WorldWideScience

Sample records for groundwater level forecasting

  1. Seasonal forecasting of groundwater levels in natural aquifers in the United Kingdom

    Science.gov (United States)

    Mackay, Jonathan; Jackson, Christopher; Pachocka, Magdalena; Brookshaw, Anca; Scaife, Adam

    2014-05-01

    Groundwater aquifers comprise the world's largest freshwater resource and provide resilience to climate extremes which could become more frequent under future climate changes. Prolonged dry conditions can induce groundwater drought, often characterised by significantly low groundwater levels which may persist for months to years. In contrast, lasting wet conditions can result in anomalously high groundwater levels which result in flooding, potentially at large economic cost. Using computational models to produce groundwater level forecasts allows appropriate management strategies to be considered in advance of extreme events. The majority of groundwater level forecasting studies to date use data-based models, which exploit the long response time of groundwater levels to meteorological drivers and make forecasts based only on the current state of the system. Instead, seasonal meteorological forecasts can be used to drive hydrological models and simulate groundwater levels months into the future. Such approaches have not been used in the past due to a lack of skill in these long-range forecast products. However systems such as the latest version of the Met Office Global Seasonal Forecast System (GloSea5) are now showing increased skill up to a 3-month lead time. We demonstrate the first groundwater level ensemble forecasting system using a multi-member ensemble of hindcasts from GloSea5 between 1996 and 2009 to force 21 simple lumped conceptual groundwater models covering most of the UK's major aquifers. We present the results from this hindcasting study and demonstrate that the system can be used to forecast groundwater levels with some skill up to three months into the future.

  2. Forecasting of Groundwater Level using Artificial Neural Network by incorporating river recharge and river bank infiltration

    Directory of Open Access Journals (Sweden)

    Nizar Shamsuddin Mohd Khairul

    2017-01-01

    Full Text Available Groundwater tables forecasting during implemented river bank infiltration (RBI method is important to identify adequate storage of groundwater aquifer for water supply purposes. This study illustrates the development and application of artificial neural networks (ANNs to predict groundwater tables in two vertical wells located in confined aquifer adjacent to the Langat River. ANN model was used in this study is based on the long period forecasting of daily groundwater tables. ANN models were carried out to predict groundwater tables for 1 day ahead at two different geological materials. The input to the ANN models consider of daily rainfall, river stage, water level, stream flow rate, temperature and groundwater level. Two different type of ANNs structure were used to predict the fluctuation of groundwater tables and compared the best forecasting values. The performance of different models structure of the ANN is used to identify the fluctuation of the groundwater table and provide acceptable predictions. Dynamics prediction and time series of the system can be implemented in two possible ways of modelling. The coefficient correlation (R, Mean Square Error (MSE, Root Mean Square Error (RMSE and coefficient determination (R2 were chosen as the selection criteria of the best model. The statistical values for DW1 are 0.8649, 0.0356, 0.01, and 0.748 respectively. While for DW2 the statistical values are 0.7392, 0.0781, 0.0139, and 0.546 respectively. Based on these results, it clearly shows that accurate predictions can be achieved with time series 1-day ahead of forecasting groundwater table and the interaction between river and aquifer can be examine. The findings of the study can be used to assist policy marker to manage groundwater resources by using RBI method.

  3. Particle swarm optimization based artificial neural network model for forecasting groundwater level in Udupi district

    Science.gov (United States)

    Balavalikar, Supreetha; Nayak, Prabhakar; Shenoy, Narayan; Nayak, Krishnamurthy

    2018-04-01

    The decline in groundwater is a global problem due to increase in population, industries, and environmental aspects such as increase in temperature, decrease in overall rainfall, loss of forests etc. In Udupi district, India, the water source fully depends on the River Swarna for drinking and agriculture purposes. Since the water storage in Bajae dam is declining day-by-day and the people of Udupi district are under immense pressure due to scarcity of drinking water, alternatively depend on ground water. As the groundwater is being heavily used for drinking and agricultural purposes, there is a decline in its water table. Therefore, the groundwater resources must be identified and preserved for human survival. This research proposes a data driven approach for forecasting the groundwater level. The monthly variations in groundwater level and rainfall data in three observation wells located in Brahmavar, Kundapur and Hebri were investigated and the scenarios were examined for 2000-2013. The focus of this research work is to develop an ANN based groundwater level forecasting model and compare with hybrid ANN-PSO forecasting model. The model parameters are tested using different combinations of the data. The results reveal that PSO-ANN based hybrid model gives a better prediction accuracy, than ANN alone.

  4. Forecasting monthly groundwater level fluctuations in coastal aquifers using hybrid Wavelet packet–Support vector regression

    Directory of Open Access Journals (Sweden)

    N. Sujay Raghavendra

    2015-12-01

    Full Text Available This research demonstrates the state-of-the-art capability of Wavelet packet analysis in improving the forecasting efficiency of Support vector regression (SVR through the development of a novel hybrid Wavelet packet–Support vector regression (WP–SVR model for forecasting monthly groundwater level fluctuations observed in three shallow unconfined coastal aquifers. The Sequential Minimal Optimization Algorithm-based SVR model is also employed for comparative study with WP–SVR model. The input variables used for modeling were monthly time series of total rainfall, average temperature, mean tide level, and past groundwater level observations recorded during the period 1996–2006 at three observation wells located near Mangalore, India. The Radial Basis function is employed as a kernel function during SVR modeling. Model parameters are calibrated using the first seven years of data, and the remaining three years data are used for model validation using various input combinations. The performance of both the SVR and WP–SVR models is assessed using different statistical indices. From the comparative result analysis of the developed models, it can be seen that WP–SVR model outperforms the classic SVR model in predicting groundwater levels at all the three well locations (e.g. NRMSE(WP–SVR = 7.14, NRMSE(SVR = 12.27; NSE(WP–SVR = 0.91, NSE(SVR = 0.8 during the test phase with respect to well location at Surathkal. Therefore, using the WP–SVR model is highly acceptable for modeling and forecasting of groundwater level fluctuations.

  5. Application of artificial neural network model for groundwater level forecasting in a river island with artificial influencing factors

    Science.gov (United States)

    Lee, Sanghoon; Yoon, Heesung; Park, Byeong-Hak; Lee, Kang-Kun

    2017-04-01

    Groundwater use has been increased for various purposes like agriculture, industry or drinking water in recent years, the issue related to sustainability on the groundwater use also has been raised. Accordingly, forecasting the groundwater level is of great importance for planning sustainable use of groundwater. In a small island surrounded by the Han River, South Korea, seasonal fluctuation of the groundwater level is characterized by multiple factors such as recharge/discharge event of the Paldang dam, Water Curtain Cultivation (WCC) during the winter season, operation of Groundwater Heat Pump System (GWHP). For a period when the dam operation is only occurred in the study area, a prediction of the groundwater level can be easily achieved by a simple cross-correlation model. However, for a period when the WCC and the GWHP systems are working together, the groundwater level prediction is challenging due to its unpredictable operation of the two systems. This study performed Artificial Neural Network (ANN) model to forecast the groundwater level in the river area reflecting the various predictable/unpredictable factors. For constructing the ANN models, two monitoring wells, YSN1 and YSO8, which are located near the injection and abstraction wells for the GWHP system were selected, respectively. By training with the groundwater level data measured in January 2015 to August 2015, response of groundwater level by each of the surface water level, the WCC and the GWHP system were evaluated. Consequentially, groundwater levels in December 2015 to March 2016 were predicted by ANN models, providing optimal fits in comparison to the observed water levels. This study suggests that the ANN model is a useful tool to forecast the groundwater level in terms of the management of groundwater. Acknowledgement : Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003) This research was

  6. Groundwater-level trends and forecasts, and salinity trends, in the Azraq, Dead Sea, Hammad, Jordan Side Valleys, Yarmouk, and Zarqa groundwater basins, Jordan

    Science.gov (United States)

    Goode, Daniel J.; Senior, Lisa A.; Subah, Ali; Jaber, Ayman

    2013-01-01

    Changes in groundwater levels and salinity in six groundwater basins in Jordan were characterized by using linear trends fit to well-monitoring data collected from 1960 to early 2011. On the basis of data for 117 wells, groundwater levels in the six basins were declining, on average about -1 meter per year (m/yr), in 2010. The highest average rate of decline, -1.9 m/yr, occurred in the Jordan Side Valleys basin, and on average no decline occurred in the Hammad basin. The highest rate of decline for an individual well was -9 m/yr. Aquifer saturated thickness, a measure of water storage, was forecast for year 2030 by using linear extrapolation of the groundwater-level trend in 2010. From 30 to 40 percent of the saturated thickness, on average, was forecast to be depleted by 2030. Five percent of the wells evaluated were forecast to have zero saturated thickness by 2030. Electrical conductivity was used as a surrogate for salinity (total dissolved solids). Salinity trends in groundwater were much more variable and less linear than groundwater-level trends. The long-term linear salinity trend at most of the 205 wells evaluated was not increasing, although salinity trends are increasing in some areas. The salinity in about 58 percent of the wells in the Amman-Zarqa basin was substantially increasing, and the salinity in Hammad basin showed a long-term increasing trend. Salinity increases were not always observed in areas with groundwater-level declines. The highest rates of salinity increase were observed in regional discharge areas near groundwater pumping centers.

  7. Evaluation of the fast orthogonal search method for forecasting chloride levels in the Deltona groundwater supply (Florida, USA)

    Science.gov (United States)

    El-Jaat, Majda; Hulley, Michael; Tétreault, Michel

    2018-02-01

    Despite the broad impact and importance of saltwater intrusion in coastal aquifers, little research has been directed towards forecasting saltwater intrusion in areas where the source of saltwater is uncertain. Saline contamination in inland groundwater supplies is a concern for numerous communities in the southern US including the city of Deltona, Florida. Furthermore, conventional numerical tools for forecasting saltwater contamination are heavily dependent on reliable characterization of the physical characteristics of underlying aquifers, information that is often absent or challenging to obtain. To overcome these limitations, a reliable alternative data-driven model for forecasting salinity in a groundwater supply was developed for Deltona using the fast orthogonal search (FOS) method. FOS was applied on monthly water-demand data and corresponding chloride concentrations at water supply wells. Groundwater salinity measurements from Deltona water supply wells were applied to evaluate the forecasting capability and accuracy of the FOS model. Accurate and reliable groundwater salinity forecasting is necessary to support effective and sustainable coastal-water resource planning and management. The available (27) water supply wells for Deltona were randomly split into three test groups for the purposes of FOS model development and performance assessment. Based on four performance indices (RMSE, RSR, NSEC, and R), the FOS model proved to be a reliable and robust forecaster of groundwater salinity. FOS is relatively inexpensive to apply, is not based on rigorous physical characterization of the water supply aquifer, and yields reliable estimates of groundwater salinity in active water supply wells.

  8. Forecast level in the groundwater regime in the territory adjacent to the pond - storage devices waste mine water "SVIDOVOK"

    Directory of Open Access Journals (Sweden)

    Yevhrashkina H.P.

    2012-09-01

    Full Text Available The hydrodynamic scheme layer-bond is proposed for long – term level regime forecast. Which takes into account the rising ground waters under the influence by hydrodynamic schemes: of the pond and of the river Samara. The process is described with Fourier’s equation. The method of double superposition is used in the calculations, which the most accurately accounts for the effect of boundary condition

  9. Predictive models applied to groundwater level forecasting: a preliminary experience on the alluvial aquifer of the Magra River (Italy).

    Science.gov (United States)

    Brozzo, Gianpiero; Doveri, Marco; Lelli, Matteo; Scozzari, Andrea

    2010-05-01

    Computer-based decision support systems are getting a growing interest for water managing authorities and water distribution companies. This work discusses a preliminary experience in the application of computational intelligence in a hydrological modeling framework, regarding the study area of the alluvial aquifer of the Magra River (Italy). Two sites in the studied area, corresponding to two distinct groups of wells (Battifollo and Fornola) are managed by the local drinkable water distribution company (ACAM Acque), which serves the area of La Spezia, on the Ligurian coast. Battifollo has 9 wells with a total extraction rate of about 240 liters per second, while Fornola has 44 wells with an extraction rate of about 900 liters per second. Objective of this work is to make use of time series coming from long-term monitoring activities in order to assess the trend of the groundwater level with respect to a set of environmental and exploitation parameters; this is accomplished by the experimentation of a suitable model, eligible to be used as a predictor. This activity moves on from the modeling of the system behavior, based on a set of Input/Output data, in order to characterize it without necessarily a prior knowledge of any deterministic mechanism (system identification). In this context, data series collected by continuous hydrological monitoring instrumentation installed in the studied sites, together with meteorological and water extraction data, have been analyzed in order to assess the applicability and performance of a predictive model of the groundwater level. A mixed approach (both data driven and process-based) has been experimented on the whole dataset relating to the last ten years of continuous monitoring activity. The system identification approach presented here is based on the integration of an adaptive technique based on Artificial Neural Networks (ANNs) and a blind deterministic identification approach. According to this concept, the behavior of

  10. Groundwater Level Monitoring using Levelogger and the Importance of Long-Term Groundwater Level Data

    International Nuclear Information System (INIS)

    Nazran Harun; Ahmad Hasnulhadi Che Kamaruddin

    2016-01-01

    This review paper is focused on groundwater level monitoring using levelogger and the importance of long-term groundwater level data. The levelogger provides an inexpensive and convenient method to measure level, temperature and conductivity all in one probe. It can provide real time view as data is being recorded by the connected data logger. Water-level measurements from observation wells are the principal source of information about the hydrologic stresses acting on aquifers and how these stresses affect ground-water recharge, storage, and discharge. Long-term and systematic measurements of water levels provide essential data needed to evaluate changes in the resource over time to develop ground-water models, forecast trends and monitor the effectiveness of groundwater management. A significant advantage of this method of data collection and reporting are the groundwater level data can be updated real time. The accessibility of water level data is greatly enhanced by the Geographic Information System (GIS) to visually illustrate the locations of observation wells relative to relevant topographic, geologic, or hydrologic features. GIS and internet greatly enhance the capability for retrieval and transmittal of water-level data to potential users. (author)

  11. Using Spatial Clustering in Forecasting Groundwater Quality Parameters by ANFIS

    Directory of Open Access Journals (Sweden)

    MohammadTaghi Alami

    2016-07-01

    Full Text Available Groundwater is a major source of water supply for domestic, agricultural, and industrial uses; hence, its quality modeling is an important task in hydro-environmental studies. While many data-based models have been developed for this purpose, the performance of such data-based models can be drastically enhanced if they are based on temporal and spatial pre-processing. In this study, geostatistics tools (e.g., Co-Kriging, as spatial estimators, and self-organizing map (SOM, as a clustering technique, were employed in conjunction with Adaptive Neuro-Fuzzy Inference System (ANFIS for the temporal forecasting of such quality parameters as electrical conductivity (EC and total dissolved solids (TDS of the groundwater in Ardabil Plain. Using the results thus obtained, the impact of spatial data clustering was also investigated on the same parameters. The results showed that, if propoer input data are selected, the proposed spatial clustering technique is capable of imporving groundwater quality forecasts made by ANFIS.

  12. Solid low-level waste forecasting guide

    International Nuclear Information System (INIS)

    Templeton, K.J.; Dirks, L.L.

    1995-03-01

    Guidance for forecasting solid low-level waste (LLW) on a site-wide basis is described in this document. Forecasting is defined as an approach for collecting information about future waste receipts. The forecasting approach discussed in this document is based solely on hanford's experience within the last six years. Hanford's forecasting technique is not a statistical forecast based upon past receipts. Due to waste generator mission changes, startup of new facilities, and waste generator uncertainties, statistical methods have proven to be inadequate for the site. It is recommended that an approach similar to Hanford's annual forecasting strategy be implemented at each US Department of Energy (DOE) installation to ensure that forecast data are collected in a consistent manner across the DOE complex. Hanford's forecasting strategy consists of a forecast cycle that can take 12 to 30 months to complete. The duration of the cycle depends on the number of LLW generators and staff experience; however, the duration has been reduced with each new cycle. Several uncertainties are associated with collecting data about future waste receipts. Volume, shipping schedule, and characterization data are often reported as estimates with some level of uncertainty. At Hanford, several methods have been implemented to capture the level of uncertainty. Collection of a maximum and minimum volume range has been implemented as well as questionnaires to assess the relative certainty in the requested data

  13. Assessing the suitability of extreme learning machines (ELM for groundwater level prediction

    Directory of Open Access Journals (Sweden)

    Yadav Basant

    2017-03-01

    Full Text Available Fluctuation of groundwater levels around the world is an important theme in hydrological research. Rising water demand, faulty irrigation practices, mismanagement of soil and uncontrolled exploitation of aquifers are some of the reasons why groundwater levels are fluctuating. In order to effectively manage groundwater resources, it is important to have accurate readings and forecasts of groundwater levels. Due to the uncertain and complex nature of groundwater systems, the development of soft computing techniques (data-driven models in the field of hydrology has significant potential. This study employs two soft computing techniques, namely, extreme learning machine (ELM and support vector machine (SVM to forecast groundwater levels at two observation wells located in Canada. A monthly data set of eight years from 2006 to 2014 consisting of both hydrological and meteorological parameters (rainfall, temperature, evapotranspiration and groundwater level was used for the comparative study of the models. These variables were used in various combinations for univariate and multivariate analysis of the models. The study demonstrates that the proposed ELM model has better forecasting ability compared to the SVM model for monthly groundwater level forecasting.

  14. Combining SKU-level sales forecasts from models and experts

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Legerstee (Rianne)

    2009-01-01

    textabstractWe study the performance of SKU-level sales forecasts which linearly combine statistical model forecasts and expert forecasts. Using a large and unique database containing model forecasts for monthly sales of various pharmaceutical products and forecasts given by about fifty experts, we

  15. Arsenic levels in groundwater aquifer

    African Journals Online (AJOL)

    Miodrag Jelic

    resistance (ρ); dielectric constant (ε); magnetic permeability (η); electrochemical activity ..... comprises grey sands of different particle size distribution ..... groundwater: testing pollution mechanisms for sedimentary aquifers in. Bangladesh.

  16. Assessing and forecasting groundwater development costs in Sub ...

    African Journals Online (AJOL)

    Greater use of groundwater in Sub-Saharan Africa is a pre-requisite for improved human welfare; however, the costs associated with groundwater development are prohibitively high and poorly defined. This study identifies and disaggregates the costs of groundwater development in 11 Sub-Saharan African countries, while ...

  17. Groundwater levels and dolomite - nuisance or necessity

    CSIR Research Space (South Africa)

    Hobbs, PJ

    2008-11-01

    Full Text Available The significance and importance of groundwater level data in a karst environment, whilst acknowledged by geotechnical engineers and engineering geologists, is often not afforded the recognition it deserves. Within the ambit of a geotechnical site...

  18. Radar Based Flow and Water Level Forecasting in Sewer Systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Rasmussen, Michael R.; Grum, M.

    2009-01-01

    This paper describes the first radar based forecast of flow and/or water level in sewer systems in Denmark. The rainfall is successfully forecasted with a lead time of 1-2 hours, and flow/levels are forecasted an additional ½-1½ hours using models describing the behaviour of the sewer system. Bot...

  19. Why is the Groundwater Level Rising? A Case Study Using HARTT to Simulate Groundwater Level Dynamic.

    Science.gov (United States)

    Yihdego, Yohannes; Danis, Cara; Paffard, Andrew

    2017-12-01

    Groundwater from a shallow unconfined aquifer at a site in coastal New South Wales has been causing recent water logging issues. A trend of rising groundwater level has been anecdotally observed over the last 10 years. It was not clear whether the changes in groundwater levels were solely natural variations within the groundwater system or whether human interference was driving the level up. Time series topographic images revealed significant surrounding land use changes and human modification to the environment of the groundwater catchment. A statistical model utilising HARTT (multiple linear regression hydrograph analysis method) simulated the groundwater level dynamics at five key monitoring locations and successfully showed a trend of rising groundwater level. Utilising hydrogeological input from field investigations, the model successfully simulated the rise in the water table over time to the present day levels, whilst taking into consideration rainfall and land changes. The underlying geological/land conditions were found to be just as significant as the impact of climate variation. The correlation coefficient for the monitoring bores (MB), excluding MB4, show that the groundwater level fluctuation can be explained by the climate variable (rainfall) with the lag time between the atypical rainfall and groundwater level ranging from 4 to 7 months. The low R2 value for MB4 indicates that there are factors missing in the model which are primarily related to human interference. The elevated groundwater levels in the affected area are the result of long term cumulative land use changes, instigated by humans, which have directly resulted in detrimental changes to the groundwater aquifer properties.

  20. Using groundwater levels to estimate recharge

    Science.gov (United States)

    Healy, R.W.; Cook, P.G.

    2002-01-01

    Accurate estimation of groundwater recharge is extremely important for proper management of groundwater systems. Many different approaches exist for estimating recharge. This paper presents a review of methods that are based on groundwater-level data. The water-table fluctuation method may be the most widely used technique for estimating recharge; it requires knowledge of specific yield and changes in water levels over time. Advantages of this approach include its simplicity and an insensitivity to the mechanism by which water moves through the unsaturated zone. Uncertainty in estimates generated by this method relate to the limited accuracy with which specific yield can be determined and to the extent to which assumptions inherent in the method are valid. Other methods that use water levels (mostly based on the Darcy equation) are also described. The theory underlying the methods is explained. Examples from the literature are used to illustrate applications of the different methods.

  1. Forecasting Water Levels Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Shreenivas N. Londhe

    2011-06-01

    Full Text Available For all Ocean related activities it is necessary to predict the actual water levels as accurate as possible. The present work aims at predicting the water levels with a lead time of few hours to a day using the technique of artificial neural networks. Instead of using the previous and current values of observed water level time series directly as input and output the water level anomaly (difference between the observed water level and harmonically predicted tidal level is calculated for each hour and the ANN model is developed using this time series. The network predicted anomaly is then added to harmonic tidal level to predict the water levels. The exercise is carried out at six locations, two in The Gulf of Mexico, two in The Gulf of Maine and two in The Gulf of Alaska along the USA coastline. The ANN models performed reasonably well for all forecasting intervals at all the locations. The ANN models were also run in real time mode for a period of eight months. Considering the hurricane season in Gulf of Mexico the models were also tested particularly during hurricanes.

  2. Forecasting the Depletion of Transboundary Groundwater Resources in Hyper-Arid Environments

    Science.gov (United States)

    Mazzoni, A.; Heggy, E.

    2014-12-01

    growth will be at unprecedented levels for these areas causing the water demand of these nations to grow largely. Our preliminary simulation results suggest that fossil aquifers cannot be used as a long-term solution for water shortage in hyper-arid environments. Aquifers in the Arabian Peninsula are forecasted to be depleted within decades.

  3. Concentration of Uranium levels in groundwater

    International Nuclear Information System (INIS)

    Babu, M. N. S.; Somashekar, R. K.; Kumar, S. A.; Shivanna, K.; Krishnamurthy, V.; Eappen, K. P.

    2008-01-01

    The uranium isotopes during their course of their disintegration decay into other radioactive elements and eventually decay into stable lead isotopes. The cause of environmental concern is the emanation of beta and gamma radiation during disintegration. The present study tends to estimate uranium in groundwater trapped in granite and gneiss rocks. Besides, the study aims at estimating the radiation during natural disintegration process. The water samples were collected and analyzed following inductively coupled plasma mass spectrometric technique while water sample collection was given to the regions of Kolar District, South India, due to the representation. The significant finding was the observation of very high levels of uranium in groundwater compared to similar assays reported at other nearby districts. Also, the levels were considerable to those compared to groundwater levels of uranium reported by other scientists, On the basis of this study, it was inferred that the origin of uranium was from granite strata and there was a trend of diffusion observed in the course of flow-path of water in the region

  4. Groundwater levels for selected wells in Upper Kittitas County, Washington

    Science.gov (United States)

    Fasser, E.T.; Julich, R.J.

    2011-01-01

    Groundwater levels for selected wells in Upper Kittitas County, Washington, are presented on an interactive, web-based map to document the spatial distribution of groundwater levels in the study area measured during spring 2011. Groundwater-level data and well information were collected by the U.S. Geological Survey using standard techniques and are stored in the U.S. Geological Survey National Water Information System, Groundwater Site-Inventory database.

  5. Groundwater level status report for 2010, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2011-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2010 is provided in this report. This report summarizes groundwater level data for 194 monitoring wells, including 63 regional aquifer wells (including 10 regional/intermediate wells), 34 intermediate wells, 97 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 162 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells and seasonal responses to snowmelt runoff observed in intermediate wells.

  6. Groundwater level status report for 2009, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2010-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2009 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 55 regional aquifer wells (including 11 regional/intermediate wells), 26 intermediate wells, 98 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 161 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

  7. Predicting groundwater level fluctuations with meteorological effect implications—A comparative study among soft computing techniques

    Science.gov (United States)

    Shiri, Jalal; Kisi, Ozgur; Yoon, Heesung; Lee, Kang-Kun; Hossein Nazemi, Amir

    2013-07-01

    The knowledge of groundwater table fluctuations is important in agricultural lands as well as in the studies related to groundwater utilization and management levels. This paper investigates the abilities of Gene Expression Programming (GEP), Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Networks (ANN) and Support Vector Machine (SVM) techniques for groundwater level forecasting in following day up to 7-day prediction intervals. Several input combinations comprising water table level, rainfall and evapotranspiration values from Hongcheon Well station (South Korea), covering a period of eight years (2001-2008) were used to develop and test the applied models. The data from the first six years were used for developing (training) the applied models and the last two years data were reserved for testing. A comparison was also made between the forecasts provided by these models and the Auto-Regressive Moving Average (ARMA) technique. Based on the comparisons, it was found that the GEP models could be employed successfully in forecasting water table level fluctuations up to 7 days beyond data records.

  8. Long-range dependence and sea level forecasting

    CERN Document Server

    Ercan, Ali; Abbasov, Rovshan K

    2013-01-01

    This study shows that the Caspian Sea level time series possess long range dependence even after removing linear trends, based on analyses of the Hurst statistic, the sample autocorrelation functions, and the periodogram of the series. Forecasting performance of ARMA, ARIMA, ARFIMA and Trend Line-ARFIMA (TL-ARFIMA) combination models are investigated. The forecast confidence bands and the forecast updating methodology, provided for ARIMA models in the literature, are modified for the ARFIMA models. Sample autocorrelation functions are utilized to estimate the differencing lengths of the ARFIMA

  9. Sensitivity of GRACE-derived estimates of groundwater-level changes in southern Ontario, Canada

    Science.gov (United States)

    Hachborn, Ellen; Berg, Aaron; Levison, Jana; Ambadan, Jaison Thomas

    2017-12-01

    Amidst changing climates, understanding the world's water resources is of increasing importance. In Ontario, Canada, low water conditions are currently assessed using only precipitation and watershed-based stream gauges by the Conservation Authorities in Ontario and the Ministry of Natural Resources and Forestry. Regional groundwater-storage changes in Ontario are not currently measured using satellite data by research institutes. In this study, contributions from the Gravity Recovery and Climate Experiment (GRACE) data are compared to a hydrogeological database covering southern Ontario from 2003 to 2013, to determine the suitability of GRACE total water storage estimates for monitoring groundwater storage in this location. Terrestrial water storage data from GRACE were used to determine monthly groundwater storage (GWS) anomaly values. GWS values were also determined by multiplying groundwater-level elevations (from the Provincial Groundwater Monitoring Network wells) by specific yield. Comparisons of GRACE-derived GWS to well-based GWS data determined that GRACE is sufficiently sensitive to obtain a meaningful signal in southern Ontario. Results show that GWS values produced by GRACE are useful for identifying regional changes in groundwater storage in areas with limited available hydrogeological characterization data. Results also indicate that GRACE may have an ability to forecast changes in groundwater storage, which will become useful when monitoring climate shifts in the near future.

  10. A Groundwater Resource Index (GRI) for drought monitoring and forecasting in a mediterranean climate

    Science.gov (United States)

    Mendicino, Giuseppe; Senatore, Alfonso; Versace, Pasquale

    2008-08-01

    SummaryDrought indices are essential elements of an efficient drought watching system, aimed at providing a concise overall picture of drought conditions. Owing to its simplicity, time-flexibility and standardization, the Standardized Precipitation Index (SPI) has become a very widely used meteorological index, even if it is not able to account for effects of aquifers, soil, land use characteristics, canopy growth and temperature anomalies. Many other drought indices have been developed over the years, with monitoring and forecasting purposes, also with the purpose of taking advantage of the opportunities offered by remote sensing and improved general circulation models (GCMs). Moreover, some aggregated indices aimed at capturing the different features of drought have been proposed, but very few drought indices are focused on the groundwater resource status. In this paper a novel Groundwater Resource Index (GRI) is presented as a reliable tool useful in a multi-analysis approach for monitoring and forecasting drought conditions. The GRI is derived from a simple distributed water balance model, and has been tested in a Mediterranean region, characterized by different geo-lithological conditions mainly affecting the summer hydrologic response of the catchments to winter precipitation. The analysis of the GRI characteristics shows a high spatial variability and, compared to the SPI through spectral analysis, a significant sensitivity to the lithological characterization of the analyzed region. Furthermore, the GRI shows a very high auto-correlation during summer months, useful for forecasting purposes. The capability of the proposed index in forecasting summer droughts was tested analyzing the correlation of the GRI April values with the mean summer runoff values of some river basins (obtaining a mean correlation value of 0.60) and with the summer NDVI values of several forested areas, where correlation values greater than 0.77 were achieved. Moreover, its performance

  11. Sea Level Forecasts Aggregated from Established Operational Systems

    Directory of Open Access Journals (Sweden)

    Andy Taylor

    2017-08-01

    Full Text Available A system for providing routine seven-day forecasts of sea level observable at tide gauge locations is described and evaluated. Forecast time series are aggregated from well-established operational systems of the Australian Bureau of Meteorology; although following some adjustments these systems are only quasi-complimentary. Target applications are routine coastal decision processes under non-extreme conditions. The configuration aims to be relatively robust to operational realities such as version upgrades, data gaps and metadata ambiguities. Forecast skill is evaluated against hourly tide gauge observations. Characteristics of the bias correction term are demonstrated to be primarily static in time, with time varying signals showing regional coherence. This simple approach to exploiting existing complex systems can offer valuable levels of skill at a range of Australian locations. The prospect of interpolation between observation sites and exploitation of lagged-ensemble uncertainty estimates could be meaningfully pursued. Skill characteristics define a benchmark against which new operational sea level forecasting systems can be measured. More generally, an aggregation approach may prove to be optimal for routine sea level forecast services given the physically inhomogeneous processes involved and ability to incorporate ongoing improvements and extensions of source systems.

  12. Forecasting Aggregate Productivity using Information from Firm-level Data

    NARCIS (Netherlands)

    Bartelsman, E.J.; Wolf, Z.

    2014-01-01

    In this paper, we explore whether information from firm-level data can improve forecasts of aggregate productivity growth. We generate firm-level productivity measures and aggregate them into time-series components that capture within-firm productivity and the productivity contribution of

  13. [Simulation on contamination forecast and control of groundwater in a certain hazardous waste landfill].

    Science.gov (United States)

    Ma, Zhi-Fei; An, Da; Jiang, Yong-Hai; Xi, Bei-Dou; Li, Ding-Long; Zhang, Jin-Bao; Yang, Yu

    2012-01-01

    On the basis of site investigation and data collection of a certain hazardous waste landfill, the groundwater flow and solute transport coupled models were established by applying Visual Modflow software, which was used to conduct a numerical simulation that forecast the transport process of Cr6+ in groundwater and the effects of three control measures (ground-harden, leakage-proof barriers and drainage ditches) of contaminants transport after leachate leakage happened in impermeable layer of the landfill. The results show that the contamination plume of Cr6+ transports with groundwater flow direction, the contamination rang would reach the pool's boundary in 10 years, and the distance of contamination transport is 1 450 m. But the diffusion range of contamination plume would not be obviously expanded between 10 and 20 years. While the ground is hardened, the contamination plume would not reach the pool's boundary in 20 years. When the leakage-proof barrier is set in the bottom of water table aquifer, the concentration of Cr6+ is higher than that the leakage-proof barrier is unset, but the result is just opposite when setting the leakage-proof barrier in the bottom of underlying aquifer. The range of contamination plume is effectively controlled by setting drainage ditches that water discharge is 2 642 m3 x d(-1), which makes the monitoring wells would not be contaminated in 20 years. Moreover, combining the ground-harden with drainage ditches can get the best effect in controlling contaminants diffusion, and meanwhile, the drainage ditches' daily discharge is reduced to 1 878 m3 x d(-1). Therefore, it is suggested that the control measure combining the ground-harden with drainage ditches should apply to prevent contamination diffusion in groundwater when leachate leakage have happened in impermeable layer of the landfill.

  14. Medium Range Ensembles Flood Forecasts for Community Level Applications

    Science.gov (United States)

    Fakhruddin, S.; Kawasaki, A.; Babel, M. S.; AIT

    2013-05-01

    Early warning is a key element for disaster risk reduction. In recent decades, there has been a major advancement in medium range and seasonal forecasting. These could provide a great opportunity to improve early warning systems and advisories for early action for strategic and long term planning. This could result in increasing emphasis on proactive rather than reactive management of adverse consequences of flood events. This can be also very helpful for the agricultural sector by providing a diversity of options to farmers (e.g. changing cropping pattern, planting timing, etc.). An experimental medium range (1-10 days) flood forecasting model has been developed for Bangladesh which provides 51 set of discharge ensembles forecasts of one to ten days with significant persistence and high certainty. This could help communities (i.e. farmer) for gain/lost estimation as well as crop savings. This paper describe the application of ensembles probabilistic flood forecast at the community level for differential decision making focused on agriculture. The framework allows users to interactively specify the objectives and criteria that are germane to a particular situation, and obtain the management options that are possible, and the exogenous influences that should be taken into account before planning and decision making. risk and vulnerability assessment was conducted through community consultation. The forecast lead time requirement, users' needs, impact and management options for crops, livestock and fisheries sectors were identified through focus group discussions, informal interviews and questionnaire survey.

  15. Effects of climate change on groundwater: observed and forecasted trends on Italian systems

    Science.gov (United States)

    Doveri, Marco; Menichini, Matia; Provenzale, Antonello; Scozzari, Andrea

    2017-04-01

    Groundwater represents the main source of water supply at global level. In Italy, as well as in most European countries, water needs are mainly covered by groundwater exploitation. The reliance on this resource is continuously growing, given the key role that groundwater plays for mitigating the climate change/variability and for addressing the significant increase in the global water demand. Despite this, and unlike surface waters, groundwater bodies have not been widely studied, and there is a general paucity of quantitative information, especially in relation to climate change. Although groundwater systems are more resilient to climate change than surface waters, they are affected both directly and indirectly. The estimation of the entity of these effects is mandatory for a reliable management of this crucial resource. The analysis of hydro-meteorological data over a few decades highlights that also the Italian territory is experiencing a change of the climate regime. Besides the increase of mean annual temperature, observed in particular since the early 1980s, longer and more frequent drought periods have been registered, as well as an increase of extreme events characterized by heavy rainfall. It is also noticeable a decrease in total rainfall, that is much more evident in the period from January to June. In addition to the reduced yearly inputs from precipitation, such trends determine also a lower snow accumulation and earlier snow melt in mountain areas, a general increase of evapotranspiration rates and an increased runoff fraction of the effective rainfall amount. As flood hydrographs of several major Italian rivers (e.g., Po, Brenta and Arno rivers) confirm, evident effects concern surface water resources. The main observed phenomena consist in the decline of mean annual discharge, the increase of extreme events with high discharge concentrated in short periods, and longer and earlier periods of low base flow. Impacts on groundwater recharge are not well

  16. Groundwater management based on monitoring of land subsidence and groundwater levels in the Kanto Groundwater Basin, Central Japan

    Science.gov (United States)

    Furuno, K.; Kagawa, A.; Kazaoka, O.; Kusuda, T.; Nirei, H.

    2015-11-01

    Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.

  17. Groundwater dating down to the milliliter level

    International Nuclear Information System (INIS)

    Molnar, M.; Janovics, R.; Rinyu, L.

    2010-01-01

    Complete text of publication follows. A novel method was developed for AMS C-14 measurement of carbonate samples using He carrier gas flushing in septum sealed test tubes. The new and powerful pretreatment method can be applied for normal size (0.1-1.0 mg C) and ultra small size (10-100 μg C) carbonate samples. In this study we investigated the applicability of the new method for dissolved inorganic carbonate (DIC) samples for groundwater radiocarbon analysis. The developed pretreatment method does not require vacuum during sample preparation, which significantly reduces the complexity. Reaction time and conditions can be easily controlled as carbon-dioxide content of water samples is extracted by acid addition in He atmosphere using a simple septum sealed test tube. A double needle with flow controlled He carrier gas is used for CO 2 transfer out from the test tube (Fig. 1). Carbon-dioxide is trapped on a zeolite without using liquid N 2 freezing. The new method can be combined with an automatized graphitization system like AGE from ETHZ giving a full automatizable water preparation line for AMS graphite targets. This case the needed typical sample size is between 5-12 ml of water sample. The most powerful application of the new groundwater pretreatment method is to connect it directly to an AMS using gas ion source interface (Fig.2). With a MICADAS type AMS system we demonstrated that you can routinely measure the C-14 content of 1 ml of water sample with better than 1% precision (for a modern sample). This direct C-14 AMS measurement including sample preparation of one water sample takes about 20 minutes.

  18. Effect of Pumping on Groundwater Levels: A Case Study

    Science.gov (United States)

    Sindhu, G.; Vijayachandran, Lekshmi

    2018-03-01

    Groundwater is a major source for drinking and domestic purposes. Nowadays, extensive pumping has become a major issue of concern since pumping has led to rapid decline in the groundwater table, thus imposing landward gradient, leading to saline water intrusion especially in coastal areas. Groundwater pumping has seen its utmost effect on coastal aquifer systems, where the sea-ward gradient gets disturbed due to anthropogenic influences. Hence, a groundwater flow modelling of an aquifer system is essential for understanding the various hydro-geologic conditions, which can be used to study the responses of the aquifer system with regard to various pumping scenarios. Besides, a model helps to predict the water levels for the future period with respect to changing environment. In this study, a finite element groundwater flow model of a coastal aquifer system at Aakulam, Trivandrum district is developed, calibrated and simulated using the software Finite Element subsurface Flow system (FEFLOW 6.2).This simulated model is then used to predict the groundwater levels for a future 5 year period during pre monsoon and post monsoon season.

  19. Effect of Pumping on Groundwater Levels: A Case Study

    Science.gov (United States)

    Sindhu, G.; Vijayachandran, Lekshmi

    2018-06-01

    Groundwater is a major source for drinking and domestic purposes. Nowadays, extensive pumping has become a major issue of concern since pumping has led to rapid decline in the groundwater table, thus imposing landward gradient, leading to saline water intrusion especially in coastal areas. Groundwater pumping has seen its utmost effect on coastal aquifer systems, where the sea-ward gradient gets disturbed due to anthropogenic influences. Hence, a groundwater flow modelling of an aquifer system is essential for understanding the various hydro-geologic conditions, which can be used to study the responses of the aquifer system with regard to various pumping scenarios. Besides, a model helps to predict the water levels for the future period with respect to changing environment. In this study, a finite element groundwater flow model of a coastal aquifer system at Aakulam, Trivandrum district is developed, calibrated and simulated using the software Finite Element subsurface Flow system (FEFLOW 6.2).This simulated model is then used to predict the groundwater levels for a future 5 year period during pre monsoon and post monsoon season.

  20. Temporal scaling and spatial statistical analyses of groundwater level fluctuations

    Science.gov (United States)

    Sun, H.; Yuan, L., Sr.; Zhang, Y.

    2017-12-01

    Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.

  1. Comparison of selection methods to deduce natural background levels for groundwater units

    NARCIS (Netherlands)

    Griffioen, J.; Passier, H.F.; Klein, J.

    2008-01-01

    Establishment of natural background levels (NBL) for groundwater is commonly performed to serve as reference when assessing the contamination status of groundwater units. We compare various selection methods to establish NBLs using groundwater quality data forfour hydrogeologically different areas

  2. Modeling the Effects of Sea-Level Rise on Groundwater Levels in Coastal New Hampshire

    Science.gov (United States)

    Jacobs, J. M.; Knott, J. F.; Daniel, J.; Kirshen, P. H.

    2017-12-01

    Coastal communities with high population density and low topography are vulnerable from sea-level rise (SLR) caused by climate change. Groundwater in coastal communities will rise with sea level impacting water quality, the structural integrity of infrastructure, and natural ecosystem health. SLR-induced groundwater rise has been studied in areas of high aquifer transmissivity and in low-lying areas immediately along the coast. In this regional study, we investigate SLR-induced groundwater rise in a coastal area characterized by shallow unconsolidated deposits overlying fractured bedrock, typical of the glaciated northeast United States. MODFLOW, a numerical groundwater-flow model, is used with groundwater observations, lidar topography, surface-water hydrology, and groundwater withdrawals to investigate SLR-induced changes in groundwater levels and vadose-zone thickness in New Hampshire's Seacoast. The SLR groundwater signal is detected up to 5 km from the coast, more than 3 times farther inland than projected surface-water flooding associated with SLR. Relative groundwater rise ranges from 38 to 98% of SLR within 1 km of the shoreline and drops below 4% between 4 and 5 km from the coast. The largest magnitude of SLR-induced groundwater rise occurs in the marine and estuarine deposits and land areas with tidal water bodies on three sides. In contrast, groundwater rise is dampened near streams. Groundwater inundation caused by 2 m of SLR is projected to contribute 48% of the total land inundation area in the City of Portsmouth with consequences for built and natural resources. Freshwater wetlands are projected to expand 3% by year 2030 increasing to 25% by year 2100 coupled with water-depth increases. These results imply that underground infrastructure and natural resources in coastal communities will be impacted by rising groundwater much farther inland than previously thought when considering only surface-water flooding from SLR.

  3. Risk assessment of groundwater level variability using variable Kriging methods

    Science.gov (United States)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2015-04-01

    Assessment of the water table level spatial variability in aquifers provides useful information regarding optimal groundwater management. This information becomes more important in basins where the water table level has fallen significantly. The spatial variability of the water table level in this work is estimated based on hydraulic head measured during the wet period of the hydrological year 2007-2008, in a sparsely monitored basin in Crete, Greece, which is of high socioeconomic and agricultural interest. Three Kriging-based methodologies are elaborated in Matlab environment to estimate the spatial variability of the water table level in the basin. The first methodology is based on the Ordinary Kriging approach, the second involves auxiliary information from a Digital Elevation Model in terms of Residual Kriging and the third methodology calculates the probability of the groundwater level to fall below a predefined minimum value that could cause significant problems in groundwater resources availability, by means of Indicator Kriging. The Box-Cox methodology is applied to normalize both the data and the residuals for improved prediction results. In addition, various classical variogram models are applied to determine the spatial dependence of the measurements. The Matérn model proves to be the optimal, which in combination with Kriging methodologies provides the most accurate cross validation estimations. Groundwater level and probability maps are constructed to examine the spatial variability of the groundwater level in the basin and the associated risk that certain locations exhibit regarding a predefined minimum value that has been set for the sustainability of the basin's groundwater resources. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the

  4. Temporal scaling of groundwater level fluctuations near a stream

    Science.gov (United States)

    Schilling, K.E.; Zhang, Y.-K.

    2012-01-01

    Temporal scaling in stream discharge and hydraulic heads in riparian wells was evaluated to determine the feasibility of using spectral analysis to identify potential surface and groundwater interaction. In floodplains where groundwater levels respond rapidly to precipitation recharge, potential interaction is established if the hydraulic head (h) spectrum of riparian groundwater has a power spectral density similar to stream discharge (Q), exhibiting a characteristic breakpoint between high and low frequencies. At a field site in Walnut Creek watershed in central Iowa, spectral analysis of h in wells located 1 m from the channel edge showed a breakpoint in scaling very similar to the spectrum of Q (~20 h), whereas h in wells located 20 and 40 m from the channel showed temporal scaling from 1 to 10,000 h without a well-defined breakpoint. The spectral exponent (??) in the riparian zone decreased systematically from the channel into the floodplain as groundwater levels were increasingly dominated by white noise groundwater recharge. The scaling pattern of hydraulic head was not affected by land cover type, although the number of analyses was limited and site conditions were variable among sites. Spectral analysis would not replace quantitative tracer or modeling studies, but the method may provide a simple means of confirming potential interaction at some sites. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.

  5. Spatial modeling for groundwater arsenic levels in North Carolina.

    Science.gov (United States)

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E

    2011-06-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area.

  6. Spatial Modeling for Groundwater Arsenic Levels in North Carolina

    Science.gov (United States)

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E.

    2013-01-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area. PMID:21528844

  7. Spatial modeling for groundwater arsenic levels in North Carolina

    Science.gov (United States)

    Kim, D.; Miranda, M.L.; Tootoo, J.; Bradley, P.; Gelfand, A.E.

    2011-01-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area. ?? 2011 American Chemical Society.

  8. Forecasting daily lake levels using artificial intelligence approaches

    Science.gov (United States)

    Kisi, Ozgur; Shiri, Jalal; Nikoofar, Bagher

    2012-04-01

    Accurate prediction of lake-level variations is important for planning, design, construction, and operation of lakeshore structures and also in the management of freshwater lakes for water supply purposes. In the present paper, three artificial intelligence approaches, namely artificial neural networks (ANNs), adaptive-neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP), were applied to forecast daily lake-level variations up to 3-day ahead time intervals. The measurements at the Lake Iznik in Western Turkey, for the period of January 1961-December 1982, were used for training, testing, and validating the employed models. The results obtained by the GEP approach indicated that it performs better than ANFIS and ANNs in predicting lake-level variations. A comparison was also made between these artificial intelligence approaches and convenient autoregressive moving average (ARMA) models, which demonstrated the superiority of GEP, ANFIS, and ANN models over ARMA models.

  9. State-level electricity demand forecasting model. [For 1980, 1985, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, H. D.

    1978-01-01

    This note briefly describes the Oak Ridge National Laboratory (ORNL) state-level electricity demand (SLED) forecasting model developed for the Nuclear Regulatory Commission. Specifically, the note presents (1) the special features of the model, (2) the methodology used to forecast electricity demand, and (3) forecasts of electricity demand and average price by sector for 15 states for 1980, 1985, 1990.

  10. The impact of groundwater level on soil seed bank survival

    NARCIS (Netherlands)

    Bekker, RM; Oomes, MJM; Bakker, JP

    Seed longevity of plant species is an important topic in restoration management, and little is known about the effects of environmental conditions on seed survival and longevity under natural conditions. Therefore, the effect of groundwater level on the survival of seeds in the soil seed bank of a

  11. Arsenic levels in groundwater aquifer of the Neoplanta source area ...

    African Journals Online (AJOL)

    As part of a survey on the groundwater aquifer at the Neoplanta source site, standard laboratory analysis of water quality and an electromagnetic geophysical method were used for long-term quantitative and qualitative monitoring of arsenic levels. This study presents only the results of research conducted in the ...

  12. Extreme groundwater levels caused by extreme weather conditions - the highest ever measured groundwater levels in Middle Germany and their management

    Science.gov (United States)

    Reinstorf, F.; Kramer, S.; Koch, T.; Pfützner, B.

    2017-12-01

    Extreme weather conditions during the years 2009 - 2011 in combination with changes in the regional water management led to maximum groundwater levels in large areas of Germany in 2011. This resulted in extensive water logging, with problems especially in urban areas near rivers, where water logging produced huge problems for buildings and infrastructure. The acute situation still exists in many areas and requires the development of solution concepts. Taken the example of the Elbe-Saale-Region in the Federal State of Saxony-Anhalt, were a pilot research project was carried out, the analytical situation, the development of a management tool and the implementation of a groundwater management concept are shown. The central tool is a coupled water budget - groundwater flow model. In combination with sophisticated multi-scale parameter estimation, a high-resolution groundwater level simulation was carried out. A decision support process with an intensive stakeholder interaction combined with high-resolution simulations enables the development of a management concept for extreme groundwater situations in consideration of sustainable and environmentally sound solutions mainly on the base of passive measures.

  13. Groundwater levels in the Kabul Basin, Afghanistan, 2004-2013

    Science.gov (United States)

    Taher, Mohammad R.; Chornack, Michael P.; Mack, Thomas J.

    2014-01-01

    The Afghanistan Geological Survey, with technical assistance from the U.S. Geological Survey, established a network of wells to measure and monitor groundwater levels to assess seasonal, areal, and potentially climatic variations in groundwater characteristics in the Kabul Basin, Afghanistan, the most populous region in the country. Groundwater levels were monitored in 71 wells in the Kabul Basin, Afghanistan, starting as early as July 2004 and continuing to the present (2013). The monitoring network is made up exclusively of existing production wells; therefore, both static and dynamic water levels were recorded. Seventy wells are in unconsolidated sediments, and one well is in bedrock. Water levels were measured periodically, generally monthly, using electric tape water-level meters. Water levels in well 64 on the grounds of the Afghanistan Geological Survey building were measured more frequently. This report provides a 10-year compilation of groundwater levels in the Kabul Basin prepared in cooperation with the Afghanistan Geological Survey. Depths to water below land surface range from a minimum of 1.47 meters (m) in the Shomali subbasin to a maximum of 73.34 m in the Central Kabul subbasin. The Logar subbasin had the smallest range in depth to water below land surface (1.5 to 12.4 m), whereas the Central Kabul subbasin had the largest range (2.64 to 73.34 m). Seasonal water-level fluctuations can be estimated from the hydrographs in this report for wells that have depth-to-water measurements collected under static conditions. The seasonal water-level fluctuations range from less than 1 m to a little more than 7 m during the monitoring period. In general, the hydrographs for the Deh Sabz, Logar, Paghman and Upper Kabul, and Shomali subbasins show relatively little change in the water-level trend during the period of record, whereas hydrographs for the Central Kabul subbasin show water level decreases of several meters to about 25 m.

  14. Recharge signal identification based on groundwater level observations.

    Science.gov (United States)

    Yu, Hwa-Lung; Chu, Hone-Jay

    2012-10-01

    This study applied a method of the rotated empirical orthogonal functions to directly decompose the space-time groundwater level variations and determine the potential recharge zones by investigating the correlation between the identified groundwater signals and the observed local rainfall records. The approach is used to analyze the spatiotemporal process of piezometric heads estimated by Bayesian maximum entropy method from monthly observations of 45 wells in 1999-2007 located in the Pingtung Plain of Taiwan. From the results, the primary potential recharge area is located at the proximal fan areas where the recharge process accounts for 88% of the spatiotemporal variations of piezometric heads in the study area. The decomposition of groundwater levels associated with rainfall can provide information on the recharge process since rainfall is an important contributor to groundwater recharge in semi-arid regions. Correlation analysis shows that the identified recharge closely associates with the temporal variation of the local precipitation with a delay of 1-2 months in the study area.

  15. Prediction of groundwater levels from lake levels and climate data using ANN approach

    OpenAIRE

    Dogan, Ahmet; Demirpence, Husnu; Cobaner, Murat

    2008-01-01

    There are many environmental concerns relating to the quality and quantity of surface and groundwater. It is very important to estimate the quantity of water by using readily available climate data for managing water resources of the natural environment. As a case study an artificial neural network (ANN) methodology is developed for estimating the groundwater levels (upper Floridan aquifer levels) as a function of monthly averaged precipitation, evaporation, and measured levels of Magnolia an...

  16. Reservoir water level forecasting using group method of data handling

    Science.gov (United States)

    Zaji, Amir Hossein; Bonakdari, Hossein; Gharabaghi, Bahram

    2018-06-01

    Accurately forecasted reservoir water level is among the most vital data for efficient reservoir structure design and management. In this study, the group method of data handling is combined with the minimum description length method to develop a very practical and functional model for predicting reservoir water levels. The models' performance is evaluated using two groups of input combinations based on recent days and recent weeks. Four different input combinations are considered in total. The data collected from Chahnimeh#1 Reservoir in eastern Iran are used for model training and validation. To assess the models' applicability in practical situations, the models are made to predict a non-observed dataset for the nearby Chahnimeh#4 Reservoir. According to the results, input combinations (L, L -1) and (L, L -1, L -12) for recent days with root-mean-squared error (RMSE) of 0.3478 and 0.3767, respectively, outperform input combinations (L, L -7) and (L, L -7, L -14) for recent weeks with RMSE of 0.3866 and 0.4378, respectively, with the dataset from https://www.typingclub.com/st. Accordingly, (L, L -1) is selected as the best input combination for making 7-day ahead predictions of reservoir water levels.

  17. The study of using earth tide response of groundwater level and rainfall recharge to identify groundwater aquifer

    Science.gov (United States)

    Huang, W. J.; Hsu, C. H.; Chang, L. C.; Chiang, C. J.; Wang, Y. S.; Lu, W. C.

    2017-12-01

    Hydrogeological framework is the most important basis for groundwater analysis and simulation. Conventionally, the core drill is a most commonly adopted skill to acquire the core's data with the help of other research methods to artificially determine the result. Now, with the established groundwater station network, there are a lot of groundwater level information available. Groundwater level is an integrated presentation of the hydrogeological framework and the external pumping and recharge system. Therefore, how to identify the hydrogeological framework from a large number of groundwater level data is an important subject. In this study, the frequency analysis method and rainfall recharge mechanism were used to identify the aquifer where the groundwater level's response frequency and amplitude react to the earth tide. As the earth tide change originates from the gravity caused by the paths of sun and moon, it leads to soil stress and strain changes, which further affects the groundwater level. The scale of groundwater level's change varies with the influence of aquifer pressure systems such as confined or unconfined aquifers. This method has been applied to the identification of aquifers in the Cho-Shui River Alluvial Fan. The results of the identification are compared to the records of core drill and they both are quite consistent. It is shown that the identification methods developed in this study can considerably contribute to the identification of hydrogeological framework.

  18. Comparison of hybrid spectral-decomposition artificial neural network models for understanding climatic forcing of groundwater levels

    Science.gov (United States)

    Abrokwah, K.; O'Reilly, A. M.

    2017-12-01

    Groundwater is an important resource that is extracted every day because of its invaluable use for domestic, industrial and agricultural purposes. The need for sustaining groundwater resources is clearly indicated by declining water levels and has led to modeling and forecasting accurate groundwater levels. In this study, spectral decomposition of climatic forcing time series was used to develop hybrid wavelet analysis (WA) and moving window average (MWA) artificial neural network (ANN) models. These techniques are explored by modeling historical groundwater levels in order to provide understanding of potential causes of the observed groundwater-level fluctuations. Selection of the appropriate decomposition level for WA and window size for MWA helps in understanding the important time scales of climatic forcing, such as rainfall, that influence water levels. Discrete wavelet transform (DWT) is used to decompose the input time-series data into various levels of approximate and details wavelet coefficients, whilst MWA acts as a low-pass signal-filtering technique for removing high-frequency signals from the input data. The variables used to develop and validate the models were daily average rainfall measurements from five National Atmospheric and Oceanic Administration (NOAA) weather stations and daily water-level measurements from two wells recorded from 1978 to 2008 in central Florida, USA. Using different decomposition levels and different window sizes, several WA-ANN and MWA-ANN models for simulating the water levels were created and their relative performances compared against each other. The WA-ANN models performed better than the corresponding MWA-ANN models; also higher decomposition levels of the input signal by the DWT gave the best results. The results obtained show the applicability and feasibility of hybrid WA-ANN and MWA-ANN models for simulating daily water levels using only climatic forcing time series as model inputs.

  19. Influence of irrigation on the level, salinity and flow of groundwater at ...

    African Journals Online (AJOL)

    2010-03-31

    Mar 31, 2010 ... piezometers had to be measured, all readings were taken within 3 days. Water levels were measured to estab- lish the effect of rainfall, drainage and irrigation on the groundwater level. These levels were also used to gener- ate groundwater contour maps and to determine the groundwater flow directions.

  20. Separation of base flow from streamflow using groundwater levels - illustrated for the Pang catchment (UK)

    NARCIS (Netherlands)

    Peters, E.; Lanen, van H.A.J.

    2005-01-01

    A new filter to separate base flow from streamflow has developed that uses observed groundwater levels. To relate the base flow to the observed groundwater levels, a non-linear relation was used. This relation is suitable for unconfined aquifers with deep groundwater levels that do not respond to

  1. Groundwater Levels for Selected Wells in the Chehalis River Basin, Washington

    Science.gov (United States)

    Fasser, E.T.; Julich, R.J.

    2010-01-01

    Groundwater levels for selected wells in the Chehalis River basin, Washington, are presented on an interactive web-based map to document the spatial distribution of groundwater levels in the study area during late summer 2009. Groundwater level data and well information were collected by the U.S. Geological Survey using standard techniques. The data are stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.

  2. The backend design of an environmental monitoring system upon real-time prediction of groundwater level fluctuation under the hillslope.

    Science.gov (United States)

    Lin, Hsueh-Chun; Hong, Yao-Ming; Kan, Yao-Chiang

    2012-01-01

    The groundwater level represents a critical factor to evaluate hillside landslides. A monitoring system upon the real-time prediction platform with online analytical functions is important to forecast the groundwater level due to instantaneously monitored data when the heavy precipitation raises the groundwater level under the hillslope and causes instability. This study is to design the backend of an environmental monitoring system with efficient algorithms for machine learning and knowledge bank for the groundwater level fluctuation prediction. A Web-based platform upon the model-view controller-based architecture is established with technology of Web services and engineering data warehouse to support online analytical process and feedback risk assessment parameters for real-time prediction. The proposed system incorporates models of hydrological computation, machine learning, Web services, and online prediction to satisfy varieties of risk assessment requirements and approaches of hazard prevention. The rainfall data monitored from the potential landslide area at Lu-Shan, Nantou and Li-Shan, Taichung, in Taiwan, are applied to examine the system design.

  3. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method

    OpenAIRE

    Jun-He Yang; Ching-Hsue Cheng; Chia-Pan Chan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting m...

  4. High levels of uranium in groundwater of Ulaanbaatar, Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Nriagu, Jerome, E-mail: stoten@umich.edu [Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109 (United States); Nam, Dong-Ha; Ayanwola, Titilayo A. [Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109 (United States); Dinh, Hau [College of Literature, Science and Arts, University of Michigan (United States); Erdenechimeg, Erdenebayar; Ochir, Chimedsuren [Department Of Preventive Medicine, School Of Public Health, Health Science University, Mongolia, Ulaanbaatar (Mongolia); Bolormaa, Tsend-Ayush [Central Water Laboratory of Water Supply and Sewerage Authority (USUG), Ulaanbaatar (Mongolia)

    2012-01-01

    Water samples collected from 129 wells in seven of the nine sub-divisions of Ulaanbaatar were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) using Clean Lab methods. The levels of many trace elements were found to be low with the average concentrations (ranges in brackets) being 0.9 (< 0.1-7.9) {mu}g/L for As; 7.7 (0.12-177) {mu}g/L for Mn; 0.2 (< 0.05-1.9) {mu}g/L for Co; 16 (< 0.1-686) {mu}g/L for Zn; 0.7 (< 0.1-1.8) {mu}g/L for Se; < 0.1 (< 0.02-0.69) {mu}g/L for Cd; and 1.3 (< 0.02-32) {mu}g/L for Pb. The levels of uranium were surprisingly elevated (mean, 4.6 {mu}g/L; range < 0.01-57 {mu}g/L), with the values for many samples exceeding the World Health Organization's guideline of 15 {mu}g/L for uranium in drinking water. Local rocks and soils appear to be the natural source of the uranium. The levels of uranium in Ulaanbaatar's groundwater are in the range that has been associated with nephrotoxicity, high blood pressure, bone dysfunction and likely reproductive impairment in human populations. We consider the risk associated with drinking the groundwater with elevated levels of uranium in Ulaanbaatar to be a matter for some public health concern and conclude that the paucity of data on chronic effects of low level exposure is a risk factor for continuing the injury to many people in this city. - Highlights: Black-Right-Pointing-Pointer We analyzed water samples from wells across the city of Ulaanbaatar, Mongolia for total uranium along with arsenic, manganese, cobalt, zinc, selenium, cadmium and lead. Black-Right-Pointing-Pointer We found that compared to other trace metals and metalloids, the levels of uranium were surprisingly elevated with the values for many samples exceeding the World Health Organization's guideline for drinking water. Black-Right-Pointing-Pointer Local rocks and soils appear to be the natural source of the uranium. Black-Right-Pointing-Pointer The health risk associated with drinking the groundwater

  5. Correlation of BTEX levels and toxicity of condensate contaminated groundwater

    International Nuclear Information System (INIS)

    Headley, J.; Goudey, S.; Birkholz, D.; Hardisty, P.

    1995-01-01

    The concentration of BTEX was determined for 60 groundwater samples collected from 6 gas plants in Western Canada, using conventional purge-and-trap GC/MS procedures. The gas plants were selected to cover different types of operations with different amine process chemicals employed for the sweetening of the raw sour-gas condensates. Aliquots of the ground water samples were subjected to toxicity screening tests, specifically, (a) bacterial luminescence (microtox); (b) daphnia mortality and (c) fathead minnow mortality. For the toxicity tests, sample handling procedures were developed to minimize the loss of volatile organics during the experiments. To account for possible losses, the levels of BTEX were monitored at the start and upon completion of these tests. The results indicated that the toxicity of the groundwater was in general, well correlated to the concentration of BTEX (primarily xylene). Approximately 5% of the samples, however, were observed to be toxic although the concentration of BTEX were below the method detection limit (1 microg/1). Thiophenic volatile organics were implicated for the latter. Based on the laboratory results, the remediation of BTEX is expected to correlate with the removal of the toxicity of the groundwater. These findings are of direct relevance to present technologies employed for remediation of ground water at the Sourgas plants

  6. Validation on groundwater flow model including sea level change. Modeling on groundwater flow in coastal granite area

    International Nuclear Information System (INIS)

    Hasegawa, Takuma; Miyakawa, Kimio

    2009-01-01

    It is important to verify the groundwater flow model that reproduces pressure head, water chemistry, and groundwater age. However, water chemistry and groundwater age are considered to be influenced by historical events. In this study, sea level change during glacial-interglacial cycle was taken into account for simulating salinity and groundwater age at coastal granite area. As a result of simulation, salinity movement could not catch up with sea level changes, and mixing zone was formed below the fresh-water zone. This mixing zone was observed in the field measurement, and the observed salinities were agreed with simulated results including sea level change. The simulated residence time including sea level change is one-tenth of steady state. The reason is that the saline water was washed out during regression and modern sea-water was infiltrated during transgression. As mentioned before, considering sea level change are important to reproduce salinity and helium age at coastal area. (author)

  7. HIGH LEVELS OF URANIUM IN GROUNDWATER OF ULAANBAATAR, MONGOLIA

    Science.gov (United States)

    Nriagu, Jerome; Nam, Dong-Ha; Ayanwola, Titilayo A.; Dinh, Hau; Erdenechimeg, Erdenebayar; Ochir, Chimedsuren; Bolormaa, Tsend-Ayush

    2011-01-01

    Water samples collected from 129 wells in seven of the nine sub-divisions of Ulaanbaatar were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) using Clean Lab methods. The levels of many trace elements were found to be very low with the average concentrations (ranges in brackets) being 0.9 (uranium were surprisingly elevated (mean, 4.6 μg/L; range uranium in drinking water. Local rocks and soils appear to be the natural source of the uranium. The levels of uranium in Ulaanbaatar's groundwater are in the range that has been associated with nephrotoxicity, high blood pressure, bone dysfunction and likely reproductive impairment in human populations. We consider the risk associated with drinking the groundwater with elevated levels of uranium in Ulaanbaatar to be a matter for some public health concern and conclude that the paucity of data on chronic effects of low level exposure is a risk factor for continuing the injury to many people in this city. PMID:22142646

  8. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method.

    Science.gov (United States)

    Yang, Jun-He; Cheng, Ching-Hsue; Chan, Chia-Pan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir's water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  9. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method

    Directory of Open Access Journals (Sweden)

    Jun-He Yang

    2017-01-01

    Full Text Available Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir’s water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir’s water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  10. Groundwater modelling for fractured and porous media: HYDROCOIN Level 1

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    The report describes work carried out as part of the 'Hydrocoin' project to verify some of the models used by the British Geological Survey on its radioactive waste disposal programme. The author's work on Hydrocoin Level 1 concerned groundwater modelling for fractured and porous media. The overall conclusions arising from the work were: a) pressure fields in saturated media can be reliably calculated by existing programmes, b) three techniques for deriving the flow fields are described, and c) severe practical limitations exist as to the ability of current programs to model variably saturated conditions over moderate distances. (U.K.)

  11. Response of groundwater level and surface-water/groundwater interaction to climate variability: Clarence-Moreton Basin, Australia

    Science.gov (United States)

    Cui, Tao; Raiber, Matthias; Pagendam, Dan; Gilfedder, Mat; Rassam, David

    2018-03-01

    Understanding the response of groundwater levels in alluvial and sedimentary basin aquifers to climatic variability and human water-resource developments is a key step in many hydrogeological investigations. This study presents an analysis of groundwater response to climate variability from 2000 to 2012 in the Queensland part of the sedimentary Clarence-Moreton Basin, Australia. It contributes to the baseline hydrogeological understanding by identifying the primary groundwater flow pattern, water-level response to climate extremes, and the resulting dynamics of surface-water/groundwater interaction. Groundwater-level measurements from thousands of bores over several decades were analysed using Kriging and nonparametric trend analysis, together with a newly developed three-dimensional geological model. Groundwater-level contours suggest that groundwater flow in the shallow aquifers shows local variations in the close vicinity of streams, notwithstanding general conformance with topographic relief. The trend analysis reveals that climate variability can be quickly reflected in the shallow aquifers of the Clarence-Moreton Basin although the alluvial aquifers have a quicker rainfall response than the sedimentary bedrock formations. The Lockyer Valley alluvium represents the most sensitively responding alluvium in the area, with the highest declining (-0.7 m/year) and ascending (2.1 m/year) Sen's slope rates during and after the drought period, respectively. Different surface-water/groundwater interaction characteristics were observed in different catchments by studying groundwater-level fluctuations along hydrogeologic cross-sections. The findings of this study lay a foundation for future water-resource management in the study area.

  12. Can we use Earth Observations to improve monthly water level forecasts?

    Science.gov (United States)

    Slater, L. J.; Villarini, G.

    2017-12-01

    Dynamical-statistical hydrologic forecasting approaches benefit from different strengths in comparison with traditional hydrologic forecasting systems: they are computationally efficient, can integrate and `learn' from a broad selection of input data (e.g., General Circulation Model (GCM) forecasts, Earth Observation time series, teleconnection patterns), and can take advantage of recent progress in machine learning (e.g. multi-model blending, post-processing and ensembling techniques). Recent efforts to develop a dynamical-statistical ensemble approach for forecasting seasonal streamflow using both GCM forecasts and changing land cover have shown promising results over the U.S. Midwest. Here, we use climate forecasts from several GCMs of the North American Multi Model Ensemble (NMME) alongside 15-minute stage time series from the National River Flow Archive (NRFA) and land cover classes extracted from the European Space Agency's Climate Change Initiative 300 m annual Global Land Cover time series. With these data, we conduct systematic long-range probabilistic forecasting of monthly water levels in UK catchments over timescales ranging from one to twelve months ahead. We evaluate the improvement in model fit and model forecasting skill that comes from using land cover classes as predictors in the models. This work opens up new possibilities for combining Earth Observation time series with GCM forecasts to predict a variety of hazards from space using data science techniques.

  13. Ground-water levels and quality data for Georgia

    Science.gov (United States)

    ,

    1979-01-01

    This report begins a publication format that will present annually both water-level and water-quality data in Georgia. In this format the information is presented in two-page units: the left page includes text which summarizes the information for an area or subject and the right page consists of one or more illustrations. Daily mean water-level fluctuations and trends are shown in hydrographs for the previous year and fluctuations for the monthly mean water level the previous 10 years for selected observation wells. The well data best illustrate the effects of changes in recharge and discharge in the various ground-water reservoirs in the State. A short narrative explains fluctuations and trends in each hydrograph. (Woodard-USGS)

  14. Radar Based Flow and Water Level Forecasting in Sewer Systems:a danisk case study

    OpenAIRE

    Thorndahl, Søren; Rasmussen, Michael R.; Grum, M.; Neve, S. L.

    2009-01-01

    This paper describes the first radar based forecast of flow and/or water level in sewer systems in Denmark. The rainfall is successfully forecasted with a lead time of 1-2 hours, and flow/levels are forecasted an additional ½-1½ hours using models describing the behaviour of the sewer system. Both radar data and flow/water level model are continuously updated using online rain gauges and online in-sewer measurements, in order to make the best possible predictions. The project show very promis...

  15. Latent fluctuation periods and long-term forecasting of the level of Markakol lake

    Science.gov (United States)

    Madibekov, A. S.; Babkin, A. V.; Musakulkyzy, A.; Cherednichenko, A. V.

    2018-01-01

    The analysis of time series of the level of Markakol Lake by the method of “Periodicities” reveals in its variations the harmonics with the periods of 12 and 14 years, respectively. The verification forecasts of the lake level by the trend tendency and by its combination with these sinusoids were computed with the lead time of 5 and 10 years. The estimation of the forecast results by the new independent data permitted to conclude that forecasts by the combination of the sinusoids and trend tendency are better than by the trend tendency only. They are no worse than the mean value prediction.

  16. The application of a Grey Markov Model to forecasting annual maximum water levels at hydrological stations

    Science.gov (United States)

    Dong, Sheng; Chi, Kun; Zhang, Qiyi; Zhang, Xiangdong

    2012-03-01

    Compared with traditional real-time forecasting, this paper proposes a Grey Markov Model (GMM) to forecast the maximum water levels at hydrological stations in the estuary area. The GMM combines the Grey System and Markov theory into a higher precision model. The GMM takes advantage of the Grey System to predict the trend values and uses the Markov theory to forecast fluctuation values, and thus gives forecast results involving two aspects of information. The procedure for forecasting annul maximum water levels with the GMM contains five main steps: 1) establish the GM (1, 1) model based on the data series; 2) estimate the trend values; 3) establish a Markov Model based on relative error series; 4) modify the relative errors caused in step 2, and then obtain the relative errors of the second order estimation; 5) compare the results with measured data and estimate the accuracy. The historical water level records (from 1960 to 1992) at Yuqiao Hydrological Station in the estuary area of the Haihe River near Tianjin, China are utilized to calibrate and verify the proposed model according to the above steps. Every 25 years' data are regarded as a hydro-sequence. Eight groups of simulated results show reasonable agreement between the predicted values and the measured data. The GMM is also applied to the 10 other hydrological stations in the same estuary. The forecast results for all of the hydrological stations are good or acceptable. The feasibility and effectiveness of this new forecasting model have been proved in this paper.

  17. Influences of groundwater extraction on flow dynamics and arsenic levels in the western Hetao Basin, Inner Mongolia, China

    Science.gov (United States)

    Zhang, Zhuo; Guo, Huaming; Zhao, Weiguang; Liu, Shuai; Cao, Yongsheng; Jia, Yongfeng

    2018-04-01

    Data on spatiotemporal variations in groundwater levels are crucial for understanding arsenic (As) behavior and dynamics in groundwater systems. Little is known about the influences of groundwater extraction on the transport and mobilization of As in the Hetao Basin, Inner Mongolia (China), so groundwater levels were recorded in five monitoring wells from 2011 to 2016 and in 57 irrigation wells and two multilevel wells in 2016. Results showed that groundwater level in the groundwater irrigation area had two troughs each year, induced by extensive groundwater extraction, while groundwater levels in the river-diverted (Yellow River) water irrigation area had two peaks each year, resulting from surface-water irrigation. From 2011 to 2016, groundwater levels in the groundwater irrigation area presented a decreasing trend due to the overextraction. Groundwater samples were taken for geochemical analysis each year in July from 2011 to 2016. Increasing trends were observed in groundwater total dissolved solids (TDS) and As. Owing to the reverse groundwater flow direction, the Shahai Lake acts as a new groundwater recharge source. Lake water had flushed the near-surface sediments, which contain abundant soluble components, and increased groundwater salinity. In addition, groundwater extraction induced strong downward hydraulic gradients, which led to leakage recharge from shallow high-TDS groundwater to the deep semiconfined aquifer. The most plausible explanation for similar variations among As, Fe(II) and total organic carbon (TOC) concentrations is the expected dissimilatory reduction of Fe(III) oxyhydroxides.

  18. Two levels ARIMAX and regression models for forecasting time series data with calendar variation effects

    Science.gov (United States)

    Suhartono, Lee, Muhammad Hisyam; Prastyo, Dedy Dwi

    2015-12-01

    The aim of this research is to develop a calendar variation model for forecasting retail sales data with the Eid ul-Fitr effect. The proposed model is based on two methods, namely two levels ARIMAX and regression methods. Two levels ARIMAX and regression models are built by using ARIMAX for the first level and regression for the second level. Monthly men's jeans and women's trousers sales in a retail company for the period January 2002 to September 2009 are used as case study. In general, two levels of calendar variation model yields two models, namely the first model to reconstruct the sales pattern that already occurred, and the second model to forecast the effect of increasing sales due to Eid ul-Fitr that affected sales at the same and the previous months. The results show that the proposed two level calendar variation model based on ARIMAX and regression methods yields better forecast compared to the seasonal ARIMA model and Neural Networks.

  19. Groundwater-level trends and implications for sustainable water use in the Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Taher, Mohammad R.

    2013-01-01

    The Kabul Basin, which includes the city of Kabul, Afghanistan, with a population of approximately 4 million, has several Afghan, United States, and international military installations that depend on groundwater resources for a potable water supply. This study examined groundwater levels in the Kabul Basin from 2004 to 2012. Groundwater levels have increased slightly in rural areas of the Kabul Basin as a result of normal precipitation after the drought of the early 2000s. However, groundwater levels have decreased in the city of Kabul due to increasing water use in an area with limited recharge. The rate of groundwater-level decrease in the city is greater for the 2008–2012 period (1.5 meters per year (m/yr) on average) than for the 2004–2008 period (0–0.7 m/yr on average). The analysis, which is corroborated by groundwater-flow modeling and a non-governmental organization decision-support model, identified groundwater-level decreases and associated implications for groundwater sustainability in the city of Kabul. Military installations in the city of Kabul (the Central Kabul subbasin) are likely to face water management challenges resulting from long-term groundwater sustainability concerns, such as the potential drying of shallow water-supply wells. Installations in the northern part of the Kabul Basin may have fewer issues with long-term water sustainability. Groundwater-level monitoring and groundwater-flow simulation can be valuable tools for assessing groundwater management options to improve the sustainability of water resources in the Kabul Basin.

  20. Lambda-Based Data Processing Architecture for Two-Level Load Forecasting in Residential Buildings

    Directory of Open Access Journals (Sweden)

    Gde Dharma Nugraha

    2018-03-01

    Full Text Available Building energy management systems (BEMS have been intensively used to manage the electricity consumption of residential buildings more efficiently. However, the dynamic behavior of the occupants introduces uncertainty problems that affect the performance of the BEMS. To address this uncertainty problem, the BEMS may implement load forecasting as one of the BEMS modules. Load forecasting utilizes historical load data to compute model predictions for a specific time in the future. Recently, smart meters have been introduced to collect electricity consumption data. Smart meters not only capture aggregation data, but also individual data that is more frequently close to real-time. The processing of both smart meter data types for load forecasting can enhance the performance of the BEMS when confronted with uncertainty problems. The collection of smart meter data can be processed using a batch approach for short-term load forecasting, while the real-time smart meter data can be processed for very short-term load forecasting, which adjusts the short-term load forecasting to adapt to the dynamic behavior of the occupants. This approach requires different data processing techniques for aggregation and individual of smart meter data. In this paper, we propose Lambda-based data processing architecture to process the different types of smart meter data and implement the two-level load forecasting approach, which combines short-term and very short-term load forecasting techniques on top of our proposed data processing architecture. The proposed approach is expected to enhance the BEMS to address the uncertainty problem in order to process data in less time. Our experiment showed that the proposed approaches improved the accuracy by 7% compared to a typical BEMS with only one load forecasting technique, and had the lowest computation time when processing the smart meter data.

  1. Modelling impacts of acid deposition and groundwater level on habitat quality and plant species diversity

    NARCIS (Netherlands)

    Kros, J.; Mol, J.P.; Wamelink, G.W.W.; Reinds, G.J.; Hinsberg, van A.; Vries, de W.

    2016-01-01

    Introduction
    We quantified the effects of the site factors pH and nitrate (NO3) concentration in soil solution and groundwater level on the vegetation of terrestrial ecosystems for the Netherlands in response to changes in atmospheric nitrogen (N) and sulphur (S) deposition and groundwater level

  2. Using Deep Learning Techniques to Forecast Environmental Consumption Level

    Directory of Open Access Journals (Sweden)

    Donghyun Lee

    2017-10-01

    Full Text Available Artificial intelligence is a promising futuristic concept in the field of science and technology, and is widely used in new industries. The deep-learning technology leads to performance enhancement and generalization of artificial intelligence technology. The global leader in the field of information technology has declared its intention to utilize the deep-learning technology to solve environmental problems such as climate change, but few environmental applications have so far been developed. This study uses deep-learning technologies in the environmental field to predict the status of pro-environmental consumption. We predicted the pro-environmental consumption index based on Google search query data, using a recurrent neural network (RNN model. To verify the accuracy of the index, we compared the prediction accuracy of the RNN model with that of the ordinary least square and artificial neural network models. The RNN model predicts the pro-environmental consumption index better than any other model. We expect the RNN model to perform still better in a big data environment because the deep-learning technologies would be increasingly sophisticated as the volume of data grows. Moreover, the framework of this study could be useful in environmental forecasting to prevent damage caused by climate change.

  3. Characterizing Groundwater Level and Flow Pattern in a Shallow ...

    African Journals Online (AJOL)

    Bheema

    This study characterize groundwater yield and flow pattern on a shallow ... simple process of weathering, fractured fissure systems, networks of joints and ..... lowest yield in wells that are deeper than the mean well depth in the study area.

  4. Fluctuation patterns of groundwater levels in Tokyo caused by the Great East Japan Earthquake

    Science.gov (United States)

    Kawamura, Akira; Ishihara, Shigeyuki; Amaguchi, Hideo; Takasaki, Tadakatsu

    2016-04-01

    The hourly groundwater levels have been observed at 42 sites in Tokyo Metropolis since 1952. The Great East Japan Earthquake occurred at 14:46 JST on March 11, 2011. It was the strongest earthquake on record with a magnitude of 9.0 (Mw) and large fluctuations of unconfined and confined groundwater levels were observed at 102 observation wells in Tokyo, around 400 km away from the epicenter. Abrupt rises and sharp drawdowns of groundwater levels were observed right after the earthquake for most of the wells, although some did not show a change. In this study, taking full advantage of the unique rare case data from the dense groundwater monitoring network in Tokyo, we investigate the fluctuation patterns of unconfined and confined groundwater levels caused by the Great East Japan Earthquake. The groundwater level data used in this study consist of one month time series in March 2011 with one-hour interval. The fluctuation patterns of groundwater levels caused by the earthquake were identified using Self-Organizing Maps (SOM). The SOM, developed by Kohonen, can project high-dimensional, complex target data onto a two-dimensional regularly arranged map in proportion to the degree of properties. In general, the objective of the SOM application is to obtain useful and informative reference vectors. These vectors can be acquired after iterative updates through the training of the SOM. Design of the SOM structure, selection of a proper initialization method, and data transformation methods were carried out in the SOM application process. The reference vectors obtained from the SOM application were fine-tuned using cluster analysis methods. The optimal number of clusters was selected by the Davies-Bouldin index (DBI) using the k-means algorithm. Using the optimal number of cluster, a final fine-tuning cluster analysis was carried out by Ward's method. As a result, the fluctuation patterns of the confined and unconfined groundwater level were classified into eight clusters

  5. Time to death and the forecasting of macro-level health care expenditures: some further considerations.

    Science.gov (United States)

    van Baal, Pieter H; Wong, Albert

    2012-12-01

    Although the effect of time to death (TTD) on health care expenditures (HCE) has been investigated using individual level data, the most profound implications of TTD have been for the forecasting of macro-level HCE. Here we estimate the TTD model using macro-level data from the Netherlands consisting of mortality rates and age- and gender-specific per capita health expenditures for the years 1981-2007. Forecasts for the years 2008-2020 of this macro-level TTD model were compared to forecasts that excluded TTD. Results revealed that the effect of TTD on HCE in our macro model was similar to those found in micro-econometric studies. As the inclusion of TTD pushed growth rate estimates from unidentified causes upwards, however, the two models' forecasts of HCE for the 2008-2020 were similar. We argue that including TTD, if modeled correctly, does not lower forecasts of HCE. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Groundwater-level data from an earthen dam site in southern Westchester County, New York

    Science.gov (United States)

    Noll, Michael L.; Chu, Anthony

    2018-05-01

    In 2005, the U.S. Geological Survey began a cooperative study with New York City Department of Environmental Protection to characterize the local groundwater-flow system and identify potential sources of seeps on the southern embankment of the Hillview Reservoir in Westchester County, New York. Groundwater levels were collected at 49 wells at Hillview Reservoir, and 1 well in northern Bronx County, from April 2005 through November 2016. Groundwater levels were measured discretely with a chalked steel or electric tape, or continuously with a digital pressure transducer, or both, in accordance with U.S. Geological Survey groundwatermeasurement standards. These groundwater-level data were plotted as time series and are presented in this report as hydrographs. Twenty-eight of the 50 hydrographs have continuous record and discrete field groundwater-level measurements, 22 of the hydrographs contain only discrete measurements.

  7. Effects of Sea Level Rise on Groundwater Flow Paths in a Coastal Aquifer System

    Science.gov (United States)

    Morrissey, S. K.; Clark, J. F.; Bennett, M. W.; Richardson, E.; Stute, M.

    2008-05-01

    Changes in groundwater flow in the Floridan aquifer system, South Florida, from the rise in sea level at the end of the last glacial period may be indicative of changes coastal aquifers will experience with continued sea level rise. As sea level rises, the hydraulic head near the coast increases. Coastal aquifers can therefore experience decreased groundwater gradients (increased residence times) and seawater intrusion. Stable isotopes of water, dissolved noble gas temperatures, radiocarbon and He concentrations were analyzed in water collected from 68 wells in the Floridan aquifer system throughout South Florida. Near the recharge area, geochemical data along groundwater flow paths in the Upper Floridan aquifer show a transition from recently recharged groundwater to glacial-aged water. Down gradient from this transition, little variation is apparent in the stable isotopes and noble gas recharge temperatures, indicating that most of the Upper Floridan aquifer contains groundwater recharged during the last glacial period. The rapid 120-meter rise in sea level marking the end of the last glacial period increased the hydraulic head in the Floridan aquifer system near the coast, slowing the flow of groundwater from the recharge area to the ocean and trapping glacial-aged groundwater. The raised sea level also flooded half of the Florida platform and caused seawater to intrude into the Lower Floridan. This circulation of seawater in the Lower Floridan continues today as our data indicate that the groundwater is similar to modern seawater with a freshwater component entering vertically from the recharge area to the Upper Floridan.

  8. Prediction of monthly regional groundwater levels through hybrid soft-computing techniques

    Science.gov (United States)

    Chang, Fi-John; Chang, Li-Chiu; Huang, Chien-Wei; Kao, I.-Feng

    2016-10-01

    Groundwater systems are intrinsically heterogeneous with dynamic temporal-spatial patterns, which cause great difficulty in quantifying their complex processes, while reliable predictions of regional groundwater levels are commonly needed for managing water resources to ensure proper service of water demands within a region. In this study, we proposed a novel and flexible soft-computing technique that could effectively extract the complex high-dimensional input-output patterns of basin-wide groundwater-aquifer systems in an adaptive manner. The soft-computing models combined the Self Organized Map (SOM) and the Nonlinear Autoregressive with Exogenous Inputs (NARX) network for predicting monthly regional groundwater levels based on hydrologic forcing data. The SOM could effectively classify the temporal-spatial patterns of regional groundwater levels, the NARX could accurately predict the mean of regional groundwater levels for adjusting the selected SOM, the Kriging was used to interpolate the predictions of the adjusted SOM into finer grids of locations, and consequently the prediction of a monthly regional groundwater level map could be obtained. The Zhuoshui River basin in Taiwan was the study case, and its monthly data sets collected from 203 groundwater stations, 32 rainfall stations and 6 flow stations during 2000 and 2013 were used for modelling purpose. The results demonstrated that the hybrid SOM-NARX model could reliably and suitably predict monthly basin-wide groundwater levels with high correlations (R2 > 0.9 in both training and testing cases). The proposed methodology presents a milestone in modelling regional environmental issues and offers an insightful and promising way to predict monthly basin-wide groundwater levels, which is beneficial to authorities for sustainable water resources management.

  9. Past and future contribution of global groundwater depletion to sea-level rise

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; Sperna Weiland, F.C.; Chao, B.; Wu, Y.-H.; Bierkens, M.F.P.

    2012-01-01

    Recent studies suggest the increasing contribution of groundwater depletion to global sea-level rise. Groundwater depletion has more than doubled during the last decades, primarily due to increase in water demand, while the increase in water impoundments behind dams has been tapering off since

  10. Model-Aided Altimeter-Based Water Level Forecasting System in Mekong River

    Science.gov (United States)

    Chang, C. H.; Lee, H.; Hossain, F.; Okeowo, M. A.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Anderson, E.; Hwang, E.

    2017-12-01

    Mekong River, one of the massive river systems in the world, has drainage area of about 795,000 km2 covering six countries. People living in its drainage area highly rely on resources given by the river in terms of agriculture, fishery, and hydropower. Monitoring and forecasting the water level in a timely manner, is urgently needed over the Mekong River. Recently, using TOPEX/Poseidon (T/P) altimetry water level measurements in India, Biancamaria et al. [2011] has demonstrated the capability of an altimeter-based flood forecasting system in Bangladesh, with RMSE from 0.6 - 0.8 m for lead times up to 5 days on 10-day basis due to T/P's repeat period. Hossain et al. [2013] further established a daily water level forecasting system in Bangladesh using observations from Jason-2 in India and HEC-RAS hydraulic model, with RMSE from 0.5 - 1.5 m and an underestimating mean bias of 0.25 - 1.25 m. However, such daily forecasting system relies on a collection of Jason-2 virtual stations (VSs) to ensure frequent sampling and data availability. Since the Mekong River is a meridional river with few number of VSs, the direct application of this system to the Mekong River becomes challenging. To address this problem, we propose a model-aided altimeter-based forecasting system. The discharge output by Variable Infiltration Capacity hydrologic model is used to reconstruct a daily water level product at upstream Jason-2 VSs based on the discharge-to-level rating curve. The reconstructed daily water level is then used to perform regression analysis with downstream in-situ water level to build regression models, which are used to forecast a daily water level. In the middle reach of the Mekong River from Nakhon Phanom to Kratie, a 3-day lead time forecasting can reach RMSE about 0.7 - 1.3 m with correlation coefficient around 0.95. For the lower reach of the Mekong River, the water flow becomes more complicated due to the reversal flow between the Tonle Sap Lake and the Mekong River

  11. Study on the Variation of Groundwater Level under Time-varying Recharge

    Science.gov (United States)

    Wu, Ming-Chang; Hsieh, Ping-Cheng

    2017-04-01

    The slopes of the suburbs come to important areas by focusing on the work of soil and water conservation in recent years. The water table inside the aquifer is affected by rainfall, geology and topography, which will result in the change of groundwater discharge and water level. Currently, the way to obtain water table information is to set up the observation wells; however, owing to that the cost of equipment and the wells excavated is too expensive, we develop a mathematical model instead, which might help us to simulate the groundwater level variation. In this study, we will discuss the groundwater level change in a sloping unconfined aquifer with impermeable bottom under time-varying rainfall events. Referring to Child (1971), we employ the Boussinesq equation as the governing equation, and apply the General Integral Transforms Method (GITM) to analyzing the groundwater level after linearizing the Boussinesq equation. After comparing the solution with Verhoest & Troch (2000) and Bansal & Das (2010), we get satisfactory results. To sum up, we have presented an alternative approach to solve the linearized Boussinesq equation for the response of groundwater level in a sloping unconfined aquifer. The present analytical results combine the effect of bottom slope and the time-varying recharge pattern on the water table fluctuations. Owing to the limitation and difficulty of measuring the groundwater level directly, we develop such a mathematical model that we can predict or simulate the variation of groundwater level affected by any rainfall events in advance.

  12. Treatment of groundwater contaminated with low levels of military munitions

    International Nuclear Information System (INIS)

    Bricka, R.M.; Sharp, W.

    1993-01-01

    The site of interest is a military base that was established in the late 1800s. In its early history this facility was used as a powder depot to fill projectiles with miximite (a propellant). Since World War I, this facility was used to produce artillery ammunition, bombs, high explosives, pyrotechnics and other ordinances. Weapons production at this facility has ceased, but as a result of the past activities at this facility, contaminants are migrating into the groundwater. One source of drinking water for this installation is a screened well in a stratified-drift aquifer system at a depth of 75-85 feet below land surface. In the 1980s sampling of this well revealed low level contamination of trichloroethylene (TCE), RDX and HMX. TCE levels exceeded drinking water standards and an air stripping column was installed to remove the TCE. RDX and HMX, concentrations were below drinking water standards. Health Advisory (HA) levels for RDX and HMX were published by the U.S. Environmental Protection Agency (USEPA) in November 1988. The lifetime HA levels are 2 ppb and 400 ppb for RDX and HMX, respectively (McLellan et al. 1988a, and McLellan et al. 1988b). It is expected that continuous withdrawals from this well will increase RDX and HMX concentrations. In addition, it is believed that future USEPA regulations will adapt the HA as a drinking water standard. This study was initiated in an effort to have an appropriate cost effective technology ready to meet any such standard. RDX and HMX RDX and HMX are military explosives. RDX (Hexahydro-l,3,5-trinitro-l,3,5-triazine) is a code name for Research Department Explosive. This explosive is described as a white crystalline solid with about 1.3 times the explosive power of trinitrotoluene (TNT). RDX is classified as a EPA Group C compound: Possible Human Carcinogen (McLellan et. al. 1988a). HMX (Octahydro-1, 3, 5, 7- tetranitro-l, 3, 5, 7-tetrazocine) is a code name for High Melting Explosive. This explosive is described as a

  13. The Next Level in Automated Solar Flare Forecasting: the EU FLARECAST Project

    Science.gov (United States)

    Georgoulis, M. K.; Bloomfield, D.; Piana, M.; Massone, A. M.; Gallagher, P.; Vilmer, N.; Pariat, E.; Buchlin, E.; Baudin, F.; Csillaghy, A.; Soldati, M.; Sathiapal, H.; Jackson, D.; Alingery, P.; Argoudelis, V.; Benvenuto, F.; Campi, C.; Florios, K.; Gontikakis, C.; Guennou, C.; Guerra, J. A.; Kontogiannis, I.; Latorre, V.; Murray, S.; Park, S. H.; Perasso, A.; Sciacchitano, F.; von Stachelski, S.; Torbica, A.; Vischi, D.

    2017-12-01

    We attempt an informative description of the Flare Likelihood And Region Eruption Forecasting (FLARECAST) project, European Commission's first large-scale investment to explore the limits of reliability and accuracy achieved for the forecasting of major solar flares. We outline the consortium, top-level objectives and first results of the project, highlighting the diversity and fusion of expertise needed to deliver what was promised. The project's final product, featuring an openly accessible, fully modular and free to download flare forecasting facility will be delivered in early 2018. The project's three objectives, namely, science, research-to-operations and dissemination / communication, are also discussed: in terms of science, we encapsulate our close-to-final assessment on how close (or far) are we from a practically exploitable solar flare forecasting. In terms of R2O, we briefly describe the architecture of the FLARECAST infrastructure that includes rigorous validation for each forecasting step. From the three different communication levers of the project we finally focus on lessons learned from the two-way interaction with the community of stakeholders and governmental organizations. The FLARECAST project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 640216.

  14. Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS.

    Science.gov (United States)

    Djurovic, Nevenka; Domazet, Milka; Stricevic, Ruzica; Pocuca, Vesna; Spalevic, Velibor; Pivic, Radmila; Gregoric, Enika; Domazet, Uros

    2015-01-01

    Water table forecasting plays an important role in the management of groundwater resources in agricultural regions where there are drainage systems in river valleys. The results presented in this paper pertain to an area along the left bank of the Danube River, in the Province of Vojvodina, which is the northern part of Serbia. Two soft computing techniques were used in this research: an adaptive neurofuzzy inference system (ANFIS) and an artificial neural network (ANN) model for one-month water table forecasts at several wells located at different distances from the river. The results suggest that both these techniques represent useful tools for modeling hydrological processes in agriculture, with similar computing and memory capabilities, such that they constitute an exceptionally good numerical framework for generating high-quality models.

  15. Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS

    Directory of Open Access Journals (Sweden)

    Nevenka Djurovic

    2015-01-01

    Full Text Available Water table forecasting plays an important role in the management of groundwater resources in agricultural regions where there are drainage systems in river valleys. The results presented in this paper pertain to an area along the left bank of the Danube River, in the Province of Vojvodina, which is the northern part of Serbia. Two soft computing techniques were used in this research: an adaptive neurofuzzy inference system (ANFIS and an artificial neural network (ANN model for one-month water table forecasts at several wells located at different distances from the river. The results suggest that both these techniques represent useful tools for modeling hydrological processes in agriculture, with similar computing and memory capabilities, such that they constitute an exceptionally good numerical framework for generating high-quality models.

  16. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques

    Science.gov (United States)

    Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.

    2015-01-01

    Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.

  17. Regional Groundwater Flow Assessment in a Prospective High-Level Radioactive Waste Repository of China

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Cao

    2017-07-01

    Full Text Available The production of nuclear energy will result in high-level radioactive waste (HLRW, which brings potential environmental dangers. Selecting a proper disposal repository is a crucial step in the development of nuclear energy. This paper introduces firstly the hydrogeological conditions of the Beishan area in China. Next, a regional groundwater model is constructed using a multiphase flow simulator to analyze the groundwater flow pattern in the Beishan area. Model calibration shows that the simulated and observed hydraulic heads match well, and the simulated regional groundwater flow pattern is similar to the surface flow pattern from the channel network, indicating that the groundwater flow is mainly dependent on the topography. In addition, the simulated groundwater storage over the period from 2003 to 2014 is similar to the trend derived from the Gravity Recovery and Climate Experiment satellite-derived results. Last, the established model is used to evaluate the influences of the extreme climate and regional faults on the groundwater flow pattern. It shows that they do not have a significant influence on the regional groundwater flow patterns. This study will provide a preliminary reference for the regional groundwater flow assessment in the site of the HLRW in China.

  18. Groundwater reorganization in the Floridan aquifer following Holocene sea-level rise

    OpenAIRE

    Morrissey, SK; Clark, JF; Bennett, M; Richardson, E; Stute, M

    2010-01-01

    Sea-level fluctuations, particularly those associated with glacial-interglacial cycles, can have profound impacts on the flow and circulation of coastal groundwater: the water found at present in many coastal aquifers may have been recharged during the last glacial period, when sea level was over 100 m lower than present, and thus is not in equilibrium with present recharge conditions. Here we show that the geochemistry of the groundwater found in the Floridan Aquifer System in south Florida ...

  19. Groundwater level responses to precipitation variability in Mediterranean insular aquifers

    Science.gov (United States)

    Lorenzo-Lacruz, Jorge; Garcia, Celso; Morán-Tejeda, Enrique

    2017-09-01

    Groundwater is one of the largest and most important sources of fresh water on many regions under Mediterranean climate conditions, which are exposed to large precipitation variability that includes frequent meteorological drought episodes, and present high evapotranspiration rates and water demand during the dry season. The dependence on groundwater increases in those areas with predominant permeable lithologies, contributing to aquifer recharge and the abundance of ephemeral streams. The increasing pressure of tourism on water resources in many Mediterranean coastal areas, and uncertainty related to future precipitation and water availability, make it urgent to understand the spatio-temporal response of groundwater bodies to precipitation variability, if sustainable use of the resource is to be achieved. We present an assessment of the response of aquifers to precipitation variability based on correlations between the Standardized Precipitation Index (SPI) at various time scales and the Standardized Groundwater Index (SGI) across a Mediterranean island. We detected three main responses of aquifers to accumulated precipitation anomalies: (i) at short time scales of the SPI (24 months). The differing responses were mainly explained by differences in lithology and the percentage of highly permeable rock strata in the aquifer recharge areas. We also identified differences in the months and seasons when aquifer storages are more dependent on precipitation; these were related to climate seasonality and the degree of aquifer exploitation or underground water extraction. The recharge of some aquifers, especially in mountainous areas, is related to precipitation variability within a limited spatial extent, whereas for aquifers located in the plains, precipitation variability influence much larger areas; the topography and geological structure of the island explain these differences. Results indicate large spatial variability in the response of aquifers to precipitation in

  20. Understanding Variability in Beach Slope to Improve Forecasts of Storm-induced Water Levels

    Science.gov (United States)

    Doran, K. S.; Stockdon, H. F.; Long, J.

    2014-12-01

    The National Assessment of Hurricane-Induced Coastal Erosion Hazards combines measurements of beach morphology with storm hydrodynamics to produce forecasts of coastal change during storms for the Gulf of Mexico and Atlantic coastlines of the United States. Wave-induced water levels are estimated using modeled offshore wave height and period and measured beach slope (from dune toe to shoreline) through the empirical parameterization of Stockdon et al. (2006). Spatial and temporal variability in beach slope leads to corresponding variability in predicted wave setup and swash. Seasonal and storm-induced changes in beach slope can lead to differences on the order of a meter in wave runup elevation, making accurate specification of this parameter essential to skillful forecasts of coastal change. Spatial variation in beach slope is accounted for through alongshore averaging, but temporal variability in beach slope is not included in the final computation of the likelihood of coastal change. Additionally, input morphology may be years old and potentially very different than the conditions present during forecast storm. In order to improve our forecasts of hurricane-induced coastal erosion hazards, the temporal variability of beach slope must be included in the final uncertainty of modeled wave-induced water levels. Frequently collected field measurements of lidar-based beach morphology are examined for study sites in Duck, North Carolina, Treasure Island, Florida, Assateague Island, Virginia, and Dauphin Island, Alabama, with some records extending over a period of 15 years. Understanding the variability of slopes at these sites will help provide estimates of associated water level uncertainty which can then be applied to other areas where lidar observations are infrequent, and improve the overall skill of future forecasts of storm-induced coastal change. Stockdon, H. F., Holman, R. A., Howd, P. A., and Sallenger Jr, A. H. (2006). Empirical parameterization of setup

  1. Experiences from coordinated national-level landslide and flood forecasting in Norway

    Science.gov (United States)

    Krøgli, Ingeborg; Fleig, Anne; Glad, Per; Dahl, Mads-Peter; Devoli, Graziella; Colleuille, Hervé

    2015-04-01

    While flood forecasting at national level is quite well established and operational in many countries worldwide, landslide forecasting at national level is still seldom. Examples of coordinated flood and landslide forecasting are even rarer. Most of the time flood and landslide forecasters work separately (investigating, defining thresholds, and developing models) and most of the time without communication with each other. One example of coordinated operational early warning systems (EWS) for flooding and shallow landslides is found at the Norwegian Water Resources and Energy Directorate (NVE) in Norway. In this presentation we give an introduction to the two separate but tightly collaborative EWSs and to the coordination of these. The two EWSs are being operated from the same office, every day using similar hydro-meteorological prognosis and hydrological models. Prognosis and model outputs on e.g. discharge, snow melt, soil water content and exceeded landslide thresholds are evaluated in a web based decision-making tool (xgeo.no). The experts performing forecasts are hydrologists, geologists and physical geographers. A similar warning scale, based on colors (green, yellow, orange and red) is used for both EWSs, however thresholds for flood and landslide warning levels are defined differently. Also warning areas may not necessary be the same for both hazards and depending on the specific meteorological event, duration of the warning periods can differ. We present how knowledge, models and tools, but also human and economic resources are being shared between the two EWSs. Moreover, we discuss challenges faced in the communication of warning messages using recent flood and landslide events as examples.

  2. A Commune-Level Groundwater Potential Map for the Republic of Mali

    Directory of Open Access Journals (Sweden)

    Silvia Díaz-Alcaide

    2017-10-01

    Full Text Available Groundwater represents an essential resource in sub-Saharan Africa, where several hundred million people rely on aquifers for domestic supply. This paper presents a method to map groundwater potential in the Republic of Mali based on a spatially-distributed database of 26,040 boreholes. The database includes exhaustive information on key parameters such as borehole location, success rate of borehole production, depth, yield, static groundwater level or water quality. Representative variables were classified and interpreted jointly to develop a groundwater potential index for each of the 703 communes in Mali. This provides a methodological novelty because groundwater potential studies typically rely on indirect indicators such as lineaments, slope, soil moisture and landforms. Also, such large borehole databases have seldom been used to estimate groundwater potential. The highest indexes were obtained for the areas in and around the River Niger’s Inner Delta, including southern Tombouctou and the central parts of the Ségou and Mopti Regions. The lower Precambrian formations, which include the country’s thoroughly populated southern plateau, had moderate scores. The lowest groundwater potential was found in the northern part of the Kayes and Koulikoro Regions, as well as in the entire region of Kidal. By providing results at the commune scale, these outcomes show that groundwater potential across the country’s geological and hydrogeological units can be highly variable, and that local and regional-scale information may be useful for groundwater management purposes. These results are policy-relevant in a context of rapid change and population growth, where groundwater resources can be expected to be increasingly relied upon in the coming years.

  3. Characteristic groundwater level regimes in the capture zones of radial collector wells and importance of identification (Case study of Belgrade Groundwater Source

    Directory of Open Access Journals (Sweden)

    Božović Đorđije

    2016-01-01

    Full Text Available Assessment of the operating modes of radial collector wells reveals that the pumping levels in the well caissons are very low relative to the depth/elevation of the laterals, which is a common occurrence at Belgrade Groundwater Source. As a result, well discharge capacities vary over a broad range and groundwater levels in the capture zones differ even when the rate of discharge is the same. Five characteristic groundwater level regimes are identified and their origin is analyzed using representative wells as examples. The scope and type of background information needed to identify the groundwater level regime are presented and an interpretation approach is proposed for preliminary assessment of the aquifer potential at the well site for providing the needed amount of groundwater. [Projekat Ministarstva nauke Republike Srbije, br. OI176022, br. TR33039 i br. III43004

  4. DeMand: A tool for evaluating and comparing device-level demand and supply forecast models

    DEFF Research Database (Denmark)

    Neupane, Bijay; Siksnys, Laurynas; Pedersen, Torben Bach

    2016-01-01

    Fine-grained device-level predictions of both shiftable and non-shiftable energy demand and supply is vital in order to take advantage of Demand Response (DR) for efficient utilization of Renewable Energy Sources. The selection of an effective device-level load forecast model is a challenging task......, mainly due to the diversity of the models and the lack of proper tools and datasets that can be used to validate them. In this paper, we introduce the DeMand system for fine-tuning, analyzing, and validating the device-level forecast models. The system offers several built-in device-level measurement...... datasets, forecast models, features, and errors measures, thus semi-automating most of the steps of the forecast model selection and validation process. This paper presents the architecture and data model of the DeMand system; and provides a use-case example on how one particular forecast model...

  5. Arsenic levels in the groundwater of Korea and the urinary excretion among contaminated area.

    Science.gov (United States)

    Park, Jung-Duck; Choi, Seong-Jin; Choi, Byung-Sun; Lee, Choong-Ryeol; Kim, Heon; Kim, Yong-Dae; Park, Kyung-Soo; Lee, Young-Jo; Kang, Seojin; Lim, Kyung-Min; Chung, Jin-Ho

    2016-09-01

    Drinking water is a main source of human exposure to arsenic. Hence, the determination of arsenic in groundwater is essential to assess its impact on public health. Here, we report arsenic levels in the groundwater of 722 sites covering all six major provinces of Korea. Water was sampled in two occasions (summer, 722 sites and winter, 636 sites) and the arsenic levels were measured with highly sensitive inductively coupled plasma-mass spectrometry method (limit of detection, 0.1 μg/l) to encompass the current drinking water standard (arsenic in groundwater ranged from 0.1 to 48.4 μg/l. A 88.0-89.0% of sites were 10 μg/l. Notably, urinary arsenic excretion of people around these regions was markedly higher compared with non-contaminated areas (arsenic-contaminated groundwater may contribute to its systemic exposure.

  6. Process-based modelling to evaluate simulated groundwater levels and frequencies in a Chalk catchment in south-western England

    Science.gov (United States)

    Brenner, Simon; Coxon, Gemma; Howden, Nicholas J. K.; Freer, Jim; Hartmann, Andreas

    2018-02-01

    Chalk aquifers are an important source of drinking water in the UK. Due to their properties, they are particularly vulnerable to groundwater-related hazards like floods and droughts. Understanding and predicting groundwater levels is therefore important for effective and safe water management. Chalk is known for its high porosity and, due to its dissolvability, exposed to karstification and strong subsurface heterogeneity. To cope with the karstic heterogeneity and limited data availability, specialised modelling approaches are required that balance model complexity and data availability. In this study, we present a novel approach to evaluate simulated groundwater level frequencies derived from a semi-distributed karst model that represents subsurface heterogeneity by distribution functions. Simulated groundwater storages are transferred into groundwater levels using evidence from different observations wells. Using a percentile approach we can assess the number of days exceeding or falling below selected groundwater level percentiles. Firstly, we evaluate the performance of the model when simulating groundwater level time series using a spilt sample test and parameter identifiability analysis. Secondly, we apply a split sample test to the simulated groundwater level percentiles to explore the performance in predicting groundwater level exceedances. We show that the model provides robust simulations of discharge and groundwater levels at three observation wells at a test site in a chalk-dominated catchment in south-western England. The second split sample test also indicates that the percentile approach is able to reliably predict groundwater level exceedances across all considered timescales up to their 75th percentile. However, when looking at the 90th percentile, it only provides acceptable predictions for long time periods and it fails when the 95th percentile of groundwater exceedance levels is considered. By modifying the historic forcings of our model

  7. Simulation of the effects of rainfall and groundwater use on historical lake water levels, groundwater levels, and spring flows in central Florida

    Science.gov (United States)

    O'Reilly, Andrew M.; Roehl, Edwin A.; Conrads, Paul; Daamen, Ruby C.; Petkewich, Matthew D.

    2014-01-01

    The urbanization of central Florida has progressed substantially in recent decades, and the total population in Lake, Orange, Osceola, Polk, and Seminole Counties more than quadrupled from 1960 to 2010. The Floridan aquifer system is the primary source of water for potable, industrial, and agricultural purposes in central Florida. Despite increases in groundwater withdrawals to meet the demand of population growth, recharge derived by infiltration of rainfall in the well-drained karst terrain of central Florida is the largest component of the long-term water balance of the Floridan aquifer system. To complement existing physics-based groundwater flow models, artificial neural networks and other data-mining techniques were used to simulate historical lake water level, groundwater level, and spring flow at sites throughout the area. Historical data were examined using descriptive statistics, cluster analysis, and other exploratory analysis techniques to assess their suitability for more intensive data-mining analysis. Linear trend analyses of meteorological data collected by the National Oceanic and Atmospheric Administration at 21 sites indicate 67 percent of sites exhibited upward trends in air temperature over at least a 45-year period of record, whereas 76 percent exhibited downward trends in rainfall over at least a 95-year period of record. Likewise, linear trend analyses of hydrologic response data, which have varied periods of record ranging in length from 10 to 79 years, indicate that water levels in lakes (307 sites) were about evenly split between upward and downward trends, whereas water levels in 69 percent of wells (out of 455 sites) and flows in 68 percent of springs (out of 19 sites) exhibited downward trends. Total groundwater use in the study area increased from about 250 million gallons per day (Mgal/d) in 1958 to about 590 Mgal/d in 1980 and remained relatively stable from 1981 to 2008, with a minimum of 559 Mgal/d in 1994 and a maximum of 773

  8. Evaluation of groundwater levels in the South Platte River alluvial aquifer, Colorado, 1953-2012, and design of initial well networks for monitoring groundwater levels

    Science.gov (United States)

    Wellman, Tristan

    2015-01-01

    The South Platte River and underlying alluvial aquifer form an important hydrologic resource in northeastern Colorado that provides water to population centers along the Front Range and to agricultural communities across the rural plains. Water is regulated based on seniority of water rights and delivered using a network of administration structures that includes ditches, reservoirs, wells, impacted river sections, and engineered recharge areas. A recent addendum to Colorado water law enacted during 2002-2003 curtailed pumping from thousands of wells that lacked authorized augmentation plans. The restrictions in pumping were hypothesized to increase water storage in the aquifer, causing groundwater to rise near the land surface at some locations. The U.S. Geological Survey (USGS), in cooperation with the Colorado Water Conservation Board and the Colorado Water Institute, completed an assessment of 60 years (yr) of historical groundwater-level records collected from 1953 to 2012 from 1,669 wells. Relations of "high" groundwater levels, defined as depth to water from 0 to 10 feet (ft) below land surface, were compared to precipitation, river discharge, and 36 geographic and administrative attributes to identify natural and human controls in areas with shallow groundwater.

  9. Fe and Mn levels regulated by agricultural activities in alluvial groundwaters underneath a flooded paddy field

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kangjoo [School of Civil and Environmental Engineering, Kunsan National University, Jeonbuk 573-701 (Korea, Republic of)], E-mail: kangjoo@kunsan.ac.kr; Kim, Hyun-Jung; Choi, Byoung-Young; Kim, Seok-Hwi; Park, Ki-hoon [School of Civil and Environmental Engineering, Kunsan National University, Jeonbuk 573-701 (Korea, Republic of); Park, Eungyu [Department of Geology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Koh, Dong-Chan [Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Yun, Seong-Taek [Department of Earth and Environmental Sciences, Korea University, Seoul 136-701 (Korea, Republic of)

    2008-01-15

    Iron and Mn concentrations in fresh groundwaters of alluvial aquifers are generally high in reducing conditions reflecting low SO{sub 4} concentrations. The mass balance and isotopic approaches of this study demonstrate that reduction of SO{sub 4}, supplied from agricultural activities such as fertilization and irrigation, is important in lowering Fe and Mn levels in alluvial groundwaters underneath a paddy field. This study was performed to investigate the processes regulating Fe and Mn levels in groundwaters of a point bar area, which has been intensively used for flood cultivation. Four multilevel-groundwater samplers were installed to examine the relationship between geology and the vertical changes in water chemistry. The results show that Fe and Mn levels are regulated by the presence of NO{sub 3} at shallow depths and by SO{sub 4} reduction at the greater depths. Isotopic and mass balance analyses revealed that NO{sub 3} and SO{sub 4} in groundwater are mostly supplied from the paddy field, suggesting that the Fe-and Mn-rich zone of the study area is confined by the agricultural activities. For this reason, the geologic conditions controlling the infiltration of agrochemicals are also important for the occurrence of Fe/Mn-rich groundwaters in the paddy field area.

  10. Fe and Mn levels regulated by agricultural activities in alluvial groundwaters underneath a flooded paddy field

    International Nuclear Information System (INIS)

    Kim, Kangjoo; Kim, Hyun-Jung; Choi, Byoung-Young; Kim, Seok-Hwi; Park, Ki-hoon; Park, Eungyu; Koh, Dong-Chan; Yun, Seong-Taek

    2008-01-01

    Iron and Mn concentrations in fresh groundwaters of alluvial aquifers are generally high in reducing conditions reflecting low SO 4 concentrations. The mass balance and isotopic approaches of this study demonstrate that reduction of SO 4 , supplied from agricultural activities such as fertilization and irrigation, is important in lowering Fe and Mn levels in alluvial groundwaters underneath a paddy field. This study was performed to investigate the processes regulating Fe and Mn levels in groundwaters of a point bar area, which has been intensively used for flood cultivation. Four multilevel-groundwater samplers were installed to examine the relationship between geology and the vertical changes in water chemistry. The results show that Fe and Mn levels are regulated by the presence of NO 3 at shallow depths and by SO 4 reduction at the greater depths. Isotopic and mass balance analyses revealed that NO 3 and SO 4 in groundwater are mostly supplied from the paddy field, suggesting that the Fe-and Mn-rich zone of the study area is confined by the agricultural activities. For this reason, the geologic conditions controlling the infiltration of agrochemicals are also important for the occurrence of Fe/Mn-rich groundwaters in the paddy field area

  11. Decomposition of groundwater level fluctuations using transfer modelling in an area with shallow to deep unsaturated zones

    Science.gov (United States)

    Gehrels, J. C.; van Geer, F. C.; de Vries, J. J.

    1994-05-01

    Time series analysis of the fluctuations in shallow groundwater levels in the Netherlands lowlands have revealed a large-scale decline in head during recent decades as a result of an increase in land drainage and groundwater withdrawal. The situation is more ambiguous in large groundwater bodies located in the eastern part of the country, where the unsaturated zone increases from near zero along the edges to about 40 m in the centre of the area. As depth of the unsaturated zone increases, groundwater level reacts with an increasing delay to fluctuations in climate and influences of human activities. The aim of the present paper is to model groundwater level fluctuations in these areas using a linear stochastic transfer function model, relating groundwater levels to estimated precipitation excess, and to separate artificial components from the natural groundwater regime. In this way, the impact of groundwater withdrawal and the reclamation of a 1000 km 2 polder area on the groundwater levels in the adjoining higher ground could be assessed. It became evident that the linearity assumption of the transfer functions becomes a serious drawback in areas with the deepest groundwater levels, because of non-linear processes in the deep unsaturated zone and the non-synchronous arrival of recharge in the saturated zone. Comparison of the results from modelling the influence of reclamation with an analytical solution showed that the lowering of groundwater level is partly compensated by reduced discharge and therefore is less than expected.

  12. Developing integrated performance assessment and forecasting the level of financial and economic enterprise stability

    Directory of Open Access Journals (Sweden)

    Khudyakova T.A.

    2017-01-01

    Full Text Available The article deals with the problem of assessing and forecasting the level of financial and economic enterprise stability through the integrated indicators development. Currently, many enterprises operate under variable external environment, which imposes a strict requirement to consider this uncertainty. For the evaluation, analysis and prediction of the sustainability of the enterprise in the conditions of crisis we believe it possible and necessary to use the apparatus of probability theory and mathematical statistics. This problem solution will improve quantitative assessing the financial and economic stability level, forecasting possible scenarios of the enterprise development and, therefore, based on the proactive management principles and adaptation processes will greatly increase their effective functioning, as well as reduce bankruptcy probability.

  13. Preliminary investigation of the effects of sea-level rise on groundwater levels in New Haven, Connecticut

    Science.gov (United States)

    Bjerklie, David M.; Mullaney, John R.; Stone, Janet R.; Skinner, Brian J.; Ramlow, Matthew A.

    2012-01-01

    Global sea level rose about 0.56 feet (ft) (170 millimeters (mm)) during the 20th century. Since the 1960s, sea level has risen at Bridgeport, Connecticut, about 0.38 ft (115 mm), at a rate of 0.008 ft (2.56 mm + or - 0.58 mm) per year. With regional subsidence, and with predicted global climate change, sea level is expected to continue to rise along the northeast coast of the United States through the 21st century. Increasing sea levels will cause groundwater levels in coastal areas to rise in order to adjust to the new conditions. Some regional climate models predict wetter climate in the northeastern United States under some scenarios. Scenarios for the resulting higher groundwater levels have the potential to inundate underground infrastructure in lowlying coastal cities. New Haven is a coastal city in Connecticut surrounded and bisected by tidally affected waters. Monitoring of water levels in wells in New Haven from August 2009 to July 2010 indicates the complex effects of urban influence on groundwater levels. The response of groundwater levels to recharge and season varied considerably from well to well. Groundwater temperatures varied seasonally, but were warmer than what was typical for Connecticut, and they seem to reflect the influence of the urban setting, including the effects of conduits for underground utilities. Specific conductance was elevated in many of the wells, indicating the influence of urban activities or seawater in Long Island Sound. A preliminary steady-state model of groundwater flow for part of New Haven was constructed using MODFLOW to simulate current groundwater levels (2009-2010) and future groundwater levels based on scenarios with a rise of 3 ft (0.91 meters (m)) in sea level, which is predicted for the end of the 21st century. An additional simulation was run assuming a 3-ft rise in sea level combined with a 12-percent increase in groundwater recharge. The model was constructed from existing hydrogeologic information for the

  14. Statistical Models to Assess the Health Effects and to Forecast Ground Level Ozone

    Czech Academy of Sciences Publication Activity Database

    Schlink, U.; Herbath, O.; Richter, M.; Dorling, S.; Nunnari, G.; Cawley, G.; Pelikán, Emil

    2006-01-01

    Roč. 21, č. 4 (2006), s. 547-558 ISSN 1364-8152 R&D Projects: GA AV ČR 1ET400300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : statistical models * ground level ozone * health effects * logistic model * forecasting * prediction performance * neural network * generalised additive model * integrated assessment Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.992, year: 2006

  15. Groundwater level prediction of landslide based on classification and regression tree

    Directory of Open Access Journals (Sweden)

    Yannan Zhao

    2016-09-01

    Full Text Available According to groundwater level monitoring data of Shuping landslide in the Three Gorges Reservoir area, based on the response relationship between influential factors such as rainfall and reservoir level and the change of groundwater level, the influential factors of groundwater level were selected. Then the classification and regression tree (CART model was constructed by the subset and used to predict the groundwater level. Through the verification, the predictive results of the test sample were consistent with the actually measured values, and the mean absolute error and relative error is 0.28 m and 1.15% respectively. To compare the support vector machine (SVM model constructed using the same set of factors, the mean absolute error and relative error of predicted results is 1.53 m and 6.11% respectively. It is indicated that CART model has not only better fitting and generalization ability, but also strong advantages in the analysis of landslide groundwater dynamic characteristics and the screening of important variables. It is an effective method for prediction of ground water level in landslides.

  16. Effect of coupling behavior on groundwater flow for geological disposal of radioactive high level waste

    International Nuclear Information System (INIS)

    Kurikami, Hiroshi; Kobayashi, Akira; Ohnishi, Yuzo; Chijimatsu, Masakazu

    2003-01-01

    In order to estimate the effects of coupled thermal-hydraulic-mechanical phenomena in near-field for geological disposal of high-level radioactive waste on a vast groundwater flow system, a far-field analysis was simulated based on the results of the simulation of coupled phenomena in near-field using averaged tensor and heat flux. From the results of the coupled analyses of near-field and far-field it was clarified that groundwater flow system was influenced by coupled phenomena in near-field. Moreover, it can be said that groundwater flux into a disposal tunnel is regarded as a complement to safety assessment of a disposal because it strongly correlates with traveling time of groundwater. (author)

  17. The Importance of Institutional Design for Distributed Local-Level Governance of Groundwater: The Case of California’s Sustainable Groundwater Management Act

    Directory of Open Access Journals (Sweden)

    Michael Kiparsky

    2017-09-01

    Full Text Available In many areas of the world, groundwater resources are increasingly stressed, and unsustainable use has become common. Where existing mechanisms for governing groundwater are ineffective or nonexistent, new ones need to be developed. Local level groundwater governance provides an intriguing alternative to top-down models, with the promise of enabling management to better match the diversity of physical and social conditions in groundwater basins. One such example is emerging in California, USA, where new state law requires new local agencies to self-organize and act to achieve sustainable groundwater management. In this article, we draw on insights from research on common pool resource management and natural resources governance to develop guidelines for institutional design for local groundwater governance, grounded in California’s developing experience. We offer nine criteria that can be used as principles or standards in the evaluation of institutional design for local level groundwater governance: scale, human capacity, funding, authority, independence, representation, participation, accountability, and transparency. We assert that local governance holds promise as an alternative to centralized governance in some settings but that its success will depend heavily on the details of its implementation. Further, for local implementation to achieve its promise, there remain important complementary roles for centralized governance. California’s developing experience with local level groundwater management in dozens of basins across the state provides a unique opportunity to test and assess the importance and influence of these criteria.

  18. Simulation of shallow groundwater levels: Comparison of a data-driven and a conceptual model

    Science.gov (United States)

    Fahle, Marcus; Dietrich, Ottfried; Lischeid, Gunnar

    2015-04-01

    Despite an abundance of models aimed at simulating shallow groundwater levels, application of such models is often hampered by a lack of appropriate input data. Difficulties especially arise with regard to soil data, which are typically hard to obtain and prone to spatial variability, eventually leading to uncertainties in the model results. Modelling approaches relying entirely on easily measured quantities are therefore an alternative to encourage the applicability of models. We present and compare two models for calculating 1-day-ahead predictions of the groundwater level that are only based on measurements of potential evapotranspiration, precipitation and groundwater levels. The first model is a newly developed conceptual model that is parametrized using the White method (which estimates the actual evapotranspiration on basis of diurnal groundwater fluctuations) and a rainfall-response ratio. Inverted versions of the two latter approaches are then used to calculate the predictions of the groundwater level. Furthermore, as a completely data-driven alternative, a simple feed-forward multilayer perceptron neural network was trained based on the same inputs and outputs. Data of 4 growing periods (April to October) from a study site situated in the Spreewald wetland in North-east Germany were taken to set-up the models and compare their performance. In addition, response surfaces that relate model outputs to combinations of different input variables are used to reveal those aspects in which the two approaches coincide and those in which they differ. Finally, it will be evaluated whether the conceptual approach can be enhanced by extracting knowledge of the neural network. This is done by replacing in the conceptual model the default function that relates groundwater recharge and groundwater level, which is assumed to be linear, by the non-linear function extracted from the neural network.

  19. Indicative effects of climate change on groundwater levels in Estonian raised bogs over 50 years

    Directory of Open Access Journals (Sweden)

    E. Lode

    2017-08-01

    Full Text Available Analyses of 50-year (1962–2011 monthly air temperature and precipitation data indicated substantial climate change in the locations of two raised bogs (Linnusaare and Männikjärve in central-east Estonia. During recent years the cross-year winter air temperature increased by 1.7 ºC, while the cold-season precipitation increased by 4 mm. The fluctuation amplitude of temperature and precipitation values decreased. Snow depth proved to be the most sensitive variable to winter warming, followed by groundwater levels together with mean and maximum soil frosts. Long-term groundwater levels on the domes of the bogs and in the forested/treed lagg areas were 0.3−0.4 m and 0.4−0.8 m below the soil surface, respectively. Warming caused changes in groundwater level amplitude of 3−22 cm in the bog domes and 3−14 cm in the forested lagg zones. The lowest groundwater levels in ridge-pool ecotopes at Männikjärve rose by 6−10 cm (i.e. these ecotopes became wetter; but the incidence of low groundwater levels increased in most ecotopes, indicating a more general trend towards drier conditions in the bog.

  20. Sensitivity analysis of hydrogeological parameters affecting groundwater storage change caused by sea level rise

    Science.gov (United States)

    Shin, J.; Kim, K.-H.; Lee, K.-K.

    2012-04-01

    Sea level rise, which is one of the representative phenomena of climate changes caused by global warming, can affect groundwater system. The rising trend of the sea level caused by the global warming is reported to be about 3 mm/year for the most recent 10 year average (IPCC, 2007). The rate of sea level rise around the Korean peninsula is reported to be 2.30±2.22 mm/yr during the 1960-1999 period (Cho, 2002) and 2.16±1.77 mm/yr (Kim et al., 2009) during the 1968-2007 period. Both of these rates are faster than the 1.8±0.5 mm/yr global average for the similar 1961-2003 period (IPCC, 2007). In this study, we analyzed changes in the groundwater environment affected by the sea level rise by using an analytical methodology. We tried to find the most effective parameters of groundwater amount change in order to estimate the change in fresh water amount in coastal groundwater. A hypothetical island model of a cylindrical shape in considered. The groundwater storage change is bi-directional as the sea level rises according to the natural and hydrogeological conditions. Analysis of the computation results shows that topographic slope and hydraulic conductivity are the most sensitive factors. The contributions of the groundwater recharge rate and the thickness of aquifer below sea level are relatively less effective. In the island with steep seashore slopes larger than 1~2 degrees or so, the storage amount of fresh water in a coastal area increases as sea level rises. On the other hand, when sea level drops, the storage amount decreases. This is because the groundwater level also rises with the rising sea level in steep seashores. For relatively flat seashores, where the slope is smaller than around 1-2 degrees, the storage amount of coastal fresh water decreases when the sea level rises because the area flooded by the rising sea water is increased. The volume of aquifer fresh water in this circumstance is greatly reduced in proportion to the flooded area with the sea

  1. Modelling and forecasting occupational accidents of different severity levels in Spain

    International Nuclear Information System (INIS)

    Carmen Carnero, Maria; Jose Pedregal, Diego

    2010-01-01

    The control of accidents at the work place is a critical issue all over the world. The consequences of occupational accidents in terms of costs for the company in which the accidents take place is only one minor matter, being the social impact and the loss of human life the most controversial effects of this important problem. The methods used to forecast future evolution of accidents are often limited to trend estimations and projections, being the scientific literature on this topic rather scarce. This paper aims at showing and predicting the evolution of Spanish occupational accidents of different levels of severity, allowing the evaluation of the influence that preventive actions carried out by public administrations or private companies may have over the number of occupational accidents. Though some contributions may be found on this topic for Spain, this paper is the first contribution that forecast occupational accidents for different levels of severity using Multivariate Unobserved Components models developed in a State Space framework extended to deal with the irregular sampling interval of the data. Data from 1998 to 2009 have been used to test the efficacy of the forecasting system.

  2. Demand Forecasting at Low Aggregation Levels using Factored Conditional Restricted Boltzmann Machine

    DEFF Research Database (Denmark)

    Mocanu, Elena; Nguyen, Phuong H.; Gibescu, Madeleine

    2016-01-01

    electric power consumption, local price and meteorological data collected from 1900 customers. The households are equipped with local generation and smart appliances capable of responding to realtime pricing signals. The results show that for the short-term (5 minute to 1 day ahead) prediction problems......The electrical demand forecasting problem can be regarded as a nonlinear time series prediction problem depending on many complex factors since it is required at various aggregation levels and at high temporal resolution. To solve this challenging problem, various time series and machine learning...... developed deep learning model for time series prediction, namely Factored Conditional Restricted Boltzmann Machine (FCRBM), and extend it for electrical demand forecasting. The assessment is made on the EcoGrid dataset, originating from the Bornholm island experiment in Denmark, consisting of aggregated...

  3. Extent, perception and mitigation of damage due to high groundwater levels in the city of Dresden, Germany

    Directory of Open Access Journals (Sweden)

    H. Kreibich

    2009-07-01

    Full Text Available Flood risk analysis and management plans mostly neglect groundwater flooding, i.e. high groundwater levels. However, rising groundwater may cause considerable damage to buildings and infrastructure. To improve the knowledge about groundwater flooding and support risk management, a survey was undertaken in the city of Dresden (Saxony, Germany, resulting in 605 completed interviews with private households endangered by high groundwater levels. The reported relatively low flood impact and damage of groundwater floods in comparison with mixed floods was reflected by its scarce perception: Hardly anybody thinks about the risk of groundwater flooding. The interviewees thought that public authorities and not themselves, should be mainly responsible for preparedness and emergency response. Up to now, people do not include groundwater risk in their decision processes on self protection. The implementation of precautionary measures does not differ between households with groundwater or with mixed flood experience. However, less households undertake emergency measures when expecting a groundwater flood only. The state of preparedness should be further improved via an intensified risk communication about groundwater flooding by the authorities. Conditions to reach the endangered population are good, since 70% of the interviewed people are willing to inform themselves about groundwater floods. Recommendations for an improved risk communication are given.

  4. Forecasting the Global Mean Sea Level, a Continuous-Time State-Space Approach

    DEFF Research Database (Denmark)

    Boldrini, Lorenzo

    In this paper we propose a continuous-time, Gaussian, linear, state-space system to model the relation between global mean sea level (GMSL) and the global mean temperature (GMT), with the aim of making long-term projections for the GMSL. We provide a justification for the model specification based......) and the temperature reconstruction from Hansen et al. (2010). We compare the forecasting performance of the proposed specification to the procedures developed in Rahmstorf (2007b) and Vermeer and Rahmstorf (2009). Finally, we compute projections for the sea-level rise conditional on the 21st century SRES temperature...

  5. АSSESSMENT AND FORECASTING OF FLIGHT SAFETY LEVEL OF AIRLINE

    Directory of Open Access Journals (Sweden)

    E. S. Prozorov

    2015-01-01

    Full Text Available The article presents methods based on probability theory and mathematical statistics for solving a number of basic problems: formation and evaluation of the current flight safety level; forecasting the level of flight safety; ranking the objects (planes, pilots in terms of flight safety; evaluation of the presence (or absence of control actions arising in the context of the organization of corporate safety management system. At the same time as the main source of information are considered forward-looking events received from flight data.

  6. Incorporating regional growth into forecasts of greenhouse gas emissions from project-level residential and commercial development

    International Nuclear Information System (INIS)

    Rowangould, Dana; Eldridge, Melody; Niemeier, Deb

    2013-01-01

    To better understand the greenhouse gas (GHG) implications of land use planning decisions, regional planning organizations have developed tools to forecast the emissions from project-level residential and commercial development. This paper reviews the state of GHG emissions forecasting methods for project-level development. We argue that when forecasting changes in regional emissions it is important to make explicit what is assumed about a project′s effect on the population of residents and businesses in the region. We present five regional growth assumptions capturing the range of ways that project-level development might influence (i) construction and occupancy of similar developments elsewhere in a region and (ii) relocation of the initial activities that occur on-site before the project is built. We show that current forecasting tools inconsistently address the latter when they are interpreted as forecasted changes in regional emissions. Using a case study in Yolo County, California we demonstrate that forecasted changes in regional emissions are greatly affected by the regional growth assumption. In the absence of information about which regional growth assumption is accurate, we provide guidelines for selection of a conservative regional growth assumption. - Highlights: • Current tools inconsistently forecast GHG emissions from project-level development. • We outline five assumptions about how projects may affect regional growth. • Our assumptions capture a range of economic and population effects of projects. • Our case study shows that growth assumptions greatly affect regional GHG estimates. • We provide guidelines for selecting a conservative regional growth assumption

  7. Regional specific groundwater arsenic levels and neuropsychological functioning: a cross-sectional study.

    Science.gov (United States)

    Edwards, Melissa; Johnson, Leigh; Mauer, Cortney; Barber, Robert; Hall, James; O'Bryant, Sid

    2014-01-01

    The purpose of the study was to examine the link between geographic information system (GIS)-estimated regional specific groundwater levels and neuropsychological functioning in a sample of individuals with and without cognitive impairment. This cross-sectional study design analyzed data from 1390 participants (733 Alzheimer's disease, 127 Mild Cognitive Impairment, and 530 with normal cognition) enrolled in the Texas Alzheimer's Research and Care Consortium. GISs analyses were used to estimate regional specific groundwater arsenic concentrations using the Environmental Systems Research Institute and arsenic concentrations from the Texas Water Development Board. In the full cohort, regional specific arsenic concentrations were positively associated with language abilities (p = 0.008), but associated with poorer verbal memory, immediate (p = 0.008), and delayed (p arsenic being related with cognition most prominently among mild cognitive impairment cases. Overall, estimated regional specific groundwater arsenic levels were negatively associated with neuropsychological performance.

  8. Effects of sea-level rise on barrier island groundwater system dynamics: ecohydrological implications

    Science.gov (United States)

    Masterson, John P.; Fienen, Michael N.; Thieler, E. Robert; Gesch, Dean B.; Gutierrez, Benjamin T.; Plant, Nathaniel G.

    2014-01-01

    We used a numerical model to investigate how a barrier island groundwater system responds to increases of up to 60 cm in sea level. We found that a sea-level rise of 20 cm leads to substantial changes in the depth of the water table and the extent and depth of saltwater intrusion, which are key determinants in the establishment, distribution and succession of vegetation assemblages and habitat suitability in barrier islands ecosystems. In our simulations, increases in water-table height in areas with a shallow depth to water (or thin vadose zone) resulted in extensive groundwater inundation of land surface and a thinning of the underlying freshwater lens. We demonstrated the interdependence of the groundwater response to island morphology by evaluating changes at three sites. This interdependence can have a profound effect on ecosystem composition in these fragile coastal landscapes under long-term changing climatic conditions.

  9. Analysis of 1997–2008 groundwater level changes in the upper Deschutes Basin, Central Oregon

    Science.gov (United States)

    Gannett, Marshall W.; Lite, Kenneth E.

    2013-01-01

    Groundwater-level monitoring in the upper Deschutes Basin of central Oregon from 1997 to 2008 shows water-level declines in some places that are larger than might be expected from climate variations alone, raising questions regarding the influence of groundwater pumping, canal lining (which decreases recharge), and other human influences. Between the mid-1990s and mid-2000s, water levels in the central part of the basin near Redmond steadily declined as much as 14 feet. Water levels in the Cascade Range, in contrast, rose more than 20 feet from the mid-1990s to about 2000, and then declined into the mid-2000s, with little or no net change. An existing U.S. Geological Survey regional groundwater-flow model was used to gain insights into groundwater-level changes from 1997 to 2008, and to determine the relative influence of climate, groundwater pumping, and irrigation canal lining on observed water-level trends. To utilize the model, input datasets had to be extended to include post-1997 changes in groundwater pumping, changes in recharge from precipitation, irrigation canal leakage, and deep percolation of applied irrigation water (also known as on-farm loss). Mean annual groundwater recharge from precipitation during the 1999–2008 period was 25 percent less than during the 1979–88 period because of drying climate conditions. This decrease in groundwater recharge is consistent with measured decreases in streamflow and discharge to springs. For example, the mean annual discharge of Fall River, which is a spring-fed stream, decreased 12 percent between the 1979–88 and 1999–2008 periods. Between the mid-1990s and late 2000s, groundwater pumping for public-supply and irrigation uses increased from about 32,500 to 52,000 acre-feet per year, partially because of population growth. Between 1997 and 2008, the rate of recharge from leaking irrigation canals decreased by about 58,000 acre-feet per year as a result of lining and piping of canals. Decreases in recharge

  10. Hydrographs Showing Ground-Water Level Changes for Selected Wells in the Lower Skagit River Basin, Washington

    Science.gov (United States)

    Fasser, E.T.; Julich, R.J.

    2009-01-01

    Hydrographs for selected wells in the Lower Skagit River basin, Washington, are presented in an interactive web-based map to illustrate monthly and seasonal changes in ground-water levels in the study area. Ground-water level data and well information were collected by the U.S. Geological Survey using standard techniques and were stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.

  11. Hydrographs showing groundwater levels for selected wells in the Puyallup River watershed and vicinity, Pierce and King Counties, Washington

    Science.gov (United States)

    Lane, R.C.; Julich, R.J.; Justin, G.B.

    2013-01-01

    Hydrographs of groundwater levels for selected wells in and adjacent to the Puyallup River watershed in Pierce and King Counties, Washington, are presented using an interactive Web-based map of the study area to illustrate changes in groundwater levels on a monthly and seasonal basis. The interactive map displays well locations that link to the hydrographs, which in turn link to the U.S. Geological Survey National Water Information System, Groundwater Site Inventory System.

  12. Groundwater reorganization in the Floridan aquifer following Holocene sea-level rise

    Science.gov (United States)

    Morrissey, Sheila K.; Clark, Jordan F.; Bennett, Michael; Richardson, Emily; Stute, Martin

    2010-10-01

    Sea-level fluctuations, particularly those associated with glacial-interglacial cycles, can have profound impacts on the flow and circulation of coastal groundwater: the water found at present in many coastal aquifers may have been recharged during the last glacial period, when sea level was over 100m lower than present, and thus is not in equilibrium with present recharge conditions. Here we show that the geochemistry of the groundwater found in the Floridan Aquifer System in south Florida is best explained by a reorganization of groundwater flow following the sea-level rise at the end of the Last Glacial Maximum approximately 18,000 years ago. We find that the geochemistry of the fresh water found in the upper aquifers at present is consistent with recharge from meteoric water during the last glacial period. The lower aquifer, however, consists of post-sea-level-rise salt water that is most similar to that of the Straits of Florida, though with some dilution from the residual fresh water from the last glacial period circulation. We therefore suggest that during the last glacial period, the entire Floridan Aquifer System was recharged with meteoric waters. After sea level rose, the increased hydraulic head reduced the velocity of the groundwater flow. This velocity reduction trapped the fresh water in the upper aquifers and initiated saltwater circulation in the lower aquifer.

  13. Hydrographs Showing Groundwater Level Changes for Selected Wells in the Chambers-Clover Creek Watershed and Vicinity, Pierce County, Washington

    Science.gov (United States)

    Justin, G.B.; Julich, R.; Payne, K.L.

    2009-01-01

    Selected groundwater level hydrographs for the Chambers-Clover Creek watershed (CCCW) and vicinity, Washington, are presented in an interactive web-based map to illustrate changes in groundwater levels in and near the CCCW on a monthly and seasonal basis. Hydrographs are linked to points corresponding to the well location on an interactive map of the study area. Groundwater level data and well information from Federal, State, and local agencies were obtained from the U.S. Geological Survey National Water Information System (NWIS), Groundwater Site Inventory (GWSI) System.

  14. Hydrological forecast of maximal water level in Lepenica river basin and flood control measures

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2006-01-01

    Full Text Available Lepenica river basin territory has became axis of economic and urban development of Šumadija district. However, considering Lepenica River with its tributaries, and their disordered river regime, there is insufficient of water for water supply and irrigation, while on the other hand, this area is suffering big flood and torrent damages (especially Kragujevac basin. The paper presents flood problems in the river basin, maximum water level forecasts, and flood control measures carried out until now. Some of the potential solutions, aiming to achieve the effective flood control, are suggested as well.

  15. Impacts of hydrogeological characteristics on groundwater-level changes induced by earthquakes

    Science.gov (United States)

    Liu, Ching-Yi; Chia, Yeeping; Chuang, Po-Yu; Chiu, Yung-Chia; Tseng, Tai-Lin

    2018-03-01

    Changes in groundwater level during earthquakes have been reported worldwide. In this study, field observations of co-seismic groundwater-level changes in wells under different aquifer conditions and sampling intervals due to near-field earthquake events in Taiwan are presented. Sustained changes, usually observed immediately after earthquakes, are found in the confined aquifer. Oscillatory changes due to the dynamic strain triggered by passing earthquake waves can only be recorded by a high-frequency data logger. While co-seismic changes recover rapidly in an unconfined aquifer, they can sustain for months or longer in a confined aquifer. Three monitoring wells with long-term groundwater-level data were examined to understand the association of co-seismic changes with local hydrogeological conditions. The finite element software ABAQUS is used to simulate the pore-pressure changes induced by the displacements due to fault rupture. The calculated co-seismic change in pore pressure is related to the compressibility of the formation. The recovery rate of the change is rapid in the unconfined aquifer due to the hydrostatic condition at the water table, but slow in the confined aquifer due to the less permeable confining layer. Fracturing of the confining layer during earthquakes may enhance the dissipation of pore pressure and induce the discharge of the confined aquifer. The study results indicated that aquifer characteristics play an important role in determining groundwater-level changes during and after earthquakes.

  16. Uncertainties in geologic disposal of high-level wastes - groundwater transport of radionuclides and radiological consequences

    International Nuclear Information System (INIS)

    Kocher, D.C.; Sjoreen, A.L.; Bard, C.S.

    1983-01-01

    The analysis for radionuclide transport in groundwater considers models and methods for characterizing (1) the present geologic environment and its future evolution due to natural geologic processes and to repository development and waste emplacement, (2) groundwater hydrology, (3) radionuclide geochemistry, and (4) the interactions among these phenomena. The discussion of groundwater transport focuses on the nature of the sources of uncertainty rather than on quantitative estimates of their magnitude, because of the lack of evidence that current models can provide realistic quantitative predictions of radionuclide transport in groundwater for expected repository environments. The analysis for the long-term health risk to man following releases of long-lived radionuclides to the biosphere is more quantitative and involves estimates of uncertainties in (1) radionuclide concentrations in man's exposure environment, (2) radionuclide intake by exposed individuals per unit concentration in the environment, (3) the dose per unit intake, (4) the number of exposed individuals, and (5) the health risk per unit dose. For the important long-lived radionuclides in high-level waste, uncertainties in most of the different components of a calculation of individual and collective dose per unit release appear to be no more than two or three orders of magnitude; these uncertainties are certainly much less than uncertainties in predicting groundwater transport of radionuclides between a repository and the biosphere. Several limitations in current models for predicting the health risk to man per unit release to the biosphere are discussed

  17. Utilizing an Adaptive Grey Model for Short-Term Time Series Forecasting: A Case Study of Wafer-Level Packaging

    Directory of Open Access Journals (Sweden)

    Che-Jung Chang

    2013-01-01

    Full Text Available The wafer-level packaging process is an important technology used in semiconductor manufacturing, and how to effectively control this manufacturing system is thus an important issue for packaging firms. One way to aid in this process is to use a forecasting tool. However, the number of observations collected in the early stages of this process is usually too few to use with traditional forecasting techniques, and thus inaccurate results are obtained. One potential solution to this problem is the use of grey system theory, with its feature of small dataset modeling. This study thus uses the AGM(1,1 grey model to solve the problem of forecasting in the pilot run stage of the packaging process. The experimental results show that the grey approach is an appropriate and effective forecasting tool for use with small datasets and that it can be applied to improve the wafer-level packaging process.

  18. Forecasting the effects of EU policy measures on the nitrate pollution of groundwater based on a coupled agroeconomic - hydro(geo)logic model (Invited)

    Science.gov (United States)

    Wendland, F.

    2010-12-01

    developments of agriculture were assessed with regard to both, groundwater quality in 2015 and the regional agricultural income. On average for the whole Weser basin, the reduction of nitrogen surpluses for agricultural areas leads to a decrease of nitrate concentrations in the leachate by about 10 mg NO3/L. In the agricultural intensive used regions much higher reductions in the order of 40 mg NO3/L may be expected. Using the environmental target value for groundwater, i.e. a concentration of 50 mg NO3/L in the leachate as a target for groundwater protection, the model results were used directly to identify those regions where additional agro-environmental reduction measures are required. There, a backward calculation allows the quantification of maximal permissible nitrogen surplus levels, which was used as a reference for the derivation of additional nitrogen reduction measures. It could be shown that a further reduction by ca. 20.000 t N/a (19%) is necessary to reach a nitrate concentration in groundwater of 50 mg/l. The related costs sum up to ca. 75 Mio €/a. The research work was carried out in the framework of the AGRUM Weser project which was funded on behalf of the German Federal Ministry of Food, Agriculture and Consumer protection (BMELV) and the River Basin Commission Weser (FGG).

  19. Transient simulation of groundwater levels within a sandbar of the Colorado River, Marble Canyon, Arizona, 2004

    Science.gov (United States)

    Sabol, Thomas A.; Springer, Abraham E.

    2013-01-01

    Seepage erosion and mass failure of emergent sandy deposits along the Colorado River in Grand Canyon National Park, Arizona, are a function of the elevation of groundwater in the sandbar, fluctuations in river stage, the exfiltration of water from the bar face, and the slope of the bar face. In this study, a generalized three-dimensional numerical model was developed to predict the time-varying groundwater level, within the bar face region of a freshly deposited eddy sandbar, as a function of river stage. Model verification from two transient simulations demonstrates the ability of the model to predict groundwater levels within the onshore portion of the sandbar face across a range of conditions. Use of this generalized model is applicable across a range of typical eddy sandbar deposits in diverse settings. The ability to predict the groundwater level at the onshore end of the sandbar face is essential for both physical and numerical modeling efforts focusing on the erosion and mass failure of eddy sandbars downstream of Glen Canyon Dam along the Colorado River.

  20. THE STUDY OF CHANGES IN ARDABIL PLAIN GROUNDWATER LEVEL USING GIS

    Directory of Open Access Journals (Sweden)

    Javad Zare Aghbolagh

    2016-03-01

    Full Text Available Uncontrolled exploitation of groundwater in many parts of the world has led to a sharp drop in groundwater levels. In this study, changes in Ardabil plain groundwater level were studied using geographic information system (GIS. For this purpose, the interpolation table method was used, the intrinsic data as table data of piezo metric wells was used. In order to implement the model, the Majol Geoestatical in geographic information system software was used. The data entered as regions into the geographic information system, and then done for the entire zoning area, due to zoning 8 models, the IDW, GPI, RBF, LPI, KO, KS, KU and EBK in geostatical extension were evaluated. The ordinary kriging method (KO with the lowest RMSE, was determined as the most accurate one, and finally, as the ultimate method for zoning and map providing for the changes in groundwater levels drop of the region. The results of classification showed that the biggest drop of about 40 meters was in the areas close to the southeastern parts of the study region and in other areas, little changes were observed, this rate of the change and decline in some parts of the desert like southern regions is very tangible and specified.

  1. Application of Artificial Neural Network into the Water Level Modeling and Forecast

    Directory of Open Access Journals (Sweden)

    Marzenna Sztobryn

    2013-06-01

    Full Text Available The dangerous sea and river water level increase does not only destroy the human lives, but also generate the severe flooding in coastal areas. The rapidly changes in the direction and velocity of wind and associated with them sea level changes could be the severe threat for navigation, especially on the fairways of small fishery harbors located in the river mouth. There is the area of activity of two external forcing: storm surges and flood wave. The aim of the work was the description of an application of Artificial Neural Network (ANN methodology into the water level forecast in the case study field in Swibno harbor located is located at 938.7 km of the Wisla River and at a distance of about 3 km up the mouth (Gulf of Gdansk - Baltic Sea.

  2. Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia

    Science.gov (United States)

    Karimi, Sepideh; Kisi, Ozgur; Shiri, Jalal; Makarynskyy, Oleg

    2013-03-01

    Accurate predictions of sea level with different forecast horizons are important for coastal and ocean engineering applications, as well as in land drainage and reclamation studies. The methodology of tidal harmonic analysis, which is generally used for obtaining a mathematical description of the tides, is data demanding requiring processing of tidal observation collected over several years. In the present study, hourly sea levels for Darwin Harbor, Australia were predicted using two different, data driven techniques, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Multi linear regression (MLR) technique was used for selecting the optimal input combinations (lag times) of hourly sea level. The input combination comprises current sea level as well as five previous level values found to be optimal. For the ANFIS models, five different membership functions namely triangular, trapezoidal, generalized bell, Gaussian and two Gaussian membership function were tested and employed for predicting sea level for the next 1 h, 24 h, 48 h and 72 h. The used ANN models were trained using three different algorithms, namely, Levenberg-Marquardt, conjugate gradient and gradient descent. Predictions of optimal ANFIS and ANN models were compared with those of the optimal auto-regressive moving average (ARMA) models. The coefficient of determination, root mean square error and variance account statistics were used as comparison criteria. The obtained results indicated that triangular membership function was optimal for predictions with the ANFIS models while adaptive learning rate and Levenberg-Marquardt were most suitable for training the ANN models. Consequently, ANFIS and ANN models gave similar forecasts and performed better than the developed for the same purpose ARMA models for all the prediction intervals.

  3. A Comparison of Seasonal Patterns Observed in ERS 1 / 2 Differential InSAR, Groundwater Level Data, and Groundwater Production Data in Reno, Nevada, USA.

    Science.gov (United States)

    Oppliger, G. L.; Goudy, C.; Widmer, M.

    2005-12-01

    We report on a comparison of repeating seasonal patterns observed in ERS 1 / 2 differential InSAR, (D-InSAR) groundwater level (GWL) data, and water production volume data in Reno, Nevada, USA. Over the 1992-2002 study period we found municipal groundwater utilization in the Reno study area was associated with centimeter and sub-centimeter surface elevation changes which are distributed over aquifer related zones several kilometers in width. In the central Reno area observations define two active anomaly areas which show cyclical surface deflation and inflation with elevation changes of 10 to 30 millimeters over one to nine years. Seasonal groundwater level change associated with these D-InSAR features ranged between 0.3 and 3 meters. Some D-InSAR pattern perimeters are localized by geologic structure while others are more mobile. Most surface deflation appears to be periodically restored by natural and managed aquifer recharge. The area's of active surface inflation-deflation nominally correspond with the area's most significantly utilized groundwater aquifers. To evaluate evidence for the direct relation between D-InSAR and groundwater production in the study area, comparisons between 1992-2002 groundwater levels, production rates and D-InSAR surface inflation-deflation features were developed. Groundwater level change maps showed good direct correlations with D-InSAR observations only in areas where the GWL changes were relatively large (~10 meters), spatially uniform and sustained over several years. Several factors probably contribute to the weak correlation of many GWL's and D-InSAR features including: incomplete GWL coverages, GWL monitoring data representing different aquifer horizons, proximity to production wells, delayed development of aquifer volume change when water levels are altered, and lateral change in aquifer composition. Consistency of the D-InSAR features suggests atmospheric artifacts were not the source of the discrepancies. Some of the

  4. Forecasting Method for Urban Rail Transit Ridership at Station Level Using Back Propagation Neural Network

    Directory of Open Access Journals (Sweden)

    Junfang Li

    2016-01-01

    Full Text Available Direct forecasting method for Urban Rail Transit (URT ridership at the station level is not able to reflect nonlinear relationship between ridership and its predictors. Also, population is inappropriately expressed in this method since it is not uniformly distributed by area. In this paper, a new variable, population per distance band, is considered and a back propagation neural network (BPNN model which can reflect nonlinear relationship between ridership and its predictors is proposed to forecast ridership. Key predictors are obtained through partial correlation analysis. The performance of the proposed model is compared with three other benchmark models, which are linear model with population per distance band, BPNN model with total population, and linear model with total population, using four measures of effectiveness (MOEs, maximum relative error (MRE, smallest relative error (SRE, average relative error (ARE, and mean square root of relative error (MSRRE. Also, another model for contribution rate of population per distance band to ridership is formulated based on the BPNN model with nonpopulation variables fixed. Case studies with Japanese data show that BPNN model with population per distance band outperforms other three models and the contribution rate of population within special distance band to ridership calculated through the contribution rate model is 70%~92.9% close to actual statistical value. The result confirms the effectiveness of models proposed in this paper.

  5. Atoll groundwater movement and its response to climatic and sea-level fluctuations

    Science.gov (United States)

    Oberle, Ferdinand; Swarzenski, Peter W.; Storlazzi, Curt

    2017-01-01

    Groundwater resources of low-lying atoll islands are threatened due to short-term and long-term changes in rainfall, wave climate, and sea level. A better understanding of how these forcings affect the limited groundwater resources was explored on Roi-Namur in the Republic of the Marshall Islands. As part of a 16-month study, a rarely recorded island-overwash event occurred and the island’s aquifer’s response was measured. The findings suggest that small-scale overwash events cause an increase in salinity of the freshwater lens that returns to pre-overwash conditions within one month. The overwash event is addressed in the context of climate-related local sea-level change, which suggests that overwash events and associated degradations in freshwater resources are likely to increase in severity in the future due to projected rises in sea level. Other forcings, such as severe rainfall events, were shown to have caused a sudden freshening of the aquifer, with salinity levels retuning to pre-rainfall levels within three months. Tidal forcing of the freshwater lens was observed in electrical resistivity profiles, high-resolution conductivity, groundwater-level well measurements and through submarine groundwater discharge calculations. Depth-specific geochemical pore water measurements further assessed and confirmed the distinct boundaries between fresh and saline water masses in the aquifer. The identification of the freshwater lens’ saline boundaries is essential for a quantitative evaluation of the aquifers freshwater resources and help understand how these resources may be impacted by climate change and anthropogenic activities.

  6. Atoll Groundwater Movement and Its Response to Climatic and Sea-Level Fluctuations

    Directory of Open Access Journals (Sweden)

    Ferdinand K. J. Oberle

    2017-08-01

    Full Text Available Groundwater resources of low-lying atoll islands are threatened due to short-term and long-term changes in rainfall, wave climate, and sea level. A better understanding of how these forcings affect the limited groundwater resources was explored on Roi-Namur in the Republic of the Marshall Islands. As part of a 16-month study, a rarely recorded island-overwash event occurred and the island’s aquifer’s response was measured. The findings suggest that small-scale overwash events cause an increase in salinity of the freshwater lens that returns to pre-overwash conditions within one month. The overwash event is addressed in the context of climate-related local sea-level change, which suggests that overwash events and associated degradations in freshwater resources are likely to increase in severity in the future due to projected rises in sea level. Other forcings, such as severe rainfall events, were shown to have caused a sudden freshening of the aquifer, with salinity levels retuning to pre-rainfall levels within three months. Tidal forcing of the freshwater lens was observed in electrical resistivity profiles, high-resolution conductivity, groundwater-level well measurements and through submarine groundwater discharge calculations. Depth-specific geochemical pore water measurements further assessed and confirmed the distinct boundaries between fresh and saline water masses in the aquifer. The identification of the freshwater lens’ saline boundaries is essential for a quantitative evaluation of the aquifers freshwater resources and help understand how these resources may be impacted by climate change and anthropogenic activities.

  7. Groundwater geochemistry near the storage sites of low-level radioactive waste: Implications for uranium migration

    Energy Technology Data Exchange (ETDEWEB)

    Gaskova, Olga L.; Boguslavsky, Anatoly E. [Institute of Geology and Mineralogy SB RAS, Ac. Koptyug prosp. 3, Novosibirsk 630090 (Russian Federation)

    2013-07-01

    This paper presents results of detailed sampling of groundwater and surface water near the storage sites of radioactive waste from the Electrochemical Plant ECP (Zelenogorsk, Krasnoyarsk region, Russia) and the Angarsk Electrolysis Chemical Complex AEC (Angarsk, Irkutsk region, Russia), both of which have produced enriched uranium since 1960's. The liquid (LRW) and solid (SRW) radioactive wastes belong to the category of low-level activity waste. The main result is that the uranium is below the recommended MPC for drinking waters in all types of groundwater around the sludge of ECP and AEC. But alkaline nitrate solutions have been penetrating and spreading into the aquifers under the LRW sludge pits. According to our calculations, redox conditions in the groundwater influenced by discharge are controlled by the couple NO{sub 3}{sup -}/NO{sub 2}{sup -} that facilitates U(VI) migration. The groundwater under SRW repositories is distinguished by its low mineralization and neutral pH. Co-contaminants, such as Mo, V, and Zr may serve as markers of techno-genous contamination in storage sites of the LRW sludge. (authors)

  8. Region-scale groundwater flow modelling of generic high level waste disposal sites

    International Nuclear Information System (INIS)

    Metcalfe, D.

    1996-02-01

    Regional-scale groundwater flow modelling analyses are performed on generic high level waste (HLW) disposal sites to assess the extent to which a large crystalline rock mass such as a pluton or batholith can be expected to contain and isolate HLW in terms of hydraulic considerations, for a variety of geologic and hydrogeologic conditions. The two-dimensional cross-sectional conceptual models of generic HLW disposal sites are evaluated using SWIFT III, which is a finite-difference flow and transport code. All steps leading to the final results and conclusions are incorporated in this report. The available data and information on geological and hydrogeologic conditions in plutons and batholiths are summarized. The generic conceptual models developed from this information are defined in terms of the finite difference grid, the geologic and hydrogeologic properties and the hydrologic boundary conditions used. The modelled results are described with contour maps showing the modelled head fields, groundwater flow paths and travel times and groundwater flux rates within the modelled systems. The results of the modelling analyses are used to develop general conclusions on the scales and patterns of groundwater flow in granitic plutons and batholiths. The conclusions focus on geologic and hydrogeologic characteristics that can result in favourable conditions, in terms of hydraulic considerations, for a HLW repository. (author) 43 refs., 9 tabs., 40 figs

  9. Climate change impact on groundwater levels in the Guarani Aquifer outcrop zone

    Science.gov (United States)

    Melo, D. D.; Wendland, E.

    2013-12-01

    The unsustainable use of groundwater in many countries might cause water availability restrictions in the future. Such issue is likely to worsen due to predicted climate changes for the incoming decades. As numerous studies suggest, aquifers recharge rates will be affected as a result of climate change. The Guarani Aquifer System (GAS) is one of the most important transboundary aquifer in the world, providing drinkable water for millions of people in four South American countries (Brazil, Argentina, Uruguay and Paraguay). Considering the GAS relevance and how its recharge rates might be altered by climatic conditions anomalies, the objective of this work is to assess possible climate changes impacts on groundwater levels in this aquifer outcrop zone. Global Climate Models' (GCM) outputs were used as inputs in a transient flux groundwater model created using the software SPA (Simulation of Process in Aquifers), enabling groundwater table fluctuation to be evaluated under distinct climatic scenarios. Six monitoring wells, located in a representative basin (Ribeirão da Onça basin) inside a GAS outcrop zone (ROB), provided water table measurements between 2004 and 2011 to calibrate the groundwater model. Using observed climatic data, a water budget method was applied to estimate recharge in different types of land uses. Statistically downscaled future climate scenarios were used as inputs for that same recharge model, which provided data for running SPA under those scenarios. The results show that most of the GCMs used here predict temperature arises over 275,15 K and major monthly rainfall mean changes to take place in the dry season. During wet seasons, those means might experience around 50% decrease. The transient model results indicate that water table variations, derived from around 70% of the climate scenarios, would vary below those measured between 2004 and 2011. Among the thirteen GCMs considered in this work, only four of them predicted more extreme

  10. Groundwater levels and water-quality observations pertaining to the Austin Group, Bexar County, Texas, 2009-11

    Science.gov (United States)

    Banta, J.R.; Clark, Allan K.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the San Antonio Water System, examined groundwater-level altitudes (groundwater levels) and water-quality data pertaining to the Austin Group in Bexar County, Texas, during 2009–11. Hydrologic data collected included daily mean groundwater levels collected at seven sites in the study area. Water-quality samples were collected at six sites in the study area and analyzed for major ions, nutrients, trace elements, organic carbon, and stable isotopes. The resulting datasets were examined for similarities between sites as well as similarities to data from the Edwards aquifer in Bexar County, Tex. Similarities in the groundwater levels between sites completed in the Austin Group and site J (State well AY-68-37-203; hereafter referred to as the “Bexar County index well”) which is completed in the Edwards aquifer might be indicative of groundwater interactions between the two hydrologic units as a result of nearby faulting or conduit flow. The groundwater levels measured at the sites in the study area exhibited varying degrees of similarity to the Bexar County index well. Groundwater levels at site A (State well AY-68-36-136) exhibited similar patterns as those at the Bexar County index well, but the hydrographs of groundwater levels were different in shape and magnitude in response to precipitation and groundwater pumping, and at times slightly offset in time. The groundwater level patterns measured at sites C, D, and E (State wells AY-68-29-513, AY-68-29-514, and AY-68-29-512, respectively) were not similar to those measured at the Bexar County index well. Groundwater levels at site F (State well AY-68-29-819) exhibited general similarities as those observed at the Bexar County index well; however, there were several periods of notable groundwater-level drawdowns at site F that were not evident at the Bexar County index well. These drawdowns were likely because of pumping from the well at site F. The groundwater

  11. Profiling micro-organic contaminants in groundwater using multi-level piezometers

    OpenAIRE

    White, Debbie; Lapworth, Dan; Stuart, Marianne; Williams, Peter

    2015-01-01

    The presence of micro-organic pollutants, including ‘emerging contaminants’ within groundwater is of increasing interest. Robust protocols are required to minimise the introduction of contamination during the sampling process. Below we discuss the sampling protocols used to reduce inputs of plasticisers during the sampling process, as well as the techniques used to characterise the distribution of micro-organic pollutants in the subsurface. In this study multi-level piezometers...

  12. Analysis of the applicability of geophysical methods and computer modelling in determining groundwater level

    Science.gov (United States)

    Czaja, Klaudia; Matula, Rafal

    2014-05-01

    The paper presents analysis of the possibilities of application geophysical methods to investigation groundwater conditions. In this paper groundwater is defined as liquid water flowing through shallow aquifers. Groundwater conditions are described through the distribution of permeable layers (like sand, gravel, fractured rock) and impermeable or low-permeable layers (like clay, till, solid rock) in the subsurface. GPR (Ground Penetrating Radar), ERT(Electrical Resistivity Tomography), VES (Vertical Electric Soundings) and seismic reflection, refraction and MASW (Multichannel Analysis of Surface Waves) belong to non - invasive, surface, geophysical methods. Due to differences in physical parameters like dielectric constant, resistivity, density and elastic properties for saturated and saturated zones it is possible to use geophysical techniques for groundwater investigations. Few programmes for GPR, ERT, VES and seismic modelling were applied in order to verify and compare results. Models differ in values of physical parameters such as dielectric constant, electrical conductivity, P and S-wave velocity and the density, layers thickness and the depth of occurrence of the groundwater level. Obtained results for computer modelling for GPR and seismic methods and interpretation of test field measurements are presented. In all of this methods vertical resolution is the most important issue in groundwater investigations. This require proper measurement methodology e.g. antennas with frequencies high enough, Wenner array in electrical surveys, proper geometry for seismic studies. Seismic velocities of unconsolidated rocks like sand and gravel are strongly influenced by porosity and water saturation. No influence of water saturation degree on seismic velocities is observed below a value of about 90% water saturation. A further saturation increase leads to a strong increase of P-wave velocity and a slight decrease of S-wave velocity. But in case of few models only the

  13. Supporting inland waterway transport on German waterways by operational forecasting services - water-levels, discharges, river ice

    Science.gov (United States)

    Meißner, Dennis; Klein, Bastian; Ionita, Monica; Hemri, Stephan; Rademacher, Silke

    2017-04-01

    Inland waterway transport (IWT) is an important commercial sector significantly vulnerable to hydrological impacts. River ice and floods limit the availability of the waterway network and may cause considerable damages to waterway infrastructure. Low flows significantly affect IWT's operation efficiency usually several months a year due to the close correlation of (low) water levels / water depths and (high) transport costs. Therefore "navigation-related" hydrological forecasts focussing on the specific requirements of water-bound transport (relevant forecast locations, target parameters, skill characteristics etc.) play a major role in order to mitigate IWT's vulnerability to hydro-meteorological impacts. In light of continuing transport growth within the European Union, hydrological forecasts for the waterways are essential to stimulate the use of the free capacity IWT still offers more consequently. An overview of the current operational and pre-operational forecasting systems for the German waterways predicting water levels, discharges and river ice thickness on various time-scales will be presented. While short-term (deterministic) forecasts have a long tradition in navigation-related forecasting, (probabilistic) forecasting services offering extended lead-times are not yet well-established and are still subject to current research and development activities (e.g. within the EU-projects EUPORIAS and IMPREX). The focus is on improving technical aspects as well as on exploring adequate ways of disseminating and communicating probabilistic forecast information. For the German stretch of the River Rhine, one of the most frequented inland waterways worldwide, the existing deterministic forecast scheme has been extended by ensemble forecasts combined with statistical post-processing modules applying EMOS (Ensemble Model Output Statistics) and ECC (Ensemble Copula Coupling) in order to generate water level predictions up to 10 days and to estimate its predictive

  14. Influence of seasonal variations in sea level on the salinity regime of a coastal groundwater-fed wetland.

    Science.gov (United States)

    Wood, Cameron; Harrington, Glenn A

    2015-01-01

    Seasonal variations in sea level are often neglected in studies of coastal aquifers; however, they may have important controls on processes such as submarine groundwater discharge, sea water intrusion, and groundwater discharge to coastal springs and wetlands. We investigated seasonal variations in salinity in a groundwater-fed coastal wetland (the RAMSAR listed Piccaninnie Ponds in South Australia) and found that salinity peaked during winter, coincident with seasonal sea level peaks. Closer examination of salinity variations revealed a relationship between changes in sea level and changes in salinity, indicating that sea level-driven movement of the fresh water-sea water interface influences the salinity of discharging groundwater in the wetland. Moreover, the seasonal control of sea level on wetland salinity seems to override the influence of seasonal recharge. A two-dimensional variable density model helped validate this conceptual model of coastal groundwater discharge by showing that fluctuations in groundwater salinity in a coastal aquifer can be driven by a seasonal coastal boundary condition in spite of seasonal recharge/discharge dynamics. Because seasonal variations in sea level and coastal wetlands are ubiquitous throughout the world, these findings have important implications for monitoring and management of coastal groundwater-dependent ecosystems. © 2014, National Ground Water Association.

  15. Global and regional aspects for genesis of catastrophic floods - the problems of forecasting and estimates for mass and water balance (surface and groundwater contribution)

    Science.gov (United States)

    Trifonova, Tatiana; Arakelian, Sergei; Trifonov, Dmitriy; Abrakhin, Sergei

    2017-04-01

    these above events, for the 2013 Colorado flood (USA) ). 5. Thus, we believe that now is the time to have the transition from «surface view» - i.e. observable results by eye-witness and consequences of the water events, to «fundamental approach» - i.e. measured physical parameters during the continuous monitoring and possible mechanisms of their variation. References 1. Trifonova T.A., Akimov V.A., Abrakhin S.I., Arakelian S.M., Prokoshev V.G. Basic principles of modeling and forecasting of extreme natural and man-made disasters. Monograph, Russian Emercom Publ., 2014, - 436 p., Moscow. 2. Trifonova T., Trifonov D., Arakelian S. The 2015 disastrous floods in Assam, India, and Louisiana, USA: water balance estimation. Hydrology 2016, 3(4), 41; doi:10.3390/hydrology3040041. 3. Madeline B. Cotkowitz, John W. Attig, Thomas McDermott. Groundwater flood a river terrace in southwest Wisconsin, USA. Hydrogeology Journal. 2014. DOI 10.1007/s10040-014-1129-x.

  16. A Multiple-Iterated Dual Control Model for Groundwater Exploitation and Water Level Based on the Optimal Allocation Model of Water Resources

    Directory of Open Access Journals (Sweden)

    Junqiu Liu

    2018-04-01

    Full Text Available In order to mitigate environmental and ecological impacts resulting from groundwater overexploitation, we developed a multiple-iterated dual control model consisting of four modules for groundwater exploitation and water level. First, a water resources allocation model integrating calculation module of groundwater allowable withdrawal was built to predict future groundwater recharge and discharge. Then, the results were input into groundwater numerical model to simulate water levels. Groundwater exploitation was continuously optimized using the critical groundwater level as the feedback, and a groundwater multiple-iterated technique was applied to the feedback process. The proposed model was successfully applied to a typical region in Shenyang in northeast China. Results showed the groundwater numerical model was verified in simulating water levels, with a mean absolute error of 0.44 m, an average relative error of 1.33%, and a root-mean-square error of 0.46 m. The groundwater exploitation reduced from 290.33 million m3 to 116.76 million m3 and the average water level recovered from 34.27 m to 34.72 m in planning year. Finally, we proposed the strategies for water resources management in which the water levels should be controlled within the critical groundwater level. The developed model provides a promising approach for water resources allocation and sustainable groundwater management, especially for those regions with overexploited groundwater.

  17. Assessment of groundwater level estimation uncertainty using sequential Gaussian simulation and Bayesian bootstrapping

    Science.gov (United States)

    Varouchakis, Emmanouil; Hristopulos, Dionissios

    2015-04-01

    Space-time geostatistical approaches can improve the reliability of dynamic groundwater level models in areas with limited spatial and temporal data. Space-time residual Kriging (STRK) is a reliable method for spatiotemporal interpolation that can incorporate auxiliary information. The method usually leads to an underestimation of the prediction uncertainty. The uncertainty of spatiotemporal models is usually estimated by determining the space-time Kriging variance or by means of cross validation analysis. For de-trended data the former is not usually applied when complex spatiotemporal trend functions are assigned. A Bayesian approach based on the bootstrap idea and sequential Gaussian simulation are employed to determine the uncertainty of the spatiotemporal model (trend and covariance) parameters. These stochastic modelling approaches produce multiple realizations, rank the prediction results on the basis of specified criteria and capture the range of the uncertainty. The correlation of the spatiotemporal residuals is modeled using a non-separable space-time variogram based on the Spartan covariance family (Hristopulos and Elogne 2007, Varouchakis and Hristopulos 2013). We apply these simulation methods to investigate the uncertainty of groundwater level variations. The available dataset consists of bi-annual (dry and wet hydrological period) groundwater level measurements in 15 monitoring locations for the time period 1981 to 2010. The space-time trend function is approximated using a physical law that governs the groundwater flow in the aquifer in the presence of pumping. The main objective of this research is to compare the performance of two simulation methods for prediction uncertainty estimation. In addition, we investigate the performance of the Spartan spatiotemporal covariance function for spatiotemporal geostatistical analysis. Hristopulos, D.T. and Elogne, S.N. 2007. Analytic properties and covariance functions for a new class of generalized Gibbs

  18. Assessment of groundwater management at Hanford

    International Nuclear Information System (INIS)

    Deju, R.A.

    1975-01-01

    A comprehensive review of the groundwater management and environmental monitoring programs at the Hanford reservation was initiated in 1973. A large number of recommendations made as a result of this review are summarized. The purpose of the Hanford Hydrology Program is to maintain a groundwater surveillance network to assess contamination of the natural water system. Potential groundwater contamination is primarily a function of waste management decisions. The review revealed that although the hydrology program would greatly benefit from additional improvements, it is adequate to predict levels of contaminants present in the groundwater system. Studies are presently underway to refine advanced mathematical models to use results of the hydrologic investigation in forecasting the response of the system to different long-term management decisions. No information was found which indicates that a hazard through the groundwater pathway presently exists as a result of waste operations at Hanford. (CH)

  19. Comparison of different methods to assess natural backgrond levels in groundwater bodies in southern Europe

    Science.gov (United States)

    Preziosi, Elisabetta; Parrone, Daniele; Ghergo, Stefano; Ducci, Daniela; Sellerino, Mariangela; Condesso de Melo, Maria Teresa; Oliveira, Juana; Ribeiro, Luis

    2014-05-01

    The assessment of the natural background levels (NBLs) of a substance or element is important to distinguish anthropogenic pollution from contamination of natural origin in groundwater bodies. NBLs are the result of different atmospheric, geological, chemical and biological interaction processes during groundwater infiltration and circulation. Rainfall composition, water-rock interactions in both vadose and saturated zone, exchanges with other water bodies and residence time also contribute to determine the groundwater natural composition. Nowadays there are different methods to assess NBLs but the main concern is that they may provide different results. In the European legislative context, the Groundwater Directive (2006/118/EC) requests to EU Member States to derive appropriate threshold values (TV) for several potentially harmful substances, taking into account NBLs when necessary, in order to assess the chemical status of groundwater bodies. In the framework of a common project between Italy (CNR) and Portugal (FCT), several groundwater bodies were taken into account in different regions of Italy (Latium and Campania) and Portugal. The general objective is the definition of a sound comprehensive methodology for NBL assessment at groundwater body scale, suitable to different hydrogeological settings through comparing diverse case studies and different approaches. The Italian case studies are located in volcanic or volcano-sedimentary geological contexts, where high concentrations of substances such as As, F, Fe, Mn among others in groundwater are well known. The Portuguese case studies are located in carbonate and porous media aquifers. Several data sets were explored with the use of statistical as well as mathematical procedures in order to determine a threshold between natural and anthropogenic concentration. Today essentially two groups of methods are proposed, the first ascribed to the probability plots (PP method), the second based on the selection of the

  20. Uncertainty of simulated groundwater levels arising from stochastic transient climate change scenarios

    Science.gov (United States)

    Goderniaux, Pascal; Brouyère, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley; Dassargues, Alain

    2010-05-01

    applied not only to the mean of climatic variables, but also across the statistical distributions of these variables. This is important as these distributions are expected to change in the future, with more extreme rainfall events, separated by longer dry periods. (2) The novel approach used in this study can simulate transient climate change from 2010 to 2085, rather than time series representative of a stationary climate for the period 2071-2100. (3) The weather generator is used to generate a large number of equiprobable climate change scenarios for each RCM, representative of the natural variability of the weather. All of these scenarios are applied as input to the Geer basin model to assess the projected impact of climate change on groundwater levels, the uncertainty arising for different RCM projections and the uncertainty linked to natural climatic variability. Using the output results from all scenarios, 95% confidence intervals are calculated for each year and month between 2010 and 2085. The climate change scenarios for the Geer basin model predict hotter and drier summers and warmer and wetter winters. Considering the results of this study, it is very likely that groundwater levels and surface flow rates in the Geer basin will decrease by the end of the century. This is of concern because it also means that groundwater quantities available for abstraction will also decrease. However, this study also shows that the uncertainty of these projections is relatively large compared to the projected changes so that it remains difficult to confidently determine the magnitude of the decrease. The use and combination of an integrated surface - subsurface model and stochastic climate change scenarios has never been used in previous climate change impact studies on groundwater resources. It constitutes an innovation and is an important tool for helping water managers to take decisions.

  1. A multi-tiered time-series modelling approach to forecasting respiratory syncytial virus incidence at the local level.

    Science.gov (United States)

    Spaeder, M C; Fackler, J C

    2012-04-01

    Respiratory syncytial virus (RSV) is the most common cause of documented viral respiratory infections, and the leading cause of hospitalization, in young children. We performed a retrospective time-series analysis of all patients aged Forecasting models of weekly RSV incidence for the local community, inpatient paediatric hospital and paediatric intensive-care unit (PICU) were created. Ninety-five percent confidence intervals calculated around our models' 2-week forecasts were accurate to ±9·3, ±7·5 and ±1·5 cases/week for the local community, inpatient hospital and PICU, respectively. Our results suggest that time-series models may be useful tools in forecasting the burden of RSV infection at the local and institutional levels, helping communities and institutions to optimize distribution of resources based on the changing burden and severity of illness in their respective communities.

  2. Neuron- specific enolase level in patients with metabolic syndrome and its value forecasting acute stroke

    Directory of Open Access Journals (Sweden)

    Oral Ospanov

    2018-03-01

    Full Text Available Background Patients with metabolic syndrome are at a greater risk of experiencing a cerebrovascular event. Several studies show that patients with metabolic syndrome have asymptomatic ischemic brain injury. In this case, there is a need for rapid determination of asymptomatic brain lesions and prediction of acute stroke. Aims The aim of the study was to determine the neuron-specific enolase (NSE serum level in patients with metabolic syndrome and the value of this level for forecasting acute stroke. Methods The study used the following information to determine metabolic syndrome: waist circumference, total cholesterol, triglycerides, high-density lipoprotein cholesterol, blood pressure, and blood glucose. Doppler sonography mapping of the brachiocephalic trunk was held to determine the percentage of the carotid artery stenosis. To determine asymptomatic ischemic brain injury, the NSE serum marker was measured. Statistical processing of the measurements was performed using the H test and the Mann–Whitney test. The possible link between MS and NSE were determined by logistic regression analysis. Mathematical modeling was performed using logistic regression. Results There are statistically significant differences in NSE concentrations in groups with metabolic syndrome and ischemic stroke patients. This assertion is confirmed by logistic regression analysis, which revealed the existence of a relationship between metabolic syndrome and increased concentration of NSE. Conclusion Patients with metabolic syndrome have an increased concentration of NSE. This indicates the presence of asymptomatic ischemic neuronal damage. A prognostic model for determining the probability that patients with metabolic syndrome will have an acute stroke was developed.

  3. Well-Construction, Water-Level, and Water-Quality Data for Ground-Water Monitoring Wells for the J4 Hydrogeologic Study, Arnold Air Force Base, Tennessee

    National Research Council Canada - National Science Library

    Haugh, Connor J

    1996-01-01

    ...) in Coffee County, Tennessee. The wells ranged from 28 to 289 feet deep and were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality...

  4. Observations and analysis of free groundwater levels and groundwater pressure in landslide slopes. Jisuberi shamen no jiyu chikasuii, chikasuiatsu no kansoku to kaiseki ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S; Nakano, T [Niigata Univ., Niigata (Japan). Faculty of Agriculture; Inaba, K [Niigata Univ., Niigata (Japan). Graduate School; Sato, O [Niigata Univ., Niigata (Japan)

    1991-12-25

    It is well known that the landslides in Tertiary systems abundantly found in Niigata Prefecture, etc., frequently occur especially in the snow melting season or the heavy rain season. For studying the occurrence of such landslides, exploration of the actual condition of groundwater and evaluation of the strength of earth are very important even when the landslide occurring mechanism can be presumed in a relatively simple way about the soil mechanics. Therefore, great importance is attached to the observation and investigation on the groundwater level and pressure at landslide sites and stability analyses have been actively performed. However, it is considered that several fundamental problems still exist in the method for estimating the groundwater level and pressure in landslide slopes from the observation method and data on groundwater levels and pressure (pore pressure). In this paper, these fundamental problems are examined on the basis of concrete observations made by the writers on landslide slopes at Matunoyamagoe and Higashimusikame landslide sites in Niigata Prefecture for the past several years. 6 ref., 6 figs., 2 tabs.

  5. Application of a modified conceptual rainfall-runoff model to simulation of groundwater level in an undefined watershed.

    Science.gov (United States)

    Hong, Nian; Hama, Takehide; Suenaga, Yuichi; Aqili, Sayed Waliullah; Huang, Xiaowu; Wei, Qiaoyan; Kawagoshi, Yasunori

    2016-01-15

    Groundwater level simulation models can help ensure the proper management and use of urban and rural water supply. In this paper, we propose a groundwater level tank model (GLTM) based on a conceptual rainfall-runoff model (tank model) to simulate fluctuations in groundwater level. The variables used in the simulations consist of daily rainfall and daily groundwater level, which were recorded between April 2011 and March 2015 at two representative observation wells in Kumamoto City, Japan. We determined the best-fit model parameters by root-mean-square error through use of the Shuffled Complex Evolution-University of Arizona algorithm on a simulated data set. Calibration and validation results were evaluated by their coefficients of determination, Nash-Sutcliffe efficiency coefficients, and root-mean-square error values. The GLTM provided accurate results in both the calibration and validation of fluctuations in groundwater level. The split sample test results indicate a good reliability. These results indicate that this model can provide a simple approach to the accurate simulation of groundwater levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis.

    Science.gov (United States)

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9-1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5-1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5-1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions.

  7. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis.

    Directory of Open Access Journals (Sweden)

    Jiangbao Xia

    Full Text Available Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL, soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC declined significantly, whereas the salt content (SC and absolute soil solution concentration (CS decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9-1.2 m and shallow water levels (0.6 m respectively, whereas the CS presented the greatest variation at the deep water level (1.5-1.8 m.The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5-1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions.

  8. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis

    Science.gov (United States)

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602

  9. The thermal consequences of river-level variations in an urban groundwater body highly affected by groundwater heat pumps.

    Science.gov (United States)

    García-Gil, Alejandro; Vázquez-Suñe, Enric; Schneider, Eduardo Garrido; Sánchez-Navarro, José Ángel; Mateo-Lázaro, Jesús

    2014-07-01

    The extensive implementation of ground source heat pumps in urban aquifers is an important issue related to groundwater quality and the future economic feasibility of existent geothermal installations. Although many cities are in the immediate vicinity of large rivers, little is known about the thermal river-groundwater interaction at a kilometric-scale. The aim of this work is to evaluate the thermal impact of river water recharges induced by flood events into an urban alluvial aquifer anthropogenically influenced by geothermal exploitations. The present thermal state of an urban aquifer at a regional scale, including 27 groundwater heat pump installations, has been evaluated. The thermal impacts of these installations in the aquifer together with the thermal impacts from "cold" winter floods have also been spatially and temporally evaluated to ensure better geothermal management of the aquifer. The results showed a variable direct thermal impact from 0 to 6 °C depending on the groundwater-surface water interaction along the river trajectory. The thermal plumes far away from the riverbed also present minor indirect thermal impacts due to hydraulic gradient variations. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Relations between vegetation and water level in groundwater dependent terrestrial ecosystems (GWDTEs)

    DEFF Research Database (Denmark)

    Munch Johansen, Ole; Andersen, Dagmar Kappel; Ejrnæs, Rasmus

    2018-01-01

    , management and conservation of fens are constrained by limited knowledge on the relations between vegetation and measurable hydrological conditions. This study investigates the relations between vegetation and water level dynamics in groundwater dependent wetlands in Denmark. A total of 35 wetland sites...... across Denmark were included in the study. The sites represent a continuum of wetlands with respect to vegetation and hydrological conditions. Water level was measured continuously using pressure transducers at each site. Metrics expressing different hydrological characteristics, such as mean water level...... and low and high water level periods, were calculated based on the water level time series. A complete plant species list was recorded in plots covering 78.5 m2 at each site. Community metrics such as total number of species and the number of bryophytes were generated from the species lists and Ellenberg...

  11. Declining groundwater level caused by irrigation to row crops in the Lower Mississippi River Basin, Current Situation and Trends

    Science.gov (United States)

    Feng, G.; Gao, F.; Ouyang, Y.

    2017-12-01

    The Mississippi River is North America's largest river and the second largest watershed in the world. It flows over 3,700 km through America's heartland to the Gulf of Mexico. Over 3 million hectares in the Lower Mississippi River Basin represent irrigated cropland and 90 percent of those lands currently rely on the groundwater supply. The primary crops grown in this region are soybean, corn, cotton, and rice. Increased water withdrawals for irrigating those crops and stagnant recharging jeopardize the long-term availability of the aquifer and place irrigation agriculture in the region on an unsustainable path. The objectives of this study were to: 1) analyze the current groundwater level in the Lower Mississippi River Basin based on the water table depth observed by Yazoo Mississippi Delta Joint Water Management District from 2000 and 2016; 2) determine trends of change in groundwater level under conventional and groundwater saving irrigation management practices (ET or soil moisture based full irrigation scheduling using all groundwater or different percentages of ground and surface water). The coupled SWAT and MODFLOW model was applied to investigate the trends. Observed results showed that the groundwater level has declined from 33 to 26 m at an annual decrease rate of 0.4 m in the past 17 years. Simulated results revealed that the groundwater storage was decreased by 26 cm/month due to irrigation in crop season. It is promising that the groundwater storage was increased by 23 cm/month, sometimes even 60 cm/month in crop off-growing season because of recharge from rainfall. Our results suggest that alternative ET or soil moisture based groundwater saving irrigation scheduling with conjunctive use of surface water is a sustainable practice for irrigated agriculture in in the Lower Mississippi River Basin.

  12. Mapping groundwater level and aquifer storage variations from InSAR measurements in the Madrid aquifer, Central Spain

    Science.gov (United States)

    Béjar-Pizarro, Marta; Ezquerro, Pablo; Herrera, Gerardo; Tomás, Roberto; Guardiola-Albert, Carolina; Ruiz Hernández, José M.; Fernández Merodo, José A.; Marchamalo, Miguel; Martínez, Rubén

    2017-04-01

    Groundwater resources are under stress in many regions of the world and the future water supply for many populations, particularly in the driest places on Earth, is threatened. Future climatic conditions and population growth are expected to intensify the problem. Understanding the factors that control groundwater storage variation is crucial to mitigate its adverse consequences. In this work, we apply satellite-based measurements of ground deformation over the Tertiary detritic aquifer of Madrid (TDAM), Central Spain, to infer the spatio-temporal evolution of water levels and estimate groundwater storage variations. Specifically, we use Persistent Scatterer Interferometry (PSI) data during the period 1992-2010 and piezometric time series on 19 well sites covering the period 1997-2010 to build groundwater level maps and quantify groundwater storage variations. Our results reveal that groundwater storage loss occurred in two different periods, 1992-1999 and 2005-2010 and was mainly concentrated in a region of ∼200 km2. The presence of more compressible materials in that region combined with a long continuous water extraction can explain this volumetric deficit. This study illustrates how the combination of PSI and piezometric data can be used to detect small aquifers affected by groundwater storage loss helping to improve their sustainable management.

  13. Simulation of Groundwater-Level and Salinity Changes in the Eastern Shore, Virginia

    Science.gov (United States)

    Sanford, Ward E.; Pope, Jason P.; Nelms, David L.

    2009-01-01

    Groundwater-level and salinity changes have been simulated with a groundwater model developed and calibrated for the Eastern Shore of Virginia. The Eastern Shore is the southern part of the Delmarva Peninsula that is occupied by Accomack and Northampton Counties in Virginia. Groundwater is the sole source of freshwater to the Eastern Shore, and demands for water have been increasing from domestic, industrial, agricultural, and public-supply sectors of the economy. Thus, it is important that the groundwater supply be protected from overextraction and seawater intrusion. The best way for water managers to use all of the information available is usually to compile this information into a numerical model that can simulate the response of the system to current and future stresses. A detailed description of the geology, hydrogeology, and historical groundwater extractions was compiled and entered into the numerical model. The hydrogeologic framework is composed of a surficial aquifer under unconfined conditions, a set of three aquifers and associated overlying confining units under confined conditions (the upper, middle, and lower Yorktown-Eastover Formation), and an underlying confining unit (the St. Marys Formation). An estimate of the location and depths of two major paleochannels was also included in the framework of the model. Total withdrawals from industrial, commercial, public-supply, and some agricultural wells were compiled from the period 1900 through 2003. Reported pumpage from these sources increased dramatically during the 1960s and 70s, up to currently about 4 million gallons per day. Domestic withdrawals were estimated on the basis of population census districts and were assigned spatially to the model on the assumption that domestic users are located close to roads. A numerical model was created using the U.S. Geological Survey (USGS) code SEAWAT to simulate both water levels and concentrations of chloride (representing salinity). The model was

  14. Accuracy Enhancement for Forecasting Water Levels of Reservoirs and River Streams Using a Multiple-Input-Pattern Fuzzification Approach

    Directory of Open Access Journals (Sweden)

    Nariman Valizadeh

    2014-01-01

    Full Text Available Water level forecasting is an essential topic in water management affecting reservoir operations and decision making. Recently, modern methods utilizing artificial intelligence, fuzzy logic, and combinations of these techniques have been used in hydrological applications because of their considerable ability to map an input-output pattern without requiring prior knowledge of the criteria influencing the forecasting procedure. The artificial neurofuzzy interface system (ANFIS is one of the most accurate models used in water resource management. Because the membership functions (MFs possess the characteristics of smoothness and mathematical components, each set of input data is able to yield the best result using a certain type of MF in the ANFIS models. The objective of this study is to define the different ANFIS model by applying different types of MFs for each type of input to forecast the water level in two case studies, the Klang Gates Dam and Rantau Panjang station on the Johor river in Malaysia, to compare the traditional ANFIS model with the new introduced one in two different situations, reservoir and stream, showing the new approach outweigh rather than the traditional one in both case studies. This objective is accomplished by evaluating the model fitness and performance in daily forecasting.

  15. Accuracy enhancement for forecasting water levels of reservoirs and river streams using a multiple-input-pattern fuzzification approach.

    Science.gov (United States)

    Valizadeh, Nariman; El-Shafie, Ahmed; Mirzaei, Majid; Galavi, Hadi; Mukhlisin, Muhammad; Jaafar, Othman

    2014-01-01

    Water level forecasting is an essential topic in water management affecting reservoir operations and decision making. Recently, modern methods utilizing artificial intelligence, fuzzy logic, and combinations of these techniques have been used in hydrological applications because of their considerable ability to map an input-output pattern without requiring prior knowledge of the criteria influencing the forecasting procedure. The artificial neurofuzzy interface system (ANFIS) is one of the most accurate models used in water resource management. Because the membership functions (MFs) possess the characteristics of smoothness and mathematical components, each set of input data is able to yield the best result using a certain type of MF in the ANFIS models. The objective of this study is to define the different ANFIS model by applying different types of MFs for each type of input to forecast the water level in two case studies, the Klang Gates Dam and Rantau Panjang station on the Johor river in Malaysia, to compare the traditional ANFIS model with the new introduced one in two different situations, reservoir and stream, showing the new approach outweigh rather than the traditional one in both case studies. This objective is accomplished by evaluating the model fitness and performance in daily forecasting.

  16. Effects of Heterogeneity and Uncertainties in Sources and Initial and Boundary Conditions on Spatiotemporal Variations of Groundwater Levels

    Science.gov (United States)

    Zhang, Y. K.; Liang, X.

    2014-12-01

    Effects of aquifer heterogeneity and uncertainties in source/sink, and initial and boundary conditions in a groundwater flow model on the spatiotemporal variations of groundwater level, h(x,t), were investigated. Analytical solutions for the variance and covariance of h(x, t) in an unconfined aquifer described by a linearized Boussinesq equation with a white noise source/sink and a random transmissivity field were derived. It was found that in a typical aquifer the error in h(x,t) in early time is mainly caused by the random initial condition and the error reduces as time goes to reach a constant error in later time. The duration during which the effect of the random initial condition is significant may last a few hundred days in most aquifers. The constant error in groundwater in later time is due to the combined effects of the uncertain source/sink and flux boundary: the closer to the flux boundary, the larger the error. The error caused by the uncertain head boundary is limited in a narrow zone near the boundary but it remains more or less constant over time. The effect of the heterogeneity is to increase the variation of groundwater level and the maximum effect occurs close to the constant head boundary because of the linear mean hydraulic gradient. The correlation of groundwater level decreases with temporal interval and spatial distance. In addition, the heterogeneity enhances the correlation of groundwater level, especially at larger time intervals and small spatial distances.

  17. Regional groundwater chemical characteristics of Aqishan pre-selected site for high level radioactive waste repository and its hydrogeological significance

    International Nuclear Information System (INIS)

    Guo Yonghai; Dong Jiannan; Liu Shufen; Zhou Zhichao

    2014-01-01

    Aqishan area located in Xinjiang Uygur Automonous Region is one of the main preselected site of disposal repository for high-level radioactive waste (HLW) in our country. Groundwater chemical feature is one of the most important consideration factors in the siting and site evaluation for high-level radioactive waste repository, From 2012 to 2013, the regional field hydrogeochemical investigation was carried out in study area and more than 30 groundwater samples were collected. According to the measurement data, the groundwater chemical features for different subareas are discussed in the paper. Furthermore, the location of discharge area of groundwater in Aqishan area was estimated according to the chemical features of different subareas. (authors)

  18. NAMMU results for the regional groundwater flow in the Piceance Basin - HYDROCOIN Level 2-Test case 4

    International Nuclear Information System (INIS)

    Miller, D.R.; Paige, R.W.

    1988-07-01

    The HYDROCOIN project is an international collaborative venture for comparing groundwater flow models and modelling strategies. Level 2 of this project concerns the validation of models in order to test their ability adequately to represent reality. This report describes calculations for the regional groundwater flow in the Piceance Basin of northwestern Colorado. This region constitutes one of the few areas where low permeability rocks, similar to those likely to be used for repository sites, have been investigated by hydrogeologists. (author)

  19. Groundwater monitoring in the Savannah River Plant Low Level Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.

    1983-12-31

    This document describes chemical mechanisms that may affect trace-level radionuclide migration through acidic sandy clay soils in a humid environment, and summarizes the extensive chemical and radiochemical analyses of the groundwater directly below the SRP Low-Level Waste (LLW) Burial Ground (643-G). Anomalies were identified in the chemistry of individual wells which appear to be related to small amounts of fission product activity that have reached the water table. The chemical properties which were statistically related to trace level transport of Cs-137 and Sr-90 were iron, potassium, sodium and calcium. Concentrations on the order of 100 ppM appear sufficient to affect nuclide migration. Several complexation mechanisms for plutonium migration were investigated.

  20. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    Science.gov (United States)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  1. Natural radioactivity levels in granitic plutons and groundwaters in Southeast part of Eskisehir, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Oerguen, Y. [Faculty of Mines, Istanbul Technical University (ITU), Ayazaga Kampusu, 34469 Istanbul (Turkey)]. E-mail: orgun@itu.edu.tr; Altinsoy, N. [Institute of Energy, Istanbul Technical University (ITU), Ayazaga Kampusu, 34469 Istanbul (Turkey); Gueltekin, A.H. [Faculty of Mines, Istanbul Technical University (ITU), Ayazaga Kampusu, 34469 Istanbul (Turkey); Karahan, G. [Cekmece Nuclear Research and Training Center, P.O. Box 1, Atatuerk Airport, 34149 Istanbul (Turkey); Celebi, N. [Cekmece Nuclear Research and Training Center, P.O. Box 1, Atatuerk Airport, 34149 Istanbul (Turkey)

    2005-08-01

    The present work investigated the radioactivity level of the granitoid plutons and its effect on the groundwaters in the southeast part of Eskisehir. Fourteen granitic samples from the Kaymaz and Sivrihisar plutons and 11 groundwater samples from the near vicinity of the pluton were analyzed. The activity concentrations measured for {sup 238}U and {sup 232}Th ranged from 43.59{+-}2 to 651.80{+-}24 Bq/kg, and 51.16{+-}3 to 351.94{+-}13 Bq/kg, respectively. The activity concentrations obtained for {sup 40}K varied from 418.50{+-}17 to 1618.03{+-}66 Bq/kg. The absorbed dose rates in air outdoors ranged from 87.14 to 531.81 nGy/h. All the results obtained from the Kaymaz pluton are higher than those from the Sivrihisar. The U (ave. 16.6 ppm) and Th (ave. 49.9 ppm) values of the Kaymaz pluton are higher than the average concentrations of the magmatic rocks of granitic composition. These results are consistent with high dose rates of the pluton. The gross-{alpha} activities in the groundwater samples ranged from 0.009 to 1.64 Bq/l and the gross-{beta} activities from 0.006 to 0.89 Bq/l. The highest gross-{alpha} value was found in the sample taken from near the Kaymaz pluton. The concentrations of {sup 222}Rn varied from 0.060 to 0.557 Bq/l.

  2. Peak load demand forecasting using two-level discrete wavelet decomposition and neural network algorithm

    Science.gov (United States)

    Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak

    2010-02-01

    This paper proposed the discrete transform and neural network algorithms to obtain the monthly peak load demand in mid term load forecasting. The mother wavelet daubechies2 (db2) is employed to decomposed, high pass filter and low pass filter signals from the original signal before using feed forward back propagation neural network to determine the forecasting results. The historical data records in 1997-2007 of Electricity Generating Authority of Thailand (EGAT) is used as reference. In this study, historical information of peak load demand(MW), mean temperature(Tmean), consumer price index (CPI), and industrial index (economic:IDI) are used as feature inputs of the network. The experimental results show that the Mean Absolute Percentage Error (MAPE) is approximately 4.32%. This forecasting results can be used for fuel planning and unit commitment of the power system in the future.

  3. Microbial Community-Level Physiological Profiles (CLPP) and herbicide mineralization potential in groundwater affected by agricultural land use

    DEFF Research Database (Denmark)

    Janniche, Gry Sander; Spliid, Henrik; Albrechtsen, Hans-Jørgen

    2012-01-01

    Diffuse groundwater pollution from agricultural land use may impact the microbial groundwater community, which was investigated as Community-Level Physiological Profiles (CLPP) using EcoPlate™. Water was sampled from seven piezometers and a spring in a small agricultural catchment with diffuse......-galacturonic acid, tween 40, and 4-hydroxy benzoic acid as substrates, whereas none preferred 2-hydroxy benzoic acid, α-d-lactose, d,l-α-glycerol phosphate, α-ketobutyric acid, l-threonine and glycyl-l-glutamic acid. Principal Component Analysis of the CLPP's clustered the most agriculturally affected groundwater...... samples, indicating that the agricultural land use affects the groundwater microbial communities. Furthermore, the ability to mineralize atrazine and isoproturon, which have been used in the catchment, was also associated with this cluster....

  4. A natural analogy of high-level radioactive waste disposal. A case study of the groundwater from a uranium deposit

    International Nuclear Information System (INIS)

    Li Xinchun; Zhang Zhanshi; Ouyang Hegen

    2009-01-01

    Radionuclide migration is one of the key effects of high-level radioactive waste disposal. The groundwater is considered the primary means of radionuclide migration. Uranium and rare earth element(REE) in groundwater from a uranium deposit were used as a chemical analogue to study the migration of radionuclides. The results show that REE and its chemical analogue might migrate under the uranium deposit condition, but uranium and its analogue do not migrate obviously. According to the results, we might infer that after the groundwater penetrates into the HLW repository, REE and its analogue might migrate with the groundwater; but there is no obvious migration of uranium and its chemical analogue,which might increase our confidence to built a safe HLW repository. (authors)

  5. Optimisation of groundwater level monitoring networks using geostatistical modelling based on the Spartan family variogram and a genetic algorithm method

    Science.gov (United States)

    Parasyris, Antonios E.; Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2016-04-01

    Groundwater level monitoring networks provide essential information for water resources management, especially in areas with significant groundwater exploitation for agricultural and domestic use. Given the high maintenance costs of these networks, development of tools, which can be used by regulators for efficient network design is essential. In this work, a monitoring network optimisation tool is presented. The network optimisation tool couples geostatistical modelling based on the Spartan family variogram with a genetic algorithm method and is applied to Mires basin in Crete, Greece, an area of high socioeconomic and agricultural interest, which suffers from groundwater overexploitation leading to a dramatic decrease of groundwater levels. The purpose of the optimisation tool is to determine which wells to exclude from the monitoring network because they add little or no beneficial information to groundwater level mapping of the area. Unlike previous relevant investigations, the network optimisation tool presented here uses Ordinary Kriging with the recently-established non-differentiable Spartan variogram for groundwater level mapping, which, based on a previous geostatistical study in the area leads to optimal groundwater level mapping. Seventy boreholes operate in the area for groundwater abstraction and water level monitoring. The Spartan variogram gives overall the most accurate groundwater level estimates followed closely by the power-law model. The geostatistical model is coupled to an integer genetic algorithm method programmed in MATLAB 2015a. The algorithm is used to find the set of wells whose removal leads to the minimum error between the original water level mapping using all the available wells in the network and the groundwater level mapping using the reduced well network (error is defined as the 2-norm of the difference between the original mapping matrix with 70 wells and the mapping matrix of the reduced well network). The solution to the

  6. Management of water resources to control groundwater levels in the southern area of the western Nile delta, Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed M. Sobeih

    2017-10-01

    Full Text Available The present study was initiated with the objective of simulating and predicting the effect of future development on the groundwater flow and levels. This supports applications for future planning and wise management of water resources. The study area extends south of El Nubariya canal including Sadat City area and its vicinities in the western Nile delta region. A numerical groundwater flow model (MODFLOW has been employed to simulate flow and get the budget of groundwater in the study area. The model showed that about 28,101,041 m3/day of surface water is infiltrated to groundwater dominantly from canals and excess irrigation water. About the same quantity (28,101,052 m3/day, is discharged from groundwater through production wells, open drains and through some reaches of canals. Three development scenarios were simulated to give predictions of the impact of future increasing recharge, construction of new canal and new open drains, and also increased pumping on the groundwater levels in the study area.

  7. Nested-scale discharge and groundwater level monitoring to improve predictions of flow route discharges and nitrate loads

    Science.gov (United States)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.; van Geer, F. C.; Torfs, P. J. J. F.; de Louw, P. G. B.

    2010-10-01

    Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for predictions of catchment-scale discharge and nitrate loads. In order to relate field-site measurements to the catchment-scale an upscaling approach is introduced that assumes that scale differences in flow route fluxes originate from differences in the relationship between groundwater storage and the spatial structure of the groundwater table. This relationship is characterized by the Groundwater Depth Distribution (GDD) curve that relates spatial variation in groundwater depths to the average groundwater depth. The GDD-curve was measured for a single field site (0.009 km2) and simple process descriptions were applied to relate the groundwater levels to flow route discharges. This parsimonious model could accurately describe observed storage, tube drain discharge, overland flow and groundwater flow simultaneously with Nash-Sutcliff coefficients exceeding 0.8. A probabilistic Monte Carlo approach was applied to upscale field-site measurements to catchment scales by inferring scale-specific GDD-curves from hydrographs of two nested catchments (0.4 and 6.5 km2). The estimated contribution of tube drain effluent (a dominant source for nitrates) decreased with increasing scale from 76-79% at the field-site to 34-61% and 25-50% for both catchment scales. These results were validated by demonstrating that a model conditioned on nested-scale measurements simulates better nitrate loads and better predictions of extreme discharges during validation periods compared to a model that was conditioned on catchment discharge only.

  8. Groundwater levels and water quality during a 96-hour aquifer test in Pickaway County, Ohio, 2012

    Science.gov (United States)

    Haefner, Ralph J.; Runkle, Donna L.; Mailot, Brian E.

    2014-01-01

    During October–November 2012, a 96-hour aquifer test was performed at a proposed well field in northern Pickaway County, Ohio, to investigate groundwater with elevated nitrate concentrations. Earlier sampling done by the City of Columbus revealed that some wells had concentrations of nitrate that approached 10 milligrams per liter (mg/L), whereas other wells and the nearby Scioto River had concentrations from 2 to 6 mg/L. The purpose of the current test was to examine potential changes in water quality that may be expected if the site was developed into a public water-supply source; therefore, water-transmitting properties determined during a previous test were not determined a second time. Before and during the test, water-level data and water-quality samples were obtained from observation wells while a test production well was pumped at 1,300 gallons per minute. Before the test, local groundwater levels indicated that groundwater was being discharged to the nearby Scioto River, but during the test, the stream was losing streamflow owing to infiltration. Water levels declined in the pumping well, in adjacent observation wells, and in a nearby streambed piezometer as pumping commenced. The maximum drawdown in the pumping well was 29.75 feet, measured about 95 hours after pumping began. Water-quality data, including analyses for field parameters, major and trace elements, nutrients, and stable isotopes of oxygen and nitrogen in nitrate, demonstrated only small variations before and during the test. Concentrations of nitrate in five samples from the pumping well ranged from about 5.10 to 5.42 mg/L before and during the test, whereas concentrations of nitrate in five samples on or about the same sampling dates and times at a monitoring site on the Scioto River adjacent to the pumping well ranged from 3.46 to 4.97 mg/L. Water from two nearby observation wells had nitrate concentrations approaching 10 mg/L, which is the U.S. Environmental Protection Agency’s Maximum

  9. Comparative Influences of Precipitation and River Stage on Groundwater Levels in Near-River Areas

    Directory of Open Access Journals (Sweden)

    Incheol Kim

    2015-12-01

    Full Text Available The sustainable performance of foundations of various urban buildings and infrastructures is strongly affected by groundwater level (GWL, as GWL causes changes in the stress state within soil. In the present study, the components affecting GWL were investigated, focusing on the effects of precipitation and river stage. These components were analyzed using a six-year database established for hydrological and groundwater monitoring data. Five study regions for which daily measured precipitation, river stage, and GWL data were available were compared. Different periods of precipitation, geographical characteristics, and local surface conditions were considered in the analysis. The results indicated that key influence components on GWL are different depending on the hydrological, geological, and geographical characteristics of the target regions. River stage had the strongest influence on GWL in urban areas near large rivers with a high ratio of paved surface. In rural areas, where the paved surface area ratio and soil permeability were low, the moving average showed a closer correlation to GWL than river stage. A moving average-based method to predict GWL variation with time was proposed for regions with a low ratio of paved surface area and low permeability soils.

  10. A client-server software for the identification of groundwater vulnerability to pesticides at regional level.

    Science.gov (United States)

    Di Guardo, Andrea; Finizio, Antonio

    2015-10-15

    The groundwater VULnerability to PESticide software system (VULPES) is a user-friendly, GIS-based and client-server software developed to identify vulnerable areas to pesticides at regional level making use of pesticide fate models. It is a Decision Support System aimed to assist the public policy makers to investigate areas sensitive to specific substances and to propose limitations of use or mitigation measures. VULPES identify the so-called Uniform Geographical Unit (UGU) which are areas characterised by the same agro-environmental conditions. In each UGU it applies the PELMO model obtaining the 80th percentile of the substance concentration at 1 metre depth; then VULPES creates a vulnerability map in shapefile format which classifies the outputs comparing them with the lower threshold set to the legal limit concentration in groundwater (0.1 μg/l). This paper describes the software structure in details and a case study with the application of the terbuthylazine herbicide on the Lombardy region territory. Three zones with different degrees of vulnerabilities has been identified and described. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Screening-level risk assessment for styrene-acrylonitrile (SAN) trimer detected in soil and groundwater.

    Science.gov (United States)

    Kirman, C R; Gargas, M L; Collins, J J; Rowlands, J C

    2012-01-01

    A screening-level risk assessment was conducted for styrene-acrylonitrile (SAN) Trimer detected at the Reich Farm Superfund site in Toms River, NJ. Consistent with a screening-level approach, on-site and off-site exposure scenarios were evaluated using assumptions that are expected to overestimate actual exposures and hazards at the site. Environmental sampling data collected for soil and groundwater were used to estimate exposure point concentrations. Several exposure scenarios were evaluated to assess potential on-site and off-site exposures, using parameter values for exposures to soil (oral, inhalation of particulates, and dermal contact) and groundwater (oral, dermal contact) to reflect central tendency exposure (CTE) and reasonable maximum exposure (RME) conditions. Three reference dose (RfD) values were derived for SAN Trimer for short-term, subchronic, and chronic exposures, based upon its effects on the liver in exposed rats. Benchmark (BMD) methods were used to assess the relationship between exposure and response, and to characterize appropriate points of departure (POD) for each RfD. An uncertainty factor of 300 was applied to each POD to yield RfD values of 0.1, 0.04, and 0.03 mg/kg-d for short-term, subchronic, and chronic exposures, respectively. Because a chronic cancer bioassay for SAN Trimer in rats (NTP 2011a) does not provide evidence of carcinogenicity, a cancer risk assessment is not appropriate for this chemical. Potential health hazards to human health were assessed using a hazard index (HI) approach, which considers the ratio of exposure dose (i.e., average daily dose, mg/kg-d) to toxicity dose (RfD, mg/kg-d) for each scenario. All CTE and RME HI values are well below 1 (where the average daily dose is equivalent to the RfD), indicating that there is no concern for potential noncancer effects in exposed populations even under the conservative assumptions of this screening-level assessment.

  12. Determination of nitrogen reduction levels necessary to reach groundwater quality targets in Slovenia.

    Science.gov (United States)

    Andelov, Miso; Kunkel, Ralf; Uhan, Jože; Wendland, Frank

    2014-09-01

    Within a collaborative project between Slovenian Environment Agency (ARSO) and Research Center Jülich (FZJ), nitrogen reduction levels necessary to reach groundwater quality targets in Slovenia were assessed. For this purpose the hydrological model GROWA-DENUZ was coupled with agricultural N balances and applied consistently to the whole territory of Slovenia in a spatial resolution of 100×100m. GROWA was used to determine the water balance in Slovenia for the hydrologic period 1971-2000. Simultaneously, the displaceable N load in soil was assessed from agricultural Slovenian N surpluses for 2011 and the atmospheric N deposition. Subsequently, the DENUZ model was used to assess the nitrate degradation in soil and, in combination with the percolation water rates from the GROWA model, to determine nitrate concentration in the leachate. The areas showing predicted nitrate concentrations in the leachate above the EU groundwater quality standard of 50mg NO3(-)/L have been identified as priority areas for implementing nitrogen reduction measures. For these "hot spot" areas DENUZ was used in a backward mode to quantify the maximal permissible nitrogen surplus levels in agriculture to guarantee a nitrate concentration in percolation water below 50mg NO3(-)/L. Model results indicate that additional N reduction measures should be implemented in priority areas rather than area-covering. Research work will directly support the implementation of the European Union Water Framework Directive in Slovenia, e.g., by using the maximal permissible nitrogen surplus levels as a framework for the derivation of regionally adapted and hence effective nitrogen reduction measures. Copyright © 2014. Published by Elsevier B.V.

  13. Seismic effects on bedrock and underground constructions. A literature survey of damage on constructions; Changes in groundwater levels and flow; Changes in chemistry in groundwater and gases

    International Nuclear Information System (INIS)

    Roeshoff, Kennert.

    1989-06-01

    This report is a literature review of direct and indirect effects of earthquakes on underground constructions as tunnels, caverns and mines. The direct damage will cause vibrations, shaking and displacement, which may lead to partial or total destruction of the underground facility. Damage caused by shaking has been reported in several studies, and several hundreds of events have been reported both from mines and tunnels. These reports are mainly from active earthquake areas. There are very few reports of damage caused by displacements on an existing fault. The damage, which may be severe, is generally concentrated to the vicinity of the fault zone. The report also includes a review of the effects caused by earthquakes on groundwater level, flow, pressure, chemistry and constituents in the ground. Such changes are mainly reported from studies in wells near active faults. The interesting coupling of changes in groundwater characteristics around an underground construction is, unfortunately, very seldom reported. The groundwater level and pressure changes are discussed in Chapter 4. The bases for this part of the review is taken from the Alaska earthquake 1964. Other observations are reported from wells and reservoirs located near existing faults. Changes of the geochemistry in groundwater and soil gases are reviewed in Chapter 4. The mechanisms of seismochemical anomalies are discussed and examples of short and long term monitoring are given from USA, Soviet Union and China. Gases in ground water and soil is reported in Chapter 5. Radon is so far one of the most studied species and its variation in short, medium and long term with seismic activity is rather well understood. Other gases or isotopes that have been studied include helium, carbon dioxide, hydrogen, argon and methane, radium and uranium. The paper also includes same statements for repository design based on the result of the review. (81 refs.)

  14. Investigation of the Effect of Water Removal from Wells Surrounding Parishan Lake on Groundwater and Surface Water Levels

    International Nuclear Information System (INIS)

    Shafiei, M.; Raini Sarjaz, M.; Fazloli, R.; Gholami Sefidkouhi, M. A.

    2017-01-01

    In recent decades the human impacts on global warming and, its consequences, climate change, stirred up earth ecosystems balance and has created many problems all over the world. Unauthorized underground water removal, especially in arid and semi-arid regions of Iran, along with recent decade drought occurrences significantly lowered underground and surface water levels. To investigate the impacts of water removal from surrounding wells in Parishan Lake water level, during 1996 to 2009 interval, 8 buffer layers surrounding the lake were mapped in ArcGIS 9.3 environment. Each buffer layer wells and their total annual discharges were determined. Using SPSS 16 software, the regression equations between wells water levels and water discharges were computed. By employing Thiessen function and creating Thiessen network (TIN) around observation wells, decline of groundwater levels was evaluated. Finally regression equations between wells discharges and groundwater level declines were created. The findings showed that there are highly significant correlations (p ≤ 0.01), in all buffer layers, between water levels and wells discharges. Investigation of the observation wells surrounding lake showed that severe groundwater level declines has been started since the beginning of the first decade of the 21st century. Using satellite images in ArcGIS 9.3 environment it was confirmed that lake’s area has been reduced significantly. In conclusion, it is obvious that human interferences on lake’s natural ecosystem by digging unauthorized wells and removing underground water more than annual recharges significantly impacted surface and groundwater levels.

  15. Uncertainty characteristics of EPA's ground-water transport model for low-level waste performance assessment

    International Nuclear Information System (INIS)

    Yim, Man-Sung

    1995-01-01

    Performance assessment is an essential step either in design or in licensing processes to ensure the safety of any proposed radioactive waste disposal facilities. Since performance assessment requires the use of computer codes, understanding the characteristics of computer models used and the uncertainties of the estimated results is important. The PRESTO-EPA code, which was the basis of the Environmental Protection Agency's analysis for low-level-waste rulemaking, is widely used for various performance assessment activities in the country with no adequate information available for the uncertainty characteristics of the results. In this study, the groundwater transport model PRESTO-EPA was examined based on the analysis of 14 C transport along with the investigation of uncertainty characteristics

  16. Fluctuations in groundwater levels related to regional and local withdrawals in the fractured-bedrock groundwater system in northern Wake County, North Carolina, March 2008-February 2009

    Science.gov (United States)

    Chapman, Melinda J.; Almanaseer, Naser; McClenney, Bryce; Hinton, Natalie

    2011-01-01

    A study of dewatering of the fractured-bedrock aquifer in a localized area of east-central North Carolina was conducted from March 2008 through February 2009 to gain an understanding of why some privately owned wells and monitoring wells were intermittently dry. Although the study itself was localized in nature, the resulting water-resources data and information produced from the study will help enable resource managers to make sound water-supply and water-use decisions in similar crystalline-rock aquifer setting in parts of the Piedmont and Blue Ridge Physiographic Provinces. In June 2005, homeowners in a subdivision of approximately 11 homes on lots approximately 1 to 2 acres in size in an unincorporated area of Wake County, North Carolina, reported extremely low water pressure and temporarily dry wells during a brief period. This area of the State, which is in the Piedmont Physiographic Province, is undergoing rapid growth and development. Similar well conditions were reported again in July 2007. In an effort to evaluate aquifer conditions in the area of intermittent water loss, a study was begun in March 2008 to measure and monitor water levels and groundwater use. During the study period from March 2008 through February 2009, regular dewatering of the fractured-bedrock aquifer was documented with water levels in many wells ranging between 100 and 200 feet below land surface. Prior to this period, water levels from the 1980s through the late 1990s were reported to range from 15 to 50 feet below land surface. The study area includes three community wells and more than 30 private wells within a 2,000-foot radius of the dewatered private wells. Although groundwater levels were low, recovery was observed during periods of heavy rainfall, most likely a result of decreased withdrawals owing to less demand for irrigation purposes. Similar areal patterns of low groundwater levels were delineated during nine water-level measurement periods from March 2008 through

  17. Quantification of uranium levels in groundwater in the municipality of San Diego de la Union Mexico

    International Nuclear Information System (INIS)

    Hernandez M, H.; Rios L, M. J.; Gaytan H, D.; Romero G, E. T.

    2017-10-01

    The objective of this work was to quantify the levels of uranium (U) in groundwater from 22 wells in the municipality of San Diego de la Union Mexico. The sampled wells were classified as not regularized and regularized according to records of the National Water Commission and classified by zones A, B, C, D and E. Samples were collected in triplicate in 1 L bottles, then acidified with ultra pure HNO 3 at 2% v/v and conserved at 4 degrees Celsius until analysis by mass spectrometry with magnetic sector with inductively coupled plasma source (Icp-SFMS). The preparation method was the acid digestion in the open system and re-concentration of the sample. In addition, 1 μg L -1 of indium (In) was used as a tracer to know the performance of the method. Finally, the samples were diluted in 10 ml and introduced to the Icp-SFMS to measure in low resolution the U isotopes (U-234, U-235 and U-238). The average results obtained from total U were: A= 3.65 ± 1.89 μg L -1 , B= 6.37 ± 1.46 μg L -1 , C= 3.20 ± 2.27 μg L -1 , D= 3.87 ± 1.31 μg L -1 and E= 4.44 ± 1.17 μg L -1 . According to the official Mexican standard NOM-014-CONAGUA-2003, the U levels found in the groundwater of San Diego de la Union Mexico do not exceed the permissible limits of 30 μg/L. (Author)

  18. Groundwater-level and storage-volume changes in the Equus Beds aquifer near Wichita, Kansas, predevelopment through January 2015

    Science.gov (United States)

    Whisnant, Joshua A.; Hansen, Cristi V.; Eslick, Patrick J.

    2015-10-01

    Development of the Wichita well field began in the 1940s in the Equus Beds aquifer to provide the city of Wichita, Kansas, a new water-supply source. After development of the Wichita well field began, groundwater levels began to decline. Extensive development of irrigation wells that began in the 1970s also contributed to substantial groundwater-level declines. Groundwater-level declines likely enhance movement of brine from past oil and gas production near Burrton, Kansas, and natural saline water from the Arkansas River into the Wichita well field. Groundwater levels reached a historical minimum in 1993 because of drought conditions, irrigation, and the city of Wichita’s withdrawals from the aquifer. In 1993, the city of Wichita adopted the Integrated Local Water Supply Program to ensure that Wichita’s water needs would be met through the year 2050 and beyond as part of its efforts to manage the part of the Equus Beds aquifer Wichita uses. A key component of the Integrated Local Water Supply Program was the Equus Beds Aquifer Storage and Recovery project. The Aquifer Storage and Recovery project’s goal is to store and eventually recover groundwater and help protect the Equus Beds aquifer from oil-field brine water near Burrton, Kansas, and saline water from the Arkansas River. Since 1940, the U.S. Geological Survey has monitored groundwater levels and storage-volume changes in the Equus Beds aquifer to provide data to the city of Wichita in order to better manage its water supply.

  19. Stream seepage and groundwater levels, Wood River Valley, south-central Idaho, 2012-13

    Science.gov (United States)

    Bartolino, James R.

    2014-01-01

    Stream discharge and water levels in wells were measured at multiple sites in the Wood River Valley, south-central Idaho, in August 2012, October 2012, and March 2013, as a component of data collection for a groundwater-flow model of the Wood River Valley aquifer system. This model is a cooperative and collaborative effort between the U.S. Geological Survey and the Idaho Department of Water Resources. Stream-discharge measurements for determination of seepage were made during several days on three occasions: August 27–28, 2012, October 22–24, 2012, and March 27–28, 2013. Discharge measurements were made at 49 sites in August and October, and 51 sites in March, on the Big Wood River, Silver Creek, their tributaries, and nearby canals. The Big Wood River generally gains flow between the Big Wood River near Ketchum streamgage (13135500) and the Big Wood River at Hailey streamgage (13139510), and loses flow between the Hailey streamgage and the Big Wood River at Stanton Crossing near Bellevue streamgage (13140800). Shorter reaches within these segments may differ in the direction or magnitude of seepage or may be indeterminate because of measurement uncertainty. Additional reaches were measured on Silver Creek, the North Fork Big Wood River, Warm Springs Creek, Trail Creek, and the East Fork Big Wood River. Discharge measurements also were made on the Hiawatha, Cove, District 45, Glendale, and Bypass Canals, and smaller tributaries to the Big Wood River and Silver Creek. Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established by the U.S. Geological Survey in 2006. Maps of the October 2012 water-table altitude in the unconfined aquifer and the potentiometric-surface altitude of the confined aquifer have similar topology to those on maps of October 2006 conditions. Between October 2006 and October 2012, water-table altitude in the unconfined aquifer rose by

  20. Ground Level Ozone Peak Forecast using Neural Networks and Kalman Filter

    Czech Academy of Sciences Publication Activity Database

    Pelikán, Emil; Eben, Kryštof; Vondráček, Jiří; Krejčíř, Pavel; Keder, J.

    2000-01-01

    Roč. 3, č. 2 (2000), s. 3-8 ISSN 1335-339X Grant - others:APPETISE(XE) IST-99-11764; MŽP ČR(CZ) ZZ520/2/97; MŠMT ČR(CZ) VS96008 Institutional research plan: AV0Z1030915 Keywords : ozone forecast * neural classifications * Kalman filter * genetic algorithms * Kohonen maps * Czech Republic Subject RIV: BB - Applied Statistics, Operational Research

  1. Determination of polycyclic aromatic hydrocarbon levels of groundwater in Ife north local government area of Osun state, Nigeria

    Directory of Open Access Journals (Sweden)

    Abolanle Saheed Adekunle

    Full Text Available This study determined the presence and levels of Polycyclic Aromatic Hydrocarbons (PAHs of groundwater in Moro, Edun-Abon, Yakoyo and Ipetumodu communities in Ife-North Local Government Area of Osun State. This was with a view to create public awareness about the safety of groundwater as a source for domestic purposes (e.g., drinking, cooking etc. in non-industrial area. Water samples were collected on seasonal basis, comprising of three months (August–October in the wet season and three months (December–February in the dry season. The PAHs in the water samples were extracted with n-hexane using liquid–liquid extraction method, while their qualitative identifications and quantitative estimations were carried out with the use of gas chromatography. Levels of PAHs detected showed predominance of light PAHs (less than four fused rings for both wet and the dry seasons. Higher concentrations of PAHs were recorded during the wet season than the dry season. The study concluded that the groundwater in the communities was contaminated with light PAHs and the total PAHs in this area exceeded the maximum permissible limit of 10 μg L−1 recommended by World Health Organization (WHO for safety of groundwater. Keywords: Polycyclic aromatic hydrocarbons, Groundwater, Water quality, Seasonal variation, Health impact

  2. Incorporation of groundwater losses and well level data in rainfall-runoff models illustrated using the PDM

    Directory of Open Access Journals (Sweden)

    R. J. Moore

    2002-01-01

    Full Text Available Intermittent streamflow is a common occurrence in permeable catchments, especially where there are pumped abstractions to water supply. Many rainfall-runoff models are not formulated so as to represent ephemeral streamflow behaviour or to allow for the possibility of negative recharge arising from groundwater pumping. A groundwater model component is formulated here for use in extending existing rainfall-runoff models to accommodate such ephemeral behaviour. Solutions to the Horton-Izzard equation resulting from the conceptual model of groundwater storage are adapted and the form of nonlinear storage extended to accommodate negative inputs, water storage below which outflow ceases, and losses to external springs and underflows below the gauged catchment outlet. The groundwater model component is demonstrated through using it as an extension of the PDM rainfall-runoff model. It is applied to the River Lavant, a catchment in Southern England on the English Chalk, where it successfully simulates the ephemeral streamflow behaviour and flood response together with well level variations. Keywords: groundwater, rainfall-runoff model, ephemeral stream, well level, spring, abstraction

  3. A simplified model for assessing the impact to groundwater of swine farms at regional level

    Science.gov (United States)

    Massabo, Marco; Viterbo, Angelo

    2013-04-01

    Swine manure can be an excellent source of nutrients for crop production. Several swine farms are present in the territory of Regione Umbria and more than 200.000 of swine heads are present yearly in the whole territory while some municipalities host more than 30.000 heads over a relatively limited land. Municipality with elevated number of swine heads has registered particularly higher Nitrate concentration in groundwater that requires a management plan and intervention in order to determine the maximum allowed N loads in the specific region. Use of manure and fertilizers in agricultural field produce diffuse nitrogen (N) losses that are a major cause of excessive nitrate concentrations in ground and surface waters and have been of concern since decades. Excessive nitrate concentrations in groundwater can have toxic effects when used as drinking water and cause eutrophication in surface waters. For management and environmental planning purposes, it is necessary to assess the magnitude of diffuse N losses from agricultural fields and how they are influenced by factors such as management practices, type of fertilizers -organic or inorganic - climate and soil etc. There are several methods for assessing N leaching, they span from methods based on field test to complex models that require many input data. We use a simple index method that accounts for the type of fertilizer used - inorganic, swine or cattle manure- and hydrological and hydrogeological conditions. Hydrological conditions such as infiltration rates are estimated by a fully distributed hydrological model. Data on inorganic and organic fertilization are estimated at municipal level by using the nutrient crops needs and the statistics of swine and cattle heads within the municipality. The index method has been calibrated by using groundwater concentration as a proxy of N losses from agriculture. A time series of three years of data has been analyzed. The application of the simple index method allowed to

  4. Research on the contamination levels of norovirus in food facilities using groundwater in South Korea, 2015-2016.

    Science.gov (United States)

    Lee, Jeong Su; Joo, In Sun; Ju, Si Yeon; Jeong, Min Hee; Song, Yun-Hee; Kwak, Hyo Sun

    2018-09-02

    Norovirus (NoV) is a major pathogenic virus that is responsible for foodborne and waterborne gastroenteritis outbreaks. Groundwater is an important source of drinking water and is used in agriculture and food manufacturing processes. This study investigated norovirus contamination of groundwater treatment systems at 1360 sites in seven metropolitan areas and nine provinces in 2015-2016. Temperature, pH, residual chlorine, and turbidity content were assessed to analyze the water quality. In 2015, six sites were positive for the presence of NoV (0.88%) and in 2016, two sites were positive (0.29%); in total, NoV was detected in 8 of the 1360 sample sites (0.59%) investigated. Identified genotypes of NoV in groundwater included GI.5, 9 and GII.4, 6, 13, 17, and 21. GII.17 was the most prevalent genotype in treated groundwater used in the food industry. This dominance of GII.17 was corroborated by NoV infection outbreak cases and the results of a survey of coastal waters in South Korea in 2014-2015. Although a low detection rate was observed in this study, NoV is a pathogen that can spread extensively. Therefore, it is necessary to periodically monitor levels of norovirus which is responsible for food poisoning in groundwater. This is a first report to reveal epidemic genotype shift of norovirus in groundwater treatment system of food facilities in South Korea. Our results may contribute to the enhancement of public health and sanitary conditions by providing molecular epidemiological information on groundwater NoV. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Isotope method for the recognition of groundwater formation in China's preselected high level radioactive waste disposal repository site

    International Nuclear Information System (INIS)

    Guo Yonghai; Wang Ju; Liu Shufen; Su Rui; Lu Chuanhe

    2005-01-01

    Yemaquan region in Beishan area. Gansu province, is one of the preselected sites of disposal repository for high level radioactive waste (HLW) in our country. Hydrogeological condition is an important aspect for site evaluation and the groundwater formation is a key factor to reflect the hydrogeological conditions for a certain area. Isotopic method is the one of the important means to determine the groundwater formation. Through the sampling and analysis of shallow groundwater isotopes of Yemaquan region, combined with geological, hydrogeological and hydrogeochemical characteristics, the issue of groundwater formation in the study region was discussed. The main cognition is that the groundwater in the region was formed from the infiltration of modern rainfall and the strong evaporation was happened for the shallow groundwater, which indicates the circulation conditions were relatively good for the shallow groundwater. This cognition provides very important hydrogeological information and basis for the evaluation of Yemaquan preselected site. (authors)

  6. Nonradiological groundwater quality at low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Goode, D.J.

    1986-04-01

    The NRC is investigating appropriate regulatory options for disposal of low-level radioactive waste containing nonradiological hazardous constituents, as defined by EPA regulations. Standard EPA/RCRA procedures to determine hazardous organics, metals, indicator parameters, and general water quality are applied to samples from groundwater monitoring wells at two commercial low-level radioactive waste disposal sites. At the Sheffield, IL site (nonoperating), several typical organic solvents are identified in elevated concentrations in onsite wells and in an offsite area exhibiting elevated tritium concentrations. At the Barnwell, SC site (operating), only very low concentrations of three organics are found in wells adjacent to disposal units. Hydrocarbons associated with petroleum products are detected at both sites. Hazardous constituents associated with previosuly identified major LLW mixed waste streams, toluene, xylene, chromium, and lead, are at or below detection limits or at background levels in all samples. Review of previously collected data also supports the conclusion that organic solvents are the primary nonradiological contaminants associated with LLW disposal

  7. A Study of the Groundwater Level Spatial Variability in the Messara Valley of Crete

    Science.gov (United States)

    Varouchakis, E. A.; Hristopulos, D. T.; Karatzas, G. P.

    2009-04-01

    The island of Crete (Greece) has a dry sub-humid climate and marginal groundwater resources, which are extensively used for agricultural activities and human consumption. The Messara valley is located in the south of the Heraklion prefecture, it covers an area of 398 km2, and it is the largest and most productive valley of the island. Over-exploitation during the past thirty (30) years has led to a dramatic decrease of thirty five (35) meters in the groundwater level. Possible future climatic changes in the Mediterranean region, potential desertification, population increase, and extensive agricultural activity generate concern over the sustainability of the water resources of the area. The accurate estimation of the water table depth is important for an integrated groundwater resource management plan. This study focuses on the Mires basin of the Messara valley for reasons of hydro-geological data availability and geological homogeneity. The research goal is to model and map the spatial variability of the basin's groundwater level accurately. The data used in this study consist of seventy (70) piezometric head measurements for the hydrological year 2001-2002. These are unevenly distributed and mostly concentrated along a temporary river that crosses the basin. The range of piezometric heads varies from an extreme low value of 9.4 meters above sea level (masl) to 62 masl, for the wet period of the year (October to April). An initial goal of the study is to develop spatial models for the accurate generation of static maps of groundwater level. At a second stage, these maps should extend the models to dynamic (space-time) situations for the prediction of future water levels. Preliminary data analysis shows that the piezometric head variations are not normally distributed. Several methods including Box-Cox transformation and a modified version of it, transgaussian Kriging, and Gaussian anamorphosis have been used to obtain a spatial model for the piezometric head. A

  8. Predicting arsenic concentrations in groundwater of San Luis Valley, Colorado: implications for individual-level lifetime exposure assessment.

    Science.gov (United States)

    James, Katherine A; Meliker, Jaymie R; Buttenfield, Barbara E; Byers, Tim; Zerbe, Gary O; Hokanson, John E; Marshall, Julie A

    2014-08-01

    Consumption of inorganic arsenic in drinking water at high levels has been associated with chronic diseases. Risk is less clear at lower levels of arsenic, in part due to difficulties in estimating exposure. Herein we characterize spatial and temporal variability of arsenic concentrations and develop models for predicting aquifer arsenic concentrations in the San Luis Valley, Colorado, an area of moderately elevated arsenic in groundwater. This study included historical water samples with total arsenic concentrations from 595 unique well locations. A longitudinal analysis established temporal stability in arsenic levels in individual wells. The mean arsenic levels for a random sample of 535 wells were incorporated into five kriging models to predict groundwater arsenic concentrations at any point in time. A separate validation dataset (n = 60 wells) was used to identify the model with strongest predictability. Findings indicate that arsenic concentrations are temporally stable (r = 0.88; 95 % CI 0.83-0.92 for samples collected from the same well 15-25 years apart) and the spatial model created using ordinary kriging best predicted arsenic concentrations (ρ = 0.72 between predicted and observed validation data). These findings illustrate the value of geostatistical modeling of arsenic and suggest the San Luis Valley is a good region for conducting epidemiologic studies of groundwater metals because of the ability to accurately predict variation in groundwater arsenic concentrations.

  9. Topographic controls on shallow groundwater levels in a steep, prealpine catchment: When are the TWI assumptions valid?

    NARCIS (Netherlands)

    Rinderer, M.; van Meerveld, H.J.; Seibert, J.

    2014-01-01

    Topographic indices like the Topographic Wetness Index (TWI) have been used to predict spatial patterns of average groundwater levels and to model the dynamics of the saturated zone during events (e.g., TOPMODEL). However, the assumptions underlying the use of the TWI in hydrological models, of

  10. Nested-scale discharge and groundwater level monitoring to improve predictions of flow route discharges and nitrate loads

    NARCIS (Netherlands)

    Velde, Y. van der; Rozemeijer, J.C.; Rooij, G.H.de; Geer, F.C. van; Torfs, P.J.J.F.; Louw, P.G.B. de

    2010-01-01

    Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for predictions of catchment-scale

  11. [Effects of groundwater level on chlorophyll fluorescence characteristics of Tamarix hispida in lower reaches of Tarim River].

    Science.gov (United States)

    Zhu, Cheng-gang; Li, Wei-hong; Ma, Jian-xin; Ma, Xiao-dong

    2010-07-01

    Based on the monitoring data of groundwater level at the typical sections in lower reaches of Tarim River, three survey plots nearby the ecological monitoring wells with groundwater depths > 6 m were selected to investigate the chlorophyll fluorescence characteristics of Tamarix hispida and its photosynthetic activity of PSII under effects of different groundwater depths. With increasing groundwater depth, the chlorophyll fluorescence parameters such as actual photochemical efficiency of PSII in the light (phi(PSII)), electron transport rate (ETR), and photochemistry quenching (q(p)) of T. hispida decreased, while the non-photochemistry quenching (q(N), NPQ) and the yield for dissipation by down-regulation (Y(NPQ)) increased remarkably, and the maximal photochemical efficiency of PSII (Fv/Fm) maintained an optimum value. All the results suggested that the PSII photosynthetic activity of T. hispida under drought stress declined with increasing groundwater depth, and the greater excess energy could result in more risk of photo-inhibition. However, the good adaptability and drought tolerance of T. hispida could make its PSII not seriously damaged, though the drought stress actually existed.

  12. Microbial Community-Level Physiological Profiles (CLPP) and herbicide mineralization potential in groundwater affected by agricultural land use

    Science.gov (United States)

    Janniche, Gry Sander; Spliid, Henrik; Albrechtsen, Hans-Jørgen

    2012-10-01

    Diffuse groundwater pollution from agricultural land use may impact the microbial groundwater community, which was investigated as Community-Level Physiological Profiles (CLPP) using EcoPlate™. Water was sampled from seven piezometers and a spring in a small agricultural catchment with diffuse herbicide and nitrate pollution. Based on the Shannon-Wiener and Simpson's diversity indices the diversity in the microbial communities was high. The response from the EcoPlates™ showed which substrates support groundwater bacteria, and all 31 carbon sources were utilized by organisms from at least one water sample. However, only nine carbon sources were utilized by all water samples: D-Mannitol, N-acetyl-D-glucosamine, putrescine, D-galacturonic acid, itaconic acid, 4-hydroxy benzoic acid, tween 40, tween 80, and L-asparagine. In all water samples the microorganisms preferred D-mannitol, D-galacturonic acid, tween 40, and 4-hydroxy benzoic acid as substrates, whereas none preferred 2-hydroxy benzoic acid, α-D-lactose, D,L-α-glycerol phosphate, α-ketobutyric acid, L-threonine and glycyl-L-glutamic acid. Principal Component Analysis of the CLPP's clustered the most agriculturally affected groundwater samples, indicating that the agricultural land use affects the groundwater microbial communities. Furthermore, the ability to mineralize atrazine and isoproturon, which have been used in the catchment, was also associated with this cluster.

  13. Screening-Level Risk Assessment for Styrene-Acrylonitrile (SAN) Trimer Detected in Soil and Groundwater

    Science.gov (United States)

    Kirman, C. R.; Gargas, M. L.; Collins, J. J.; Rowlands, J. C.

    2012-01-01

    A screening-level risk assessment was conducted for styrene-acrylonitrile (SAN) Trimer detected at the Reich Farm Superfund site in Toms River, NJ. Consistent with a screening-level approach, on-site and off-site exposure scenarios were evaluated using assumptions that are expected to overestimate actual exposures and hazards at the site. Environmental sampling data collected for soil and groundwater were used to estimate exposure point concentrations. Several exposure scenarios were evaluated to assess potential on-site and off-site exposures, using parameter values for exposures to soil (oral, inhalation of particulates, and dermal contact) and groundwater (oral, dermal contact) to reflect central tendency exposure (CTE) and reasonable maximum exposure (RME) conditions. Three reference dose (RfD) values were derived for SAN Trimer for short-term, subchronic, and chronic exposures, based upon its effects on the liver in exposed rats. Benchmark (BMD) methods were used to assess the relationship between exposure and response, and to characterize appropriate points of departure (POD) for each RfD. An uncertainty factor of 300 was applied to each POD to yield RfD values of 0.1, 0.04, and 0.03 mg/kg-d for short-term, subchronic, and chronic exposures, respectively. Because a chronic cancer bioassay for SAN Trimer in rats (NTP 2011a) does not provide evidence of carcinogenicity, a cancer risk assessment is not appropriate for this chemical. Potential health hazards to human health were assessed using a hazard index (HI) approach, which considers the ratio of exposure dose (i.e., average daily dose, mg/kg-d) to toxicity dose (RfD, mg/kg-d) for each scenario. All CTE and RME HI values are well below 1 (where the average daily dose is equivalent to the RfD), indicating that there is no concern for potential noncancer effects in exposed populations even under the conservative assumptions of this screening-level assessment. PMID:23030654

  14. Assessment of a new seasonal to inter-annual operational Great Lakes water supply, water levels, and connecting channel flow forecasting system

    Science.gov (United States)

    Gronewold, A.; Fry, L. M.; Hunter, T.; Pei, L.; Smith, J.; Lucier, H.; Mueller, R.

    2017-12-01

    The U.S. Army Corps of Engineers (USACE) has recently operationalized a suite of ensemble forecasts of Net Basin Supply (NBS), water levels, and connecting channel flows that was developed through a collaboration among USACE, NOAA's Great Lakes Environmental Research Laboratory, Ontario Power Generation (OPG), New York Power Authority (NYPA), and the Niagara River Control Center (NRCC). These forecasts are meant to provide reliable projections of potential extremes in daily discharge in the Niagara and St. Lawrence Rivers over a long time horizon (5 years). The suite of forecasts includes eight configurations that vary by (a) NBS model configuration, (b) meteorological forcings, and (c) incorporation of seasonal climate projections through the use of weighting. Forecasts are updated on a weekly basis, and represent the first operational forecasts of Great Lakes water levels and flows that span daily to inter-annual horizons and employ realistic regulation logic and lake-to-lake routing. We will present results from a hindcast assessment conducted during the transition from research to operation, as well as early indications of success rates determined through operational verification of forecasts. Assessment will include an exploration of the relative skill of various forecast configurations at different time horizons and the potential for application to hydropower decision making and Great Lakes water management.

  15. Development of a model to simulate groundwater inundation induced by sea-level rise and high tides in Honolulu, Hawaii.

    Science.gov (United States)

    Habel, Shellie; Fletcher, Charles H; Rotzoll, Kolja; El-Kadi, Aly I

    2017-05-01

    Many of the world's largest cities face risk of sea-level rise (SLR) induced flooding owing to their limited elevations and proximities to the coastline. Within this century, global mean sea level is expected to reach magnitudes that will exceed the ground elevation of some built infrastructure. The concurrent rise of coastal groundwater will produce additional sources of inundation resulting from narrowing and loss of the vertical unsaturated subsurface space. This has implications for the dense network of buried and low-lying infrastructure that exists across urban coastal zones. Here, we describe a modeling approach that simulates narrowing of the unsaturated space and groundwater inundation (GWI) generated by SLR-induced lifting of coastal groundwater. The methodology combines terrain modeling, groundwater monitoring, estimation of tidal influence, and numerical groundwater-flow modeling to simulate future flood scenarios considering user-specified tide stages and magnitudes of SLR. We illustrate the value of the methodology by applying it to the heavily urbanized and low-lying Waikiki area of Honolulu, Hawaii. Results indicate that SLR of nearly 1 m generates GWI across 23% of the 13 km 2 study area, threatening $5 billion of taxable real estate and 48 km of roadway. Analysis of current conditions reveals that 86% of 259 active cesspool sites in the study area are likely inundated. This suggests that cesspool effluent is currently entering coastal groundwater, which not only leads to degradation of coastal environments, but also presents a future threat to public health as GWI would introduce effluent at the ground surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Using Hydrologic Data from Africa in a Senior-Level Course in Groundwater Hydrology (Invited)

    Science.gov (United States)

    Silliman, S. E.

    2010-12-01

    Ongoing research efforts in Benin, West Africa, and Uganda, East Africa, have provided substantial data sets involving groundwater quality, applied geophysics, water use, and response of local populations / government agencies to challenges related to water development, protection and management. Ranging from characterization of coastal salt-water encroachment to a major well field to nitrate and microbial contamination of rural water supplies, these data sets were developed by interdisciplinary / international teams that included both undergraduate and graduate students. The present discussion focuses on the integration of the resulting data sets into a senior-level (and lower-level graduate student) course in Groundwater Hydrology. The data sets are employed in multiple ways, including: (i) support of concepts introduced during lectures, (ii) problem sets involving analysis of the data, and (iii) foundation material for open-ended discussions on comparative water resource strategies in developed and developing countries. Most significant in terms of the use of these data sets to advance educational opportunities, the African case studies have been integrated into semester-long projects completed by teams of students as a significant component of their final grade as well as one of their engineering design experiences used to fulfill ABET requirements. During the 2009-2010 academic year, these data sets (as well as published data bases by other agencies) were used by individual groups to design water development strategies for rural villages. During the present semester, two teams of students are pursuing long-term sustainability analyses, the first focused on an aquifer system in northern Indiana (USA) and the second focused on a coastal aquifer system serving Cotonou, Benin. The goal of pursuing these parallel projects is to illustrate to the students the similarities and differences involved in water resource management / protection in different parts of the

  17. Long-term observations on the influence of groundwater level variations on BTEX concentrations in groundwater; Langzeituntersuchungen zum Einfluss von Grundwasserschwankungen auf die BTEX-Konzentration im Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    Puettmann, W. [J.W. Goethe-Universitaet Frankfurt a. M., Institut fuer Atmosphaere und Umwelt, AG Umweltanalytik, Frankfurt/Main (Germany); Hettwer, K.; Warrelmann, J. [Universitaet Bremen, Zentrum fuer Umweltforschung und Umwelttechnologie, Bremen (Germany); Gaab, S.

    2007-06-15

    A long-term study on natural attenuation and remediation in soil and groundwater at the former military base Schaeferhof-Sued (Niedersachsen) was performed at a former gasoline filling station. At this locality, a large residual source of benzene, toluene, ethylbenzene, xylenes (BTEX) and additional petroleum hydrocarbons is present in the soil. BTEX-concentrations in the groundwater and their correlation with groundwater level variations were monitored for three years. Within the monitoring period, a very dry summer was recorded, which caused the groundwater level to drop by 1.7 m and the BTEX concentrations to increase from 240 {mu}g/l to 1300 {mu}g/l at the site of contamination. The microbial degradation of BTEX was documented by data on consumption of electron acceptors (oxygen, nitrate or sulphate) and production of reduced products (Fe(II), methane). The degradation is further supported by the detection of metabolites. Therefore, the increasing BTEX concentrations were not a consequence of limited biological degradation. (orig.) [German] Auf dem frueher militaerisch genutzten Gelaende Schaeferhof-Sued (Niedersachsen) wurden im Bereich einer ehemaligen Abfuellstation fuer Kraftstoffe Langzeituntersuchungen zum natuerlichen Schadstoffabbau und -rueckhalt im Boden und Grundwasser durchgefuehrt. Der Standort weist eine hohe Restkontamination der Verbindungen Benzol, Toluol, Ethylbenzol und Xylole (BTEX), sowie Mineraloelkohlenwasserstoffen (MKW) in der ungesaettigten Bodenzone auf. Ueber einen Zeitraum von drei Jahren wurden die BTEX-Konzentrationen im Grundwasser und deren Abhaengigkeit von einer Aenderung des Grundwasserstandes untersucht und eine negative Korrelation der Schadstoffkonzentrationen mit der Hoehe des Grundwasserstandes festgestellt. Im Beobachtungszeitraum lag das sehr trockene Sommerhalbjahr 2003, was im Vergleich zum vorhergehenden Winterhalbjahr eine Absenkung des Grundwasserspiegels um 1,7 m zur Folge hatte und die BTEX-Konzentrationen am

  18. Occurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong basin, northern China

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ya; Wang, Yanxin, E-mail: yx.wang@cug.edu.cn; Xie, Xianjun

    2014-02-01

    Geochemical investigations of uranium (U) occurrence in the environments were conducted at Datong basin of northern China. The results suggest that U contents were generally < 1 mg/kg for the igneous and metamorphic rocks, typically 2–5 mg/kg for the Carboniferous and Permian sedimentary rocks and around 3 mg/kg for sediments and topsoil, respectively. U in the Quaternary aquifer sediments may be primarily associated with carnotite from the Carboniferous and Permian coal-bearing clastic rocks around the basin. Shallow groundwater had U concentrations of < 0.02–288 μg/L (average 24 μg/L), with 24% of the investigated boreholes above the WHO provisional guideline of 30 μg/L for U in drinking water. Average U concentration for surface water was 5.8 μg/L. In oxidizing waters, uranyl (UO{sub 2}{sup 2+}) species is dominant and strongly adsorbed onto iron (hydro)xides, while it would be preferentially complexed with carbonate in the alkaline groundwater, forming highly soluble uranyl-carbonate complexes at Datong. Under reducing conditions, uranous (U(IV)) species is ready to precipitate or bind to organic matter, therefore having a low mobility. At the study area, high U groundwater (> 30 μg/L) occurs at the alluvial plains due to intermediate redox and enhanced alkaline conditions. The abnormally high levels of U in groundwater (> 100 μg/L) are locally found at the west alluvial plains. By contrast, U co-precipitation with secondary carbonate minerals like Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3} in the dominant Ca–Mg–Na–HCO{sub 3} type groundwater may prevail at the east alluvial plains. Besides, bedrocks such as Carboniferous and Permian sedimentary rocks, especially the coal-bearing strata which have higher U contents at the west mountain areas may also account for the abnormally high levels of U in groundwater. - Highlights: • High U groundwater occurs at the alluvial plains of Datong basin. • Redox state, complexation and adsorption are responsible

  19. Plant traits in response to raising groundwater levels in wetland restoration : evidence from three case studies

    NARCIS (Netherlands)

    Bodegom, P.M. van; Grootjans, A.P.; Sorrell, B.K.; Bekker, R.M.; Bakker, C.; Ozinga, W.A.; Middleton, B.

    Question: Is raising groundwater tables successful as a wetland restoration strategy? Location: Kennemer dunes, The Netherlands; Moksloot dunes, The Netherlands and Bullock Creek fen, New Zealand. Methods: Generalizations were made by analysing soil dynamics and the responsiveness of integrative

  20. Plant traits in response to raising groundwater levels in wetland restoration: evidence from three case studies

    NARCIS (Netherlands)

    Bodegom, van P.M.; Grootjans, A.P.; Sorrell, B.K.; Bekker, R.M.; Bakker, C.; Ozinga, W.A.

    2006-01-01

    Question: Is raising groundwater tables successful as a wetland restoration strategy? Location: Kennemer dunes, The Netherlands; Moksloot dunes, The Netherlands and Bullock Creek fen, New Zealand. Methods: Generalizations were made by analysing soil dynamics and the responsiveness of integrative

  1. Forecasting Water Level Fluctuations of Urmieh Lake Using Gene Expression Programming and Adaptive Neuro-Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Sepideh Karimi

    2012-06-01

    Full Text Available Forecasting lake level at various prediction intervals is an essential issue in such industrial applications as navigation, water resource planning and catchment management. In the present study, two data driven techniques, namely Gene Expression Programming and Adaptive Neuro-Fuzzy Inference System, were applied for predicting daily lake levels for three prediction intervals. Daily water-level data from Urmieh Lake in Northwestern Iran were used to train, test and validate the used techniques. Three statistical indexes, coefficient of determination, root mean square error and variance accounted for were used to assess the performance of the used techniques. Technique inter-comparisons demonstrated that the GEP surpassed the ANFIS model at each of the prediction intervals. A traditional auto regressive moving average model was also applied to the same data sets; the obtained results were compared with those of the data driven approaches demonstrating superiority of the data driven models to ARMA.

  2. Modelling the response of shallow groundwater levels to combined climate and water-diversion scenarios in Beijing-Tianjin-Hebei Plain, China

    Science.gov (United States)

    Li, Xue; Ye, Si-Yuan; Wei, Ai-Hua; Zhou, Peng-Peng; Wang, Li-Heng

    2017-09-01

    A three-dimensional groundwater flow model was implemented to quantify the temporal variation of shallow groundwater levels in response to combined climate and water-diversion scenarios over the next 40 years (2011-2050) in Beijing-Tianjin-Hebei (Jing-Jin-Ji) Plain, China. Groundwater plays a key role in the water supply, but the Jing-Jin-Ji Plain is facing a water crisis. Groundwater levels have declined continuously over the last five decades (1961-2010) due to extensive pumping and climate change, which has resulted in decreased recharge. The implementation of the South-to-North Water Diversion Project (SNWDP) will provide an opportunity to restore the groundwater resources. The response of groundwater levels to combined climate and water-diversion scenarios has been quantified using a groundwater flow model. The impacts of climate change were based on the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset for future high (A2), medium (A1B), and low (B1) greenhouse gas scenarios; precipitation data from CMIP3 were applied in the model. The results show that climate change will slow the rate of decrease of the shallow groundwater levels under three climate-change scenarios over the next 40 years compared to the baseline scenario; however, the shallow groundwater levels will rise significantly (maximum of 6.71 m) when considering scenarios that combine climate change and restrictions on groundwater exploitation. Restrictions on groundwater exploitation for water resource management are imperative to control the decline of levels in the Jing-Jin-Ji area.

  3. Effects of carbonate and sulphate ions in synthetic groundwater on high-level waste glass leaching

    International Nuclear Information System (INIS)

    Kamizono, H.

    1990-01-01

    This laboratory experiment aims to examine the effects of rare earth carbonate and sulphate ions, that are naturally present in underground water, have on glass used to store high-level radioactive waste for disposal underground. Borosilicate glass (or HLW glass) is stored under observation on the land surface for several decades before being buried deep below ground in geological disposal sites. Two types of precipitation occur during leaching from the glass, immediate formation of a hydrated surface layer and slow precipitation from concentration in the leachates. This slow process of some elements precipitating onto the glass surface or into the leachates is examined in this experiment using scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). Carbonates from rare-earth elements are found in the synthetic groundwater used. It is shown that carbonate and sulphate ions will affect leaching and will occur in geological disposal sites. Other particles were also observed to precipitate using SEM-EDX. (author)

  4. Comparison of specific-yield estimates for calculating evapotranspiration from diurnal groundwater-level fluctuations

    Science.gov (United States)

    Gribovszki, Zoltán

    2018-05-01

    Methods that use diurnal groundwater-level fluctuations are commonly used for shallow water-table environments to estimate evapotranspiration (ET) and recharge. The key element needed to obtain reliable estimates is the specific yield (Sy), a soil-water storage parameter that depends on unsaturated soil-moisture and water-table fluxes, among others. Soil-moisture profile measurement down to the water table, along with water-table-depth measurements, can provide a good opportunity to calculate Sy values even on a sub-daily scale. These values were compared with Sy estimates derived by traditional techniques, and it was found that slug-test-based Sy values gave the most similar results in a sandy soil environment. Therefore, slug-test methods, which are relatively cheap and require little time, were most suited to estimate Sy using diurnal fluctuations. The reason for this is that the timeframe of the slug-test measurement is very similar to the dynamic of the diurnal signal. The dynamic characteristic of Sy was also analyzed on a sub-daily scale (depending mostly on the speed of drainage from the soil profile) and a remarkable difference was found in Sy with respect to the rate of change of the water table. When comparing constant and sub-daily (dynamic) Sy values for ET estimation, the sub-daily Sy application yielded higher correlation, but only a slightly smaller deviation from the control ET method, compared with the usage of constant Sy.

  5. Determining critical groundwater level to prevent degraded peatland from severe peat fire

    Science.gov (United States)

    Putra, E. I.; Cochrane, M. A.; Vetrita, Y.; Graham, L.; Saharjo, B. H.

    2018-05-01

    Peat fires have been a severe recurrent problem for Indonesia, but droughts due to prolonged dry season aggravate burning conditions. To get a better understanding of this issue, we studied fire conditions in a portion of the ex-Mega Rice Project (MRP) area, Central Kalimantan. To examine fire season and hydrology factors affecting peat fires we analyzed daily TRMM data, Nino 3.4 SST Anomalies, and changing groundwater levels (GWL) from 300 dipwells. Our results quantify time-lags between the period of lowest precipitation and the lowest GWL; providing some ability to predict fire risk in advance of the lowest GWL. The rise of Nino 3.4 SST anomalies is significant risk factors for peat fire as they signify dry months which may yield large fire occurrences. GWL in 2011 was lower than in 2012, but fires were more frequent in 2012, indicating that low precipitation amounts in the wet season of 2011/2012 left the peat in a dry condition early in 2012. Most of the fires occurred in areas with GWL less than -30 cm, powerfully illustrating the importance of maintaining GWL at more than -10 cm, to prevent degraded peatlands from experiencing surface and deep peat fires.

  6. Simulation and assessment of groundwater flow and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2003 through 2013: Chapter B of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Roth, Jason L.; Trost, Jared J.; Christenson, Catherine A.; Diekoff, Aliesha L.; Erickson, Melinda L.

    2017-09-05

    Water levels during 2003 through 2013 were less than mean water levels for the period 1925–2013 for several lakes in the northeast Twin Cities Metropolitan Area in Minnesota. Previous periods of low lake-water levels generally were correlated with periods with less than mean precipitation. Increases in groundwater withdrawals and land-use changes have brought into question whether or not recent (2003–13) lake-water-level declines are solely caused by decreases in precipitation. A thorough understanding of groundwater and surface-water exchanges was needed to assess the effect of water-management decisions on lake-water levels. To address this need, the U.S. Geological Survey, in cooperation with the Metropolitan Council and the Minnesota Department of Health, developed and calibrated a three-dimensional, steady-state groundwater-flow model representing 2003–13 mean hydrologic conditions to assess groundwater and lake-water exchanges, and the effects of groundwater withdrawals and precipitation on water levels of 96 lakes in the northeast Twin Cities Metropolitan Area.Lake-water budgets for the calibrated groundwater-flow model indicated that groundwater is flowing into lakes in the northeast Twin Cities Metropolitan Area and lakes are providing water to underlying aquifers. Lake-water outflow to the simulated groundwater system was a major outflow component for Big Marine Lake, Lake Elmo, Snail Lake, and White Bear Lake, accounting for 45 to 64 percent of the total outflows from the lakes. Evaporation and transpiration from the lake surface ranged from 19 to 52 percent of the total outflow from the four lakes. Groundwater withdrawals and precipitation were varied from the 2003‒13 mean values used in the calibrated model (30-percent changes in groundwater withdrawals and 5-percent changes in precipitation) for hypothetical scenarios to assess the effects of groundwater withdrawals and precipitation on water budgets and levels in Big Marine Lake, Snail Lake

  7. Assessment of Fluoride Level in Groundwater and Prevalence of Dental Fluorosis in Didwana Block of Nagaur District, Central Rajasthan, India

    Directory of Open Access Journals (Sweden)

    M Arif

    2013-10-01

    Full Text Available Background: In India, for the high concentration of fluoride in groundwater, people are at risk of dental fluorosis. The problem is common in various states of India. The condition in Rajasthan is worse where all districts have such a problem. Objective: To study the fluoride concentration in groundwater and prevalence of dental fluorosis in Didwana block of Nagaur district, Central Rajasthan, India. Methods: The fluoride concentration in water of 54 villages was measured electrochemically, using fluoride ion selective electrode. Dental fluorosis was assessed in 1136 people residing in study area by Dean's classification for dental fluorosis. Results: The fluoride concentration in groundwater in studied sites ranged from 0.5 to 8.5 mg/L. The concentration of fluoride was more than the maximum permissible limit set by WHO and Bureau of Indian Standards (1 mg/L in 48 groundwater sources. Of 1136 people studied, 788 (69.4%; 95% CI: 66.7%–72.1% had dental fluorosis—252 had mild and 74 had severe dental fluorosis. Conclusion: High level of fluoride in drinking water of Didwana block of Nagaur district, Central Rajasthan, India, causes dental fluorosis in most people in the region and is an important health problem that needs prompt attention.

  8. The relationship between energy intensity and income levels: Forecasting long term energy demand in Asian emerging countries

    International Nuclear Information System (INIS)

    Galli, R.; Univ. della Svizzera Italiana, Lugano

    1998-01-01

    This paper analyzes long-term trends in energy intensity for ten Asian emerging countries to test for a non-monotonic relationship between energy intensity and income in the author's sample. Energy demand functions are estimated during 1973--1990 using a quadratic function of log income. The long-run coefficient on squared income is found to be negative and significant, indicating a change in trend of energy intensity. The estimates are then used to evaluate a medium-term forecast of energy demand in the Asian countries, using both a log-linear and a quadratic model. It is found that in medium to high income countries the quadratic model performs better than the log-linear, with an average error of 9% against 43% in 1995. For the region as a whole, the quadratic model appears more adequate with a forecast error of 16% against 28% in 1995. These results are consistent with a process of dematerialization, which occurs as a result of a reduction of resource use per unit of GDP once an economy passes some threshold level of GDP per capita

  9. Dengue prediction by the web: Tweets are a useful tool for estimating and forecasting Dengue at country and city level.

    Directory of Open Access Journals (Sweden)

    Cecilia de Almeida Marques-Toledo

    2017-07-01

    Full Text Available Infectious diseases are a leading threat to public health. Accurate and timely monitoring of disease risk and progress can reduce their impact. Mentioning a disease in social networks is correlated with physician visits by patients, and can be used to estimate disease activity. Dengue is the fastest growing mosquito-borne viral disease, with an estimated annual incidence of 390 million infections, of which 96 million manifest clinically. Dengue burden is likely to increase in the future owing to trends toward increased urbanization, scarce water supplies and, possibly, environmental change. The epidemiological dynamic of Dengue is complex and difficult to predict, partly due to costly and slow surveillance systems.In this study, we aimed to quantitatively assess the usefulness of data acquired by Twitter for the early detection and monitoring of Dengue epidemics, both at country and city level at a weekly basis. Here, we evaluated and demonstrated the potential of tweets modeling for Dengue estimation and forecast, in comparison with other available web-based data, Google Trends and Wikipedia access logs. Also, we studied the factors that might influence the goodness-of-fit of the model. We built a simple model based on tweets that was able to 'nowcast', i.e. estimate disease numbers in the same week, but also 'forecast' disease in future weeks. At the country level, tweets are strongly associated with Dengue cases, and can estimate present and future Dengue cases until 8 weeks in advance. At city level, tweets are also useful for estimating Dengue activity. Our model can be applied successfully to small and less developed cities, suggesting a robust construction, even though it may be influenced by the incidence of the disease, the activity of Twitter locally, and social factors, including human development index and internet access.Tweets association with Dengue cases is valuable to assist traditional Dengue surveillance at real-time and low

  10. Dengue prediction by the web: Tweets are a useful tool for estimating and forecasting Dengue at country and city level.

    Science.gov (United States)

    Marques-Toledo, Cecilia de Almeida; Degener, Carolin Marlen; Vinhal, Livia; Coelho, Giovanini; Meira, Wagner; Codeço, Claudia Torres; Teixeira, Mauro Martins

    2017-07-01

    Infectious diseases are a leading threat to public health. Accurate and timely monitoring of disease risk and progress can reduce their impact. Mentioning a disease in social networks is correlated with physician visits by patients, and can be used to estimate disease activity. Dengue is the fastest growing mosquito-borne viral disease, with an estimated annual incidence of 390 million infections, of which 96 million manifest clinically. Dengue burden is likely to increase in the future owing to trends toward increased urbanization, scarce water supplies and, possibly, environmental change. The epidemiological dynamic of Dengue is complex and difficult to predict, partly due to costly and slow surveillance systems. In this study, we aimed to quantitatively assess the usefulness of data acquired by Twitter for the early detection and monitoring of Dengue epidemics, both at country and city level at a weekly basis. Here, we evaluated and demonstrated the potential of tweets modeling for Dengue estimation and forecast, in comparison with other available web-based data, Google Trends and Wikipedia access logs. Also, we studied the factors that might influence the goodness-of-fit of the model. We built a simple model based on tweets that was able to 'nowcast', i.e. estimate disease numbers in the same week, but also 'forecast' disease in future weeks. At the country level, tweets are strongly associated with Dengue cases, and can estimate present and future Dengue cases until 8 weeks in advance. At city level, tweets are also useful for estimating Dengue activity. Our model can be applied successfully to small and less developed cities, suggesting a robust construction, even though it may be influenced by the incidence of the disease, the activity of Twitter locally, and social factors, including human development index and internet access. Tweets association with Dengue cases is valuable to assist traditional Dengue surveillance at real-time and low-cost. Tweets are

  11. Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.

    2016-10-19

    OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling.  Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.  Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.

  12. Investigation of the climate-driven periodicity of shallow groundwater level fluctuations in a Central-Eastern European agricultural region

    Science.gov (United States)

    Garamhegyi, Tamás; Kovács, József; Pongrácz, Rita; Tanos, Péter; Hatvani, István Gábor

    2018-05-01

    The distribution and amount of groundwater, a crucial source of Earth's drinking and irrigation water, is changing due to climate-change effects. Therefore, it is important to understand groundwater behavior in extreme scenarios, e.g. drought. Shallow groundwater (SGW) level fluctuation under natural conditions displays periodic behavior, i.e. seasonal variation. Thus, the study aims to investigate (1) the periodic behavior of the SGW level time series of an agriculturally important and drought-sensitive region in Central-Eastern Europe - the Carpathian Basin, in the north-eastern part of the Great Hungarian Plain, and (2) its relationship to the European atmospheric pressure action centers. Data from 216 SGW wells were studied using wavelet spectrum analysis and wavelet coherence analyses for 1961-2010. Locally, a clear relationship exists between the absence of annual periodic behavior in the SGW level and the periodicity of droughts, as indicated by the self-calibrating Palmer Drought Severity Index and the Aridity Index. During the non-periodic intervals, significant drops in groundwater levels (average 0.5 m) were recorded in 89% of the wells. This result links the meteorological variables to the periodic behavior of SGW, and consequently, drought. On a regional scale, Mediterranean cyclones from the Gulf of Genoa (northwest Italy) were found to be a driving factor in the 8-yr periodic behavior of the SGW wells. The research documents an important link between SGW levels and local/regional climate variables or indices, thereby facilitating the necessary adaptation strategies on national and/or regional scales, as these must take into account the predictions of drought-related climatic conditions.

  13. Plants as bio-indicators of subsurface conditions: impact of groundwater level on BTEX concentrations in trees.

    Science.gov (United States)

    Wilson, Jordan; Bartz, Rachel; Limmer, Matt; Burken, Joel

    2013-01-01

    Numerous studies have demonstrated trees' ability to extract and translocate moderately hydrophobic contaminants, and sampling trees for compounds such as BTEX can help delineate plumes in the field. However, when BTEX is detected in the groundwater, detection in nearby trees is not as reliable an indicator of subsurface contamination as other compounds such as chlorinated solvents. Aerobic rhizospheric and bulk soil degradation is a potential explanation for the observed variability of BTEX in trees as compared to groundwater concentrations. The goal of this study was to determine the effect of groundwater level on BTEX concentrations in tree tissue. The central hypothesis was increased vadose zone thickness promotes biodegradation of BTEX leading to lower BTEX concentrations in overlying trees. Storage methods for tree core samples were also investigated as a possible reason for tree cores revealing lower than expected BTEX levels in some sampling efforts. The water level hypothesis was supported in a greenhouse study, where water table level was found to significantly affect tree BTEX concentrations, indicating that the influx of oxygen coupled with the presence of the tree facilitates aerobic biodegradation of BTEX in the vadose zone.

  14. FORECASTING OF DURABILITY OF ASPHALT PAVEMENT ON THE BASIS OF LEVELS OF THEIR VIBRATION LOADING

    Directory of Open Access Journals (Sweden)

    V. A. Osinovskaya

    2015-01-01

    Full Text Available The problem of low durability of flexible pavement is one of the most important problems of road economy. For example, the actual service life of asphalt pavement in Russia about 3 … 5 years. The bad condition of highways is an obstacle for the development of the national economy and leads to a significant annual economic losses.At present, this problem has no exact solution. Even at the seeming good road conditions of Europe and America the problem of low durability is no less important in these countries. And this problem becomes more and more actual every year.Our scientific researches allowed to make a hypothesis that the projected of pavements are not have the necessary durability yet not of a stage of designing because in strength calculations did not take into account the vibration of road constructions.Very actual the vibration loading becomes today as is now significantly changed the nature of loading of pavements. As a result the deflections of a pavements are reduced, but the increased vibration of pavements accelerated processes of destruction and significantly reduced durability.The theory of vibration destruction developed by the author allows to adjust the vibration, to form the vibration resistance pavements, and also to forecast a residual life of pavements that will more effectively develop repair actions.

  15. Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, northwest China.

    Science.gov (United States)

    Xiao, Yong; Gu, Xiaomin; Yin, Shiyang; Shao, Jingli; Cui, Yali; Zhang, Qiulan; Niu, Yong

    2016-01-01

    Based on the geo-statistical theory and ArcGIS geo-statistical module, datas of 30 groundwater level observation wells were used to estimate the decline of groundwater level in Beijing piedmont. Seven different interpolation methods (inverse distance weighted interpolation, global polynomial interpolation, local polynomial interpolation, tension spline interpolation, ordinary Kriging interpolation, simple Kriging interpolation and universal Kriging interpolation) were used for interpolating groundwater level between 2001 and 2013. Cross-validation, absolute error and coefficient of determination (R(2)) was applied to evaluate the accuracy of different methods. The result shows that simple Kriging method gave the best fit. The analysis of spatial and temporal variability suggest that the nugget effects from 2001 to 2013 were increasing, which means the spatial correlation weakened gradually under the influence of human activities. The spatial variability in the middle areas of the alluvial-proluvial fan is relatively higher than area in top and bottom. Since the changes of the land use, groundwater level also has a temporal variation, the average decline rate of groundwater level between 2007 and 2013 increases compared with 2001-2006. Urban development and population growth cause over-exploitation of residential and industrial areas. The decline rate of the groundwater level in residential, industrial and river areas is relatively high, while the decreasing of farmland area and development of water-saving irrigation reduce the quantity of water using by agriculture and decline rate of groundwater level in agricultural area is not significant.

  16. Predicting the Water Level Fluctuation in an Alpine Lake Using Physically Based, Artificial Neural Network, and Time Series Forecasting Models

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Young

    2015-01-01

    Full Text Available Accurate prediction of water level fluctuation is important in lake management due to its significant impacts in various aspects. This study utilizes four model approaches to predict water levels in the Yuan-Yang Lake (YYL in Taiwan: a three-dimensional hydrodynamic model, an artificial neural network (ANN model (back propagation neural network, BPNN, a time series forecasting (autoregressive moving average with exogenous inputs, ARMAX model, and a combined hydrodynamic and ANN model. Particularly, the black-box ANN model and physically based hydrodynamic model are coupled to more accurately predict water level fluctuation. Hourly water level data (a total of 7296 observations was collected for model calibration (training and validation. Three statistical indicators (mean absolute error, root mean square error, and coefficient of correlation were adopted to evaluate model performances. Overall, the results demonstrate that the hydrodynamic model can satisfactorily predict hourly water level changes during the calibration stage but not for the validation stage. The ANN and ARMAX models better predict the water level than the hydrodynamic model does. Meanwhile, the results from an ANN model are superior to those by the ARMAX model in both training and validation phases. The novel proposed concept using a three-dimensional hydrodynamic model in conjunction with an ANN model has clearly shown the improved prediction accuracy for the water level fluctuation.

  17. Spatial analysis of groundwater levels using Fuzzy Logic and geostatistical tools

    Science.gov (United States)

    Theodoridou, P. G.; Varouchakis, E. A.; Karatzas, G. P.

    2017-12-01

    The spatial variability evaluation of the water table of an aquifer provides useful information in water resources management plans. Geostatistical methods are often employed to map the free surface of an aquifer. In geostatistical analysis using Kriging techniques the selection of the optimal variogram is very important for the optimal method performance. This work compares three different criteria to assess the theoretical variogram that fits to the experimental one: the Least Squares Sum method, the Akaike Information Criterion and the Cressie's Indicator. Moreover, variable distance metrics such as the Euclidean, Minkowski, Manhattan, Canberra and Bray-Curtis are applied to calculate the distance between the observation and the prediction points, that affects both the variogram calculation and the Kriging estimator. A Fuzzy Logic System is then applied to define the appropriate neighbors for each estimation point used in the Kriging algorithm. The two criteria used during the Fuzzy Logic process are the distance between observation and estimation points and the groundwater level value at each observation point. The proposed techniques are applied to a data set of 250 hydraulic head measurements distributed over an alluvial aquifer. The analysis showed that the Power-law variogram model and Manhattan distance metric within ordinary kriging provide the best results when the comprehensive geostatistical analysis process is applied. On the other hand, the Fuzzy Logic approach leads to a Gaussian variogram model and significantly improves the estimation performance. The two different variogram models can be explained in terms of a fractional Brownian motion approach and of aquifer behavior at local scale. Finally, maps of hydraulic head spatial variability and of predictions uncertainty are constructed for the area with the two different approaches comparing their advantages and drawbacks.

  18. Assessment of the impact of sea-level rise due to climate change on coastal groundwater discharge.

    Science.gov (United States)

    Masciopinto, Costantino; Liso, Isabella Serena

    2016-11-01

    An assessment of sea intrusion into coastal aquifers as a consequence of local sea-level rise (LSLR) due to climate change was carried out at Murgia and Salento in southern Italy. The interpolation of sea-level measurements at three tide-gauge stations was performed during the period of 2000 to 2014. The best fit of measurements shows an increasing rate of LSLR ranging from 4.4mm/y to 8.8mm/y, which will result in a maximum LSLR of approximately 2m during the 22nd century. The local rate of sea-level rise matches recent 21st and 22nd century projections of mean global sea-level rise determined by other researchers, which include increased melting rates of the Greenland and Antarctic ice sheets, the effect of ocean thermal expansion, the melting of glaciers and ice caps, and changes in the quantity of stored land water. Subsequently, Ghyben-Herzberg's equation for the freshwater/saltwater interface was rewritten in order to determine the decrease in groundwater discharge due to the maximum LSLR. Groundwater flow simulations and ArcGIS elaborations of digital elevation models of the coast provided input data for the Ghyben-Herzberg calculation under the assumption of head-controlled systems. The progression of seawater intrusion due to LSLR suggests an impressive depletion of available groundwater discharge during the 22nd century, perhaps as much as 16.1% of current groundwater pumping for potable water in Salento. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Groundwater level variations in the seismically active region of Western Bohemia in the years 2005-2010

    Czech Academy of Sciences Publication Activity Database

    Gaždová, Renata; Novotný, Oldřich; Málek, Jiří; Valenta, Jan; Brož, Milan; Kolínský, Petr

    2011-01-01

    Roč. 8, č. 1 (2011), s. 17-27 ISSN 1214-9705 R&D Projects: GA AV ČR IAA300460602 Institutional research plan: CEZ:AV0Z30460519 Keywords : Western Bohemia * earthquake swarm * groundwater level Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/abstracts/AGG/01_11/2_Gazdova.pdf

  20. Seismicity, groundwater level variations and Earth tides in the Hronov-Poříčí Fault Zone, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Kolínský, Petr; Valenta, Jan; Gaždová, Renata

    2012-01-01

    Roč. 9, č. 2 (2012), s. 191-209 ISSN 1214-9705 R&D Projects: GA ČR GA205/09/1244 Institutional research plan: CEZ:AV0Z30460519 Keywords : Eastern Bohemian Massif * groundwater level * seismic ity Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/materialy/acta_content/2012_02/9_Kolinsky.pdf

  1. Quantitative maps of groundwater resources in Africa

    International Nuclear Information System (INIS)

    MacDonald, A M; Bonsor, H C; Dochartaigh, B É Ó; Taylor, R G

    2012-01-01

    In Africa, groundwater is the major source of drinking water and its use for irrigation is forecast to increase substantially to combat growing food insecurity. Despite this, there is little quantitative information on groundwater resources in Africa, and groundwater storage is consequently omitted from assessments of freshwater availability. Here we present the first quantitative continent-wide maps of aquifer storage and potential borehole yields in Africa based on an extensive review of available maps, publications and data. We estimate total groundwater storage in Africa to be 0.66 million km 3 (0.36–1.75 million km 3 ). Not all of this groundwater storage is available for abstraction, but the estimated volume is more than 100 times estimates of annual renewable freshwater resources on Africa. Groundwater resources are unevenly distributed: the largest groundwater volumes are found in the large sedimentary aquifers in the North African countries Libya, Algeria, Egypt and Sudan. Nevertheless, for many African countries appropriately sited and constructed boreholes can support handpump abstraction (yields of 0.1–0.3 l s −1 ), and contain sufficient storage to sustain abstraction through inter-annual variations in recharge. The maps show further that the potential for higher yielding boreholes ( > 5 l s −1 ) is much more limited. Therefore, strategies for increasing irrigation or supplying water to rapidly urbanizing cities that are predicated on the widespread drilling of high yielding boreholes are likely to be unsuccessful. As groundwater is the largest and most widely distributed store of freshwater in Africa, the quantitative maps are intended to lead to more realistic assessments of water security and water stress, and to promote a more quantitative approach to mapping of groundwater resources at national and regional level. (letter)

  2. Interaction of Peat Soil and Sulphidic Material Substratum: Role of Peat Layer and Groundwater Level Fluctuations on Phosphorus Concentration

    Directory of Open Access Journals (Sweden)

    Benito Heru Purwanto

    2014-09-01

    Full Text Available Phosphorus (P often becomes limiting factor for plants growth. Phosphorus geochemistry in peatland soil is associated with the presence of peat layer and groundwater level fluctuations. The research was conducted to study the role of peat layer and groundwater level fluctuations on P concentration in peatland. The research was conducted on deep, moderate and shallow peat with sulphidic material as substratum, peaty acid sulphate soil, and potential acid sulphate soil. While P concentration was observed in wet season, in transition from wet to dry season, and in dry season. Soil samples were collected by using peat borer according to interlayer and soil horizon. The results showed that peat layer might act as the main source of P in peatland with sulphidic material substratum. The upper peat layer on sulphidic material caused by groundwater level fluctuations had no directly effect on P concentration in the peat layers. Increased of P concentration in the lowest sulphidic layer might relate to redox reaction of iron in the sulphidic layer and precipitation process. Phosphorus concentration in peatland with sulphidic material as substratum was not influenced by peat thickness. However, depletion or disappearance of peat layer decreased P concentration in soil solution. Disappearance of peat layer means loss of a natural source of P for peatland with sulphidic material as substratum, therefore peat layer must be kept in order to maintain of peatlands.

  3. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions

  4. Sensitivity of tropical climate to low-level clouds in the NCEP climate forecast system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zeng-Zhen [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Huang, Bohua; Schneider, Edwin K. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); George Mason University, Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, Fairfax, VA (United States); Hou, Yu-Tai; Yang, Fanglin [NCEP/NWS/NOAA, Environmental Modeling Center, Camp Springs, MD (United States); Wang, Wanqiu [NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Stan, Cristiana [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

    2011-05-15

    In this work, we examine the sensitivity of tropical mean climate and seasonal cycle to low clouds and cloud liquid water path (CLWP) by prescribing them in the NCEP climate forecast system (CFS). It is found that the change of low cloud cover alone has a minor influence on the amount of net shortwave radiation reaching the surface and on the warm biases in the southeastern Atlantic. In experiments where CLWP is prescribed using observations, the mean climate in the tropics is improved significantly, implying that shortwave radiation absorption by CLWP is mainly responsible for reducing the excessive surface net shortwave radiation over the southern oceans in the CFS. Corresponding to large CLWP values in the southeastern oceans, the model generates large low cloud amounts. That results in a reduction of net shortwave radiation at the ocean surface and the warm biases in the sea surface temperature in the southeastern oceans. Meanwhile, the cold tongue and associated surface wind stress in the eastern oceans become stronger and more realistic. As a consequence of the overall improvement of the tropical mean climate, the seasonal cycle in the tropical Atlantic is also improved. Based on the results from these sensitivity experiments, we propose a model bias correction approach, in which CLWP is prescribed only in the southeastern Atlantic by using observed annual mean climatology of CLWP. It is shown that the warm biases in the southeastern Atlantic are largely eliminated, and the seasonal cycle in the tropical Atlantic Ocean is significantly improved. Prescribing CLWP in the CFS is then an effective interim technique to reduce model biases and to improve the simulation of seasonal cycle in the tropics. (orig.)

  5. Water level observations from Unmanned Aerial Vehicles for improving estimates of surface water-groundwater interaction

    DEFF Research Database (Denmark)

    Bandini, Filippo; Butts, Michael; Vammen Jacobsen, Torsten

    2017-01-01

    spatial resolution; ii) spatially continuous profiles along or across the water body; iii) flexible timing of sampling. A semi-synthetic study was conducted to analyse the value of the new UAV-borne datatype for improving hydrological models, in particular estimates of GW (Groundwater)- SW (Surface Water...

  6. Forecast Combinations

    OpenAIRE

    Timmermann, Allan G

    2005-01-01

    Forecast combinations have frequently been found in empirical studies to produce better forecasts on average than methods based on the ex-ante best individual forecasting model. Moreover, simple combinations that ignore correlations between forecast errors often dominate more refined combination schemes aimed at estimating the theoretically optimal combination weights. In this paper we analyse theoretically the factors that determine the advantages from combining forecasts (for example, the d...

  7. Forecast combinations

    OpenAIRE

    Aiolfi, Marco; Capistrán, Carlos; Timmermann, Allan

    2010-01-01

    We consider combinations of subjective survey forecasts and model-based forecasts from linear and non-linear univariate specifications as well as multivariate factor-augmented models. Empirical results suggest that a simple equal-weighted average of survey forecasts outperform the best model-based forecasts for a majority of macroeconomic variables and forecast horizons. Additional improvements can in some cases be gained by using a simple equal-weighted average of survey and model-based fore...

  8. Perennial filter strips reduce nitrate levels in soil and shallow groundwater after grassland-to-cropland conversion.

    Science.gov (United States)

    Zhou, Xiaobo; Helmers, Matthew J; Asbjornsen, Heidi; Kolka, Randy; Tomer, Mark D

    2010-01-01

    Many croplands planted to perennial grasses under the Conservation Reserve Program are being returned to crop production, and with potential consequences for water quality. The objective of this study was to quantify the impact of grassland-to-cropland conversion on nitrate-nitrogen (NO3-N) concentrations in soil and shallow groundwater and to assess the potential for perennial filter strips (PFS) to mitigate increases in NO3-N levels. The study, conducted at the Neal Smith National Wildlife Refuge (NSNWR) in central Iowa, consisted of a balanced incomplete block design with 12 watersheds and four watershed-scale treatments having different proportions and topographic positions of PFS planted in native prairie grasses: 100% rowcrop, 10% PFS (toeslope position), 10% PFS (distributed on toe and as contour strips), and 20 PFS (distributed on toe and as contour strips). All treatments were established in fall 2006 on watersheds that were under bromegrass (Bromus L.) cover for at least 10 yr. Nonperennial areas were maintained under a no-till 2-yr corn (Zea mays L.)--soybean [Glycine max. (L.) Merr.] rotation since spring 2007. Suction lysimeter and shallow groundwater wells located at upslope and toeslope positions were sampled monthly during the growing season to determine NO3-N concentration from 2005 to 2008. The results indicated significant increases in NO3-N concentration in soil and groundwater following grassland-to-cropland conversion. Nitrate-nitrogen levels in the vadose zone and groundwater under PFS were lower compared with 100% cropland, with the most significant differences occurring at the toeslope position. During the years following conversion, PFS mitigated increases in subsurface nitrate, but long-term monitoring is needed to observe and understand the full response to land-use conversion.

  9. Hydrogeology, groundwater levels, and generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system, 2010–14, in the northern Green River structural basin

    Science.gov (United States)

    Bartos, Timothy T.; Hallberg, Laura L.; Eddy-Miller, Cheryl

    2015-07-14

    In cooperation with the Bureau of Land Management, groundwater levels in wells located in the northern Green River Basin in Wyoming, an area of ongoing energy development, were measured by the U.S. Geological Survey from 2010 to 2014. The wells were completed in the uppermost aquifers of the Green River Basin lower Tertiary aquifer system, which is a complex regional aquifer system that provides water to most wells in the area. Except for near perennial streams, groundwater-level altitudes in most aquifers generally decreased with increasing depth, indicating a general downward potential for groundwater movement in the study area. Drilled depth of the wells was observed as a useful indicator of depth to groundwater such that deeper wells typically had a greater depth to groundwater. Comparison of a subset of wells included in this study that had historical groundwater levels that were measured during the 1960s and 1970s and again between 2012 and 2014 indicated that, overall, most of the wells showed a net decline in groundwater levels.

  10. Demand forecasts at national and EU level on a computer-based model taking usage costs into account

    DEFF Research Database (Denmark)

    Passamonti, Lucia; Falch, Morten; Björksten, Margareta

    1997-01-01

    The objective of this deliverable is to forecast the residential spending on selected multimedia services such as Tele-entertainment, VOD, AOD, Networked games, Teleshopping and Teleworking.......The objective of this deliverable is to forecast the residential spending on selected multimedia services such as Tele-entertainment, VOD, AOD, Networked games, Teleshopping and Teleworking....

  11. Development of nonlinear empirical models to forecast daily PM2.5 and ozone levels in three large Chinese cities

    Science.gov (United States)

    Lv, Baolei; Cobourn, W. Geoffrey; Bai, Yuqi

    2016-12-01

    Empirical regression models for next-day forecasting of PM2.5 and O3 air pollution concentrations have been developed and evaluated for three large Chinese cities, Beijing, Nanjing and Guangzhou. The forecast models are empirical nonlinear regression models designed for use in an automated data retrieval and forecasting platform. The PM2.5 model includes an upwind air quality variable, PM24, to account for regional transport of PM2.5, and a persistence variable (previous day PM2.5 concentration). The models were evaluated in the hindcast mode with a two-year air quality and meteorological data set using a leave-one-month-out cross validation method, and in the forecast mode with a one-year air quality and forecasted weather dataset that included forecasted air trajectories. The PM2.5 models performed well in the hindcast mode, with coefficient of determination (R2) values of 0.54, 0.65 and 0.64, and normalized mean error (NME) values of 0.40, 0.26 and 0.23 respectively, for the three cities. The O3 models also performed well in the hindcast mode, with R2 values of 0.75, 0.55 and 0.73, and NME values of 0.29, 0.26 and 0.24 in the three cities. The O3 models performed better in summertime than in winter in Beijing and Guangzhou, and captured the O3 variations well all the year round in Nanjing. The overall forecast performance of the PM2.5 and O3 models during the test year varied from fair to good, depending on location. The forecasts were somewhat degraded compared with hindcasts from the same year, depending on the accuracy of the forecasted meteorological input data. For the O3 models, the model forecast accuracy was strongly dependent on the maximum temperature forecasts. For the critical forecasts, involving air quality standard exceedences, the PM2.5 model forecasts were fair to good, and the O3 model forecasts were poor to fair.

  12. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, P.J.; Wu, L.; Van Nostrand, J.D.; Schadt, C.W.; Watson, D.B.; Jardine, P.M.; Palumbo, A.V.; Hazen, T.C.; Zhou, J.

    2009-06-15

    To understand how contaminants affect microbial community diversity, heterogeneity, and functional structure, six groundwater monitoring wells from the Field Research Center of the U.S. Department of Energy Environmental Remediation Science Program (ERSP; Oak Ridge, TN), with a wide range of pH, nitrate, and heavy metal contamination were investigated. DNA from the groundwater community was analyzed with a functional gene array containing 2006 probes to detect genes involved in metal resistance, sulfate reduction, organic contaminant degradation, and carbon and nitrogen cycling. Microbial diversity decreased in relation to the contamination levels of the wells. Highly contaminated wells had lower gene diversity but greater signal intensity than the pristine well. The microbial composition was heterogeneous, with 17-70% overlap between different wells. Metal-resistant and metal-reducing microorganisms were detected in both contaminated and pristine wells, suggesting the potential for successful bioremediation of metal-contaminated groundwaters. In addition, results of Mantel tests and canonical correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p < 0.05) effect on microbial community structure. This study provides an overall picture of microbial community structure in contaminated environments with functional gene arrays by showing that diversity and heterogeneity can vary greatly in relation to contamination.

  13. A Low-Level Real-Time In Situ Monitoring System for Tritium in Groundwater and Vadose Zone

    Science.gov (United States)

    Santo, J. T.; Levitt, D. G.

    2002-12-01

    Tritium is a radioactive isotope of hydrogen produced as a by-product of the nuclear fuel cycle. It is also an integral part of the nuclear weapons industry and has been released into the environment through both the production and testing of nuclear weapons. There are many sites across the DOE complex where tritium has been released into the subsurface through the disposal of radioactive waste and at the Nevada Test Site, through the underground testing of nuclear weapons. Numerous DOE facilities have an on-going regulatory need to be able to monitor tritium concentrations in groundwater within deep hydrologic zones and in the shallower non-saturated vadose zone beneath waste disposal pits and shafts and other release sites. Typical access to groundwater is through deep monitoring wells and situated in remote locations. In response to this need, Science and Engineering Associates, Inc. (SEA) and its subcontractor, the University of Nevada Las Vegas (UNLV) Harry Reid Center (HRC) for Environmental Studies has conducted the applied research and engineering and produced a real time, in situ monitoring system for the detection and measurement of low levels of tritium in the groundwater and in the shallower vadose zone. The monitoring system has been deployed to measure tritium in both the vadose zone near a subsurface radioactive waste package and the groundwater in a deep hydrologic reservoir at the Nevada Test Site. The monitoring system has been designed to detect tritium in the subsurface below federal and/or state regulatory limits for safe drinking water and has been successfully demonstrated. The development effort is being funded through the U.S. Department of Energy, National Energy Technology Laboratory and the DOE Nevada Operations Office Advanced Monitoring Systems Initiative (AMSI).

  14. Enhancing arsenic removal from groundwater at household level with naturally occurring iron

    Directory of Open Access Journals (Sweden)

    Anitha Kumari Sharma

    2016-06-01

    Full Text Available A supply of drinking water low in Arsenic (As prevents arsenic poisoning. The presence of high concentrations of iron (Fe in groundwater under the alluvial plains of the large rivers in Southeast Asia is a prerequisite for the simple removal of As. This study investigated the mechanisms and possibilities for enhancing As removal with naturally occurring Fe in a reliable, low cost and sustainable way. The results of the study show that As removal with Fe is greatly enhanced by the addition of an oxidizing agent (preferably KMnO4 immediately after the pumping of groundwater. Further enhancement of As removal in the presence of Fe can be achieved by adding a small volume of a concentrated basic solution of MnO4- and AlO2-, which has a combined oxidation, coagulation and buffering capacity. Best results were obtained when this solution was mixed with the groundwater immediately after its pumping until a pale pink color appeared. Maximum required reaction time was 10 minutes and subsequent filtration of the water was able to reduce the As concentration to near zero. Concentrations of MnO4- and AlO2- can be varied in the solution to achieve sufficient As removal to suit different Fe/As ratios and the presence of interfering co-occurring anions.

  15. Groundwater modeling of source terms and contaminant plumes for DOE low-level waste performance assessments

    International Nuclear Information System (INIS)

    McDowell-Boyer, L.M.; Wilson, J.E.

    1994-01-01

    Under US Department of Energy (DOE) Order 5820.2A, all sites within the DOE complex must analyze the performance of planned radioactive waste disposal facilities before disposal takes place through the radiological performance assessment process. These assessments consider both exposures to the public from radionuclides potentially released from disposal facilities and protection of groundwater resources. Compliance with requirements for groundwater protection is often the most difficult to demonstrate as these requirements are generally more restrictive than those for other pathways. Modeling of subsurface unsaturated and saturated flow and transport was conducted for two such assessments for the Savannah River site. The computer code PORFLOW was used to evaluate release and transport of radionuclides from different types of disposal unit configurations: vault disposal and trench disposal. The effectiveness of engineered barriers was evaluated in terms of compliance with groundwater protection requirements. The findings suggest that, due to the limited lifetime of engineered barriers, overdesign of facilities for long-lived radionuclides is likely to occur if compliance must be realized for thousands of years

  16. Forecasting Sea Water Levels at Mukho Station, South Korea Using Soft Computing Techniques

    Directory of Open Access Journals (Sweden)

    Ozgur Kisi

    2014-12-01

    Full Text Available The accuracy of three different data-driven methods, namely, Gene Expression Programming (GEP, Adaptive Neuro-Fuzzy Inference System (ANFIS and Artificial Neural Networks (ANN, is investigated for hourly sea water level prediction at the Mukho Station in the East Sea (Sea of Japan. Current and four previous level measurements are used as input variables to predict sea water levels up to 1, 24, 48, 72, 96 and 120 hours ahead. Three statistical evaluation parameters, namely, the correlation coefficient, the root mean square error and the scatter index are used to assess how the models perform. Investigation results indicate that, when compared to measurements, for +1h prediction interval, all three models perform well (with average values of R = 0.993, RMSE = 1.3 cm and SI = 0.04, with slightly better results produced by the ANNs and ANFIS, while increasing the prediction interval degrades model performance.

  17. An Accurate Fire-Spread Algorithm in the Weather Research and Forecasting Model Using the Level-Set Method

    Science.gov (United States)

    Muñoz-Esparza, Domingo; Kosović, Branko; Jiménez, Pedro A.; Coen, Janice L.

    2018-04-01

    The level-set method is typically used to track and propagate the fire perimeter in wildland fire models. Herein, a high-order level-set method using fifth-order WENO scheme for the discretization of spatial derivatives and third-order explicit Runge-Kutta temporal integration is implemented within the Weather Research and Forecasting model wildland fire physics package, WRF-Fire. The algorithm includes solution of an additional partial differential equation for level-set reinitialization. The accuracy of the fire-front shape and rate of spread in uncoupled simulations is systematically analyzed. It is demonstrated that the common implementation used by level-set-based wildfire models yields to rate-of-spread errors in the range 10-35% for typical grid sizes (Δ = 12.5-100 m) and considerably underestimates fire area. Moreover, the amplitude of fire-front gradients in the presence of explicitly resolved turbulence features is systematically underestimated. In contrast, the new WRF-Fire algorithm results in rate-of-spread errors that are lower than 1% and that become nearly grid independent. Also, the underestimation of fire area at the sharp transition between the fire front and the lateral flanks is found to be reduced by a factor of ≈7. A hybrid-order level-set method with locally reduced artificial viscosity is proposed, which substantially alleviates the computational cost associated with high-order discretizations while preserving accuracy. Simulations of the Last Chance wildfire demonstrate additional benefits of high-order accurate level-set algorithms when dealing with complex fuel heterogeneities, enabling propagation across narrow fuel gaps and more accurate fire backing over the lee side of no fuel clusters.

  18. Ground-water quality, levels, and flow direction near Fort Cobb Reservoir, Caddo County, Oklahoma, 1998-2000

    Science.gov (United States)

    Becker, Carol J.

    2001-01-01

    Fort Cobb Reservoir in northwest Caddo County Oklahoma is managed by the Bureau of Reclamation for water supply, recreation, flood control, and wildlife. Excessive amounts of nitrogen in the watershed have the potential to cause long-term eutrophication of the reservoir and increase already elevated concentrations of nitrogen in the Rush Springs aquifer. The U.S. Geological Survey in cooperation with the Bureau of Reclamation studied ground water in the area surrounding a swine feeding operation located less than 2 miles upgradient from Fort Cobb Reservoir in Caddo County, Oklahoma. Objectives of the study were to (1) determine if the operation was contributing nitrogen to the ground water and (2) measure changes in ground-water levels and determine the local ground-water flow direction in the area surrounding the swine feeding operation. Nitrate concentrations (28.1 and 31.5 milligrams per liter) were largest in two ground-water samples from a well upgradient of the wastewater lagoon. Nitrate concentrations ranged from 4.30 to 8.20 milligrams per liter in samples from downgradient wells. Traces of ammonia and nitrite were detected in a downgradient well, but not in upgradient wells. d15N values indicate atmospheric nitrogen, synthetic fertilizer, or plants were the predominate sources of nitrate in ground water from the downgradient wells. The d15N values in these samples are depleted in nitrogen-15, indicating that animal waste was not a significant contributor of nitrate. Manganese concentrations (1,150 and 965 micrograms per liter) in samples from a downgradient well were substantially larger than concentrations in samples from other wells, exceeding the secondary drinking-water standard of 50 micrograms per liter. Larger concentrations of bicarbonate, magnesium, fluoride, and iron and a higher pH were also measured in water from a downgradient well. Ground-water levels in an observation well were higher from April to mid-July and lower during the late summer

  19. Flow Forecasting using Deterministic Updating of Water Levels in Distributed Hydrodynamic Urban Drainage Models

    DEFF Research Database (Denmark)

    Hansen, Lisbet Sneftrup; Borup, Morten; Moller, Arne

    2014-01-01

    drainage models and reduce a number of unavoidable discrepancies between the model and reality. The latter can be achieved partly by inserting measured water levels from the sewer system into the model. This article describes how deterministic updating of model states in this manner affects a simulation...

  20. Improving Garch Volatility Forecasts

    NARCIS (Netherlands)

    Klaassen, F.J.G.M.

    1998-01-01

    Many researchers use GARCH models to generate volatility forecasts. We show, however, that such forecasts are too variable. To correct for this, we extend the GARCH model by distinguishing two regimes with different volatility levels. GARCH effects are allowed within each regime, so that our model

  1. Study on assessment scenarios of natural phenomena effected on groundwater flow system. Case study for the sea-level change (Contract research)

    International Nuclear Information System (INIS)

    Sakai, Ryutaro; Munakata, Masahiro; Kimura, Hideo

    2009-03-01

    It is important to evaluate effects on the groundwater flow system by the natural phenomena in the safety assessment of geological disposal of radioactive waste. Safety assessment is performed by using safety assessment methods, thus it is necessary to establish reasonable scenarios for safety assessment. In this report, we study change effecting on the groundwater flow system by literature reviews. The scenario of sea level change is expected to have a importance for a safety of disposal facility in coastal area. The recent information related to the groundwater flow condition in sedimentary rocks of sub-seabed coastal area shows that there are four groundwater domains as follows with depth; (1) modern meteoric water, (2) saline water in the transgression period, (3) paleo-fresh water which formed during the last glacial age when sea levels were lower than at present and (4) pre-glacial fossil saline water. This study suggests that the non-current (3) paleo-fresh water at present is possible to move to discharged area at sea floor in the next glacial period by denudation of marine-clay sediments and to become stagnant water again in the next interglacial period by deposition of marine-clay sediments in coastal region. Therefore it is important to predict the scenario considering the denudation and deposition correlated with transgression and regression that could affect the change of groundwater flow velocity, groundwater flow path and groundwater chemical characteristics during the glacial and interglacial period. (author)

  2. The WRF model forecast-derived low-level wind shear climatology over the United States great plains

    Energy Technology Data Exchange (ETDEWEB)

    Storm, B. [Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX (United States); Basu, S. [Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, TX (United States)

    2010-07-01

    For wind resource assessment projects, it is common practice to use a power-law relationship (U(z) {proportional_to} z{sup {alpha}}) and a fixed shear exponent ({alpha} = 1/7) to extrapolate the observed wind speed from a low measurement level to high turbine hub-heights. However, recent studies using tall-tower observations have found that the annual average shear exponents at several locations over the United States Great Plains (USGP) are significantly higher than 1/7. These findings highlight the critical need for detailed spatio-temporal characterizations of wind shear climatology over the USGP, where numerous large wind farms will be constructed in the foreseeable future. In this paper, a new generation numerical weather prediction model - the Weather Research and Forecasting (WRF) model, a fast and relatively inexpensive alternative to time-consuming and costly tall-tower projects, is utilized to determine whether it can reliably estimate the shear exponent and the magnitude of the directional shear at any arbitrary location over the USGP. Our results indicate that the WRF model qualitatively captures several low-level wind shear characteristics. However, there is definitely room for physics parameterization improvements for the WRF model to reliably represent the lower part of the atmospheric boundary layer. (author)

  3. A study on the groundwater flow system for deep geological disposal of high level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Kim, Kyung Su; Bae, Dae Seok; Park, Byoung Yoon; Koh, Young Kown [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The basic framework of groundwater flow is defined as a conceptual 3-D unit of groundwater system based on hydrogeological environments. The fundamental parameters consisting of groundwater system should include topography, geology and climatic conditions. Climatic conditions control the distribution and amounts of groundwater in an interesting study area. The driving forces responsible for groundwater movement are mainly determined by topographic characteristics. The configuration of groundwater system is also controlled by topography. The geological setting and structures control the reservoir size and groundwater flow path. The hydrogeological setting in Korea was classified by primarily topographic characteristics and considered by geological structures and tectonic division. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitude. 35 refs., 9 figs., 21 tabs. (Author)

  4. Forecasting Skill

    Science.gov (United States)

    1981-01-01

    for the third and fourth day precipitation forecasts. A marked improvement was shown for the consensus 24 hour precipitation forecast, and small... Zuckerberg (1980) found a small long term skill increase in forecasts of heavy snow events for nine eastern cities. Other National Weather Service...and maximum temperature) are each awarded marks 2, 1, or 0 according to whether the forecast is correct, 8 - *- -**■*- ———"—- - -■ t0m 1 MM—IB I

  5. County-Level Climate Uncertainty for Risk Assessments: Volume 25 Appendix X - Forecast Sea Ice Age.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lowry, Thomas Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Shannon M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  6. County-Level Climate Uncertainty for Risk Assessments: Volume 23 Appendix V - Forecast Sea Ice Thickness

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-04-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  7. County-Level Climate Uncertainty for Risk Assessments: Volume 27 Appendix Z - Forecast Ridging Rate.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  8. County-Level Climate Uncertainty for Risk Assessments: Volume 17 Appendix P - Forecast Soil Moisture

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-04-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  9. County-Level Climate Uncertainty for Risk Assessments: Volume 15 Appendix N - Forecast Surface Runoff.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lowry, Thomas Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Shannon M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  10. Long-Term Ground-Water Levels and Transmissivity in the Blackstone River Basin, Northern Rhode Island

    Science.gov (United States)

    Eggleston, Jack R.; Church, Peter E.; Barbaro, Jeffrey R.

    2007-01-01

    Ground water provides about 7.7 million gallons per day, or 28 percent of total water use in the Rhode Island part of the Blackstone River Basin. Primary aquifers in the basin are stratified glacial deposits, composed mostly of sand and gravel along valley bottoms. The ground-water and surface-water system in the Blackstone River Basin is under stress due to population growth, out-of-basin water transfers, industrialization, and changing land-use patterns. Streamflow periodically drops below the Aquatic Base Flow standard, and ground-water withdrawals add to stress on aquatic habitat during low-flow periods. Existing hydrogeologic data were reviewed to examine historical water-level trends and to generate contour maps of water-table altitudes and transmissivity of the sand and gravel aquifer in the Blackstone River Basin in Rhode Island. On the basis of data from four long-term observation wells, water levels appear to have risen slightly in the study area during the past 55 years. Analysis of available data indicates that increased rainfall during the same period is a likely contributor to the water-level rise. Spatial patterns of transmissivity are shown over larger areas and have been refined on the basis of more detailed data coverage as compared to previous mapping studies.

  11. Benefits of spatiotemporal modeling for short-term wind power forecasting at both individual and aggregated levels

    DEFF Research Database (Denmark)

    Lenzi, Amanda; Steinsland, Ingelin; Pinson, Pierre

    2018-01-01

    The share of wind energy in total installed power capacity has grown rapidly in recent years. Producing accurate and reliable forecasts of wind power production, together with a quantification of the uncertainty, is essential to optimally integrate wind energy into power systems. We build...... spatiotemporal models for wind power generation and obtain full probabilistic forecasts from 15 min to 5 h ahead. Detailed analyses of forecast performances on individual wind farms and aggregated wind power are provided. The predictions from our models are evaluated on a data set from wind farms in western...... Denmark using a sliding window approach, for which estimation is performed using only the last available measurements. The case study shows that it is important to have a spatiotemporal model instead of a temporal one to achieve calibrated aggregated forecasts. Furthermore, spatiotemporal models have...

  12. Assessing the spatial impact of climate on wheat productivity and the potential value of climate forecasts at a regional level

    Science.gov (United States)

    Wang, Enli; Xu, J.; Jiang, Q.; Austin, J.

    2009-03-01

    Quantification of the spatial impact of climate on crop productivity and the potential value of seasonal climate forecasts can effectively assist the strategic planning of crop layout and help to understand to what extent climate risk can be managed through responsive management strategies at a regional level. A simulation study was carried out to assess the climate impact on the performance of a dryland wheat-fallow system and the potential value of seasonal climate forecasts in nitrogen management in the Murray-Darling Basin (MDB) of Australia. Daily climate data (1889-2002) from 57 stations were used with the agricultural systems simulator (APSIM) to simulate wheat productivity and nitrogen requirement as affected by climate. On a good soil, simulated grain yield ranged from 7 t/ha in the east border regions. Optimal nitrogen rates ranged from 200 kgN/ha/yr. Simulated gross margin was in the range of -20/ha to 700/ha, increasing eastwards. Wheat yield was closely related to rainfall in the growing season and the stored soil moisture at sowing time. The impact of stored soil moisture increased from southwest to northeast. Simulated annual deep drainage ranged from zero in western inland to >200 mm in the east. Nitrogen management, optimised based on ‘perfect’ knowledge of daily weather in the coming season, could add value of 26˜79/ha compared to management optimised based on historical climate, with the maximum occurring in central to western part of MDB. It would also reduce the nitrogen application by 5˜25 kgN/ha in the main cropping areas. Comparison of simulation results with the current land use mapping in MDB revealed that the western boundary of the current cropping zone approximated the isolines of 160 mm of growing season rainfall, 2.5t/ha of wheat grain yield, and 150/ha of gross margin in QLD and NSW. In VIC and SA, the 160-mm isohyets corresponded relatively lower simulated yield due to less stored soil water. Impacts of other factors like soil

  13. Status of groundwater levels and storage volume in the Equus Beds aquifer near Wichita, Kansas, January 2006 to January 2010

    Science.gov (United States)

    Hansen, Cristi V.; Aucott, Walter R.

    2010-01-01

    A part of the Equus Beds aquifer in southwestern Harvey County and northwestern Sedgwick County was developed to supply water to residents of Wichita and for irrigation in south-central Kansas. Groundwater pumping for city and agricultural use caused water levels to decline in a large part of the aquifer northwest of Wichita. In 1965, the city of Wichita began using water from Cheney Reservoir in addition to water from the Equus Beds aquifer to meet the city's increasing demand for water. Irrigation pumpage in the area increased substantially during the 1970s and 1980s and contributed to the water-level declines. Water-level declines reached their maximum to date in October 1992.

  14. Relations between groundwater levels and anthropogenic and meteorological stressors at selected sites in east-central Florida, 1995-2007

    Science.gov (United States)

    Murray, Louis C.

    2010-01-01

    Multivariate linear regression analyses were used to define the relations of water levels in the Upper Floridan aquifer (UFA) and surficial aquifer system (SAS) to anthropogenic and meteorological stressors between 1995 and 2007 at two monitoring well sites (Charlotte Street and Lake Oliver) in east-central Florida. Anthropogenic stressors of interest included municipal and agricultural groundwater withdrawals, and application of reclaimed-water to rapid-infiltration basins (source of aquifer recharge). Meteorological stressors included precipitation and potential evapotranspiration. Overall, anthropogenic and meteorological stressors accounted for about 40 to 89 percent of the variance in UFA and SAS groundwater levels and water-level changes. While mean monthly water levels were better correlated with monthly stressor values, changes in UFA and SAS water levels were better correlated with changes in stressor values. Water levels and water-level changes were influenced by system persistence as the moving-averaged values of both stressor types, which accounted for the influence of the previous month(s) conditions, consistently yielded higher adjusted coefficients of determination (R2 adj) values than did single monthly values. While monthly water-level changes tend to be influenced equally with both stressors across the hydrologically averaged 13-year period, changes were more influenced by one stressor or the other seasonally and during extended wet and dry periods. Seasonally, UFA water-level changes tended to be more influenced by anthropogenic stressors than by meteorological stressors, while changes in SAS water levels tended to be more influenced by meteorological stressors. During extended dry periods (12 months or greater), changes in UFA water levels at Charlotte Street were more affected by anthropogenic stressors than by meteorological stressors, while changes in SAS levels were more affected by meteorological stressors. At Lake Oliver, changes in both

  15. Groundwater levels, geochemistry, and water budget of the Tsala Apopka Lake system, west-central Florida, 2004–12

    Science.gov (United States)

    McBride, W. Scott; Metz, Patricia A.; Ryan, Patrick J.; Fulkerson, Mark; Downing, Harry C.

    2017-12-18

    , and the Upper Floridan aquifer; and to estimate an annual water budget for each pool and for the entire lake system for 2004–12. The hydrologic interactions were evaluated using hydraulic head and geochemical data. Geochemical data, including major ion, isotope, and age-tracer data, were used to evaluate sources of water and to distinguish flow paths. Hydrologic connection of the surficial environment (lakes, ponds, wetlands, and the surficial aquifer) was quantified on the basis of a conceptualized annual water-budget model. The model included the change in surface water and groundwater storage, precipitation, evapotranspiration, surface-water inflow and outflow, and net groundwater exchange with the underlying Upper Floridan aquifer. The control volume for each pool extended to the base of the surficial aquifer and covered an area defined to exceed the maximum inundated area for each pool during 2004–12 by 0.5 foot. Net groundwater flow was computed as a lumped value and was either positive or negative, with a negative value indicating downward or lateral leakage from the control volume and a positive value indicating upward leakage to the control volume.The annual water budget for Tsala Apopka Lake was calculated using a combination of field observations and remotely sensed data for each of three pools and for the composite three pool area. A digital elevation model at a 5-foot grid spacing and bathymetric survey data were used to define the land-surface elevation and volume of each pool and to calculate the changes in inundated area with change in lake stage. Continuous lake-stage and groundwater-level data were used to define the change in storage for each pool. The rainfall data used in the water-budget calculations were based on daily radar reflectance data and measured rainfall from weather stations. Evapotranspiration was computed as a function of reference evapotranspiration, adjusted to actual evapotranspiration using a monthly land-cover coefficient

  16. Using the IRWQIGT Index to Determine Toxicity Levels in Groundwater Resources: A Case Study of Semnan Province

    Directory of Open Access Journals (Sweden)

    Allahbakhsh Javid

    2016-09-01

    Full Text Available The objective of the present descriptive-analytic study was to estimate the toxicity level of the groundwater resources in the Province of Semnan using the IRWQIGT index and its zoning via GIS. The experiments were conducted over the period from October 2013 to October 2014during which time monthly samples were taken from the 41 wells that supply drinking water to the cities and towns in the Province. All the samples were subjected to lab analyses at Semnan Water and Wastewater Laboratory where such chemical parameters as Arsenic, Phenol, Mercury, Detergents, Cadmium, Lead, Chromium, Cyanide, Iron, Magnesium, and TPH were determined according to the procedures of Standard Methods (2008. The measuerments were subsequently used to calculate the groundwater toxicity level index (IRWQIGT. Finally, a zoning map of the IRWQIGT index for Semnan Province was prepared using GIS. Results showed that the IRWQIGT index in Semnan Province ranged between 96.54 and 98.2, indicating an excellent water quality. The lowest (96.585 and highest (98.076 values of IRWQIGT were recorded in the cities of Sorkheh and Mahdishahr, respectively, and that the values for all the parameters were in the standard range. These results indicate that water of excellent quality is available in all the cities in the province so that no toxicity treatment is required.

  17. Analysis on the Change in Shallow Groundwater Level based on Monitoring Electric Energy Consumption - A Case Study in the North China Plain

    Science.gov (United States)

    Wang, L.; Wolfgang, K.; Steiner, J. F.

    2016-12-01

    Groundwater has been over-pumped for irrigation in the North China Plain in the past decades causing a drastic decrease in the groundwater level. Shallow groundwater can be recharged by rainfall, and the aquifer could be rehabilitated for sustainable use. However, understanding and maintaining the balance of the aquifer - including climatic as well as anthropogenic influences - are fundamental to enable such a sustainable groundwater management. This is still severely obstructed by a lack of measurements of recharge and exploitation. A project to measure groundwater pumping rate at the distributed scale based on monitoring electric energy consumption is going on in Guantao County (456 km2) located in the southern part of the North China Plain. Considerably less costly than direct measurements of the pumping rate, this approach enables us to (a) cover a larger area and (b) use historic electricity data to reconstruct water use in the past. Pumping tests have been carried out to establish a relation between energy consumption and groundwater exploitation. Based on the results of the pumping tests, the time series of the pumping rate can be estimated from the historical energy consumption and serves as the input for a box model to reconstruct the water balance of the shallow aquifer for recent years. This helps us to determine the relative contribution of recharge due to rainfall as well as drawdown due to groundwater pumping for irrigation. Additionally, 100 electric meters have been installed at the electric transformers supplying power for irrigation. With insights gained from the pumping tests, real-time monitoring of the groundwater exploitation is achieved by converting the measured energy consumption to the water use, and pumping control can also be achieved by limiting the energy use. A monitoring and controlling system can then be set up to implement the strategy of sustainable groundwater use.

  18. Changes between early development (1930–60) and recent (2005–15) groundwater-level altitudes and dissolved-solids and nitrate concentrations In and near Gaines, Terry, and Yoakum Counties, Texas

    Science.gov (United States)

    Thomas, Jonathan V.; Teeple, Andrew; Payne, Jason; Ikard, Scott

    2016-06-21

    Llano Estacado Underground Water Conservation District, Sandy Land Underground Water Conservation District, and South Plains Underground Water Conservation District manage groundwater resources in a part of west Texas near the Texas-New Mexico State line. Declining groundwater levels have raised concerns about the amount of available groundwater in the study area and the potential for water-quality changes resulting from dewatering and increased vertical groundwater movement between adjacent water-bearing units.

  19. Operational hydrological forecasting in Bavaria. Part II: Ensemble forecasting

    Science.gov (United States)

    Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.

    2009-04-01

    In part I of this study, the operational flood forecasting system in Bavaria and an approach to identify and quantify forecast uncertainty was introduced. The approach is split into the calculation of an empirical 'overall error' from archived forecasts and the calculation of an empirical 'model error' based on hydrometeorological forecast tests, where rainfall observations were used instead of forecasts. The 'model error' can especially in upstream catchments where forecast uncertainty is strongly dependent on the current predictability of the atrmosphere be superimposed on the spread of a hydrometeorological ensemble forecast. In Bavaria, two meteorological ensemble prediction systems are currently tested for operational use: the 16-member COSMO-LEPS forecast and a poor man's ensemble composed of DWD GME, DWD Cosmo-EU, NCEP GFS, Aladin-Austria, MeteoSwiss Cosmo-7. The determination of the overall forecast uncertainty is dependent on the catchment characteristics: 1. Upstream catchment with high influence of weather forecast a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. b) Corresponding to the characteristics of the meteorological ensemble forecast, each resulting forecast hydrograph can be regarded as equally likely. c) The 'model error' distribution, with parameters dependent on hydrological case and lead time, is added to each forecast timestep of each ensemble member d) For each forecast timestep, the overall (i.e. over all 'model error' distribution of each ensemble member) error distribution is calculated e) From this distribution, the uncertainty range on a desired level (here: the 10% and 90% percentile) is extracted and drawn as forecast envelope. f) As the mean or median of an ensemble forecast does not necessarily exhibit meteorologically sound temporal evolution, a single hydrological forecast termed 'lead forecast' is chosen and shown in addition to the uncertainty bounds. This can be

  20. Research on flow characteristics of deep groundwater by environmental isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Jun; Miyaoka, Kunihide [Tsukuba Univ., Ibaraki (Japan); Sakurai, Hideyuki; Senoo, Muneaki; Kumata, Masahiro; Mukai, Masayuki; Watanabe, Kazuo; Ouchi, Misao

    1996-01-01

    In this research, as the technique for grasping the behavior of groundwater in deep rock bed which is important as the factor of disturbing the natural barrier in the formation disposal of high level radioactive waste, the method of utilizing the environmental isotopes contained in groundwater as natural tracer was taken up, and by setting up the concrete field of investigation, through the forecast of flow by the two or three dimensional groundwater flow analysis using a computer, the planning and execution of water sampling, the analysis of various environmental isotopes, the interpretation based on those results of measurement and so on, the effectiveness of the investigation technique used was verified, and the real state of the behavior of deep groundwater in the district being studied was clarified. In this research, Imaichi alluvial fan located in northern Kanto plain was taken as the object. In fiscal year 1996, three-dimensional steady state groundwater flow simulation was carried out based on the data related to shallow groundwater and surface water systems, and the places where active groundwater flow is expected were selected, and boring will be carried out there. The analysis model and the results are reported. (K.I.)

  1. Development og groundwater flow modeling techniques for the low-level radwaste disposal (III)

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dae-Seok; Kim, Chun-Soo; Kim, Kyung-Soo; Park, Byung-Yoon; Koh, Yong-Kweon; Park, Hyun-Soo [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-12-01

    The project amis to establish the methodology of hydrogeologic assessment by the field application of the evaluation techniques gained and accumulated from the previous hydrogeological research works in Korea. The results of the project and their possible areas for application are (1) acquisition of detailed hydrogeologic information by using a borehole televiewer and a multipacker system, (2) establishing an integrated hydrogeological assessment method for fractured rocks, (3) acquisition of the fracture parameters for fracture modeling, (4) an inversion analysis of hydraulic parameters from fracture network modeling, (5) geostatistical methods for the spatial assignment of hydraulic parameters for fractured rocks, and (6) establishing the groundwater flow modeling procedure for a repository. 75 refs., 72 figs., 34 tabs. (Author)

  2. Development of groundwater flow modeling techniques for the low-level radwaste disposal(II)

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dae Seok; Kim, Chun Soo; Kim, Kyung Su; Koh, Yong Kweon; Park, Byung Yoon; Hwang, Yong Soo; Park, Hyun Soo [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Field survey tasks including core drilling and hydraulic tests in the study site were carried out to assess the hydrogeological parameters used in the groundwater flow model. The site-specific hydrogeological system has characterized based on the fracture properties and hydrogeologic parameters as the following: - the spatial distribution of hydraulic conductivity by geostatistics - the relation of fracture properties to hydraulic conductivity - the effective permeability in a hydrogeologic unit. From the study results, it was recognized that the hydraulic conductivity in fractured rock masses was preferentially affected by aperture size of conductive fractures. The homogeneous REV scale and hydraulic tensor could be calculated from three dimensional discrete fracture network model. 31 refs., 56 figs., 16 tabs. (Author)

  3. Forecasting Caspian Sea level changes using satellite altimetry data (June 1992-December 2013) based on evolutionary support vector regression algorithms and gene expression programming

    Science.gov (United States)

    Imani, Moslem; You, Rey-Jer; Kuo, Chung-Yen

    2014-10-01

    Sea level forecasting at various time intervals is of great importance in water supply management. Evolutionary artificial intelligence (AI) approaches have been accepted as an appropriate tool for modeling complex nonlinear phenomena in water bodies. In the study, we investigated the ability of two AI techniques: support vector machine (SVM), which is mathematically well-founded and provides new insights into function approximation, and gene expression programming (GEP), which is used to forecast Caspian Sea level anomalies using satellite altimetry observations from June 1992 to December 2013. SVM demonstrates the best performance in predicting Caspian Sea level anomalies, given the minimum root mean square error (RMSE = 0.035) and maximum coefficient of determination (R2 = 0.96) during the prediction periods. A comparison between the proposed AI approaches and the cascade correlation neural network (CCNN) model also shows the superiority of the GEP and SVM models over the CCNN.

  4. Water-level changes and directions of ground-water flow in the shallow aquifer, Fallon area, Churchill County, Nevada

    Science.gov (United States)

    Seiler, R.L.; Allander, K.K.

    1993-01-01

    The Truckee-Carson-Pyramid Lake Water Rights Settlement Act of 1990 directed the U.S. Fish and Wildlife Service to acquire water rights for wetland areas in the Carson Desert, Nevada. The public is concerned that htis acquisition of water rights and delivery of the water directly to wildlife areas would result in less recharge to the shallow ground water in the Fallon area and cause domestic wells to go dry. In January 1992, the U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife Service, began a study of the shallow ground-water system in the Fallon area in Churchill County, Nevada. A network of 126 wells in the study area was monitored. Between January and November 1992, water levels in most wells declined, usually less than 2 feet. The maximum measured decline over this period was 2.68 feet in a well near Stillwater Marsh. Between April and July, however, water levels rose in irrigated areas, typically 1 to 2 feet. Newlands Project water deliveries to the study area began soon after the turn of the century. Since then, water levels have risen more than 15 feet across much of the study area. Water lost from unlined irrigtiaon canals caused the stage in Big Soda Lake to rise nearly 60 feet; ground-water levels near the lake have risen 30 to 40 feet. The depth to water in most irrigated areas is now less than 10 feet. The altitude of the water table ranges from 4.025 feet above sea level 11 miles west of Fallon to 3,865 feet in the Stillwater Marsh area. Ground water flows eastward and divides; some flow goes to the northeast toward the Carson Sink and Stillwater areas, and some goes southeastward to Carson Lake.

  5. Descriptions and characterizations of water-level data and groundwater flow for the Brewster Boulevard and Castle Hayne Aquifer Systems and the Tarawa Terrace Aquifer

    Science.gov (United States)

    Faye, Robert E.; Jones, L. Elliott; Suárez-Soto, René J.

    2013-01-01

    This supplement of Chapter A (Supplement 3) summarizes results of analyses of groundwater-level data and describes corresponding elements of groundwater flow such as vertical hydraulic gradients useful for groundwater-flow model calibration. Field data as well as theoretical concepts indicate that potentiometric surfaces within the study area are shown to resemble to a large degree a subdued replica of surface topography. Consequently, precipitation that infiltrates to the water table flows laterally from highland to lowland areas and eventually discharges to streams such as Northeast and Wallace Creeks and New River. Vertically downward hydraulic gradients occur in highland areas resulting in the transfer of groundwater from shallow relatively unconfined aquifers to underlying confined or semi-confined aquifers. Conversely, in the vicinity of large streams such as Wallace and Frenchs Creeks, diffuse upward leakage occurs from underlying confined or semi-confined aquifers. Point water-level data indicating water-table altitudes, water-table altitudes estimated using a regression equation, and estimates of stream levels determined from a digital elevation model (DEM) and topographic maps were used to estimate a predevelopment water-table surface in the study area. Approximate flow lines along hydraulic gradients are shown on a predevelopment potentiometric surface map and extend from highland areas where potentiometric levels are greatest toward streams such as Wallace Creek and Northeast Creek. The distribution of potentiometric levels and corresponding groundwater-flow directions conform closely to related descriptions of the conceptual model.

  6. Hydrogeology, ground-water flow, and tritium movement at low-level radioactive-waste disposal site near Sheffield, Illinois

    Science.gov (United States)

    Garklavs, George; Healy, R.W.

    1986-01-01

    Groundwater flow and tritium movement are described at and near a low-level radioactive waste disposal site near Sheffield, Illinois. Flow in the shallow aquifer is confined to three basins that ultimately drain into a stripmine lake. Most of the flow from the site is through a buried, pebbly sandfilled channel. Remaining flow is toward alluvium of an existing stream. Conceptual flow models for the two largest basins are used to improve definition of flow velocity and direction. Flow velocities range from about 25 to 2,500 ft/yr. Tritium was found in all three basins. The most extensive migration of tritium is coincident with buried channel. Tritium concentrations ranged from detection level to more than 300 nanocuries/L. (USGS)

  7. Viewpoint of defining the groundwater chemistry for the performance assessment on geological disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Sasamoto, Hiroshi; Yui, Mikazu

    2000-01-01

    This report presents the viewpoint of defining the groundwater chemistry for performance assessment of the second progress report for research and development on geological disposal. Based on the results of statistical analysis (binary scatter plots) of the measured data in addition to the consideration of the first progress report, we defined the five hypothetically modeled groundwaters considering the general geological conditions and importance for performance assessment. In order to evaluate the priority of groundwater chemistries, we have analyzed the above five hypothetical groundwaters by considering the results of multivariate statistical analyses, data reliability, evidence for geochemical controls on groundwater chemistry and exclusion criteria for potential repository sites in Japan. As a result, the fresh reducing high pH (FRHP) type groundwater has been selected for the Reference Case analysis, and the saline reducing high pH (SRHP) type groundwater has been selected for the Alternative Geological Environmental Case analysis, respectively. (author)

  8. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Executive summary

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1985-05-01

    This document was written to provide guidance to managers and site operators on how ground-water transport codes should be selected for assessing burial site performance. There is a need for a formal approach to selecting appropriate codes from the multitude of potentially useful ground-water transport codes that are currently available. Code selection is a problem that requires more than merely considering mathematical equation-solving methods. These guidelines are very general and flexible and are also meant for developing systems simulation models to be used to assess the environmental safety of low-level waste burial facilities. Code selection is only a single aspect of the overall objective of developing a systems simulation model for a burial site. The guidance given here is mainly directed toward applications-oriented users, but managers and site operators need to be familiar with this information to direct the development of scientifically credible and defensible transport assessment models. Some specific advice for managers and site operators on how to direct a modeling exercise is based on the following five steps: identify specific questions and study objectives; establish costs and schedules for achieving answers; enlist the aid of professional model applications group; decide on approach with applications group and guide code selection; and facilitate the availability of site-specific data. These five steps for managers/site operators are discussed in detail following an explanation of the nine systems model development steps, which are presented first to clarify what code selection entails

  9. Ground-water development and the effects on ground-water levels and water quality in the town of Atherton, San Mateo County, California

    Science.gov (United States)

    Metzger, Loren F.; Fio, John L.

    1997-01-01

    measured hydraulic heads in the study area from April 1993 through September 1995 were above sea level indicates that saltwater intrusion was unlikely during this period. The chemistry of 20 well-water samples is characterized as a calcium magnesium carbonate bicarbonate type water. There is no evidence of saltwater intrusion from San Francisco Bay; how ever, water samples from wells nearest the bay and bedrock assemblages indicate a greater concentra tion of dissolved constituents and salinity. Dissolved-solids concentrations of water samples from wells in these areas exceeded 1,000 milli grams per liter, and several samples contained a substantial fraction of sodium and chloride. Water hardness for the 20 wells sampled averaged 471 milligrams per liter as calcium carbonate, which is classified as very hard. One well sample exceeded the primary maximum contaminant level for drinking water in nitrate, several wells exceeded the secondary maximum contaminant level for chloride and sulfate, and all wells sampled exceeded the secondary maximum contaminant level for total dissolved solids. Land-subsidence and the resultant damage because of excessive ground-water pumping, in combination with periodic drought, have a well- documented history in the south San Francisco Bay area. Land-elevation surveying data from 1934 to 1967 indicate that subsidence ranged from 0.1 to approximately 0.5 foot in the vicinity of the study area. It could not be determined from land- surface elevation surveying data from 1993 whether subsidence is currently occurring in the study area.

  10. Climatology of the Iberia coastal low-level wind jet: weather research forecasting model high-resolution results

    Directory of Open Access Journals (Sweden)

    Pedro M. M. Soares

    2013-01-01

    Full Text Available Coastal low-level jets (CLLJ are a low-tropospheric wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over the sea. This contrast between the cold ocean and the warm land in the summer is intensified by the impact of the coastal parallel winds on the ocean generating upwelling currents, sharpening the temperature gradient close to the coast and giving rise to strong baroclinic structures at the coast. During summertime, the Iberian Peninsula is often under the effect of the Azores High and of a thermal low pressure system inland, leading to a seasonal wind, in the west coast, called the Nortada (northerly wind. This study presents a regional climatology of the CLLJ off the west coast of the Iberian Peninsula, based on a 9 km resolution downscaling dataset, produced using the Weather Research and Forecasting (WRF mesoscale model, forced by 19 years of ERA-Interim reanalysis (1989–2007. The simulation results show that the jet hourly frequency of occurrence in the summer is above 30% and decreases to about 10% during spring and autumn. The monthly frequencies of occurrence can reach higher values, around 40% in summer months, and reveal large inter-annual variability in all three seasons. In the summer, at a daily base, the CLLJ is present in almost 70% of the days. The CLLJ wind direction is mostly from north-northeasterly and occurs more persistently in three areas where the interaction of the jet flow with local capes and headlands is more pronounced. The coastal jets in this area occur at heights between 300 and 400 m, and its speed has a mean around 15 m/s, reaching maximum speeds of 25 m/s.

  11. Dual wall reverse circulation drilling with multi-level groundwater sampling for groundwater contaminant plume delineation at Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    International Nuclear Information System (INIS)

    Smuin, D.R.; Morti, E.E.; Zutman, J.L.; Pickering, D.A.

    1995-01-01

    Dual wall reverse circulation (DWRC) drilling was used to drill 48 borings during a groundwater contaminant investigation at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky. This method was selected as an alternative to conventional hollow stem auger drilling for a number of reasons, including the expectation of minimizing waste, increasing the drilling rate, and reducing the potential for cross contamination of aquifers. Groundwater samples were collected from several water-bearing zones during drilling of each borehole. The samples were analyzed for volatile organic compounds using a field gas chromatograph. This approach allowed the investigation to be directed using near-real-time data. Use of downhole geophysical logging, in conjunction with lithologic descriptions of borehole cuttings, resulted in excellent correlation of the geology in the vicinity of the contaminant plume. The total volume of cuttings generated using the DWRC drilling method was less than half of what would have been produced by hollow stem augering; however, the cuttings were recovered in slurry form and had to be dewatered prior to disposal. The drilling rate was very rapid, often approaching 10 ft/min; however, frequent breaks to perform groundwater sampling resulted in an average drilling rate of < 1 ft/min. The time required for groundwater sampling could be shortened by changing the sampling methodology. Analytical results indicated that the drilling method successfully isolated the various water bearing zones and no cross contamination resulted from the investigation

  12. Load forecasting

    International Nuclear Information System (INIS)

    Mak, H.

    1995-01-01

    Slides used in a presentation at The Power of Change Conference in Vancouver, BC in April 1995 about the changing needs for load forecasting were presented. Technological innovations and population increase were said to be the prime driving forces behind the changing needs in load forecasting. Structural changes, market place changes, electricity supply planning changes, and changes in planning objectives were other factors discussed. It was concluded that load forecasting was a form of information gathering, that provided important market intelligence

  13. Design and skill assessment of an Operational Forecasting System for currents and sea level variability to the Santos Estuarine System - Brazil

    Science.gov (United States)

    Godoi Rezende Costa, C.; Castro, B. M.; Blumberg, A. F.; Leite, J. R. B., Sr.

    2017-12-01

    Santos City is subject to an average of 12 storm tide events per year. Such events bring coastal flooding able to threat human life and damage coastal infrastructure. Severe events have forced the interruption of ferry boat services and ship traffic through Santos Harbor, causing great impacts to Santos Port, the largest in South America, activities. Several studies have focused on the hydrodynamics of storm tide events but only a few of those studies have pursued an operational initiative to predict short term (operational forecasting system built to predict sea surface elevation and currents in the Santos Estuarine System and (ii) to evaluate model performance in simulating observed sea surface elevation. The Santos Operational Forecasting System (SOFS) hydrodynamic module is based on the Stevens Institute Estuarine and Coastal Ocean Model (sECOM). The fully automated SOFS is designed to provide up to 71 h forecast of sea surface elevations and currents every day. The system automatically collects results from global models to run the SOFS nested into another sECOM based model for the South Brazil Bight (SBB). Global forecasting results used to force both models come from Mercator Ocean, released by Copernicus Marine Service, and from the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS) stablished by the Center for Weather Forecasts and Climate Studies (with Portuguese acronym CPTEC). The complete routines task take about 8 hours of run time to finish. SOFS was able to hindcast a severe storm tide event that took place in Santos on August 21-22, 2016. Comparisons with observed sea level provided skills of 0.92 and maximum root mean square errors of 25 cm. The good agreement with observed data shows the potential of the designed system to predict storm tides and to support both human and assets protection.

  14. Groundwater movement on a Low-lying Carbonate Atoll Island and its Response to Climatic and Sea-level Fluctuations: Roi Namur, Republic of the Marshall Islands

    Science.gov (United States)

    Oberle, F. J.; Swarzenski, P. W.; Storlazzi, C. D.

    2017-12-01

    Atoll islands, most of which only average 1-2 meters above today's sea level, provide a tremendous natural laboratory in which to study and better understand the intensifying impacts of high rates of sea-level rise on tropical reef-lined islands. These islands are unique and on the frontline of negative societal impacts due to their geologic structure and limited water supply. Groundwater resources on atolls are typically minimal due to the low elevation and small surface area of the islands and are also subject to recurring droughts, and more frequent, storm-driven seawater overwash events. Although groundwater is the principal means of freshwater storage on atoll islands and is a major factor in determining the overall sustainability of island settlements, hydrological data on how an aquifer will response to changes in sea-level rise or storm-driven overwash remain limited. Here we present high-resolution time series hydrogeological and geochemical data from a 16 month study to determine the role of an atoll's carbonate geology, land use, and atmospheric and oceanographic forcing in driving coastal groundwater exchange including submarine groundwater discharge on the island of Roi-Namur on Kwajalein Atoll in the Republic of the Marshall Islands. This information can provide new estimates on the recovery and resilience of coastal groundwater resources on similar islands that are expected to experience climate change-driven perturbations.

  15. Evaluation of Elevated Tritium Levels in Groundwater Downgradient from the 618-11 Burial Ground Phase I Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Smith, R.M.; Williams, B.A.; Thompson, C.J.; Evans, J.C.; Hulstrom, L.C.

    2000-05-01

    This report describes the results of the preliminary investigation of elevated tritium in groundwater discovered near the 618-11 burial ground, located in the eastern part of the Hanford Site. Tritium in one well downgradient of the burial ground was detected at levels up to 8,140,000 pCi/L. The 618-11 burial ground received a variety of radioactive waste from the 300 Area between 1962 and 1967. The burial ground covers 3.5 hectare (8.6 acre) and contains trenches, large diameter caissons, and vertical pipe storage units. The burial ground was stabilized with a native sediment covering. The Energy Northwest reactor complex was constructed immediately east of the burial ground.

  16. Evaluation of Elevated Tritium Levels in Groundwater Downgradient from the 618-11 Burial Ground Phase I Investigations

    International Nuclear Information System (INIS)

    Dresel, P.E.; Smith, R.M.; Williams, B.A.; Thompson, C.J.; Evans, J.C.; Hulstrom, L.C.

    2000-01-01

    This report describes the results of the preliminary investigation of elevated tritium in groundwater discovered near the 618-11 burial ground, located in the eastern part of the Hanford Site. Tritium in one well downgradient of the burial ground was detected at levels up to 8,140,000 pCi/L. The 618-11 burial ground received a variety of radioactive waste from the 300 Area between 1962 and 1967. The burial ground covers 3.5 hectare (8.6 acre) and contains trenches, large diameter caissons, and vertical pipe storage units. The burial ground was stabilized with a native sediment covering. The Energy Northwest reactor complex was constructed immediately east of the burial ground

  17. Bi-decadal groundwater level trends in a semi-arid south indian region: Declines, causes and management

    Directory of Open Access Journals (Sweden)

    Rajendra P. Sishodia

    2016-12-01

    New hydrological insights for the region: Contrary to common perception of widespread groundwater declines only 22–36% of the wells showed statistically significant declines. The use of well depth during dry well periods may slightly underestimate the number of declining wells (by 1% and rate of decline. Increase in groundwater irrigated area combined with rainfall and power subsidy policy, were the main causative factors for the decline. Groundwater decline after implementation of free-electricity policy in 2004 confirmed the nexus between power subsidy and groundwater. These declines are likely to worsen due to future well drillings. Trends in other regions with similar hydro-geologic conditions need to be analyzed to verify groundwater declines and its linkages with power subsidy. Once established, reforms in power subsidy and well permit policy along with conversion to efficient micro–irrigation may be needed to maintain or enhance groundwater availability in the crystalline aquifer region of India (240 million ha.

  18. The role of sediment compaction and groundwater withdrawal in local sea-level rise, Sandy Hook, New Jersey, USA

    Science.gov (United States)

    Johnson, Christopher S.; Miller, Kenneth G.; Browning, James V.; Kopp, Robert E.; Khan, Nicole S.; Fan, Ying; Stanford, Scott D.; Horton, Benjamin P.

    2018-02-01

    The rate of relative sea-level (RSL) rise at Sandy Hook, NJ (4.0 ± 0.5 mm/yr) was higher than The Battery, NY (3.0 ± 0.3 mm/yr) from 1900 to 2012 despite being separated by just 26 km. The difference cannot be explained by differential glacial isostatic adjustment (GIA; 1.4 ± 0.4 and 1.3 ± 0.4 mm/yr RSL rise, respectively) alone. We estimate the contribution of sediment compaction to subsidence at Sandy Hook using high-resolution grain size, percent organic matter, and porosity data from three upper Quaternary (≤13,350 cal yr) cores. The organic matter content (indicates that compaction of deglacial silts likely reduced the column thickness by 10-20% over the past 13,350 cal yrs. While compaction rates were high immediately after the main silt deposition (13,350-13,150 cal yrs BP), rates decreased exponentially after deposition to an average 20th century rate of 0.16 mm/yr (90% Confidence Interval (C.I.), 0.06-0.32 mm/yr). The remaining ∼0.7 mm/yr (90% C.I. 0.3-1.2 mm/yr) difference in subsidence between Sandy Hook and The Battery is likely due to anthropogenic groundwater withdrawal. Historical data from Fort Hancock wells (2 km to the southeast of the Sandy Hook tide gauge) and previous regional work show that local and regional water extraction lowered the water levels in the aquifers underlying Sandy Hook. We suggest that the modern order of contribution to subsidence (highest to lowest) appears to be GIA, local/regional groundwater extraction, and compaction of thick Quaternary silts.

  19. Hydrologic conditions in urban Miami-Dade County, Florida, and the effect of groundwater pumpage and increased sea level on canal leakage and regional groundwater flow

    Science.gov (United States)

    Hughes, Joseph D.; White, Jeremy T.

    2014-01-01

    The extensive and highly managed surface-water system in southeastern Florida constructed during the 20th Century has allowed for the westward expansion of urban and agricultural activities in Miami-Dade County. In urban areas of the county, the surface-water system is used to (1) control urban flooding, (2) supply recharge to production well fields, and (3) control seawater intrusion. Previous studies in Miami-Dade County have determined that on a local scale, leakage from canals adjacent to well fields can supply a large percentage (46 to 78 percent) of the total groundwater pumpage from production well fields. Canals in the urban areas also receive seepage from the Biscayne aquifer that is derived from a combination of local rainfall and groundwater flow from Water Conservation Area 3 and Everglades National Park, which are west of urban areas of Miami-Dade County.

  20. Using a Bayesian Probabilistic Forecasting Model to Analyze the Uncertainty in Real-Time Dynamic Control of the Flood Limiting Water Level for Reservoir Operation

    DEFF Research Database (Denmark)

    Liu, Dedi; Li, Xiang; Guo, Shenglian

    2015-01-01

    Dynamic control of the flood limiting water level (FLWL) is a valuable and effective way to maximize the benefits from reservoir operation without exceeding the design risk. In order to analyze the impacts of input uncertainty, a Bayesian forecasting system (BFS) is adopted. Applying quantile water...... inflow values and their uncertainties obtained from the BFS, the reservoir operation results from different schemes can be analyzed in terms of benefits, dam safety, and downstream impacts during the flood season. When the reservoir FLWL dynamic control operation is implemented, there are two fundamental......, also deterministic water inflow was tested. The proposed model in the paper emphasizes the importance of analyzing the uncertainties of the water inflow forecasting system for real-time dynamic control of the FLWL for reservoir operation. For the case study, the selected quantile inflow from...

  1. Groundwater-level change and evaluation of simulated water levels for irrigated areas in Lahontan Valley, Churchill County, west-central Nevada, 1992 to 2012

    Science.gov (United States)

    Smith, David W.; Buto, Susan G.; Welborn, Toby L.

    2016-09-14

    The acquisition and transfer of water rights to wetland areas of Lahontan Valley, Nevada, has caused concern over the potential effects on shallow aquifer water levels. In 1992, water levels in Lahontan Valley were measured to construct a water-table map of the shallow aquifer prior to the effects of water-right transfers mandated by the Fallon Paiute-Shoshone Tribal Settlement Act of 1990 (Public Law 101-618, 104 Stat. 3289). From 1992 to 2012, approximately 11,810 water-righted acres, or 34,356 acre-feet of water, were acquired and transferred to wetland areas of Lahontan Valley. This report documents changes in water levels measured during the period of water-right transfers and presents an evaluation of five groundwater-flow model scenarios that simulated water-level changes in Lahontan Valley in response to water-right transfers and a reduction in irrigation season length by 50 percent.Water levels measured in 98 wells from 2012 to 2013 were used to construct a water-table map. Water levels in 73 of the 98 wells were compared with water levels measured in 1992 and used to construct a water-level change map. Water-level changes in the 73 wells ranged from -16.2 to 4.1 feet over the 20-year period. Rises in water levels in Lahontan Valley may correspond to annual changes in available irrigation water, increased canal flows after the exceptionally dry and shortened irrigation season of 1992, and the increased conveyance of water rights transferred to Stillwater National Wildlife Refuge. Water-level declines generally occurred near the boundary of irrigated areas and may be associated with groundwater pumping, water-right transfers, and inactive surface-water storage reservoirs. The largest water-level declines were in the area near Carson Lake.Groundwater-level response to water-right transfers was evaluated by comparing simulated and observed water-level changes for periods representing water-right transfers and a shortened irrigation season in areas near Fallon

  2. Applying a System Dynamics Approach for Modeling Groundwater Dynamics to Depletion under Different Economical and Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Hamid Balali

    2015-09-01

    Full Text Available In the recent decades, due to many different factors, including climate change effects towards be warming and lower precipitation, as well as some structural policies such as more intensive harvesting of groundwater and low price of irrigation water, the level of groundwater has decreased in most plains of Iran. The objective of this study is to model groundwater dynamics to depletion under different economic policies and climate change by using a system dynamics approach. For this purpose a dynamic hydro-economic model which simultaneously simulates the farmer’s economic behavior, groundwater aquifer dynamics, studied area climatology factors and government economical policies related to groundwater, is developed using STELLA 10.0.6. The vulnerability of groundwater balance is forecasted under three scenarios of climate including the Dry, Nor and Wet and also, different scenarios of irrigation water and energy pricing policies. Results show that implementation of some economic policies on irrigation water and energy pricing can significantly affect on groundwater exploitation and its volume balance. By increasing of irrigation water price along with energy price, exploitation of groundwater will improve, in so far as in scenarios S15 and S16, studied area’s aquifer groundwater balance is positive at the end of planning horizon, even in Dry condition of precipitation. Also, results indicate that climate change can affect groundwater recharge. It can generally be expected that increases in precipitation would produce greater aquifer recharge rates.

  3. Comparison of 1972 and 1996 water levels in the Goleta central ground-water subbasin, Santa Barbara County, California

    Science.gov (United States)

    Kaehler, Charles A.; Pratt, David A.; Paybins, Katherine S.

    1997-01-01

    Ground-water levels for 1996 were compared with 1972 water levels to determine if a "drought buffer" currently exists. The drought buffer was defined previously, in a litigated settlement involving the Goleta Water District, as the 1972 water level in the Central ground-water subbasin. To make this deter mination, a network of 15 well sites was selected, water levels were measured monthly from April through December 1996, and the 1996 water-level data were compared with1972 data. The study was done in cooperation with the Goleta Water District. The 1972-1996 water-level-altitude changes for corresponding months of the comparison years were averaged for each network well. These averaged changes ranged from a rise of 9.4 ft for well 2N2 to a decline of 45.0 ft for well 8K8. The results of the comparison indicate a rise in water level at 1 site (well 2N2) and a decline at 14 sites. The mean of the 14 negative average values was a decline of 24.0 ft. The altitude of the bottom of well 2N2 was higher than the bottom altitudes at the other network sites, and this well is located a few feet from a fault that acts as a hydrologic barrier. The results of the water-level comparison for the Central subbasin were influenced to some unknown degree by the areal distribution of the set of wells selected for the network and the vertical dis tribution of the perforated intervals of the wells. For this reason, the mean water-level change--a decline of 21.8 ft--calculated from the averages of the month-to-month changes for the 15 network sites, should be used with caution. In addition, the number of usable individual monthly comparison measurements available for an individual site ranged from one to nine, and averaged six. Therefore, a weighted mean of the monthly averages was calculated on the basis of the number of comparison measurements available for each site. The weighted mean is a decline of 20.9 ft. All Central subbasin wells that were idle (that is, were not being pumped

  4. Ground-water levels in aquifers used for residential supply, Campton Township, Kane County, Illinois

    Science.gov (United States)

    Kay, Robert T.; Kraske, Kurt A.

    1996-01-01

    The U.S. Geological Survey, in cooperation with the Campton Township Board of Trustees, measured water levels in the aquifers used for residential supply in Campton Township, Kane County, Illinois. Aquifers used for residential supply are the shallow and deep aquifers in the glacial drift, composed of unconsolidated sand and gravels; the Alexandrian-Maquoketa aquifer, composed of dolomite and shale of the Alexandrian Series and the Maquoketa Group; the Galena-Platteville aquifer, composed of dolomite of the Platteville and Galena Groups; and the Ancell aquifer, composed of sandstones of the Glenwood Formation and the St. Peter Sanstone. Water-level altitudes in the shallow drift aquifers generally follow surface topography. Analysis of water-level data does not clearly indicate overutilization of these aquifers. Water-level altitudes in the deep drift aquifers decrease from west to east. Comparison of historical depth to water measurements with current (1995) measurements indicates large decreases in water levels in some areas. The deep drift aquifers may be overutilized at these locations. Water-level altitudes in the Alexandrian-Maquoketa aquifer generally decrease from west to east. The potentiometric surface of the aquifer follows the bedrock-surface topography in some locations. Localized low water-level altitudes and large decreases in water levels indicate the Alexandrian-Maquoketa aquifer is overutilized in several areas. Water-level altitudes in the wells finished in the Galena- Platteville aquifer vary by more than 300 feet. Large decreases in water levels in wells finished in the Galena-Platteville aquifer indicate the Galena-Platteville and Alexandrian-Maquoketa aquifers are overutilized in the northern part of the township. Water-level altitudes in the wells finished in the Ancell aquifer are also highly variable. There is no indication that the Ancell aquifer is overutilized.

  5. Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level

    OpenAIRE

    KAUFFELD Anna; WETTERHALL F.; Pappenberger F.; SALAMON Peter; THIELEN DEL POZO Jutta

    2014-01-01

    The uncertainty in operational hydrological forecast systems driven with numerical weather predictions inputs are often assessed by quantifying the uncertainty from the inputs and not from the hydrological model itself. However, part of the uncertainty in modelled discharge stems from the hydrological model and some models may be more suitable than others for particular processes. A hydrological multi-model hydrological system can account for some of this uncertainty, but there exists a p...

  6. Probabilistic forecasting of shallow, rainfall-triggered landslides using real-time numerical weather predictions

    Directory of Open Access Journals (Sweden)

    J. Schmidt

    2008-04-01

    Full Text Available A project established at the National Institute of Water and Atmospheric Research (NIWA in New Zealand is aimed at developing a prototype of a real-time landslide forecasting system. The objective is to predict temporal changes in landslide probability for shallow, rainfall-triggered landslides, based on quantitative weather forecasts from numerical weather prediction models. Global weather forecasts from the United Kingdom Met Office (MO Numerical Weather Prediction model (NWP are coupled with a regional data assimilating NWP model (New Zealand Limited Area Model, NZLAM to forecast atmospheric variables such as precipitation and temperature up to 48 h ahead for all of New Zealand. The weather forecasts are fed into a hydrologic model to predict development of soil moisture and groundwater levels. The forecasted catchment-scale patterns in soil moisture and soil saturation are then downscaled using topographic indices to predict soil moisture status at the local scale, and an infinite slope stability model is applied to determine the triggering soil water threshold at a local scale. The model uses uncertainty of soil parameters to produce probabilistic forecasts of spatio-temporal landslide occurrence 48~h ahead. The system was evaluated for a damaging landslide event in New Zealand. Comparison with landslide densities estimated from satellite imagery resulted in hit rates of 70–90%.

  7. Marine water from mid-Holocene sea level highstand trapped in a coastal aquifer: Evidence from groundwater isotopes, and environmental significance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Stephen [School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne (Australia); Currell, Matthew, E-mail: Matthew.currell@rmit.edu.au [School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne (Australia); Cendón, Dioni I. [Australian Nuclear Science and Technology Organisation, Kirrawee (Australia); Connected Water Initiative, School of Biological, Earth and Environmental Sciences, University of New South Wales (UNSW), Sydney (Australia)

    2016-02-15

    A multi-layered coastal aquifer in southeast Australia was assessed using environmental isotopes, to identify the origins of salinity and its links to palaeo-environmental setting. Spatial distribution of groundwater salinity (electrical conductivity values ranging from 0.395 to 56.1 mS/cm) was examined along the coastline along with geological, isotopic and chemical data. This allowed assessment of different salinity sources and emplacement mechanisms. Molar chloride/bromide ratios range from 619 to 1070 (621 to 705 in samples with EC > 15 mS/cm), indicating salts are predominantly marine. Two distinct vertical salinity profiles were observed, one with increasing salinity with depth and another with saline shallow water overlying fresh groundwater. The saline shallow groundwater (EC = 45.4 to 55.7 mS/cm) has somewhat marine-like stable isotope ratios (δ{sup 18}O = − 2.4 to − 1.9 ‰) and radiocarbon activities indicative of middle Holocene emplacement (47.4 to 60.4 pMC). This overlies fresher groundwater with late Pleistocene radiocarbon ages and meteoric stable isotopes (δ{sup 18}O = − 5.5 to − 4.6‰). The configuration suggests surface inundation of the upper sediments by marine water during the mid-Holocene (c. 2–8 kyr BP), when sea level was 1–2 m above today's level. Profiles of chloride, stable isotopes, and radiocarbon indicate mixing between this pre-modern marine water and fresh meteoric groundwater to varying degrees around the coastline. Mixing calculations using chloride and stable isotopes show that in addition to fresh-marine water mixing, some salinity is derived from transpiration by halophytic vegetation (e.g. mangroves). The δ{sup 13}C ratios in saline water (− 17.6 to − 18.4‰) also have vegetation/organic matter signatures, consistent with emplacement by surface inundation and extensive interaction between vegetation and recharging groundwater. Saline shallow groundwater is preserved only in areas where low

  8. Assessing Lake Level Variability and Water Availability in Lake Tana, Ethiopia using a Groundwater Flow Model and GRACE Satellite Data

    Science.gov (United States)

    Hasan, E.; Dokou, Z.; Kirstetter, P. E.; Tarhule, A.; Anagnostou, E. N.; Bagtzoglou, A. C.; Hong, Y.

    2017-12-01

    Lake Tana is the source of the Blue Nile and Ethiopia's largest natural buffer against seasonal variations of rainfall. Assessing the interactions between the lake level fluctuation, hydroclimatic variabilities and anthropogenic factors is essential to detect drought conditions and identify the role of human management in controlling the Lake water balance. Via an extended record of Total Water Storage (TWS) anomalies for the period 1960-2016, a water budget model for the lake water inflow/outflow was developed. Estimates of Lake Level Altimetry (LLA) based on in-situ and satellite altimetry were composited from 1960-2016 and compared to the extended TWS anomalies, the self-calibrated Palmer Drought Severity Index (scPDSI), the El Niño Southern Oscillation (ENSO) and the historical lake water levels and releases. In addition, the simulated lake levels and water budget from a coupled groundwater and lake model of the Lake Tana basin were compared to the above results. Combining the different approaches, the water budget of the lake can be monitored, the drought conditions can be identified and the role of human management in the lake can be determined. For instance, three major drought periods are identified, 1970 to 1977, 1979 to 1987 and 1990 to 1998, each succeeded with an interposed flooding related recovery year, i.e. 1978, 1988 and 1999. The drought/flooding events were attributed mainly to the ENSO interactions that resulted in lake level fluctuations. The period from 2002-2006 was associated with a remarkable decline of the lake level that was attributed partly in drought conditions and the full flow regulation of the Chara Chara weir at the lake outlet, initiated in 2001.

  9. Does a more skilful meteorological input lead to a more skilful flood forecast at seasonal timescales?

    Science.gov (United States)

    Neumann, Jessica; Arnal, Louise; Magnusson, Linus; Cloke, Hannah

    2017-04-01

    Seasonal river flow forecasts are important for many aspects of the water sector including flood forecasting, water supply, hydropower generation and navigation. In addition to short term predictions, seasonal forecasts have the potential to realise higher benefits through more optimal and consistent decisions. Their operational use however, remains a challenge due to uncertainties posed by the initial hydrologic conditions (e.g. soil moisture, groundwater levels) and seasonal climate forcings (mainly forecasts of precipitation and temperature), leading to a decrease in skill with increasing lead times. Here we present a stakeholder-led case study for the Thames catchment (UK), currently being undertaken as part of the H2020 IMPREX project. The winter of 2013-14 was the wettest on record in the UK; driven by 12 major Atlantic depressions, the Thames catchment was subject to compound (concurrent) flooding from fluvial and groundwater sources. Focusing on the 2013-14 floods, this study aims to see whether increased skill in meteorological input translates through to more accurate forecasting of compound flood events at seasonal timescales in the Thames catchment. An earlier analysis of the ECMWF System 4 (S4) seasonal meteorological forecasts revealed that it did not skilfully forecast the extreme event of winter 2013-14. This motivated the implementation of an atmospheric experiment by the ECMWF to force the S4 to more accurately represent the low-pressure weather conditions prevailing in winter 2013-14 [1]. Here, we used both the standard and the "improved" S4 seasonal meteorological forecasts to force the EFAS (European Flood Awareness System) LISFLOOD hydrological model. Both hydrological forecasts were started on the 1st of November 2013 and run for 4 months of lead time to capture the peak of the 2013-14 flood event. Comparing the seasonal hydrological forecasts produced with both meteorological forcing data will enable us to assess how the improved meteorology

  10. Excel Spreadsheet Tools for Analyzing Groundwater Level Records and Displaying Information in ArcMap

    Science.gov (United States)

    Tillman, Fred D.

    2009-01-01

    When beginning hydrologic investigations, a first action is often to gather existing sources of well information, compile this information into a single dataset, and visualize this information in a geographic information system (GIS) environment. This report presents tools (macros) developed using Visual Basic for Applications (VBA) for Microsoft Excel 2007 to assist in these tasks. One tool combines multiple datasets into a single worksheet and formats the resulting data for use by the other tools. A second tool produces summary information about the dataset, such as a list of unique site identification numbers, the number of water-level observations for each, and a table of the number of sites with a listed number of water-level observations. A third tool creates subsets of the original dataset based on user-specified options and produces a worksheet with water-level information for each well in the subset, including the average and standard deviation of water-level observations and maximum decline and rise in water levels between any two observations, among other information. This water-level information worksheet can be imported directly into ESRI ArcMap as an 'XY Data' file, and each of the fields of summary well information can be used for custom display. A separate set of VBA tools distributed in an additional Excel workbook creates hydrograph charts of each of the wells in the data subset produced by the aforementioned tools and produces portable document format (PDF) versions of the hydrograph charts. These PDF hydrographs can be hyperlinked to well locations in ArcMap or other GIS applications.

  11. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    International Nuclear Information System (INIS)

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith LaRue, J.; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    component of 0.5 foot, is estimated to be about 6,000 acre-feet. Annual subsurface outflow from Oasis Valley into the Amargosa Desert is estimated to be between 30 and 130 acre-feet. Estimates of total annual ground-water withdrawal from Oasis Valley by municipal and non-municipal users in 1996 and 1999 are 440 acre-feet and 210 acre-feet, respectively. Based on these values, natural annual ground-water discharge from Oasis Valley is about 6,100 acre-feet. Total annual discharge was 6,500 acre-feet in 1996 and 6,300 acre-feet in 1999. This quantity of natural ground-water discharge from Oasis Valley exceeds the previous estimate made in 1962 by a factor of about 2.5. Water levels were measured in Oasis Valley to gain additional insight into the ET process. In shallow wells, water levels showed annual fluctuations as large as 7 feet and daily fluctuations as large as 0.2 foot. These fluctuations may be attributed to water loss associated with evapotranspiration. In shallow wells affected by E T, annual minimum depths to water generally occurred in winter or early spring shortly after daily ET reached minimum rates. Annual maximum depths to water generally occurred in late summer or fall shortly after daily ET reached maximum rates. The magnitude of daily water-level fluctuations generally increased as ET increased and decreased as depth to water increased

  12. Exposure Forecaster

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Exposure Forecaster Database (ExpoCastDB) is EPA's database for aggregating chemical exposure information and can be used to help with chemical exposure...

  13. Strategic Forecasting

    DEFF Research Database (Denmark)

    Duus, Henrik Johannsen

    2016-01-01

    Purpose: The purpose of this article is to present an overview of the area of strategic forecasting and its research directions and to put forward some ideas for improving management decisions. Design/methodology/approach: This article is conceptual but also informed by the author’s long contact...... and collaboration with various business firms. It starts by presenting an overview of the area and argues that the area is as much a way of thinking as a toolbox of theories and methodologies. It then spells out a number of research directions and ideas for management. Findings: Strategic forecasting is seen...... as a rebirth of long range planning, albeit with new methods and theories. Firms should make the building of strategic forecasting capability a priority. Research limitations/implications: The article subdivides strategic forecasting into three research avenues and suggests avenues for further research efforts...

  14. Natural background levels and threshold values of chemical species in three large-scale groundwater bodies in Northern Italy

    International Nuclear Information System (INIS)

    Molinari, Antonio; Guadagnini, Laura; Marcaccio, Marco; Guadagnini, Alberto

    2012-01-01

    We analyze natural background levels (NBLs) and threshold values (TVs) of spatially distributed chemical species (NH 4 , B and As) which may be a potential pressure and concern in three large scale alluvial and fluvio-deltaic aquifers at different depths of the Apennines and Po river plains in Emilia–Romagna, Northern Italy. Our results are based on statistical methodologies designed to separate the natural and anthropogenic contributions in monitored concentrations by modeling the empirical distribution of the detected concentration with a mixture of probability density functions. Available chemical observations are taken over a 20 years period and are associated with different depths and cover planar investigation scales of the order of hundreds of kilometers. High concentration values detected for NH 4 and B appear to be related to high natural background levels. Due to interaction with the host rock in different geochemical environments we observed that concentration vary in time and space (including in depth) consistently with the hydrogeochemical features and the occurrence of natural attenuation mechanisms in the analyzed reservoirs. Conversely, estimated As NBLs are not consistent with the conceptual model of the hydrogeochemical behavior of the systems analyzed and experimental evidences of As content in aquifer cores. This is due to the inability of these techniques to incorporate the complex dynamics of the processes associated with the specific hydrogeochemical setting. Statistical analyses performed upon aggregating the concentration data according to different time observation windows allow identifying temporal dynamics of NBLs and TVs of target compounds within the observation time frame. Our results highlight the benefit of a dynamic monitoring process and analysis of well demarcated groundwater bodies to update the associated NBLs as a function of the temporal dependence of natural processes occurring in the subsurface. Monitoring protocols could

  15. Natural background levels and threshold values of chemical species in three large-scale groundwater bodies in Northern Italy

    Energy Technology Data Exchange (ETDEWEB)

    Molinari, Antonio, E-mail: ant.molinari2002@libero.it [Politecnico di Milano, Dipartimento di Ingegneria Idraulica, Ambientale, Infrastrutture Viarie e Rilevamento, Piazza L. Da Vinci, 32-20133 Milano (Italy); Guadagnini, Laura [Politecnico di Milano, Dipartimento di Ingegneria Idraulica, Ambientale, Infrastrutture Viarie e Rilevamento, Piazza L. Da Vinci, 32-20133 Milano (Italy); Marcaccio, Marco [ARPA Emilia-Romagna, Direzione Tecnica, Largo Caduti del Lavoro, 6-40122 Bologna (Italy); Guadagnini, Alberto [Politecnico di Milano, Dipartimento di Ingegneria Idraulica, Ambientale, Infrastrutture Viarie e Rilevamento, Piazza L. Da Vinci, 32-20133 Milano (Italy)

    2012-05-15

    We analyze natural background levels (NBLs) and threshold values (TVs) of spatially distributed chemical species (NH{sub 4}, B and As) which may be a potential pressure and concern in three large scale alluvial and fluvio-deltaic aquifers at different depths of the Apennines and Po river plains in Emilia-Romagna, Northern Italy. Our results are based on statistical methodologies designed to separate the natural and anthropogenic contributions in monitored concentrations by modeling the empirical distribution of the detected concentration with a mixture of probability density functions. Available chemical observations are taken over a 20 years period and are associated with different depths and cover planar investigation scales of the order of hundreds of kilometers. High concentration values detected for NH{sub 4} and B appear to be related to high natural background levels. Due to interaction with the host rock in different geochemical environments we observed that concentration vary in time and space (including in depth) consistently with the hydrogeochemical features and the occurrence of natural attenuation mechanisms in the analyzed reservoirs. Conversely, estimated As NBLs are not consistent with the conceptual model of the hydrogeochemical behavior of the systems analyzed and experimental evidences of As content in aquifer cores. This is due to the inability of these techniques to incorporate the complex dynamics of the processes associated with the specific hydrogeochemical setting. Statistical analyses performed upon aggregating the concentration data according to different time observation windows allow identifying temporal dynamics of NBLs and TVs of target compounds within the observation time frame. Our results highlight the benefit of a dynamic monitoring process and analysis of well demarcated groundwater bodies to update the associated NBLs as a function of the temporal dependence of natural processes occurring in the subsurface. Monitoring

  16. Waste and cost reduction using dual wall reverse circulation drilling with multi-level groundwater sampling for contaminant plume delineation

    International Nuclear Information System (INIS)

    Smuin, D.R.

    1995-01-01

    This paper describes the drilling and sampling methods used to delineate a groundwater contaminant plume at the Paducah Gaseous Diffusion Plant (PGDP) during the Groundwater Monitoring IV characterization. The project was unique in that it relied upon dual wall reverse circulation drilling instead of the traditional hollow stem auger method. The Groundwater Monitoring program sought to characterize the boundaries, both vertically and horizontally, of the northeast plume which contains both 99 Tc and trichloroethene. This paper discusses the strengths and weaknesses of the drilling method used by investigators

  17. Development of groundwater flow modeling for the low-level radwaste disposal (I)

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dae Seok; Kim, Chun Soo; Kim, Kyung Soo; Koh, Yong Kweon; Hwang, Yong Soo; Park, Hyun Soo [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-08-01

    Major problems facing in the hydrogeological assessment for a disposal site are resulted from the uncertainties involved in hydraulic parameters of geologic media and the limitation of field investigation methods. These technical problems are, in turn, closely related to the confidence level of numerical modeling results. This research project aims to establish the hydrogeologic assessment methodology suitable to domestic geologic environments with reference to the safety analysis and site characterization for a repository. 26 refs., 65 figs., 14 tabs. (Author)

  18. Convenient telemetry system for precise and continuous measurement of groundwater level and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tsunakawa, Hideo; Asada, Toshi

    1988-03-25

    A telemeter system has been developed, a device easy to manufacture and install and which facilitates data collection and achieves a relative precision to at least 1 cm in underground water level and 5 m deg C in underground water temperature, thus contributing to earthquake prediction. Its underground water level sensor feeds as voltage the differential pressure of a membrane to which a semiconductor sensor chip is attached. The sensor uses a 12V DC power supply and achieves a sensitivity of 8 mV/cm to sense a 0-5 m water level change as a 1-5 V voltage fluctuation. This sensor is put into a 40 mm-diameter, 100 mm-long brass container and dipped in water at a depth of about 2.5 m. To detect underground water temperature sensor, a semiconductor sensor LM35 is placed in a 25 mm-diameter, 50 mm-long brass container and submerged at a desired depth. The system uses a 12-bit data logger. Telemetry takes place at 1,200 bps via modems and NTT's(Nippon Telegraph and Telecommunications) public telephone line. An example of measurement is shown and mentioned. (2 figs, 5 refs)

  19. Artificial Neural Network forecasting of storm surge water levels at major estuarine ports to supplement national tide-surge models and improve port resilience planning

    Science.gov (United States)

    French, Jon; Mawdsley, Robert; Fujiyama, Taku; Achuthan, Kamal

    2017-04-01

    Effective prediction of tidal storm surge is of considerable importance for operators of major ports, since much of their infrastructure is necessarily located close to sea level. Storm surge inundation can damage critical elements of this infrastructure and significantly disrupt port operations and downstream supply chains. The risk of surge inundation is typically approached using extreme value analysis, while short-term forecasting generally relies on coastal shelf-scale tide and surge models. However, extreme value analysis does not provide information on the duration of a surge event and can be sensitive to the assumptions made and the historic data available. Also, whilst regional tide and surge models perform well along open coasts, their fairly coarse spatial resolution means that they do not always provide accurate predictions for estuarine ports. As part of a NERC Environmental Risks to Infrastructure Innovation Programme project, we have developed a tool that is specifically designed to forecast the North Sea storm surges on major ports along the east coast of the UK. Of particular interest is the Port of Immingham, Humber estuary, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. A tidal surge in December 2013, with an estimated return period of 760 years, partly flooded the port, damaged infrastructure and disrupted operations for several weeks. This and other recent surge events highlight the need for additional tools to supplement the national UK Storm Tide Warning Service. Port operators are also keen to have access to less computationally expensive forecasting tools for scenario planning and to improve their resilience to actual events. In this paper, we demonstrate the potential of machine learning methods based on Artificial Neural Networks (ANNs) to generate accurate short-term forecasts of extreme water levels at estuarine North Sea ports such as Immingham. An ANN is

  20. Culture, climate change and farm-level groundwater management: An Australian case study

    Science.gov (United States)

    Sanderson, Matthew R.; Curtis, Allen L.

    2016-05-01

    Cultural factors - values, beliefs, and norms - provide important insights into the environmental attitudes, risk perceptions, and behaviors of the general population. Little is known, however, about the ostensibly complex relationships linking those elements of culture to climate change risk perceptions, especially in the context of farm level decision in the ground water context. This paper addresses that gap through an analysis of survey data provided by irrigators in the Namoi catchment of Australia's Murray-Darling Basin. We use Values-Beliefs-Norms theory to construct multivariate models of the relationship between ground water irrigators' interpretations of climate change risks and their implementation of adaptive water conservation practices. Results indicate that these cultural factors are important explanations of irrigators' climate change risk perceptions, and these risk perceptions are related to adaptive ground water management strategies at the farm level. The implications of the findings are discussed for research on the culture-environment nexus and for outreach designed to encourage agricultural adaptations to climate change.

  1. Mitigation of greenhouse gas emissions from reed canary grass in paludiculture: effect of groundwater level

    DEFF Research Database (Denmark)

    Karki, Sandhya; Elsgaard, Lars; Audet, Joachim

    2014-01-01

    below the soil surface. Gross primary production (GPP) was estimated from the above ground biomass yield. Results The mean dry biomass yield across all water table treatments was 6 Mg ha−1 with no significant differences between the treatments. Raising the GWL to the surface decreased both the net...... of peatlands grown with reed canary grass (RCG) and rewetted to various extents. Methods Gas fluxes of CO2, methane (CH4) and nitrous oxide (N2O) were measured with a static chamber technique for 10 months from mesocosms sown with RCG and manipulated to ground water levels (GWL) of 0, −10, −20, −30 and −40 cm...... The results showed that a reduction in total GHG emission can be achieved without losing the productivity of newly established RCG when GWL is maintained close to the surface. Further studies should address the practical constrains and long-term productivity of RCG cultivation in rewetted peatlands....

  2. Hanford groundwater scenario studies

    International Nuclear Information System (INIS)

    Arnett, R.C.; Gephart, R.E.; Deju, R.A.; Cole, C.R.; Ahlstrom, S.W.

    1977-05-01

    This report documents the results of two Hanford groundwater scenario studies. The first study examines the hydrologic impact of increased groundwater recharge resulting from agricultural development in the Cold Creek Valley located west of the Hanford Reservation. The second study involves recovering liquid radioactive waste which has leaked into the groundwater flow system from a hypothetical buried tank containing high-level radioactive waste. The predictive and control capacity of the onsite Hanford modeling technology is used to evaluate both scenarios. The results of the first study indicate that Cold Creek Valley irrigationis unlikely to cause significant changes in the water table underlying the high-level waste areas or in the movement of radionuclides already in the groundwater. The hypothetical tank leak study showed that an active response (in this case waste recovery) can be modeled and is a possible alternative to passive monitoring of radionuclide movement in the unlikely event that high-level waste is introduced into the groundwater

  3. Thermal-hydraulic-geochemical coupled processes around disposed high level nuclear waste in deep granite hosted geological repositories: frontier areas of advanced groundwater research in India

    International Nuclear Information System (INIS)

    Bajpai, R.K.

    2012-01-01

    Indian policy for permanent disposal of high level nuclear wastes with radionuclide having very long half lives include their immobilization in a stable matrix i.e. glasses of suitable composition, its storage in high integrity steel canisters and subsequent disposal in suitable host rock like granites at a depth of 400-500m in stable geological set up. The site for such disposal facilities are selected after vigorous assessment of their stability implying an exhaustive site selection methodology based on a large number of criteria and attributes. In India, an area of about 70000 square kilometers occupied by granites has been subjected to such evaluation for generating comprehensive database on host rock parameters. The sites selected after such intensive analysis are expected to remain immune to processes like seismicity, volcanism, faulting, uplift, erosion, flooding etc. even in distant future spanning over tens of thousands of years. Nevertheless, groundwater has emerged as the only credible pathway through which disposed waste can eventually find its way to accessible biosphere. Hence groundwater research constitutes one of the most important aspects in demonstration of safety of such disposal. The disposed waste due to continuous emission of decay heat creates high temperature field around them with resultant increase in groundwater temperature in the vicinity. Hot groundwater on reacting with steel canisters, backfill clays and cement used around the disposed canister, produces geochemical environment characterized by altered Ph, Eh and groundwater compositions. Acceleration in geochemical interaction among waste-groundwater-clay-cement-granite often results in dissolution or precipitation reactions along the groundwater flow paths i.e. fractures with resultant increase or decrease in their permeability. Thus thermal, hydraulic and geochemical processes work interdependently around the disposed waste. These coupled processes also control the release and

  4. Forecast of auroral activity

    International Nuclear Information System (INIS)

    Lui, A.T.Y.

    2004-01-01

    A new technique is developed to predict auroral activity based on a sample of over 9000 auroral sites identified in global auroral images obtained by an ultraviolet imager on the NASA Polar satellite during a 6-month period. Four attributes of auroral activity sites are utilized in forecasting, namely, the area, the power, and the rates of change in area and power. This new technique is quite accurate, as indicated by the high true skill scores for forecasting three different levels of auroral dissipation during the activity lifetime. The corresponding advanced warning time ranges from 22 to 79 min from low to high dissipation levels

  5. Forecasting metal prices: Do forecasters herd?

    DEFF Research Database (Denmark)

    Pierdzioch, C.; Rulke, J. C.; Stadtmann, G.

    2013-01-01

    We analyze more than 20,000 forecasts of nine metal prices at four different forecast horizons. We document that forecasts are heterogeneous and report that anti-herding appears to be a source of this heterogeneity. Forecaster anti-herding reflects strategic interactions among forecasters...

  6. Geostatistics as a tool to improve the natural background level definition: An application in groundwater.

    Science.gov (United States)

    Dalla Libera, Nico; Fabbri, Paolo; Mason, Leonardo; Piccinini, Leonardo; Pola, Marco

    2017-11-15

    The Natural Background Level (NBL), suggested by UE BRIDGE project, is suited for spatially distributed datasets providing a regional value that could be higher than the Threshold Value (TV) set by every country. In hydro-geochemically dis-homogeneous areas, the use of a unique regional NBL, higher than TV, could arise problems to distinguish between natural occurrences and anthropogenic contaminant sources. Hence, the goal of this study is to improve the NBL definition employing a geostatistical approach, which reconstructs the contaminant spatial structure accounting geochemical and hydrogeological relationships. This integrated mapping is fundamental to evaluate the contaminant's distribution impact on the NBL, giving indications to improve it. We decided to test this method on the Drainage Basin of Venice Lagoon (DBVL, NE Italy), where the existing NBL is seven times higher than the TV. This area is notoriously affected by naturally occurring arsenic contamination. An available geochemical dataset collected by 50 piezometers was used to reconstruct the spatial distribution of arsenic in the densely populated area of the DBVL. A cokriging approach was applied exploiting the geochemical relationships among As, Fe and NH4+. The obtained spatial predictions of arsenic concentrations were divided into three different zones: i) areas with an As concentration lower than the TV, ii) areas with an As concentration between the TV and the median of the values higher than the TV, and iii) areas with an As concentration higher than the median. Following the BRIDGE suggestions, where enough samples were available, the 90th percentile for each zone was calculated to obtain a local NBL (LNBL). Differently from the original NBL, this local value gives more detailed water quality information accounting the hydrogeological and geochemical setting, and contaminant spatial variation. Hence, the LNBL could give more indications about the distinction between natural occurrence and

  7. Declining Groundwater Levels in North India: Understanding Sources of Irrigation Inefficiency

    Science.gov (United States)

    O'Keeffe, J.; Buytaert, W.; Mijic, A.; Brozovic, N.

    2014-12-01

    Over the last half century, the green revolution has transformed India from a famine-prone, drought-susceptible country, into the world's third largest grain producer and one of the most intensely irrigated regions on the planet. This is in no small part due to the country's vast water resources along with an increase in tubewells and more advanced abstraction methods. While agricultural intensification has had undeniable benefits, it has, and continues to have a significant impact on water resources. Unless solutions which take into consideration the ever evolving socio-economic, hydrological and climatic conditions are found, India's agricultural future looks bleak.This research examines the irrigation behaviour of farmers, using data collected during field work in the State of Uttar Pradesh within the Ganges Basin of North India. Significant differences in farmer behaviour and irrigation practices are highlighted, not only between State districts but between individual farmers. This includes the volume of irrigation water applied and the price paid, as well as differences in the yields of crops produced. Analyses of results suggest that this is due to a number of factors, particularly the source of irrigation water. Study areas which had access to cheaper, but crucially less reliable, canal water were found to invest in more efficient water saving technologies in order to reduce the overall cost of irrigation during periods where less expensive canal water is not available. As a result, overall water use and irrigation cost is lower and yields are higher despite very similar climatic conditions. While cheap canal water is not an option for all farmers, the results show that the introduction of more efficient water saving technologies, despite the significant capital expenditure is a viable option for many farmers and costs can be recovered in a relatively short space of time. In addition, the reduction of declining water levels mean that water is abstracted from

  8. Assessment of storm forecast

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Hahmann, Andrea N.; Huus Bjerge, Martin

    When wind speed exceeds a certain value, wind turbines shut-down in order to protect their structure. This leads to sudden wind plants shut down and to new challenges concerning the secure operation of the pan-European electric system with future large scale offshore wind power. This task aims...... stopped, completely or partially, producing due to extreme wind speeds. Wind speed and power measurements from those events are presented and compared to the forecast available at Energinet.dk. The analysis looked at wind speed and wind power forecast. The main conclusion of the analysis is that the wind...... to consider it an EWP) and that the available wind speed forecasts are given as a mean wind speed over a rather large area. At wind power level, the analysis shows that prediction of accurate production levels from a wind farm experiencing EWP is rather poor. This is partially because the power curve...

  9. Wind power forecast

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Rui [Rede Electrica Nacional (REN), S.A., Lisboa (Portugal). Dept. Systems and Development System Operator; Trancoso, Ana Rosa; Delgado Domingos, Jose [Univ. Tecnica de Lisboa (Portugal). Seccao de Ambiente e Energia

    2012-07-01

    Accurate wind power forecast are needed to reduce integration costs in the electric grid caused by wind inherent variability. Currently, Portugal has a significant wind power penetration level and consequently the need to have reliable wind power forecasts at different temporal scales, including localized events such as ramps. This paper provides an overview of the methodologies used by REN to forecast wind power at national level, based on statistical and probabilistic combinations of NWP and measured data with the aim of improving accuracy of pure NWP. Results show that significant improvement can be achieved with statistical combination with persistence in the short-term and with probabilistic combination in the medium-term. NWP are also able to detect ramp events with 3 day notice to the operational planning. (orig.)

  10. Forecasts of county-level land uses under three future scenarios: a technical document supporting the Forest Service 2010 RPA Assessment

    Science.gov (United States)

    David N. Wear

    2011-01-01

    Accurately forecasting future forest conditions and the implications for ecosystem services depends on understanding land use dynamics. In support of the 2010 Renewable Resources Planning Act (RPA) Assessment, we forecast changes in land uses for the coterminous United States in response to three scenarios. Our land use models forecast urbanization in response to the...

  11. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    Science.gov (United States)

    Barton, Gary J.

    2004-01-01

    high flows. Conveyance losses in the Pebble-Topaz reach were greatest, about 283 cubic feet per second, during the spring regulated high flows and were attributed to a hydroelectric project.Comparison of water levels in 30 wells in the Portneuf Valley during September and October 1968 and 2001 indicated long-term declines since 1968; the median decline was 3.4 feet. September and October were selected for characterizing long-term ground-water-level fluctuations because declines associated with irrigation reach a maximum at the end of the irrigation season. The average annual snowpack in the study area has declined significantly; 1945 85 average annual snowpack was 16.1 inches, whereas 1986 through 2002 average annual snowpack was 11.6 inches. Water-level declines during 1998 2002 may be partially attributable to the extended dry climatic conditions. It is unclear whether the declines could be partially attributed to increases in ground-water withdrawals. Between 1968 and 1980, water rights for ground-water withdrawals nearly doubled from 23,500 to 46,000 acre-feet per year. During this period, ground-water levels were relatively constant and did not exhibit a declining trend that could be related to increased ground-water withdrawal rights. However, ground-water withdrawals are not measured in the valley; thus, the amount of water pumped is not known. Since the 1990s, there have been several years when the Chesterfield Reservoir has not completely refilled, and the water in storage behind the reservoir has been depleted by the middle of the irrigation season. In this situation, surface-water diversions for irrigation were terminated before the end of the irrigation season, and irrigators, who were relying in part on diversions from the Portneuf River, had to rely solely on ground water as an alternate supply. Smaller volumes of water in the Chesterfield Reservoir since the 1990s indicate a growing demand for ground-water supplies.

  12. Application of a Coupled Vegetation Competition and Groundwater Simulation Model to Study Effects of Sea Level Rise and Storm Surges on Coastal Vegetation

    Directory of Open Access Journals (Sweden)

    Su Yean Teh

    2015-09-01

    Full Text Available Global climate change poses challenges to areas such as low-lying coastal zones, where sea level rise (SLR and storm-surge overwash events can have long-term effects on vegetation and on soil and groundwater salinities, posing risks of habitat loss critical to native species. An early warning system is urgently needed to predict and prepare for the consequences of these climate-related impacts on both the short-term dynamics of salinity in the soil and groundwater and the long-term effects on vegetation. For this purpose, the U.S. Geological Survey’s spatially explicit model of vegetation community dynamics along coastal salinity gradients (MANHAM is integrated into the USGS groundwater model (SUTRA to create a coupled hydrology–salinity–vegetation model, MANTRA. In MANTRA, the uptake of water by plants is modeled as a fluid mass sink term. Groundwater salinity, water saturation and vegetation biomass determine the water available for plant transpiration. Formulations and assumptions used in the coupled model are presented. MANTRA is calibrated with salinity data and vegetation pattern for a coastal area of Florida Everglades vulnerable to storm surges. A possible regime shift at that site is investigated by simulating the vegetation responses to climate variability and disturbances, including SLR and storm surges based on empirical information.

  13. Forecasting in an integrated surface water-ground water system: The Big Cypress Basin, South Florida

    Science.gov (United States)

    Butts, M. B.; Feng, K.; Klinting, A.; Stewart, K.; Nath, A.; Manning, P.; Hazlett, T.; Jacobsen, T.

    2009-04-01

    The South Florida Water Management District (SFWMD) manages and protects the state's water resources on behalf of 7.5 million South Floridians and is the lead agency in restoring America's Everglades - the largest environmental restoration project in US history. Many of the projects to restore and protect the Everglades ecosystem are part of the Comprehensive Everglades Restoration Plan (CERP). The region has a unique hydrological regime, with close connection between surface water and groundwater, and a complex managed drainage network with many structures. Added to the physical complexity are the conflicting needs of the ecosystem for protection and restoration, versus the substantial urban development with the accompanying water supply, water quality and flood control issues. In this paper a novel forecasting and real-time modelling system is presented for the Big Cypress Basin. The Big Cypress Basin includes 272 km of primary canals and 46 water control structures throughout the area that provide limited levels of flood protection, as well as water supply and environmental quality management. This system is linked to the South Florida Water Management District's extensive real-time (SCADA) data monitoring and collection system. Novel aspects of this system include the use of a fully distributed and integrated modeling approach and a new filter-based updating approach for accurately forecasting river levels. Because of the interaction between surface- and groundwater a fully integrated forecast modeling approach is required. Indeed, results for the Tropical Storm Fay in 2008, the groundwater levels show an extremely rapid response to heavy rainfall. Analysis of this storm also shows that updating levels in the river system can have a direct impact on groundwater levels.

  14. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  15. Identification and level of organochlorine insecticide contamination in groundwater and iridology analysis for people in Upper Citarum cascade

    Science.gov (United States)

    Oginawati, K.; Pratama, M. A.

    2016-03-01

    Organochlorines are the main pollutants in the class of persistent organic pollutants which are types of pollutants that are being questioned worldwide due to chronic persistence, toxicity and bioaccumulation. Human around the Citarum River are still using groundwater as a drinking source. It is very risky for people health that consume groundwater because in 2009 the application of organochlorine still found in the Upper Citarum watershed rice field and had potential to contaminate groundwater. Groundwater was analyzed with nine species belonging to the organochlorine pollutants Organic Peristent types. 7 types of organochlorinesAldrin was detected with an average concentration of 0.09 ppb, dieldrin with an average concentration of 24 ppb, heptaklor with an average concentration of 0.51 ppb, with concentrations of endosulfan on average 0.73 ppb, DDT with average concentration of 0.13 ppb, Lindan with an average concentration of 1.2 ppb, endrin with an average concentration of 0.03 ppb. Types with the highest concentration of organochlorine a lindan and endosulfan. Residues of aldrin, dieldrin and heptaklor in groundwater already exceeds the quality standards for drinking water Permenkes 492/2010. Based on the iridology analysis obtained several systems are expected to nervous, immune and reproductive system disorders and toxin deposits under the skin.

  16. Identification and level of organochlorine insecticide contamination in groundwater and iridology analysis for people in Upper Citarum cascade

    International Nuclear Information System (INIS)

    Oginawati, K; Pratama, M A

    2016-01-01

    Organochlorines are the main pollutants in the class of persistent organic pollutants which are types of pollutants that are being questioned worldwide due to chronic persistence, toxicity and bioaccumulation. Human around the Citarum River are still using groundwater as a drinking source. It is very risky for people health that consume groundwater because in 2009 the application of organochlorine still found in the Upper Citarum watershed rice field and had potential to contaminate groundwater. Groundwater was analyzed with nine species belonging to the organochlorine pollutants Organic Peristent types. 7 types of organochlorinesAldrin was detected with an average concentration of 0.09 ppb, dieldrin with an average concentration of 24 ppb, heptaklor with an average concentration of 0.51 ppb, with concentrations of endosulfan on average 0.73 ppb, DDT with average concentration of 0.13 ppb, Lindan with an average concentration of 1.2 ppb, endrin with an average concentration of 0.03 ppb. Types with the highest concentration of organochlorine a lindan and endosulfan. Residues of aldrin, dieldrin and heptaklor in groundwater already exceeds the quality standards for drinking water Permenkes 492/2010. Based on the iridology analysis obtained several systems are expected to nervous, immune and reproductive system disorders and toxin deposits under the skin. (paper)

  17. An early warning system for groundwater pollution based on the assessment of groundwater pollution risks.

    Science.gov (United States)

    Zhang, Weihong.; Zhao, Yongsheng; Hong, Mei; Guo, Xiaodong

    2009-04-01

    Groundwater pollution usually is complex and concealed, remediation of which is difficult, high cost, time-consuming, and ineffective. An early warning system for groundwater pollution is needed that detects groundwater quality problems and gets the information necessary to make sound decisions before massive groundwater quality degradation occurs. Groundwater pollution early warning were performed by considering comprehensively the current groundwater quality, groundwater quality varying trend and groundwater pollution risk . The map of the basic quality of the groundwater was obtained by fuzzy comprehensive evaluation or BP neural network evaluation. Based on multi-annual groundwater monitoring datasets, Water quality state in sometime of the future was forecasted using time-sequenced analyzing methods. Water quality varying trend was analyzed by Spearman's rank correlative coefficient.The relative risk map of groundwater pollution was estimated through a procedure that identifies, cell by cell,the values of three factors, that is inherent vulnerability, load risk of pollution source and contamination hazard. DRASTIC method was used to assess inherent vulnerability of aquifer. Load risk of pollution source was analyzed based on the potential of contamination and pollution degree. Assessment index of load risk of pollution source which involves the variety of pollution source, quantity of contaminants, releasing potential of pollutants, and distance were determined. The load risks of all sources considered by GIS overlay technology. Early warning model of groundwater pollution combined with ComGIS technology organically, the regional groundwater pollution early-warning information system was developed, and applied it into Qiqiha'er groundwater early warning. It can be used to evaluate current water quality, to forecast water quality changing trend, and to analyze space-time influencing range of groundwater quality by natural process and human activities. Keywords

  18. Groundwater potential zonation by Remote Sensing and GIS techniques and its relation to the Groundwater level in the Coastal part of the Arani and Koratalai River Basin, Southern India

    Directory of Open Access Journals (Sweden)

    S Suganthi

    2013-07-01

    Full Text Available Groundwater is being pumped extensively from the coastal part of the Arani and Koratalai River Basin, Tamil Nadu, India for irrigation and water supply to the city of Chennai. The objective of this study is to delineate the groundwater potential zones of this area using Remote Sensing (RS and Geographic Information System (GIS techniques. Weighted overlay analysis was used to demarcate the ground- water potential zones. Various thematic layers such as geology, geomorphology, soil, lineament density, drainage density, rainfall and landuse maps were prepared. The geological map was prepared using a Geological Survey of India (GSI district resource map. Indian Remote Sensing System Linear Imaging Self-scanning Sensor III (IRS-1D LISS III satellite imagery was used to prepare the geomorphology, soil, lineament density, drainage density, and landuse maps. The final groundwater potential map was prepared by assigning appropriate weightage to different thematic maps and adding them to the final groundwater potential map. The derived groundwater potential map was overlaid with the groundwater level and location of well fields for validation. The map prepared will help in systematic and proper development of groundwater resources in this area to meet the growing water requirements of the city of Chennai.  Resumen Aguas subterráneas se bombean en gran cantidad desde la parte costera en las cuencas de los ríos Arani, en Tamil Nadu, India, para el riego y el aprovisionamiento de agua a la ciudad de Chennai. El objetivo de este estudio es delinear las zonas potenciales de aguas subterráneas en esta área a través de sistemas de Teledeteción (RS y de Información Geográfica (GIS. Se hizo un análisis sobrepuesto compensado para demarcar las zonas con posibilidad de tener aguas subterráneas. Se prepararon mapas de uso de la tierra con varios elementos temáticos como geología, geomorfología, terreno, densidad de lineamiento, densi- dad de drenaje y

  19. Anomalous Streamflow and Groundwater-Level Changes Before the 1999 M7.6 Chi-Chi Earthquake in Taiwan: Possible Mechanisms

    Science.gov (United States)

    King, Chi-Yu; Chia, Yeeping

    2017-12-01

    Streamflow recorded by a stream gauge located 4 km from the epicenter of the 1999 M7.6 Chi-Chi earthquake in central Taiwan showed a large and rapid anomalous increase of 124 m3/s starting 4 days before the earthquake. This increase was followed by a comparable co-seismic drop to below the background level for 8 months. In addition, groundwater-levels recorded at a well 1.5 km east of the seismogenic fault showed an anomalous rise 2 days before the earthquake, and then a unique 4-cm drop beginning 3 h before the earthquake. The anomalous streamflow increase is attributed to gravity-driven groundwater discharge into the creek through the openings of existing fractures in the steep creek banks crossed by the upstream Shueilikun fault zone, as a result of pre-earthquake crustal buckling. The continued tectonic movement and buckling, together with the downward flow of water in the crust, may have triggered the occurrence of some shallow slow-slip events in the Shueilikun and other nearby fault zones. When these events propagate down-dip to decollement, where the faults merges with the seismogenic Chelungpu fault, they may have triggered other slow-slip events propagating toward the asperity at the hypocenter and the Chelungpu fault. These events may then have caused the observed groundwater-level anomaly and helped to trigger the earthquake.

  20. Effects of groundwater levels and headwater wetlands on streamflow in the Charlie Creek basin, Peace River watershed, west-central Florida

    Science.gov (United States)

    Lee, T.M.; Sacks, L.A.; Hughes, J.D.

    2010-01-01

    The Charlie Creek basin was studied from April 2004 to December 2005 to better understand how groundwater levels in the underlying aquifers and storage and overflow of water from headwater wetlands preserve the streamflows exiting this least-developed tributary basin of the Peace River watershed. The hydrogeologic framework, physical characteristics, and streamflow were described and quantified for five subbasins of the 330-square mile Charlie Creek basin, allowing the contribution of its headwaters area and tributary subbasins to be separately quantified. A MIKE SHE model simulation of the integrated surface-water and groundwater flow processes in the basin was used to simulate daily streamflow observed over 21 months in 2004 and 2005 at five streamflow stations, and to quantify the monthly and annual water budgets for the five subbasins including the changing amount of water stored in wetlands. Groundwater heads were mapped in Zone 2 of the intermediate aquifer system and in the Upper Floridan aquifer, and were used to interpret the location of artesian head conditions in the Charlie Creek basin and its relation to streamflow. Artesian conditions in the intermediate aquifer system induce upward groundwater flow into the surficial aquifer and help sustain base flow which supplies about two-thirds of the streamflow from the Charlie Creek basin. Seepage measurements confirmed seepage inflow to Charlie Creek during the study period. The upper half of the basin, comprised largely of the Upper Charlie Creek subbasin, has lower runoff potential than the lower basin, more storage of runoff in wetlands, and periodically generates no streamflow. Artesian head conditions in the intermediate aquifer system were widespread in the upper half of the Charlie Creek basin, preventing downward leakage from expansive areas of wetlands and enabling them to act as headwaters to Charlie Creek once their storage requirements were met. Currently, the dynamic balance between wetland

  1. Forecasting the Allocative Efficiency of Carbon Emission Allowance Financial Assets in China at the Provincial Level in 2020

    Directory of Open Access Journals (Sweden)

    Shihong Zeng

    2016-05-01

    Full Text Available As the result of climate change and deteriorating global environmental quality, nations are under pressure to reduce their emissions of greenhouse gases per unit of GDP. China has announced that it is aiming not only to reduce carbon emission per unit of GDP, but also to consume increased amounts of non-fossil energy. The carbon emission allowance is a new type of financial asset in each Chinese province and city that also affects individual firms. This paper attempts to examine the allocative efficiency of carbon emission reduction and non-fossil energy consumption by employing a zero sum gains data envelopment analysis (ZSG-DEA model, given the premise of fixed CO2 emissions as well as non-fossil energy consumption. In making its forecasts, the paper optimizes allocative efficiency in 2020 using 2010 economic and carbon emission data from 30 provinces and cities across China as its baseline. An efficient allocation scheme is achieved for all the provinces and cities using the ZSG-DEA model through five iterative calculations.

  2. Conceptual framework and trend analysis of water-level responses to hydrologic stresses, Pahute Mesa–Oasis Valley groundwater basin, Nevada, 1966-2016

    Science.gov (United States)

    Jackson, Tracie R.; Fenelon, Joseph M.

    2018-05-31

    This report identifies water-level trends in wells and provides a conceptual framework that explains the hydrologic stresses and factors causing the trends in the Pahute Mesa–Oasis Valley (PMOV) groundwater basin, southern Nevada. Water levels in 79 wells were analyzed for trends between 1966 and 2016. The magnitude and duration of water-level responses to hydrologic stresses were analyzed graphically, statistically, and with water-level models.The conceptual framework consists of multiple stress-specific conceptual models to explain water-level responses to the following hydrologic stresses: recharge, evapotranspiration, pumping, nuclear testing, and wellbore equilibration. Dominant hydrologic stresses affecting water-level trends in each well were used to categorize trends as nonstatic, transient, or steady state.The conceptual framework of water-level responses to hydrologic stresses and trend analyses provide a comprehensive understanding of the PMOV basin and vicinity. The trend analysis links water-level fluctuations in wells to hydrologic stresses and potential factors causing the trends. Transient and steady-state trend categorizations can be used to determine the appropriate water-level data for groundwater studies.

  3. Nitrate leaching affected by management options with respect to urine-affected areas and groundwater levels for grazed grassland

    NARCIS (Netherlands)

    Hack-ten Broeke, M.J.D.; Putten, van der A.H.J.

    1997-01-01

    Simulations were performed to quantify the effects of management options on nitrate leaching to the groundwater in grazed pastures. At the experimental farm for sustainable dairy farming ‘De Marke’, experimental data on soil water and nitrates were gathered for two fields during the years 1991–1995.

  4. Perennial filter strips reduce nitrate levels in soil and shallow groundwater after grassland-to-cropland conversion

    Science.gov (United States)

    Xiaobo Zhou; Matthew J. Helmers; Heidi Asbjornsen; Randy Kolka; Mark D. Tomer

    2010-01-01

    Many croplands planted to perennial grasses under the Conservation Reserve Program are being returned to crop production, and with potential consequences for water quality. The objective of this study was to quantify the impact of grassland-to-cropland conversion on nitrate-nitrogen (NO3-N) concentrations in soil and shallow groundwater and to...

  5. Derivation of Threshold Values for Groundwater in Romania, in order to distinguish Point & Diffuse pollution from natural background levels

    NARCIS (Netherlands)

    Schipper, P.N.M.; Radu, E.; Vliegenthart, F.; Balaet, R.

    2010-01-01

    Romania aims to adopt and implement the European Union's legislation, also including that for the field of water management. Like other countries, groundwater in Romania is locally polluted from point sources, such as leaking landfills, as well as from diffuse pollution sources, include fertilizers,

  6. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 2. Special test cases

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1985-08-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. Volume 1, titled ''Guideline Approach,'' consists of Chapters 1 through 5 and a glossary. Chapters 2 through 5 provide the more detailed discussions about the code selection approach. This volume, Volume 2, consists of four appendices reporting on the technical evaluation test cases designed to help verify the accuracy of ground-water transport codes. 20 refs

  7. Physical, chemical, and mineralogical data from surficial deposits, groundwater levels, and water composition in the area of Franklin Lake playa and Ash Meadows, California and Nevada

    Science.gov (United States)

    Goldstein, Harland L.; Breit, George N.; Yount, James C.; Reynolds, Richard L.; Reheis, Marith C.; Skipp, Gary L.; Fisher, Eric M.; Lamothe, Paul J.

    2011-01-01

    This report presents data and describes the methods used to determine the physical attributes, as well as the chemical and mineralogical composition of surficial deposits; groundwater levels; and water composition in the area of Franklin Lake playa and Ash Meadows, California and Nevada. The results support studies that examine (1) the interaction between groundwater and the ground surface, and the transport of solutes through the unsaturated zone; (2) the potential for the accumulation of metals and metalloids in surface crusts; (3) emission of dust from metal-rich salt crust; and (4) the effects of metal-rich dusts on human and ecosystem health. The evaporation of shallow (travel as atmospheric dust and affect human and ecosystem health at local to regional scales.

  8. Groundwater level monitoring sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This Sampling and Analysis Plan addresses groundwater level monitoring activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Groundwater level monitoring will be conducted at 129 sites within the WAG. All of the sites will be manually monitored on a semiannual basis. Forty-five of the 128 wells, plus one site in White Oak Lake, will also be equipped with automatic water level monitoring equipment. The 46 sites are divided into three groups. One group will be equipped for continuous monitoring of water level, conductivity, and temperature. The other two groups will be equipped for continuous monitoring of water level only. The equipment will be rotated between the two groups. The data collected from the water level monitoring will be used to support determination of the contaminant flux at WAG 6.

  9. Groundwater level monitoring sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-04-01

    This Sampling and Analysis Plan addresses groundwater level monitoring activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Groundwater level monitoring will be conducted at 129 sites within the WAG. All of the sites will be manually monitored on a semiannual basis. Forty-five of the 128 wells, plus one site in White Oak Lake, will also be equipped with automatic water level monitoring equipment. The 46 sites are divided into three groups. One group will be equipped for continuous monitoring of water level, conductivity, and temperature. The other two groups will be equipped for continuous monitoring of water level only. The equipment will be rotated between the two groups. The data collected from the water level monitoring will be used to support determination of the contaminant flux at WAG 6

  10. High-resolution monitoring across the soil-groundwater interface - Revealing small-scale hydrochemical patterns with a novel multi-level well

    Science.gov (United States)

    Gassen, Niklas; Griebler, Christian; Stumpp, Christine

    2016-04-01

    Biogeochemical turnover processes in the subsurface are highly variable both in time and space. In order to capture this variability, high resolution monitoring systems are required. Particular in riparian zones the understanding of small-scale biogeochemical processes is of interest, as they are regarded as important buffer zones for nutrients and contaminants with high turnover rates. To date, riparian research has focused on influences of groundwater-surface water interactions on element cycling, but little is known about processes occurring at the interface between the saturated and the unsaturated zone during dynamic flow conditions. Therefore, we developed a new type of high resolution multi-level well (HR-MLW) that has been installed in the riparian zone of the Selke river. This HR-MLW for the first time enables to derive water samples both from the unsaturated and the saturated zone across one vertical profile with a spatial vertical resolution of 0.05 to 0.5 m to a depth of 4 m b.l.s. Water samples from the unsaturated zone are extracted via suction cup sampling. Samples from the saturated zone are withdrawn through glass filters and steel capillaries. Both, ceramic cups and glass filters, are installed along a 1" HDPE piezometer tube. First high resolution hydrochemical profiles revealed a distinct depth-zonation in the riparian alluvial aquifer. A shallow zone beneath the water table carried a signature isotopically and hydrochemically similar to the nearby river, while layers below 1.5 m were influenced by regional groundwater. This zonation showed temporal dynamics related to groundwater table fluctuations and microbial turnover processes. The HR-MLW delivered new insight into mixing and turnover processes between riverwater and groundwater in riparian zones, both in a temporal and spatial dimension. With these new insights, we are able to improve our understanding of dynamic turnover processes at the soil - groundwater interface and of surface

  11. Groundwater-level analysis of selected wells in the Hoosic River Valley near Hoosick Falls, New York, for aquifer framework and properties

    Science.gov (United States)

    Williams, John H.; Heisig, Paul M.

    2018-03-05

    The U.S. Geological Survey, in cooperation with the New York State Department of Environmental Conservation, analyzed groundwater levels, drilling record logs, and field water-quality data from selected wells, and the surficial geology in the Hoosic River valley south of the village of Hoosick Falls, New York, to provide information about the framework and properties of a confined aquifer. The aquifer, which consists of ice-contact sand and gravel overlain by lacustrine clay and silt, was evaluated by the New York State Department of Environmental Conservation as part of their investigation of alternate water supplies for the village whose wellfield has been affected by perfluorooctanoic acid. Wells inventoried in the study area were classified as confined, water table, or transitional between the two aquifer conditions. Groundwater levels in three confined-aquifer wells and a transitional-aquifer well responded to pumping of a test production well finished in the confined aquifer. Groundwater levels in a water-table well showed no detectable water-level change in response to test-well pumping. Analysis of drawdown and recovery data from the three confined-aquifer wells and a transitional-aquifer well through the application of the Theis type-curve method provided estimates of aquifer properties. Representation of a constant-head boundary in the analysis where an unnamed pond and fluvial-terrace deposits abut the valley wall resulted in satisfactory matches of the Theis type curves with the observed water-level responses. Aquifer transmissivity estimates ranged from 1,160 to 1,370 feet squared per day. Aquifer storativity estimates ranged from 5.2×10–5 to 1.1×10–3 and were consistent with the inferred degree of confinement and distance from the represented recharge boundary.

  12. Forecasting military expenditure

    Directory of Open Access Journals (Sweden)

    Tobias Böhmelt

    2014-05-01

    Full Text Available To what extent do frequently cited determinants of military spending allow us to predict and forecast future levels of expenditure? The authors draw on the data and specifications of a recent model on military expenditure and assess the predictive power of its variables using in-sample predictions, out-of-sample forecasts and Bayesian model averaging. To this end, this paper provides guidelines for prediction exercises in general using these three techniques. More substantially, however, the findings emphasize that previous levels of military spending as well as a country’s institutional and economic characteristics particularly improve our ability to predict future levels of investment in the military. Variables pertaining to the international security environment also matter, but seem less important. In addition, the results highlight that the updated model, which drops weak predictors, is not only more parsimonious, but also slightly more accurate than the original specification.

  13. Seasonal variations and the influence of geomembrane liners on the levels of PBDEs in landfill leachates, sediment and groundwater in Gauteng Province, South Africa

    Directory of Open Access Journals (Sweden)

    I.V. Sibiya

    2017-06-01

    Full Text Available In the present study, the seasonal concentrations of polybrominated diphenyl ethers (PBDEs in leachate and sediment samples, and the influence of geomembrane liners on PBDE levels and the extent of their infiltration into groundwater on selected landfill sites in Gauteng Province, South Africa were determined. Leachate and sediment samples were collected from seven operational landfill sites namely: Goudkoppies, Robinson Deep, Marie Louis, Soshanguve, Onderstepoort, Hatherly and Garankuwa from Johannesburg and Pretoria, in winter and summer. Groundwater samples were collected from monitoring boreholes from two landfill sites. Liquid-liquid and Soxhlet extraction techniques were employed for the extraction of leachate and groundwater, and sediment respectively using dichloromethane. The extracted samples were subjected to column clean up and, thereafter, analysed using gas chromatography–mass spectroscopy (GC-MS. PBDEs selected for the study were: BDE-17, -28, -47, -100, -99, -153, -154, -183 and -209. The ∑9PBDE concentrations in leachate samples for winter and summer ranged from 0.316–1.36 ng L−1 and 0.560–1.08 ng L−1 respectively. The ∑9 PBDE concentrations obtained for sediment in winter and summer were 3.00–4.91 ng g−1 and 2.50–3.71 ng g−1 respectively. Winter samples exhibited higher (p < 0.05 concentrations for both leachate and sediment samples compared to summer samples. This trend was attributed to high precipitation rate in summer which may have infiltrated into the landfills, subsequently diluting the leachate and sediment samples. In contrast, the winter period is generally dry and PBDEs are, therefore, more likely to be concentrated. The concentrations of PBDEs in leachate and sediment samples were higher in landfill sites with geomembrane liners compared to those without liners. Groundwater samples taken from the vicinity of selected landfill sites without geomembrane liners exhibited high

  14. Technical support to environmental restoration division for groundwater level monitoring effort at entombed Hallam Nuclear Power Facility. Final report, August 1, 1993--July 31, 1993

    International Nuclear Information System (INIS)

    1994-01-01

    This report provides an interim summary of information from a water-level monitoring program. The information was collected by the US Geological Survey (USGS) over a 6-month period. The monitoring program between the US DOE and the USGS was set up to measure water levels in 16 observation wells at the Hallam Nuclear Facility in Hallam, Nebraska. The summary of USGS data includes: (1) a description of the USGS monitoring program; (2) a description of the collection of continuous water-level data; (3) a description of the collection of monthly water-level data; (4) table of observation well number, latitude, longitude, and depth; (5) table of monthly ground-water levels data; (6) table of recorder wells, rainfall, and barometric pressure values; (7) table of recorder well, rainfall, and barometric pressure daily values; and (8) hydrographs of selected wells. 7 figs., 3 tabs

  15. Forecasting Interest Rates Using Geostatistical Techniques

    Directory of Open Access Journals (Sweden)

    Giuseppe Arbia

    2015-11-01

    Full Text Available Geostatistical spatial models are widely used in many applied fields to forecast data observed on continuous three-dimensional surfaces. We propose to extend their use to finance and, in particular, to forecasting yield curves. We present the results of an empirical application where we apply the proposed method to forecast Euro Zero Rates (2003–2014 using the Ordinary Kriging method based on the anisotropic variogram. Furthermore, a comparison with other recent methods for forecasting yield curves is proposed. The results show that the model is characterized by good levels of predictions’ accuracy and it is competitive with the other forecasting models considered.

  16. Long-term effects of surface coal mining on ground-water levels and quality in two small watersheds in eastern Ohio

    International Nuclear Information System (INIS)

    Cunningham, W.L.; Jones, R.L.

    1990-01-01

    Two small eastern Ohio watersheds surface mined for coal and reclaimed were studied during 1986-89. Water level and water quality data were compared with data from investigations conducted during 1976-83 to determine long-term effects of surface mining on the hydrologic system. Before mining, the watersheds were characterized by flatlying sedimentary rocks above clay beds underlying two major coal seams. Two aquifers overlay each under clay. Surface mining removed the upper aquifer, stripped the coal seam, and replaced the spoil, creating a new aquifer with hydraulic and chemical characteristics different from those of the original upper aquifer. Water levels were measured continuously in one well in each aquifer and every 2 months in other wells. Water levels in upper aquifers reached hydraulic equilibrium from 2 to 5 years after mining and, in middle aquifers, water levels increased more than 5 ft during mining; equilibrium occurred almost immediately thereafter. Water samples were collected from three upper aquifer wells, one middle-aquifer well, a seep from the upper aquifer, and the stream in each watershed. Samples were collected in 1986, 1987, 1988, and 1989. In both watersheds, sulfate replaced bicarbonate as the dominant anion in the upper aquifer after mining. In general, significant increases in concentrations of dissolved constituents in groundwater resulted from surface mining. The continued decrease in pH indicates that groundwater had not reached complete geochemical equilibrium in either watershed more than 8 years after mining ended

  17. Radionuclide migration in groundwater at a low-level waste disposal site: a comparison of predictive performance modeling versus field observations

    International Nuclear Information System (INIS)

    Robertson, D.E.; Myers, D.A.; Bergeron, M.P.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.; Young, J.L.

    1985-08-01

    This paper describes a project which is structured to test the concept of modeling a shallow land low-level waste burial site. The project involves a comparison of the actual observed radionuclide migration in groundwaters at a 30-year-old well-monitored field site with the results of predictive transport modeling. The comparison is being conducted as a cooperative program with the Atomic Energy of Canada Ltd. (AECL) at the low-level waste management area at the Chalk River Nuclear Laboratories, Ontario, Canada. A joint PNL-AECL field inviestigation was conducted in 1983 and 1984 to complement the existing extensive data base on actual radionuclide migration. Predictive transport modeling is currently being conducted for this site; first, as if it were a new location being considered for a low-level waste shallow-land burial site and only minimal information about the site were available, and second, utilizing the extensive data base available for the site. The modeling results will then be compared with the empirical observations to provide insight into the level of effort needed to reasonably predict the spacial and temporal movement of radionuclides in the groundwater enviroment. 8 refs., 5 figs.,

  18. Radionuclide migration in groundwater at a low-level waste disposal site: a comparison of predictive performance modeling versus field observations

    International Nuclear Information System (INIS)

    Robertson, D.E.; Myers, D.A.; Abel, K.H.; Bergeron, M.P.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.; Young, J.L.

    1986-01-01

    This paper describes a project which is structured to test the concept of modeling a shallow land low-level waste burial site. The project involves a comparison of the actual observed radionuclide migration in groundwaters at a 30-year old well-monitored field site with the results of predictive transport modeling. The comparison is being conducted as a cooperative program with the Atomic Energy of Canada Ltd. (AECL) at the low-level waste management area at the Chalk River Nuclear Laboratories, Ontario, Canada. A joint PNL-AECL field investigation was conducted in 1983 and 1984 to compliment the existing extensive data base on actual radionuclide migration. Predictive transport modeling is currently being conducted for this site; first, as if it were a new location being considered for a low-level waste shallow-land burial site and only minimal information about the site were available, and second, utilizing the extensive data base available for the site. The modeling results will then be compared with the level of effort needed to reasonably predict the spacial and temporal movement of radionuclides in the groundwater environment

  19. Evaluation of levels of antibiotic resistance in groundwater-derived E. coli isolates in the Midwest of Ireland and elucidation of potential predictors of resistance

    Science.gov (United States)

    O'Dwyer, Jean; Hynds, Paul; Pot, Matthieu; Adley, Catherine C.; Ryan, Michael P.

    2017-06-01

    Antibiotic-resistant (pathogenic and non-pathogenic) organisms and genes are now acknowledged as significant emerging aquatic contaminants with potentially adverse human and ecological health impacts, and thus require monitoring. This study is the first to investigate levels of resistance among Irish groundwater (private wells) samples; Escherichia coli isolates were examined against a panel of commonly prescribed human and veterinary therapeutic antibiotics, followed by determination of the causative factors of resistance. Overall, 42 confirmed E. coli isolates were recovered from a groundwater-sampling cohort. Resistance to the human panel of antibiotics was moderate; nine (21.4%) E. coli isolates demonstrated resistance to one or more human antibiotics. Conversely, extremely high levels of resistance to veterinary antibiotics were found, with all isolates presenting resistance to one or more veterinary antibiotics. Particularly high levels of resistance (93%) were found with respect to the aminoglycoside class of antibiotics. Results of statistical analysis indicate a significant association between the presence of human (multiple) antibiotic resistance ( p = 0.002-0.011) and both septic tank density and the presence of vulnerable sub-populations (<5 years). For the veterinary antibiotics, results point to a significant relationship ( p = <0.001) between livestock (cattle) density and the prevalence of multiple antibiotic resistant E. coli. Groundwater continues to be an important resource in Ireland, particularly in rural areas; thus, results of this preliminary study offer a valuable insight into the prevalence of antibiotic resistance in the hydrogeological environment and establish a need for further research with a larger geological diversity.

  20. Adaptation level as the basic health status characteristics: possibilitics of its assessment and forecasting of desadaptation violations

    Directory of Open Access Journals (Sweden)

    Vysochyna I.L.

    2015-09-01

    Full Text Available On the basis of comprehensive survey with integrative assessment of health state (medical history data, physical examination, anthropometry, battery of psychological tests (Eysenck, Shmishek’s Personality Inventory (teen version, tapping - test by E.P. Ilyin, children's questionnaire of neuroses; test for rapid assessment of health, activity and mood, anxiety diagnosis by Spielberg - Khanin; Luscher test, color relations test level of adaptation was defined in 236 children from orphanages aged from 4 to 18 years. The manifestations of maladjustment were registered both on psychological level (neuroticism, high anxiety, decreased performance, activity and psychological endurance, sleep disturbance, presence of accentuation and neurotic disorders and somatic level (recurrent acute respiratory infections, poor physical development, exacerbation of chronic foci of infection and burdened biological history; this summarizes conclusions on a low level of health status of children in orphanages. The author has developed mathematical models of adaptation assessment and prediction of desadaptation, which allowed to identify children at risk for the development of adaptation disorders and children with maladjustment; according to the level and severity of maladaptive disorders correction programs are designed.

  1. Using simulations to forecast homeowner response to sea level rise in South Florida: Will they stay or will they go?

    Science.gov (United States)

    Treuer, G.

    2017-12-01

    Sea level rise threatens coastal communities around the world, including South Florida which may be the most financially vulnerable region in the world. Proactive investments in sea level rise adaptive flood protections could reduce South Florida's financial vulnerability. However, it is unclear if local governments and homeowners will be willing to make those investments before it is too late. Our research explores this issue by reporting the results of a novel online simulation that accelerates 348 South Florida homeowners thirty-five years into the future so that they can `live' the effects of sea level rise. The results contain a mix of optimism and caution for the prospects of future adaptation. On the positive side over 75% of participants indicated a willingness to support bond issues to pay for adaptation, even as the costs of the measures and effects of sea level rise increased over the years. Likewise, we find little evidence that politically conservative residents who normally have more skeptical views about climate change would be any less inclined to support adaptation, or only look to information sources that downplay the threat. On the negative side, homeowner interest in moving out of the region increases steadily over time as the sea level rises. This is driven by an increase in worry associated with viewing more information within the simulation.

  2. Updated study reporting levels (SRLs) for trace-element data collected for the California Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project, October 2009-March 2013

    Science.gov (United States)

    Davis, Tracy A.; Olsen, Lisa D.; Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater samples have been collected in California as part of statewide investigations of groundwater quality conducted by the U.S. Geological Survey for the Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project (PBP). The GAMA-PBP is being conducted in cooperation with the California State Water Resources Control Board to assess and monitor the quality of groundwater resources used for drinking-water supply and to improve public knowledge of groundwater quality in California. Quality-control samples (source-solution blanks, equipment blanks, and field blanks) were collected in order to ensure the quality of the groundwater sample results. Olsen and others (2010) previously determined study reporting levels (SRLs) for trace-element results based primarily on field blanks collected in California from May 2004 through January 2008. SRLs are raised reporting levels used to reduce the likelihood of reporting false detections attributable to contamination bias. The purpose of this report is to identify any changes in the frequency and concentrations of detections in field blanks since the last evaluation and update the SRLs for more recent data accordingly. Constituents analyzed were aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), tungsten (W), uranium (U), vanadium (V), and zinc (Zn). Data from 179 field blanks and equipment blanks collected from March 2006 through March 2013 by the GAMA-PBP indicated that for trace elements that had a change in detection frequency and concentration since the previous review, the shift occurred near October 2009, in conjunction with a change in the capsule filters used by the study. Results for 89 field blanks and equipment blanks collected from October 2009 through March 2013 were

  3. Movement of a tritium plume in shallow groundwater at a legacy low-level radioactive waste disposal site in eastern Australia.

    Science.gov (United States)

    Hughes, C E; Cendón, D I; Harrison, J J; Hankin, S I; Johansen, M P; Payne, T E; Vine, M; Collins, R N; Hoffmann, E L; Loosz, T

    2011-10-01

    Between 1960 and 1968 low-level radioactive waste was buried in a series of shallow trenches near the Lucas Heights facility, south of Sydney, Australia. Groundwater monitoring carried out since the mid 1970s indicates that with the exception of tritium, no radioactivity above typical background levels has been detected outside the immediate vicinity of the trenches. The maximum tritium level detected in ground water was 390 kBq/L and the median value was 5400 Bq/L, decay corrected to the time of disposal. Since 1968, a plume of tritiated water has migrated from the disposal trenches and extends at least 100 m from the source area. Tritium in rainfall is negligible, however leachate from an adjacent and fill represents a significant additional tritium source. Study data indicate variation in concentration levels and plume distribution in response to wet and dry climatic periods and have been used to determine pathways for tritium migration through the subsurface.

  4. kosh Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kpdt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kewr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kiso Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kpga Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kbkw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. ktcl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. pgwt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kpsp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kbih Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kdnl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kart Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kilm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kpne Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kabi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. ptpn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kblf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. panc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kpbi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kgdv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kcmx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kdls Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. koaj Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. krhi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kbpk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. khuf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kbpi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. ktrk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kwmc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. katy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. tjmz Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kdet Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kcxp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kbur Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. krkd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. pawg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kloz Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kcec Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kdec Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. paor Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kavl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kdrt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kstl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kbfi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. khsv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. pafa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kekn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. tncm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kith Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kgnv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. ktoi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kgso Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. nstu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kmgm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. khib Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. pavd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kfar Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kluk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kwwr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. klse Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. ksts Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. koth Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kbfl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. ksgf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kpkb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. krog Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kbjc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. ksea Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kbwi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kftw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kpuw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kabq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. ksny Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. khio Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. klaf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kfoe Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. ksmx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kipt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. klch Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kink Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. krut Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kbli Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kaoo Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. klit Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. ktup Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. ktop Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. klax Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kprc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. katl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kmcn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kogb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kama Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. ptkk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kiwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kavp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kdca Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kbwg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kdfw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kssi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. pahn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. ksrq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kpvd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kisp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kttd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. pmdy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kont Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kyng Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kcwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kflg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. krsw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kmyl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. krbg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kril Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. ksus Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. padq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kbil Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. krfd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kdug Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. ktix Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kcod Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kslk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kgfl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kguc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kmlu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kbff Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. ksmn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kdro Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kmce Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. ktpa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kmot Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kcre Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. klws Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kotm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. khqm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kabr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. klal Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kelp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...