterion in wells HAC 2, 3, and 4. Iron was elevated in wells HAC 1, 2, and 3. Manganese exceeded its Flag 2 criterion in well HAC 3. Specific conductance and total organic halogens were elevated in well HAC 2. No well samples exceeded the SRS turbidity standard. Groundwater flow direction in the water stable beneath the H-Area Acid/Caustic Basin was to the west during second quarter 1994. During previous quarters, the groundwater flow direction has been consistently to the northwest or the north-northwest. This apparent change in flow direction may be attributed to the lack of water elevations for wells HTF 16 and 17 and the anomalous water elevations for well HAC 2 during second quarter

  10. Quarterly report of RCRA groundwater monitoring data for period October 1, 1992--December 31, 1992

    International Nuclear Information System (INIS)

    1993-04-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 CFR 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. Long-term laboratory contracts were approved on October 22, 1991. DataChem Laboratories of Salt Lake City, Utah, performs the hazardous chemicals analyses for the Hanford Site. Analyses for coliform bacteria are performed by Columbia/Biomedical Laboratories and for dioxin by TMS Analytical Services, Inc. International Technology Analytical Services Richland, Washington performs the radiochemical analyses. This quarterly report contains data that were received prior to March 8, 1993. This report may contain not only data from the October through December quarter but also data from earlier sampling events that were not previously reported

  11. Calendar Year 2005 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-09-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2005 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2005 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2005 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2005 monitoring data is deferred to the ''Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium'' (BWXT 2006). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including

  12. Calendar Year 2004 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2005-09-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2004 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2004 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2004 monitoring data is deferred to the Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium (BWXT 2005). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including sampling methods and

  13. Hydrographs Showing Ground-Water Level Changes for Selected Wells in the Lower Skagit River Basin, Washington

    Science.gov (United States)

    Fasser, E.T.; Julich, R.J.

    2009-01-01

    Hydrographs for selected wells in the Lower Skagit River basin, Washington, are presented in an interactive web-based map to illustrate monthly and seasonal changes in ground-water levels in the study area. Ground-water level data and well information were collected by the U.S. Geological Survey using standard techniques and were stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.

  14. Hydrographs showing groundwater levels for selected wells in the Puyallup River watershed and vicinity, Pierce and King Counties, Washington

    Science.gov (United States)

    Lane, R.C.; Julich, R.J.; Justin, G.B.

    2013-01-01

    Hydrographs of groundwater levels for selected wells in and adjacent to the Puyallup River watershed in Pierce and King Counties, Washington, are presented using an interactive Web-based map of the study area to illustrate changes in groundwater levels on a monthly and seasonal basis. The interactive map displays well locations that link to the hydrographs, which in turn link to the U.S. Geological Survey National Water Information System, Groundwater Site Inventory System.

  15. Results of Tritium Tracking and Groundwater Monitoring at the Hanford Site 200 Area State-Approved Land Disposal Site-FY 1999

    International Nuclear Information System (INIS)

    Barnett, D.B.

    1999-01-01

    The Hanford Site 200 Area Effluent Treatment Facility (ETF) processes contaminated liquids derived from Hanford Site facilities. The clean water generated by these processes is occasionally enriched in tritium and is discharged to the 200 Area State Approved Land Disposal Site (SALDS). Groundwater monitoring for tritium and other constituents is required by the state-issued permit at 21 wells surrounding the facility. During FY 1999, average tritium activities in most wells declined from average activities in 1998. The exception was deep well 69948-77C, where tritium results were at an all-time high (77,000 pCi/L) as a result of the delayed penetration of effluent deeper into the aquifer. Of the 12 constituents with permit enforcement limits, which are monitored in SALDS proximal wells, all were within limits during FY 1999. Water level measurements in nearby wells indicate that a small hydraulic mound exists around the SALDS facility as a result of discharges. This feature is directing groundwater flow radially outward a short distance before the regional northeasterly flow predominates. Evaluation of this condition indicates that the network is currently adequate for tracking potential effects of the SALDS on the groundwater. Recommendations include the discontinuation of ammonia, benzene, tetrahydrofuran, and acetone from the regular groundwater constituent list; designating background well 299-W8-1 as a tritium-tracking well only, and the use of quadruplicate averages of field pH, instead of a single laboratory measurement, as a permit compliance parameter

  16. Groundwater reorganization in the Floridan aquifer following Holocene sea-level rise

    Science.gov (United States)

    Morrissey, Sheila K.; Clark, Jordan F.; Bennett, Michael; Richardson, Emily; Stute, Martin

    2010-10-01

    Sea-level fluctuations, particularly those associated with glacial-interglacial cycles, can have profound impacts on the flow and circulation of coastal groundwater: the water found at present in many coastal aquifers may have been recharged during the last glacial period, when sea level was over 100m lower than present, and thus is not in equilibrium with present recharge conditions. Here we show that the geochemistry of the groundwater found in the Floridan Aquifer System in south Florida is best explained by a reorganization of groundwater flow following the sea-level rise at the end of the Last Glacial Maximum approximately 18,000 years ago. We find that the geochemistry of the fresh water found in the upper aquifers at present is consistent with recharge from meteoric water during the last glacial period. The lower aquifer, however, consists of post-sea-level-rise salt water that is most similar to that of the Straits of Florida, though with some dilution from the residual fresh water from the last glacial period circulation. We therefore suggest that during the last glacial period, the entire Floridan Aquifer System was recharged with meteoric waters. After sea level rose, the increased hydraulic head reduced the velocity of the groundwater flow. This velocity reduction trapped the fresh water in the upper aquifers and initiated saltwater circulation in the lower aquifer.

  17. Hydrographs Showing Groundwater Level Changes for Selected Wells in the Chambers-Clover Creek Watershed and Vicinity, Pierce County, Washington

    Science.gov (United States)

    Justin, G.B.; Julich, R.; Payne, K.L.

    2009-01-01

    Selected groundwater level hydrographs for the Chambers-Clover Creek watershed (CCCW) and vicinity, Washington, are presented in an interactive web-based map to illustrate changes in groundwater levels in and near the CCCW on a monthly and seasonal basis. Hydrographs are linked to points corresponding to the well location on an interactive map of the study area. Groundwater level data and well information from Federal, State, and local agencies were obtained from the U.S. Geological Survey National Water Information System (NWIS), Groundwater Site Inventory (GWSI) System.

  18. Waste and cost reduction using dual wall reverse circulation drilling with multi-level groundwater sampling for contaminant plume delineation

    International Nuclear Information System (INIS)

    Smuin, D.R.

    1995-01-01

    This paper describes the drilling and sampling methods used to delineate a groundwater contaminant plume at the Paducah Gaseous Diffusion Plant (PGDP) during the Groundwater Monitoring IV characterization. The project was unique in that it relied upon dual wall reverse circulation drilling instead of the traditional hollow stem auger method. The Groundwater Monitoring program sought to characterize the boundaries, both vertically and horizontally, of the northeast plume which contains both 99 Tc and trichloroethene. This paper discusses the strengths and weaknesses of the drilling method used by investigators

  19. Monitoring of heavy metal pollution of groundwater in a phreatic aquifer in Mersin-Turkey.

    Science.gov (United States)

    Demirel, Z

    2007-09-01

    In this study, heavy metal contents of groundwater from the Mersin aquifer were determined with photometric methods and used to determine the main factors controlling the pollution of groundwater in the area. Using MapInfo GIS software, spatial analysis and integration were carried out for mapping drinking water quality in the basin. From the photometric heavy metal analysis, it is inferred that the excess concentration of Fe, Ni, Mn, Mo and Cu at some locations is the cause of undesirable quality for drinking purposes. Similarly, the EC thematic map shows that considerable areas in the basin are having high salinity hazards. The reason for excess concentration of various heavy metals is the industrial activities and petroleum pipelines and salinity levels show the sea water intrusion.

  20. Remote Working Level Monitor. Final report

    International Nuclear Information System (INIS)

    1977-01-01

    The Remote Working Level Monitor (RWLM) is an instrument used to remotely monitor the RN-daughter concentrations and the Working Level (WL). It is an ac powered, microprocessor based instrument which multiplexes two independent detector units to a single central processor unit (CPU). The CPU controls the actuation of the detector units and processes and outputs the data received from these remote detector units. The remote detector units are fully automated and require no manual operation once they are set up. They detect and separate the alpha emitters of RaA and RaC' as well as detecting the beta emitters of RaB and RaC. The resultant pulses from these detected radioisotopes are transmitted to the CPU for processing. The programmed microprocessor performs the mathematical manipulations necessary to output accurate Rn-daughter concentrations and the WL. A special subroutine within the program enables the RWLM to run and output a calibration procedure on command. The data resulting from this request can then be processed in a separate program on most computers capable of BASIC programming. The calibration program results in the derivation of coefficients and beta efficiencies which provides calibrated coefficients and beta efficiencies

  1. Environmental wodking level monitor. Final report

    International Nuclear Information System (INIS)

    Keefe, D; McDowell, W.P.; Groer, P.G.

    1978-01-01

    The Environmental Working Level Monitor (EWLM) is an instrument used to automatically monitor airborne Rn-daughter concentrations and the Working Level (WL). It is an ac powered, microprocessor--based instrument with an external inverter provided for dc operation if desired. The microprocessor's control processor unit (CPU) controls the actuation of the detector assembly and processes its output signals to yield the measurements in the proper units. The detectors are fully automated and require no manual operations once the instrument is programmed. They detect and separate the alpha emitters of RaA and RaC' as well as detecting the beta emitters of RaB and RaC. The resultant pulses from these detected radioisotopes are transmitted to the CPU. The programmed microprocessor performs the mathematical manipulations necessary to output accurate Rn-daughter concentrations and the WL. A special subroutine within the system program enables the EWLM to run a calibration procedure on command which yields calibration data. This data can then be processed in a separate program on most computers capable of BASIC programming. This calibration program results in the derivation of coefficients and beta efficiencies which provides the calibrated coefficients and beta efficiencies required by the main system program to assure proper calibration of the individual EWLM's

  2. Groundwater quality monitoring well installation for Waste Area Grouping 4 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Mortimore, J.A.

    1994-09-01

    This report documents the drilling and installation of 15 groundwater quality monitoring (GQM) wells on the perimeter of Waste Area Grouping (WAG) 4. WAG 4 is comprised of about 27 acres located in Melton Valley approximately 2700 ft southwest of the Oak Ridge National Laboratory main plant. It contains three inactive solid waste management units: (1) the abandoned intermediate level liquid waste transfer line located along the WAG's northwestern boundary, (2) the experimental pilot pit area, and (3) SWSA 4, the largest unit in the WAG. The wells at WAG 4 were drilled and developed between September 1987 and October 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy (DOE), state, and Environmental Protection Agency regulatory requirements. The wells at WAG 4 were drilled with auger or air rotary rigs. Depending on the hydrogeologic conditions present at each proposed well location, one of four basic installation methods was utilized. The purpose of the well installation program was to install GQM wells for groundwater characterization at WAG 4. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents

  3. Uncertainties in geologic disposal of high-level wastes - groundwater transport of radionuclides and radiological consequences

    International Nuclear Information System (INIS)

    Kocher, D.C.; Sjoreen, A.L.; Bard, C.S.

    1983-01-01

    The analysis for radionuclide transport in groundwater considers models and methods for characterizing (1) the present geologic environment and its future evolution due to natural geologic processes and to repository development and waste emplacement, (2) groundwater hydrology, (3) radionuclide geochemistry, and (4) the interactions among these phenomena. The discussion of groundwater transport focuses on the nature of the sources of uncertainty rather than on quantitative estimates of their magnitude, because of the lack of evidence that current models can provide realistic quantitative predictions of radionuclide transport in groundwater for expected repository environments. The analysis for the long-term health risk to man following releases of long-lived radionuclides to the biosphere is more quantitative and involves estimates of uncertainties in (1) radionuclide concentrations in man's exposure environment, (2) radionuclide intake by exposed individuals per unit concentration in the environment, (3) the dose per unit intake, (4) the number of exposed individuals, and (5) the health risk per unit dose. For the important long-lived radionuclides in high-level waste, uncertainties in most of the different components of a calculation of individual and collective dose per unit release appear to be no more than two or three orders of magnitude; these uncertainties are certainly much less than uncertainties in predicting groundwater transport of radionuclides between a repository and the biosphere. Several limitations in current models for predicting the health risk to man per unit release to the biosphere are discussed

  4. GNSS-Reflectometry based water level monitoring

    Science.gov (United States)

    Beckheinrich, Jamila; Schön, Steffen; Beyerle, Georg; Apel, Heiko; Semmling, Maximilian; Wickert, Jens

    2013-04-01

    Due to climate changing conditions severe changes in the Mekong delta in Vietnam have been recorded in the last years. The goal of the German Vietnamese WISDOM (Water-related Information system for the Sustainable Development Of the Mekong Delta) project is to build an information system to support and assist the decision makers, planners and authorities for an optimized water and land management. One of WISDOM's tasks is the flood monitoring of the Mekong delta. Earth reflected L-band signals from the Global Navigation Satellite System show a high reflectivity on water and ice surfaces or on wet soil so that GNSS-Reflectometry (GNSS-R) could contribute to monitor the water level in the main streams of the Mekong delta complementary to already existing monitoring networks. In principle, two different GNSS-R methods exist: the code- and the phase-based one. As the latter being more accurate, a new generation of GORS (GNSS Occultation, Reflectometry and Scatterometry) JAVAD DELTA GNSS receiver has been developed with the aim to extract precise phase observations. In a two week lasting measurement campaign, the receiver has been tested and several reflection events at the 150-200 m wide Can Tho river in Vietnam have been recorded. To analyze the geometrical impact on the quantity and quality of the reflection traces two different antennas height were tested. To track separately the direct and the reflected signal, two antennas were used. To derive an average height of the water level, for a 15 min observation interval, a phase model has been developed. Combined with the coherent observations, the minimum slope has been calculated based on the Least- Squares method. As cycle slips and outliers will impair the results, a preprocessing of the data has been performed. A cycle slip detection strategy that allows for automatic detection, identification and correction is proposed. To identify outliers, the data snooping method developed by Baarda 1968 is used. In this

  5. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Burial Grounds

    International Nuclear Information System (INIS)

    2006-01-01

    regular review and comparison. The annual reports discussed here are the primary sources for these reviews. The pathways of interest are air and groundwater for both operational and post-closure conditions at the LLBG, with groundwater considered to be the most significant long-term exposure pathway. Constituents that contributed at least 0.1% of the total relative hazard were selected as target analytes for monitoring. These are technetium-99, uranium, and iodine-129. Because of its environmental unavailability, carbon 14 was removed from the list of constituents. Given the potential uncertainties in inventories at the 200 Area LLBG and the usefulness of tritium as a contaminant indicator, tritium will be monitored as a constituent of concern at all burial grounds. Preexisting contamination plumes in groundwater beneath low-level waste management areas are attributed to other past-practice liquid waste disposal sites. Groundwater and air will be sampled and analyzed for radiogenic components. Subsidence monitoring will also be performed on a regular basis. The existing near-facility and surveillance air monitoring programs are sufficient to satisfy the performance assessment monitoring. Groundwater monitoring will utilize the existing network of wells at the LLBG, and co-sampling with RCRA groundwater monitoring, to be sampled semiannually. Installation of additional wells is currently underway to replace wells that have gone dry

  6. Natural analogue study of CO2 storage monitoring using probability statistics of CO2-rich groundwater chemistry

    Science.gov (United States)

    Kim, K. K.; Hamm, S. Y.; Kim, S. O.; Yun, S. T.

    2016-12-01

    For confronting global climate change, carbon capture and storage (CCS) is one of several very useful strategies as using capture of greenhouse gases like CO2 spewed from stacks and then isolation of the gases in underground geologic storage. CO2-rich groundwater could be produced by CO2 dissolution into fresh groundwater around a CO2 storage site. As consequence, natural analogue studies related to geologic storage provide insights into future geologic CO2 storage sites as well as can provide crucial information on the safety and security of geologic sequestration, the long-term impact of CO2 storage on the environment, and field operation and monitoring that could be implemented for geologic sequestration. In this study, we developed CO2 leakage monitoring method using probability density function (PDF) by characterizing naturally occurring CO2-rich groundwater. For the study, we used existing data of CO2-rich groundwaters in different geological regions (Gangwondo, Gyeongsangdo, and Choongchungdo provinces) in South Korea. Using PDF method and QI (quantitative index), we executed qualitative and quantitative comparisons among local areas and chemical constituents. Geochemical properties of groundwater with/without CO2 as the PDF forms proved that pH, EC, TDS, HCO3-, Ca2+, Mg2+, and SiO2 were effective monitoring parameters for carbonated groundwater in the case of CO2leakage from an underground storage site. KEY WORDS: CO2-rich groundwater, CO2 storage site, monitoring parameter, natural analogue, probability density function (PDF), QI_quantitative index Acknowledgement This study was supported by the "Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2013R1A1A2058186)" and the "R&D Project on Environmental Management of Geologic CO2 Storage" from KEITI (Project number: 2014001810003).

  7. One year of geochemical monitoring of groundwater in the Abruzzi region after the 2009 earthquakes.

    Science.gov (United States)

    Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Avino, Rosario; Monopoli, Carmine; Inguaggiato, Salvatore; Frondini, Francesco

    2010-05-01

    The presence of a deep and inorganic source of CO2 has been recently recognized in Italy on the basis of the deeply derived carbon dissolved in the groundwater. In particular, the regional map of CO2 Earth degassing shows that two large degassing structures (Tuscan Roman degassing structure, TRDS, and Campanian degassing structure, CDS) affect the Tyrrhenian side of the Italian peninsula. The comparison between the map of CO2 Earth degassing and of the location of the Italian earthquakes highlights that the anomalous CO2 flux suddenly disappears in the Apennine in correspondence of a narrow band where most of the seismicity concentrates. A previous conceptual model proposed that in this area, at the eastern borders of TRDS and CDS, the CO2 from the mantle wedge intrudes the crust and accumulate in structural traps generating over-pressurized reservoirs. These CO2 over-pressurized levels can play a major role in triggering the Apennine earthquakes. The 2009 Abruzzo earthquakes, like previous seismic crises in the Northern Apennine, occurred at the border of the TRDS, suggesting also in this case a possible role played by deeply derived fluids in the earthquake generation. Detailed hydro-geochemical campaigns, with a monthly frequency, started immediately after the main shock of the 6th of April 2009. The new campaigns include the main springs of the area which were previously studied in detail, during a campaign performed ten years ago, constituting a pre-crisis reference case. Almost one year of geochemical data of the main dissolved ions, of dissolved gases (CO2, CH4, N2, Ar, He) and of the stable isotopes of the water (H, O), CO2 (13C) and He (3He/4He), highlight both that the epicentral area of L'Aquila earthquakes is affected by an important process of CO2 Earth degassing and that that the gases dissolved in the groundwater reflects the input in to the aquifers of a deep gas phase, CO2- rich, with an high He content and with low 3He/4He ratios, similar to the

  8. Comparison of predicted pesticide concentrations in groundwater from SCI-GROW and PRZM-GW models with historical monitoring data.

    Science.gov (United States)

    Estes, Tammara L; Pai, Naresh; Winchell, Michael F

    2016-06-01

    A key factor in the human health risk assessment process for the registration of pesticides by the US Environmental Protection Agency (EPA) is an estimate of pesticide concentrations in groundwater used for drinking water. From 1997 to 2011, these estimates were obtained from the EPA empirical model SCI-GROW. Since 2012, these estimates have been obtained from the EPA deterministic model PRZM-GW, which has resulted in a significant increase in estimated groundwater concentrations for many pesticides. Historical groundwater monitoring data from the National Ambient Water Quality Assessment (NAWQA) Program (1991-2014) were compared with predicted groundwater concentrations from both SCI-GROW (v.2.3) and PRZM-GW (v.1.07) for 66 different pesticides of varying environmental fate properties. The pesticide environmental fate parameters associated with over- and underprediction of groundwater concentrations by the two models were evaluated. In general, SCI-GROW2.3 predicted groundwater concentrations were close to maximum historically observed groundwater concentrations. However, for pesticides with soil organic carbon content values below 1000 L kg(-1) and no simulated hydrolysis, PRZM-GW overpredicted, often by greater than 100 ppb. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. Transient simulation of groundwater levels within a sandbar of the Colorado River, Marble Canyon, Arizona, 2004

    Science.gov (United States)

    Sabol, Thomas A.; Springer, Abraham E.

    2013-01-01

    Seepage erosion and mass failure of emergent sandy deposits along the Colorado River in Grand Canyon National Park, Arizona, are a function of the elevation of groundwater in the sandbar, fluctuations in river stage, the exfiltration of water from the bar face, and the slope of the bar face. In this study, a generalized three-dimensional numerical model was developed to predict the time-varying groundwater level, within the bar face region of a freshly deposited eddy sandbar, as a function of river stage. Model verification from two transient simulations demonstrates the ability of the model to predict groundwater levels within the onshore portion of the sandbar face across a range of conditions. Use of this generalized model is applicable across a range of typical eddy sandbar deposits in diverse settings. The ability to predict the groundwater