WorldWideScience

Sample records for groundwater information groundwater

  1. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  2. [Groundwater].

    Science.gov (United States)

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  3. groundwater contribution to crop water requirement groundwater ...

    African Journals Online (AJOL)

    eobe

    Keywords: Groundwater, water table, capillary rise, soil type, waterleaf, ... GROUNDWATER CONTRIBUTION TO WATERLEAF (TALINUM TRIANGULARE) IN OXISOLS, I. J. ... Nutritionally, ... information to facilitate increased crop production,.

  4. Groundwater and security

    NARCIS (Netherlands)

    Conti, K.I.; Kukurić, N.; Gupta, J.; Pahl-Wostl, C.; Bhaduri, A.; Gupta, J.

    2016-01-01

    Humans abstract two hundred times more groundwater than oil, annually. Ironically, the role of groundwater in water management and supply is underappreciated, partially due to its invisibility. By conducting a literature survey and investigating groundwater information databases, this chapter answer

  5. Decline of groundwater table in Beijing and recognition of seismic precursory information

    Institute of Scientific and Technical Information of China (English)

    Mingbo Yang; Yuehu Kang; Qing Zhang

    2009-01-01

    This paper quantitatively analyzed groundwater table fluctuations caused by groundwater overdraft, and probed into the possibility of drawing earthquake precursory information from groundwater table variations on the background of groundwater overdraft. Main effect factors of groundwater regime in Beijing region include groundwater extraction and rainfall. The decline of groundwater table was directly related to regional groundwater overdraft. Using the method of correlation analysis, the paper analyzed the relation between groundwater overdraft and groundwater level variations, with the aim of evaluating the effect of groundwater overdraft on water levels in observation wells and providing scientific basis for identifying seismic precursory information. The results indicate that the variations of groundwater level in slightly-affected zones of groundwater overdraft can contain some seismic precursory information, and it is possible to extract seismic precursory anomalies if proper mathematical methods are adopted to remove the trend component and annual period changes.

  6. Groundwater surface mapping informs sources of catchment baseflow

    OpenAIRE

    J. F. Costelloe; T. J. Peterson; K. Halbert; A. W. Western; J. J. McDonnell

    2014-01-01

    Groundwater discharge is a major contributor to stream baseflow. Quantifying this flux is difficult, despite its considerable importance to water resource management and evaluation of the effects of groundwater extraction on streamflow. It is important to be able to differentiate between contributions to streamflow from regional groundwater discharge (more susceptible to groundwater extraction) compared to interflow processes (arguably less susceptible to groundwater ...

  7. Groundwater Quality Assessment Based on Geographical Information System and Groundwater Quality Index

    Directory of Open Access Journals (Sweden)

    Zahra Derakhshan

    2015-06-01

    Full Text Available Iran is located in an arid and semi-arid part of the world. Accordingly, the management of the water resources in the country is a priority. In this regard, determining the quality and pollution of surface water and groundwater is very important, especially in areas where groundwater resources are used for drinking. Groundwater quality index (GQI checks the components of the available water with various quality levels. To assess the quality of drinking groundwater of Yazd-Ardakan plain according to GQI in geographical information system (GIS environment, the electrical conductivity, sodium, calcium, magnesium, chlorine, pH, sodium adsorption ratio, bicarbonate, sulfate, potassium, water hardness, and all substances dissolved in the waters of 80 wells were determined. The samples were obtained from Yazd Regional Water Organization from 2005 to 2014. Using this data, the map components were plotted by Kriging geostatistical method. Then, the map of GQI was prepared after normalizing each map component, switching to a rating map, and extracting the weight of each component from the rating map. Based on the GQI index map, the index point which was 87 in 2005 has increased to 81 in 2014. These maps show a decline in groundwater quality from west to the east region. This decline in groundwater quality is due to the existence of Neogene Organizations in the east and geomorphologic unit of the bare epandage pediment in the west. The map removal and single-parameter sensitivity analysis showed that GQI index in Yazd-Ardakan plain is more sensitive to the components of electrical conductivity (EC, total dissolved solids (TDS, and total hardness (TH. Therefore, these components should be monitored more carefully and repeatedly.

  8. National water-information clearinghouse activities; ground-water perspective

    Science.gov (United States)

    Haupt, C.A.; Jensen, R.A.

    1988-01-01

    The US Geological Survey (USGS) has functioned for many years as an informal clearinghouse for water resources information, enabling users to access groundwater information effectively. Water resources clearinghouse activities of the USGS are conducted through several separate computerized water information programs that are involved in the collection, storage, retrieval, and distribution of different types of water information. The following USGS programs perform water information clearinghouse functions and provide the framework for a formalized National Water-Information Clearinghouse: (1) The National Water Data Exchange--a nationwide confederation of more than 300 Federal, State, local, government, academic, and private water-oriented organizations that work together to improve access to water data; (2) the Water Resources Scientific Information Center--acquires, abstracts, and indexes the major water-resources-related literature of the world, and provides this information to the water resources community; (3) the Information Transfer Program--develops innovative approaches to transfer information and technology developed within the USGS to audiences in the public and private sectors; (4) the Hydrologic Information Unit--provides responses to a variety of requests, both technical and lay-oriented, for water resources information , and helps efforts to conduct water resources research; (5) the Water Data Storage and Retrieval System--maintains accessible computerized files of hydrologic data collected nationwide, by the USGS and other governmental agencies, from stream gaging stations, groundwater observation wells, and surface- and groundwater quality sampling sites; (6) the Office of Water Data Coordination--coordinate the water data acquisition activities of all agencies of the Federal Government, and is responsible for the planning, design, and inter-agency coordination of a national water data and information network; and (7) the Water Resources Research

  9. Complexity vs. simplicity: groundwater model ranking using information criteria.

    Science.gov (United States)

    Engelhardt, I; De Aguinaga, J G; Mikat, H; Schüth, C; Liedl, R

    2014-01-01

    A groundwater model characterized by a lack of field data about hydraulic model parameters and boundary conditions combined with many observation data sets for calibration purpose was investigated concerning model uncertainty. Seven different conceptual models with a stepwise increase from 0 to 30 adjustable parameters were calibrated using PEST. Residuals, sensitivities, the Akaike information criterion (AIC and AICc), Bayesian information criterion (BIC), and Kashyap's information criterion (KIC) were calculated for a set of seven inverse calibrated models with increasing complexity. Finally, the likelihood of each model was computed. Comparing only residuals of the different conceptual models leads to an overparameterization and certainty loss in the conceptual model approach. The model employing only uncalibrated hydraulic parameters, estimated from sedimentological information, obtained the worst AIC, BIC, and KIC values. Using only sedimentological data to derive hydraulic parameters introduces a systematic error into the simulation results and cannot be recommended for generating a valuable model. For numerical investigations with high numbers of calibration data the BIC and KIC select as optimal a simpler model than the AIC. The model with 15 adjusted parameters was evaluated by AIC as the best option and obtained a likelihood of 98%. The AIC disregards the potential model structure error and the selection of the KIC is, therefore, more appropriate. Sensitivities to piezometric heads were highest for the model with only five adjustable parameters and sensitivity coefficients were directly influenced by the changes in extracted groundwater volumes.

  10. Groundwater Waters

    Directory of Open Access Journals (Sweden)

    Ramón Llamas

    1999-10-01

    Full Text Available The groundwaters released through springs constituted a basic element for the survival and progressive development of human beings. Man came to learn how to take better advantage of these waters by digging wells, irrigation channels, and galleries. Nevertheless, these activities do not require cooperation nor the collective agreement of relatively large groups of people, as in the case of creating the necessary structures to take advantage of the resources of surfacewaters. The construction and operation of these structures was a powerful factor in the birth of an urban or civil society – the designated water civilizations. The difference between people taking advantage of groundwater, quasi-individually, and those of surface water, where people work in a group, has continued to the present day. Whereas earlier, this difference did not bring about any special problems, the technological advances of this century, especially theturbine pump, have led to a spectacular increase in the use of roundwater. This advance has significantly contributed to reducing hunger in the world and has provided potable water in developing countries. However, the almost generalized lack of planning and control in the exploitation of these groundwaters reflects that they are little or badly understood by the managers of water policy in almost every country. As such, problems have occurred which have often become exaggerated, giving rise to water-myths. These problems, though, should be addressed if the aim is the sustainable usage of surface water as well as groundwater. To counter any misconceptions and to seek solutions to the problems, distinct plans of action can be highlighted: educating the public; fomenting a system of participative management and decisive support for the communities of users of subterranean waters; integrating a sufficient number of experts in hydrology in the various water management organizations;and assuring transparency of the data on

  11. The Maryland Coastal Plain Aquifer Information System: A GIS-based tool for assessing groundwater resources

    Science.gov (United States)

    Andreasen, David C.; Nardi, Mark R.; Staley, Andrew W.; Achmad, Grufron; Grace, John W.

    2016-01-01

    Groundwater is the source of drinking water for ∼1.4 million people in the Coastal Plain Province of Maryland (USA). In addition, groundwater is essential for commercial, industrial, and agricultural uses. Approximately 0.757 × 109 L d–1 (200 million gallons/d) were withdrawn in 2010. As a result of decades of withdrawals from the coastal plain confined aquifers, groundwater levels have declined by as much as 70 m (230 ft) from estimated prepumping levels. Other issues posing challenges to long-term groundwater sustainability include degraded water quality from both man-made and natural sources, reduced stream base flow, land subsidence, and changing recharge patterns (drought) caused by climate change. In Maryland, groundwater supply is managed primarily by the Maryland Department of the Environment, which seeks to balance reasonable use of the resource with long-term sustainability. The chief goal of groundwater management in Maryland is to ensure safe and adequate supplies for all current and future users through the implementation of appropriate usage, planning, and conservation policies. To assist in that effort, the geographic information system (GIS)–based Maryland Coastal Plain Aquifer Information System was developed as a tool to help water managers access and visualize groundwater data for use in the evaluation of groundwater allocation and use permits. The system, contained within an ESRI ArcMap desktop environment, includes both interpreted and basic data for 16 aquifers and 14 confining units. Data map layers include aquifer and ­confining unit layer surfaces, aquifer extents, borehole information, hydraulic properties, time-series groundwater-level data, well records, and geophysical and lithologic logs. The aquifer and confining unit layer surfaces were generated specifically for the GIS system. The system also contains select groundwater-quality data and map layers that quantify groundwater and surface-water withdrawals. The aquifer

  12. Integration of groundwater information into decision making for regional planning: a portrait for North America.

    Science.gov (United States)

    Lavoie, Roxane; Lebel, Alexandre; Joerin, Florent; Rodriguez, Manuel J

    2013-01-15

    Groundwater is widely used as a source of drinking water in North America. However, it can be contaminated by microbial or chemical agents potentially hazardous to human health. In recent decades, governments have developed better knowledge of groundwater and established measures to protect and preserve the resource. Several studies have shown that relevant information on groundwater might prove very useful for regional planning purposes. However, there is little information on how groundwater information contributes to decision making in urban and regional planning in Canada and the United States. The objective of this study is to explore the level of use of groundwater information for land use planning purposes in Canada and the United States and to identify the factors that may explain why some provinces or states are more proactive than others when it comes to using such data for groundwater protection purposes. This paper presents the results of a survey sent across North America to groundwater information producers. The resulting data from the survey were examined using descriptive analyses and multiple correspondence analysis, and illustrate how groundwater data can be integrated into land planning. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Review of information on interactions between vegetation and groundwater

    CSIR Research Space (South Africa)

    Le Maitre, David C

    1999-04-01

    Full Text Available Research Commission (WRC), culminating in a report entitled The Interaction between Vegeta- tion and Groundwater: Research Priorities for South Africa (Scott and Le Maitre, 1998). It concentrates on studies of the impacts of vegetation on groundwater.... * To whom all correspondence should be addressed ( (021) 888-2610; fax (021) 888-2693; e-mail dlmaitre@csir.co.za Received 17 August 1998; accepted in revised form 4 December 1998. ISSN 0378-4738 = Water SA Vol. 25 No. 2 April 1999138 Available on website...

  14. Groundwater Capture Zones

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Source water protection areas are delineated for each groundwater-based public water supply system using available geologic and hydrogeologic information to...

  15. Groundwater: A Community Action Guide.

    Science.gov (United States)

    Boyd, Susan, Ed.; And Others

    Designed to be a guide for community action, this booklet examines issues and trends related to groundwater contamination. Basic concepts about groundwater and information about problems affecting it are covered under the categories of (1) what is groundwater? (2) availability and depletion; (3) quality and contamination; (4) public health…

  16. Groundwater: A Community Action Guide.

    Science.gov (United States)

    Boyd, Susan, Ed.; And Others

    Designed to be a guide for community action, this booklet examines issues and trends related to groundwater contamination. Basic concepts about groundwater and information about problems affecting it are covered under the categories of (1) what is groundwater? (2) availability and depletion; (3) quality and contamination; (4) public health…

  17. Geographical Information System Techniques for Evaluation of Groundwater Quality

    Directory of Open Access Journals (Sweden)

    Shahram Ashraf

    2011-01-01

    Full Text Available Problem statement: The present paper tries to assess groundwater suitability for irrigation purpose in Damghan plain (5400 ha. Approach: Twenty four water samples were collected from the active wells. Parameters such as Electrical Conductivity (EC, pH, Total Dissolved Solids (TDS, were recorded in the field and major anions and cations (Ca2+, Mg2+, K+, Na+, CO32-, HCO3-, Cl-, SO42- and NO3- were analyzed in the laboratory. The data of water wells were imported into the GIS software and the different water quality maps were produced using point data. Then Suitability index of groundwater quality determined by overlaying of water quality maps. Results: Suitability index values revealed that the ground water in Amin Abad, Abdi, Abd Abad, Nasr Abad and parts of Shams Abad villages of study area had "Suitable" quality with the suitability index range between 75-100 and therefore can be used for irrigation usage. Suitability index of the groundwater in Hasnie, Gani Abad and parts of Shams Abad villages were "Moderate" quality with the range between 35-70 and Abas Abad, Abir Abad and Shaman villages had "unsuitable" quality and cannot be used for irrigation purposes. In respect of all evaluating criteria, villages of study areas that had "Suitable" and Moderate quality could safely be used for longterm irrigation purposes. Conclusion: The present study demonstrated high efficiency for GIS to analyze complex spatial data and groundwater quality suitability.

  18. Estimating groundwater dynamics at a Colorado River floodplain site using historical hydrological data and climate information

    Science.gov (United States)

    Chen, Jinsong; Hubbard, Susan S.; Williams, Kenneth H.; Ficklin, Darren L.

    2016-03-01

    Long-term prediction of groundwater dynamics is important for assessing water resources and their impacts on biogeochemical cycling. However, estimating future groundwater dynamics is challenging due to the wide range of spatiotemporal scales in hydrological processes and uncertainty in future climate conditions. In this study, we develop a Bayesian model to combine small-scale historical hydrological data with large-scale climate information to estimate groundwater dynamics at a floodplain site in Rifle, Colorado. Although we have only a few years of groundwater elevation measurements, we have 47 years of streamflow data from a gaging station approximately 43 km upstream and long-term climate prediction on the Upper Colorado River Basin. To estimate future daily groundwater dynamics, we first develop a time series model to downscale the monthly streamflow derived from climate information to daily streamflow, and then transform the daily streamflow to groundwater dynamics at the downstream floodplain site. We use Monte Carlo methods to estimate future groundwater dynamics at the site through sampling from the joint posterior probability distribution. The results suggest that although future groundwater levels are expected to be similar to the current levels, the timing of the high groundwater levels is predicted to occur about 1 month earlier. The developed framework is extendable to other sites to estimate future groundwater dynamics given disparate data sets and climate projections. Additionally, the obtained estimates are being used as input to a site-specific watershed reactive transport models to predict how climate-induced changes will influence future biogeochemical cycling relevant to a variety of ecosystem services.

  19. Groundwater recharge: Accurately representing evapotranspiration

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2011-09-01

    Full Text Available Groundwater recharge is the basis for accurate estimation of groundwater resources, for determining the modes of water allocation and groundwater resource susceptibility to climate change. Accurate estimations of groundwater recharge with models...

  20. Groundwater Managment Districts

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset outlines the location of the five Groundwater Management Districts in Kansas. GMDs are locally formed and elected boards for regional groundwater...

  1. Assessment of groundwater quality using geographical information system (GIS), at north-east Cairo, Egypt.

    Science.gov (United States)

    El-Shahat, M F; Sadek, M A; Mostafa, W M; Hagagg, K H

    2016-04-01

    The present investigation has been conducted to delineate the hydrogeochemical and environmental factors that control the water quality of the groundwater resources in the north-east of Cairo. A complementary approach based on hydrogeochemistry and a geographical information system (GIS) based protectability index has been employed for conducting this work. The results from the chemical analysis revealed that the groundwater of the Quaternary aquifer is less saline than that of the Miocene aquifer and the main factors that control the groundwater salinity in the studied area are primarily related to the genesis of the original recharging water modified after by leaching, dissolution, cation exchange, and fertilizer leachate. The computed groundwater quality index (WQI) falls into two categories: fair for almost all the Miocene groundwater samples, while the Quaternary groundwater samples are all have a good quality. The retarded flow and non-replenishment of the Miocene aquifer compared to the renewable active recharge of the Quaternary aquifer can explain this variation of WQI. The index and overlay approach exemplified by the DUPIT index has been used to investigate the protectability of the study aquifers against diffuse pollutants. Three categories (highly protectable less vulnerable, moderately protectable moderately vulnerable and less protectable highly vulnerable) have been determined and areally mapped.

  2. Behavioral response to contamination risk information in a spatially explicit groundwater environment: Experimental evidence

    Science.gov (United States)

    Li, Jingyuan; Michael, Holly A.; Duke, Joshua M.; Messer, Kent D.; Suter, Jordan F.

    2014-08-01

    This paper assesses the effectiveness of aquifer monitoring information in achieving more sustainable use of a groundwater resource in the absence of management policy. Groundwater user behavior in the face of an irreversible contamination threat is studied by applying methods of experimental economics to scenarios that combine a physics-based, spatially explicit, numerical groundwater model with different representations of information about an aquifer and its risk of contamination. The results suggest that the threat of catastrophic contamination affects pumping decisions: pumping is significantly reduced in experiments where contamination is possible compared to those where pumping cost is the only factor discouraging groundwater use. The level of information about the state of the aquifer also affects extraction behavior. Pumping rates differ when information that synthesizes data on aquifer conditions (a "risk gauge") is provided, despite invariant underlying economic incentives, and this result does not depend on whether the risk information is location-specific or from a whole aquifer perspective. Interestingly, users increase pumping when the risk gauge signals good aquifer status compared to a no-gauge treatment. When the gauge suggests impending contamination, however, pumping declines significantly, resulting in a lower probability of contamination. The study suggests that providing relatively simple aquifer condition guidance derived from monitoring data can lead to more sustainable use of groundwater resources.

  3. Sustainable groundwater management in California

    Science.gov (United States)

    Phillips, Steven P.; Rogers, Laurel Lynn; Faunt, Claudia

    2015-12-01

    The U.S. Geological Survey (USGS) uses data collection, modeling tools, and scientific analysis to help water managers plan for, and assess, hydrologic issues that can cause “undesirable results” associated with groundwater use. This information helps managers understand trends and investigate and predict effects of different groundwater-management strategies.

  4. PATHS groundwater hydrologic model

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  5. Informing groundwater model hydrostratigraphy with airborne time-domain electromagnetic data and borehole logs

    DEFF Research Database (Denmark)

    Marker, Pernille Aabye; Bauer-Gottwein, Peter; Mosegaard, Klaus

    lithological information directly into groundwater models is proposed. The approach builds on a clay-fraction inversion which is a spatially variable translation of resistivity values from EM data into clay-fraction values using borehole lithological information. Hydrostratigraphical units are obtained through...

  6. DYNAMICS OF AGRICULTURAL GROUNDWATER EXTRACTION

    OpenAIRE

    Hellegers, Petra J.G.J.; Zilberman, David; van Ierland, Ekko C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

  7. DYNAMICS OF AGRICULTURAL GROUNDWATER EXTRACTION

    OpenAIRE

    Hellegers, Petra J.G.J.; Zilberman, David; van Ierland, Ekko C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

  8. Promoting local management in groundwater

    Science.gov (United States)

    van Steenbergen, Frank

    2006-03-01

    There is a strong case for making greater effort to promote local groundwater management—in addition to other measures that regulate groundwater use. Though scattered, there are several examples—from India, Pakistan, Yemen and Egypt—where groundwater users effectively self-imposed restrictions on the use of groundwater. There are a number of recurrent themes in such spontaneously-developed examples of local regulation: the importance of not excluding potential users; the importance of simple, low transaction cost rules; the power of correct and accessible hydrogeological information; the possibility of making more use of demand and supply management strategies; and the important supportive role of local governments. The case is made, using examples, for actively promoting local groundwater management as an important element in balancing groundwater uses. Two programmes for promoting local groundwater management in South India are described—one focussing on participatory hydrological monitoring, and one focussing on micro-resource planning and training. In both cases the response was very positive and the conclusion is that promoting local groundwater regulation is not difficult, costly or sensitive and can reach the necessary scale quickly.

  9. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  10. Groundwater Contamination. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    Science.gov (United States)

    Cole, Charles A.

    Described is a presentation and learning session on groundwater, which is intended to educate advisory groups interested in improving water quality decision making. Among the areas addressed are the importance of groundwater, sources of contamination, and groundwater pollution control programs. These materials are part of the Working for Clean…

  11. Groundwater Contamination. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    Science.gov (United States)

    Cole, Charles A.

    Described is a presentation and learning session on groundwater, which is intended to educate advisory groups interested in improving water quality decision making. Among the areas addressed are the importance of groundwater, sources of contamination, and groundwater pollution control programs. These materials are part of the Working for Clean…

  12. Impact of informal groundwater markets on efficiency of irrigated farms in India

    NARCIS (Netherlands)

    Manjunatha, A.V.; Speelman, S.; Aravindakshan, Sreejith; Amjath Babu, T.S.; Mal, Puran

    2016-01-01

    In recent years, the proliferation of private well irrigation systems in South Asia, especially in the hard rock areas of India, has stimulated the growth of informal groundwater markets. These markets allow water-buying farmers, who are unable to invest in wells, to benefit from irrigation while

  13. Groundwater Interference

    Data.gov (United States)

    Vermont Center for Geographic Information — "This is a searchable database representing over 40 years of hydrogeologic information based on yield testing required for new and existing public water supply...

  14. Dynamics of Agricultural Groundwater Extraction

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Zilberman, D.; Ierland, van E.C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is

  15. Reconstruction of groundwater depletion using a global scale groundwater model

    Science.gov (United States)

    de Graaf, Inge; van Beek, Rens; Sutanudjaja, Edwin; Wada, Yoshi; Bierkens, Marc

    2015-04-01

    Groundwater forms an integral part of the global hydrological cycle and is the world's largest accessible source of fresh water to satisfy human water needs. It buffers variable recharge rates over time, thereby effectively sustaining river flows in times of drought as well as evaporation in areas with shallow water tables. Moreover, although lateral groundwater flows are often slow, they cross topographic and administrative boundaries at appreciable rates. Despite the importance of groundwater, most global scale hydrological models do not consider surface water-groundwater interactions or include a lateral groundwater flow component. The main reason of this omission is the lack of consistent global-scale hydrogeological information needed to arrive at a more realistic representation of the groundwater system, i.e. including information on aquifer depths and the presence of confining layers. The latter holds vital information on the accessibility and quality of the global groundwater resource. In this study we developed a high resolution (5 arc-minutes) global scale transient groundwater model comprising confined and unconfined aquifers. This model is based on MODFLOW (McDonald and Harbaugh, 1988) and coupled with the land-surface model PCR GLOBWB (van Beek et al., 2011) via recharge and surface water levels. Aquifers properties were based on newly derived estimates of aquifer depths (de Graaf et al., 2014b) and thickness of confining layers from an integration of lithological and topographical information. They were further parameterized using available global datasets on lithology (Hartmann and Moosdorf, 2011) and permeability (Gleeson et al., 2014). In a sensitivity analysis the model was run with various hydrogeological parameter settings, under natural recharge only. Scenarios of past groundwater abstractions and corresponding recharge (Wada et al., 2012, de Graaf et al. 2014a) were evaluated. The resulting estimates of groundwater depletion are lower than

  16. State space modeling of groundwater fluctuations

    NARCIS (Netherlands)

    Berendrecht, W.L.

    2004-01-01

    Groundwater plays an important role in both urban and rural areas. It is therefore essential to monitor groundwater fluctuations. However, data that becomes available need to be analyzed further in order to extract specific information on the groundwater system. Until recently, simple linear time se

  17. Subsurface hydrological information in rock-slide phenomena from groundwater spring monitoring.

    Science.gov (United States)

    Rochetti, Francesco; Corsini, Alessandro; Deiana, Manuela; Loche, Roberto; Mulas, Marco; Russo, Michele

    2016-04-01

    Frequently rock-slide phenomena are characterized by rough topography and high declivity of the slope. Due to these characteristics, the drilling of boreholes is not so common and in some circumstance expensive. Consequently, the exact information about depth of the sliding surface and about groundwater processes, groundwater levels or pore water pressure distribution are missing. Alternately, some information about the groundwater can be obtained from the physical-chemical monitoring of springs. The research highlights preliminary results, about the groundwater processes, obtained from the continuous flow-rate monitoring of a spring located in the active Piagneto rock-slide (northern Apennine). The spring has been monitored from Sept-2014 until Oct-2015 using a piezometer transducer (sampling frequency 1 h) and a triangular weir. The landslide was monitored in continuous since the 2009 using an automatic total station and some reflectors. The monitoring of the rock-slide displacements showed creep phenomena in the summer and acceleration phases from autumn to late spring, during periods characterized by high rainfall intensity; rainfall with intensity higher than 10 mm/d and duration less than 15 days can produce the acceleration of the sliding mass. Before 2014 any information about groundwater was collected. The successively spring monitoring shows the follow results: the spring flow rate is strongly variable in the time; only some rainfall events, with particular intensity and duration (generally total amount higher than 100 mm), are responsible of strong changes in the flow rate, and the flow rate starts to increase only after some hours; the snow melting events, also when there is a fast reduction of the snow thickness, don't produce high variation in the flow rate discharge; there is a strong correlation between the flow rate peaks and the rock-slide acceleration; an infiltration coefficient higher than 70% is estimated through the comparison between the

  18. EUGRIS: ''European Substainable Land and Groundwater Management Information System''

    Energy Technology Data Exchange (ETDEWEB)

    Frauenstein, J. [Federal Environmental Agency (UBA), Berlin (Germany)

    2003-07-01

    The presentation outlines and Accompanying Measure with the FP 5 to develop an web based EUropean Sustainable Land and GRoundwater Management Information System information system (EUGRIS). The management of contaminated land and groundwater requires an interdisciplinary approach and a considerable amount of supporting technical information and knowledge. EUGRIS will provide a generally available comprehensive and overarching information and innovation resource, to support both research and practical contaminated land and groundwater management. EUGRI is a gateway to provide a 'one stop shop' for information provided by research projects, legislation, standards, best practice and other technical guidance and policy/regulatory publications from the EC, participating Member and Accession States and from various international networks dealing with groundwater and land management issues. Different types of user can access information through different windows according to their needs. EUGRIS will provide its visitors with summary information (digests) and links to sources of more detailed and/or original information in a scaleable holistic and contexturally meaningful way. EUGRIS is being built in three stages: the design of the information system, the development of its software implementation, and the population of the system with information. The presentation is focussed on the concept of the development of the information system with the individual work packages. In the second part of the lecture in particular the work procedures are presented for the content wise replenishment by EUGRIS. The data collation for the proven pilot countries and the production of a European research data base, which opens contents and results of European-wide locked and current projects, form the emphasis thereby. (orig.)

  19. Human health and groundwater

    Science.gov (United States)

    The high quality of most groundwaters, consequent upon the self-purification capacity of subsurface strata, has long been a key factor in human health and wellbeing. More than 50% of the world’s population now rely on groundwater for their supply of drinking water – and in most circumstances a prope...

  20. Groundwater and Distribution Workbook.

    Science.gov (United States)

    Ekman, John E.

    Presented is a student manual designed for the Wisconsin Vocational, Technical and Adult Education Groundwater and Distribution Training Course. This program introduces waterworks operators-in-training to basic skills and knowledge required for the operation of a groundwater distribution waterworks facility. Arranged according to the general order…

  1. Trends in groundwater quality in relation to groundwater age

    NARCIS (Netherlands)

    Visser, A.

    2009-01-01

    Groundwater is a valuable natural resource and as such should be protected from chemical pollution. Because of the long travel times of pollutants through groundwater bodies, early detection of groundwater quality deterioration is necessary to efficiently protect groundwater bodies. The aim of this

  2. Trends in groundwater quality in relation to groundwater age

    NARCIS (Netherlands)

    Visser, A.

    2009-01-01

    Groundwater is a valuable natural resource and as such should be protected from chemical pollution. Because of the long travel times of pollutants through groundwater bodies, early detection of groundwater quality deterioration is necessary to efficiently protect groundwater bodies. The aim of this

  3. Global depletion of groundwater resources

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P.

    2010-01-01

    In regions with frequent water stress and large aquifer systems groundwater is often used as an additional water source. If groundwater abstraction exceeds the natural groundwater recharge for extensive areas and long times, overexploitation or persistent groundwater depletion occurs. Here we provid

  4. Groundwater data network interoperability

    Science.gov (United States)

    Brodaric, Boyan; Booth, Nathaniel; Boisvert, Eric; Lucido, Jessica M.

    2016-01-01

    Water data networks are increasingly being integrated to answer complex scientific questions that often span large geographical areas and cross political borders. Data heterogeneity is a major obstacle that impedes interoperability within and between such networks. It is resolved here for groundwater data at five levels of interoperability, within a Spatial Data Infrastructure architecture. The result is a pair of distinct national groundwater data networks for the United States and Canada, and a combined data network in which they are interoperable. This combined data network enables, for the first time, transparent public access to harmonized groundwater data from both sides of the shared international border.

  5. Groundwater contamination in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tase, Norio [Univ. of Tsukuba, Ibaraki (Japan)

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed. 9 refs., 3 figs., 4 tabs.

  6. Groundwater contamination in Japan

    Science.gov (United States)

    Tase, Norio

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed.

  7. Canada's groundwater resources

    National Research Council Canada - National Science Library

    Rivera, Alfonso

    2014-01-01

    Groundwater is essential for life in arid and semiarid region. It is also important in humid regions, and is one of the fundamental requirements for the maintenance of natural landscapes and aquatic ecosystem...

  8. High-fluoride groundwater.

    Science.gov (United States)

    Rao, N Subba

    2011-05-01

    Fluoride (F(-)) is essential for normal bone growth, but its higher concentration in the drinking water poses great health problems and fluorosis is common in many parts of India. The present paper deals with the aim of establishment of facts of the chemical characteristics responsible for the higher concentration of F(-) in the groundwater, after understanding the chemical behavior of F(-) in relation to pH, total alkalinity (TA), total hardness (TH), carbonate hardness (CH), non-carbonate hardness (NCH), and excess alkalinity (EA) in the groundwater observed from the known areas of endemic fluorosis zones of Andhra Pradesh that have abundant sources of F(-)-bearing minerals of the Precambrians. The chemical data of the groundwater shows that the pH increases with increase F(-); the concentration of TH is more than the concentration of TA at low F(-) groundwater, the resulting water is represented by NCH; the TH has less concentration compared to TA at high F(-) groundwater, causing the water that is characterized by EA; and the water of both low and high concentrations of F(-) has CH. As a result, the F(-) has a positive relation with pH and TA, and a negative relation with TH. The operating mechanism derived from these observations is that the F(-) is released from the source into the groundwater by geochemical reactions and that the groundwater in its flowpath is subjected to evapotranspiration due to the influence of dry climate, which accelerates a precipitation of CaCO(3) and a reduction of TH, and thereby a dissolution of F(-). Furthermore, the EA in the water activates the alkalinity in the areas of alkaline soils, leading to enrichment of F(-). Therefore, the alkaline condition, with high pH and EA, and low TH, is a more conducive environment for the higher concentration of F(-) in the groundwater.

  9. A method of groundwater quality assessment based on fuzzy network-CANFIS and geographic information system (GIS)

    Science.gov (United States)

    Gholami, V.; Khaleghi, M. R.; Sebghati, M.

    2016-12-01

    The process of water quality testing is money/time-consuming, quite important and difficult stage for routine measurements. Therefore, use of models has become commonplace in simulating water quality. In this study, the coactive neuro-fuzzy inference system (CANFIS) was used to simulate groundwater quality. Further, geographic information system (GIS) was used as the pre-processor and post-processor tool to demonstrate spatial variation of groundwater quality. All important factors were quantified and groundwater quality index (GWQI) was developed. The proposed model was trained and validated by taking a case study of Mazandaran Plain located in northern part of Iran. The factors affecting groundwater quality were the input variables for the simulation, whereas GWQI index was the output. The developed model was validated to simulate groundwater quality. Network validation was performed via comparison between the estimated and actual GWQI values. In GIS, the study area was separated to raster format in the pixel dimensions of 1 km and also by incorporation of input data layers of the Fuzzy Network-CANFIS model; the geo-referenced layers of the effective factors in groundwater quality were earned. Therefore, numeric values of each pixel with geographical coordinates were entered to the Fuzzy Network-CANFIS model and thus simulation of groundwater quality was accessed in the study area. Finally, the simulated GWQI indices using the Fuzzy Network-CANFIS model were entered into GIS, and hence groundwater quality map (raster layer) based on the results of the network simulation was earned. The study's results confirm the high efficiency of incorporation of neuro-fuzzy techniques and GIS. It is also worth noting that the general quality of the groundwater in the most studied plain is fairly low.

  10. Evaluating the information content of multiple groundwater age tracers in projecting nitrate vulnerability

    Science.gov (United States)

    Alikhani, J.; Massoudieh, A.; Deinhart, A.; Visser, A.; Esser, B.; Moran, J. E.

    2015-12-01

    Nitrate is one of the major sources of contamination of groundwater in the United States and around the world. In this study the applicability of multiple groundwater age tracers including 3H, 3He, 4He, 14C, 13C, and 85Kr in projecting future trends of nitrate concentration in several long-screened, public drinking water wells in Turlock, California, where nitrate concentrations are increasing toward the regulatory limit, is studied. Several lumped parameter models (LPM)s were considered to represent the groundwater age distribution at each well, including binary mixtures between Inverse Gaussian(young) and Dirac(old), generalized inverse Gaussian, and Levy distributions . LPM model parameters and unknown physical parameters (crustal production rate of 4He, dissolved inorganic carbon contribution from rock dissolution) were estimated using a Bayesian inference, resulting in the posterior probability distribution of the parameters and therefore the uncertainty associated with each. The performance of each LPM in reproducing the data while accounting for the level of model complexity is evaluated using deviance information criteria (DIC) and Bayes Factors (BF). Historical nitrate concentration data are also evaluated as an additional tracer to refine the age distribution. We found that historical nitrate levels can reduce the uncertainty about the age distribution. LPMs with a distinct feature to represent the old fraction of groundwater (for example Inverse Gaussian-Dirac) are better at reproducing the tracer data but with the price of a larger number of parameters, which results in a larger uncertainty about the age distribution itself. Although the uncertainty regarding the shape of the age distribution remains relatively high, whether nitrate is included as a tracer or not, different models predict similar future trends in nitrate concentration.

  11. Groundwater Quality Protection in Oakland County: A Sourcebook for Teachers.

    Science.gov (United States)

    East Michigan Environmental Action Council, Troy.

    This sourcebook consists of background information and activities related to groundwater protection. The first section focuses on the characteristics of groundwater, the water cycle, stormwater runoff, and uses of groundwater. The second section addresses household hazardous materials--both from a safety standpoint and a groundwater standpoint.…

  12. Groundwater Quality Protection in Oakland County: A Sourcebook for Teachers.

    Science.gov (United States)

    East Michigan Environmental Action Council, Troy.

    This sourcebook consists of background information and activities related to groundwater protection. The first section focuses on the characteristics of groundwater, the water cycle, stormwater runoff, and uses of groundwater. The second section addresses household hazardous materials--both from a safety standpoint and a groundwater standpoint.…

  13. Limits to global groundwater consumption

    Science.gov (United States)

    de Graaf, I.; Van Beek, L. P.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2016-12-01

    Groundwater is the largest accessible freshwater resource worldwide and is of critical importance for irrigation, and so for global food security. For many regions of the world where groundwater abstraction exceeds groundwater recharge, persistent groundwater depletion occurs. A direct consequence of depletion is falling groundwater levels, reducing baseflows to rivers, harming ecosystems. Also, pumping costs increase, wells dry up and land subsidence can occur. Water demands are expected to increase further due to growing population, economic development and climate change, posing the urgent question how sustainable current water abstractions are worldwide and where and when these abstractions approach conceivable limits with all the associated problems. Here, we estimated past and future trends (1960-2050) in groundwater levels resulting from changes in abstractions and climate and predicted when limits of groundwater consumption are reached. We explored these limits by predicting where and when groundwater levels drop that low that groundwater becomes unattainable for abstractions and how river flows are affected. Water availabilities, abstractions, and lateral groundwater flows are simulated (5 arcmin. resolution) using a coupled version of the global hydrological model PCR-GLOBWB and a groundwater model based on MODFLOW. The groundwater model includes a parameterization of the worlds confined and unconfined aquifer systems, needed for a realistic simulation of groundwater head dynamics. Results show that, next to the existing regions experiencing groundwater depletion (like India, Pakistan, Central Valley) new regions will develop, e.g. Southern Europe, the Middle East, and Africa. Using a limit that reflects present-day feasibility of groundwater abstraction, we estimate that in 2050 groundwater becomes unattainable for 20% of the global population, mainly in the developing countries and pumping cost will increase significantly. Largest impacts are found

  14. Study of groundwater vulnerability to pollution using the DRASTIC method coupled with a geographic information system (GIS): application to groundwater Beni Amir, Morocco

    Science.gov (United States)

    Knouz, Najat; Boudhar, Abdelghani; Bachaoui, El Mostafa

    2016-04-01

    Fresh water is the condition of all life on Earth for its vital role in the survival of living beings and in the social, economic and technological development. The Groundwater, as the surface water, is increasingly threatened by agricultural and industrial pollution. In this respect, the groundwater vulnerability assessment to pollution is a very valuable tool for resource protection, management of its quality and uses it in a sustainable way. The main objective of this study is the evaluation of groundwater vulnerability to pollution of the study area, Beni Amir, located in the first irrigated perimeter of Morocco, Tadla, using the DRASTIC method (depth to water, net recharge, aquifer media, soil media, Topography, impact of Vadose zone and hydraulic conductivity), and assessing the impact of each parameter on the DRASTIC vulnerability index by a sensitivity analysis. This study also highlights the role of geographic information systems (GIS) in assessing vulnerability. The Vulnerability index is calculated as the sum of product of ratings and weights assigned to each of the parameter DRASTIC. The results revealed four vulnerability classes, 7% of the study area has a high vulnerability, 31% are moderately vulnerable, 57% have a low vulnerability and 5% are of very low vulnerability.

  15. Simulating groundwater-induced sewer flooding

    Science.gov (United States)

    Mijic, A.; Mansour, M.; Stanic, M.; Jackson, C. R.

    2016-12-01

    During the last decade, Chalk catchments of southern England experienced severe groundwater flooding. High groundwater levels resulted in the groundwater ingress into the sewer network that led to restricted toilet use and the overflow of diluted, but untreated sewage to road surfaces, rivers and water courses. In response to these events the water and sewerage company Thames Water Utilities Ltd (TWUL) had to allocate significant funds to mitigate the impacts. It was estimated that approximately £19m was spent responding to the extreme wet weather of 2013-14, along with the use of a fleet of over 100 tankers. However, the magnitude of the event was so large that these efforts could not stop the discharge of sewage to the environment. This work presents the analysis of the risk of groundwater-induced sewer flooding within the Chalk catchment of the River Lambourn, Berkshire. A spatially distributed groundwater model was used to assess historic groundwater flood risk and the potential impacts of changes in future climate. We then linked this model to an urban groundwater model to enable us to simulate groundwater-sewer interaction in detail. The modelling setup was used to identify relationships between infiltration into sewers and groundwater levels at specific points on TWUL's sewer network, and to estimate historic and future groundwater flood risk, and how this varies across the catchment. The study showed the significance of understanding the impact of groundwater on the urban water systems, and producing information that can inform a water company's response to groundwater flood risk, their decision making process and their asset management planning. However, the knowledge gained through integrated modelling of groundwater-sewer interactions has highlighted limitations of existing approaches for the simulation of these coupled systems. We conclude this work with number of recommendations about how to improve such hydrological/sewer analysis.

  16. Geochemical Investigations of Groundwater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2006-05-15

    The report describes geochemical parameters and methods that provide information about the hydrodynamic stability of groundwaters in low permeability fractured rocks that are potential hosts for radioactive waste repositories. Hydrodynamic stability describes the propensity for changes in groundwater flows over long timescales, in terms of flow rates and flow directions. Hydrodynamic changes may also cause changes in water compositions, but the related issue of geochemical stability of a potential repository host rock system is outside the scope of this report. The main approaches to assessing groundwater stability are numerical modelling, measurement and interpretation of geochemical indicators in groundwater compositions, and analyses and interpretations of secondary minerals and fluid inclusions in these minerals. This report covers the latter two topics, with emphasis on geochemical indicators. The extent to which palaeohydrogeology and geochemical stability indicators have been used in past safety cases is reviewed. It has been very variable, both in terms of the scenarios considered, the stability indicators considered and the extent to which the information was explicitly or implicitly used in assessing FEPs and scenarios in the safety cases. Geochemical indicators of hydrodynamic stability provide various categories of information that are of hydrogeological relevance. Information about groundwater mixing, flows and water sources is potentially provided by the total salinity of groundwaters, their contents of specific non-reactive solutes (principally chloride) and possibly of other solutes, the stable isotopic ratio of water, and certain characteristics of secondary minerals and fluid inclusions. Information pertaining directly to groundwater ages and the timing of water and solute movements is provided by isotopic systems including tritium, carbon-14, chlorine-36, stable oxygen and hydrogen isotopes, uranium isotopes and dissolved mobile gases in

  17. AUTOMATING GROUNDWATER SAMPLING AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    CONNELL CW; HILDEBRAND RD; CONLEY SF; CUNNINGHAM DE

    2009-01-16

    Until this past October, Fluor Hanford managed Hanford's integrated groundwater program for the U.S. Department of Energy (DOE). With the new contract awards at the Site, however, the CH2M HILL Plateau Remediation Company (CHPRC) has assumed responsibility for the groundwater-monitoring programs at the 586-square-mile reservation in southeastern Washington State. These programs are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. More than 1,200 wells are sampled each year. Historically, field personnel or 'samplers' have been issued pre-printed forms that have information about the well(s) for a particular sampling evolution. This information is taken from the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS)--official electronic databases. The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and the collected information was posted onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. This is a pilot project for automating this tedious process by providing an electronic tool for automating water-level measurements and groundwater field-sampling activities. The automation will eliminate the manual forms and associated data entry, improve the

  18. Limits to Global Groundwater Consumption

    Science.gov (United States)

    Graaf, I. D.; Van Beek, R.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2015-12-01

    In regions with frequent water stress and large aquifer systems, groundwater is often used as an additional fresh water source. For many regions of the world groundwater abstraction exceeds groundwater recharge and persistent groundwater depletion occurs. The most direct effect of groundwater depletion is declining of water tables, leading to reduced groundwater discharge needed to sustain base-flow to e.g. rivers. Next to that, pumping costs increase, wells dry up and land subsidence occurs. These problems are expected to increase in the near future due to growing population and climate changes. This poses the urgent question of what the limits are of groundwater consumption worldwide. We simulate global water availability (5 arc-minute resolution, for 1960-2050) using the hydrological model PCR-GLOBWB (van Beek et al. 2011), coupled to a groundwater model based on MODFLOW (de Graaf et al. 2015), allowing for groundwater - surface water interactions. The groundwater model includes a parameterization of world's confined and unconfined aquifer systems needed for a realistic simulation of groundwater head dynamics. Water demands are included (from Wada et al. 2014). We study the limits to water consumption, focusing on locally attainable groundwater and groundwater levels critical to rivers to sustain low flows. We show an increasing trend (1960-2050) in groundwater head declines, due to increase in groundwater demand. Also, stream flow will decrease and low flow conditions will occur more frequent and will be longer in duration in the near future, especially for irrigated areas. Next to that, we provide a global overview of the years it takes until groundwater gets unattainable for e.g. a local farmer (100 m below land-surface used as a proxy), and estimate the increase in pumping cost for the near future. The results show where and when limits of groundwater consumption are reached globally.

  19. DS796 California Groundwater Units

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The California Groundwater Units dataset classifies and delineates the State into one of three groundwater based polygon units: (1) those areas defined as alluvial...

  20. Tehran Groundwater Chemical Pollution

    Directory of Open Access Journals (Sweden)

    M- Shariatpanahi

    1990-06-01

    Full Text Available Seventy eight wells water sample of Tehran plain were examined to determine r its groundwaters chemical pollution. Tehran s groundwaters are slightly acidic and their total dissolved solids are high and are in the hard water category."nThe nitrate concentration of wells water of west region is less than per¬missible level of W.H.O. standard, whereas, the nitrate concentration of some of the other regions wells exceed W.H.O. standard which is indication of pollution"nwith municipal wastewaters. The concentration of toxic elements Cr, Cd, As, Hg and"ni Pb of some of the west, east and south regions wells of Tehran is more than per¬missible level of W.H.O. standard, whereas, the concentration of Cu, Zn,Mn and detergents is below W.H.O. standard."n1"nIn general, the amount of dissolved materials of Tehran s groundwaters and also"ni the potential of their contamination with nitrate is increased as Tehran s ground-"nwaters move further to the south, and even though, Tehran s groundwaters contamination with toxic elements is limited to the industrial west district, industrial-residential east and south districts, but»with regard to the disposal methods of"nt municipal and industrial wastewaters, if Tehran s groundwaters pollution continues,"nlocal contamination of groundwaters is likely to spread. So that finally their quality changes in such a way that this water source may become unfit for most domestic, industrial and agricultural uses. This survey shows the necessity of collection and treatment of Tehran s wastewaters and Prevention of the disposal of untreated wastewaters into the environment.

  1. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  2. Structure and application of an interface program between a geographic-information system and a ground-water flow model

    Science.gov (United States)

    Van Metre, P.C.

    1990-01-01

    A computer-program interface between a geographic-information system and a groundwater flow model links two unrelated software systems for use in developing the flow models. The interface program allows the modeler to compile and manage geographic components of a groundwater model within the geographic information system. A significant savings of time and effort is realized in developing, calibrating, and displaying the groundwater flow model. Four major guidelines were followed in developing the interface program: (1) no changes to the groundwater flow model code were to be made; (2) a data structure was to be designed within the geographic information system that follows the same basic data structure as the groundwater flow model; (3) the interface program was to be flexible enough to support all basic data options available within the model; and (4) the interface program was to be as efficient as possible in terms of computer time used and online-storage space needed. Because some programs in the interface are written in control-program language, the interface will run only on a computer with the PRIMOS operating system. (USGS)

  3. Groundwater Data Package for the 2004 Composite Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, Paul D.

    2004-08-11

    This report presents data and information that supports the groundwater module. The conceptual model of groundwater flow and transport at the Hanford Site is described and specific information applied in the numerical implementation module is provided.

  4. GROUNDWATER RECHARGE AND CHEMICAL ...

    Science.gov (United States)

    The existing knowledge base regarding the presence and significance of chemicals foreign to the subsurface environment is large and growing -the papers in this volume serving as recent testament. But complex questions with few answers surround the unknowns regarding the potential for environmental or human health effects from trace levels of xenobiotics in groundwater, especially groundwater augmented with treated wastewater. Public acceptance for direct or indirect groundwater recharge using treated municipal wastewater ( especially sewage) spans the spectrum from unquestioned embrace to outright rejection. In this article, I detour around the issues most commonly discussed for groundwater recharge and instead focus on some of the less-recognized issues- those that emanate from the mysteries created at the many literal and virtual interfaces involved with the subsurface world. My major objective is to catalyze discussion that advances our understanding of the barriers to public acceptance of wastewater reuse -with its ultimate culmination in direct reuse for drinking. I pose what could be a key question as to whether much of the public's frustration or ambivalence in its decision making process for accepting or rejecting water reuse (for various purposes including personal use) emanates from fundamental inaccuracies, misrepresentation, or oversimplification of what water 'is' and how it functions in the environment -just what exactly is the 'water cyc

  5. Regulating groundwater use

    NARCIS (Netherlands)

    Hoogesteger van Dijk, Jaime; Wester, Flip

    2017-01-01

    Around the world it has proven very difficult to develop policies and interventions that ensure socio-environmentally sustainable groundwater use and exploitation. In the state of Guanajuato, Central Mexico, both the national government and the decentralized state government have pursued to regulate

  6. Assessing the impact of dairy waste lagoons on groundwater quality using a spatial analysis of vadose zone and groundwater information in a coastal phreatic aquifer.

    Science.gov (United States)

    Baram, S; Kurtzman, D; Ronen, Z; Peeters, A; Dahan, O

    2014-01-01

    Dairy waste lagoons are considered to be point sources of groundwater contamination by chloride (Cl(-)), different nitrogen-species and pathogens/microorganisms. The objective of this work is to introduce a methodology to assess the past and future impacts of such lagoons on regional groundwater quality. The method is based on a spatial statistical analysis of Cl(-) and total nitrogen (TN) concentration distributions in the saturated and the vadose (unsaturated) zones. The method provides quantitative data on the relation between the locations of dairy lagoons and the spatial variability in Cl(-) and TN concentrations in groundwater. The method was applied to the Beer-Tuvia region, Israel, where intensive dairy farming has been practiced for over 50 years above the local phreatic aquifer. Mass balance calculations accounted for the various groundwater recharge and abstraction sources and sinks in the entire region. The mass balances showed that despite the small surface area covered by the dairy lagoons in this region (0.8%), leachates from lagoons have contributed 6.0% and 12.6% of the total mass of Cl(-) and TN (mainly as NO3(-)-N) added to the aquifer. The chemical composition of the aquifer and vadose zone water suggested that irrigated agricultural activity in the region is the main contributor of Cl(-) and TN to the groundwater. A low spatial correlation between the Cl(-) and NO3(-)-N concentrations in the groundwater and the on-land location of the dairy farms strengthened this assumption, despite the dairy waste lagoon being a point source for groundwater contamination by Cl(-) and NO3(-)-N. Mass balance calculations, for the vadose zone of the entire region, indicated that drying of the lagoons would decrease the regional groundwater salinization process (11% of the total Cl(-) load is stored under lagoons). A more considerable reduction in the groundwater contamination by NO3(-)-N is expected (25% of the NO3(-)-N load is stored under lagoons). Results

  7. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites

    Science.gov (United States)

    Döll, Petra; Müller Schmied, Hannes; Schuh, Carina; Portmann, Felix T.; Eicker, Annette

    2014-07-01

    Groundwater depletion (GWD) compromises crop production in major global agricultural areas and has negative ecological consequences. To derive GWD at the grid cell, country, and global levels, we applied a new version of the global hydrological model WaterGAP that simulates not only net groundwater abstractions and groundwater recharge from soils but also groundwater recharge from surface water bodies in dry regions. A large number of independent estimates of GWD as well as total water storage (TWS) trends determined from GRACE satellite data by three analysis centers were compared to model results. GWD and TWS trends are simulated best assuming that farmers in GWD areas irrigate at 70% of optimal water requirement. India, United States, Iran, Saudi Arabia, and China had the highest GWD rates in the first decade of the 21st century. On the Arabian Peninsula, in Libya, Egypt, Mali, Mozambique, and Mongolia, at least 30% of the abstracted groundwater was taken from nonrenewable groundwater during this time period. The rate of global GWD has likely more than doubled since the period 1960-2000. Estimated GWD of 113 km3/yr during 2000-2009, corresponding to a sea level rise of 0.31 mm/yr, is much smaller than most previous estimates. About 15% of the globally abstracted groundwater was taken from nonrenewable groundwater during this period. To monitor recent temporal dynamics of GWD and related water abstractions, GRACE data are best evaluated with a hydrological model that, like WaterGAP, simulates the impact of abstractions on water storage, but the low spatial resolution of GRACE remains a challenge.

  8. Applying Hybrid Heuristic Approach to Identify Contaminant Source Information in Transient Groundwater Flow Systems

    Directory of Open Access Journals (Sweden)

    Hund-Der Yeh

    2014-01-01

    Full Text Available Simultaneous identification of the source location and release history in aquifers is complicated and time-consuming if the release of groundwater contaminant source varies in time. This paper presents an approach called SATSO-GWT to solve complicated source release problems which contain the unknowns of three location coordinates and several irregular release periods and concentrations. The SATSO-GWT combines with ordinal optimization algorithm (OOA, roulette wheel approach, and a source identification algorithm called SATS-GWT. The SATS-GWT was developed based on simulated annealing, tabu search, and three-dimensional groundwater flow and solute transport model MD2K-GWT. The OOA and roulette wheel method are utilized mainly to reduce the size of feasible solution domain and accelerate the identification of the source information. A hypothetic site with one contaminant source location and two release periods is designed to assess the applicability of the present approach. The results indicate that the performance of SATSO-GWT is superior to that of SATS-GWT. In addition, the present approach works very effectively in dealing with the cases which have different initial guesses of source location and measurement errors in the monitoring points as well as problems with large suspicious areas and several source release periods and concentrations.

  9. Groundwater regulation and integrated planning

    Science.gov (United States)

    Quevauviller, Philippe; Batelaan, Okke; Hunt, Randall J.

    2016-01-01

    The complex nature of groundwater and the diversity of uses and environmental interactions call for emerging groundwater problems to be addressed through integrated management and planning approaches. Planning requires different levels of integration dealing with: the hydrologic cycle (the physical process) including the temporal dimension; river basins and aquifers (spatial integration); socioeconomic considerations at regional, national and international levels; and scientific knowledge. The great natural variation in groundwater conditions obviously affects planning needs and options as well as perceptions from highly localised to regionally-based approaches. The scale at which planning is done therefore needs to be carefully evaluated against available policy choices and options in each particular setting. A solid planning approach is based on River Basin Management Planning (RBMP), which covers: (1) objectives that management planning are designed to address; (2) the way various types of measures fit into the overall management planning; and (3) the criteria against which the success or failure of specific strategies or interventions can be evaluated (e.g. compliance with environmental quality standards). A management planning framework is to be conceived as a “living” or iterated document that can be updated, refined and if necessary changed as information and experience are gained. This chapter discusses these aspects, providing an insight into European Union (EU), United States and Australia groundwater planning practices.

  10. Brackish groundwater in the United States

    Science.gov (United States)

    Stanton, Jennifer S.; Anning, David W.; Brown, Craig J.; Moore, Richard B.; McGuire, Virginia L.; Qi, Sharon L.; Harris, Alta C.; Dennehy, Kevin F.; McMahon, Peter B.; Degnan, James R.; Böhlke, John Karl

    2017-04-05

    For some parts of the Nation, large-scale development of groundwater has caused decreases in the amount of groundwater that is present in aquifer storage and that discharges to surface-water bodies. Water supply in some areas, particularly in arid and semiarid regions, is not adequate to meet demand, and severe drought is affecting large parts of the United States. Future water demand is projected to heighten the current stress on groundwater resources. This combination of factors has led to concerns about the availability of freshwater to meet domestic, agricultural, industrial, mining, and environmental needs. To ensure the water security of the Nation, currently [2016] untapped water sources may need to be developed.Brackish groundwater is an unconventional water source that may offer a partial solution to current and future water demands. In support of the national census of water resources, the U.S. Geological Survey completed the national brackish groundwater assessment to better understand the occurrence and characteristics of brackish groundwater in the United States as a potential water resource. Analyses completed as part of this assessment relied on previously collected data from multiple sources; no new data were collected. Compiled data included readily available information about groundwater chemistry, horizontal and vertical extents and hydrogeologic characteristics of principal aquifers (regionally extensive aquifers or aquifer systems that have the potential to be used as a source of potable water), and groundwater use. Although these data were obtained from a wide variety of sources, the compiled data are biased toward shallow and fresh groundwater resources; data representing groundwater that is at great depths and is saline were not as readily available.One of the most important contributions of this assessment is the creation of a database containing chemical characteristics and aquifer information for the known areas with brackish groundwater

  11. Applying factor analysis combined with kriging and information entropy theory for mapping and evaluating the stability of groundwater quality variation in Taiwan.

    Science.gov (United States)

    Shyu, Guey-Shin; Cheng, Bai-You; Chiang, Chi-Ting; Yao, Pei-Hsuan; Chang, Tsun-Kuo

    2011-04-01

    In Taiwan many factors, whether geological parent materials, human activities, and climate change, can affect the groundwater quality and its stability. This work combines factor analysis and kriging with information entropy theory to interpret the stability of groundwater quality variation in Taiwan between 2005 and 2007. Groundwater quality demonstrated apparent differences between the northern and southern areas of Taiwan when divided by the Wu River. Approximately 52% of the monitoring wells in southern Taiwan suffered from progressing seawater intrusion, causing unstable groundwater quality. Industrial and livestock wastewaters also polluted 59.6% of the monitoring wells, resulting in elevated EC and TOC concentrations in the groundwater. In northern Taiwan, domestic wastewaters polluted city groundwater, resulting in higher NH(3)-N concentration and groundwater quality instability was apparent among 10.3% of the monitoring wells. The method proposed in this study for analyzing groundwater quality inspects common stability factors, identifies potential areas influenced by common factors, and assists in elevating and reinforcing information in support of an overall groundwater management strategy.

  12. Groundwater Level Status Report for 2005 Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    S.P. Allen; R.J. Koch

    2006-05-15

    The status of groundwater level monitoring at Los Alamos National Laboratory (LANL) in 2005 is provided in this report. The Groundwater Level Monitoring Project was instituted in 2005 to provide a framework for the collection and processing of quality controlled groundwater level data. This report summarizes groundwater level data for 137 monitoring wells, including 41 regional aquifer wells, 22 intermediate wells, and 74 alluvial wells. Pressure transducers were installed in 118 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well.

  13. Groundwater hydrology instructional system

    Science.gov (United States)

    Schmidt, Ronald G.

    Wright State University, Dayton, Ohio, is preparing for its third cycle of the Interactive Remote Instructional System (IRIS) in groundwater hydrology, beginning January 15, 1986. The first cycle finished with an impressive completion ratio for registered participants, and the second cycle has currently been underway since July. This comprehensive hydrogeology program was originally developed for the Soil Conservation Service (of the U.S. Department of Agriculture) to prepare their personnel for professional practice work. Since its evolution into IRIS, an 80% participant completion rate has been recorded for the first cycle, which is a significant departure from success rates traditionally recorded by correspondence courses. This excellent rate of success is the result of 2 years of refinement and demonstrates the progressive nature of the program. IRIS has met the needs of participants by developing a curriculum that reflects current trends in the groundwater industry and has provided a unique educational approach that ensures maximum interaction between the instructional staff and participants.

  14. Study on shallow groundwater information extraction technology based on multi-spectral data and spatial data

    Institute of Scientific and Technical Information of China (English)

    YU DeHao; DENG ZhengDong; LONG Fan; GUAN HongJun; WANG DaQing; GOU YiZheng

    2009-01-01

    Aimed at solving the difficulties, such as low efficiency and limited exploration range encountered in finding groundwater with the traditional methods, a new method was presented by using remote sensing technology in this paper. Based on multi-spectral data (ETM data) and spatial data (SRTM data),a forecasting model was built to produce a probability rating map for finding shallow groundwater in the arid and semi-arid areas. According to investigations, a conclusion is drawn that the results of the model are satisfied, which have been testified by the later geophysical exploration and drilling. Thus,the model can serve as a guide for finding groundwater in the arid and semi-arid regions.

  15. Study on shallow groundwater information extraction technology based on multi-spectral data and spatial data

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Aimed at solving the difficulties,such as low efficiency and limited exploration range encountered in finding groundwater with the traditional methods,a new method was presented by using remote sensing technology in this paper.Based on multi-spectral data(ETM data) and spatial data(SRTM data),a forecasting model was built to produce a probability rating map for finding shallow groundwater in the arid and semi-arid areas.According to investigations,a conclusion is drawn that the results of the model are satisfied,which have been testified by the later geophysical exploration and drilling.Thus,the model can serve as a guide for finding groundwater in the arid and semi-arid regions.

  16. STRATEGIC ISSUES GROUNDWATER EXTRACTION MANAGEMENT IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Ekaterina I. Golovina

    2017-05-01

    Full Text Available Water is a key component of our environment; it is a renewable, limited and vulnerable natural resource, which provides economic, social, and environmental well-being of the population. The most promising source of drinking water supply is groundwater usage. Drinking and industrial groundwater is one of the most important components of the groundwater mineral resource base in the Russian Federation. Modern system of groundwater extraction management and state regulation is currently imperfect and has definite disadvantages, among them - lack of control over natural resources by the state, an old system of tax rates for the use of groundwater, commercialization stage of licensing, the budget deficit, which is passed on other spheres of the national economy. This article provides general information about the state of groundwater production and supply in Russia, negative trends of groundwater usage, some actions for the improvement in the system of groundwater’s fund management are suggested. The most important amendments of the law “About mineral resources” are overviewed, effects of these changes are revealed and recommendations for future groundwater extraction regulation are given.

  17. Contain contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mutch, R.D. Jr.; Caputi, J.R. [Eckenfelder, Inc., Mahwah, NJ (United States); Ash, R.E. IV [Eckenfelder Inc., Nashville, TN (United States)

    1997-05-01

    Despite recent progress in innovative treatment technologies, many problems with contaminated groundwater still require the use of barrier walls, typically in combination with extraction and treatment systems. New technologies for subsurface barrier walls, mostly based on geomembranes, advancements in self-hardening slurries and permeation grouts with materials such as colloidal silica gel and montan wax emulsions, are being developed at an unprecedented pace. The paper discusses deep soil mixing, jet grouting, slurry trenches, and permeation grouting.

  18. Assessment of groundwater quality: a fusion of geochemical and geophysical information via Bayesian neural networks.

    Science.gov (United States)

    Maiti, Saumen; Erram, V C; Gupta, Gautam; Tiwari, Ram Krishna; Kulkarni, U D; Sangpal, R R

    2013-04-01

    Deplorable quality of groundwater arising from saltwater intrusion, natural leaching and anthropogenic activities is one of the major concerns for the society. Assessment of groundwater quality is, therefore, a primary objective of scientific research. Here, we propose an artificial neural network-based method set in a Bayesian neural network (BNN) framework and employ it to assess groundwater quality. The approach is based on analyzing 36 water samples and inverting up to 85 Schlumberger vertical electrical sounding data. We constructed a priori model by suitably parameterizing geochemical and geophysical data collected from the western part of India. The posterior model (post-inversion) was estimated using the BNN learning procedure and global hybrid Monte Carlo/Markov Chain Monte Carlo optimization scheme. By suitable parameterization of geochemical and geophysical parameters, we simulated 1,500 training samples, out of which 50 % samples were used for training and remaining 50 % were used for validation and testing. We show that the trained model is able to classify validation and test samples with 85 % and 80 % accuracy respectively. Based on cross-correlation analysis and Gibb's diagram of geochemical attributes, the groundwater qualities of the study area were classified into following three categories: "Very good", "Good", and "Unsuitable". The BNN model-based results suggest that groundwater quality falls mostly in the range of "Good" to "Very good" except for some places near the Arabian Sea. The new modeling results powered by uncertainty and statistical analyses would provide useful constrain, which could be utilized in monitoring and assessment of the groundwater quality.

  19. Groundwater levels for selected wells in Upper Kittitas County, Washington

    Science.gov (United States)

    Fasser, E.T.; Julich, R.J.

    2011-01-01

    Groundwater levels for selected wells in Upper Kittitas County, Washington, are presented on an interactive, web-based map to document the spatial distribution of groundwater levels in the study area measured during spring 2011. Groundwater-level data and well information were collected by the U.S. Geological Survey using standard techniques and are stored in the U.S. Geological Survey National Water Information System, Groundwater Site-Inventory database.

  20. Ecology and living conditions of groundwater fauna

    Energy Technology Data Exchange (ETDEWEB)

    Thulin, Barbara (Geo Innova AB (Sweden)); Hahn, Hans Juergen (Arbeitsgruppe Grundwasseroekologie, Univ. of Koblenz-Landau (Germany))

    2008-09-15

    probable because both Harpatocoida (Parastenocaris sp.) and Nematoda have been detected in the hyporheic zone in rivers and at shores of the Baltic. In addition, groundwater fauna has been reported from other formerly glaciated areas e.g. Northern Germany, Finland, Iceland, Ireland, North America and Siberia and Alpine regions. Glaciofluvial porous aquifers, especially eskers, and karstic aquifers as well as the hyporheic zone, have proved to offer the greatest chances of successful surveys of groundwater fauna. In Sweden endemic species are not expected to be found, except in karstic aquifers in Gotland and Oeland and some parts of the Swedish Mountains. The upper layers of aquifers in crystalline bedrock have only been surveyed at very few sites. Based on community structures of groundwater fauna, reliable statements on the strength of the surface water impact and the vulnerability of the aquifer are possible. Contacts between different water bodies are displayed by groundwater fauna because groundwater fauna communities mainly reflect the intensity of surface water intrusion at a certain point when compared to hydrochemical data indicating the origin of the water. The information provided by the groundwater assemblages of an aquifer can be used for an ecologically based assessment of groundwater. Ecologically based assessment has provided initial data showing that groundwater fauna is a good marker of mixing between surface water and groundwater at certain depths. Ecologically based assessment has hitherto been used for extraction wells and quality management in drinking water abstraction (standards are still to be established). Groundwater fauna assessments have also proved to be useful in management of wetlands and regulation under nature protection law

  1. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques

    Science.gov (United States)

    Jha, Madan K.; Chowdary, V. M.; Chowdhury, Alivia

    2010-11-01

    An approach is presented for the evaluation of groundwater potential using remote sensing, geographic information system, geoelectrical, and multi-criteria decision analysis techniques. The approach divides the available hydrologic and hydrogeologic data into two groups, exogenous (hydrologic) and endogenous (subsurface). A case study in Salboni Block, West Bengal (India), uses six thematic layers of exogenous parameters and four thematic layers of endogenous parameters. These thematic layers and their features were assigned suitable weights which were normalized by analytic hierarchy process and eigenvector techniques. The layers were then integrated using ArcGIS software to generate two groundwater potential maps. The hydrologic parameters-based groundwater potential zone map indicated that the `good' groundwater potential zone covers 27.14% of the area, the `moderate' zone 45.33%, and the `poor' zone 27.53%. A comparison of this map with the groundwater potential map based on subsurface parameters revealed that the hydrologic parameters-based map accurately delineates groundwater potential zones in about 59% of the area, and hence it is dependable to a certain extent. More than 80% of the study area has moderate-to-poor groundwater potential, which necessitates efficient groundwater management for long-term water security. Overall, the integrated technique is useful for the assessment of groundwater resources at a basin or sub-basin scale.

  2. GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION.

    Energy Technology Data Exchange (ETDEWEB)

    PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.; GOODE,G.A.; LEE,R.J.; KLAUS,K.; HOWE,R.F.; GEIGER,K.

    2002-05-31

    THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.

  3. Groundwater types in Southeast Srem

    Directory of Open Access Journals (Sweden)

    Gregorić Enike

    2009-01-01

    Full Text Available The region of Southeast Srem is rich in ground waters, which is of great significance to agricultural production. The objective of this paper was to designate the zones of different groundwater types from the aspect of recharge, based on the analysis of groundwater regimes in the study area. A very complex groundwater regime in Southeast Srem, which depends on a great number of natural and some anthropogenic factors, makes it difficult to designate clearly the zones of the three main types of groundwater regime. Still, the boundaries of the zones of groundwater regime types were defined based on the results of correlation analysis of the basic factors affecting the groundwater regime. Zone I includes the climatic type of groundwater. Its fluctuation corresponds to the vertical factors of water balance (precipitation and evaporation and it is not affected by the river water level. This zone extends North and East of the line Putinci, Golubinci, Stara Pazova, Batajnica, Dobanovci, mainly in the area of the loess plateau. Within the zone, groundwater is at a relatively great depth. Only exceptionally, in the valleys, it appears almost on the surface. Zone II includes the climatic-hydrological groundwater type, which is the transition between the climatic type and the hydrological type. The fluctuation of groundwater regime is affected both by the effect of vertical balance factors, and by the effect of watercourses. Climatic-hydrological groundwater type covers the central and the lowest part of the study area and the South part of the middle terrace. Zone III is classified as the hydrological groundwater type and it covers the riparian areas along the Sava and the Danube. The aquifer is hydraulically connected with the river Sava.

  4. SPECIFIC SOLUTIONS GROUNDWATER FLOW EQUATION

    OpenAIRE

    Syahruddin, Muhammad Hamzah

    2014-01-01

    Geophysic publication Groundwater flow under surface, its usually slow moving, so that in laminer flow condition can find analisys using the Darcy???s law. The combination between Darcy law and continuity equation can find differential Laplace equation as general equation groundwater flow in sub surface. Based on Differential Laplace Equation is the equation that can be used to describe hydraulic head and velocity flow distribution in porous media as groundwater. In the modeling Laplace e...

  5. Groundwater conditions in Utah, spring of 2013

    Science.gov (United States)

    Burden, Carole B.; Birken, Adam S.; Derrick, V. Noah; Fisher, Martel J.; Holt, Christopher M.; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.

    2013-01-01

    This is the fiftieth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2012. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water. usgs.gov/publications/GW2013.pdf. Groundwater conditions in Utah for calendar year 2011 are reported in Burden and others (2012) and available online at http://ut.water.usgs.gov/ publications/GW2012.pdf

  6. Groundwater quality in the Santa Barbara Coastal Plain, California

    Science.gov (United States)

    Davis, Tracy A.; Belitz, Kenneth

    2016-10-03

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California established the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Santa Barbara Coastal Plain is one of the study units.

  7. Assessment of Halon-1301 as a groundwater age tracer

    OpenAIRE

    M. Beyer; R. van der Raaij; U. Morgenstern; Jackson, B.(Department of Physics, University of Pennsylvania, Philadelphia, PA, United States)

    2015-01-01

    Groundwater dating is an important tool to assess groundwater resources in regards to their dynamics, i.e. direction and timescale of groundwater flow and recharge, contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However, ambiguous age interpretations are often faced, due to a limited set of available tracers and their individual restricted applicat...

  8. Assessment of Halon-1301 as a groundwater age tracer

    OpenAIRE

    M. Beyer; R. van der Raaij; U. Morgenstern; Jackson, B.(Department of Physics, University of Pennsylvania, Philadelphia, PA, United States)

    2015-01-01

    Groundwater dating is an important tool to assess groundwater resources in regards to their dynamics, i.e. direction and time scale of groundwater flow and recharge, to assess contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However, ambiguous age interpretations are often faced, due to a limited set of available tracers and their in...

  9. Groundwater quality in the western San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Western San Joaquin Valley is one of the study units being evaluated. 

  10. The groundwater subsidy to vegetation: groundwater exchanges between landcover patches

    Science.gov (United States)

    Steven, L. I.; Gimenez, R.; Jobbagy, E. G.

    2015-12-01

    The Gran Chaco is a hot, dry plain, that spans over 60 million hectares across Bolivia, Paraguay, Brazil and Argentina. It supports high biodiversity in its dry forest and savannahs, but is rapidly being converted to agriculture in response to growing soy demand and technology including genetic modification and zero-till, that has made cultivation in drier landscapes more viable. Under natural conditions, the deep-rooted, native vegetation of the Chaco effectively captured all rainfall for evapotranspiration resulting in near zero groundwater recharge under the dry forest. Conversion to shallower rooted soy and corn, combined with the fallow period prior to the growing season, reduces evapotranspiration and allows some water to percolate through the root zone and recharge the groundwater system. When this groundwater recharge occurs, it creates groundwater mounding and a hydraulic gradient that drives flow to adjacent landcover patches where recharge does not occur. As the watertable rises, groundwater becomes available to the deep-rooted, dry forest vegetation. We develop a soil and groundwater flow model to simulate infiltration, percolation, evaporation, rootwater uptake, groundwater recharge and the lateral transfer of water between adjacent landcover patches to quantify this groundwater subsidy from converted agricultural lands to remnant patches of dry forest.

  11. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework

    Science.gov (United States)

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min‐Hui; Swenson, Sean; Rodell, Matthew

    2015-01-01

    Abstract Groundwater is a finite resource under continuous external pressures. Current unsustainable groundwater use threatens the resilience of aquifer systems and their ability to provide a long‐term water source. Groundwater storage is considered to be a factor of groundwater resilience, although the extent to which resilience can be maintained has yet to be explored in depth. In this study, we assess the limit of groundwater resilience in the world's largest groundwater systems with remote sensing observations. The Total Groundwater Stress (TGS) ratio, defined as the ratio of total storage to the groundwater depletion rate, is used to explore the timescales to depletion in the world's largest aquifer systems and associated groundwater buffer capacity. We find that the current state of knowledge of large‐scale groundwater storage has uncertainty ranges across orders of magnitude that severely limit the characterization of resilience in the study aquifers. Additionally, we show that groundwater availability, traditionally defined as recharge and redefined in this study as total storage, can alter the systems that are considered to be stressed versus unstressed. We find that remote sensing observations from NASA's Gravity Recovery and Climate Experiment can assist in providing such information at the scale of a whole aquifer. For example, we demonstrate that a groundwater depletion rate in the Northwest Sahara Aquifer System of 2.69 ± 0.8 km3/yr would result in the aquifer being depleted to 90% of its total storage in as few as 50 years given an initial storage estimate of 70 km3. PMID:26900184

  12. Mapping of groundwater prospective zones integrating remote sensing, geographic information systems and geophysical techniques in El-Qaà Plain area, Egypt

    Science.gov (United States)

    Abuzied, Sara M.; Alrefaee, Hamed A.

    2017-05-01

    The geospatial mapping of groundwater prospective zones is essential to support the needs of local inhabitants and agricultural activities in arid regions such as El-Qaà area, Sinai Peninsula, Egypt. The study aims to locate new wells that can serve to cope with water scarcity. The integration of remote sensing, geographic information systems (GIS) and geophysical techniques is a breakthrough for groundwater prospecting. Based on these techniques, several factors contributing to groundwater potential in El-Qaà Plain were determined. Geophysical data were supported by information derived from a digital elevation model, and from geologic, geomorphologic and hydrologic data, to reveal the promising sites. All the spatial data that represent the contributing factors were integrated and analyzed in a GIS framework to develop a groundwater prospective model. An appropriate weightage was specified to each factor based on its relative contribution towards groundwater potential, and the resulting map delineates the study area into five classes, from very poor to very good potential. The very good potential zones are located in the Quaternary deposits, with flat to gentle topography, dense lineaments and structurally controlled drainage channels. The groundwater potential map was tested against the distribution of groundwater wells and cultivated land. The integrated methodology provides a powerful tool to design a suitable groundwater management plan in arid regions.

  13. Groundwater Data Package for Hanford Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, Paul D.; Bergeron, Marcel P.; Williams, Mark D.; Freedman, Vicky L.

    2006-01-31

    This report presents data and interpreted information that supports the groundwater module of the System Assessment Capability (SAC) used in Hanford Assessments. The objective of the groundwater module is to predict movement of radioactive and chemical contaminants through the aquifer to the Columbia River or other potential discharge locations. This data package is being revised as part of the deliverables under the Characterization of Systems Project (#49139) aimed at providing documentation for assessments being conducted under the Hanford Assessments Project (#47042). Both of these projects are components of the Groundwater Remediation and Closure Assessments Projects, managed by the Management and Integration Project (#47043).

  14. Burn site groundwater interim measures work plan.

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Jonathan L. (North Wind, Inc., Idaho Falls, ID); Hall, Kevin A. (North Wind, Inc., Idaho Falls, ID)

    2005-05-01

    This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

  15. Solutions Remediate Contaminated Groundwater

    Science.gov (United States)

    2010-01-01

    During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.

  16. Tracer attenuation in groundwater

    Science.gov (United States)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  17. Value of information analysis for groundwater quality monitoring network design Case study: Eocene Aquifer, Palestine

    Science.gov (United States)

    Khader, A.; McKee, M.

    2010-12-01

    Value of information (VOI) analysis evaluates the benefit of collecting additional information to reduce or eliminate uncertainty in a specific decision-making context. It makes explicit any expected potential losses from errors in decision making due to uncertainty and identifies the “best” information collection strategy as one that leads to the greatest expected net benefit to the decision-maker. This study investigates the willingness to pay for groundwater quality monitoring in the Eocene Aquifer, Palestine, which is an unconfined aquifer located in the northern part of the West Bank. The aquifer is being used by 128,000 Palestinians to fulfill domestic and agricultural demands. The study takes into account the consequences of pollution and the options the decision maker might face. Since nitrate is the major pollutant in the aquifer, the consequences of nitrate pollution were analyzed, which mainly consists of the possibility of methemoglobinemia (blue baby syndrome). In this case, the value of monitoring was compared to the costs of treating for methemoglobinemia or the costs of other options like water treatment, using bottled water or importing water from outside the aquifer. And finally, an optimal monitoring network that takes into account the uncertainties in recharge (climate), aquifer properties (hydraulic conductivity), pollutant chemical reaction (decay factor), and the value of monitoring is designed by utilizing a sparse Bayesian modeling algorithm called a relevance vector machine.

  18. Decadal variations in groundwater quality

    DEFF Research Database (Denmark)

    Jessen, Søren; Postma, Dieke; Thorling, Lærke

    2017-01-01

    Twenty-five years of groundwater quality monitoring in a sandy aquifer beneath agricultural fields showed large temporal and spatial variations in major ion groundwater chemistry, which were linked closely to the nitrate (NO3) content of agricultural recharge. Between 1988 and 2013, the NO3 content...... loading. Agriculture thus is an important determinant of major ion groundwater chemistry. Temporal and spatial variations in the groundwater quality were simulated using a 2D reactive transport model, which combined effects of the historical NO3 leaching and denitrification, with dispersive mixing...... into the pristine groundwater residing deeper in the aquifer. Reactant-to-product ratios across reaction fronts are altered by dispersive mixing and transience in reactant input functions. Modelling therefore allowed a direct comparison of observed and simulated ratios of concentrations of NO3 (reactant...

  19. Analysing Groundwater Using the 13C Isotope

    Science.gov (United States)

    Awad, Sadek

    The stable isotope of the carbon atom (13C) give information about the type of the mineralisation of the groundwater existing during the water seepage and about the recharge conditions of the groundwater. The concentration of the CO2(aq.) dissolved during the infiltration of the water through the soil's layers has an effect on the mineralisation of this water. The type of the photosynthesis's cycle (C-3 or C-4 carbon cycle) can have a very important role to determine the conditions (closed or open system) of the mineralisation of groundwater. The isotope 13C of the dissolved CO2 in water give us a certain information about the origin and the area of pollution of water. The proportion of the biogenic carbon and its percentage in the mineralisation of groundwater is determined by using the isotope 13C.

  20. Artificial recharge of groundwater

    Science.gov (United States)

    The Task Committee on Guidelines for Artificial Recharge of Groundwater, of the American Society of Civil Engineers' (ASCE) Irrigation and Drainage Division, sponsored an International Symposium on Artificial Recharge of Groundwater at the Inn-at-the-Park Hotel in Anaheim, Calif., August 23-27, 1988. Cosponsors were the U.S. Geological Survey, California Department of Water Resources, University of California Water Resources Center, Metropolitan Water District of Southern California, with cooperation from the U.S. Bureau of Reclamation, International Association of Hydrological Sciences, American Water Resources Association, U.S. Agency for International Development, World Bank, United Nations Department of Technical Cooperation for Development, and a number of local and state organizations.Because of the worldwide interest in artificial recharge and the need to develop efficient recharge facilities, the Anaheim symposium brought together an interdisciplinary group of engineers and scientists to provide a forum for many professional disciplines to exchange experiences and findings related to various types of artificial recharge; learn from both successful and unsuccessful case histories; promote technology transfer between the various disciplines; provide an education resource for communication with those who are not water scientists, such as planners, lawyers, regulators, and the public in general; and indicate directions by which cities or other entities can save funds by having reasonable technical guidelines for implementation of a recharge project.

  1. Transfer of European Approach to Groundwater Monitoring in China

    Science.gov (United States)

    Zhou, Y.

    2007-12-01

    Major groundwater development in North China has been a key factor in the huge economic growth and the achievement of self sufficiency in food production. Groundwater accounts for more than 70 percent of urban water supply and provides important source of irrigation water during dry period. This has however caused continuous groundwater level decline and many associated problems: hundreds of thousands of dry wells, dry river beds, land subsidence, seawater intrusion and groundwater quality deterioration. Groundwater levels in the shallow unconfined aquifers have fallen 10m up to 50m, at an average rate of 1m/year. In the deep confined aquifers groundwater levels have commonly fallen 30m up to 90m, at an average rate of 3 to 5m/year. Furthermore, elevated nitrate concentrations have been found in shallow groundwater in large scale. Pesticides have been detected in vulnerable aquifers. Urgent actions are necessary for aquifer recovery and mitigating groundwater pollution. Groundwater quantity and quality monitoring plays a very important role in formulating cost-effective groundwater protection strategies. In 2000 European Union initiated a Water Framework Directive (2000/60/EC) to protect all waters in Europe. The objective is to achieve good water and ecological status by 2015 cross all member states. The Directive requires monitoring surface and groundwater in all river basins. A guidance document for monitoring was developed and published in 2003. Groundwater monitoring programs are distinguished into groundwater level monitoring and groundwater quality monitoring. Groundwater quality monitoring is further divided into surveillance monitoring and operational monitoring. The monitoring guidance specifies key principles for the design and operation of monitoring networks. A Sino-Dutch cooperation project was developed to transfer European approach to groundwater monitoring in China. The project aims at building a China Groundwater Information Centre. Case studies

  2. Prediction of Groundwater Arsenic Contamination using Geographic Information System and Artificial Neural Network

    OpenAIRE

    Md. Moqbul Hossain; Krishna Neaupane; Nitin Kumar Tripathi; Mongkut Piantanakulchai

    2013-01-01

    Ground water arsenic contamination is a well known health and environmental problem in Bangladesh. Sources of this heavy metal are known to be geogenic, however, the processes of its release into groundwater are poorly understood phenomena. In quest of mitigation of the problem it is necessary to predict probable contamination before it causes any damage to human health. Hence our research has been carried out to find the factor relations of arsenic contamination and develop an arsenic contam...

  3. Vulnerability assessment of groundwater-dependent ecosystems based on integrated groundwater flow modell construction

    Science.gov (United States)

    Tóth, Ádám; Simon, Szilvia; Galsa, Attila; Havril, Timea; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2017-04-01

    Groundwater-dependent ecosystems (GDEs) are highly influenced by the amount of groundwater, seasonal variation of precipitation and consequent water table fluctuation and also the anthropogenic activities. They can be regarded as natural surface manifestations of the flowing groundwater. The preservation of environment and biodiversity of these GDEs is an important issue worldwide, however, the water management policy and action plan could not be constructed in absense of proper hydrogeological knowledge. The concept of gravity-driven regional groundwater flow could aid the understanding of flow pattern and interpretation of environmental processes and conditions. Unless the required well data are available, the geological-hydrogeological numerical model of the study area cannot be constructed based only on borehole information. In this case, spatially continuous geophysical data can support groundwater flow model building: systematically combined geophysical methods can provide model input. Integration of lithostratigraphic, electrostratigraphic and hydrostratigraphic information could aid groundwater flow model construction: hydrostratigraphic units and their hydraulic behaviour, boundaries and geometry can be obtained. Groundwater-related natural manifestations, such as GDEs, can be explained with the help of the revealed flow pattern and field mapping of features. Integrated groundwater flow model construction for assessing the vulnerability of GDEs was presented via the case study of the geologically complex area of Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, surface water-groundwater interaction, and revealing the potential effect of anthropogenic activity and climate change. In spite of its important and protected status, fluid flow model of the area, which could support water management and natural protection policy, had not been constructed previously. The 3D

  4. Groundwater protection of minimal water supply systems integrating simple hydrogeological information

    Science.gov (United States)

    Rodrigo-Ilarri, Javier; Rodrigo-Clavero, María Elena

    2016-04-01

    According to the current EU environmental legislation, groundwater protection is one of the key issues to be addressed when new industrial activities have to be authorised. This work shows a simple methodology that could be used by local and environmental authorities in order to analyse the potential risk caused by an industrial spill on a natural environment. The methodology leads to the determination of the protection area around an extraction well system using the information given by: i) a set of local piezometers, ii) the chemical nature of the industrial spill and iii) the hydrogeological parameters of the local aquifer. The exact location of the contaminant source is not needed for the analysis. The flow equation is afterwards solved using a finite-difference approximation scheme under stationary conditions. Finally, the capture zones for different times are computed by a simple upstream advective transport model. Results on the determination of the perimeter protection area definition of a water supply system in the municipality of L'Alcora (Castellón) in Spain are shown.

  5. Prediction of Groundwater Arsenic Contamination using Geographic Information System and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Md. Moqbul Hossain

    2013-01-01

    Full Text Available Ground water arsenic contamination is a well known health and environmental problem in Bangladesh. Sources of this heavy metal are known to be geogenic, however, the processes of its release into groundwater are poorly understood phenomena. In quest of mitigation of the problem it is necessary to predict probable contamination before it causes any damage to human health. Hence our research has been carried out to find the factor relations of arsenic contamination and develop an arsenic contamination prediction model. Researchers have generally agreed that the elevated concentration of arsenic is affected by several factors such as soil reaction (pH, organic matter content, geology, iron content, etc. However, the variability of concentration within short lateral and vertical intervals, and the inter-relationships of variables among themselves, make the statistical analyses highly non-linear and difficult to converge with a meaningful relationship. Artificial Neural Networks (ANN comes in handy for such a black box type problem. This research uses Back propagation Neural Networks (BPNN to train and validate the data derived from Geographic Information System (GIS spatial distribution grids. The neural network architecture with (6-20-1 pattern was able to predict the arsenic concentration with reasonable accuracy.

  6. Groundwater level status report for 2010, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2011-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2010 is provided in this report. This report summarizes groundwater level data for 194 monitoring wells, including 63 regional aquifer wells (including 10 regional/intermediate wells), 34 intermediate wells, 97 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 162 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells and seasonal responses to snowmelt runoff observed in intermediate wells.

  7. Groundwater level status report for 2008, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2009-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2008 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 45 regional aquifer wells, 28 intermediate wells, 8 regional/intermediate wells, 106 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 166 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

  8. Groundwater level status report for 2009, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2010-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2009 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 55 regional aquifer wells (including 11 regional/intermediate wells), 26 intermediate wells, 98 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 161 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

  9. Halon-1301, a new Groundwater Age Tracer

    Science.gov (United States)

    Beyer, Monique; van der Raaij, Rob; Morgenstern, Uwe; Jackson, Bethanna

    2015-04-01

    Groundwater dating is an important tool to assess groundwater resources in regards to direction and time scale of groundwater flow and recharge and to assess contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However ambiguous age interpretations are often faced, due to a limited set of available tracers and limitations of each tracer method when applied alone. There is a need for additional, complementary groundwater age tracers. We recently discovered that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate [Beyer et al, 2014]. Halon-1301 can be determined along with SF6, SF5CF3 and CFC-12 in groundwater using a gas chromatography setup with attached electron capture detector developed by Busenberg and Plummer [2008]. Halon-1301 has not been assessed in groundwater. This study assesses the behaviour of Halon-1301 in water and its suitability as a groundwater age tracer. We determined Halon-1301 in 17 groundwater and various modern (river) waters sites located in 3 different groundwater systems in the Wellington Region, New Zealand. These waters have been previously dated with tritium, CFC-12, CFC-11 and SF6 with mean residence times ranging from 0.5 to over 100 years. The waters range from oxic to anoxic and some show evidence of CFC contamination or degradation. This allows us to assess the different properties affecting the suitability of Halon-1301 as groundwater age tracer, such as its conservativeness in water and local contamination potential. The samples are analysed for Halon-1301 and SF6simultaneously, which allows identification of issues commonly faced when using gaseous tracers such as contamination with modern air during sampling. Overall we found in the assessed groundwater samples Halon-1301 is a feasible new groundwater tracer. No sample indicated significantly elevated

  10. Groundwater Pollution and Vulnerability Assessment.

    Science.gov (United States)

    Kurwadkar, Sudarshan

    2017-10-01

    Groundwater is a critical resource that serve as a source of drinking water to large human population and, provide long-term water for irrigation purposes. In recent years; however, this precious resource being increasingly threatened, due to natural and anthropogenic activities. A variety of contaminants of emerging concern such as pharmaceuticals and personal care products, perfluorinated compounds, endocrine disruptors, and biological agents detected in the groundwater sources of both developing and developed nations. In this review paper, various studies have been included that documented instances of groundwater pollution and vulnerability to emerging contaminants of concern, pesticides, heavy metals, and leaching potential of various organic and inorganic contaminants from poorly managed residual waste products (biosolids, landfills, latrines, and septic tanks etc.). Understanding vulnerability of groundwater to pollution is critical to maintain the integrity of groundwater. A section on managed artificial recharge studies is included to highlight the sustainable approaches to groundwater conservation, replenishment and sustainability. This review paper is the synthesis of studies published in last one year that either documented the pollution problems or evaluated the vulnerability of groundwater pollution.

  11. Factor weighting in DRASTIC modelling for assessing the groundwater vulnerability in Salatiga groundwater basin, Central Java Province, Indonesia

    Science.gov (United States)

    Kesuma, D. A.; Purwanto, P.; Putranto, T. T.; Rahmani, T. P. D.

    2017-06-01

    The increase in human population as well as area development in Salatiga Groundwater Basin, Central Java Province, will increase the potency of groundwater contamination in that area. Groundwater quality, especially the shallow groundwater, is very vulnerable to the contamination from industrial waste, fertilizer/agricultural waste, and domestic waste. The first step in the conservation of groundwater quality is by conducting the mapping of the groundwater vulnerability zonation against the contamination. The result of this research was groundwater vulnerability map which showed the areas vulnerable to the groundwater contamination. In this study, groundwater vulnerability map was assessed based on the DRASTIC Method and was processed spatially using Geographic Information System. The DRASTIC method is used to assess the level of groundwater vulnerability based on weighting on seven parameters, which are: depth to the water table (D), recharge (R), aquifer material (A), soil media (S), topography (T), impact of vadose zone (I), and hydraulic conductivity (C). The higher the DRASTIC Index will result in the higher vulnerability level of groundwater contamination in that area. The DRASTIC Indexes in the researched area were 85 - 100 (low vulnerability level), 101 -120 (low to moderate vulnerability level), 121 - 140 (moderate vulnerability level), 141 - 150, (moderate to high vulnerability level), and 151 - 159 (high vulnerability level). The output of this study can be used by local authority as a tool for consideration to arrange the policy for sustainable area development, especially the development in an area affecting the quality of Salatiga Groundwater Basin.

  12. Bioremediation of contaminated groundwater

    Science.gov (United States)

    Hazen, Terry C.; Fliermans, Carl B.

    1995-01-01

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  13. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    Directory of Open Access Journals (Sweden)

    A. I. Khader

    2013-05-01

    Full Text Available Groundwater contaminated with nitrate poses a serious health risk to infants when this contaminated water is used for culinary purposes. To avoid this health risk, people need to know whether their culinary water is contaminated or not. Therefore, there is a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management options. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision-maker and the expected outcomes from these alternatives. The alternatives include (i ignore the health risk of nitrate-contaminated water, (ii switch to alternative water sources such as bottled water, or (iii implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, contaminant transport processes, and climate (Khader, 2012. The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine, where methemoglobinemia (blue baby syndrome is the main health problem associated with the principal contaminant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not use aquifer water, and whether people get sick from drinking contaminated water

  14. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    Science.gov (United States)

    Khader, A. I.; Rosenberg, D. E.; McKee, M.

    2013-05-01

    Groundwater contaminated with nitrate poses a serious health risk to infants when this contaminated water is used for culinary purposes. To avoid this health risk, people need to know whether their culinary water is contaminated or not. Therefore, there is a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management options. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI) provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision-maker and the expected outcomes from these alternatives. The alternatives include (i) ignore the health risk of nitrate-contaminated water, (ii) switch to alternative water sources such as bottled water, or (iii) implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, contaminant transport processes, and climate (Khader, 2012). The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine, where methemoglobinemia (blue baby syndrome) is the main health problem associated with the principal contaminant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods) associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs

  15. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    Directory of Open Access Journals (Sweden)

    A. Khader

    2012-12-01

    Full Text Available Nitrate pollution poses a health risk for infants whose freshwater drinking source is groundwater. This risk creates a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision maker and the expected outcomes from these alternatives. The alternatives include: (i ignore the health risk of nitrate contaminated water, (ii switch to alternative water sources such as bottled water, or (iii implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, pollution transport processes, and climate (Khader and McKee, 2012. The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine where methemoglobinemia is the main health problem associated with the principal pollutant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not-use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs include healthcare for methemoglobinemia, purchase of bottled water, and installation and maintenance of the groundwater monitoring system. At current

  16. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2012-01-01

    Groundwater is a vital resource and also a dynamic component of the water cycle. Unconfined aquifer storage is less responsive to short term weather conditions than the near surface terrestrial water storage (TWS) components (soil moisture, surface water, and snow). However, save for the permanently frozen regions, it typically exhibits a larger range of variability over multi-annual periods than the other components. Groundwater is poorly monitored at the global scale, but terrestrial water storage (TWS) change data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are a reasonable proxy for unconfined groundwater at climatic scales.

  17. Regional Groundwater Processes and Flow Dynamics from Age Tracer Data

    Science.gov (United States)

    Morgenstern, Uwe; Stewart, Mike K.; Matthews, Abby

    2016-04-01

    Age tracers are now used in New Zealand on regional scales for quantifying the impact and lag time of land use and climate change on the quantity and quality of available groundwater resources within the framework of the National Policy Statement for Freshwater Management 2014. Age tracers provide measurable information on the dynamics of groundwater systems and reaction rates (e.g. denitrification), essential for conceptualising the regional groundwater - surface water system and informing the development of land use and groundwater flow and transport models. In the Horizons Region of New Zealand, around 200 wells have tracer data available, including tritium, SF6, CFCs, 2H, 18O, Ar, N2, CH4 and radon. Well depths range from shallower wells in gravel aquifers in the Horowhenua and Tararua districts, and deeper wells in the aquifers between Palmerston North and Wanganui. Most of the groundwater samples around and north of the Manawatu River west of the Tararua ranges are extremely old (>100 years), even from relatively shallow wells, indicating that these groundwaters are relatively disconnected from fresh surface recharge. The groundwater wells in the Horowhenua tap into a considerably younger groundwater reservoir with groundwater mean residence time (MRT) of 10 - 40 years. Groundwater along the eastern side of the Tararua and Ruahine ranges is significantly younger, typically groundwater recharge rates, as deduced from groundwater depth and MRT, are extremely low in the central coastal area, consistent with confined groundwater systems, or with upwelling of old groundwater close to the coast. Very low vertical recharge rates along the Manawatu River west of the Manawatu Gorge indicate upwelling groundwater conditions in this area, implying groundwater discharge into the river is more likely here than loss of river water into the groundwater system. High recharge rates observed at several wells in the Horowhenua area and in the area east of the Tararua and

  18. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-01-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  19. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Bradford, Scott A.; Harvey, Ronald W.

    2016-12-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  20. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-06-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  1. GROUNDWATER HYDROCHEMISTRY EVALUATION IN RURAL ...

    African Journals Online (AJOL)

    Osondu

    2012-10-09

    Oct 9, 2012 ... the quality of groundwater from domestic water supply boreholes across rural Botswana. Ionic ... quality limits the supply of potable fresh water. To utilize and protect valuable water ..... prescribed specification of World Health.

  2. Groundwater Vulnerability Regions of Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions onThis map represent areas with similar hydrogeologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  3. Optimal and Sustainable Groundwater Extraction

    Directory of Open Access Journals (Sweden)

    Christopher A. Wada

    2010-08-01

    Full Text Available With climate change exacerbating over-exploitation, groundwater scarcity looms as an increasingly critical issue worldwide. Minimizing the adverse effects of scarcity requires optimal as well as sustainable patterns of groundwater management. We review the many sustainable paths for groundwater extraction from a coastal aquifer and show how to find the particular sustainable path that is welfare maximizing. In some cases the optimal path converges to the maximum sustainable yield. For sufficiently convex extraction costs, the extraction path converges to an internal steady state above the level of maximum sustainable yield. We describe the challenges facing groundwater managers faced with multiple aquifers, the prospect of using recycled water, and the interdependence with watershed management. The integrated water management thus described results in less water scarcity and higher total welfare gains from groundwater use. The framework also can be applied to climate-change specifications about the frequency, duration, and intensity of precipitation by comparing before and after optimal management. For the case of South Oahu in Hawaii, the prospect of climate change increases the gains of integrated groundwater management.

  4. Groundwater residence time : tell me who you are and I will tell which information you may provide

    Science.gov (United States)

    Aquilina, Luc; Labasque, Thierry; Kolbe, Tamara; Marçais, Jean; Leray, Sarah; Abbott, Ben; de Dreuzy, Jean-Raynald

    2016-04-01

    Groundwater residence-time or ages have been widely used in hydrogeology during the last decades. Following tritium measurements, anthropogenic gases (CFC, SF6, 35Kr) have been developed. They provide information at the aquifer scale on long residence times. They complement the more localized data obtained from sparse boreholes with hydraulic and geophysical methods. Anthropogenic tracer concentrations are most generally considered as "Groundwater ages" using a piston flow model providing an order of magnitude for the residence time. More advanced information can however be derived from the combined analysis of the tracer concentrations. For example, the residence time distribution over the last 50 years can be well approached by the concentration of two sufficient different anthropogenic tracers in the group (CFC, SF6, 35Kr), i.e. tracers whose anthropogenic chronicles are sufficiently different. And, with additional constrains on geological and hydraulic properties, groundwater ages contribute to characterize the aquifer structures and the groundwater resources. Complex geological environments also include old groundwater bodies in extremely confined aquifer sections. In such cases, various tracers are related to highly different processes. CFCs can be taken as a marker of modern contamination to track exchanges between shallower and deeper aquifers, leakage processes, and modification of circulations linked to recent anthropogenic changes. 14C or 36Cl can be used to evidence much older processes but have to be related to the history of the chemical element itself. Numerous field studies in fact demonstrate the broad-range extent of the residence time distribution spanning in some cases several orders of magnitude. Flow and transport models in heterogeneous structures confirm such wide residence times and help to characterize their distribution. Residence times also serve as a privileged interface to the fate of some contaminants in aquifers or to trace

  5. Groundwater conditions in Utah, spring of 2012

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Holt, Christopher M.; Fisher, Martel J.; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.

    2012-01-01

    This is the forty-ninth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2011. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http:// www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs. gov/publications/GW2012.pdf. Groundwater conditions in Utah for calendar year 2010 are reported in Burden and others (2011) and available online at http://ut.water.usgs.gov/ publications/GW2011.pdf.

  6. Groundwater conditions in Utah, spring of 2011

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Marston, Thomas M.; Fisher, Martel J.; Balling, Ted J.; Downhour, Paul; Guzman, Manuel; Eacret, Robert J.; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2011-01-01

    This is the forty-eighth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2010. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http:// www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs. gov/publications/GW2011.pdf. Groundwater conditions in Utah for calendar year 2009 are reported in Burden and others (2010) and available online at http://ut.water.usgs.gov/ publications/GW2010.pdf.

  7. Groundwater conditions in Utah, spring of 2014

    Science.gov (United States)

    Burden, Carole B.; Birken, Adam S.; Gerner, Steven J.; Carricaburu, John P.; Derrick, V. Noah; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2014-01-01

    This is the fifty-first in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2013. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water. usgs.gov/publications/GW2014.pdf. Groundwater conditions in Utah for calendar year 2012 are reported in Burden and others (2013) and are available online at http://ut.water.usgs. gov/publications/GW2013.pdf

  8. Groundwater conditions in Utah, spring of 2010

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Cederberg, Jay R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Enright, Michael; Eacret, Robert J.; Guzman, Manuel; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2010-01-01

    This is the forty-seventh in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2009. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www. waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/ publications/GW2010.pdf. Groundwater conditions in Utah for calendar year 2008 are reported in Burden and others (2009) and available online at http://ut.water.usgs.gov/publications/ GW2009.pdf.

  9. Groundwater conditions in Utah, spring of 2016

    Science.gov (United States)

    Burden, Carole B.; Birken, Adam S.; Carricaburu, John P.; Jones, Katherine K.; Derrick, V. Noah; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Freel, Andrew D.; Christiansen, Howard K.; Fisher, Martel J.

    2016-01-01

    This is the fifty-third in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to new wells constructed for withdrawal of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2015. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2016.pdf. Groundwater conditions in Utah for calendar year 2014 are reported in Burden and others (2015) and are available online at http://ut.water.usgs.gov/publications/GW2015.pdf

  10. Groundwater conditions in Utah, spring of 2015

    Science.gov (United States)

    Burden, Carole B.; Birken, Adam S.; Carricaburu, John P.; Fisher, Martel J.; Derrick, V. Noah; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.

    2015-01-01

    This is the fifty-second in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to new wells constructed for withdrawal of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2014. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2015.pdf. Groundwater conditions in Utah for calendar year 2013 are reported in Burden and others (2014) and are available online at http://ut.water.usgs.gov/publications/GW2014.pdf.

  11. Characterization of shallow groundwater quality in the Lower St. Johns River Basin: a case study

    Science.gov (United States)

    Ying Ouyang; Jia-En Zhang; Prem. Parajuli

    2013-01-01

    Characterization of groundwater quality allows the evaluation of groundwater pollution and provides information for better management of groundwater resources. This study characterized the shallow groundwater quality and its spatial and seasonal variations in the Lower St. Johns River Basin, Florida, USA, under agricultural, forest, wastewater, and residential land...

  12. A groundwater quality index map for Namibia

    Science.gov (United States)

    Bergmann, Thomas; Schulz, Oliver; Wanke, Heike; Püttmann, Wilhelm

    2016-04-01

    Groundwater quality and contamination is a huge concern for the population of Namibia, especially for those living in remote areas. There, most farmers use their own wells to supply themselves and their animals with drinking water. In many cases, except for a few studies that were done in some areas, the only groundwater quality measurements that took place were taken at the time the well was drilled. These data were collected and are available through the national GROWAS-Database. Information on measurements determining the amount of contaminants such as fluoride, TDS, other major ions and nitrate for several thousand wells are provided there. The aim of this study was I) to check the database for its reliability by comparing it to results from different studies and statistical analysis, II) to analyze the database on groundwater quality using different methods (statistical-, pattern- and correlation analysis) and III) to embed our own field work that took place within a selected Namibian region into that analysis. In order to get a better understanding of the groundwater problems in different areas of Namibia, a groundwater quality index map based on GROWAS was created using GIS processing techniques. This map uses several indicators for groundwater quality in relation to selected guidelines and combines them into an index, thus enabling the assessment of groundwater quality with regard to more than one pollutant. The goal of the groundwater quality map is to help identify where the overall groundwater quality is problematic and to communicate these problems. Additionally, suggestions for an enhancement of the database and for new field surveys will be given. The field work was focusing on three farms within an area known for its problematic nitrate concentration in groundwater. There, 23 wells were probed. In order to identify the sources of the contamination, isotopic measurements were executed for three of these wells with high nitrate concentrations

  13. Evaluation of groundwater potential using geospatial techniques

    Science.gov (United States)

    Hussein, Abdul-Aziz; Govindu, Vanum; Nigusse, Amare Gebre Medhin

    2017-09-01

    The issue of unsustainable groundwater utilization is becoming increasingly an evident problem and the key concern for many developing countries. One of the problems is the absence of updated spatial information on the quantity and distribution of groundwater resource. Like the other developing countries, groundwater evaluation in Ethiopia has been usually conducted using field survey which is not feasible in terms of time and resource. This study was conducted in Northern Ethiopia, Wollo Zone, in Gerardo River Catchment district to spatially delineate the groundwater potential areas using geospatial and MCDA tools. To do so, eight major biophysical and environmental factors like geomorphology, lithology, slope, rainfall, land use land cover (LULC), soil, lineament density and drainage density were considered. The sources of these data were satellite image, digital elevation model (DEM), existing thematic maps and metrological station data. Landsat image was used in ERDAS Imagine to drive the LULC of the area, while the geomorphology, soil, and lithology of the area were identified and classified through field survey and digitized from existing maps using the ArcGIS software. The slope, lineament and drainage density of the area were derived from DEM using spatial analysis tools. The rainfall surface map was generated using the thissen polygon interpolation. Finally, after all these thematic maps were organized, weighted value determination for each factor and its field value was computed using IDRSI software. At last, all the factors were integrated together and computed the model using the weighted overlay so that potential groundwater areas were mapped. The findings depicted that the most potential groundwater areas are found in the central and eastern parts of the study area, while the northern and western parts of the Gerado River Catchment have poor potential of groundwater availability. This is mainly due to the cumulative effect of steep topographic and

  14. Evaluation of groundwater potential using geospatial techniques

    Science.gov (United States)

    Hussein, Abdul-Aziz; Govindu, Vanum; Nigusse, Amare Gebre Medhin

    2016-06-01

    The issue of unsustainable groundwater utilization is becoming increasingly an evident problem and the key concern for many developing countries. One of the problems is the absence of updated spatial information on the quantity and distribution of groundwater resource. Like the other developing countries, groundwater evaluation in Ethiopia has been usually conducted using field survey which is not feasible in terms of time and resource. This study was conducted in Northern Ethiopia, Wollo Zone, in Gerardo River Catchment district to spatially delineate the groundwater potential areas using geospatial and MCDA tools. To do so, eight major biophysical and environmental factors like geomorphology, lithology, slope, rainfall, land use land cover (LULC), soil, lineament density and drainage density were considered. The sources of these data were satellite image, digital elevation model (DEM), existing thematic maps and metrological station data. Landsat image was used in ERDAS Imagine to drive the LULC of the area, while the geomorphology, soil, and lithology of the area were identified and classified through field survey and digitized from existing maps using the ArcGIS software. The slope, lineament and drainage density of the area were derived from DEM using spatial analysis tools. The rainfall surface map was generated using the thissen polygon interpolation. Finally, after all these thematic maps were organized, weighted value determination for each factor and its field value was computed using IDRSI software. At last, all the factors were integrated together and computed the model using the weighted overlay so that potential groundwater areas were mapped. The findings depicted that the most potential groundwater areas are found in the central and eastern parts of the study area, while the northern and western parts of the Gerado River Catchment have poor potential of groundwater availability. This is mainly due to the cumulative effect of steep topographic and

  15. Restoring Consistency In Subjective Information For Groundwater Driven Health Risk Assessment

    Science.gov (United States)

    Ozbek, M. M.; Pinder, G. F.

    2004-12-01

    In an earlier work (Ozbek and Pinder, 2003), we constructed a fuzzy rule-based knowledge base that uses subjective expert opinion to calculate risk-based design constraints (i.e., dose and pattern of exposure) to sustain the groundwater-driven individual health risk at a desired level. Ideally, our system must be capable to produce for any individual a meaningful risk result or for any given risk a meaningful design constraint, in the sense that the result is neither the empty set nor the whole domain of the variable of interest. Otherwise we consider our system as inconsistent. We present a method based on fuzzy similarity relations to restore consistency in our implicative fuzzy rule based system used for the risk-based groundwater remediation design problem. Both a global and a local approach are considered. Even though straightforward and computationally less demanding, the global approach can affect pieces of knowledge negatively by inducing unwarranted imprecision into the knowledge base. On the other hand, the local approach, given a family of parameterized similarity relations, determines a parameter for each inference such that consistent results are computed which may not be feasible in real time applications of our knowledge base. Several scenarios are considered for comparing the two approaches that suggest that for specific applications one or several approaches ranging from a completely global to a completely local one will be more suitable than others while calculating the design constraints.

  16. Review: Moisture loading—the hidden information in groundwater observation well records

    Science.gov (United States)

    van der Kamp, Garth; Schmidt, Randy

    2017-07-01

    Changes of total moisture mass above an aquifer such as snow accumulation, soil moisture, and storage at the water table, represent changes of mechanical load acting on the aquifer. The resulting moisture-loading effects occur in all observation well records for confined aquifers. Deep observation wells therefore act as large-scale geological weighing lysimeters, referred to as "geolysimeters". Barometric pressure effects on groundwater levels are a similar response to surface loading and are familiar to every hydrogeologist dealing with the "barometric efficiency" of observation wells. Moisture-loading effects are small and generally not recognized because they are obscured by hydraulic head fluctuations due to other causes, primarily barometric pressure changes. For semiconfined aquifers, long-term moisture-loading effects may be dissipated and obscured by transient flow through overlying aquitards. Removal of barometric and earth tide effects from observation well records allows identification of moisture loading and comparison with hydrological observations, and also comparison with the results of numerical models that can account for transient groundwater flow.

  17. Windows of Opportunity for Groundwater Management

    Science.gov (United States)

    Foster, T.; Brozovic, N.; Butler, A. P.

    2015-12-01

    To date, there has been little attention focused on how the value and effectiveness of groundwater management is influenced by the timing of regulatory intervention relative to aquifer depletion. To address this question, we develop an integrated framework that couples an agro-economic model of farmers' field-level irrigation decision-making with a model of a groundwater abstraction borehole. Unlike existing models that only consider the impact of aquifer depletion on groundwater extraction costs, our model also captures the dynamic changes in well productivity and how these in turn affect crop yields and farmer incomes. We use our model to analyze how the value of imposing groundwater quotas is affected by the prior level of depletion before regulations are introduced. Our results demonstrate that there is a range of aquifer conditions within which regulating groundwater use will deliver long-term economic benefits for farmers. In this range, restricting abstraction rates slows the rate of change in well yields and, as a result, increases agricultural production over the simulated planning horizon. Contrastingly, when current saturated thickness is outside this range, regulating groundwater use will provide negligible social benefits and will impose large negative impacts on farm-level profits. We suggest that there are 'windows of opportunity' for managing aquifer depletion that are a function of local hydrology as well as economic characteristics. Regulation that is too early will harm the rural economy needlessly, while regulation that is too late will be unable to prevent aquifer exhaustion. The insights from our model can be a valuable tool to help inform policy decisions about when, and at what level, regulations should be implemented in order to maximize the benefits obtained from limited groundwater resources.

  18. Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India.

    Science.gov (United States)

    Rashid, Mehnaz; Lone, Mahjoor Ahmad; Ahmed, Shakeel

    2012-08-01

    The increasing demand of water has brought tremendous pressure on groundwater resources in the regions were groundwater is prime source of water. The objective of this study was to explore groundwater potential zones in Maheshwaram watershed of Andhra Pradesh, India with semi-arid climatic condition and hard rock granitic terrain. GIS-based modelling was used to integrate remote sensing and geophysical data to delineate groundwater potential zones. In the present study, Indian Remote Sensing RESOURCESAT-1, Linear Imaging Self-Scanner (LISS-4) digital data, ASTER digital elevation model and vertical electrical sounding data along with other data sets were analysed to generate various thematic maps, viz., geomorphology, land use/land cover, geology, lineament density, soil, drainage density, slope, aquifer resistivity and aquifer thickness. Based on this integrated approach, the groundwater availability in the watershed was classified into four categories, viz. very good, good, moderate and poor. The results reveal that the modelling assessment method proposed in this study is an effective tool for deciphering groundwater potential zones for proper planning and management of groundwater resources in diverse hydrogeological terrains.

  19. Groundwater availability of the Mississippi embayment

    Science.gov (United States)

    Clark, Brian R.; Hart, Rheannon M.; Gurdak, Jason J.

    2011-01-01

    Groundwater is an important resource for agricultural and municipal uses in the Mississippi embayment. Arkansas ranks first in the Nation for rice and third for cotton production, with both crops dependent on groundwater as a major source of irrigation requirements. Multiple municipalities rely on the groundwater resources to provide water for industrial and public use, which includes the city of Memphis, Tennessee. The demand for the groundwater resource has resulted in groundwater availability issues in the Mississippi embayment including: (1) declining groundwater levels of 50 feet or more in the Mississippi River Valley alluvial aquifer in parts of eastern Arkansas from agricultural pumping, (2) declining groundwater levels of over 360 feet over the last 90 years in the confined middle Claiborne aquifer in southern Arkansas and northern Louisiana from municipal pumping, and (3) litigation between the State of Mississippi and a Memphis water utility over water rights in the middle Claiborne aquifer. To provide information to stakeholders addressing the groundwater-availability issues, the U.S. Geological Survey Groundwater Resources Program supported a detailed assessment of groundwater availability through the Mississippi Embayment Regional Aquifer Study (MERAS). This assessment included (1) an evaluation of how these resources have changed over time through the use of groundwater budgets, (2) development of a numerical modeling tool to assess system responses to stresses from future human uses and climate trends, and (3) application of statistical tools to evaluate the importance of individual observations within a groundwater-monitoring network. An estimated 12 million acre-feet per year (11 billion gallons per day) of groundwater was pumped in 2005 from aquifers in the Mississippi embayment. Irrigation constitutes the largest groundwater use, accounting for approximately 10 million acre-feet per year (9 billion gallons per day) in 2000 from the Mississippi

  20. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2011-01-01

    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of

  1. Groundwater recharge and agricultural contamination

    Science.gov (United States)

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  2. Groundwater resource-directed measures software

    African Journals Online (AJOL)

    2006-07-21

    Jul 21, 2006 ... 1Institute for Groundwater Studies, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa ... In this paper the methods developed for the GRDM .... The geothermal gradient for groundwater, that is, the.

  3. ASSESSMENT OF GROUNDWATER QUALITY IN SHALLOW ...

    African Journals Online (AJOL)

    development of human societies. In Okrika Island ... abstraction of groundwater due to population increase in Port ... 298. Nwankwoala and Walter: Assessment of Groundwater Quality in Shallow Coastal Aquifers ..... and Tai-Eleme areas.

  4. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important barriers to preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to ...

  5. Valuing groundwater: A practical approach for integrating ...

    African Journals Online (AJOL)

    groundwater economic values into decision making ... The methodology incorporates a 2-tiered valuation approach. .... groundwater systems in Botswana (SADC, 2010). .... tion) can be investigated to support water resource management.

  6. INTEC Groundwater Monitoring Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    J. R. Forbes

    2007-02-01

    This report summarizes 2006 perched water and groundwater monitoring activities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Laboratory (INL). During 2006, groundwater samples were collected from a total of 22 Snake River Plain Aquifer (SRPA) monitoring wells, plus six aquifer wells sampled for the Idaho CERCLA Disposal Facility (ICDF) monitoring program. In addition, perched water samples were collected from 21 perched wells and 19 suction lysimeters. Groundwater and perched water samples were analyzed for a suite of radionuclides and inorganic constituents. Laboratory results in this report are compared to drinking water maximum contaminant levels (MCLs). Such comparison is for reference only and it should be noted that the Operable Unit 3-13 Record of Decision does not require that perched water comply with drinking water standards.

  7. Groundwater arsenic contamination throughout China.

    Science.gov (United States)

    Rodríguez-Lado, Luis; Sun, Guifan; Berg, Michael; Zhang, Qiang; Xue, Hanbin; Zheng, Quanmei; Johnson, C Annette

    2013-08-23

    Arsenic-contaminated groundwater used for drinking in China is a health threat that was first recognized in the 1960s. However, because of the sheer size of the country, millions of groundwater wells remain to be tested in order to determine the magnitude of the problem. We developed a statistical risk model that classifies safe and unsafe areas with respect to geogenic arsenic contamination in China, using the threshold of 10 micrograms per liter, the World Health Organization guideline and current Chinese standard for drinking water. We estimate that 19.6 million people are at risk of being affected by the consumption of arsenic-contaminated groundwater. Although the results must be confirmed with additional field measurements, our risk model identifies numerous arsenic-affected areas and highlights the potential magnitude of this health threat in China.

  8. Development of a decision support system for groundwater pollution assessment

    NARCIS (Netherlands)

    Kukuric, N.

    1999-01-01

    Computers have become the main tooi used in groundwater management. Computer software has been developed for storage, processing and presentation of information on groundwater pollution problems. Continuing demands for more efficiënt handling of information have resulted in increasing integration of

  9. Evolution of Quaternary groundwater system in North China Plain

    Institute of Scientific and Technical Information of China (English)

    张宗祜; 施德鸿; 任福弘; 殷正宙; 孙继朝; 张翠云

    1997-01-01

    The Quaternary groundwater system in the North China Plain is formed mainly through the terrestrial water flow action on the united geological and tectonic backgrounds. The analysis of groundwater dynamic field, simulation of groundwater geochemistry, and the 14C dating and extraction of isotope information have provided more evidence for recognizing and assessing the evolution of groundwater circulation system and studying the past global changes. The exploitation and utilization of groundwater on a large scale and overexploitation have given rise to the decline of regional groundwater level, change of flow field, decrease of water resources and downward movement of saline water body. The water environment has entered a new evolution stage in which it is intensely disturbed by the mankind’s activities.

  10. Food supply reliance on groundwater

    Science.gov (United States)

    Dalin, Carole; Puma, Michael; Wada, Yoshihide; Kastner, Thomas

    2016-04-01

    Water resources, essential to sustain human life, livelihoods and ecosystems, are under increasing pressure from population growth, socio-economic development and global climate change. As the largest freshwater resource on Earth, groundwater is key for human development and food security. Yet, excessive abstraction of groundwater for irrigation, driven by an increasing demand for food in recent decades, is leading to fast exhaustion of groundwater reserves in major agricultural areas of the world. Some of the highest depletion rates are observed in Pakistan, India, California Central Valley and the North China Plain aquifers. In addition, the growing economy and population of several countries, such as India and China, makes prospects of future available water and food worrisome. In this context, it is becoming particularly challenging to sustainably feed the world population, without exhausting our water resources. Besides, food production and consumption across the globe have become increasingly interconnected, with many areas' agricultural production destined to remote consumers. In this globalisation era, trade is crucial to the world's food system. As a transfer of water-intensive goods, across regions with varying levels of water productivity, food trade can save significant volumes of water resources globally. This situation makes it essential to address the issue of groundwater overuse for global food supply, accounting for international food trade. To do so, we quantify the current, global use of non-renewable groundwater for major crops, accounting for various water productivity and trade flows. This will highlight areas requiring quickest attention, exposing major exporters and importers of non-renewable groundwater, and thus help explore solutions to improve the sustainability of global food supply.

  11. Groundwater and climate change research scoping study

    OpenAIRE

    Jackson, C. R.; Cheetham, M.; Guha, P

    2006-01-01

    This scoping study has reviewed much of the published literature in the field of climate change and groundwater research. Whilst it is not exhaustive with regard to groundwater quality issues, most of the published literature relating to climate change and groundwater resources, particularly in the UK, is covered. Further work is required to identify current research needs relating to the effects of climate change on groundwater quality. The study of the effects of climate chan...

  12. Complexed iron removal from groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Munter, R.; Ojaste, H.; Sutt, J. [Tallinn Technical University, Tallinn (Estonia). Dept. of Environmental & Chemical Technology

    2005-07-01

    The paper demonstrates an intensive work carried out and results obtained on the pilot plant of the City of Kogalym Water Treatment Station (Tjumen, Siberia, Russian Federation) to elaborate on a contemporary nonreagent treatment technology for the local iron-rich groundwater. Several filter materials (Birm, Pyrolox, hydroanthracite, Everzit, granulated activated carbon) and chemical oxidants (ozone, chlorine, hydrogen peroxide, oxygen, and potassium permanganate) were tested to solve the problem with complexed iron removal from groundwater. The final elaborated technology consists of raw water intensive aeration in the gas-degas treatment unit followed by sequential filtration through hydroanthracite and the special anthracite Everzit.

  13. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2014-01-01

    Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales.

  14. Mapping groundwater quality in the Netherlands

    NARCIS (Netherlands)

    Pebesma, Edzer Jan

    2001-01-01

    Groundwater quality is the suitability of groundwater for a certain purpose (e.g. for human consumption), and is mostly determined by its chemical composition. Pollution from agricultural and industrial origin threatens the groundwater quality in the Netherlands. Locally, this pollution is me

  15. Groundwater: Illinois' Buried Treasure. Education Activity Guide.

    Science.gov (United States)

    Environmental Education Association of Illinois, Chicago.

    Groundwater is an extremely valuable resource that many feel has been too long neglected and taken for granted. There is growing recognition in Illinois and throughout the United States that comprehensive groundwater protection measures are vital. Illinois embarked on a course in protecting groundwater resources with the passage of the Illinois…

  16. Geochemical modelling baseline compositions of groundwater

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard

    2008-01-01

    Reactive transport models, were developed to explore the evolution in groundwater chemistry along the flow path in three aquifers; the Triassic East Midland aquifer (UK), the Miocene aquifer at Valreas (F) and the Cretaceous aquifer near Aveiro (P). All three aquifers contain very old groundwaters...... of the evolution in natural baseline properties in groundwater....

  17. Groundwater: Illinois' Buried Treasure. Education Activity Guide.

    Science.gov (United States)

    Environmental Education Association of Illinois, Chicago.

    Groundwater is an extremely valuable resource that many feel has been too long neglected and taken for granted. There is growing recognition in Illinois and throughout the United States that comprehensive groundwater protection measures are vital. Illinois embarked on a course in protecting groundwater resources with the passage of the Illinois…

  18. Detection and Remediation of Groundwater Pollution

    Institute of Scientific and Technical Information of China (English)

    王杰

    2016-01-01

    Groundwater is an important part of the water cycle and is also widely used as sources of drinking water. With the increasing de?velopment of groundwater exploitation, the pollution is becoming more and more serious. This paper talks about the main research direc?tions of groundwater pollution, the detection, the remediation and some conclusions.

  19. Groundwater and geothermal: urban district heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Mounts, R.; Frazier, A.; Wood, E.; Pyles, O.

    1982-01-01

    This report describes how several cities use groundwater and geothermal energy in district heating systems. It begins with groundwater, introducing the basic technology and techniques of development, and describing two case studies of cities with groundwater-based district heating systems. The second half of the report consists of three case studies of cities with district heating systems using higher temperature geothermal resources.

  20. Using soil and Quaternary geological information to assess the intrinsic groundwater vulnerability of shallow aquifers: an example from Lithuania

    Science.gov (United States)

    Holman, I.; Palmer, R.; Leonavičiūtė, N.

    2000-12-01

    Lithuania, in the Baltic region of northern Europe, is heavily dependent on groundwater resources for its public water supply, with a large proportion, especially in rural areas, derived from shallow Quaternary aquifers. A national groundwater-vulnerability methodology, based upon the UK approach, has been developed on behalf of the Lithuanian Ministry of Environmental Protection as a possible basis for the future protection of shallow groundwater resources for the rural inhabitants. Some modifications to the UK methodology were required to enable archive data to be used. The four aquifer classes depicted on the final groundwater vulnerability map are based upon the assessed relative permeabilities of the uppermost Quaternary deposits. The derivation of the classification of soil-leaching potential required a reassessment of Soviet-based soil wetness and particle-size classes and a calculation of subsoil-saturated hydraulic conductivity. A preliminary validation of the final maps against available shallow groundwater samples suggests that the methodology satisfactorily predicts the intrinsic groundwater vulnerability. The final methodology, based upon its low-cost approach using archive data, is relevant to the current needs of Lithuania and can be applied in other regions of similar geology and climate.

  1. Groundwater flood hazards in lowland karst terrains

    Science.gov (United States)

    Naughton, Owen; McCormack, Ted

    2016-04-01

    The spatial and temporal complexity of flooding in karst terrains pose unique flood risk management challenges. Lowland karst landscapes can be particularly susceptible to groundwater flooding due to a combination of limited drainage capacity, shallow depth to groundwater and a high level of groundwater-surface water interactions. Historically the worst groundwater flooding to have occurred in the Rep. of Ireland has been centred on the Gort Lowlands, a karst catchment on the western coast of Ireland. Numerous notable flood events have been recorded throughout the 20th century, but flooding during the winters of 2009 and 2015 were the most severe on record, inundating an area in excess of 20km2 and causing widespread and prolonged disruption and damage to property and infrastructure. Effective flood risk management requires an understanding of the recharge, storage and transport mechanisms during flood conditions, but is often hampered by a lack of adequate data. Using information gathered from the 2009 and 2015 events, the main hydrological and geomorphological factors which influence flooding in this complex lowland karst groundwater system under are elucidated. Observed flood mechanisms included backwater flooding of sinks, overland flow caused by the overtopping of sink depressions, high water levels in turlough basins, and surface ponding in local epikarst watersheds. While targeted small-scale flood measures can locally reduce the flood risk associated with some mechanisms, they also have the potential to exacerbate flooding down-catchment and must be assessed in the context of overall catchment hydrology. This study addresses the need to improve our understanding of groundwater flooding in karst terrains, in order to ensure efficient flood prevention and mitigation in future and thus help achieve the aims of the EU Floods Directive.

  2. Basin Geomorphology and Drainage Morphometry Parame-ters Used as Indicators for Groundwater Prospect:Insight from Geographical Information System (GIS) Technique

    Institute of Scientific and Technical Information of China (English)

    Kumar Avinash; B Deepika; K S Jayappa

    2014-01-01

    Influence of structural and lithological controls of various drainage patterns and their stream orientations (for 2nd, 3rd and 4th order steams) were identified to evaluate the direction and controlling factors of drainage network. To investigate the prospect of groundwater, hydrogeomor-phological features of river basin viz. Mulki-Pavanje were identified and mapped. To evaluate the characteristics of the basin, different morphometric parameters (linear, areal and relief) were com-puted in sub-basin wise (SB-I to -VII). The linear parameters suggest drainage network is controlled by geomorphology. The form factor (Ff), elongation ratio (Re) and circularity ratio (Rc) suggest that the basin is in an elongated shape. The drainage density (Dd) indicates resistant/permeable strata un-der medium-dense vegetation with moderate relief. The areal parameters of the sub-basins (except SB-I and III) indicates moderate ground-slopes associated with moderately permeable rocks, which pro-mote moderate run-off and infiltration. Drainage texture (T) of the whole basin indicates coarse tex-ture while the SB-I, and III showing an intermediate texture. The relief parameters namely rugged-ness number (Rn) infers low basin relief and poor drainage density. To identify the most deficit/surplus zones of groundwater suitable weightages were assigned to the hydrogeomorphological units and morphometric parameters. The study reveal that the basin manifest that SB-III shall be most deficit zone of groundwater, whereas SB-VII, VI and V are found to show increase in groundwater potential-ity. Groundwater prospect area in this basin is estimated to be 7% area under poor, 44% area under moderate and 49% area under good to excellent. This paper demonstrated the potential application of geographical information system (GIS) techniques to evaluate the groundwater prospect in absence of traditional groundwater monitoring data.

  3. Global Groundwater related Risk Indicators: quantifying groundwater stress and groundwater table decline (1990-2010) at global scale

    Science.gov (United States)

    Faneca Sanchez, Marta; Sutanudjaja, Edwin; Kuijper, Marijn; Bierkens, Marc

    2016-04-01

    Groundwater is an invisible but indispensable resource for the economic development of many countries. Due to the need for this resource, in many cases it is exploited under severe pressure and the exploitation can become not sustainable. The non-sustainable exploitation of water is a well-known problem on both regional and global scales. However, most currently-available assessments on water stress still mostly focus on surface water and on water balances. In this work, we presented two global maps of groundwater risk indicators: an updated version of the groundwater stress (Gleeson et al., 2011, DOI: 10.1038/nature11295) and an indicator on groundwater table decline for the period 1990-2010. To calculate both indicators, we used the updated PCR-GLOBWB model output at 5 arcmin resolution (about 10 km at the equator), that is extended with an offline coupling to a global groundwater MODFLOW model. PCR-GLOBWB simulates daily river discharge and groundwater recharge, as well as surface water and groundwater abstraction rates. The latter are estimated internally within the model based on the simulation of their availabilities and water demands for irrigation and other sectors. The daily output of PCR-GLOBWB would then be aggregated to the monthly resolution and used to force the MODFLOW groundwater model resolving spatio-temporal groundwater table dynamics, incorporating the simulated groundwater abstraction of PCR-GLOBWB. Using the PCR-GLOBWB and MODFLOW simulation results from the period 1990-2010, we then quantified groundwater stress and assessed the groundwater table decline. Results are presented on four different spatial scales: 5 arcmin pixel, drainage/sub-catchment unit, state level, and major aquifer unit. The maps clearly show where groundwater is under stress, where there is a trend in the drop of the groundwater table, the slope of the drop and the significance of it.

  4. Groundwater Resources: Investigation and Development

    Science.gov (United States)

    Anderson, Mary P.

    A glance through the table of contents of this volume might suggest that it is yet another introductory text on principles of groundwater hydrology. All of the usual basic topics are covered including definitions of terms and concepts, aquifer types, drilling methods, and pumping tests. But partly because this book is intended for practicing groundwater consultants rather than students, other less elementary topics such as environmental isotope techniques, geochemical methods, interpretation and utilization of spring flow, geophysical methods, and groundwater balances are also included.According to the preface, ‘practical applicability’ is stressed ‘to show how groundwater investigations should be conducted using a systematic, well-directed effort’ and to describe ‘… what to do, what to avoid, and what kind of results one can reasonably expect …’ While this book was published as part of a series of monographs on water pollution, it is more in the nature of a handbook than a true monograph. That is, it is not an in-depth treatment of a single topic but presents a broad introduction to the ways in

  5. Adsorptive Iron Removal from Groundwater

    NARCIS (Netherlands)

    Sharma, S.K.

    2001-01-01

    Iron is commonly present in groundwater worldwide. The presence of iron in drinking water is not harmful to human health, however it is undesirable because of the associated aesthetic and operational problems, namely: bad taste, colour, stains on laundry and plumbing fixtures, and aftergrowth in the

  6. Adsorptive iron removal from groundwater

    NARCIS (Netherlands)

    Sharma, S.K.

    2001-01-01

    Iron is commonly present in groundwater worldwide. The presence of iron in the water supply is not harmful to human health, however it is undesirable. Bad taste, discoloration, staining, deposition in the distribution system leading to aftergrowth, and incidences of high turbidity are some

  7. Calibration of Models Using Groundwater Age (Invited)

    Science.gov (United States)

    Sanford, W. E.

    2009-12-01

    Water-resource managers are frequently concerned with the long-term ability of a groundwater system to deliver volumes of water for both humans and ecosystems under natural and anthropogenic stresses. Analysis of how a groundwater system responds to such stresses usually involves the construction and calibration of a numerical groundwater-flow model. The calibration procedure usually involves the use of both groundwater-level and flux observations. Water-level data are often more abundant, and thus the availability of flux data can be critical, with well discharge and base flow to streams being most often available. Lack of good flux data however is a common occurrence, especially in more arid climates where the sustainability of the water supply may be even more in question. Environmental tracers are frequently being used to estimate the “age” of a water sample, which represents the time the water has been in the subsurface since its arrival at the water table. Groundwater ages provide flux-related information and can be used successfully to help calibrate groundwater models if porosity is well constrained, especially when there is a paucity of other flux data. As several different methods of simulating groundwater age and tracer movement are possible, a review is presented here of the advantages, disadvantages, and potential pitfalls of the various numerical and tracer methods used in model calibration. The usefulness of groundwater ages for model calibration depends on the ability both to interpret a tracer so as to obtain an apparent observed age, and to use a numerical model to obtain an equivalent simulated age observation. Different levels of simplicity and assumptions accompany different methods for calculating the equivalent simulated age observation. The advantages of computational efficiency in certain methods can be offset by error associated with the underlying assumptions. Advective travel-time calculation using path-line tracking in finite

  8. Groundwater-surface water interactions: the behavior of a small lake connected to groundwater

    Science.gov (United States)

    Arnoux, Marie; Barbecot, Florent; Gibert-Brunet, Elisabeth

    2016-04-01

    Interactions between lakes and groundwater have been under concern in recent years and are still not well understood. Exchange rates are both spatially and temporally highly variable and are generally underestimated. However these interactions are of utmost importance for water resource management and need to be better understood since (i) the hydrogeological and geochemical equilibria within the lake drive the evolution of lakes' ecology and quality, and (ii) groundwater inflow, even in low rate, can be a key element in both the lake nutrient balance (and therefore in lake's eutrophication) and vulnerability to pollution. In many studies two main geochemical tracers, i.e. water stable isotopes and radon-222, are used to determine these interactions. However there are still many uncertainties on their time and space variations and their reliability to determine the lake budget. Therefore, a lake connected to groundwater on a small catchment was chosen to quantify groundwater fluxes change over time and the related influences on the lake's water geochemistry. Through analyse in time and space of both tracers and a precise instrumentation of the lake, their variations linked to groundwater inflows are determined. The results show that each tracer provides additional information for the lake budget with the interest to well determine the information given by each measurement: the radon-222 gives information on the groundwater inflows at a point in space and time while water stable isotopes highlight the dominant parameters of the yearly lake budget. The variation in groundwater inflows allow us to discuss lake's evolution regarding climate and environmental changes.

  9. Groundwater institutions and management problems in the developing world

    NARCIS (Netherlands)

    Wegerich, K.

    2006-01-01

    The Role of Groundwater in Delhi¿s Water Supply: Interaction between formal and informal Development of the Water System, and possible scenarios of Evolution; A. Maria. Water Supply and Sanitation Sector Analysis of the Secondary Towns of Azerbaijan: Does groundwater play a role? S. Puri and T. Roma

  10. Adsorptive removal of manganese, arsenic and iron from groundwater

    NARCIS (Netherlands)

    Buamah, R.

    2009-01-01

    To determine the scale of the problem of arsenic, iron and manganese contamination of groundwater in Ghana a survey was performed in the first phase of the research to provide in depth information with respect to these contaminants. Presence of these mentioned contaminants in groundwater is not pecu

  11. Adsorptive removal of manganese, arsenic and iron from groundwater

    NARCIS (Netherlands)

    Buamah, R.

    2009-01-01

    To determine the scale of the problem of arsenic, iron and manganese contamination of groundwater in Ghana a survey was performed in the first phase of the research to provide in depth information with respect to these contaminants. Presence of these mentioned contaminants in groundwater is not

  12. Well Construction Details, Groundwater Elevations, and Figures for the Tijeras Arroyo Groundwater Area at Sandia National Laboratories, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This Sandia National Laboratories / New Mexico (SNL/NM) submittal contains groundwater information that the United States Geological Survey (USGS) has requested. The USGS will use the information to assist Kirtland Air Force Base (KAFB) in its ongoing groundwater studies. The information in this submittal contains well-construction details and groundwater-elevation data for monitoring wells that SNL/NM has installed. Relevant well-construction data from other government agencies are also summarized. This submittal contains four data tables and three figures. Information in the tables has been used by SNL/NM to prepare groundwater compliance reports that have previously incorporated the three figures. The figures depict the potentiometric surface for the Perched Groundwater System, the potentiometric surface for the Regional Aquifer, and a Conceptual Site Model for the vicinity of Tijeras Arroyo in the northern portion of KAFB.

  13. Quantifying renewable groundwater stress with GRACE

    Science.gov (United States)

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min‐Hui; Reager, John T.; Voss, Katalyn; Swenson, Sean; Rodell, Matthew

    2015-01-01

    Abstract Groundwater is an increasingly important water supply source globally. Understanding the amount of groundwater used versus the volume available is crucial to evaluate future water availability. We present a groundwater stress assessment to quantify the relationship between groundwater use and availability in the world's 37 largest aquifer systems. We quantify stress according to a ratio of groundwater use to availability, which we call the Renewable Groundwater Stress ratio. The impact of quantifying groundwater use based on nationally reported groundwater withdrawal statistics is compared to a novel approach to quantify use based on remote sensing observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. Four characteristic stress regimes are defined: Overstressed, Variable Stress, Human‐dominated Stress, and Unstressed. The regimes are a function of the sign of use (positive or negative) and the sign of groundwater availability, defined as mean annual recharge. The ability to mitigate and adapt to stressed conditions, where use exceeds sustainable water availability, is a function of economic capacity and land use patterns. Therefore, we qualitatively explore the relationship between stress and anthropogenic biomes. We find that estimates of groundwater stress based on withdrawal statistics are unable to capture the range of characteristic stress regimes, especially in regions dominated by sparsely populated biome types with limited cropland. GRACE‐based estimates of use and stress can holistically quantify the impact of groundwater use on stress, resulting in both greater magnitudes of stress and more variability of stress between regions. PMID:26900185

  14. Trend Analyses of Nitrate in Danish Groundwater

    Science.gov (United States)

    Hansen, B.; Thorling, L.; Dalgaard, T.; Erlandsen, M.

    2012-04-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded in decreasing the N surplus by 40% since the mid 1980s while at the same time maintaining crop yields and increasing the animal production of especially pigs. Trend analyses prove that the youngest (0-15 years old) oxic groundwater shows more pronounced significant downward nitrate trends (44%) than the oldest (25-50 years old) oxic groundwater (9%). This amounts to clear evidence of the effect of reduced nitrate leaching on groundwater nitrate concentrations in Denmark. Are the Danish groundwater monitoring strategy obtimal for detection of nitrate trends? Will the nitrate concentrations in Danish groundwater continue to decrease or are the Danish nitrate concentration levels now appropriate according to the Water Framework Directive?

  15. Thermal management of an urban groundwater body

    Directory of Open Access Journals (Sweden)

    J. Epting

    2012-06-01

    Full Text Available This study presents a management concept for the sustainable thermal use of an urban groundwater body. The concept is designed to be applied for shallow thermal groundwater use and is based on (1 a characterization of the present thermal state of the investigated urban groundwater body; (2 the definition of development goals for specific aquifer regions, including future aquifer use and urbanization; and (3 an evaluation of the thermal use potential for these regions.

    The investigations conducted in the city of Basel (Switzerland focus on thermal processes down-gradient of thermal groundwater use, effects of heated buildings in the aquifer as well as the thermal influence of river-groundwater interaction. Investigation methods include: (1 short- and long-term data analysis; (2 high-resolution multilevel groundwater temperature monitoring; as well as (3 3-D numerical groundwater flow and heat-transport modeling and scenario development. The combination of these methods allows quantifying the thermal influence on the investigated urban groundwater body, including the influences of thermal groundwater use and additional heat from urbanization. Subsequently, management strategies for minimizing further groundwater temperature increase, targeting "potential natural" groundwater temperatures for specific aquifer regions and exploiting the thermal use potential are discussed.

  16. Assessment of Halon-1301 as a groundwater age tracer

    Science.gov (United States)

    Beyer, M.; van der Raaij, R.; Morgenstern, U.; Jackson, B.

    2015-06-01

    Groundwater dating is an important tool to assess groundwater resources in regards to their dynamics, i.e. direction and timescale of groundwater flow and recharge, contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However, ambiguous age interpretations are often faced, due to a limited set of available tracers and their individual restricted application ranges. For more robust groundwater dating multiple tracers need to be applied complementarily (or other characterisation methods need to be used to complement tracer information). It is important that additional, groundwater age tracers are found to ensure robust groundwater dating in future. We have recently suggested that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate, but its behaviour in water and suitability as a groundwater age tracer had not yet been assessed in detail. In this study, we determined Halon-1301 and inferred age information in 17 New Zealand groundwater samples and various modern (river) water samples. The samples were simultaneously analysed for Halon-1301 and SF6, which allowed for identification of issues such as contamination of the water with modern air during sampling. All analysed groundwater sites had also been previously dated with tritium, CFC-12, CFC-11 and SF6, and exhibited mean residence times ranging from modern (close to 0 years) to over 100 years. The investigated groundwater samples ranged from oxic to highly anoxic. All samples with available CFC data were degraded and/or contaminated in one or both of CFC-11 and CFC-12. This allowed us to make a first attempt of assessing the conservativeness of Halon-1301 in water, in terms of presence of local sources and its sensitivity towards degradation, which could affect the suitability of Halon-1301 as groundwater age tracer. Overall we found Halon-1301

  17. Shaping the contours of groundwater governance in India

    OpenAIRE

    Kulkarni, Himanshu; Shah, Mihir; P.S. Vijay Shankar

    2015-01-01

    Study region: India. Study focus: India's groundwater dependence and the crises of depletion and contamination of groundwater resources require the development of a robust groundwater dependence framework. Understanding the challenges of developing a groundwater governance framework for regions of extensive groundwater development versus relatively less-developed areas of groundwater development is important. The groundwater typology is a function of both, the hydrogeological aspects of gr...

  18. Application of Remote Sensing for Generation of Groundwater Prospect Map

    Science.gov (United States)

    Inayathulla, Masool

    2016-07-01

    In developing accurate hydrogeomorphological analysis, monitoring, ability to generate information in spatial and temporal domain and delineation of land features are crucial for successful analysis and prediction of groundwater resources. However, the use of RS and GIS in handling large amount of spatial data provides to gain accurate information for delineating the geological and geomorphological characteristics and allied significance, which are considered as a controlling factor for the occurrence and movement of groundwater used IRS LISS II data on 1: 50000 scale along with topographic maps in various parts of India to develop integrated groundwater potential zones. The present work is an attempt to integrate RS and GIS based analysis and methodology in groundwater potential zone identification in the Arkavathi Basin, Bangalore, study area. The information on geology, geomorphology, soil, slope, rainfall, water level and land use/land cover was gathered, in addition, GIS platform was used for the integration of various themes. The composite map generated was further classified according to the spatial variation of the groundwater potential. Five categories of groundwater potential zones namely poor, moderate to poor, moderate, good and very good were identified and delineated. The hydrogeomorphological units like valley fills and alluvial plain and are potential zones for groundwater exploration and development and valley fills associated with lineaments is highly promising area for ground water recharging. The spatial variation of the potential indicates that groundwater occurrence is controlled by geology, land use / land cover, slope and landforms.

  19. Assessment of Halon-1301 as a groundwater age tracer

    Directory of Open Access Journals (Sweden)

    M. Beyer

    2015-01-01

    Full Text Available Groundwater dating is an important tool to assess groundwater resources in regards to their dynamics, i.e. direction and time scale of groundwater flow and recharge, to assess contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However, ambiguous age interpretations are often faced, due to a limited set of available tracers and their individual restricted application ranges. For more robust groundwater dating multiple tracers need to be applied complementarily and it is vital that additional, groundwater age tracers are found to ensure robust groundwater dating in future. We recently suggested that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate, but its behaviour in water and suitability as a groundwater age tracer had not yet been assessed in detail. In this study, we determine Halon-1301 and infer age information in 17 New Zealand groundwaters and various modern (river water samples. The samples are simultaneously analysed for Halon-1301 and SF6, which allows identification of issues such as contamination of the water with modern air during sampling. Water at all analysed groundwater sites have also been previously dated with tritium, CFC-12, CFC-11 and SF6, and exhibit mean residence times ranging from modern (close to 0 years to over 100 years. The investigated groundwater ranged from oxic to highly anoxic, and some showed evidence of CFC contamination or degradation. This allowed us to make a first attempt of assessing the conservativeness of Halon-1301 in water, in terms of presence of local sources and its sensitivity towards degradation etc., which could affect the suitability of Halon-1301 as groundwater age tracer. Overall we found Halon-1301 reliably inferred the mean residence time of groundwater recharged between 1980 and 2014. Where direct age comparison

  20. Hanford Site groundwater monitoring: Setting, sources and methods

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Hartman

    2000-04-11

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports.

  1. Groundwater Policy Research: Collaboration with Groundwater Conservation Districts in Texas

    OpenAIRE

    Johnson, Jeffrey W.; Johnson, Phillip N.; Guerrero, Bridget L.; Weinheimer, Justin; Amosson, Stephen H.; Almas, Lal K.; Golden, Bill B.; Wheeler-Cook, Erin

    2011-01-01

    The unique nature of the Ogallala Aquifer presents interesting and confounding problems for water policymakers who are coping with changing groundwater rules in Texas. The purpose of this article is to link previous efforts in water policy research for the Ogallala Aquifer in Texas with current collaborations that are ongoing with regional water planners. A chronological progression of economic water modeling efforts for the region is reviewed. The results of two recent collaborative studies ...

  2. Groundwater Policy Research: Collaboration with Groundwater Conservation Districts in Texas

    OpenAIRE

    Johnson, Jeffrey W.; Johnson, Phillip N.; Guerrero, Bridget L.; Weinheimer, Justin; Amosson, Stephen H.; Almas, Lal K.; Golden, Bill B.; Wheeler-Cook, Erin

    2011-01-01

    The unique nature of the Ogallala Aquifer presents interesting and confounding problems for water policymakers who are coping with changing groundwater rules in Texas. The purpose of this article is to link previous efforts in water policy research for the Ogallala Aquifer in Texas with current collaborations that are ongoing with regional water planners. A chronological progression of economic water modeling efforts for the region is reviewed. The results of two recent collaborative studies ...

  3. POSIVA groundwater flow measuring techniques

    Energy Technology Data Exchange (ETDEWEB)

    Oehberg, A. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland); Rouhiainen, P. [PRG-Tec Oy (Finland)

    2000-08-01

    packers divide the test section into four sectors. The length of the test section between the inflatable packers is two metres. Flow guides are available at the moment for boreholes with diameters 56 mm and 76 mm. The flow sensors operate using a thermal pulse principle. The flow sensors must be calibrated for the acquisition of quantitative information. The sensitivity of the instrument is better than 1 ml/in (millilitre per hour) for the flow across a borehole which corresponds to a flux value of about 2 10-9 m/s. In addition to the flow rate determination across the borehole, the system also makes it possible to determine the approximate direction of flow across the borehole. Both methods have been used to determine hydraulic connections between adjacent boreholes by measuring flow responses in a borehole caused by pumping in another borehole. The suite offered by the Posiva Flow Log tools includes also Electric Conductivity (EC) measurements from the fracture-specific water in the borehole test section. It has been found convenient to conduct EC measurements in connection with the detailed flow logging. In this way hydraulically conductive fractures can be located during the same logging phase as EC values are attained from the most conductive fractures. The results of both the EC and the detailed flow logging measurements give valuable information for the determination of groundwater sampling points. The objective of EC measurement is to determine the distribution of the content of Total Dissolved Solids (TDS) in the groundwater. The detailed flow logging makes it possible to stop on a fracture and to measure there as long as the water volume within the test section is flushed well enough to get a reliable EC reading. EC readings are measured from fractures with higher flow rates than the pre-set limit. In this report all groundwater flow techniques developed by Posiva are presented including the methods and different logging tools. Some background on the

  4. PUMa - modelling the groundwater flow in Baltic Sedimentary Basin

    Science.gov (United States)

    Kalvane, G.; Marnica, A.; Bethers, U.

    2012-04-01

    In 2009-2012 at University of Latvia and Latvia University of Agriculture project "Establishment of interdisciplinary scientist group and modelling system for groundwater research" is implemented financed by the European Social Fund. The aim of the project is to develop groundwater research in Latvia by establishing interdisciplinary research group and modelling system covering groundwater flow in the Baltic Sedimentary Basin. Researchers from fields like geology, chemistry, mathematical modelling, physics and environmental engineering are involved in the project. The modelling system is used as a platform for addressing scientific problems such as: (1) large-scale groundwater flow in Baltic Sedimentary Basin and impact of human activities on it; (2) the evolution of groundwater flow since the last glaciation and subglacial groundwater recharge; (3) the effects of climate changes on shallow groundwater and interaction of hydrographical network and groundwater; (4) new programming approaches for groundwater modelling. Within the frame of the project most accessible geological information such as description of geological wells, geological maps and results of seismic profiling in Latvia as well as Estonia and Lithuania are collected and integrated into modelling system. For example data form more then 40 thousands wells are directly used to automatically generate the geological structure of the model. Additionally a groundwater sampling campaign is undertaken. Contents of CFC, stabile isotopes of O and H and radiocarbon are the most significant parameters of groundwater that are established in unprecedented scale for Latvia. The most important modelling results will be published in web as a data set. Project number: 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060. Project web-site: www.puma.lu.lv

  5. [Construction of groundwater contamination prevention mapping system].

    Science.gov (United States)

    Wang, Jun-Jie; He, Jiang-Tao; Lu, Yan; Liu, Li-Ya; Zhang, Xiao-Liang

    2012-09-01

    Groundwater contamination prevention mapping is an important component of groundwater contamination geological survey and assessment work, which could provide the basis for making and implementing groundwater contamination prevention planning. A groundwater contamination prevention mapping system was constructed in view of the synthetic consideration on nature perspective derived from groundwater contamination sources and aquifer itself, social-economic perspective, policy perspective derived from outside. During the system construction process, analytic hierarchy process and relevant overlaying principles were used to couple groundwater contamination risk assessment, groundwater value as well as wellhead protection area zoning. Data processing and visualization of mapping results were achieved in the GIS environment. The research on groundwater contamination prevention mapping in Beijing Plain indicated that the final groundwater prevention map was in accordance with the actual conditions and well reflected the priorities of groundwater prevention, which could play a guidance role in designing and implementing further practical prevention and supervision measures. Besides, because of the dynamical properties of the system components, it was suggested to analyze the update frequency of the mapping.

  6. Calendar Year 2016 Annual Groundwater Monitoring Report.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jackson, Timmie Okchumpulla [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Li, Jun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Michael Marquand [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractoroperated laboratory. National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., manages and operates SNL/NM for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. Two types of groundwater surveillance monitoring are conducted at SNL/NM: (1) on a site-wide basis as part of the SNL/NM Long-Term Stewardship (LTS) Program’s Groundwater Monitoring Program (GMP) Groundwater Surveillance Task and (2) on a site-specific groundwater monitoring at LTS/Environmental Restoration (ER) Operations sites with ongoing groundwater investigations. This Annual Groundwater Monitoring Report summarizes data collected during groundwater monitoring events conducted at GMP locations and at the following SNL/NM sites through December 31, 2016: Burn Site Groundwater Area of Concern (AOC); Chemical Waste Landfill; Mixed Waste Landfill; Technical Area-V Groundwater AOC; and the Tijeras Arroyo Groundwater AOC. Environmental monitoring and surveillance programs are required by the New Mexico Environment Department (NMED) and DOE Order 436.1, Departmental Sustainability, and DOE Order 231.1B, Environment, Safety, and Health Reporting.

  7. Estimation of net groundwater use in irrigated river basins using geo-information techniques : a case study in Rechna Doab, Pakistan

    NARCIS (Netherlands)

    Ahmad, M.D.

    2002-01-01

    Keywords: remote sensing, GIS, water balance, groundwater, net groundwater use, recharge, water management, Rechna Doab, Pakistan.

    Over-exploitation of groundwater resources threatens the future of irrigated agriculture, especially in the arid and semi-arid regions of the world. In

  8. Estimation of net groundwater use in irrigated river basins using geo-information techniques. A case study in Rechna Doab, Pakistan

    NARCIS (Netherlands)

    Mobin-ud-Din Ahmad,

    2002-01-01

    Keywords: remote sensing, GIS, water balance, groundwater, net groundwater use, recharge, water management, Rechna Doab, Pakistan.Over-exploitation of groundwater resources threatens the future of irrigated agriculture, especially in the arid and semi-arid regions of the world. In order to reverse t

  9. Alpine Groundwater - Pristine Aquifers Under Threat?

    Science.gov (United States)

    Schneider, P.; Lange, A.

    2014-12-01

    Glacier and permafrost retreat are prominent climate change indicators. However, the characteristics of climate and hydrology in mountain areas remain poorly understood relative to lowland areas. Specifically, not much is known about alpine groundwater, its recharge and water quality variations, as these remote reservoirs are rarely monitored. As global temperatures rise, glaciers and permafrost will continue to retreat forming new sediment deposits and changing infiltration conditions in high alpine terrain. Climate change impacts the hydro-chemical composition of alpine waters, accelerates weathering processes, and potentially triggers mobilization of pollutants. Accordingly, we monitored groundwater quantity and quality parameters of an alpine porous aquifer near the Tiefenbach glacier in the Gotthard Massif in Switzerland. The goal of this research was to assess quality and seasonal storage dynamics of groundwater above the timberline (2000 m). To translate hydrological science into an ecosystem service context, we focused on four attributes: Water quantity: observations of groundwater level fluctuations combined with analysis of contributing water sources based on stable isotope analysis to give a quantitative understanding of origin and amount of water, Water quality: groundwater level, groundwater temperature and electrical conductivity were used as proxies for sampling of hydro-chemical parameters with automated water samplers during primary groundwater recharge periods (snowmelt and rainfall events), Location: Alpine terrain above the timberline, especially recharge into/out of an alpine porous aquifer at a pro-glacial floodplain and Date of annual melt (albedo effect) and timing of flow (snow- and icemelt from May to September) and groundwater recharge during the growing season. The study found that the summer groundwater temperatures depend on the date of annual melt and are more sensitive to climate forcing than lowland groundwater temperatures

  10. Nationwide characterisation of buffering capacities and background compositions of groundwater aquifers in the Netherlands

    NARCIS (Netherlands)

    Griffioen, J.; Klein, J.; Heerdink, R.

    2011-01-01

    Sustainable groundwater management asks for good insight into the geochemical characteristics of the groundwater aquifers. A nationwide environmental geochemical characterisation of shallow sedimentary deposits was initiated in the Netherlands to meet this information need. The methodology is

  11. A global-scale two-layer transient groundwater model: Development and application to groundwater depletion

    Science.gov (United States)

    de Graaf, Inge E. M.; van Beek, Rens L. P. H.; Gleeson, Tom; Moosdorf, Nils; Schmitz, Oliver; Sutanudjaja, Edwin H.; Bierkens, Marc F. P.

    2017-04-01

    Groundwater is the world's largest accessible source of freshwater to satisfy human water needs. Moreover, groundwater buffers variable precipitation rates over time, thereby effectively sustaining river flows in times of droughts and evaporation in areas with shallow water tables. In this study, building on previous work, we simulate groundwater head fluctuations and groundwater storage changes in both confined and unconfined aquifer systems using a global-scale high-resolution (5‧) groundwater model by deriving new estimates of the distribution and thickness of confining layers. Inclusion of confined aquifer systems (estimated 6-20% of the total aquifer area) improves estimates of timing and amplitude of groundwater head fluctuations and changes groundwater flow paths and groundwater-surface water interaction rates. Groundwater flow paths within confining layers are shorter than paths in the underlying aquifer, while flows within the confined aquifer can get disconnected from the local drainage system due to the low conductivity of the confining layer. Lateral groundwater flows between basins are significant in the model, especially for areas with (partially) confined aquifers were long flow paths crossing catchment boundaries are simulated, thereby supporting water budgets of neighboring catchments or aquifer systems. The developed two-layer transient groundwater model is used to identify hot-spots of groundwater depletion. Global groundwater depletion is estimated as 7013 km3 (137 km3y-1) over 1960-2010, which is consistent with estimates of previous studies.

  12. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools.

    Science.gov (United States)

    Iqbal, Naveed; Hossain, Faisal; Lee, Hyongki; Akhter, Gulraiz

    2017-03-01

    Reliable and frequent information on groundwater behavior and dynamics is very important for effective groundwater resource management at appropriate spatial scales. This information is rarely available in developing countries and thus poses a challenge for groundwater managers. The in situ data and groundwater modeling tools are limited in their ability to cover large domains. Remote sensing technology can now be used to continuously collect information on hydrological cycle in a cost-effective way. This study evaluates the effectiveness of a remote sensing integrated physical modeling approach for groundwater management in Indus Basin. The Gravity Recovery and Climate Experiment Satellite (GRACE)-based gravity anomalies from 2003 to 2010 were processed to generate monthly groundwater storage changes using the Variable Infiltration Capacity (VIC) hydrologic model. The groundwater storage is the key parameter of interest for groundwater resource management. The spatial and temporal patterns in groundwater storage (GWS) are useful for devising the appropriate groundwater management strategies. GRACE-estimated GWS information with large-scale coverage is valuable for basin-scale monitoring and decision making. This frequently available information is found useful for the identification of groundwater recharge areas, groundwater storage depletion, and pinpointing of the areas where groundwater sustainability is at risk. The GWS anomalies were found to favorably agree with groundwater model simulations from Visual MODFLOW and in situ data. Mostly, a moderate to severe GWS depletion is observed causing a vulnerable situation to the sustainability of this groundwater resource. For the sustainable groundwater management, the region needs to implement groundwater policies and adopt water conservation techniques.

  13. Groundwater Level Status Report for Fiscal Year 2007 - Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Shannon P. Allen, Richard J. Koch

    2008-03-17

    The status of groundwater level monitoring at Los Alamos National Laboratory in Fiscal Year 2007 is provided in this report. The Groundwater Level Monitoring Project was instituted in 2005 to provide a framework for the collection and processing of quality controlled groundwater level data. This report summarizes groundwater level data for 166 monitoring wells, including 45 regional aquifer wells, 25 intermediate wells, and 96 alluvial wells, and 11 water supply wells. Pressure transducers were installed in 133 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well.

  14. Groundwater Level Status Report for Fiscal Year 2006 Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Shannon P. Allen, Richard J. Koch

    2007-03-30

    The status of groundwater level monitoring at Los Alamos National Laboratory in Fiscal Year 2006 is provided in this report. The Groundwater Level Monitoring Project was instituted in 2005 for providing a framework for the collection and processing of quality controlled groundwater level data. This report summarizes groundwater level data for 158 monitoring wells, including 43 regional aquifer wells, 23 intermediate wells, and 92 alluvial wells. Pressure transducers were installed in 132 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well.

  15. Remote instruction in groundwater hydrology

    Science.gov (United States)

    staff of the Interactive Remote Instructional System

    Wright State University (Dayton, Ohio) is preparing for its fourth cycle of the Interactive Remote Instructional System (IRIS) in groundwater hydrology beginning July 15, 1986. The Department of Geological Sciences proudly announces that the first two cycles recorded an impressive 83% completion ratio for registered participants. This completion rate is a significant departure from success rates traditionally recorded by courses of this nature; it is the result of 2 years of implementation and refinement and demonstrates the progressive orientation of the program. The third cycle has been underway since January. This comprehensive hydrogeology program was originally developed for the U.S. Department of Agriculture Soil Conservation Service to prepare their personnel for professional practice work. As a result of that cooperative effort, the IRIS program has evolved to meet the needs of participants by developing a curriculum that reflects current trends in the groundwater industry and has provided a unique educational approach that ensures maximum interaction between the instructional staff and participants.

  16. 40 CFR 265.91 - Ground-water monitoring system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  17. Review of Groundwater Protection and Management in China

    Institute of Scientific and Technical Information of China (English)

    LIU Dan; ZHANG Ai-ping

    2008-01-01

    This review begins with an introduction of groundwater resources in China and their distribution characteristic, followed by an elaboration of the exploitation and utilization of groundwater and the negative environmental effects from groundwater overexploitation, and a description of the existing groundwater protection and management measures. At last, the existing problems in groundwater protection and management, with some suggestions, are presented.

  18. Groundwater quality and hydrogeological characteristics of Malacca state in Malaysia

    Directory of Open Access Journals (Sweden)

    Shirazi Sharif Moniruzzaman

    2015-03-01

    Full Text Available Groundwater quality and aquifer productivity of Malacca catchment in Peninsular Malaysia are presented in this article. Pumping test data were collected from 210 shallow and 17 deep boreholes to get well inventory information. Data analysis confirmed that the aquifers consisting of schist, sand, limestone and volcanic rocks were the most productive aquifers for groundwater in Malacca state. GIS-based aquifer productivity map was generated based on bedrock and discharge capacity of the aquifers. Aquifer productivity map is classified into three classes, namely high, moderate and low based on discharge capacity. Groundwater potential of the study area is 35, 57 and 8% of low, moderate and high class respectively. Fifty two shallow and 14 deep aquifer groundwater samples were analyzed for water quality. In some cases, groundwater quality analysis indicated that the turbidity, total dissolved solids, iron, chloride and cadmium concentrations exceeded the limit of drinking water quality standards.

  19. Delineation of groundwater potential zone: An AHP/ANP approach

    Indian Academy of Sciences (India)

    Etishree Agarwal; Rajat Agarwal; R D Garg; P K Garg

    2013-06-01

    The sustainable development and management of groundwater resource requires precise quantitative assessment based on scientific principle and modern techniques. In the present study, groundwater potential zone are delineated using remote sensing, geographical information system (GIS) and multi-criteria decision making (MCDM) techniques in Unnao district, Uttar Pradesh. The analytical network process (ANP) is a method that makes it possible for one to deal systematically, and includes the analytical hierarchy process (AHP) as a special case. The AHP and ANP are used to determine the weights of various themes and their classes for identifying the groundwater potential zone. These weights are applied in a linear combination to obtain five different groundwater potential zone in the study area, namely ‘very poor’, ‘poor’, ‘moderate’, ‘good’ and ‘very good’. It has been concluded that about 153.39 km2 area has very good groundwater potential which is only 3.37% of the total study area. However, the area having very poor groundwater potential is about 850 km2 which is about 19.63% of the study area. The area having good, moderate and poor groundwater potential is about 540.25, 1135.5, 1868.6 km2, respectively. The groundwater potential zone map was finally verified using the well yield data of 37 pumping wells, and the result was found satisfactory.

  20. Groundwater subsidies and penalties to corn yield

    Science.gov (United States)

    Zipper, S. C.; Booth, E.; Loheide, S. P.

    2013-12-01

    Proper water management is critical to closing yield gaps (observed yield below potential yield) as global populations continue to expand. However, the impacts of shallow groundwater on crop production and surface processes are poorly understood. The presence of groundwater within or just below the root zone has the potential to cause (via oxygen stress in poorly drained soils) or eliminate (via water supply in dry regions) yield gaps. The additional water use by a plant in the presence of shallow groundwater, compared to free drainage conditions, is called the groundwater subsidy; the depth at which the groundwater subsidy is greatest is the optimal depth to groundwater (DTGW). In wet years or under very shallow water table conditions, the groundwater subsidy is likely to be negative due to increased oxygen stress, and can be thought of as a groundwater penalty. Understanding the spatial dynamics of groundwater subsidies/penalties and how they interact with weather is critical to making sustainable agricultural and land-use decisions under a range of potential climates. Here, we examine patterns of groundwater subsidies and penalties in two commercial cornfields in the Yahara River Watershed, an urbanizing agricultural watershed in south-central Wisconsin. Water table levels are generally rising in the region due to a long-term trend of increasing precipitation over the last several decades. Biophysical indicators tracked throughout both the 2012 and 2013 growing seasons show a strong response to variable groundwater levels on a field scale. Sections of the field with optimal DTGW exhibit consistently higher stomatal conductance rates, taller canopies and higher leaf area index, higher ET rates, and higher pollination success rates. Patterns in these biophysical lines of evidence allow us to pinpoint specific periods within the growing season that plants were experiencing either oxygen or water stress. Most importantly, groundwater subsidies and penalties are

  1. Situ treatment of contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    McNab, Jr., Walt W. (Concord, CA); Ruiz, Roberto (Tracy, CA); Pico, Tristan M. (Livermore, CA)

    2001-01-01

    A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

  2. Evaluating data worth for ground-water management under uncertainty

    Science.gov (United States)

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  3. Groundwater and climate change: mitigating the global groundwater crisis and adapting to climate change model

    Science.gov (United States)

    To better understand the effects of climate change on global groundwater resources, the United Nations Educational, Scientific, and Cultural Organization (UNESCO) International Hydrological Programme (IHP) initiated the GRAPHIC (Groundwater Resources Assessment under the Pressures of Humanity and Cl...

  4. Monitoring groundwater drought with GRACE data assimilation

    Science.gov (United States)

    Li, B.; Rodell, M.; Beaudoing, H. K.; Getirana, A.; Zaitchik, B. F.

    2015-12-01

    Groundwater drought is a distinct class of drought, not a sub-class of meteorological, agricultural and hydrological drought and has profound impacts on natural environments and societies. Due to a deficiency of in situ measurements, we developed a groundwater drought indicator using groundwater change estimates derived by assimilating GRACE derived terrestrial water storage (TWS) anomalies into the NASA Catchment land surface model. Data assimilation enables spatial and temporal downscaling of coarse GRACE TWS observations (monthly and ~150,000 km2 effective spatial resolution) and extrapolation to near-real time. In this talk, we will present our latest progress on using GRACE satellite data for groundwater drought monitoring in the U.S. and globally. Characteristics of this groundwater drought indicator will be discussed, including its relationship with other types of drought and how they are influenced by model physics and climate conditions. Results are evaluated using in situ groundwater observations.

  5. Quantification of Seepage in Groundwater Dependent Wetlands

    DEFF Research Database (Denmark)

    Johansen, Ole; Beven, Keith; Jensen, Jacob Birk

    2017-01-01

    Restoration and management of groundwater dependent wetlands require tools for quantifying the groundwater seepage process. A method for determining point estimates of the groundwater seepage based on water level observations is tested. The study is based on field data from a Danish rich fen....... Therefore secondly a much simpler mass balance approach is used with lumped descriptions of the most important hydrological processes controlling water level and groundwater inflow to the system. The water level dynamics are here described and bracketed nicely and a dynamic description of the seepage rate...... the dynamic description of groundwater seepage can be very useful in future studies of the links between seepage, soil water chemistry and vegetation in groundwater dependent terrestrial ecosystems....

  6. ARSENIC CONTAMINATION IN GROUNDWATER: A STATISTICAL MODELING

    Directory of Open Access Journals (Sweden)

    Palas Roy

    2013-01-01

    Full Text Available High arsenic in natural groundwater in most of the tubewells of the Purbasthali- Block II area of Burdwan district (W.B, India has recently been focused as a serious environmental concern. This paper is intending to illustrate the statistical modeling of the arsenic contaminated groundwater to identify the interrelation of that arsenic contain with other participating groundwater parameters so that the arsenic contamination level can easily be predicted by analyzing only such parameters. Multivariate data analysis was done with the collected groundwater samples from the 132 tubewells of this contaminated region shows that three variable parameters are significantly related with the arsenic. Based on these relationships, a multiple linear regression model has been developed that estimated the arsenic contamination by measuring such three predictor parameters of the groundwater variables in the contaminated aquifer. This model could also be a suggestive tool while designing the arsenic removal scheme for any affected groundwater.

  7. GROUNDWATER MONITORING REPORT GENERATION TOOLS - 12005

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, N.

    2011-11-21

    Compliance with National and State environmental regulations (e.g. Resource Conservation and Recovery Act (RCRA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) aka SuperFund) requires Savannah River Site (SRS) to extensively collect and report groundwater monitoring data, with potential fines for missed reporting deadlines. Several utilities have been developed at SRS to facilitate production of the regulatory reports which include maps, data tables, charts and statistics. Components of each report are generated in accordance with complex sets of regulatory requirements specific to each site monitored. SRS developed a relational database to incorporate the detailed reporting rules with the groundwater data, and created a set of automation tools to interface with the information and generate the report components. These process improvements enhanced quality and consistency by centralizing the information, and have reduced manpower and production time through automated efficiencies.

  8. Geographical Information System based assessment of spatiotemporal characteristics of groundwater quality of upland sub-watersheds of Meenachil River, parts of Western Ghats, Kottayam District, Kerala, India

    Science.gov (United States)

    Vijith, H.; Satheesh, R.

    2007-09-01

    Hydrogeochemistry of groundwater in upland sub-watersheds of Meenachil river, parts of Western Ghats, Kottayam, Kerala, India was used to assess the quality of groundwater for determining its suitability for drinking and agricultural purposes. The study area is dominated by rocks of Archaean age, and Charnonckite is dominated over other rocks. Rubber plantation dominated over other types of the vegetation in the area. Though the study area receives heavy rainfall, it frequently faces water scarcity as well as water quality problems. Hence, a Geographical Information System (GIS) based assessment of spatiotemporal behaviour of groundwater quality has been carried out in the region. Twenty-eight water samples were collected from different wells and analysed for major chemical constituents both in monsoon and post-monsoon seasons to determine the quality variation. Physical and chemical parameters of groundwater such as pH, dissolved oxygen (DO), total hardness (TH), chloride (Cl), nitrate (NO3) and phosphate (PO4) were determined. A surface map was prepared in the ArcGIS 8.3 (spatial analyst module) to assess the quality in terms of spatial variation, and it showed that the high and low regions of water quality varied spatially during the study period. The influence of lithology over the quality of groundwater is negligible in this region because majority of the area comes under single lithology, i.e. charnockite, and it was found that the extensive use of fertilizers and pesticides in the rubber, tea and other agricultural practices influenced the groundwater quality of the region. According to the overall assessment of the basin, all the parameters analysed are below the desirable limits of WHO and Indian standards for drinking water. Hence, considering the pH, the groundwater in the study area is not suitable for drinking but can be used for irrigation, industrial and domestic purposes. The spatial analysis of groundwater quality patterns of the study area shows

  9. Modeling of groundwater potential of the sub-basin of Siriri river, Sergipe state, Brazil, based on Geographic Information System and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Washington Franca Rocha

    2011-08-01

    Full Text Available The use of Geographic Information System (GIS and Remote Sensing for modeling groundwater potential give support for the analysis and decision-making processes about water resource management in watersheds. The objective of this work consisted in modeling the groundwater water potential of Siriri river sub-basin, Sergipe state, based on its natural environment (soil, land use, slope, drainage density, lineament density, rainfall and geology using Remote Sensing and Geographic Information System as an integration environment. The groundwater potential map was done using digital image processing procedures of ENVI 4.4 software and map algebra of ArcGIS 9.3®. The Analytical Hierarchy Method was used for modeling the weights definition of the different criteria (maps. Loads and weights of the different classes were assigned to each map according to their influence on the overall objective of the work. The integration of these maps in a GIS environment and the AHP technique application allowed the development of the groundwater potential map in five classes: very low, low, moderate, high, very high. The average flow rates of wells confirm the potential of aquifers Sapucari, Barriers and Maruim since they are the most exploited in this sub-basin, with average flows of 78,113 L/h, 19,332 L/h and 12,085 L/h, respectively.

  10. Specifying the differentiated contribution of farmers to groundwater depletion in two irrigated areas in North Africa

    Science.gov (United States)

    Ameur, Fatah; Amichi, Hichem; Kuper, Marcel; Hammani, Ali

    2017-09-01

    Much attention has been paid to the issue of groundwater depletion linked to intensive groundwater-based agriculture in (semi-)arid areas. Often referred to as the "overexploitation" of aquifers, groundwater depletion is generally attributed to the entire agricultural sector without distinguishing between different uses and users. Although it expresses a general concern for future users, the ambiguous term of "overexploitation" does not acknowledge the contested nature of groundwater use and emerging inequalities. Also, the impact of inequality on groundwater depletion is rarely questioned. The aim of this article is to investigate how and by whom groundwater is depleted, and in turn, how unequal access to groundwater fuels the socioeconomic differentiation of farms and groundwater depletion. Based on a detailed analysis of groundwater use from a user perspective in two irrigated areas in North Africa (Morocco and Algeria), this study shows how the context of groundwater depletion exacerbates—and is exacerbated by—existing inequalities. The paper concludes that knowing how much is withdrawn, where, and by whom provides helpful information for more informed groundwater management by a better understanding of the response of users to declining groundwater conditions and the interests and incentives of different social categories of famers to contribute to groundwater management.

  11. 地下水信息管理系统的设计与实现%The design and implementation of groundwater information management system

    Institute of Scientific and Technical Information of China (English)

    刘静

    2009-01-01

    针对原有地下水管理系统软件之不足,提出基于GIS技术的地下水管理系统解决方案,以该方案为基础构建北京市浅层地下水信息管理系统,为地下水信息管理提供信息平台和科学依据.探讨了组件式GIS的概念,基于SuperMap Objects的GIS组件,结合面向对象的运行于NET Framework之上的C#语言,开发地下水信息管理系统.该系统既实现了GIS的基本功能,又实现了数据计算与管理以及图形编辑和制图输出等功能,满足了地下水监测工作对数据管理、分析的需求,为地下水监测规划、决策提供了科学的依据.%The article proposes the GIS-based groundwater management system solutions for the existing deficiencies of groundwater management system software, and constructs the Beijing municipal information management system for shallow groundwater, and provides information platform and scientific basis for groundwater information management.The article discusses the concept of component-based GIS, and the GIS component based on SuperMap Objects, combines the C # language of object-oriented and running on.NET Framework, develops groundwater information management system.The system is realized not only the basic functions of GIS, but also with the realization of the data management and graphics output, such as editing and graphics features, and meets the groundwater monitoring for data management and analysis needs, and provides a scientific basis for groundwater monitoring planning, decision-making.

  12. Compendium of ordinances for groundwater protection

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    Groundwater is an extremely important resource in the Tennessee Valley. Nearly two-thirds of the Tennessee Valley's residents rely, at least in part, on groundwater supplies for drinking water. In rural areas, approximately ninety-five percent of residents rely on groundwater for domestic supplies. Population growth and economic development increase the volume and kinds of wastes requiring disposal which can lead to groundwater contamination. In addition to disposal which can lead to groundwater contamination. In addition to disposal problems associated with increases in conventional wastewater and solid waste, technological advancements in recent decades have resulted in new chemicals and increased usage in agriculture, industry, and the home. Unfortunately, there has not been comparable progress in identifying the potential long-term effects of these chemicals, in managing them to prevent contamination of groundwater, or in developing treatment technologies for removing them from water once contamination has occurred. The challenge facing residence of the Tennessee Valley is to manage growth and economic and technological development in ways that will avoid polluting the groundwater resource. Once groundwater has been contaminated, cleanup is almost always very costly and is sometimes impractical or technically infeasible. Therefore, prevention of contamination -- not remedial treatment--is the key to continued availability of usable groundwater. This document discusses regulations to aid in this prevention.

  13. Groundwater Level Predictions Using Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    毛晓敏; 尚松浩; 刘翔

    2002-01-01

    The prediction of groundwater level is important for the use and management of groundwater resources. In this paper, the artificial neural networks (ANN) were used to predict groundwater level in the Dawu Aquifer of Zibo in Eastern China. The first step was an auto-correlation analysis of the groundwater level which showed that the monthly groundwater level was time dependent. An auto-regression type ANN (ARANN) model and a regression-auto-regression type ANN (RARANN) model using back-propagation algorithm were then used to predict the groundwater level. Monthly data from June 1988 to May 1998 was used for the network training and testing. The results show that the RARANN model is more reliable than the ARANN model, especially in the testing period, which indicates that the RARANN model can describe the relationship between the groundwater fluctuation and main factors that currently influence the groundwater level. The results suggest that the model is suitable for predicting groundwater level fluctuations in this area for similar conditions in the future.

  14. The challenges facing sustainable and adaptive groundwater ...

    African Journals Online (AJOL)

    The challenges facing sustainable and adaptive groundwater management ... provide the capacity to assure effective and sustainable resource regulation and allocation. ... of alternative strategies needed to achieve sustainable management.

  15. Remedies proposed for China's groundwater problems

    Science.gov (United States)

    Loaiciga, Hugo A.

    Groundwater experts and hydrologists from China and 10 other nations recently gathered in Beijing to exchange state-of-the-art scientific and technological knowledge on groundwater hydrology, modeling, remediation, and management. The participants also reviewed groundwater environmental conditions in China, identified key problems, and made recommendations to help guide the nation's groundwater policy.The Regional Workshop on Ground Water Contamination, held from July 31 to August 4, 1995, was the fifth of a series of regional workshops sponsored by the Scientific Committee on Problems of the Environment of the United Nations Environmental Program. Earlier workshops were held in Thailand (1991), Costa Rica (1993), the Czech Republic (1994), and Australia (1994).

  16. Estimating Groundwater Development area in Jianan Plain using Standardized Groundwater Index

    Science.gov (United States)

    Yu, Chang Hsiang; Haw, Lee Cheng

    2017-04-01

    Taiwan has been facing severe water crises in recent years owing to the effects of extreme weather conditions. Changes in precipitation patterns have also made the drought phenomenon increasingly prominent, which has indirectly affected groundwater recharge. Hence, in the present study, long-term monitoring data were collected from the study area of the Jianan plain. The standardized groundwater index (SGI) and was then used to analyse the region's drought characteristics. To analyse the groundwater level by using SGI, making SGI180 groundwater level be the medium water crises, and SGI360 groundwater level be the extreme water crises. Through the different water crises signal in SGI180 and SGI360, we divide groundwater in Jianan plain into two sections. Thereby the water crises indicators establishing groundwater level standard line in Jianan Plain, then using the groundwater level standard line to find the study area where could be groundwater development area in Jianan plain. Taking into account relatively more water scarcity in dry season, so the study screen out another emergency backup groundwater development area, but the long-term groundwater development area is still as a priority development area. After finding suitable locations, groundwater modeling systems(GMS) software is used to simulate our sites to evaluate development volume. Finally, the result of study will help the government to grasp the water shortage situation immediately and solve the problem of water resources deployment.

  17. Understanding similarity of groundwater systems with empirical copulas

    Science.gov (United States)

    Haaf, Ezra; Kumar, Rohini; Samaniego, Luis; Barthel, Roland

    2016-04-01

    Within the classification framework for groundwater systems that aims for identifying similarity of hydrogeological systems and transferring information from a well-observed to an ungauged system (Haaf and Barthel, 2015; Haaf and Barthel, 2016), we propose a copula-based method for describing groundwater-systems similarity. Copulas are an emerging method in hydrological sciences that make it possible to model the dependence structure of two groundwater level time series, independently of the effects of their marginal distributions. This study is based on Samaniego et al. (2010), which described an approach calculating dissimilarity measures from bivariate empirical copula densities of streamflow time series. Subsequently, streamflow is predicted in ungauged basins by transferring properties from similar catchments. The proposed approach is innovative because copula-based similarity has not yet been applied to groundwater systems. Here we estimate the pairwise dependence structure of 600 wells in Southern Germany using 10 years of weekly groundwater level observations. Based on these empirical copulas, dissimilarity measures are estimated, such as the copula's lower- and upper corner cumulated probability, copula-based Spearman's rank correlation - as proposed by Samaniego et al. (2010). For the characterization of groundwater systems, copula-based metrics are compared with dissimilarities obtained from precipitation signals corresponding to the presumed area of influence of each groundwater well. This promising approach provides a new tool for advancing similarity-based classification of groundwater system dynamics. Haaf, E., Barthel, R., 2015. Methods for assessing hydrogeological similarity and for classification of groundwater systems on the regional scale, EGU General Assembly 2015, Vienna, Austria. Haaf, E., Barthel, R., 2016. An approach for classification of hydrogeological systems at the regional scale based on groundwater hydrographs EGU General Assembly

  18. Groundwater quality in the shallow aquifers of the Tulare, Kaweah, and Tule Groundwater Basins and adjacent highlands areas, Southern San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.

    2017-01-18

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the Tulare, Kaweah, and Tule groundwater basins and adjacent highlands areas of the southern San Joaquin Valley constitute one of the study units being evaluated.

  19. Groundwater management for agriculture and nature: an economic analysis

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.

    2001-01-01

    Key words: desiccation of nature, economics of water management, groundwater extraction, groundwater level management, ecohydrology, agriculture, policy instruments.

    As a result of declining groundwater levels, nature in the Netherlands is suffering

  20. Groundwater Management for Agriculture and Nature : an Economic Analysis

    NARCIS (Netherlands)

    Hellegers, P.

    2001-01-01

    Key words: desiccation of nature, economics of water management, groundwater extraction, groundwater level management, ecohydrology, agriculture, policy instruments.As a result of declining groundwater levels, nature in the Netherlands is suffering from desiccation. Since measures taken to raise gro

  1. Can groundwater be successfully implemented as a bulk water ...

    African Journals Online (AJOL)

    A map showing proposed well fields within study area. • Each well field should ... Despite the comprehensive and well-organised Groundwater. Resource Information ..... will start to be self-sufficient in about 2018 and 2019. Development and ...

  2. Surficial Geologic Map and Groundwater Resources of Woodstock, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG06-5 DeSimone, D., 2006,�Surficial Geologic Map and Groundwater Resources of Woodstock, Vermont: Vermont Geological Survey Open-File Report...

  3. The Present Situation and Countermeasures of Groundwater Contamination in Japan

    OpenAIRE

    Shindo, Shizuo; Tang, Changyuan

    1997-01-01

    [ABSTRACT] Since 1982, thousands of groundwater pollution cases have been found in Japan. In order to improve the groundwater quality, Japan has developed strategies for protection of groundwater. In this paper, authors try to explain the present of groundwater use, groundwater pollution and remediation methods in Japan. From the results shown in this paper, it can be found that groundwater pollution problem has become very serious in Japan. Even many efforts have been made to improve the sit...

  4. Evaluation of Groundwater Pollution Nitrogen Fertilizer Using Expert System

    OpenAIRE

    Ta-oun, Mongkon; Daud, Mohamed; Bardaie, Mohd Zohadie

    2017-01-01

    An expert system was used to correlate the availability of nitrogen fertilizer with the vulnerability of groundwater to pollution in Peninsula Malaysia to identify potential groundwater quality problems. The expert system could predict the groundwater pollution potential under several conditions of agricultural activities and exiting environments. Four categories of groundwater pollution potential were identified base on an N-fertilizer groundwater pollution potential index. A groundwater pol...

  5. Protection strategies for drinking groundwater sources in small Quebec municipalities.

    Science.gov (United States)

    Sylvestre, Bruno; Rodriguez, Manuel J

    2008-07-01

    Awareness of groundwater protection has increased substantially in recent decades. In the Province of Quebec, Canada, the Groundwater Catchment Regulation (GWCR) was promulgated in 2002 to protect water quality in public wells. The goal of the present study was to document groundwater protection in the context of emerging regulations and identify factors explaining the propensity of municipalities applying protection strategies. Two types of information were used in this study: data from a questionnaire-based survey conducted among 665 municipalities in the Province of Quebec and complementary information gathered from various sources. Data from the survey revealed that fewer than half of the municipalities have been able to comply with the GWCR, mainly because of financial limitations. Also, close to half of the municipalities have either identified or are expecting land use conflicts to arise between protection areas required by the GWCR and other land usage, with agriculture being the main conflicting activity. Multivariate logistic regression models served to identify factors explaining the likelihood of municipalities to take groundwater protection measures. Those factors were municipality revenue, history of water contamination in distribution systems, land use near wellheads, location of municipalities within a provincial priority watershed and the importance of groundwater use in a region. Results of the study may prove helpful for government authorities in better understanding the groundwater protection issue and in implementing strategies that improve the ability of municipalities to protect groundwater.

  6. Groundwater quality in the Upper Santa Ana Watershed study unit, California

    Science.gov (United States)

    Kent, Robert; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Upper Santa Ana Watershed is one of the study units being evaluated.

  7. Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen; Fram, Miranda S.

    2017-06-20

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.

  8. Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater.

    Science.gov (United States)

    Zhou, Ai-xia; Zhang, Yu-ling; Dong, Tian-zi; Lin, Xue-yu; Su, Xiao-si

    2015-07-01

    The effects of seasonal groundwater level fluctuations on the contamination characteristics of total petroleum hydrocarbons (TPH) in soils, groundwater, and the microbial community were investigated at a typical petrochemical site in northern China. The measurements of groundwater and soil at different depths showed that significant TPH residue was present in the soil in this study area, especially in the vicinity of the pollution source, where TPH concentrations were up to 2600 mg kg(-1). The TPH concentration in the groundwater fluctuated seasonally, and the maximum variation was 0.8 mg L(-1). The highest TPH concentrations were detected in the silty clay layer and lied in the groundwater level fluctuation zones. The groundwater could reach previously contaminated areas in the soil, leading to higher groundwater TPH concentrations as TPH leaches into the groundwater. The coincident variation of the electron acceptors and TPH concentration with groundwater-table fluctuations affected the microbial communities in groundwater. The microbial community structure was significantly different between the wet and dry seasons. The canonical correspondence analysis (CCA) results showed that in the wet season, TPH, NO3(-), Fe(2+), TMn, S(2-), and HCO3(-) were the major factors correlating the microbial community. A significant increase in abundance of operational taxonomic unit J1 (97% similar to Dechloromonas aromatica sp.) was also observed in wet season conditions, indicating an intense denitrifying activity in the wet season environment. In the dry season, due to weak groundwater level fluctuations and low temperature of groundwater, the microbial activity was weak. But iron and sulfate-reducing were also detected in dry season at this site. As a whole, groundwater-table fluctuations would affect the distribution, transport, and biodegradation of the contaminants. These results may be valuable for the control and remediation of soil and groundwater pollution at this site

  9. Review: Satellite-based remote sensing and geographic information systems and their application in the assessment of groundwater potential, with particular reference to India

    Science.gov (United States)

    Jasmin, Ismail; Mallikarjuna, P.

    2011-06-01

    Various hydrological, geological and geomorphological factors play a major role in the occurrence and movement of groundwater in different terrains. With advances in space technology and the advent of powerful personal computers, techniques for the assessment of groundwater potential have evolved, of which remote sensing (RS) and geographic information systems (GIS) are of great significance. The application of these methods is comprehensively reviewed with respect to the exploration and assessment of groundwater potential in consolidated and unconsolidated formations in semi-arid regions, and specifically in India. The process of such assessment includes the collection of remotely sensed data from suitable sensors and the selection of thematic maps on rainfall, geology, lithology, geomorphology, soil, land use/land cover, drainage patterns, slope and lineaments. The data are handled according to their significance with the assignment of appropriate weights and integrated into a sophisticated GIS environment. The requisite remote sensing and GIS data, in conjunction with necessary field investigations, help to identify the groundwater potential zones effectively.

  10. Global Climate Responses to Anthropogenic Groundwater Exploitation

    Science.gov (United States)

    Zeng, Y.; Xie, Z.

    2015-12-01

    In this study, a groundwater exploitation scheme is incorporated into the earth system model, Community Earth System Model 1.2.0 (CESM1.2.0), which is called CESM1.2_GW, and the climatic responses to anthropogenic groundwater withdrawal are then investigated on global scale. The scheme models anthropogenic groundwater exploitation and consumption, which are then divided into agricultural irrigation, industrial use and domestic use. A group of 41-year ensemble groundwater exploitation simulations with six different initial conditions, and a group of ensemble control simulations without exploitation are conducted using the developed model CESM1.2_GW with water supplies and demands estimated. The results reveal that the groundwater exploitation and water consumption cause drying effects on soil moisture in deep layers and wetting effects in upper layers, along with a rapidly declining groundwater table in Central US, Haihe River Basin in China and Northern India and Pakistan where groundwater extraction are most severe in the world. The atmosphere also responds to anthropogenic groundwater exploitation. Cooling effects on lower troposphere appear in large areas of North China Plain and of Northern India and Pakistan. Increased precipitation occurs in Haihe River Basin due to increased evapotranspiration from irrigation. Decreased precipitation occurs in Northern India because water vapor here is taken away by monsoon anomalies induced by anthropogenic alteration of groundwater. The local reducing effects of anthropogenic groundwater exploitation on total terrestrial water storage evinces that water resource is unsustainable with the current high exploitation rate. Therefore, a balance between slow groundwater withdrawal and rapid human economic development must be achieved to maintain a sustainable water resource, especially in over-exploitation regions such as Central US, Northern China, India and Pakistan.

  11. Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley, Nepal.

    Science.gov (United States)

    Shrestha, Sangam; Semkuyu, Dickson John; Pandey, Vishnu P

    2016-06-15

    Groundwater vulnerability and risk assessment is a useful tool for groundwater pollution prevention and control. In this study, GIS based DRASTIC model have been used to assess intrinsic aquifer vulnerability to pollution whereas Groundwater Risk Assessment Model (GRAM) was used to assess the risk to groundwater pollution in the groundwater basin of Kathmandu Valley. Seven hydrogeological factors were used in DRASTIC model to produce DRASTIC Index (DI) map which represent intrinsic groundwater vulnerability to pollution of the area. The seven hydrogeological factors used were depth to water, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity of aquifer. GIS based GRAM was used to produce likelihood of release of hazards, likelihood of detection of hazards, consequence of hazards and residual risk of groundwater contamination in terms of nitrate in the groundwater basin. It was found that more than 50% of the groundwater basin area in the valley is susceptible to groundwater pollution and these areas are mostly in Northern groundwater district Low and very low vulnerable areas account for only 13% and are located in Central and Southern groundwater districts. However after taking into account the barriers to groundwater pollution and likelihood of hazards release and detection, it was observed that most areas i.e. about 87% of the groundwater basin are at moderate residual risk to groundwater pollution. The resultant groundwater vulnerability and risk map provides a basis for policy makers and planner's ability to use information effectively for decision making at protecting the groundwater from pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Groundwater characterisation and modelling: problems, facts and possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus [INTERA KB, Sollentuna (Sweden)

    1999-12-01

    For the last 10 years, the Aespoe Hard Rock Laboratory (HRL) in Sweden has been the main test site for the development of suitable methods for the final disposal of spent nuclear fuel. Major achievements have been made in the development of new groundwater sampling and modelling techniques. The natural condition of the groundwater is easily disturbed by drilling and sampling. The effects from borehole activities which may bias the real character of the groundwater have been identified. The development of new sampling techniques has improved the representativeness of the groundwater samples. In addition, methods to judge the representativeness better have been developed. For modelling of the Aespoe site, standard groundwater modelling codes based on thermodynamic laws have been applied. The many limitations of existing geochemical models used at the Aespoe site and the need to decode the complex groundwater information in terms of origin, mixing and reactions at site scale necessitated the development of a new modelling tool. This new modelling concept was named M3. In M3 modelling the assumption is that the groundwater chemistry is a result of mixing as well as water/rock reactions. The M3 model compares the groundwater compositions from a site. The similarities and differences of the groundwater compositions are used to quantify the contribution from mixing and reactions on the measured data. In order to construct a reliable model the major components, stable isotopes and tritium are used. Initially, the method quantifies the contribution from the flow system. Subsequently, contributions from reactions are calculated. The model differs from many other standard models which primarily use reactions rather than mixing to determine the groundwater evolution. The M3 code has been used for the following type of modelling: calculate the mixing portions at Aespoe, quantify the contribution from inorganic and organic reactions such as biogenic decomposition and sulphate

  13. Considering groundwater use to improve the assessment of groundwater pumping for irrigation in North Africa

    Science.gov (United States)

    Massuel, Sylvain; Amichi, Farida; Ameur, Fatah; Calvez, Roger; Jenhaoui, Zakia; Bouarfa, Sami; Kuper, Marcel; Habaieb, Hamadi; Hartani, Tarik; Hammani, Ali

    2017-04-01

    Groundwater resources in semi-arid areas and especially in the Mediterranean face a growing demand for irrigated agriculture and, to a lesser extent, for domestic uses. Consequently, groundwater reserves are affected and water-table drops are widely observed. This leads to strong constraints on groundwater access for farmers, while managers worry about the future evolution of the water resources. A common problem for building proper groundwater management plans is the difficulty in assessing individual groundwater withdrawals at regional scale. Predicting future trends of these groundwater withdrawals is even more challenging. The basic question is how to assess the water budget variables and their evolution when they are deeply linked to human activities, themselves driven by countless factors (access to natural resources, public policies, market, etc.). This study provides some possible answers by focusing on the assessment of groundwater withdrawals for irrigated agriculture at three sites in North Africa (Morocco, Tunisia and Algeria). Efforts were made to understand the different features that influence irrigation practices, and an adaptive user-oriented methodology was used to monitor groundwater withdrawals. For each site, different key factors affecting the regional groundwater abstraction and its past evolution were identified by involving farmers' knowledge. Factors such as farmer access to land and groundwater or development of public infrastructures (electrical distribution network) are crucial to decode the results of well inventories and assess the regional groundwater abstraction and its future trend. This leads one to look with caution at the number of wells cited in the literature, which could be oversimplified.

  14. Considering groundwater use to improve the assessment of groundwater pumping for irrigation in North Africa

    Science.gov (United States)

    Massuel, Sylvain; Amichi, Farida; Ameur, Fatah; Calvez, Roger; Jenhaoui, Zakia; Bouarfa, Sami; Kuper, Marcel; Habaieb, Hamadi; Hartani, Tarik; Hammani, Ali

    2017-09-01

    Groundwater resources in semi-arid areas and especially in the Mediterranean face a growing demand for irrigated agriculture and, to a lesser extent, for domestic uses. Consequently, groundwater reserves are affected and water-table drops are widely observed. This leads to strong constraints on groundwater access for farmers, while managers worry about the future evolution of the water resources. A common problem for building proper groundwater management plans is the difficulty in assessing individual groundwater withdrawals at regional scale. Predicting future trends of these groundwater withdrawals is even more challenging. The basic question is how to assess the water budget variables and their evolution when they are deeply linked to human activities, themselves driven by countless factors (access to natural resources, public policies, market, etc.). This study provides some possible answers by focusing on the assessment of groundwater withdrawals for irrigated agriculture at three sites in North Africa (Morocco, Tunisia and Algeria). Efforts were made to understand the different features that influence irrigation practices, and an adaptive user-oriented methodology was used to monitor groundwater withdrawals. For each site, different key factors affecting the regional groundwater abstraction and its past evolution were identified by involving farmers' knowledge. Factors such as farmer access to land and groundwater or development of public infrastructures (electrical distribution network) are crucial to decode the results of well inventories and assess the regional groundwater abstraction and its future trend. This leads one to look with caution at the number of wells cited in the literature, which could be oversimplified.

  15. Complexity of Groundwater Contaminants at DOE Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.; Faybishenko, B.; Jordan, P.

    2010-12-03

    The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base

  16. Complexity of Groundwater Contaminants at DOE Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.; Faybishenko, B.; Jordan, P.

    2010-12-03

    The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base

  17. Groundwater sampling: Chapter 5

    Science.gov (United States)

    Wang, Qingren; Munoz-Carpena, Rafael; Foster, Adam; Migliaccio, Kati W.; Li, Yuncong; Migliaccio, Kati

    2011-01-01

    About the book: As water quality becomes a leading concern for people and ecosystems worldwide, it must be properly assessed in order to protect water resources for current and future generations. Water Quality Concepts, Sampling, and Analyses supplies practical information for planning, conducting, or evaluating water quality monitoring programs. It presents the latest information and methodologies for water quality policy, regulation, monitoring, field measurement, laboratory analysis, and data analysis. The book addresses water quality issues, water quality regulatory development, monitoring and sampling techniques, best management practices, and laboratory methods related to the water quality of surface and ground waters. It also discusses basic concepts of water chemistry and hydrology related to water sampling and analysis; instrumentation; water quality data analysis; and evaluation and reporting results.

  18. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  19. Regulating groundwater use in developing countries

    DEFF Research Database (Denmark)

    Hansen, Lars Gårn; Jensen, Frank; Amundsen, Eirik S

    2014-01-01

    Worldwide groundwater is a common-pool resource that is potentially subject to the tragedy of the commons if water extraction is not adequately regulated. In developing countries the regulatory infrastructure is often too weak to allow detailed monitoring of individual groundwater extraction. For...

  20. Groundwater use on southern Idaho dairies

    Science.gov (United States)

    Dairy production has expanded in irrigated areas of the western and southwestern US, potentially competing for limited water supplies. Groundwater withdrawal was measured for two years on six dairy farms with 660 to 6400 milk cows in southern Idaho. Groundwater withdrawal was calculated on an equiva...

  1. Applied groundwater modeling, 2nd Edition

    Science.gov (United States)

    Anderson, Mary P.; Woessner, William W.; Hunt, Randall J.

    2015-01-01

    This second edition is extensively revised throughout with expanded discussion of modeling fundamentals and coverage of advances in model calibration and uncertainty analysis that are revolutionizing the science of groundwater modeling. The text is intended for undergraduate and graduate level courses in applied groundwater modeling and as a comprehensive reference for environmental consultants and scientists/engineers in industry and governmental agencies.

  2. Propagation of drought through groundwater systems

    NARCIS (Netherlands)

    Peters, E.

    2003-01-01

    Index words: drought, groundwater, simulation, synthetic data, extreme events

    The transformation of droughts as a result of the propagation through groundwater systems is examined by comparing droughts in time

  3. Propagation of drought through groundwater systems

    NARCIS (Netherlands)

    Peters, E.

    2003-01-01

    Index words: drought, groundwater, simulation, synthetic data, extreme events

    The transformation of droughts as a result of the propagation through groundwater systems is examined by comparing droughts in time se

  4. Groundwater contamination and pollution in micronesia

    Science.gov (United States)

    Detay, M.; Alessandrello, E.; Come, P.; Groom, I.

    1989-12-01

    This paper is an overview of groundwater contamination and pollution in th e main islands of the Federated States of Micronesia, the Republic of the Marshall Islands and the Republic of Belau (Palau). A strategy for the comprehensive protection of groundwater resources in the Trust Territory of the Pacific Islands is proposed.

  5. Groundwater links between Kenyan Rift Valley lakes

    OpenAIRE

    Becht, Robert; Mwango, Fred; Muno, Fred Amstrong

    2006-01-01

    The series of lakes in the bottom of the Kenyan Rift valley are fed by rivers and springs. Based on the water balance, the relative positions determining the regional groundwater flow systems and the analysis of natural isotopes it can be shown that groundwater flows from lake Naivasha to lake Magadi, Elementeita, Nakuru and Bogoria.

  6. Groundwater Pollution from Underground Coal Gasification

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In situ coal gasification poses a potential environmental risk to groundwater pollution although it depends mainly on local hydrogeological conditions.In our investigation, the possible processes of groundwater pollution originating from underground coal gasification (UCG) were analyzed.Typical pollutants were identified and pollution control measures are proposed.Groundwater pollution is caused by the diffusion and penetration of contaminants generated by underground gasification processes towards surrounding strata and the possible leaching of underground residue by natural groundwater flow after gasification.Typical organic pollutants include phenols, benzene, minor components such as PAHs and heterocyclics.Inorganic pollutants involve cations and anions.The natural groundwater flow after gasification through the seam is attributable to the migration of contaminants, which can be predicted by mathematical modeling.The extent and concentration of the groundwater pollution plume depend primarily on groundwater flow velocity, the degree of dispersion and the adsorption and reactions of the various contaminants.The adsorption function of coal and surrounding strata make a big contribution to the decrease of the contaminants over time and with the distance from the burn cavity.Possible pollution control measures regarding UCG include identifying a permanently, unsuitable zone, setting a hydraulic barrier and pumping contaminated water out for surface disposal.Mitigation measures during gasification processes and groundwater remediation after gasification are also proposed.

  7. 583 GROUNDWATER QUALITY ASSESSMENT AND MONITORING ...

    African Journals Online (AJOL)

    Osondu

    2012-10-30

    Oct 30, 2012 ... monitor and assess groundwater quality. Key words: ... improved yield/production and discharge of waste from ... Thus, the groundwater quality monitoring and .... D/Line. 28.51. 6.76. 49.42. 65.6. 23. ND. 60.24. 1.58. 10.361.

  8. Trend Analyses of Nitrate in Danish Groundwater

    DEFF Research Database (Denmark)

    Hansen, B.; Thorling, L.; Dalgaard, Tommy;

    2012-01-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribut......This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis...... of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first...... two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded...

  9. Improving fresh groundwater supply - problems and solutions

    NARCIS (Netherlands)

    Oude Essink, Gualbert

    2001-01-01

    Many coastal regions in the world experience an intensive salt water intrusion in aquifers due to natural and anthropogenic causes. The salinisation of these groundwater systems can lead to a severe deterioration of the quality of existing fresh groundwater resources. In this paper, the

  10. Procedures for ground-water investigations

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  11. Selection of groundwater sites in Egypt, using geographic information systems, for desalination by solar energy in order to reduce greenhouse gases

    Directory of Open Access Journals (Sweden)

    Mariam G. Salim

    2012-01-01

    Full Text Available Although Egypt has already reached the water poverty limit, it possesses a high potential of brackish groundwater available from different aquifers. All Arab countries lie in the best sun-belt region in the world and Egypt has the highest number of sun hours all year round. Solar energy for groundwater desalination is an independent infinite energy resource; it has low running costs and reduces the contribution of greenhouse gases (GHG to global warming. Perfect meteorological conditions and land space are available in remote areas, where solar desalination could supply freshwater for drinking, industry, and for greenhouse agriculture. The present study uses Geographic Information System(s (GIS as a spatial decision support tool to select appropriate sites in Egypt for groundwater solar desalination. Solar radiation, aquifer depth, aquifer salinity, distance from the Delta and the Nile Valley, incidence of flash floods, sand dunes, rock faults, and seawater intrusion in the North Delta, are the criteria that have been taken into consideration in the process of analysis. A specific weight is given to each criterion according to its relative influence on the process of decision making. The results from the application of the presented methodology determine the relative suitability of sites for groundwater solar desalination. These sites are ranked in descending order to help decision-makers in Egypt. The results show that groundwater solar desalination is suitable in remote regions on the North Western Coast, on the North Sinai Coast, and at the Southern Oasis, for reducing greenhouse gases and that it is particularly useful for poor communities suffering from polluted water.

  12. Groundwater vulnerability mapping of Qatar aquifers

    Science.gov (United States)

    Baalousha, Husam Musa

    2016-12-01

    Qatar is one of the most arid countries in the world with limited water resources. With little rainfall and no surface water, groundwater is the only natural source of fresh water in the country. Whilst the country relies mainly on desalination of seawater to secure water supply, groundwater has extensively been used for irrigation over the last three decades, which caused adverse environmental impact. Vulnerability assessment is a widely used tool for groundwater protection and land-use management. Aquifers in Qatar are carbonate with lots of fractures, depressions and cavities. Karst aquifers are generally more vulnerable to contamination than other aquifers as any anthropogenic-sourced contaminant, especially above a highly fractured zone, can infiltrate quickly into the aquifer and spread over a wide area. The vulnerability assessment method presented in this study is based on two approaches: DRASTIC and EPIK, within the framework of Geographical Information System (GIS). Results of this study show that DRASTIC vulnerability method suits Qatar hydrogeological settings more than EPIK. The produced vulnerability map using DRASTIC shows coastal and karst areas have the highest vulnerability class. The southern part of the country is located in the low vulnerability class due to occurrence of shale formation within aquifer media, which averts downward movement of contaminants.

  13. Global-scale modeling of groundwater recharge

    Science.gov (United States)

    Döll, P.; Fiedler, K.

    2008-05-01

    Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the-art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3

  14. Patterns in groundwater chemistry resulting from groundwater flow

    Science.gov (United States)

    Stuyfzand, Pieter J.

    Groundwater flow influences hydrochemical patterns because flow reduces mixing by diffusion, carries the chemical imprints of biological and anthropogenic changes in the recharge area, and leaches the aquifer system. Global patterns are mainly dictated by differences in the flux of meteoric water passing through the subsoil. Within individual hydrosomes (water bodies with a specific origin), the following prograde evolution lines (facies sequence) normally develop in the direction of groundwater flow: from strong to no fluctuations in water quality, from polluted to unpolluted, from acidic to basic, from oxic to anoxic-methanogenic, from no to significant base exchange, and from fresh to brackish. This is demonstrated for fresh coastal-dune groundwater in the Netherlands. In this hydrosome, the leaching of calcium carbonate as much as 15m and of adsorbed marine cations (Na+, K+, and Mg2+) as much as 2500m in the flow direction is shown to correspond with about 5000yr of flushing since the beach barrier with dunes developed. Recharge focus areas in the dunes are evidenced by groundwater displaying a lower prograde quality evolution than the surrounding dune groundwater. Artificially recharged Rhine River water in the dunes provides distinct hydrochemical patterns, which display groundwater flow, mixing, and groundwater ages. Résumé Les écoulements souterrains influencent les différents types hydrochimiques, parce que l'écoulement réduit le mélange par diffusion, porte les marques chimiques de changements biologiques et anthropiques dans la zone d'alimentation et lessive le système aquifère. Ces types dans leur ensemble sont surtout déterminés par des différences dans le flux d'eau météorique traversant le sous-sol. Dans les "hydrosomes" (masses d'eau d'origine déterminée), les lignes marquant une évolution prograde (séquence de faciès) se développent normalement dans la direction de l'écoulement souterrain : depuis des fluctuations fortes de la

  15. Geomorphic aspects of groundwater flow

    Science.gov (United States)

    LaFleur, Robert G.

    The many roles that groundwater plays in landscape evolution are becoming more widely appreciated. In this overview, three major categories of groundwater processes and resulting landforms are considered: (1) Dissolution creates various karst geometries, mainly in carbonate rocks, in response to conditions of recharge, geologic setting, lithology, and groundwater circulation. Denudation and cave formation rates can be estimated from kinetic and hydraulic parameters. (2) Groundwater weathering generates regoliths of residual alteration products at weathering fronts, and subsequent exhumation exposes corestones, flared slopes, balanced rocks, domed inselbergs, and etchplains of regional importance. Groundwater relocation of dissolved salts creates duricrusts of various compositions, which become landforms. (3) Soil and rock erosion by groundwater processes include piping, seepage erosion, and sapping, important agents in slope retreat and headward gully migration. Thresholds and limits are important in many chemical and mechanical groundwater actions. A quantitative, morphometric approach to groundwater landforms and processes is exemplified by selected studies in carbonate and clastic terrains of ancient and recent origins. Résumé Les rôles variés joués par les eaux souterraines dans l'évolution des paysages deviennent nettement mieux connus. La revue faite ici prend en considération trois grandes catégories de processus liés aux eaux souterraines et les formes associées: (1) La dissolution crée des formes karstiques variées, surtout dans les roches carbonatées, en fonction des conditions d'alimentation, du cadre géologique, de la lithologie et de la circulation des eaux souterraines. Les taux d'érosion et de formation des grottes peuvent être estimés à partir de paramètres cinétiques et hydrauliques. (2) L'érosion par les eaux souterraines donne naissance à des régolites, résidus d'altération sur des fronts d'altération, et l'exhumation r

  16. A Comparison of Groundwater Storage Using GRACE Data, Groundwater Levels, and a Hydrological Model in Californias Central Valley

    Science.gov (United States)

    Kuss, Amber; Brandt, William; Randall, Joshua; Floyd, Bridget; Bourai, Abdelwahab; Newcomer, Michelle; Skiles, Joseph; Schmidt, Cindy

    2011-01-01

    The Gravity Recovery and Climate Experiment (GRACE) measures changes in total water storage (TWS) remotely, and may provide additional insight to the use of well-based data in California's agriculturally productive Central Valley region. Under current California law, well owners are not required to report groundwater extraction rates, making estimation of total groundwater extraction difficult. As a result, other groundwater change detection techniques may prove useful. From October 2002 to September 2009, GRACE was used to map changes in TWS for the three hydrological regions (the Sacramento River Basin, the San Joaquin River Basin, and the Tulare Lake Basin) encompassing the Central Valley aquifer. Net groundwater storage changes were calculated from the changes in TWS for each of the three hydrological regions and by incorporating estimates for additional components of the hydrological budget including precipitation, evapotranspiration, soil moisture, snow pack, and surface water storage. The calculated changes in groundwater storage were then compared to simulated values from the California Department of Water Resource's Central Valley Groundwater- Surface Water Simulation Model (C2VSIM) and their Water Data Library (WDL) Geographic Information System (GIS) change in storage tool. The results from the three methods were compared. Downscaling GRACE data into the 21 smaller Central Valley sub-regions included in C2VSIM was also evaluated. This work has the potential to improve California's groundwater resource management and use of existing hydrological models for the Central Valley.

  17. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    : Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  18. Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-12-01

    This document is a compendium of water quality and hydrologic characterization data obtained through December 2005 from the network of groundwater monitoring wells and surface water sampling stations (including springs and building sumps) at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee that have been sampled since January 2003. The primary objectives of this document, hereafter referenced as the Y-12 Groundwater Protection Program (GWPP) Compendium, are to: (1) Serve as a single-source reference for monitoring data that meet the requirements of the Y-12 GWPP, as defined in the Y-12 GWPP Management Plan (BWXT Y-12 L.L.C. [BWXT] 2004); (2) Maintain a detailed analysis and evaluation of the monitoring data for each applicable well, spring, and surface water sampling station, with a focus on results for the primary inorganic, organic, and radiological contaminants in groundwater and surface water at Y-12; and (3) Ensure retention of ''institutional knowledge'' obtained over the long-term (>20-year) history of groundwater and surface water monitoring at Y-12 and the related sources of groundwater and surface water contamination. To achieve these goals, the Y-12 GWPP Compendium brings together salient hydrologic, geologic, geochemical, water-quality, and environmental compliance information that is otherwise disseminated throughout numerous technical documents and reports prepared in support of completed and ongoing environmental contamination assessment, remediation, and monitoring activities performed at Y-12. The following subsections provide background information regarding the overall scope and format of the Y-12 GWPP Compendium and the planned approach for distribution and revision (i.e., administration) of this ''living'' document.

  19. Characterizing groundwater contribution to lowland streams using Travel Time Distribution

    Science.gov (United States)

    Petrus Kaandorp, Vincentius; Gerardus Bernardus de Louw, Petrus; Kuijper, Martina Johanna Maria; Broers, Hans Peter

    2015-04-01

    In recent years, it has become apparent that European freshwaters will fail to meet the ecological guidelines set for 2015 by the Water Framework Directive. 55 % of European surface water bodies have been reported to have a less than good ecological status, while the goal for 2015 is to have a good status for all water bodies. The deterioration of freshwater aquatic ecosystems is a problem worldwide. The current study, part of the EU FP7 project Managing Aquatic ecosystems and water Resources under multiple Stress (MARS), addresses this issue by focusing on the effect of multiple stressors. Freshwater ecosystems are directly linked to the characteristics of catchments and streams they are located in as this determines the habitats present. One of these characteristics, the groundwater contribution to streams, is important for aquatic ecosystems as it influences (1) river discharge, (2) water quality and (3) temperature and (4) the riparian zone. Groundwater provides streams with sufficient base flow, good quality water and a stable temperature. Compared to hilly slope catchments, the lowland catchments of The Netherlands lack much topography and surface runoff, and as such, virtually all stream water originates from groundwater. Current approaches do not sufficiently address the contribution of groundwater to stream flow in lowland catchments, as existing hydrograph separation methods provide little informative value about the groundwater contribution itself. The amount and quality of groundwater input to streams depends on its flow path and travel time. Especially in lowland catchments the groundwater input in streams is composed of a wide range of travel times which vary in time and space and have different quantitative and qualitative characteristics. Thus in order to successfully manage lowland streams, it is critical to specify the input of groundwater in more detail and take in account the temporal and spatial variability in travel times. We will present an

  20. Groundwater-abstraction induced land subsidence and groundwater regulation in the North China Plain

    Science.gov (United States)

    Guo, H.; Wang, L.; Cheng, G.; Zhang, Z.

    2015-11-01

    Land subsidence can be induced when various factors such as geological, and hydrogeological conditions and intensive groundwater abstraction combine. The development and utilization of groundwater in the North China Plain (NCP) bring great benefits, and at the same time have led to a series of environmental and geological problems accompanying groundwater-level declines and land subsidence. Subsidence occurs commonly in the NCP and analyses show that multi-layer aquifer systems with deep confined aquifers and thick compressible clay layers are the key geological and hydrogeological conditions responsible for its development in this region. Groundwater overdraft results in aquifer-system compaction, resulting in subsidence. A calibrated, transient groundwater-flow numerical model of the Beijing plain portion of the NCP was developed using MODFLOW. According to available water supply and demand in Beijing plain, several groundwater regulation scenarios were designed. These different regulation scenarios were simulated with the groundwater model, and assessed using a multi-criteria fuzzy pattern recognition model. This approach is proven to be very useful for scientific analysis of sustainable development and utilization of groundwater resources. The evaluation results show that sustainable development of groundwater resources may be achieved in Beijing plain when various measures such as control of groundwater abstraction and increase of artificial recharge combine favourably.

  1. Groundwater flow and heterogeneous discharge into a seepage lake

    DEFF Research Database (Denmark)

    Kazmierczak, Jolanta; Müller, Sascha; Nilsson, B.

    2016-01-01

    Groundwater discharge into a seepage lake was investigated by combining flux measurements, hydrochemical tracers, geological information, and a telescopic modeling approach using first two-dimensional (2-D) regional then 2-D local flow and flow path models. Discharge measurements and hydrochemical...... with the lake remained under seemingly steady state conditions across seasons, a high spatial and temporal heterogeneity in the discharge to the lake was observed. The results showed that part of the groundwater flowing from the west passes beneath the lake and discharges at the eastern shore, where groundwater...... springs and high discharge zones (HDZs) are observed at the lake bottom and at seepage faces adjacent to the lake. In the 2-D cross section, surface runoff from the seepage faces delivers 64% of the total groundwater inputs to the lake, and a 2 m wide offshore HDZ delivers 13%. Presence of HDZs may...

  2. Data base dictionary for the Oak Ridge Reservation Hydrology and Geology Study Groundwater Data Base

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, B.K.

    1993-04-01

    The Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) Groundwater Data Base has been compiled to consolidate groundwater data from the three US Department of Energy facilities located on the Oak Ridge Reservation: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant. Each of these facilities maintains its own groundwater and well construction data bases. Data were extracted from the existing data bases, converted to a consistent format, and integrated into the ORRHAGS Groundwater Data Base structures. This data base dictionary describes the data contained in the ORRHAGS Groundwater Data Base and contains information on data base structure, conventions, contents, and use.

  3. Geochemical evolution of Mexicali Valley groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Makdisi, R.S.; Truesdell, A.H.; Thompson, J.M.; Coplen, T.B.; Sanchez R., J.

    1982-08-10

    Isotopic and chemical compositions of Mexicali Valley groundwaters vary widely. Observed variations reflect different water origins, mineral-water reactions, lateral variations of delta facies as well as evaporation. Regional treatment of the groundwater data shows that northern and central regions are a mixture of old and new Colorado River water. Variations in water chemistry result from different groundwaters origins and the effects of lateral delta facies changes. Dissolution of gypsum and precipitation of carbonates, silicates, and phosphates are suggested. The eastern Mesa de San Luis and southern region water originates primarily from the Gila River catchment area. This water is undersaturated with respect to gypsum and carbonates and is oversaturated with respect to silicates. Most of the western groundwaters are a mixture of Colorado River and geothermal waters in the proximity of the Cerro Prieto geothermal field. Recharge to the geothermal aquifer is from the west as well as the north and east. Calcite is being precipitated out as the groundwater temperatures rise in response to the geothermal anomaly. Other western groundwaters reflect a dominant mixture of Colorado River water and evaporated lake water. Some Western groundwater samples suggest dilution by local rainwater and/or irrigation water.

  4. Groundwater in geologic processes, 2nd edition

    Science.gov (United States)

    Ingebritsen, Steven E.; Sanford, Ward E.; Neuzil, Christopher E.

    2006-01-01

    Interest in the role of Groundwater in Geologic Processes has increased steadily over the past few decades. Hydrogeologists and geologists are now actively exploring the role of groundwater and other subsurface fluids in such fundamental geologic processes as crustal heat transfer, ore deposition, hydrocarbon migration, earthquakes, tectonic deformation, diagenesis, and metamorphism.Groundwater in Geologic Processes is the first comprehensive treatment of this body of inquiry. Chapters 1 to 4 develop the basic theories of groundwater motion, hydromechanics, solute transport, and heat transport. Chapter 5 applies these theories to regional groundwater flow systems in a generic sense, and Chapters 6 to 13 focus on particular geologic processes and environments. Relative to the first edition of Groundwater in Geologic Processes , this second edition includes a much more comprehensive treatment of hydromechanics (the coupling of groundwater flow and deformation). It also includes new chapters on "compaction and diagenesis," "metamorphism," and "subsea hydrogeology." Finally, it takes advantage of the substantial body of published research that has appeared since the first edition in 1998. The systematic presentation of theory and application, and the problem sets that conclude each chapter, make this book ideal for undergraduate- and graduate-level geology courses (assuming that the students have some background in calculus and introductory chemistry). It also serves as an invaluable reference for researchers and other professionals in the field

  5. Groundwater Molybdenum from Emerging Industries in Taiwan.

    Science.gov (United States)

    Tsai, Kuo-Sheng; Chang, Yu-Min; Kao, Jimmy C M; Lin, Kae-Long

    2016-01-01

    This study determined the influence of emerging industries development on molybdenum (Mo) groundwater contamination. A total of 537 groundwater samples were collected for Mo determination, including 295 samples from potentially contaminated areas of 3 industrial parks in Taiwan and 242 samples from non-potentially contaminated areas during 2008-2014. Most of the high Mo samples are located downstream from a thin film transistor-liquid crystal display (TFT-LCD) panel factory. Mean groundwater Mo concentrations from potentially contaminated areas (0.0058 mg/L) were significantly higher (p groundwater and surface water contamination. Nine samples of groundwater exceed the World Health Organization's suggested drinking water guideline of 0.07 mg/L. A non-carcinogenic risk assessment for Mo in adults and children using the Mo concentration of 0.07 mg/L yielded risks of 0.546 and 0.215, respectively. These results indicate the importance of the development of a national drinking water quality standard for Mo in Taiwan to ensure safe groundwater for use. According to the human health risk calculation, the groundwater Mo standard is suggested as 0.07 mg/L. Reduction the discharge of Mo-contaminated wastewater from factories in the industrial parks is also the important task in the future.

  6. Ecosystem services in sustainable groundwater management.

    Science.gov (United States)

    Tuinstra, Jaap; van Wensem, Joke

    2014-07-01

    The ecosystem services concept seems to get foothold in environmental policy and management in Europe and, for instance, The Netherlands. With respect to groundwater management there is a challenge to incorporate this concept in such a way that it contributes to the sustainability of decisions. Groundwater is of vital importance to societies, which is reflected in the presented overview of groundwater related ecosystem services. Classifications of these services vary depending on the purpose of the listing (valuation, protection, mapping et cetera). Though the scientific basis is developing, the knowledge-availability still can be a critical factor in decision making based upon ecosystem services. The examples in this article illustrate that awareness of the value of groundwater can result in balanced decisions with respect to the use of ecosystem services. The ecosystem services concept contributes to this awareness and enhances the visibility of the groundwater functions in the decision making process. The success of the ecosystem services concept and its contribution to sustainable groundwater management will, however, largely depend on other aspects than the concept itself. Local and actual circumstances, policy ambitions and knowledge availability will play an important role. Solutions can be considered more sustainable when more of the key elements for sustainable groundwater management, as defined in this article, are fully used and the presented guidelines for long term use of ecosystem services are respected.

  7. From submarine to lacustrine groundwater discharge

    Science.gov (United States)

    Lewandowski, Jörg; Meinikmann, Karin; Pöschke, Franziska; Nützmann, Gunnar; Rosenberry, Donald O.

    2017-01-01

    Submarine groundwater discharge (SGD) and its role in marine nutrient cycling are well known since the last decade. The freshwater equivalent, lacustrine groundwater discharge (LGD), is often still disregarded, although first reports of LGD are more than 50 years old. We identify nine different reasons why groundwater has long been disregarded in both freshwater and marine environments such as invisibility of groundwater discharge, the size of the interface and its difficult accessibility. Although there are some fundamental differences in the hydrology of SGD and LGD, caused primarily by seawater recirculation that occurs only in cases of SGD, there are also a lot of similarities such as a focusing of discharge to near-shore areas. Nutrient concentrations in groundwater near the groundwater–surface water interface might be anthropogenically enriched. Due to spatial heterogeneity of aquifer characteristics and biogeochemical processes, the quantification of groundwater-borne nutrient loads is challenging. Both nitrogen and phosphorus might be mobile in near-shore aquifers and in a lot of case studies large groundwater-borne nutrient loads have been reported.

  8. Modelling Urban diffuse pollution in groundwater

    Science.gov (United States)

    Jato, Musa; Smith, Martin; Cundy, Andrew

    2017-04-01

    Diffuse urban pollution of surface and ground waters is a growing concern in many cities and towns. Traffic-derived pollutants such as salts, heavy metals and polycyclic aromatic hydrocarbons (PAHs) may wash off road surfaces in soluble or particulate forms which later drain through soils and drainage systems into surface waters and groundwater. In Brighton, about 90% of drinking water supply comes from groundwater (derived from the Brighton Chalk block). In common with many groundwater sources the Chalk aquifer has been relatively extensively monitored and assessed for diffuse rural contaminants such as nitrate, but knowledge on the extent of contamination from road run-off is currently lacking. This project examines the transfer of traffic-derived contaminants from the road surface to the Chalk aquifer, via urban drainage systems. A transect of five boreholes have been sampled on a monthly basis and groundwater samples analysed to examine the concentrations of key, mainly road run-off derived, hydrocarbon and heavy metal contaminants in groundwater across the Brighton area. Trace concentrations of heavy metals and phenols have been observed in groundwater. Electrical conductivity changes in groundwater have also been used to assess local changes in ionic strength which may be associated with road-derived contaminants. This has been supplemented by systematic water and sediment sampling from urban gully pots, with further sampling planned from drainage and settlement ponds adjacent to major roads, to examine initial road to drainage system transport of major contaminants.

  9. Hydroeconomic modeling of sustainable groundwater management

    Science.gov (United States)

    MacEwan, Duncan; Cayar, Mesut; Taghavi, Ali; Mitchell, David; Hatchett, Steve; Howitt, Richard

    2017-03-01

    In 2014, California passed legislation requiring the sustainable management of critically overdrafted groundwater basins, located primarily in the Central Valley agricultural region. Hydroeconomic modeling of the agricultural economy, groundwater, and surface water systems is critically important to simulate potential transition paths to sustainable management of the basins. The requirement for sustainable groundwater use by 2040 is mandated for many overdrafted groundwater basins that are decoupled from environmental and river flow effects. We argue that, for such cases, a modeling approach that integrates a biophysical response function from a hydrologic model into an economic model of groundwater use is preferable to embedding an economic response function in a complex hydrologic model as is more commonly done. Using this preferred approach, we develop a dynamic hydroeconomic model for the Kings and Tulare Lake subbasins of California and evaluate three groundwater management institutions—open access, perfect foresight, and managed pumping. We quantify the costs and benefits of sustainable groundwater management, including energy pumping savings, drought reserve values, and avoided capital costs. Our analysis finds that, for basins that are severely depleted, losses in crop net revenue are offset by the benefits of energy savings, drought reserve value, and avoided capital costs. This finding provides an empirical counterexample to the Gisser and Sanchez Effect.

  10. The shadow price of fossil groundwater

    Science.gov (United States)

    Bierkens, Marc F. P.; Reinhard, Stijn; de Bruijn, Jens A.; Wada, Yoshihide

    2017-04-01

    The expansion of irrigated agriculture into areas with limited precipitation and surface water during the growing season has greatly increased the use of fossil groundwater (Wada et al., 2012). As a result, the depletion rate of fossil groundwater resources has shown an increasing rate during the last decades (Wada et al, 2010; Konikow, 2011; Wada et al., 2012; De Graaf et al. 2015; Ritchy et al., 2015). Although water pricing has been used extensively to stimulate efficient application of water to create maximum value (e.g. Medellín-Azuara et al., 2012; Rinaudo et al., 2012; Dinar et al., 2015), it does not preclude the use of non-renewable water resources. Here, we use a global hydrological model and historical crop production and price data to assess the shadow price of non-renewable or fossil groundwater applied to major crops in countries that use large quantities of fossil groundwater. Our results show that shadow prices for many crops are very low, indicating economically inefficient or even wasteful use of fossil groundwater resources. Using India as an example, we show that small changes in the crop mix could lead to large reductions in fossil groundwater use or alternatively, create additional financial means to invest in water saving technologies. Our study thus provides a hydro-economic basis to further the sustainable use of finite groundwater resources.

  11. Review: Regional land subsidence accompanying groundwater extraction

    Science.gov (United States)

    Galloway, Devin L.; Burbey, Thomas J.

    2011-01-01

    The extraction of groundwater can generate land subsidence by causing the compaction of susceptible aquifer systems, typically unconsolidated alluvial or basin-fill aquifer systems comprising aquifers and aquitards. Various ground-based and remotely sensed methods are used to measure and map subsidence. Many areas of subsidence caused by groundwater pumping have been identified and monitored, and corrective measures to slow or halt subsidence have been devised. Two principal means are used to mitigate subsidence caused by groundwater withdrawal—reduction of groundwater withdrawal, and artificial recharge. Analysis and simulation of aquifer-system compaction follow from the basic relations between head, stress, compressibility, and groundwater flow and are addressed primarily using two approaches—one based on conventional groundwater flow theory and one based on linear poroelasticity theory. Research and development to improve the assessment and analysis of aquifer-system compaction, the accompanying subsidence and potential ground ruptures are needed in the topic areas of the hydromechanical behavior of aquitards, the role of horizontal deformation, the application of differential synthetic aperture radar interferometry, and the regional-scale simulation of coupled groundwater flow and aquifer-system deformation to support resource management and hazard mitigation measures.

  12. 40 CFR 257.22 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... operator. When physical obstacles preclude installation of ground-water monitoring wells at the relevant... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water......

  13. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    : Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  14. Groundwater use for irrigation – a global inventory

    Directory of Open Access Journals (Sweden)

    S. Siebert

    2010-10-01

    Full Text Available Irrigation is the most important water use sector accounting for about 70% of the global freshwater withdrawals and 90% of consumptive water uses. While the extent of irrigation and related water uses are reported in statistical databases or estimated by model simulations, information on the source of irrigation water is scarce and very scattered. Here we present a new global inventory on the extent of areas irrigated with groundwater, surface water or non-conventional sources, and we determine the related consumptive water uses. The inventory provides data for 15 038 national and sub-national administrative units. Irrigated area was provided by census-based statistics from international and national organizations. A global model was then applied to simulate consumptive water uses for irrigation by water source. Globally, area equipped for irrigation is currently about 301 million ha of which 38% are equipped for irrigation with groundwater. Total consumptive groundwater use for irrigation is estimated as 545 km3 yr−1, or 43% of the total consumptive irrigation water use of 1277 km3 yr−1. The countries with the largest extent of areas equipped for irrigation with groundwater, in absolute terms, are India (39 million ha, China (19 million ha and the USA (17 million ha. Groundwater use in irrigation is increasing both in absolute terms and in percentage of total irrigation, leading in places to concentrations of users exploiting groundwater storage at rates above groundwater recharge. Despite the uncertainties associated with statistical data available to track patterns and growth of groundwater use for irrigation, the inventory presented here is a major step towards a more informed assessment of agricultural water use and its consequences for the global water cycle.

  15. Groundwater use for irrigation – a global inventory

    Directory of Open Access Journals (Sweden)

    S. Siebert

    2010-06-01

    Full Text Available Irrigation is the most important water use sector accounting for about 70% of the global freshwater withdrawals and 90% of consumptive water uses. While the extent of irrigation and related water uses are reported in statistical databases or estimated by model simulations, information on the source of irrigation water is scarce and very scattered. Here we present a new global inventory on the extent of areas irrigated with groundwater, surface water or non-conventional sources, and we determine the related consumptive water uses. The inventory provides data for 15 038 national and sub-national administrative units. Irrigated area was provided by census-based statistics from international and national organizations. A global model was then applied to simulate consumptive water uses for irrigation by water source. Globally, area equipped for irrigation is currently about 301 million ha of which 38% are equipped for irrigation with groundwater. Total consumptive groundwater use for irrigation is estimated as 545 km3 yr−1, or 43% of the total consumptive irrigation water use of 1 277 km3 yr−1. The countries with the largest extent of areas equipped for irrigation with groundwater, in absolute terms, are India (39 million ha, China (19 million ha and the United States of America (17 million ha. Groundwater use in irrigation is increasing both in absolute terms and in percentage of total irrigation, leading in places to concentrations of users exploiting groundwater storage at rates above groundwater recharge. Despite the uncertainties associated with statistical data available to track patterns and growth of groundwater use for irrigation, the inventory presented here is a major step towards a more informed assessment of agricultural water use and its consequences for the global water cycle.

  16. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  17. Environmental monitoring final report: groundwater chemical analyses

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    This report presents the results of analyses of groundwater qualtiy at the SRC-I Demonstration Plant site in Newman, Kentucky. Samples were obtained from a network of 23 groundwater observation wells installed during previous studies. The groundwater was well within US EPA Interim Primary Drinking Water Standards for trace metals, radioactivity, and pesticides, but exceeded the standard for coliform bacteria. Several US EPA Secondary Drinking Water Standards were exceeded, namely, manganese, color, iron, and total dissolved solids. Based on the results, Dames and Moore recommend that all wells should be sterilized and those wells built in 1980 should be redeveloped. 1 figure, 6 tables.

  18. Geospatial Data Management Platform for Urban Groundwater

    Science.gov (United States)

    Gaitanaru, D.; Priceputu, A.; Gogu, C. R.

    2012-04-01

    Due to the large amount of civil work projects and research studies, large quantities of geo-data are produced for the urban environments. These data are usually redundant as well as they are spread in different institutions or private companies. Time consuming operations like data processing and information harmonisation represents the main reason to systematically avoid the re-use of data. The urban groundwater data shows the same complex situation. The underground structures (subway lines, deep foundations, underground parkings, and others), the urban facility networks (sewer systems, water supply networks, heating conduits, etc), the drainage systems, the surface water works and many others modify continuously. As consequence, their influence on groundwater changes systematically. However, these activities provide a large quantity of data, aquifers modelling and then behaviour prediction can be done using monitored quantitative and qualitative parameters. Due to the rapid evolution of technology in the past few years, transferring large amounts of information through internet has now become a feasible solution for sharing geoscience data. Furthermore, standard platform-independent means to do this have been developed (specific mark-up languages like: GML, GeoSciML, WaterML, GWML, CityML). They allow easily large geospatial databases updating and sharing through internet, even between different companies or between research centres that do not necessarily use the same database structures. For Bucharest City (Romania) an integrated platform for groundwater geospatial data management is developed under the framework of a national research project - "Sedimentary media modeling platform for groundwater management in urban areas" (SIMPA) financed by the National Authority for Scientific Research of Romania. The platform architecture is based on three components: a geospatial database, a desktop application (a complex set of hydrogeological and geological analysis

  19. Are Agricultural Measures for Groundwater Protection Beneficial When Compared to Purification of Polluted Groundwater?

    OpenAIRE

    Hasler, Berit; Lundhede, Thomas

    2005-01-01

    The groundwater resource, the drinking water areas and the surface water quality can be protected by measures, e.g. by reductions of pesticide and nutrient applications, conversion of arable land to grasslands or forests etc. The objective of the paper is to estimate the benefits of groundwater protection by the valuation method choice experiments. This method allows for separate estimation and comparison of the different attributes connected to groundwater protection i.e. the effects on drin...

  20. Identification of the influencing factors on groundwater drought and depletion in north-western Bangladesh

    Science.gov (United States)

    Mustafa, Syed Md. Touhidul; Abdollahi, Khodayar; Verbeiren, Boud; Huysmans, Marijke

    2017-08-01

    Groundwater drought is a specific type of hydrological drought that concerns groundwater bodies. It may have a significant adverse effect on the socio-economic, agricultural, and environmental conditions. Investigating the effect of different climatic and anthropogenic factors on groundwater drought provides essential information for sustainable planning and management of (ground) water resources. The aim of this study is to identify the influencing factors on groundwater drought in north-western Bangladesh, to understand the forcing mechanisms. A multi-step methodology is proposed to achieve this objective. The standardised precipitation index (SPI) and reconnaissance drought index (RDI) have been used to quantify the aggregated deficit between precipitation and the evaporative demand of the atmosphere, i.e. meteorological drought. The influence of land-cover patterns on the groundwater drought has been identified by calculating spatially distributed groundwater recharge as a function of land cover. Groundwater drought is defined by a threshold method. The results show that the evapotranspiration and rainfall deficits are determining meteorological drought, which shows a direct relation with groundwater recharge deficits. Land-cover change has a small effect on groundwater recharge but does not seem to be the main cause of groundwater-level decline (depletion) in the study area. The groundwater depth and groundwater-level deficit (drought) is continuously increasing with little correlation to meteorological drought or recharge anomalies. Overexploitation of groundwater for irrigation seems to be the main cause of groundwater-level decline in the study area. Efficient irrigation management is essential to reduce the growing pressure on groundwater resources and ensure sustainable water management.

  1. Identification of the influencing factors on groundwater drought and depletion in north-western Bangladesh

    Science.gov (United States)

    Mustafa, Syed Md. Touhidul; Abdollahi, Khodayar; Verbeiren, Boud; Huysmans, Marijke

    2017-02-01

    Groundwater drought is a specific type of hydrological drought that concerns groundwater bodies. It may have a significant adverse effect on the socio-economic, agricultural, and environmental conditions. Investigating the effect of different climatic and anthropogenic factors on groundwater drought provides essential information for sustainable planning and management of (ground) water resources. The aim of this study is to identify the influencing factors on groundwater drought in north-western Bangladesh, to understand the forcing mechanisms. A multi-step methodology is proposed to achieve this objective. The standardised precipitation index (SPI) and reconnaissance drought index (RDI) have been used to quantify the aggregated deficit between precipitation and the evaporative demand of the atmosphere, i.e. meteorological drought. The influence of land-cover patterns on the groundwater drought has been identified by calculating spatially distributed groundwater recharge as a function of land cover. Groundwater drought is defined by a threshold method. The results show that the evapotranspiration and rainfall deficits are determining meteorological drought, which shows a direct relation with groundwater recharge deficits. Land-cover change has a small effect on groundwater recharge but does not seem to be the main cause of groundwater-level decline (depletion) in the study area. The groundwater depth and groundwater-level deficit (drought) is continuously increasing with little correlation to meteorological drought or recharge anomalies. Overexploitation of groundwater for irrigation seems to be the main cause of groundwater-level decline in the study area. Efficient irrigation management is essential to reduce the growing pressure on groundwater resources and ensure sustainable water management.

  2. Brackish groundwater and its potential to augment freshwater supplies

    Science.gov (United States)

    Stanton, Jennifer S.; Dennehy, Kevin F.

    2017-07-18

    Secure, reliable, and sustainable water resources are fundamental to the Nation’s food production, energy independence, and ecological and human health and well-being. Indications are that at any given time, water resources are under stress in selected parts of the country. The large-scale development of groundwater resources has caused declines in the amount of groundwater in storage and declines in discharges to surface water bodies (Reilly and others, 2008). Water supply in some regions, particularly in arid and semiarid regions, is not adequate to meet demand, and severe drought intensifies the stresses affecting water resources (National Drought Mitigation Center, the U.S. Department of Agriculture, and the National Oceanic and Atmospheric Association, 2015). If these drought conditions continue, water shortages could adversely affect the human condition and threaten environmental flows necessary to maintain ecosystem health.In support of the national census of water resources, the U.S. Geological Survey (USGS) completed the national brackish groundwater assessment to provide updated information about brackish groundwater as a potential resource to augment or replace freshwater supplies (Stanton and others, 2017). Study objectives were to consolidate available data into a comprehensive database of brackish groundwater resources in the United States and to produce a summary report highlighting the distribution, physical and chemical characteristics, and use of brackish groundwater resources. This assessment was authorized by section 9507 of the Omnibus Public Land Management Act of 2009 (42 U.S.C. 10367), passed by Congress in March 2009. Before this assessment, the last national brackish groundwater compilation was completed in the mid-1960s (Feth, 1965). Since that time, substantially more hydrologic and geochemical data have been collected and now can be used to improve the understanding of the Nation’s brackish groundwater resources.

  3. Using airborne geophysical surveys to improve groundwater resource management models

    Science.gov (United States)

    Abraham, Jared D.; Cannia, James C.; Peterson, Steven M.; Smith, Bruce D.; Minsley, Burke J.; Bedrosian, Paul A.

    2010-01-01

    Increasingly, groundwater management requires more accurate hydrogeologic frameworks for groundwater models. These complex issues have created the demand for innovative approaches to data collection. In complicated terrains, groundwater modelers benefit from continuous high‐resolution geologic maps and their related hydrogeologic‐parameter estimates. The USGS and its partners have collaborated to use airborne geophysical surveys for near‐continuous coverage of areas of the North Platte River valley in western Nebraska. The survey objectives were to map the aquifers and bedrock topography of the area to help improve the understanding of groundwater‐surface‐water relationships, leading to improved water management decisions. Frequency‐domain heliborne electromagnetic surveys were completed, using a unique survey design to collect resistivity data that can be related to lithologic information to refine groundwater model inputs. To render the geophysical data useful to multidimensional groundwater models, numerical inversion is necessary to convert the measured data into a depth‐dependent subsurface resistivity model. This inverted model, in conjunction with sensitivity analysis, geological ground truth (boreholes and surface geology maps), and geological interpretation, is used to characterize hydrogeologic features. Interpreted two‐ and three‐dimensional data coverage provides the groundwater modeler with a high‐resolution hydrogeologic framework and a quantitative estimate of framework uncertainty. This method of creating hydrogeologic frameworks improved the understanding of flow path orientation by redefining the location of the paleochannels and associated bedrock highs. The improved models reflect actual hydrogeology at a level of accuracy not achievable using previous data sets.

  4. Tracing and quantifying groundwater inflow into lakes using radon-222

    Directory of Open Access Journals (Sweden)

    T. Kluge

    2007-06-01

    Full Text Available Due to its high activities in groundwater, the radionuclide 222Rn is a sensitive natural tracer to detect and quantify groundwater inflow into lakes, provided the comparatively low activities in the lakes can be measured accurately. Here we present a simple method for radon measurements in the low-level range down to 3 Bq m−3, appropriate for groundwater-influenced lakes, together with a concept to derive inflow rates from the radon budget in lakes. The analytical method is based on a commercially available radon detector and combines the advantages of established procedures with regard to efficient sampling and sensitive analysis. Large volume (12 l water samples are taken in the field and analyzed in the laboratory by equilibration with a closed air loop and alpha spectrometry of radon in the gas phase. After successful laboratory tests, the method has been applied to a small dredging lake without surface in- or outflow in order to estimate the groundwater contribution to the hydrological budget. The inflow rate calculated from a 222Rn balance for the lake is around 530 m3 per day, which is comparable to the results of previous studies. In addition to the inflow rate, the vertical and horizontal radon distribution in the lake provides information on the spatial distribution of groundwater inflow to the lake. The simple measurement and sampling technique encourages further use of radon to examine groundwater-lake interaction.

  5. Inexact Socio-Dynamic Modeling of Groundwater Contamination Management

    Science.gov (United States)

    Vesselinov, V. V.; Zhang, X.

    2015-12-01

    Groundwater contamination may alter the behaviors of the public such as adaptation to such a contamination event. On the other hand, social behaviors may affect groundwater contamination and associated risk levels such as through changing ingestion amount of groundwater due to the contamination. Decisions should consider not only the contamination itself, but also social attitudes on such contamination events. Such decisions are inherently associated with uncertainty, such as subjective judgement from decision makers and their implicit knowledge on selection of whether to supply water or reduce the amount of supplied water under the scenario of the contamination. A socio-dynamic model based on the theories of information-gap and fuzzy sets is being developed to address the social behaviors facing the groundwater contamination and applied to a synthetic problem designed based on typical groundwater remediation sites where the effects of social behaviors on decisions are investigated and analyzed. Different uncertainties including deep uncertainty and vague/ambiguous uncertainty are effectively and integrally addressed. The results can provide scientifically-defensible decision supports for groundwater management in face of the contamination.

  6. Simulation of Groundwater Flow, Denpasar-Tabanan Groundwater Basin, Bali Province

    Directory of Open Access Journals (Sweden)

    Heryadi Tirtomihardjo

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i3.123Due to the complex structure of the aquifer systems and its hydrogeological units related with the space in which groundwater occurs, groundwater flows were calculated in three-dimensional method (3D Calculation. The geometrical descritization and iteration procedures were based on an integrated finite difference method. In this paper, all figures and graphs represent the results of the calibrated model. Hence, the model results were simulated by using the actual input data which were calibrated during the simulation runs. Groundwater flow simulation of the model area of the Denpasar-Tabanan Groundwater Basin (Denpasar-Tabanan GB comprises steady state run, transient runs using groundwater abstraction in the period of 1989 (Qabs-1989 and period of 2009 (Qabs-2009, and prognosis run as well. Simulation results show, in general, the differences of calculated groundwater heads and observed groundwater heads at steady and transient states (Qabs-1989 and Qabs-2009 are relatively small. So, the groundwater heads situation simulated by the prognosis run (scenario Qabs-2012 are considerably valid and can properly be used for controlling the plan of groundwater utilization in Denpasar-Tabanan GB.

  7. Groundwater Governance in the United States: Common Priorities and Challenges.

    Science.gov (United States)

    Megdal, Sharon B; Gerlak, Andrea K; Varady, Robert G; Huang, Ling-Yee

    2015-01-01

    Groundwater is a critical component of the water supply for agriculture, urban areas, industry, and ecosystems, but managing it is a challenge because groundwater is difficult to map, quantify, and evaluate. Until recently, study and assessment of governance of this water resource has been largely neglected. A survey was developed to query state agency officials about the extent and scope of groundwater use, groundwater laws and regulations, and groundwater tools and strategies. Survey responses revealed key findings: states' legal frameworks for groundwater differ widely in recognizing the hydrologic connection between surface water and groundwater, the needs of groundwater-dependent ecosystems, and the protection of groundwater quality; states reported a range in capacity to enforce groundwater responsibilities; and states have also experienced substantial changes in groundwater governance in the past few decades. Overall, groundwater governance across the United States is fragmented. States nevertheless identified three common priorities for groundwater governance: water quality and contamination, conflicts between users, and declining groundwater levels. This survey represents an initial step in a broader, continuing effort to characterize groundwater governance practices in the United States.

  8. Excel Spreadsheet Tools for Analyzing Groundwater Level Records and Displaying Information in ArcMap

    Science.gov (United States)

    Tillman, Fred D

    2009-01-01

    When beginning hydrologic investigations, a first action is often to gather existing sources of well information, compile this information into a single dataset, and visualize this information in a geographic information system (GIS) environment. This report presents tools (macros) developed using Visual Basic for Applications (VBA) for Microsoft Excel 2007 to assist in these tasks. One tool combines multiple datasets into a single worksheet and formats the resulting data for use by the other tools. A second tool produces summary information about the dataset, such as a list of unique site identification numbers, the number of water-level observations for each, and a table of the number of sites with a listed number of water-level observations. A third tool creates subsets of the original dataset based on user-specified options and produces a worksheet with water-level information for each well in the subset, including the average and standard deviation of water-level observations and maximum decline and rise in water levels between any two observations, among other information. This water-level information worksheet can be imported directly into ESRI ArcMap as an 'XY Data' file, and each of the fields of summary well information can be used for custom display. A separate set of VBA tools distributed in an additional Excel workbook creates hydrograph charts of each of the wells in the data subset produced by the aforementioned tools and produces portable document format (PDF) versions of the hydrograph charts. These PDF hydrographs can be hyperlinked to well locations in ArcMap or other GIS applications.

  9. South-East Iowa Groundwater Vulnerability Regions

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions on this map represent areas with similar hydro- geologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  10. Potential Health Effects from Groundwater Pollution.

    Science.gov (United States)

    Goyer, Robert A.

    1985-01-01

    Discusses the growing awareness of potential toxicological effects of synthetic organic chemicals contaminating groundwater. Problems concerning pesticides, chlorination, epidemiologic studies, cancer, nephrotoxicity, and considerations of risk are addressed. Additional research in this area is advocated. (DH)

  11. Hydrogeochemical and isotopic characterization of the groundwater ...

    African Journals Online (AJOL)

    POSTE7

    : ... is also affected by the relief, while the southward shift of the isohyets .... Solids (TDS) were calculated by adding the main ionic species ... (Davis and De Wiest, 1966; Freeze and Cherry, 1979). ... depression point of groundwater discharge.

  12. Groundwater pollution: are we monitoring appropriate parameters?

    CSIR Research Space (South Africa)

    Tredoux, G

    2004-01-01

    Full Text Available . In the literature, divergent approaches have identified various sets of pollutants and pollution indicators. This paper discusses international and local trends in groundwater monitoring for baseline studies and on-going pollution detection monitoring for a variety...

  13. North-West Iowa Groundwater Vulnerability Regions

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions on this map represent areas with similar hydro-geologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  14. North-East Iowa Groundwater Vulnerability Regions

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions on this map represent areas with similar hydro-geologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  15. Effect of Groundwater Abstraction on Fen Ecosystems

    DEFF Research Database (Denmark)

    Johansen, Ole; Pedersen, Morten Lauge; Jensen, Jacob Birk

    2011-01-01

    Quantifying the effects of groundwater abstraction on fen ecosystems located in discharge areas can be complicated. The water level in fens is close to the terrain surface most of the year and it is controlled by a relatively constant groundwater exfiltration. It is difficult to measure...... the exfiltration fluxes and thus water level data is typically used to evaluate if the ecosystem is affected. The paper presents collected data and analysis from a case study, where the hydrological effect of groundwater abstraction on rich fens and springs in a Danish river valley has been studied. The natural...... within a distance of 1.5 km to a planned well field. In the river valley the interaction between groundwater and surface water is strongly affected by low permeable sediments. These sediments reduce the direct discharge to the river and have a large impact on the functioning and presence of the rich fen...

  16. Isolation of haloorganic groundwater humic substances

    DEFF Research Database (Denmark)

    Krog, M.; Grøn, C.

    1995-01-01

    Humic substances were isolated from groundwater according to a revised method designed to avoid organohalogen artefacts. The prepared humic substances exhibited lower halogen contents than humic substances isolated according to the conventionally used method. Excessive oxidation or hydrolysis...

  17. Science, society, and the coastal groundwater squeeze

    Science.gov (United States)

    Michael, Holly A.; Post, Vincent E. A.; Wilson, Alicia M.; Werner, Adrian D.

    2017-04-01

    Coastal zones encompass the complex interface between land and sea. Understanding how water and solutes move within and across this interface is essential for managing resources for society. The increasingly dense human occupation of coastal zones disrupts natural groundwater flow patterns and degrades freshwater resources by both overuse and pollution. This pressure results in a "coastal groundwater squeeze," where the thin veneers of potable freshwater are threatened by contaminant sources at the land surface and saline groundwater at depth. Scientific advances in the field of coastal hydrogeology have enabled responsible management of water resources and protection of important ecosystems. To address the problems of the future, we must continue to make scientific advances, and groundwater hydrology needs to be firmly embedded in integrated coastal zone management. This will require interdisciplinary scientific collaboration, open communication between scientists and the public, and strong partnerships with policymakers.

  18. South-West Iowa Groundwater Vulnerability Regions

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions on this map represent areas with similar hydro- geologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  19. Assessment of Physicochemical Characteristics of Groundwater ...

    African Journals Online (AJOL)

    Assessment of Physicochemical Characteristics of Groundwater Quality used for Drinking ... Key Words: Water Quality, Water Quality Index, EIA, Health, Diseases, Firozabad City. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  20. Arsenic Speciation in Groundwater: Role of Thioanions

    Science.gov (United States)

    The behavior of arsenic in groundwater environments is fundamentally linked to its speciation. Understanding arsenic speciation is important because chemical speciation impacts reactivity, bioavailability, toxicity, and transport and fate processes. In aerobic environments arsen...

  1. Hydro geophysical Investigation for Groundwater Development at ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Keywords: basement complex, electrical sounding, groundwater, exploration, aquifers. Fresh water is a .... underscores the reliability of the analysis tool for this type of work. Latitude .... Jatau, B.S., Patrick N.O., Baba A., Fadele S.I. (Jan.

  2. Building groundwater modeling capacity in Mongolia

    Science.gov (United States)

    Valder, Joshua F.; Carter, Janet M.; Anderson, Mark T.; Davis, Kyle W.; Haynes, Michelle A.; Dorjsuren Dechinlhundev,

    2016-06-16

    Ulaanbaatar, the capital city of Mongolia (fig. 1), is dependent on groundwater for its municipal and industrial water supply. The population of Mongolia is about 3 million people, with about one-half the population residing in or near Ulaanbaatar (World Population Review, 2016). Groundwater is drawn from a network of shallow wells in an alluvial aquifer along the Tuul River. Evidence indicates that current water use may not be sustainable from existing water sources, especially when factoring the projected water demand from a rapidly growing urban population (Ministry of Environment and Green Development, 2013). In response, the Government of Mongolia Ministry of Environment, Green Development, and Tourism (MEGDT) and the Freshwater Institute, Mongolia, requested technical assistance on groundwater modeling through the U.S. Army Corps of Engineers (USACE) to the U.S. Geological Survey (USGS). Scientists from the USGS and USACE provided two workshops in 2015 to Mongolian hydrology experts on basic principles of groundwater modeling using the USGS groundwater modeling program MODFLOW-2005 (Harbaugh, 2005). The purpose of the workshops was to bring together representatives from the Government of Mongolia, local universities, technical experts, and other key stakeholders to build in-country capacity in hydrogeology and groundwater modeling.A preliminary steady-state groundwater-flow model was developed as part of the workshops to demonstrate groundwater modeling techniques to simulate groundwater conditions in alluvial deposits along the Tuul River in the vicinity of Ulaanbaatar. ModelMuse (Winston, 2009) was used as the graphical user interface for MODFLOW for training purposes during the workshops. Basic and advanced groundwater modeling concepts included in the workshops were groundwater principles; estimating hydraulic properties; developing model grids, data sets, and MODFLOW input files; and viewing and evaluating MODFLOW output files. A key to success was

  3. Impact of oil on groundwater chemical composition

    Science.gov (United States)

    Brakorenko, N. N.

    2015-11-01

    The objective of the paper is to characterize the chemical composition of groundwater samples from the monitoring wells drilled in the petrol station areas within the vicinity of Tomsk. The level of contamination has increased since many macro - and microcomponent concentrations (such as petroleum products, chlorine, sulphates, carbon dioxide and lead, etc.) in groundwater samples of the present study is higher than that in previous period samples.

  4. Selective sorption of technetium from groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    The purpose of this project is to develop an anion exchange resin that will selectively remove the radionuclide technetium, in the form of the pertechnetate anion TcO{sub 4}{sup -}, from groundwater, leaving behind other interfering anions. A resin bed of this material will be used either as part of a coupled treatment-recirculation system for the in situ remediation of groundwater contaminated with technetium or in a once-through treatment scheme.

  5. Groundwater hydrogeochemical characteristics in rehabilitated coalmine spoils

    Science.gov (United States)

    Gomo, M.; Masemola, E.

    2016-04-01

    The investigation aims to identify and describe hydrogeochemical processes controlling the evolution of groundwater chemistry in rehabilitated coalmine spoils and their overall influence on groundwater quality at a study area located in the Karoo basin of South Africa. A good understanding of the processes that controls the evolution of the mine water quality is vital for the planning, application and management of post-mining remedial actions. The study utilises scatter plots, statistical analysis, PHREEQC hydrogeochemical modelling, stoichiometric reaction ratios analysis, and the expanded Durov diagram as complimentary tools to interpret the groundwater chemistry data collected from monitoring boreholes from 1995 to 2014. Measured pH ranging between 6-8 and arithmetic mean of 7.32 shows that the groundwater system is characterised by circumneutral hydrogeochemical conditions period. Comparison of measured groundwater ion concentrations to theoretical reaction stoichiometry identifies Dolomite-Acid Mine Drainage (AMD) neutralisation as the main hydrogeochemical process controlling the evolution of the groundwater chemistry. Hydrogeochemical modelling shows that, the groundwater has temporal variations of calcite and dolomite saturation indices characterised by alternating cycles of over-saturation and under-saturation that is driven by the release of sulphate, calcium and magnesium ions from the carbonate-AMD neutralization process. Arithmetic mean concentrations of sulphate, calcium and magnesium are in the order of 762 mg/L, 141 mg/L and 108 mg/L. Calcium and magnesium ions contribute to very hard groundwater quality conditions. Classification based on total dissolved solids (TDS), shows the circumneutral water is of poor to unacceptable quality for drinking purposes. Despite its ability to prevent AMD formation and leaching of metals, the dolomite-AMD neutralisation process can still lead to problems of elevated TDS and hardness which mines should be aware of

  6. Intercomparison of Rn-222 determination from groundwater

    DEFF Research Database (Denmark)

    Vesterbacka, P.; Pettersson, H.; Hanste, U.-M.;

    2010-01-01

    An intercomparison exercise on Rn-222 determination in groundwater was organized between eight Nordic laboratories. The individual laboratory results were in most cases within 20% of the median value and within reported uncertainties. Considering the particular difficulties in preparing, transpor......An intercomparison exercise on Rn-222 determination in groundwater was organized between eight Nordic laboratories. The individual laboratory results were in most cases within 20% of the median value and within reported uncertainties. Considering the particular difficulties in preparing...

  7. Development and Testing of Active Groundwater Samplers

    DEFF Research Database (Denmark)

    Nilsson, Bertel; Jakobsen, Rasmus; Andersen, Lars Jørgen

    1995-01-01

    Active groundwater sampling techniques are methods where the aquifer is flushed by pumping. The methods developed and tested represent non-dedicated methods for use in existing water wells. This paper describes two different sampling techniques: the Separation Pumping Technique (SP) and the Packer...... on numerical modelling and controlled laboratory experiments. Active groundwater sampling techniques can be used for remedial pumping optimization and in obtaining hydraulic data and represent a fast operational and reliable sampling tool, also under heterogeneous and low permeability conditions....

  8. Evolution of Unsteady Groundwater Flow Systems

    Science.gov (United States)

    Liang, Xing; Jin, Menggui; Niu, Hong

    2016-04-01

    Natural groundwater flow is usually transient, especially in long time scale. A theoretical approach on unsteady groundwater flow systems was adopted to highlight some of the knowledge gaps in the evolution of groundwater flow systems. The specific consideration was focused on evolution of groundwater flow systems from unsteady to steady under natural and mining conditions. Two analytical solutions were developed, using segregation variable method to calculate the hydraulic head under steady and unsteady flow conditions. The impact of anisotropy ratio, hydraulic conductivity (K) and specific yield (μs) on the flow patterns were analyzed. The results showed that the area of the equal velocity region increased and the penetrating depth of the flow system decreased while the anisotropy ratio (ɛ = °Kx-/Kz--) increased. Stagnant zones were found in the flow field where the directions of streamlines were opposite. These stagnant zones moved up when the horizontal hydraulic conductivity increased. The results of the study on transient flow indicated a positive impact on hydraulic head with an increase of hydraulic conductivity, while a negative effect on hydraulic head was observed when the specific yield was enhanced. An unsteady numerical model of groundwater flow systems with annual periodic recharge was developed using MODFLOW. It was observed that the transient groundwater flow patterns were different from that developed in the steady flow under the same recharge intensity. The water table fluctuated when the recharge intensity altered. The monitoring of hydraulic head and concentration migration revealed that the unsteady recharge affected the shallow local flow system more than the deep regional flow system. The groundwater flow systems fluctuated with the action of one or more pumping wells. The comparison of steady and unsteady groundwater flow observation indicated that the unsteady flow patterns cannot be simulated by the steady model when the condition

  9. Arsenic geochemistry of groundwater in Southeast Asia.

    Science.gov (United States)

    Kim, Kyoung-Woong; Chanpiwat, Penradee; Hanh, Hoang Thi; Phan, Kongkea; Sthiannopkao, Suthipong

    2011-12-01

    The occurrence of high concentrations of arsenic in the groundwater of the Southeast Asia region has received much attention in the past decade. This study presents an overview of the arsenic contamination problems in Vietnam, Cambodia, Lao People's Democratic Republic and Thailand. Most groundwater used as a source of drinking water in rural areas has been found to be contaminated with arsenic exceeding the WHO drinking water guideline of 10 μg·L(-1). With the exception of Thailand, groundwater was found to be contaminated with naturally occurring arsenic in the region. Interestingly, high arsenic concentrations (> 10 μg·L(-1)) were generally found in the floodplain areas located along the Mekong River. The source of elevated arsenic concentrations in groundwater is thought to be the release of arsenic from river sediments under highly reducing conditions. In Thailand, arsenic has never been found naturally in groundwater, but originates from tin mining activities. More than 10 million residents in Southeast Asia are estimated to be at risk from consuming arsenic-contaminated groundwater. In Southeast Asia, groundwater has been found to be a significant source of daily inorganic arsenic intake in humans. A positive correlation between groundwater arsenic concentration and arsenic concentration in human hair has been observed in Cambodia and Vietnam. A substantial knowledge gap exists between the epidemiology of arsenicosis and its impact on human health. More collaborative studies particularly on the scope of public health and its epidemiology are needed to conduct to fulfill the knowledge gaps of As as well as to enhance the operational responses to As issue in Southeast Asian countries.

  10. Mixed Waste Management Facility Groundwater Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1998-03-01

    During fourth quarter 1997, eleven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  11. Groundwater sustainability in Asian Mega city

    Science.gov (United States)

    Taniguchi, M.

    2009-12-01

    Population increased in many Asian coastal cities, and increased demand of groundwater as water resources caused many subsurface environments. Subsurface environmental problems such as land subsidence due to excessive pumping, groundwater contamination and subsurface thermal anomaly, have occurred repeatedly in Asian mega cities with a time lag depending on the development stage of urbanization. This study focus on four subjects; urban, water, heat, and material in subsurface environment, and intensive field observations and data collections had been made in the basins including Tokyo, Osaka, Bangkok, Jakarta, Manila, Seoul, and Taipei. The new methods for evaluating the changes in groundwater storage by gravimeter measurements in situ and Satellite GRACE, and residence time evaluation by 85Kr and CFCs, have been developed in this study. The combined effects of heat island and global warming from subsurface temperature in Asian mega cities evaluated the magnitude and timing of the urbanization which were preserved in subsurface thermal environment. The effects of law/institution on change in reliable water resources between groundwater and surface water, have been also investigated. The groundwater is “private water”, on the other hand, the surface water is “public water”. Regulation of groundwater pumping due to serious land subsidence did not work without alternative water resources, and the price of water is another major factor for the change in reliable water resources between groundwater and surface water. Land use/cover changes at three ages (1940’s, 1970’s and 2000’s) have been analyzed based on GIS with 0.5 km grid at seven targeted cities. The development of integrated indicators based on GIS for understanding the relationship between human activities and subsurface environment have been made in this study. Finally, we address the sustainable use of groundwater and subsurface environments for better future development and human well-being.

  12. Groundwater hydrology” is redundant

    Science.gov (United States)

    While in the Netherlands a few months ago, I mentioned “groundwater hydrology” to a very well-educated, very literary, and non-hydrologic old friend. She shuddered and told me in no uncertain words that this was a horrible term, completely redundant like a round circle, or as the linguists call it, a pleonasm. This is, of course, because hydrology already means water science (from the Greek words udor, or hydor for water, and logos for science), so that groundwater hydrology really stands for groundwater water science, and surface water hydrology for surface water science.These are pleonasms of the first kind and insults to any language purist, which all of us should strive to be! So I propose that henceforth groundwater hydrology be called subterranean hydrology. Other possibilities would be subsurface hydrology, but this sounds too shallow, or underground hydrology, which, however, could give the impression of some clandestine activity. Besides, subterranean hydrology would be in keeping with the words for groundwater in Latin-based languages (eau souterrain in French, acqua sotierranea in Italian, and aguas subterraneas in Spanish). Also, subterranean hydrology includes the vadose zone, which, of course, groundwater hydrology as such does not. Surface water hydrology would simply be called surface hydrology, and anything above that atmospheric hydrology.

  13. Groundwater depletion embedded in international food trade

    Science.gov (United States)

    Dalin, Carole; Wada, Yoshihide; Kastner, Thomas; Puma, Michael J.

    2017-03-01

    Recent hydrological modelling and Earth observations have located and quantified alarming rates of groundwater depletion worldwide. This depletion is primarily due to water withdrawals for irrigation, but its connection with the main driver of irrigation, global food consumption, has not yet been explored. Here we show that approximately eleven per cent of non-renewable groundwater use for irrigation is embedded in international food trade, of which two-thirds are exported by Pakistan, the USA and India alone. Our quantification of groundwater depletion embedded in the world’s food trade is based on a combination of global, crop-specific estimates of non-renewable groundwater abstraction and international food trade data. A vast majority of the world’s population lives in countries sourcing nearly all their staple crop imports from partners who deplete groundwater to produce these crops, highlighting risks for global food and water security. Some countries, such as the USA, Mexico, Iran and China, are particularly exposed to these risks because they both produce and import food irrigated from rapidly depleting aquifers. Our results could help to improve the sustainability of global food production and groundwater resource management by identifying priority regions and agricultural products at risk as well as the end consumers of these products.

  14. Natural Biological Attenuation of Benzene in Groundwater

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Benzene has been found in subsurface unsaturated soil and groundwater beneath a petro-chemical plant. Although the groundwater contained several mg/L of benzene in the area immediately beneath the source, benzene was not detected in monitoring wells approximately 800m down stream. All kinds of physical processes such as adsorption and advection/dispersion are considered to account for the observed attenuation. The results indicated that the attenuation was primarily due to natural biological processes occurring within the aquifer. The evidence for the natural bioremediation of benzene from the groundwater included: (1) analysis of groundwater chemistry, (2) laboratory studies demonstrating benzene biodegradation in aquifer samples, and (3) computer simulations examining benzene transport. Laboratory experiments indicated that for conditions similar to those in the plume, the aerobic degradation of benzene by the naturally occurring microorganisms in the polluted groundwater samples was quite rapid with a half-life time of from 5 to 15 days. In situ analyses indicated the level of dissolved oxygen in the groundwater was over 2mg/L. Thus, oxygen should not limit the biodegradation. In fact, the benzene was also shown to degrade under anaerobic conditions. The results from the modeling simulations indicate that biodegradation is the dominant process influencing attenuation of the benzene.

  15. Groundwater management institutions to protect riparian habitat

    Science.gov (United States)

    Orr, Patricia; Colby, Bonnie

    2004-12-01

    Groundwater pumping affects riparian habitat when it causes the water table to drop beyond the reach of riparian plants. Riparian habitat provides services that are not directly traded in markets, as is the case with many environmental amenities. There is no direct market where one may buy or sell the mix of services provided by a riparian corridor. The objective of this article is to review groundwater management mechanisms and assess their strengths and weaknesses for preserving the ecological integrity of riparian areas threatened by groundwater pumping. Policy instruments available to those concerned with the effects of groundwater pumping on riparian areas fall into three broad categories: (1) command and control (CAC), (2) incentive-based economic instruments, and (3) cooperative/suasive strategies. The case of the San Pedro River illustrates multiple and overlapping strategies applied in an ongoing attempt to reverse accumulating damage to a riparian ecosystem. Policy makers in the United States can choose among a broad menu of policy options to protect riparian habitat from groundwater pumping. They can capitalize on the clarity of command-and-control strategies, the flexibility and less obtrusive nature of incentive-based economic strategies, and the benefits that collaborative efforts can bring in the form of mutual consideration. While collaborative problem solving and market-based instruments are important policy tools, experience indicates that a well-formulated regulatory structure to limit regional groundwater pumping is an essential component of an effective riparian protection strategy.

  16. Groundwater Assessment Using Remote Sensing And GIS In A Rural Groundwater Project In Ghana: Lessons Learned

    Science.gov (United States)

    Sander, Per; Chesley, Matthew M.; Minor, Timothy B.

    1996-03-01

    A rural groundwater project within the Voltaian Sedimentary Basin in central Ghana was the focus of a study to develop better well-siting strategies, based on interpretations of remote-sensing data and Geographic Information System (GIS) analyses. The drilling success rate of the project had been low due to low primary porosity and the restriction of groundwater to secondary structural features. Remote-sensing data that were incorporated in the study include Landsat Thematic Mapper (TM), SPOT, and infrared aerial photography. These data were interpreted for linear vegetation, drainage, and bedrock features that would indicate underlying transmissive fracture zones. Lineaments were examined in the field and integrated with information from several hundred GPS-positioned boreholes. GIS analyses focused on the identification of phenomena that contributed to successful wells, in order to develop optimal strategies for future well siting. Remote-sensing data allowed effective mapping of features that are conducive to groundwater development. Lineaments identified on Landsat TM imagery had the greatest correspondence to well success. The integration of data in a GIS was valuable for effective analyses but also exposed the necessity of accounting for spatial reference and accuracy of data from different sources. GPS technology proved very useful to increase the spatial accuracy of the various data integrated in the GIS.

  17. Groundwater dating for understanding nitrogen in groundwater systems - Time lag, fate, and detailed flow path ways

    Science.gov (United States)

    Morgenstern, Uwe; Hadfield, John; Stenger, Roland

    2014-05-01

    Nitrate contamination of groundwater is a problem world-wide. Nitrate from land use activities can leach out of the root zone of the crop into the deeper part of the unsaturated zone and ultimately contaminate the underlying groundwater resources. Nitrate travels with the groundwater and then discharges into surface water causing eutrophication of surface water bodies. To understand the source, fate, and future nitrogen loads to ground and surface water bodies, detailed knowledge of the groundwater flow dynamics is essential. Groundwater sampled at monitoring wells or discharges may not yet be in equilibrium with current land use intensity due to the time lag between leaching out of the root zone and arrival at the sampling location. Anoxic groundwater zones can act as nitrate sinks through microbial denitrification. However, the effect of denitrification on overall nitrate fluxes depends on the fraction of the groundwater flowing through such zones. We will show results from volcanic aquifers in the central North Island of New Zealand where age tracers clearly indicate that the groundwater discharges into large sensitive lakes like Lake Taupo and Lake Rotorua are not yet fully realising current land use intensity. The majority of the water discharging into these lakes is decades and up to over hundred years old. Therefore, increases in dairy farming over the last decades are not yet reflected in these old water discharges, but over time these increased nitrate inputs will eventually work their way through the large groundwater systems and increasing N loads to the lakes are to be expected. Anoxic zones are present in some of these aquifers, indicating some denitrification potential, however, age tracer results from nested piezo wells show young groundwater in oxic zones indicating active flow in these zones, while anoxic zones tend to have older water indicating poorer hydraulic conductivity in these zones. Consequently, to evaluate the effect of denitrification

  18. Radium isotopes in groundwater around Fuji Volcano, Japan -application for groundwater dating on volcanic area-

    Science.gov (United States)

    Ohta, T.; Mahara, Y.

    2010-12-01

    Young groundwater dating less than 100 years is possible to be obtained from environmental radioactivity with short half life, 3H+3He, 85Kr, or chemical material, CFC-12. The 3H+3He dating method is excellent method to estimate the residence time of shallow groundwater. The one of advantage of the method is small sample volume. The 3He in groundwater is originated by 3 sources, tritiogenic He, mantle He, radiogenic He produced in rock. Especially, as the contribution of the mantle He is greater than the radiogenic and triogenic, when 3H+3He dating apply for groundwater dating on volcanic area, we have to determine ratio of 3 sources. On the other hand, as 85Kr is only originated from atmosphere, it is excellent groundwater dating tracer on volcanic area. However, as 85Kr is ultra low concentration in groundwater, 85Kr is needed to separate from large amount of ground water about 10^5 L. Young groundwater dating by these methods has both advantages and disadvantages, but the disadvantages of the individual methods can be offset by using multiple tracers. Development of a lot of groundwater dating techniques is desired. Therefore, an application of radium isotopes which is simple origin to groundwater dating on volcanic area was tried. Ra-228 and Ra-226 are progenies of Th and U, respectively. The 228Ra/226Ra in ground waters depends on the Th/U in the relevant rocks. As the 228Ra and 226Ra in shallow groundwater on volcanic area are originated from only rock, and the collection of radium isotopes from groundwater is easier than that of 85Kr, implying that it is possible to be good tracer for volcanic area. We aim that groundwater age obtain from 228Ra/226Ra in groundwater and relevant rock on volcanic area. We determined that 228Ra/226Ra observed with river waters and the relevant rocks. The method applied for Kakitagawa around Fuji Volcano, Japan. The relevant rock of Kakitagawa is Mishima lava flow. Our method compared with 3H+3He dating. The residence time of

  19. Groundwater Potential Assessment Using Geographic Information Systems and Ahp Method (case Study: Baft City, Kerman, Iran)

    Science.gov (United States)

    Zeinolabedini, M.; Esmaeily, A.

    2015-12-01

    The purpose of the present study is to use Geographical Information Systems (GISs) for determining the best areas having ground water potential in Baft city. To achieve this objective, parameters such as precipitation, slope, fault, vegetation, land cover and lithology were used. Regarding different weight of these parameters effect, Analytic Hierarchy Process (AHP) was used. After developing informational layers in GIS and weighing each of them, a model was developed. The final map of ground waters potential was calculated through the above-mentioned model. Through applying our developed model four areas having high, average, low potential and without required potential distinguished. Results of this research indicated that 0.74, 41.23 and 45.63 percent of the area had high, average and low potential, respectively. Moreover, 12.38% of this area had no potential. Obtained results can be useful in management plans of ground water resources and preventing excessive exploitation.

  20. Isotope hydrology of deep groundwater in Syria: renewable and non-renewable groundwater and paleoclimate impact

    Science.gov (United States)

    Al-Charideh, A.; Kattaa, B.

    2016-02-01

    The Regional Deep Cretaceous Aquifer (RDCA) is the principal groundwater resource in Syria. Isotope and hydrochemical data have been used to evaluate the geographic zones in terms of renewable and non-renewable groundwater and the inter-relation between current and past recharge. The chemical and isotopic character of groundwater together with radiometric 14C data reflect the existence of three different groundwater groups: (1) renewable groundwater, in RDCA outcropping areas, in western Syria along the Coastal and Anti-Lebanon mountains. The mean δ18O value (-7.2 ‰) is similar to modern precipitation with higher 14C values (up to 60-80 pmc), implying younger groundwater (recent recharge); (2) semi-renewable groundwater, which is located in the unconfined section of the RDCA and parallel to the first zone. The mean δ18O value (-7.0 ‰) is also similar to modern precipitation with a 14C range of 15-45 pmc; (3) non-renewable groundwater found in most of the Syrian interior, where the RDCA becomes confined. A considerable depletion in δ18O (-8.0 ‰) relative to the modern rainfall and low values of 14C (<15 pmc) suggest that the large masses of deep groundwater are non-renewable and related to an older recharge period. The wide scatter of all data points around the two meteoric lines in the δ18O-δ2H diagram indicates considerable variation in recharge conditions. There is limited renewable groundwater in the mountain area, and most of the stored deep groundwater in the RDCA is non-renewable, with corrected 14C ages varying between 10 and 35 Kyr BP.

  1. Geographic Information System technology applications to Ground-Water Management Program, EPA Region 3. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Clibanoff, A.

    1989-01-01

    The report is part of the National Network for Environmental Management Studies under the auspices of the Office of Cooperative Environmental Management of the U.S. Environmental Protection Agency. GIS technology is a computer informational system that stores, analyzes, and manipulates both spatial and non-spatial data. Base map information for the GIS has come primarily from the USGS. Data for the entire Region at the 1:2,000,000 scale and for some of the Region at the 1:100,000 scale is currently being used. Data from GIRAS, a land use Database, at the 1:250,000 also exists for much of the Region. Information is contributed to the GIS from various sources including but not limited to RCRA, CERCLA, UIC, and UST programs. The WHP program is also being tapped to identify locations of public water supply wells. Region III is interested in any data that accurately describes the ground water condition in a given area. In Regional pilot studies being conducted, GIS is being employed at both the regional and county level. The goals of the pilot studies include the identification of areas of ground water susceptibility and major sources of ground water contamination, and prioritizing the Region's ground water supplies in terms of vulnerability to pollution and risk to the population.

  2. Megacity pumping and preferential flow threaten groundwater quality

    Science.gov (United States)

    Khan, Mahfuzur R.; Koneshloo, Mohammad; Knappett, Peter S. K.; Ahmed, Kazi M.; Bostick, Benjamin C.; Mailloux, Brian J.; Mozumder, Rajib H.; Zahid, Anwar; Harvey, Charles F.; van Geen, Alexander; Michael, Holly A.

    2016-09-01

    Many of the world's megacities depend on groundwater from geologically complex aquifers that are over-exploited and threatened by contamination. Here, using the example of Dhaka, Bangladesh, we illustrate how interactions between aquifer heterogeneity and groundwater exploitation jeopardize groundwater resources regionally. Groundwater pumping in Dhaka has caused large-scale drawdown that extends into outlying areas where arsenic-contaminated shallow groundwater is pervasive and has potential to migrate downward. We evaluate the vulnerability of deep, low-arsenic groundwater with groundwater models that incorporate geostatistical simulations of aquifer heterogeneity. Simulations show that preferential flow through stratigraphy typical of fluvio-deltaic aquifers could contaminate deep (>150 m) groundwater within a decade, nearly a century faster than predicted through homogeneous models calibrated to the same data. The most critical fast flowpaths cannot be predicted by simplified models or identified by standard measurements. Such complex vulnerability beyond city limits could become a limiting factor for megacity groundwater supplies in aquifers worldwide.

  3. Extract relevant features from DEM for groundwater potential mapping

    Science.gov (United States)

    Liu, T.; Yan, H.; Zhai, L.

    2015-06-01

    Multi-criteria evaluation (MCE) method has been applied much in groundwater potential mapping researches. But when to data scarce areas, it will encounter lots of problems due to limited data. Digital Elevation Model (DEM) is the digital representations of the topography, and has many applications in various fields. Former researches had been approved that much information concerned to groundwater potential mapping (such as geological features, terrain features, hydrology features, etc.) can be extracted from DEM data. This made using DEM data for groundwater potential mapping is feasible. In this research, one of the most widely used and also easy to access data in GIS, DEM data was used to extract information for groundwater potential mapping in batter river basin in Alberta, Canada. First five determining factors for potential ground water mapping were put forward based on previous studies (lineaments and lineament density, drainage networks and its density, topographic wetness index (TWI), relief and convergence Index (CI)). Extraction methods of the five determining factors from DEM were put forward and thematic maps were produced accordingly. Cumulative effects matrix was used for weight assignment, a multi-criteria evaluation process was carried out by ArcGIS software to delineate the potential groundwater map. The final groundwater potential map was divided into five categories, viz., non-potential, poor, moderate, good, and excellent zones. Eventually, the success rate curve was drawn and the area under curve (AUC) was figured out for validation. Validation result showed that the success rate of the model was 79% and approved the method's feasibility. The method afforded a new way for researches on groundwater management in areas suffers from data scarcity, and also broaden the application area of DEM data.

  4. Groundwater chemistry of a nuclear waste reposoitory in granite bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J.

    1981-09-01

    This report concerns the prediction of the maximum dissolution rate for nuclear waste stored in the ground. That information is essential in judging the safety of a nuclear waste repository. With a limited groundwater flow, the maximum dissolution rate coincides with the maximum solubility. After considering the formation and composition of deep granite bedrock groundwater, the report discusses the maximum solubility in such groundwater of canister materials, matrix materials and waste elements. The parameters considered are pH, Eh and complex formation. The use of potential-pH (Pourbaix) diagrams is stressed; several appendixes are included to help in analyzing such diagrams. It is repeatedly found that desirable basic information on solution chemistry is lacking, and an international cooperative research effort is recommended. The report particularly stresses the lack of reliable data about complex formation and hydrolysis of the actinides. The Swedish Nuclear Fuel Safety (KBS) study has been used as a reference model. Notwithstanding the lack of reliable chemical data, particularly for the actinides and some fission products, a number of essential conclusions can be drawn about the waste handling model chosen by KBS. (1) Copper seems to be highly resistant to groundwater corrosion. (2) Lead and titanium are also resistant to groundwater, but inferior to copper. (3) Iron is not a suitable canister material. (4) Alumina (Al/sub 2/O/sub 3/) is not a suitable canister material if groundwater pH goes up to or above 10. Alumina is superior to copper at pH < 9, if there is a risk of the groundwater becoming oxidizing. (5) The addition of vivianite (ferrous phosphate) to the clay backfill around the waste canisters improves the corrosion resistance of the metal canisters, and reduces the solubility of many important waste elements. This report does not treat the migration of dissolved species through the rock.

  5. The Savannah River Site`s Groundwater Monitoring Program. Second quarter 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This document contains information concerning the groundwater monitoring program at Savannah River Plant. The EPD/EMS (environmental protection department/environmental monitoring section) is responsible for monitoring constituents in the groundwater at approximately 135 waste sites in 16 areas at SRS. This report consolidates information from field reports, laboratory analysis, and quality control. The groundwater in these areas has been contaminated with radioactive materials, organic compounds, and heavy metals.

  6. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, O.; Namar, R. (In2Earth Modelling Ltd (Switzerland)); Jansson, P. (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2010-10-15

    The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the

  7. Can we monitor groundwater head variation from space? Coupling ERS spaceborne microwave observations to groundwater dynamics

    NARCIS (Netherlands)

    Sutanudjaja, E. H.; de Jong, S. M.; van Geer, F. C.; Bierkens, M. F. P.

    2012-01-01

    The objective of this study is to investigate whether the time series of a remote sensing based soil moisture product, referred as the European Remote Sensing Soil Water Index (ERS SWI), correlates to in-situ observations of groundwater heads; and can thus be used for groundwater head prediction. As

  8. Reliability of travel times to groundwater abstraction wells: Application of the Netherlands Groundwater Model - LGM

    NARCIS (Netherlands)

    Kovar K; Leijnse A; Uffink G; Pastoors MJH; Mulschlegel JHC; Zaadnoordijk WJ; LDL; IMD; TNO/NITG; Haskoning

    2005-01-01

    A modelling approach was developed, incorporated in the finite-element method based program LGMLUC, making it possible to determine the reliability of travel times of groundwater flowing to groundwater abstraction sites. The reliability is seen here as a band (zone) around the expected travel-time i

  9. Iowa ground-water quality

    Science.gov (United States)

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The population served by ground-water supplies in Iowa (fig. L4) is estimated to be about 2,392,000, or 82 percent of the total population (U.S. Geological Survey, 1985, p. 211). The population of Iowa is distributed fairly uniformly throughout the State (fig. IB), with 59 percent residing in rural areas or towns of less than 10,000 (U.S. Bureau of the Census, 1982). Surficial aquifers, the Jordan aquifer, and aquifers that form the uppermost bedrock aquifer in a particular area are most commonly used for drinking-water supplies and usually provide ample amounts of good quality water. However, naturally occurring properties or substances such as hardness, dissolved solids, and radioactivity limit the use of water for drinking purposes in some areas of each of the five principal aquifers (fig. 2/4). Median concentrations of nitrate in all aquifers and radium-226 in all aquifers except the Jordan are within the primary drinking-water standards established by the U.S. Environmental Protection Agency (1986a). Median concentrations for dissolved solids in the surficial, Dakota, and Jordan aquifers exceed secondary drinking-water standards established by the U.S. Environmental Protection Agency (1986b).

  10. Analysis of groundwater anomalies using GRACE over various districts of Jharkhand

    Science.gov (United States)

    Verma, Arpita; Kumar, Anant; Kumar, Sanjay

    2016-05-01

    Groundwater is an important requirement for the massive population of India. Generally the groundwater level is monitored by using monitoring wells. In this study, Gravity Recovery and Climate Experiment (GRACE) Terrestrial Water Storage (TWS), Land surface state variable GLDAS and Soil Moisture (SM) data were tested for estimating ground water information and based on these groundwater assessments were carried out over the years 2003 to 2012 for Jharkhand State. Additionally, Tropical Rainfall Measuring Mission (TRMM) accumulated rainfall data was also used for the year's 2008 to 2012.From the study over 120 months span of various districts the maximum depletion in storage of groundwater averaged over the six districts is +/-5cm/yr in the year 2010 and maximum storage year (in term of Equivalent water thickness) groundwater average over the six districts is +/-4.4cm in the year 2003. The study also utilized ground based Seasonal changes in the groundwater resource over 287 monitoring wells and estimated groundwater data using map analysis over Jharkhand. This study analyzed seasonal water level variations based on groundwater anomaly. Remote sensing generated result compared with well data shows R2 = 0.6211 and RMSE = 39.46 cm at average seasonal cycle. Also information of different time periods of rainfall (i.e., pre-monsoon and post-monsoon) was analyzed. The trend analysis of rainfall and estimated groundwater gives the basic knowledge that groundwater storage loss and gain showed similarities with increase and decrease in rainfall.

  11. Estimating Groundwater Quality Changes Using Remotely Sensed Groundwater Storage and Multivariate Regression

    Science.gov (United States)

    Gibbons, A.; Thomas, B. F.; Famiglietti, J. S.

    2014-12-01

    Global groundwater dependence is likely to increase with continued population growth and climate-driven freshwater redistribution. Recent groundwater quantity studies have estimated large-scale aquifer depletion rates using monthly water storage variations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission. These innovative approaches currently fail to evaluate groundwater quality, integral to assess the availability of potable groundwater resources. We present multivariate relationships to predict total dissolved solid (TDS) concentrations as a function of GRACE-derived variations in water table depth, dominant land use, and other physical parameters in two important aquifer systems in the United States: the High Plains aquifer and the Central Valley aquifer. Model evaluations were performed using goodness of fit procedures and cross validation to identify general model forms. Results of this work demonstrate the potential to characterize global groundwater potability using remote sensing.

  12. Groundwater management based on monitoring of land subsidence and groundwater levels in the Kanto Groundwater Basin, Central Japan

    Science.gov (United States)

    Furuno, K.; Kagawa, A.; Kazaoka, O.; Kusuda, T.; Nirei, H.

    2015-11-01

    Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.

  13. Impacts of Groundwater Pumping on Regional and Global Water Resources

    Science.gov (United States)

    Wada, Yoshihide

    2016-01-01

    Except frozen water in ice and glaciers (68%), groundwater is the world's largest distributed store of freshwater (30%), and has strategic importance to global food and water security. In this chapter, the most recent advances assessing human impact on regional and global groundwater resources are reviewed. This chapter critically evaluates the recently advanced modeling approaches quantifying the effect of groundwater pumping in regional and global groundwater resources and the evidence of feedback to the Earth system including sea-level rise associated with groundwater use. At last, critical challenges and opportunities are identified in the use of groundwater to adapt to growing food demand and uncertain climate.

  14. Groundwater Systems and Resources in the Ordos Basin, China

    Institute of Scientific and Technical Information of China (English)

    HOU Guangcai; LIANG Yongping; SU Xiaosi; ZHAO Zhenghong; TAO Zhengping; YIN Lihe; YANG Yuncheng; WANG Xiaoyong

    2008-01-01

    The Ordos Basin is.a large-scalesedimentary basin in northwestern China. The hydrostratigraphic units from bottom to top are pre-Cambrian metamorphic rocks, Lower Paleozoic carbonate rocks, Upper Paleozoic to Mesozoic clastic rocks and Cenozoic deposits. The total thickness is up to 6000 m. Three groundwater systems are present in the Ordos Basin, based on the geological settings, I.e. The karst groundwater system, the Cretaceous dastic groundwater system and the Quaternary groundwater system. This paper describes systematically the groundwater flow patterns of each system and overall assessment of groundwater resources.

  15. Groundwater recharge from point to catchment scale

    Science.gov (United States)

    Leterme, Bertrand; Di Ciacca, Antoine; Laloy, Eric; Jacques, Diederik

    2016-04-01

    Accurate estimation of groundwater recharge is a challenging task as only a few devices (if any) can measure it directly. In this study, we discuss how groundwater recharge can be calculated at different temporal and spatial scales in the Kleine Nete catchment (Belgium). A small monitoring network is being installed, that is aimed to monitor the changes in dominant processes and to address data availability as one goes from the point to the catchment scale. At the point scale, groundwater recharge is estimated using inversion of soil moisture and/or water potential data and stable isotope concentrations (Koeniger et al. 2015). At the plot scale, it is proposed to monitor the discharge of a small drainage ditch in order to calculate the field groundwater recharge. Electrical conductivity measurements are necessary to separate shallow from deeper groundwater contribution to the ditch discharge (see Di Ciacca et al. poster in session HS8.3.4). At this scale, two or three-dimensional process-based vadose zone models will be used to model subsurface flow. At the catchment scale though, using a mechanistic, process-based model to estimate groundwater recharge is debatable (because of, e.g., the presence of numerous drainage ditches, mixed land use pixels, etc.). We therefore investigate to which extent various types of surrogate models can be used to make the necessary upscaling from the plot scale to the scale of the whole Kleine Nete catchment. Ref. Koeniger P, Gaj M, Beyer M, Himmelsbach T (2015) Review on soil water isotope based groundwater recharge estimations. Hydrological Processes, DOI: 10.1002/hyp.10775

  16. An Overview of Groundwater Governance and Management in China

    Science.gov (United States)

    Liu, J.; Qi, Y.; Zheng, C.

    2011-12-01

    Understanding the legislative and administrative water management systems is essential to translate hydrological expertise into real actions. This study provides an overview of groundwater governance and management in China, including the existing laws, regulations, institutional arrangements and governing practices. Respectable progress has been made in a relatively short period of time in the legislation of China's groundwater governance. However, the implementation of the laws and regulations has not been as successful as their formulation process. Groundwater overdraft and quality deterioration has not been fundamentally brought under control. Institutional deficiencies, statutory deficiencies, enforcement deficiencies, insufficient public participation and information disclosure are some of the major reasons for poor groundwater management in China. To better address the problems in contemporary groundwater management, the legislation system should firstly be improved. Secondly, institutional reforms are needed to straighten out several critical relationships, including the relationship between the national and local governments, the relationship among different ministries with water-related jurisdiction, and the relationship between river basin based and administrative division based management approaches. Thirdly, a national water-monitoring network should be constructed with improved metering techniques. Data publishing and information sharing should also be promoted.

  17. Spatial modeling for groundwater arsenic levels in North Carolina.

    Science.gov (United States)

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E

    2011-06-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area.

  18. Ground-water conditions in Utah, spring of 2009

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Rowland, Ryan C.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Nielson, Ashley; Eacret, Robert J.; Myers, Andrew; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2009-01-01

    This is the forty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions. This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2008. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights. utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/ GW2009.pdf.

  19. Ground-water conditions in Utah, spring of 2003

    Science.gov (United States)

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2003-01-01

    This is the fortieth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2002. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  20. Ground-water conditions in Utah, spring of 2002

    Science.gov (United States)

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2002-01-01

    This is the thirty-ninth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2001. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  1. Ground-water conditions in Utah, spring of 2008

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Enright, Michael; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2008-01-01

    This is the forty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2007. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2008.pdf.

  2. Ground-water conditions in Utah, spring of 2007

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Enright, Michael; Cillessen, J.L.; Gerner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2007-01-01

    This is the forty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2006. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/ and http://ut.water.usgs.gov/newUTAH/GW2007.pdf.

  3. GWVis: A tool for comparative ground-water data visualization

    Science.gov (United States)

    Best, Daniel M.; Lewis, Robert R.

    2010-11-01

    The Ground-Water Visualization application ( GWVis) presents ground-water data visually in order to educate the public on ground-water issues. It is also intended for presentations to government and other funding agencies. GWVis works with ground-water level elevation data collected or modeled over a given time span, together with a matching fixed underlying terrain. GWVis was developed using the Python programming language in conjunction with associated extension packages and application program interfaces such as OpenGLTM to improve performance and allow us fine control of attributes of the model such as lighting, material properties, transformations, and interpolation. There are currently several systems available for visualizing ground-water data. We classify these into two categories: research-oriented models and static presentation-based models. While both of them have their strengths, we find the former overly complex and non-intuitive and the latter not engaging and presenting problems showing multiple data dimensions. GWVis bridges the gap between static and research based visualizations by providing an intuitive, interactive design that allows participants to view the model from different perspectives, infer information about simulations, and view a comparison of two datasets. By incorporating scientific data in an environment that can be easily understood, GWVis allows that information to be presented to a large audience base.

  4. Artificial sweeteners as potential tracers in groundwater in urban environments

    Science.gov (United States)

    Van Stempvoort, Dale R.; Roy, James W.; Brown, Susan J.; Bickerton, Greg

    2011-04-01

    SummaryThere is little information available on the prevalence of artificial sweeteners in groundwater, though these compounds may prove to be useful tracers of human wastewater, especially in urban settings with complex hydrology. In this study, the artificial sweetener acesulfame was detected in groundwater at all eight urban sites investigated (from five different urban areas in Canada), often at high concentrations (i.e., μg/L-scale). In a municipal wastewater plume at Jasper, Alberta, acesulfame was strongly correlated with chloride and was positively correlated with other wastewater-related contaminants indicating that this sweetener has potential to be a good tracer of young wastewater (artificial sweeteners were detected in urban groundwater: saccharin at six of the sites, sucralose at three sites, and cyclamate at five of seven sites where it was analyzed. The occurrence of sucralose may have been affected by its detection limit, which was much higher than for the other sweeteners. These results, and those of a parallel study, are the first reported detections of saccharin and cyclamate in groundwater, and suggest that these sweeteners may be more common than previously anticipated. In general, fewer samples from each site contained these other three sweeteners compared to acesulfame. At Barrie, Ontario, adjacent to an old landfill, the concentration of saccharin was higher than acesulfame in many samples. These results suggest that analyses of multiple sweeteners, rather than just acesulfame, may provide useful information on contaminant sources and groundwater conditions in urban settings. Further work is needed to address this potential use.

  5. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  6. Agricultural conversion of floodplain ecosystems: implications for groundwater quality.

    Science.gov (United States)

    Schilling, Keith E; Jacobson, Peter J; Vogelgesang, Jason A

    2015-04-15

    With current trends of converting grasslands to row crop agriculture in vulnerable areas, there is a critical need to evaluate the effects of land use on groundwater quality in large river floodplain systems. In this study, groundwater hydrology and nutrient dynamics associated with three land cover types (grassland, floodplain forest and cropland) were assessed at the Cedar River floodplain in southeastern Iowa. The cropland site consisted of newly-converted grassland, done specifically for our study. Our objectives were to evaluate spatial and temporal variations in groundwater hydrology and quality, and quantify changes in groundwater quality following land conversion from grassland to row crop in a floodplain. We installed five shallow and one deep monitoring wells in each of the three land cover types and recorded water levels and quality over a three year period. Crop rotations included soybeans in year 1, corn in year 2 and fallow with cover crops during year 3 due to river flooding. Water table levels behaved nearly identically among the sites but during the second and third years of our study, NO₃-N concentrations in shallow floodplain groundwater beneath the cropped site increased from 0.5 mg/l to more than 25 mg/l (maximum of 70 mg/l). The increase in concentration was primarily associated with application of liquid N during June of the second year (corn rotation), although site flooding may have exacerbated NO₃-N leaching. Geophysical investigation revealed differences in ground conductivity among the land cover sites that related significantly to variations in groundwater quality. Study results provide much-needed information on the effects of different land covers on floodplain groundwater and point to challenges ahead for meeting nutrient reduction goals if row crop land use expands into floodplains.

  7. Assessment of Hydrochemistry for Use as Groundwater Age Proxy

    Science.gov (United States)

    Beyer, Monique; Daughney, Chris; Jackson, Bethanna; Morgenstern, Uwe

    2015-04-01

    Groundwater dating can aid groundwater management by providing information on groundwater flow, mixing and residence-, storage- and exposure-time of groundwater in the subsurface. Groundwater age can be inferred from environmental tracers, such as tritium, SF6 and CFCs (CFC-12, -11 and -113). These tracers often need to be applied complementarily, since they have a restricted application range and ambiguous age interpretations can be obtained. Some tracers, such as the CFCs, will become of limited use in near future, due their fading out atmospheric concentration. As a consequence of these limitations, there is a need for additional, complementary tracers to ensure groundwater dating in future. Hydrochemistry parameters, such as the concentrations and ratios of major ions, appear to be promising candidates. Hydro-chemistry data at various spatial and temporal scales are widely available through local, regional and national groundwater monitoring programmes. Promising relationships between hydrochemistry parameters and groundwater residence time or aquifer depth have been found in near piston flow environments. However, most groundwater samples contain proportions of different aged water, due to mixing of water emerging from different flow lines during sampling or discharge, which complicates the establishment of hydrochemistry-time relationships in these environments. In this study, we establish a framework to infer hydrochemistry - (residence) time relationships in non-piston flow environments by using age information inferred from environmental tracer data and lumped parameter models (LPMs). The approach involves the generation of major element concentrations by 'classic' Monte Carlo simulation and subsequent comparison of simulated and observed element concentrations by means of an objective function to establish hydrochemistry-time relationships. The framework also allows for assessment of the hydrochemistry-time relationships with regards to their potential to

  8. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan For Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2008-12-01

    . The following sections of this report provide details regarding the CY 2009 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3; sample collection methods and procedures are described in Section 4; and Section 5 lists the documents cited for more detailed operational and technical information.

  9. Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction

    Science.gov (United States)

    Tóth, Ádám; Havril, Tímea; Simon, Szilvia; Galsa, Attila; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2016-08-01

    Groundwater flow, driven, controlled and determined by topography, geology and climate, is responsible for several natural surface manifestations and affected by anthropogenic processes. Therefore, flowing groundwater can be regarded as an environmental agent. Numerical simulation of groundwater flow could reveal the flow pattern and explain the observed features. In complex geologic framework, where the geologic-hydrogeologic knowledge is limited, the groundwater flow model could not be constructed based solely on borehole data, but geophysical information could aid the model building. The integrated model construction was presented via the case study of the Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, such as wetlands, surface water-groundwater interaction, slope instability, and revealing the potential effect of anthropogenic activity and climate change. The hydrogeologic model was prepared on the basis of the compiled archive geophysical database and the results of recently performed geophysical measurements complemented with geologic-hydrogeologic data. Derivation of different electrostratigraphic units, revealing fracturing and detecting tectonic elements was achieved by systematically combined electromagnetic geophysical methods. The deduced information can be used as model input for groundwater flow simulation concerning hydrostratigraphy, geometry and boundary conditions. The results of numerical modelling were interpreted on the basis of gravity-driven regional groundwater flow concept and validated by field mapping of groundwater-related phenomena. The 3D model clarified the hydraulic behaviour of the formations, revealed the subsurface hydraulic connection between groundwater and wetlands and displayed the groundwater discharge pattern, as well. The position of wetlands, their vegetation type, discharge features and induced landslides were explained as

  10. Mapping the groundwater vulnerability for pollution at the pan African scale.

    Science.gov (United States)

    Ouedraogo, Issoufou; Defourny, Pierre; Vanclooster, Marnik

    2016-02-15

    We estimated vulnerability and pollution risk of groundwater at the pan-African scale. We therefore compiled the most recent continental scale information on soil, land use, geology, hydrogeology and climate in a Geographical Information System (GIS) at a resolution of 15 km × 15 km and at the scale of 1:60,000,000. The groundwater vulnerability map was constructed by means of the DRASTIC method. The map reveals that groundwater is highly vulnerable in Central and West Africa, where the watertable is very low. In addition, very low vulnerability is found in the large sedimentary basins of the African deserts where groundwater is situated in very deep aquifers. The groundwater pollution risk map is obtained by overlaying the DRASTIC vulnerability map with land use. The northern, central and western part of the African continent is dominated by high pollution risk classes and this is very strongly related to shallow groundwater systems and the development of agricultural activities. Subsequently, we performed a sensitivity analysis to evaluate the relative importance of each parameter on groundwater vulnerability and pollution risk. The sensitivity analysis indicated that the removal of the impact of vadose zone, the depth of the groundwater, the hydraulic conductivity and the net recharge causes a large variation in the mapped vulnerability and pollution risk. The mapping model was validated using nitrate concentration data of groundwater as a proxy of pollution risk. Pan-African concentration data were inferred from a meta-analysis of literature data. Results shows a good match between nitrate concentration and the groundwater pollution risk classes. The pan African assessment of groundwater vulnerability and pollution risk is expected to be of particular value for water policy and for designing groundwater resources management programs. We expect, however, that this assessment can be strongly improved when better pan African monitoring data related to groundwater

  11. Subsurface aeration of anaerobic groundwater : iron colloid formation and the nitrification process

    NARCIS (Netherlands)

    Wolthoorn, A.

    2003-01-01

    Keywords: Iron, anaerobic groundwater, groundwater purification, heterogeneous oxidation, iron colloid formation, electron microscopy, nitrification In anaerobic groundwater iron and ammonium can be found in relatively high concentrations. These substances need to be removed when groundwater is used

  12. Record of Decision Tank Farm Soil and INTEC Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    L. S. Cahn

    2007-05-01

    This decision document presents the selected remedy for Operable Unit (OU) 3-14 tank farm soil and groundwater at the Idaho Nuclear Technology and Engineering Center (INTEC), which is located on the Idaho National Laboratory (INL) Site. The tank farm was initially evaluated in the OU 3-13 Record of Decision (ROD), and it was determined that additional information was needed to make a final decision. Additional information has been obtained on the nature and extent of contamination in the tank farm and on the impact of groundwater. The selected remedy was chosen in accordance with the Comprehensive Environmental Response, Liability and Compensation Act of 1980 (CERCLA) (42 USC 9601 et seq.), as amended by the Superfund Amendments and Reauthorization Act of 1986 (Public Law 99-499) and the National Oil and Hazardous Substances Pollution Contingency Plan (40 CFR 300). The selected remedy is intended to be the final action for tank far soil and groundwater at INTEC.

  13. Economic, social and resource management factors influencing groundwater trade: Evidence from Victoria, Australia

    Science.gov (United States)

    Gill, Bruce; Webb, John; Stott, Kerry; Cheng, Xiang; Wilkinson, Roger; Cossens, Brendan

    2017-07-01

    In Victoria, Australia, most groundwater resources are now fully allocated and opportunities for new groundwater development can only occur through trading of license entitlements. Groundwater usage has rarely exceeded 50% of the available licensed volume, even in the 2008/9 drought year, and 50 to 70% of individual license holders use less than 5% of their allocation each year. However, little groundwater trading is occurring at present. Interviews were conducted with groundwater license holders and water brokers to investigate why the Victorian groundwater trade market is underdeveloped. Responses show there is a complex mix of social, economic, institutional and technical reasons. Barriers to trade are influenced by the circumstances of each groundwater user, administrative process and resource management rules. Water brokers deal with few trades at low margins and noted unrealistic selling prices and administrative difficulties. Irrigators who have successfully traded identify that there are few participants in trading, technical appraisals are expensive and administrative requirements and fees are burdensome, especially when compared to surface water trading. Opportunities to facilitate trade include groundwater management plan refinement and improved information provision. Simplifying transaction processes and costs, demonstrating good resource stewardship and preventing third party impacts from trade could address some concerns raised by market participants. There are, however, numerous individual circumstances that inhibit groundwater trading, so it is unlikely that policy and process changes alone could increase usage rates without greater demand for groundwater or more favourable farming economic circumstances.

  14. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling: GEOSTATISTICAL SENSITIVITY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Heng [Pacific Northwest National Laboratory, Richland Washington USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA; Ye, Ming [Department of Scientific Computing, Florida State University, Tallahassee Florida USA; Song, Xuehang [Pacific Northwest National Laboratory, Richland Washington USA; Zachara, John M. [Pacific Northwest National Laboratory, Richland Washington USA

    2017-05-01

    Sensitivity analysis is an important tool for quantifying uncertainty in the outputs of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a hierarchical sensitivity analysis method that (1) constructs an uncertainty hierarchy by analyzing the input uncertainty sources, and (2) accounts for the spatial correlation among parameters at each level of the hierarchy using geostatistical tools. The contribution of uncertainty source at each hierarchy level is measured by sensitivity indices calculated using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport in model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally as driven by the dynamic interaction between groundwater and river water at the site. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed parameters.

  15. Earthquakes trigger the loss of groundwater biodiversity

    Science.gov (United States)

    Galassi, Diana M. P.; Lombardo, Paola; Fiasca, Barbara; di Cioccio, Alessia; di Lorenzo, Tiziana; Petitta, Marco; di Carlo, Piero

    2014-09-01

    Earthquakes are among the most destructive natural events. The 6 April 2009, 6.3-Mw earthquake in L'Aquila (Italy) markedly altered the karstic Gran Sasso Aquifer (GSA) hydrogeology and geochemistry. The GSA groundwater invertebrate community is mainly comprised of small-bodied, colourless, blind microcrustaceans. We compared abiotic and biotic data from two pre-earthquake and one post-earthquake complete but non-contiguous hydrological years to investigate the effects of the 2009 earthquake on the dominant copepod component of the obligate groundwater fauna. Our results suggest that the massive earthquake-induced aquifer strain biotriggered a flushing of groundwater fauna, with a dramatic decrease in subterranean species abundance. Population turnover rates appeared to have crashed, no longer replenishing the long-standing communities from aquifer fractures, and the aquifer became almost totally deprived of animal life. Groundwater communities are notorious for their low resilience. Therefore, any major disturbance that negatively impacts survival or reproduction may lead to local extinction of species, most of them being the only survivors of phylogenetic lineages extinct at the Earth surface. Given the ecological key role played by the subterranean fauna as decomposers of organic matter and ``ecosystem engineers'', we urge more detailed, long-term studies on the effect of major disturbances to groundwater ecosystems.

  16. Earthquakes trigger the loss of groundwater biodiversity.

    Science.gov (United States)

    Galassi, Diana M P; Lombardo, Paola; Fiasca, Barbara; Di Cioccio, Alessia; Di Lorenzo, Tiziana; Petitta, Marco; Di Carlo, Piero

    2014-09-03

    Earthquakes are among the most destructive natural events. The 6 April 2009, 6.3-Mw earthquake in L'Aquila (Italy) markedly altered the karstic Gran Sasso Aquifer (GSA) hydrogeology and geochemistry. The GSA groundwater invertebrate community is mainly comprised of small-bodied, colourless, blind microcrustaceans. We compared abiotic and biotic data from two pre-earthquake and one post-earthquake complete but non-contiguous hydrological years to investigate the effects of the 2009 earthquake on the dominant copepod component of the obligate groundwater fauna. Our results suggest that the massive earthquake-induced aquifer strain biotriggered a flushing of groundwater fauna, with a dramatic decrease in subterranean species abundance. Population turnover rates appeared to have crashed, no longer replenishing the long-standing communities from aquifer fractures, and the aquifer became almost totally deprived of animal life. Groundwater communities are notorious for their low resilience. Therefore, any major disturbance that negatively impacts survival or reproduction may lead to local extinction of species, most of them being the only survivors of phylogenetic lineages extinct at the Earth surface. Given the ecological key role played by the subterranean fauna as decomposers of organic matter and "ecosystem engineers", we urge more detailed, long-term studies on the effect of major disturbances to groundwater ecosystems.

  17. Groundwater sustainability assessment in coastal aquifers

    Indian Academy of Sciences (India)

    U A Lathashri; A Mahesha

    2016-08-01

    The present work investigates the response of shallow, coastal unconfined aquifers to anticipated overdraft conditions and climate change effect using numerical simulation. The groundwater flow model MODFLOW and variable density groundwater model SEAWAT are used for this investigation. The transmissivity and specific yield estimated from the existing database range from 10 to 810 m^2/day and 0.08% to 10.92% respectively. After successful calibration with Nash–Sutcliffe efficiency greater than 0.80, the values of horizontal hydraulic conductivity and specific yield of the unconfined aquifer were set in the range 1.85–61.90 m/day and 0.006–0.24 respectively. After validating the model, it is applied for forecasting the aquifer’s response to anticipated future scenarios of groundwater draft, recharge rate and sea level rise. The findings of the study illustrate that saltwater intrusion is intensified in the area adjoining the tidal rivers, rather than that due to the sea alone. Of all the scenarios simulated, the immense negative impact on groundwater quality emerges due to overdraft conditions and reduced recharge with the areal extent of seawater intrusion exceeding about 67% (TDS>1 kg/m^3). The study also arrivesat the conclusion that, regional sea level rise of 1 mm/year has no impact on the groundwater dynamics of the aquifer.

  18. Earthquakes trigger the loss of groundwater biodiversity

    Science.gov (United States)

    Galassi, Diana M. P.; Lombardo, Paola; Fiasca, Barbara; Di Cioccio, Alessia; Di Lorenzo, Tiziana; Petitta, Marco; Di Carlo, Piero

    2014-01-01

    Earthquakes are among the most destructive natural events. The 6 April 2009, 6.3-Mw earthquake in L'Aquila (Italy) markedly altered the karstic Gran Sasso Aquifer (GSA) hydrogeology and geochemistry. The GSA groundwater invertebrate community is mainly comprised of small-bodied, colourless, blind microcrustaceans. We compared abiotic and biotic data from two pre-earthquake and one post-earthquake complete but non-contiguous hydrological years to investigate the effects of the 2009 earthquake on the dominant copepod component of the obligate groundwater fauna. Our results suggest that the massive earthquake-induced aquifer strain biotriggered a flushing of groundwater fauna, with a dramatic decrease in subterranean species abundance. Population turnover rates appeared to have crashed, no longer replenishing the long-standing communities from aquifer fractures, and the aquifer became almost totally deprived of animal life. Groundwater communities are notorious for their low resilience. Therefore, any major disturbance that negatively impacts survival or reproduction may lead to local extinction of species, most of them being the only survivors of phylogenetic lineages extinct at the Earth surface. Given the ecological key role played by the subterranean fauna as decomposers of organic matter and “ecosystem engineers”, we urge more detailed, long-term studies on the effect of major disturbances to groundwater ecosystems. PMID:25182013

  19. Quantification of groundwater recharge in urban environments.

    Science.gov (United States)

    Tubau, Isabel; Vázquez-Suñé, Enric; Carrera, Jesús; Valhondo, Cristina; Criollo, Rotman

    2017-08-15

    Groundwater management in urban areas requires a detailed knowledge of the hydrogeological system as well as the adequate tools for predicting the amount of groundwater and water quality evolution. In that context, a key difference between urban and natural areas lies in recharge evaluation. A large number of studies have been published since the 1990s that evaluate recharge in urban areas, with no specific methodology. Most of these methods show that there are generally higher rates of recharge in urban settings than in natural settings. Methods such as mixing ratios or groundwater modeling can be used to better estimate the relative importance of different sources of recharge and may prove to be a good tool for total recharge evaluation. However, accurate evaluation of this input is difficult. The objective is to present a methodology to help overcome those difficulties, and which will allow us to quantify the variability in space and time of the recharge into aquifers in urban areas. Recharge calculations have been initially performed by defining and applying some analytical equations, and validation has been assessed based on groundwater flow and solute transport modeling. This methodology is applicable to complex systems by considering temporal variability of all water sources. This allows managers of urban groundwater to evaluate the relative contribution of different recharge sources at a city scale by considering quantity and quality factors. The methodology is applied to the assessment of recharge sources in the Barcelona city aquifers. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Global change and the groundwater management challenge

    Science.gov (United States)

    Gorelick, Steven M.; Zheng, Chunmiao

    2015-05-01

    With rivers in critical regions already exploited to capacity throughout the world and groundwater overdraft as well as large-scale contamination occurring in many areas, we have entered an era in which multiple simultaneous stresses will drive water management. Increasingly, groundwater resources are taking a more prominent role in providing freshwater supplies. We discuss the competing fresh groundwater needs for human consumption, food production, energy, and the environment, as well as physical hazards, and conflicts due to transboundary overexploitation. During the past 50 years, groundwater management modeling has focused on combining simulation with optimization methods to inspect important problems ranging from contaminant remediation to agricultural irrigation management. The compound challenges now faced by water planners require a new generation of aquifer management models that address the broad impacts of global change on aquifer storage and depletion trajectory management, land subsidence, groundwater-dependent ecosystems, seawater intrusion, anthropogenic and geogenic contamination, supply vulnerability, and long-term sustainability. The scope of research efforts is only beginning to address complex interactions using multiagent system models that are not readily formulated as optimization problems and that consider a suite of human behavioral responses.

  1. Evaluating groundwater flow using passive electrical measurements

    Science.gov (United States)

    Voytek, E.; Revil, A.; Singha, K.

    2016-12-01

    Accurate quantification of groundwater flow patterns, both in magnitude and direction, is a necessary component of evaluating any hydrologic system. Groundwater flow patterns are often determined using a dense network of wells or piezometers, which can be limited due to logistical or regulatory constraints. The self-potential (SP) method, a passive geophysical technique that relies on currents generated by water movement through porous materials, is a re-emerging alternative or addition to traditional piezometer networks. Naturally generated currents can be measured as voltage differences at the ground surface using only two electrodes, or a more complex electrode array. While the association between SP measurements and groundwater flow was observed as early as 1890s, the method has seen resurgence in hydrology since the governing equations were refined in the 1980s. The method can be used to analyze hydrologic processes at various temporal and spatial scales. Here we present the results of multiple SP surveys collected a multiple scales (1 to 10s of meters). Here single SP grid surveys are used to evaluate flow patterns through artic hillslopes at a discrete point in time. Additionally, a coupled groundwater and electrical model is used to analyze multiple SP data sets to evaluate seasonal changes in groundwater flow through an alpine meadow.

  2. Summary of New Los Alamos National Laboratory Groundwater Data Loaded in July 2012

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Steven M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-07

    This report provides information concerning groundwater monitoring data obtained by the Los Alamos National Laboratory under its interim monitoring plan and contains results for chemical constituents that meet seven screening criteria laid out in the Compliance Order on Consent. Tables are included in the report to organize the findings from the samples. The report covers groundwater samples taken from wells or springs that provide surveillance of the groundwater zones indicated in the table.

  3. Assessment of groundwater quality status in Amini Island of Lakshadweep.

    Science.gov (United States)

    Prasad, N B Narasimha; Mansoor, O A

    2005-01-01

    Amini Island is one of the 10 inhabited islands in Lakshadweep. Built on the ancient volcanic formations Lakshadweep is the the tiniest Union Territory of India. The major problem experienced by the islanders is the acute scarcity of fresh drinking water. Groundwater is the only source of fresh water and the availability of the same is very restricted due to peculiar hydrologic, geologic, geomorphic and demographic features. Hence, proper understanding of the groundwater quality, with reference to temporal and spatial variations, is very important to meet the increasing demand and also to formulate future plans for groundwater development. In this context, the assessment of groundwater quality status was carried out in Amini Island. All the available information on water quality, present groundwater usage pattern, etc. was collected and analyzed. Total hardness and salinity are found to be the most critical water quality parameters exceeding the permissible limits of drinking water standards. Spatial variation diagrams of salinity and hardness have been prepared for different seasons. It is also observed from these maps that the salinity and hardness are comparatively better on the lagoon side compared to the seaside. These maps also suggest that the salinity and the hardness problem is more in the southern tip compared to northern portion.

  4. Rapid, cost-effective estimation of groundwater age based on hydrochemistry

    Science.gov (United States)

    Beyer, M.; Morgenstern, U.; Jackson, B. M.; Daughney, C.

    2013-12-01

    In order to manage and protect groundwater resources, the complex and diverse recharge, mixing and flow processes occurring in groundwater systems need to be better understood. Groundwater age information can give valuable information on groundwater flow, recharge sources, and aquifer volumes. However current groundwater dating techniques, for example tracers such as tritium or CFCs, or hydrological models, have limitations and method specific application ranges and uncertainties. Due to this, ambiguous age interpretation is a problem. New technique(s) are essential to overcome limitations and complement existing methods. The aim of this study is to advance the use of hydrochemistry for groundwater dating. To date, hydrochemistry has only been applied sparsely to support groundwater age determination, despite its wide availability from national groundwater monitoring programs. This is due to the lack of any established distinct relationships between hydrochemistry and groundwater age. Establishing these is complex, since hydrochemistry is influenced by complex interrelationships of aquifer specific processes. Therefore underlying processes, such as mineral weathering and redox reactions, and diverse reactions, such as quartz dissolution, are not directly interpretable from hydrochemistry data. Additionally reaction kinetics (of e.g. quartz dissolution) are often aquifer specific, and field data are sparse; furthermore data gained in laboratory environments are difficult to relate back to field situations as comparative studies have found lab and field measurements can differ by orders of magnitude. We wish to establish relationships between hydrochemistry and groundwater age, to allow hydrochemical data to better inform groundwater dating through two separate approaches. Firstly relationships between groundwater age (determined by state of the art dating techniques) and single hydrochemistry parameters, such as silica concentration, can be established in a given

  5. Groundwater withdrawal rates from the Ozark Plateaus aquifer system, 1900 to 2010

    Science.gov (United States)

    Knierim, Katherine J.; Nottmeier, Anna M.; Worland, Scott C.; Westerman, Drew A.; Clark, Brian R.

    2016-01-01

    PREP. Briefly, groundwater use was modeled by 1) acquiring site-specific and county-level groundwater withdrawal rates and well locations (with and without pumping information) from state agencies and the U.S. Geological Survey, 2) linearly interpolating groundwater withdrawal rates to create a yearly time-step for the period of observations (generally 1962 to 2010), 3) extrapolating county-level groundwater withdrawal rates to 1900 for non-agriculture, agriculture, and livestock groundwater use by assuming a linear decrease from the oldest, recorded groundwater withdrawal rate (generally between 1962 and 1985) to 0 million liters per day (ML/d) in 1900, 4) extrapolating site-specific (public supply) and county-level (domestic) groundwater withdrawal rates to 1900 assuming use was linearly related to population change, then constraining groundwater withdrawal rate to 0 ML/d in 1900 using a multiplier that incrementally ranged from zero in 1900 to one in 2010, 5) attributing groundwater withdrawal rates to well locations using a hierarchical process where observed site-specific groundwater withdrawal rates were used first, followed by county-level groundwater withdrawal rates disaggregated to wells where pumping was known to occur at any time, and lastly county-level groundwater withdrawal rates disaggregated to well locations with a potential groundwater-use type based on land use, and 6) aggregation into model cells (row, column, layer) and counties by summing modeled site-specific groundwater withdrawal rates using well location and depth. The large dataset (148,836 well locations) and long period (110 years) necessitated modeling groundwater use programmatically using Python 2.7. 

  6. Uncertainty in the modelling of spatial and temporal patterns of shallow groundwater flow paths: The role of geological and hydrological site information

    Science.gov (United States)

    Woodward, Simon J. R.; Wöhling, Thomas; Stenger, Roland

    2016-03-01

    Understanding the hydrological and hydrogeochemical responses of hillslopes and other small scale groundwater systems requires mapping the velocity and direction of groundwater flow relative to the controlling subsurface material features. Since point observations of subsurface materials and groundwater head are often the basis for modelling these complex, dynamic, three-dimensional systems, considerable uncertainties are inevitable, but are rarely assessed. This study explored whether piezometric head data measured at high spatial and temporal resolution over six years at a hillslope research site provided sufficient information to determine the flow paths that transfer nitrate leached from the soil zone through the shallow saturated zone into a nearby wetland and stream. Transient groundwater flow paths were modelled using MODFLOW and MODPATH, with spatial patterns of hydraulic conductivity in the three material layers at the site being estimated by regularised pilot point calibration using PEST, constrained by slug test estimates of saturated hydraulic conductivity at several locations. Subsequent Null Space Monte Carlo uncertainty analysis showed that this data was not sufficient to definitively determine the spatial pattern of hydraulic conductivity at the site, although modelled water table dynamics matched the measured heads with acceptable accuracy in space and time. Particle tracking analysis predicted that the saturated flow direction was similar throughout the year as the water table rose and fell, but was not aligned with either the ground surface or subsurface material contours; indeed the subsurface material layers, having relatively similar hydraulic properties, appeared to have little effect on saturated water flow at the site. Flow path uncertainty analysis showed that, while accurate flow path direction or velocity could not be determined on the basis of the available head and slug test data alone, the origin of well water samples relative to the

  7. Groundwater Level Prediction using M5 Model Trees

    Science.gov (United States)

    Nalarajan, Nitha Ayinippully; Mohandas, C.

    2015-01-01

    Groundwater is an important resource, readily available and having high economic value and social benefit. Recently, it had been considered a dependable source of uncontaminated water. During the past two decades, increased rate of extraction and other greedy human actions have resulted in the groundwater crisis, both qualitatively and quantitatively. Under prevailing circumstances, the availability of predicted groundwater levels increase the importance of this valuable resource, as an aid in the planning of groundwater resources. For this purpose, data-driven prediction models are widely used in the present day world. M5 model tree (MT) is a popular soft computing method emerging as a promising method for numeric prediction, producing understandable models. The present study discusses the groundwater level predictions using MT employing only the historical groundwater levels from a groundwater monitoring well. The results showed that MT can be successively used for forecasting groundwater levels.

  8. Vulnerability to diffuse pollution of European soils and groundwater

    NARCIS (Netherlands)

    Meinardi CR; Beusen AHW; Bollen MJS; Klepper O; LBG; CWM

    1994-01-01

    From the Atlantic Ocean to the Ural Mountains, European soils and groundwater are threatened by diffuse pollution derived from various chemicals used in modern agriculture and by increased atmospheric deposition of pollutants. The investigated vulnerability of soils (including groundwater) to

  9. Groundwater Quality Monitoring at Logan Cave National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the current project was to continue establishing a long term groundwater quality monitoring program at Logan Cave that would allow groundwater threats...

  10. Groundwater depletion in the United States (1900-2008)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A natural consequence of groundwater withdrawals is the removal of water from subsurface storage, but the overall rates and magnitude of groundwater depletion in the...

  11. evaluation of models for assessing groundwater vulnerability to ...

    African Journals Online (AJOL)

    DR. AMINU

    Key words: Groundwater, Vulnerability, Pollution, Nigeria. INTRODUCTION ... natural groundwater vulnerability: net recharge, soil properties, unsaturated zone ... such as dispersion, oxidation, natural attenuation, sorption etc. A low depth to ...

  12. Multi-Objective Groundwater Quantity Management. A Stochastic Approach

    NARCIS (Netherlands)

    Ndambuki, J.M.

    2001-01-01

    The question of managing groundwater resources is one of implementing institutions that regulate the use of the resource so as to harvest maximum benefits without imparting undesirable consequences on the system. Traditionally, regional groundwater management problems have been solved deterministica

  13. Influence of Anthropogenic Contamination on Fluoride Concentration in Groundwater

    Directory of Open Access Journals (Sweden)

    SUDHAKAR M. RAO

    2012-06-01

    Full Text Available Groundwater Contamination is a serious concern in India. Major geogenic contaminants include fluoride, arsenic and iron, while common anthropogenic contaminants include nitrate, metals, organic and microbial contamination. Besides, known point and diffuse sources, groundwater contamination from infiltration of pit toilet leachate is an emerging concern. The study area of this paper is Kolar district in Karnataka that is hot spot of fluoride contamination. The absence of fluoride contamination in Mulbagal town and the alterations in groundwater chemistry from infiltration of pit toilet leachate motivated the author to examine the possible linkages between anthropogenic contamination and fluoride concentration in groundwater of Mulbagal town. Analysis of the groundwater chemistry revealed that the groundwater in Mulbagal town is under saturated with respect to calcite that suppresses the disolution of fluorite and the fluoride concentration in the groundwater. The slightly acidic pH of the groundwater is considered responsible to facilitate calcite dissolution under saturation.

  14. Coastal groundwater table estimation by an elevation fluctuation neural model

    Institute of Scientific and Technical Information of China (English)

    HE Bin; WANG Yi

    2007-01-01

    Restrictions of groundwater management are often derived from the insufficient or missing groundwater database. A suitable and complete groundwater database will allow sound engineering plans for sustainable water usage, including the drilling of wells, rates of water withdrawal, and eventually artificial recharge of the aquifer. The spatial-temporal variations of groundwater monitoring data are fluently influenced by the presence of manual factors, monitor equipment malfunctioning, natural phenomena, etc. Thus, it is necessary for researchers to check and infill the groundwater database before running the numerical groundwater model. In this paper, an artificial neural network (ANN)-based model is formulated using the hydrological and meteorological data to infill the inadequate data in the groundwater database. Prediction results present that ANN method could be a desirable choice for estimating the missing groundwater data.

  15. A groundwater-planning toolkit for the main Karoo basin:

    African Journals Online (AJOL)

    This paper provides an overview of groundwater-planning tools that were ... concept used in surface-water resource assessments and dam or reservoir design were adapted and applied to groundwater. ..... treatment facilities and bulk storage.

  16. Sample size reduction in groundwater surveys via sparse data assimilation

    KAUST Repository

    Hussain, Z.

    2013-04-01

    In this paper, we focus on sparse signal recovery methods for data assimilation in groundwater models. The objective of this work is to exploit the commonly understood spatial sparsity in hydrodynamic models and thereby reduce the number of measurements to image a dynamic groundwater profile. To achieve this we employ a Bayesian compressive sensing framework that lets us adaptively select the next measurement to reduce the estimation error. An extension to the Bayesian compressive sensing framework is also proposed which incorporates the additional model information to estimate system states from even lesser measurements. Instead of using cumulative imaging-like measurements, such as those used in standard compressive sensing, we use sparse binary matrices. This choice of measurements can be interpreted as randomly sampling only a small subset of dug wells at each time step, instead of sampling the entire grid. Therefore, this framework offers groundwater surveyors a significant reduction in surveying effort without compromising the quality of the survey. © 2013 IEEE.

  17. Simulating Groundwater Recharge Across the Southern High Plains

    Science.gov (United States)

    Smidt, S. J.; Haacker, E. M.; Kendall, A. D.; Hyndman, D. W.

    2015-12-01

    Quantifying recharge and water availability across the Southern High Plains is a difficult, but necessary, challenge for future groundwater and agricultural projections. Overland flow is not common due to limited precipitation, dry soils, and high evapotranspiration. The majority of runoff is temporarily stored in playa lakes, leading to the bulk of recharge across the region occurring in localized infiltration zones beneath these lakes. Despite the importance of regional recharge estimates, limited information exists that integrates complex characteristics of the land, climate, and hydrology in order to quantify recharge across the entire Southern High Plains aquifer. This study applies the Landscape Hydrology Model (LHM) to capture these characteristics and simulate surface water flow and groundwater recharge. This model simulates the complete water cycle across large regions, including irrigation estimates, establishing a framework to estimate recharge and groundwater availability in the Southern High Plains region. Results from this study can be used to predict the likely impacts of climate change and improve water management strategies.

  18. Parameter and Uncertainty Estimation in Groundwater Modelling

    DEFF Research Database (Denmark)

    Jensen, Jacob Birk

    The data basis on which groundwater models are constructed is in general very incomplete, and this leads to uncertainty in model outcome. Groundwater models form the basis for many, often costly decisions and if these are to be made on solid grounds, the uncertainty attached to model results must...... be quantified. This study was motivated by the need to estimate the uncertainty involved in groundwater models.Chapter 2 presents an integrated surface/subsurface unstructured finite difference model that was developed and applied to a synthetic case study.The following two chapters concern calibration...... and uncertainty estimation. Essential issues relating to calibration are discussed. The classical regression methods are described; however, the main focus is on the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. The next two chapters describe case studies in which the GLUE methodology...

  19. Gradual Variation Analysis for Groundwater Flow

    CERN Document Server

    Chen, Li

    2010-01-01

    Groundwater flow in Washington DC greatly influences the surface water quality in urban areas. The current methods of flow estimation, based on Darcy's Law and the groundwater flow equation, can be described by the diffusion equation (the transient flow) and the Laplace equation (the steady-state flow). The Laplace equation is a simplification of the diffusion equation under the condition that the aquifer has a recharging boundary. The practical way of calculation is to use numerical methods to solve these equations. The most popular system is called MODFLOW, which was developed by USGS. MODFLOW is based on the finite-difference method in rectangular Cartesian coordinates. MODFLOW can be viewed as a "quasi 3D" simulation since it only deals with the vertical average (no z-direction derivative). Flow calculations between the 2D horizontal layers use the concept of leakage. In this project, we have established a mathematical model based on gradually varied functions for groundwater data volume reconstruction. T...

  20. Quantification of Seepage in Groundwater Dependent Wetlands

    DEFF Research Database (Denmark)

    Johansen, Ole; Beven, Keith; Jensen, Jacob Birk

    2017-01-01

    Restoration and management of groundwater dependent wetlands require tools for quantifying the groundwater seepage process. A method for determining point estimates of the groundwater seepage based on water level observations is tested. The study is based on field data from a Danish rich fen...... to investigate the uncertainties of parameters and model results. Two different model structures are presented. One is using the physically based model code HYDRUS nek et al. 2009) which solves the 1D unsaturated flow problem. In this case five parameters from the Van Genuchten retention model are examined...... has been predicted. Both models suffer from the fundamental problem that no reliable observations for the predicted variable (seepage rate) exist. Thus the trust in the model therefore depends on the ability to reproduce water level observations. Assuming that the results can be fully validated...

  1. Sustainability of groundwater supplies in the Northern Atlantic Coastal Plain aquifer system

    Science.gov (United States)

    Masterson, John P.; Pope, Jason P.

    2016-08-31

    Groundwater is the Nation’s principal reserve of freshwater. It provides about half our drinking water, is essential to food production, and facilitates business and industry in developing economic well-being. Groundwater is also an important source of water for sustaining the ecosystem health of rivers, wetlands, and estuaries throughout the country. The decreases in groundwater levels and other effects of pumping that result from large-scale development of groundwater resources have led to concerns about the future availability of groundwater to meet all our Nation’s needs. Assessments of groundwater availability provide the science and information needed by the public and decision makers to manage water resources and use them responsibly.

  2. Quality of groundwater resources in Afghanistan.

    Science.gov (United States)

    Hayat, Ehsanullah; Baba, Alper

    2017-07-01

    Water is the main source of energy production and economy in Afghanistan where agriculture accounts for more than 50% of the country's gross domestic product (GDP). Access to safe drinking water is still a problem in the country, which has caused different health issues and even child mortality especially in rural areas. Groundwater is the main source of drinking water in the country. However, little knowledge is available about the quality of groundwater throughout the entire country, and its quality has not been investigated extensively yet like in other countries in the world. While most people think that consuming groundwater is a reliable and safe source of drinking water for health, the United Nations (UN) agencies report various kinds of waterborne diseases and even child mortalities due to drinking water quality in the country. In this article, significant geogenic and anthropogenic factors that play a vital role in groundwater contamination of the country are identified and explained. Different geogenic contaminations such as arsenic, fluoride, sulfate, and boron occur in several areas of Afghanistan that have a direct effect on human health. The water quality mapping for Afghanistan is completed for half of the country, which shows that groundwater is plagued by high levels of fluoride and arsenic in some areas. The water quality mapping of the other half of the country cannot be completed due to security concerns currently. Also, there are different kinds of waterborne diseases such as diarrhea, cholera, and dysentery that can be seen in different parts of the country because of anthropogenic activities which continuously deteriorate groundwater.

  3. Groundwater simulation and management models for the upper Klamath Basin, Oregon and California

    Science.gov (United States)

    Gannett, Marshall W.; Wagner, Brian J.; Lite, Kenneth E.

    2012-01-01

    The upper Klamath Basin encompasses about 8,000 square miles, extending from the Cascade Range east to the Basin and Range geologic province in south-central Oregon and northern California. The geography of the basin is dominated by forested volcanic uplands separated by broad interior basins. Most of the interior basins once held broad shallow lakes and extensive wetlands, but most of these areas have been drained or otherwise modified and are now cultivated. Major parts of the interior basins are managed as wildlife refuges, primarily for migratory waterfowl. The permeable volcanic bedrock of the upper Klamath Basin hosts a substantial regional groundwater system that provides much of the flow to major streams and lakes that, in turn, provide water for wildlife habitat and are the principal source of irrigation water for the basin's agricultural economy. Increased allocation of surface water for endangered species in the past decade has resulted in increased groundwater pumping and growing interest in the use of groundwater for irrigation. The potential effects of increased groundwater pumping on groundwater levels and discharge to springs and streams has caused concern among groundwater users, wildlife and Tribal interests, and State and Federal resource managers. To provide information on the potential impacts of increased groundwater development and to aid in the development of a groundwater management strategy, the U.S. Geological Survey, in collaboration with the Oregon Water Resources Department and the Bureau of Reclamation, has developed a groundwater model that can simulate the response of the hydrologic system to these new stresses. The groundwater model was developed using the U.S. Geological Survey MODFLOW finite-difference modeling code and calibrated using inverse methods to transient conditions from 1989 through 2004 with quarterly stress periods. Groundwater recharge and agricultural and municipal pumping are specified for each stress period. All

  4. Guide to Louisiana's ground-water resources

    Science.gov (United States)

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  5. Groundwater Energy Designer (GED); Groundwater Energy Designer (GED). Computergestuetztes Auslegungstool zur Waerme- und Kaeltenutzung von Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    Poppei, J.; Mayer, G.; Schwarz, R.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at a computer-aided dimensioning tool (Groundwater Energy Designer, GED) for use in the calculation work involved in designing systems for the thermal use of groundwater. The interactive tool is designed to support those involved in the analysis of heating and cooling demands and the direct use of groundwater to help meet such needs. The program and its user interface in German and French are described in detail, as are the basic models and data used in the calculations. Simulation aspects and the verification of the software are also discussed. Results of tests made are presented and discussed.

  6. Groundwater Quality in Mura Valley (Slovenia)

    Science.gov (United States)

    Zajc Benda, T.; Souvent, P.; Bračič Železnik, B.; Čenčur Curk, B.

    2012-04-01

    Groundwater quality is one of the most important parameters in drinking water supply management. For safe drinking water supply, the quality of groundwater in the water wells on the recharge area has to be controlled. Groundwater quality data will be presented for one test area in the SEE project CC-WaterS (Climate Change and Impacts on Water Supply) Mura valley, which lies in the northeastern part of Slovenia. The Mura valley is a part of the Pannonian basin tectonic unit, which is filled with Tertiary and Quaternary gravel and sand sediments. The porous aquifer is 17 m thick in average and recharges from precipitation (70 %) and from surface waters (30 %). The aquifer is the main source of drinking water in the area for almost 53.000 inhabitants. Most of the aquifer lies beneath the agricultural area what represents the risk of groundwater quality. The major groundwater pollutants in the Mura valley are nitrates, atrazine, desethyl-atrazine, trichloroethane and tetrachloroethene. National groundwater quality monitoring is carried out twice a year, so some polluting events could be missed. The nitrate concentrations in the past were up to 140 mg/l. Concentration trends are decreasing and are now below 60 mg/l. Concentrations of atrazine and desethyl-atrazine, are decreasing as well and are below 0,1 µg/l. Trichloroethene and tetrachloroethene were detected downstream of main city in Mura valley, in the maximum concentrations of 280 μg/l in June 2005 (trichloroethene) and 880 μg/l in October 1997 (tetrachloroethene). So, it can be summarized that the trends for most pollutants in the Mura valley are decreasing, what is a good prediction for the future. Input estimation of the total nitrogen (N) (mineral and organic fertilizers) in the Mura valley shows, that the risk of leaching is enlarged in the areas, where the N input is larger than 250 kg/ha, this is at 6,3 % of all agricultural areas. Prediction for the period 2021-2050 indicates that the leaching of N

  7. Development and Testing of Active Groundwater Samplers

    DEFF Research Database (Denmark)

    Nilsson, Bertel; Jakobsen, Rasmus; Andersen, Lars Jørgen

    1995-01-01

    on numerical modelling and controlled laboratory experiments. Active groundwater sampling techniques can be used for remedial pumping optimization and in obtaining hydraulic data and represent a fast operational and reliable sampling tool, also under heterogeneous and low permeability conditions.......Active groundwater sampling techniques are methods where the aquifer is flushed by pumping. The methods developed and tested represent non-dedicated methods for use in existing water wells. This paper describes two different sampling techniques: the Separation Pumping Technique (SP) and the Packer...

  8. Regulating groundwater use in developing countries

    DEFF Research Database (Denmark)

    Hansen, Lars Gårn; Jensen, Frank; Amundsen, Eirik S

    In many developing countries, groundwater is a common pool resource which is potentially subject to the tragedy of the commons if water extraction is not adequately regulated. However, in these countries, the regulatory infrastructure is often too weak to allow detailed monitoring of individual...... groundwater extraction. For this reason, classical public intervention instruments, such as consumption fees or tradable quotas, are infeasible. Here we present a theoretical foundation for a new public regulatory instrument that can potentially generate the same efficiency inducing incentives as fees...

  9. Regulating groundwater use in developing countries

    DEFF Research Database (Denmark)

    Hansen, Lars Gårn; Jensen, Frank; Amundsen, Eirik S

    In many developing countries, groundwater is a common pool resource which is potentially subject to the tragedy of the commons if water extraction is not adequately regulated. However, in these countries, the regulatory infrastructure is often too weak to allow detailed monitoring of individual...... groundwater extraction. For this reason, classical public intervention instruments, such as consumption fees or tradable quotas, are infeasible. Here we present a theoretical foundation for a new public regulatory instrument that can potentially generate the same efficiency inducing incentives as fees...

  10. Origin of hexavalent chromium in groundwater

    DEFF Research Database (Denmark)

    Kazakis, N.; Kantiranis, N.; Kalaitzidou, K.

    2017-01-01

    Hexavalent chromium constitutes a serious deterioration factor for the groundwater quality of several regions around the world. High concentrations of this contaminant have been also reported in the groundwater of the Sarigkiol hydrological basin (near Kozani city, NW Greece). Specific interest....... Accordingly, detailed geochemical, mineralogical, hydro-chemical, geophysical and hydrogeological studies were performed on the rocks, soils, sediments and water resources of this basin. Cr(VI) concentrations varied in the different aquifers, with the highest concentration (up to 120 μg L− 1) recorded...

  11. Groundwater system analysis of south Yishu geosyncline

    Institute of Scientific and Technical Information of China (English)

    DAI Chang-lei; CHI Bao-ming; YI Shu-ping; LI Zhi-jun

    2004-01-01

    South Yishu geosyncline is 50 km southeast of Changchun City of Jilin Province, where an aquifer is thick,surface runoff is abundant and it has potential to develop water resources preferably. By means of system analysis, the authors analyse the structural characteristics, I/O characteristics, function characteristics and boundary and environment characteristics of the groundwater system, so as to search for a way of optimizing water resources arrangement and enhancing water resources'bearing capacity. Based on the analysis results, the authors abstract conceptual model and mathematical model of the groundwater system. The simulation results certify and enrich the knowledge about south Yishu geosyncline.

  12. Ground-Water Protection and Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  13. Groundwater quality in the Yuba River and Bear River Watersheds, Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Jasper, Monica; Taylor, Kimberly A.

    2017-09-27

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Yuba River and Bear River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking water supplies. 

  14. Risk assessment of groundwater level variability using variable Kriging methods

    Science.gov (United States)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2015-04-01

    Assessment of the water table level spatial variability in aquifers provides useful information regarding optimal groundwater management. This information becomes more important in basins where the water table level has fallen significantly. The spatial variability of the water table level in this work is estimated based on hydraulic head measured during the wet period of the hydrological year 2007-2008, in a sparsely monitored basin in Crete, Greece, which is of high socioeconomic and agricultural interest. Three Kriging-based methodologies are elaborated in Matlab environment to estimate the spatial variability of the water table level in the basin. The first methodology is based on the Ordinary Kriging approach, the second involves auxiliary information from a Digital Elevation Model in terms of Residual Kriging and the third methodology calculates the probability of the groundwater level to fall below a predefined minimum value that could cause significant problems in groundwater resources availability, by means of Indicator Kriging. The Box-Cox methodology is applied to normalize both the data and the residuals for improved prediction results. In addition, various classical variogram models are applied to determine the spatial dependence of the measurements. The Matérn model proves to be the optimal, which in combination with Kriging methodologies provides the most accurate cross validation estimations. Groundwater level and probability maps are constructed to examine the spatial variability of the groundwater level in the basin and the associated risk that certain locations exhibit regarding a predefined minimum value that has been set for the sustainability of the basin's groundwater resources. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the

  15. Pumpage for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents ground-water discharged from the Death Valley regional ground-water flow system (DVRFS) through pumped wells. Pumping from wells in...

  16. Global governance principles for the sustainable development of groundwater resources

    NARCIS (Netherlands)

    Conti, K.I.; Gupta, J.

    2016-01-01

    A normative framework for the governance of groundwater is emerging at the global level. However, existing analyses have not comprehensively covered all the governance texts that have a bearing on transboundary groundwater resources or looked at them from the perspective of sustainable groundwater g

  17. The global volume and distribution of modern groundwater

    Science.gov (United States)

    Gleeson, Tom; Befus, Kevin; Jasechko, Scott; Luijendijk, Elco; Cardenas, Bayani

    2017-04-01

    Groundwater is important for energy and food security, human health and ecosystems. The time since groundwater was recharged - or groundwater age - can be important for diverse geologic processes such as chemical weathering, ocean eutrophication and climate change. However, measured groundwater ages range from months to millions of years. The global volume and distribution of groundwater less than 50 years old - modern groundwater that is the most recently recharged and also the most vulnerable to global change - are unknown. Here we combine geochemical, geological, hydrologic and geospatial datasets with numerical simulations of groundwater flow and analyze tritium ages to show that less than 6% of the groundwater in the uppermost portion of Earth's landmass is modern. We find that the total groundwater volume in the upper 2 km of continental crust is approximately 22.6 million km3, of which 0.1 to 5.0 million km3 is less than 50 years old. Although modern groundwater represents a small percentage of the total groundwater on Earth, the volume of modern groundwater is equivalent to a body of water with a depth of about 3 m spread over the continents. This water resource dwarfs all other components of the active hydrologic cycle.

  18. Quantification of Shallow Groundwater Nutrient Dynamics in Septic Areas

    Science.gov (United States)

    Ying Ouyang; Jia-En Zhang

    2012-01-01

    Of all groundwater pollution sources, septic systems are the second largest source of groundwater nitrate contamination in USA. This study investigated shallow groundwater (SGW) nutrient dynamics in septic areas at the northern part of the Lower St. Johns River Basin, Florida, USA. Thirty-five SGW-monitoring wells, located at nine different urban areas served by septic...

  19. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... preclude installation of ground-water monitoring wells at the relevant point of compliance at existing... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51...

  20. Groundwater and enteric disease: A review of the epidemiological evidence

    Science.gov (United States)

    Globally, approximately 2.2 billion people rely on groundwater for daily consumption. It is widely accepted that groundwater typically represents a more pristine source of water for human consumption than surface water resources. While this assumption is frequently the case, groundwater is not ubiqu...

  1. Norms in multilevel groundwater governance and sustainable development

    NARCIS (Netherlands)

    Conti, K.I.

    2017-01-01

    Groundwater constitutes 98-99% of the world’s available freshwater resources. Humans abstract 200 times more groundwater than oil - using it heavily for domestic, municipal, agricultural and industrial purposes. Consequently, humans cause groundwater depletion and quality degradation in some

  2. Drought in groundwater-drought distribution and performance indicators

    NARCIS (Netherlands)

    Peters, E.; Lanen, van H.A.J.; Torfs, P.J.J.F.; Bier, G.

    2005-01-01

    In order to investigate how droughts are changed by the groundwater system and to analyse the performance of groundwater during drought, 10 time series of 1000 years of recharge and groundwater discharge were generated. The 10×1000 years of synthetic daily data were generated using Nearest Neighbour

  3. Groundwater and Global Palaeoclimate Signals (G@GPS)

    NARCIS (Netherlands)

    Haldorsen, Sylvi; Ploeg, van der Martine J.; Cendon, Dioni I.; Chen, Jianyao; Jemaa, Najiba Chkir Ben; Gurdak, Jason J.; Purtschert, Roland; Tujchneider, Ofelia; Vaikmae, Rein; Perez, Marcela; Zouari, Kamel

    2016-01-01

    Groundwater sources supply fresh drinking water to almost half of the World's population and are a main source of water for irrigation across world. Characterization of groundwater resources, surface groundwater interactions and their link to the global water cycle and modern global change are

  4. The global volume and distribution of modern groundwater

    Science.gov (United States)

    Gleeson, Tom; Befus, Kevin M.; Jasechko, Scott; Luijendijk, Elco; Cardenas, M. Bayani

    2016-02-01

    Groundwater is important for energy and food security, human health and ecosystems. The time since groundwater was recharged--or groundwater age--can be important for diverse geologic processes, such as chemical weathering, ocean eutrophication and climate change. However, measured groundwater ages range from months to millions of years. The global volume and distribution of groundwater less than 50 years old--modern groundwater that is the most recently recharged and also the most vulnerable to global change--are unknown. Here we combine geochemical, geologic, hydrologic and geospatial data sets with numerical simulations of groundwater and analyse tritium ages to show that less than 6% of the groundwater in the uppermost portion of Earth’s landmass is modern. We find that the total groundwater volume in the upper 2 km of continental crust is approximately 22.6 million km3, of which 0.1-5.0 million km3 is less than 50 years old. Although modern groundwater represents a small percentage of the total groundwater on Earth, the volume of modern groundwater is equivalent to a body of water with a depth of about 3 m spread over the continents. This water resource dwarfs all other components of the active hydrologic cycle.

  5. Dating degassed groundwater with 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Broers, H.P.; Bierkens, M.F.P.

    2007-01-01

    The production of gases in groundwater under contaminated locations by geochemical and biological processes is not uncommon. Degassing of these gases from groundwater and repartitioning of noble gases between water and gas phase distorts groundwater dating by 3H/3He. We observed noble gas concentrat

  6. Dating degassed groundwater with 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Broers, H.P.; Bierkens, M.F.P.

    2007-01-01

    The production of gases in groundwater under contaminated locations by geochemical and biological processes is not uncommon. Degassing of these gases from groundwater and repartitioning of noble gases between water and gas phase distorts groundwater dating by 3H/3He. We observed noble gas

  7. Groundwater recharge and nutrient transport in a tile drained field: The Las Nutrias Groundwater Project, Las Nutrias, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Roth, T.L.; Bowman, R.S. [New Mexico Tech, Socorro, NM (United States). Dept. of Geoscience

    1995-12-31

    With the rapid growth of the Albuquerque region, groundwater contamination from nonpoint sources has become an increasing concern. Agriculture, one major land usage of the basin area, can abe responsible for the leaching of nutrients and chemicals to shallow groundwater via irrigation return flows. Even so, there is almost no available information regarding agricultural impacts on groundwater quality in New Mexico. The major objective of this project has been to develop a data base pertaining to this issue. The main goals of this project are: to adapt the tile drainage system to allow for the collection of irrigation return flows on an actual, operating farm; to utilize the tile drain sampling system to quantify nutrient and pesticide levels in the irrigation return flow; to determine the local hydrology in an around the field site; and to use the collected field data to test the two-dimensional water flow and chemical transport model (CHAIN 2-D).

  8. Surface water and groundwater interaction on a hill island

    DEFF Research Database (Denmark)

    Frederiksen, Rasmus Rumph; Rasmussen, Keld Rømer; Christensen, Steen

    – the hill islands – is relatively unknown. This study aims at providing new information about the rainfall-runoff processes in hill island landscapes where surface water and groundwater interaction is expected to have a dominant role and hill-slope processes not. Through stream flow measurements, field...

  9. Modeling land-based nitrogen loads from groundwater-dominated agricultural watersheds to estuaries to inform nutrient reduction planning

    Science.gov (United States)

    Jiang, Yefang; Nishimura, Peter; van den Heuvel, Michael R.; MacQuarrie, Kerry T. B.; Crane, Cindy S.; Xing, Zisheng; Raymond, Bruce G.; Thompson, Barry L.

    2015-10-01

    Excessive nitrate loads from intensive potato production have been linked to the reoccurring anoxic events in many estuaries in Prince Edward Island (PEI), Canada. Community-led watershed-based nutrient reduction planning has been promoted as a strategy for water quality restoration and initial nitrate load criteria have been proposed for the impacted estuaries. An integrated modeling approach was developed to predict base flow nitrate loads to inform the planning activities in the groundwater-dominated agricultural watersheds. Nitrate load is calculated as base flow multiplied by the average of nitrate concentration at the receiving watershed outlet. The average of nitrate concentration is estimated as the integration of nitrate leaching concentration over the watershed area minus a nitrate loss coefficient that accounts for long-term nitrate storage in the aquifer and losses from the recharge to the discharge zones. Nitrate leaching concentrations from potato rotation systems were estimated with a LEACHN model and the land use areas were determined from satellite image data (2006-2009) using GIS. The simulated average nitrate concentrations are compared with the arithmetic average of nitrate concentration measurements in each of the 27 watersheds for model calibration and in 138 watersheds for model verifications during 2006-2009. Sensitivity of the model to the variations of land use mapping errors, nitrate leaching concentrations from key sources, and nitrate loss coefficient was tested. The calibration and verification statistics and sensitivity analysis show that the model can provide accurate nitrate concentration predictions for watersheds with drainage areas more than 5 km2 and nitrate concentration over 2 mg N L-1, while the model resolution for watersheds with drainage areas below 5 km2 and/or nitrate concentration below 2 mg N L-1 may not be sufficient for nitrate load management purposes. Comparisons of normalized daily stream discharges among the

  10. Theoretical foundation for measuring the groundwater age distribution.

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, William Payton; Arnold, Bill Walter

    2014-01-01

    In this study, we use PFLOTRAN, a highly scalable, parallel, flow and reactive transport code to simulate the concentrations of 3H, 3He, CFC-11, CFC-12, CFC-113, SF6, 39Ar, 81Kr, 4He and themean groundwater age in heterogeneous fields on grids with an excess of 10 million nodes. We utilize this computational platform to simulate the concentration of multiple tracers in high-resolution, heterogeneous 2-D and 3-D domains, and calculate tracer-derived ages. Tracer-derived ages show systematic biases toward younger ages when the groundwater age distribution contains water older than the maximum tracer age. The deviation of the tracer-derived age distribution from the true groundwater age distribution increases with increasing heterogeneity of the system. However, the effect of heterogeneity is diminished as the mean travel time gets closer the tracer age limit. Age distributions in 3-D domains differ significantly from 2-D domains. 3D simulations show decreased mean age, and less variance in age distribution for identical heterogeneity statistics. High-performance computing allows for investigation of tracer and groundwater age systematics in high-resolution domains, providing a platform for understanding and utilizing environmental tracer and groundwater age information in heterogeneous 3-D systems. Groundwater environmental tracers can provide important constraints for the calibration of groundwater flow models. Direct simulation of environmental tracer concentrations in models has the additional advantage of avoiding assumptions associated with using calculated groundwater age values. This study quantifies model uncertainty reduction resulting from the addition of environmental tracer concentration data. The analysis uses a synthetic heterogeneous aquifer and the calibration of a flow and transport model using the pilot point method. Results indicate a significant reduction in the uncertainty in permeability with the addition of environmental tracer data, relative

  11. Regional groundwater characteristics and hydraulic conductivity based on geological units in Korean peninsula

    Science.gov (United States)

    Kim, Y.; Suk, H.

    2011-12-01

    In this study, about 2,000 deep observation wells, stream and/or river distribution, and river's density were analyzed to identify regional groundwater flow trend, based on the regional groundwater survey of four major river watersheds including Geum river, Han river, Youngsan-Seomjin river, and Nakdong river in Korea. Hydrogeologial data were collected to analyze regional groundwater flow characteristics according to geological units. Additionally, hydrological soil type data were collected to estimate direct runoff through SCS-CN method. Temperature and precipitation data were used to quantify infiltration rate. The temperature and precipitation data were also used to quantify evaporation by Thornthwaite method and to evaluate groundwater recharge, respectively. Understanding the regional groundwater characteristics requires the database of groundwater flow parameters, but most hydrogeological data include limited information such as groundwater level and well configuration. In this study, therefore, groundwater flow parameters such as hydraulic conductivities or transmissivities were estimated using observed groundwater level by inverse model, namely PEST (Non-linear Parameter ESTimation). Since groundwater modeling studies have some uncertainties in data collection, conceptualization, and model results, model calibration should be performed. The calibration may be manually performed by changing parameters step by step, or various parameters are simultaneously changed by automatic procedure using PEST program. In this study, both manual and automatic procedures were employed to calibrate and estimate hydraulic parameter distributions. In summary, regional groundwater survey data obtained from four major river watersheds and various data of hydrology, meteorology, geology, soil, and topography in Korea were used to estimate hydraulic conductivities using PEST program. Especially, in order to estimate hydraulic conductivity effectively, it is important to perform

  12. Extent, perception and mitigation of damage due to high groundwater levels in the city of Dresden, Germany

    Science.gov (United States)

    Kreibich, H.; Thieken, A. H.; Grunenberg, H.; Ullrich, K.; Sommer, T.

    2009-07-01

    Flood risk analysis and management plans mostly neglect groundwater flooding, i.e. high groundwater levels. However, rising groundwater may cause considerable damage to buildings and infrastructure. To improve the knowledge about groundwater flooding and support risk management, a survey was undertaken in the city of Dresden (Saxony, Germany), resulting in 605 completed interviews with private households endangered by high groundwater levels. The reported relatively low flood impact and damage of groundwater floods in comparison with mixed floods was reflected by its scarce perception: Hardly anybody thinks about the risk of groundwater flooding. The interviewees thought that public authorities and not themselves, should be mainly responsible for preparedness and emergency response. Up to now, people do not include groundwater risk in their decision processes on self protection. The implementation of precautionary measures does not differ between households with groundwater or with mixed flood experience. However, less households undertake emergency measures when expecting a groundwater flood only. The state of preparedness should be further improved via an intensified risk communication about groundwater flooding by the authorities. Conditions to reach the endangered population are good, since 70% of the interviewed people are willing to inform themselves about groundwater floods. Recommendations for an improved risk communication are given.

  13. AWRA-G: A continental scale groundwater component linked to a land surface water balance model

    Science.gov (United States)

    Joehnk, Klaus; Crosbie, Russell; Peeters, Luk; Doble, Rebecca

    2013-04-01

    The Australian Water Resources Assessment (AWRA) system is a combination of models, data sources and analysis techniques that together will describe the water balance of Australia's landscapes, rivers and groundwater systems. It is a grid based water balance model that has lumped representation of the water balance of the soil, groundwater and surface water stores for each cell. The purpose of AWRA is to operationally provide up to date, credible, comprehensive, and accurate information about the history, present state and future trajectory of the water balance across Australia with sufficient spatial and temporal detail and enable water resources management for undertaking annual water resource assessments and national water accounts. AWRA is developed to link three major components: a landscape water balance model (AWRA-L), a river routing model (AWRA-R), and a groundwater component model (AWRA-G). These three component models combined are expected to be able to model the fluxes and stores of water throughout the landscape. The groundwater component (AWRA-G) addresses an improved representation of groundwater in the AWRA system to describe basic aquifer dynamics and groundwater-surface water processes. While most continental scale land surface models do not have the capacity to allow water to flow between cells and thus ignore this element of the water balance, AWRA-G does account for lateral flows. In general, AWRA-G provides estimates of groundwater fluxes that are not incorporated into either AWRA-L and its modifications to in-cell soil and groundwater processes, or AWRA-R. The processes integrated into AWRA-G thus are lateral groundwater flow between cells in regional and intermediate groundwater flow systems, groundwater discharge to the ocean, groundwater extraction and infiltration, river losses to groundwater, recharge from overbank flooding, and interactions between deep confined systems and surficial groundwater systems. Basis of AWRA-G is a good

  14. Baseline groundwater model update for p-area groundwater operable unit, NBN

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. [Savannah River Site (SRS), Aiken, SC (United States); Amidon, M. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-09-01

    This report documents the development of a numerical groundwater flow and transport model of the hydrogeologic system of the P-Area Reactor Groundwater Operable Unit at the Savannah River Site (SRS) (Figure 1-1). The P-Area model provides a tool to aid in understanding the hydrologic and geochemical processes that control the development and migration of the current tritium, tetrachloroethene (PCE), and trichloroethene (TCE) plumes in this region.

  15. Spatiotemporal Characteristics of Groundwater Drought and Its Response to Meteorological Drought in Jiangsu Province, China

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2016-10-01

    Full Text Available In this study, the temporal and spatial variations of groundwater drought using a Standardized Groundwater Level Index (SGI were analyzed based on 40 monthly groundwater level observation wells from 1989 to 2012 in Jiangsu Province, China. Meteorological drought, calculated by the Standardized Precipitation Index (SPI, was also included to reveal its propagation and impact on the groundwater drought process. Results showed that the southern region of Jiangsu faced more frequent groundwater droughts and lower intensity, while the northern region faced less frequent groundwater drought with higher intensity. Furthermore, the cross-correlation between the spatial average of SGI and SPI for SPI accumulation periods of q = 1 to 12 was computed. The relationship between SGI and SPI varied in different regions. Detailed analysis of the characteristics of groundwater and meteorological drought for each region showed that meteorological droughts happened more frequently than groundwater drought in Jiangsu Province during the study period, while the mean duration and mean magnitude of groundwater droughts were longer and larger than those of meteorological droughts. It is expected that this study will provide useful information for drought monitoring and mitigation in Jiangsu and similar areas.

  16. Identifying the groundwater basin boundaries, using environmental isotopes: a case study

    Science.gov (United States)

    Demiroğlu, Muhterem

    2017-06-01

    Groundwater, which is renewable under current climatic conditions separately from other natural sources, in fact is a finite resource in terms of quality and fossil groundwater. Researchers have long emphasized the necessity of exploiting, operating, conserving and managing groundwater in an efficient and sustainable manner with an integrated water management approach. The management of groundwater needs reliable information about changes on groundwater quantity and quality. Environmental isotopes are the most important tools to provide this support. No matter which method we use to calculate the groundwater budget and flow equations, we need to determine boundary conditions or the physical boundaries of the domain. The Groundwater divide line or basin boundaries that separate the two adjacent basin recharge areas from each other must be drawn correctly to be successful in defining complex groundwater basin boundary conditions. Environmental isotope data, as well as other methods provide support for determining recharge areas of the aquifers, especially for karst aquifers, residence time and interconnections between aquifer systems. This study demonstrates the use of environmental isotope data to interpret and correct groundwater basin boundaries giving as an example the Yeniçıkrı basin within the main Sakarya basin.

  17. Identifying the groundwater basin boundaries, using environmental isotopes: a case study

    Science.gov (United States)

    Demiroğlu, Muhterem

    2016-12-01

    Groundwater, which is renewable under current climatic conditions separately from other natural sources, in fact is a finite resource in terms of quality and fossil groundwater. Researchers have long emphasized the necessity of exploiting, operating, conserving and managing groundwater in an efficient and sustainable manner with an integrated water management approach. The management of groundwater needs reliable information about changes on groundwater quantity and quality. Environmental isotopes are the most important tools to provide this support. No matter which method we use to calculate the groundwater budget and flow equations, we need to determine boundary conditions or the physical boundaries of the domain. The Groundwater divide line or basin boundaries that separate the two adjacent basin recharge areas from each other must be drawn correctly to be successful in defining complex groundwater basin boundary conditions. Environmental isotope data, as well as other methods provide support for determining recharge areas of the aquifers, especially for karst aquifers, residence time and interconnections between aquifer systems. This study demonstrates the use of environmental isotope data to interpret and correct groundwater basin boundaries giving as an example the Yeniçıkrı basin within the main Sakarya basin.

  18. Groundwater crustaceans of Spain, 13 (Copepoda Calanoida)

    NARCIS (Netherlands)

    Bowman, Thomas E.

    1990-01-01

    Two calanoid copepods were collected from groundwaters in Spain by the University of Amsterdam Expeditions in 1983—84 and 1985. Copidodiaptomus numidicus was found in southwestern Spain, in provincias Huelva and Sevilla. Mixodiaptomus laciniatus, previously known in Spain only from the Pyrenees, was

  19. Ground-water provinces of southern Rhodesia

    Science.gov (United States)

    Dennis, Philip Eldon; Hindson, L.L.

    1964-01-01

    Ground-water development, utilization, and occurrence in nine ground-water provinces of Southern Rhodesia are summarized in this report. Water obtained from drilled wells for domestic and stock use has played an important part in the social and economic development of Southern Rhodesia from the beginnings of European settlement to the present. Most of the wells obtain water from fractures and weathered zones in crystalline rocks, before recently, there has been an interest in the possibility of obtaining water for irrigation from wells. Studies of the authors indicate that quantities of water sufficient for irrigation can be obtained from alluvial sediments in the S'abi Valley, from Kalahari sands in the western part of the country, are perhaps from aquifers in other areas. The ground-water provinces fall into two groups--those in the crystalline rocks and those in the noncrystalline rocks. Historically, the wells in crystalline rocks, especially the Gold belts province and the Intrusive granites province, have played a major role in supplying water for the needs of man. These provinces, together with two other less important crystalline rock provinces, form the broad arch which constitutes the central core of the country. The noncrystalline rocks overlie and flank the crystalline rocks to the southeast, northwest, and north. The noncrystalline rock provinces, especially the Alluvium-Kalahari province, contain the most productive or potentially productive ground-water reservoirs in Southern Rhodesia and offer promise of supplying water for irrigation and for other purposes.

  20. Incentives to reduce groundwater consumption in Yemen

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Perry, C.J.; Al-Aulaqi, N.

    2011-01-01

    In this paper options for changing the incentive structure to reduce unsustainable groundwater consumption in Yemen are evaluated. Special attention is paid to incentives that decrease the profitability of irrigation water use and subsidies on improved irrigation technology. Although the literature

  1. Optimal dynamic management of groundwater pollutant sources.

    Science.gov (United States)

    Gorelick, S.M.; Remson, I.

    1982-01-01

    The linear programing-superposition method is presented for managing multiple sources of groundwater pollution over time. The method uses any linear solute transport simulation model to generate a unit source-concentration response matrix that is incorporated into a management model. -from Authors

  2. Environmental isotopes investigation in groundwater of Challaghatta ...

    African Journals Online (AJOL)

    Administrator

    water. Further, from the results of 14C it is inferred that some groundwater samples in Challaghatta valley belongs ... Bangalore, known, as the Silicon Valley of Asia, is one of the major class ... Considering the climatic water balance, soil characteristics ..... basin (central Tunisia) during Holocene period using pluridisplinary.

  3. Groundwater Recharge, Evapotranspiration and Surface Runoff ...

    African Journals Online (AJOL)

    Bheema

    Department of Earth Science, CNCS, P.O. Box 231, Mekelle University, ... The mean annual groundwater recharge, evapotranspiration and runoff were ... Accordingly, recharge accounts for 12% of the precipitation .... So, to apply the WetSpass for Illala catchment, input of the meteorological grid map ..... Review of Australian.

  4. Composition of dissolved organic matter in groundwater

    Science.gov (United States)

    Longnecker, Krista; Kujawinski, Elizabeth B.

    2011-05-01

    Groundwater constitutes a globally important source of freshwater for drinking water and other agricultural and industrial purposes, and is a prominent source of freshwater flowing into the coastal ocean. Therefore, understanding the chemical components of groundwater is relevant to both coastal and inland communities. We used electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to examine dissolved organic compounds in groundwater prior to and after passage through a sediment-filled column containing microorganisms. The data revealed that an unexpectedly high proportion of organic compounds contained nitrogen and sulfur, possibly due to transport of surface waters from septic systems and rain events. We matched 292 chemical features, based on measured mass:charge ( m/z) values, to compounds stored in the Kyoto Encyclopedia of Genes and Genomes (KEGG). A subset of these compounds (88) had only one structural isomer in KEGG, thus supporting tentative identification. Most identified elemental formulas were linked with metabolic pathways that produce polyketides or with secondary metabolites produced by plants. The presence of polyketides in groundwater is notable because of their anti-bacterial and anti-cancer properties. However, their relative abundance must be quantified with appropriate analyses to assess any implications for public health.

  5. Groundwater pollution: Are we monitoring appropriate parameters ...

    African Journals Online (AJOL)

    However, in practice groundwater quality monitoring is the main tool for timely ... quality is a specialised task for a hydrogeologist and a water quality monitoring expert. Although general prescriptions for waste management facilities exist these ... approaches have identified various sets of pollutants and pollution indicators.

  6. Integrating the Sciences to Investigate Groundwater Pollution

    Science.gov (United States)

    Grady, Julie R.; Madden, Andrew S.

    2010-01-01

    Investigations that integrate concepts from geological sciences with biology and chemistry are rare. The authors present an investigation that introduces high school students to microbe-mineral interactions by tying together anaerobic respiration, reduction reactions, metal ion solubility, and groundwater pollution. During the investigation,…

  7. Groundwater: A Vital Resource. Student Activities.

    Science.gov (United States)

    Taylor, Carla, Ed.

    Twenty-three activities dealing with various aspects of groundwater are provided in this manual. The activities are arranged under four headings: (1) the water cycle; (2) water distribution in soils (considering such topics as calculating water table depth and purifying water by filtering); (3) water quality (considering such topics as acid rain,…

  8. Integrating the Sciences to Investigate Groundwater Pollution

    Science.gov (United States)

    Grady, Julie R.; Madden, Andrew S.

    2010-01-01

    Investigations that integrate concepts from geological sciences with biology and chemistry are rare. The authors present an investigation that introduces high school students to microbe-mineral interactions by tying together anaerobic respiration, reduction reactions, metal ion solubility, and groundwater pollution. During the investigation,…

  9. Natural radioactivity in groundwater--a review.

    Science.gov (United States)

    Dinh Chau, Nguyen; Dulinski, Marek; Jodlowski, Pawel; Nowak, Jakub; Rozanski, Kazimierz; Sleziak, Monika; Wachniew, Przemyslaw

    2011-12-01

    The issue of natural radioactivity in groundwater is reviewed, with emphasis on those radioisotopes which contribute in a significant way to the overall effective dose received by members of the public due to the intake of drinking water originating from groundwater systems. The term 'natural radioactivity' is used in this context to cover all radioactivity present in the environment, including man-made (anthropogenic) radioactivity. Comprehensive discussion of radiological aspects of the presence of natural radionuclides in groundwater, including an overview of current regulations dealing with radioactivity in drinking water, is provided. The presented data indicate that thorough assessments of the committed doses resulting from the presence of natural radioactivity in groundwater are needed, particularly when such water is envisaged for regular intake by infants. They should be based on a precise determination of radioactivity concentration levels of the whole suite of radionuclides, including characterisation of their temporal variability. Equally important is a realistic assessment of water intake values for specific age groups. Only such an evaluation may provide the basis for possible remedial actions.

  10. A multicriterion approach to groundwater management

    Science.gov (United States)

    El Magnouni, Samir; Treichel, Wiktor

    1994-06-01

    A new approach to groundwater quantity (hydraulic) management, based on a multicriterion decision aid methodology, is presented. The method couples a hydrodynamic groundwater flow simulation model with the decision aid one. It takes into account multiple criteria used by the decision maker (DM) in evaluating a management scenario as well as the hydrodynamic behavior of the groundwater system. The finite element and embedding methods are used to integrate the groundwater flow model into a multiobjective linear programming (LP) problem. Constraints on head, pumping rates, hydraulic gradient and velocity vector may be included in the management model. The piecewise linear utility function is assessed for modeling the DM's preferences. The best compromise solution is determined from the continuous Pareto set by solving a piecewise LP problem. User friendly software was developed to realize this methodology which is able to treat real scale problems. An illustrative example of an unconfined aquifer management is presented. Nonlinearities resulting from functional dependence of aquifer parameters on hydraulic head are handled iteratively.

  11. Diffusion Behavior of Np in Simulated Groundwater

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The diffusion rate of radionuclide in groundwater is one of the most important factors to beconsidered for risk assessment of disposal of high -level radioactive waste in deep geological repository.However the reported data are very scarce. In the present work, the diffusion behavior of Np in simulated

  12. Regression modeling of ground-water flow

    Science.gov (United States)

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  13. Urban Network Implications On Groundwater Recharge

    Science.gov (United States)

    Duque, J.; Chambel, A.

    Urbanisation has had a major impact on groundwater beneath Évora city (South Portu- gal). Évora is an ancient city and the growth of impermeable areas due to urbanisation has lead to a reduction in groundwater recharge. The specific type of residential land use has a major influence on the permeability of the recharge area. The use of ground- water inside the city of Évora is largely for particular gardening and small farming supplies. In the oldest part of the city (inside of the city walls) there is little use of groundwater, while in the part of the city outside the city walls usage is more effec- tive. This study provides evidence that the municipality or particular people can use groundwater to irrigate the majority gardens, instead of using cleaned water from the Monte Novo Dam. This will also provide a solution to the control of pollution that occurs due to losses from the sewerage system of the city.

  14. Fluoride in African groundwater: Occurrence and mitigation

    NARCIS (Netherlands)

    Vasak, S.; Griffioen, J.; Feenstra, L.

    2010-01-01

    Fluoride in groundwater has both natural and anthropogenic sources. Fluoride bearing minerals, volcanic gases and various industrial and agricultural activities can contribute to high concentrations. High intake of fluoride from drinking water is the main cause of fluorosis and may lead to many othe

  15. Eddy correlation measurements of submarine groundwater discharge

    Science.gov (United States)

    Crusius, J.; Berg, P.; Koopmans, D.J.; Erban, L.

    2008-01-01

    This paper presents a new, non-invasive means of quantifying groundwater discharge into marine waters using an eddy correlation approach. The method takes advantage of the fact that, in virtually all aquatic environments, the dominant mode of vertical transport near the sediment-water interface is turbulent mixing. The technique thus relies on measuring simultaneously the fluctuating vertical velocity using an acoustic Doppler velocimeter and the fluctuating salinity and/or temperature using rapid-response conductivity and/or temperature sensors. The measurements are typically done at a height of 5-15??cm above the sediment surface, at a frequency of 16 to 64??Hz, and for a period of 15 to 60??min. If the groundwater salinity and/or temperature differ from that of the water column, the groundwater specific discharge (cm d- 1) can be quantified from either a heat or salt balance. Groundwater discharge was estimated with this new approach in Salt Pond, a small estuary on Cape Cod (MA, USA). Estimates agreed well with previous estimates of discharge measured using seepage meters and 222Rn as a tracer. The eddy correlation technique has several desirable characteristics: 1) discharge is quantified under in-situ hydrodynamic conditions; 2) salinity and temperature can serve as two semi-independent tracers of discharge; 3) discharge can be quantified at high temporal resolution, and 4) long-term records of discharge may be possible, due to the low power requirements of the instrumentation. ?? 2007 Elsevier B.V. All rights reserved.

  16. Quantifying Potential Groundwater Recharge In South Texas

    Science.gov (United States)

    Basant, S.; Zhou, Y.; Leite, P. A.; Wilcox, B. P.

    2015-12-01

    Groundwater in South Texas is heavily relied on for human consumption and irrigation for food crops. Like most of the south west US, woody encroachment has altered the grassland ecosystems here too. While brush removal has been widely implemented in Texas with the objective of increasing groundwater recharge, the linkage between vegetation and groundwater recharge in South Texas is still unclear. Studies have been conducted to understand plant-root-water dynamics at the scale of plants. However, little work has been done to quantify the changes in soil water and deep percolation at the landscape scale. Modeling water flow through soil profiles can provide an estimate of the total water flowing into deep percolation. These models are especially powerful with parameterized and calibrated with long term soil water data. In this study we parameterize the HYDRUS soil water model using long term soil water data collected in Jim Wells County in South Texas. Soil water was measured at every 20 cm intervals up to a depth of 200 cm. The parameterized model will be used to simulate soil water dynamics under a variety of precipitation regimes ranging from well above normal to severe drought conditions. The results from the model will be compared with the changes in soil moisture profile observed in response to vegetation cover and treatments from a study in a similar. Comparative studies like this can be used to build new and strengthen existing hypotheses regarding deep percolation and the role of soil texture and vegetation in groundwater recharge.

  17. Vulnerability Assessment of Groundwater Resources by Nutrient Source Apportionment to Individual Groundwater Wells: A Case Study in North Carolina

    Science.gov (United States)

    Ayub, R.; Obenour, D. R.; Keyworth, A. J.; Genereux, D. P.; Mahinthakumar, K.

    2016-12-01

    Groundwater contamination by nutrients (nitrogen and phosphorus) is a major concern in water table aquifers that underlie agricultural areas in the mid-Atlantic Coastal Plain of the United States. High nutrient concentrations leaching into shallow groundwater can lead to human health problems and eutrophication of receiving surface waters. Liquid manure from concentrated animal feeding operations (CAFOs) stored in open-air lagoons and applied to spray fields can be a significant source of nutrients to groundwater, along with septic waste. In this study, we developed a model-based methodology for source apportionment and vulnerability assessment using sparse groundwater quality sampling measurements for Duplin County, North Carolina (NC), obtained by the NC Department of Environmental Quality (NC DEQ). This model provides information relevant to management by estimating the nutrient transport through the aquifer from different sources and addressing the uncertainty of nutrient contaminant propagation. First, the zones of influence (dependent on nutrient pathways) for individual groundwater monitoring wells were identified using a two-dimensional vertically averaged groundwater flow and transport model incorporating geologic uncertainty for the surficial aquifer system. A multiple linear regression approach is then applied to estimate the contribution weights for different nutrient source types using the nutrient measurements from monitoring wells and the potential sources within each zone of influence. Using the source contribution weights and their uncertainty, a probabilistic vulnerability assessment of the study area due to nutrient contamination is performed. Knowledge of the contribution of different nutrient sources to contamination at receptor locations (e.g., private wells, municipal wells, stream beds etc.) will be helpful in planning and implementation of appropriate mitigation measures.

  18. Site scale groundwater flow in Haestholmen

    Energy Technology Data Exchange (ETDEWEB)

    Loefman, J. [VTT Energy, Espoo (Finland)

    1999-05-01

    Groundwater flow modelling on the site scale has been an essential part of site investigation work carried out at different locations since 1986. The objective of the modelling has been to provide results that characterise the groundwater flow conditions deep in the bedrock. The main result quantities can be used for evaluation of the investigation sites and of the preconditions for safe final disposal - of spent nuclear fuel. This study represents the groundwater flow modelling at Haestholmen, and it comprises the transient flow analysis taking into account the effects of density variations and the repository as well as the post-glacial land uplift. The analysis is performed by means of numerical finite element simulation of coupled and transient groundwater flow and solute transport carried out up to 10000 years into the future. This work provides also the results for the site-specific data needs for the block scale groundwater flow modelling at Haestholmen. Conceptually the fractured bedrock is divided into hydraulic units: the planar fracture zones and the remaining part of the bedrock. The equivalent-continuum (EC) model is applied so that each hydraulic unit is treated as a homogeneous and isotropic continuum with representative average characteristics. All the fracture zones are modelled explicitly and represented by two-dimensional finite elements. A site-specific simulation model for groundwater flow and solute transport is developed on the basis of the latest hydrogeological and hydrogeochemical field investigations at Haestholmen. The present topography together with a mathematical model describing the land uplift at the Haestholmen area are employed as a boundary condition at the surface of the model. The overall flow pattern is mostly controlled by the local variations in the topography and by the highly transmissive fracture zones. Near the surface the flow spreads out to offshore and to the lower areas of topography in all directions away from

  19. Comparison of GRACE data and groundwater levels for the assessment of groundwater depletion in Jordan

    Science.gov (United States)

    Liesch, Tanja; Ohmer, Marc

    2016-09-01

    Gravity Recovery and Climate Experiment (GRACE) derived groundwater storage (GWS) data are compared with in-situ groundwater levels from five groundwater basins in Jordan, using newly gridded GRACE GRCTellus land data. It is shown that (1) the time series for GRACE-derived GWS data and in-situ groundwater-level measurements can be correlated, with R 2 from 0.55 to 0.74, (2) the correlation can be widely ascribed to the seasonal and trend component, since the detrended and deseasonalized time series show no significant correlation for most cases, implying that anomalous signals that deviate from the trend or seasonal behaviour are overlaid by noise, (3) estimates for water losses in Jordan based on the trend of GRACE data from 2003 to 2013 could be up to four times higher than previously assumed using estimated recharge and abstraction rates, and (4) a significant time-lagged cross correlation of the monthly changes in GRACE-derived groundwater storage and precipitation data was found, suggesting that the conventional method for deriving GWS from GRACE data probably does not account for the typical conditions in the study basins. Furthermore, a new method for deriving plausible specific yields from GRACE data and groundwater levels is demonstrated.

  20. Can we manage groundwater? A method to determine the quantitative testability of groundwater management plans

    Science.gov (United States)

    White, E. K.; Peterson, T. J.; Costelloe, J.; Western, A. W.; Carrara, E.

    2016-06-01

    Groundwater is the world's largest freshwater resource and due to overextraction, levels have declined in many regions causing extensive social and environmental impacts. Groundwater management seeks to balance and mitigate the detrimental impacts of development, with plans commonly used to outline management pathways. Thus, plan efficiency is crucial, but seldom are plans systematically and quantitatively assessed for effectiveness. This study frames groundwater management as a system control problem in order to develop a novel testability assessment rubric to determine if plans meet the requirements of a control loop, and subsequently, whether they can be quantitatively tested. Seven components of a management plan equivalent to basic components of a control loop were determined, and requirements of each component necessary to enable testability were defined. Each component was weighted based upon proposed relative importance, then segmented into rated categories depending on the degree the requirements were met. Component importance varied but, a defined objective or acceptable impact was necessary for plans to be testable. The rubric was developed within the context of the Australian groundwater management industry, and while use of the rubric is not limited to Australia, it was applied to 15 Australian groundwater management plans and approximately 47% were found to be testable. Considering the importance of effective groundwater management, and the central role of plans, our lack of ability to test many plans is concerning.

  1. Groundwater Sustainability through a Novel Dewatering Technology

    Science.gov (United States)

    Jin, Y.; Holzbecher, E.; Ebneth, S.

    2012-12-01

    Groundwater plays a key role in the hydrologic cycle and ecosystem balances. Over the past decades, groundwater is intensively extracted in order to keep construction or mining sites dry. For the latter purpose the pumped water is usually discharged into a nearby surface water body or injected into an aquifer distant from the abstraction sites. As a result, aquifers are depleted and the local eco-system is disrupted as a consequence of falling groundwater tables. Given ongoing pressure on aquifer from abstraction sites, it is vital to bring up adequate attention on groundwater conservation. We demonstrate a novel technique, Düsensauginfiltration (DSI, translated as 'nozzel-suction-infiltration'), which avoids water conveyance but still lowers the groundwater table locally. The method combines abstraction of groundwater at the upper part of the aquifer with injection in the same borehole, but at a greater depth. Hence no water is withdrawn from the system. The method is already used practically in Germany, Netherlands, and China, however, it is not yet fully scientifically understood and evaluated. Currently, two tests sites in Germany, for single and multi well respectively, are selected, at which the DSI technology is currently examined. The project is cooperated with a leading dewatering company (Hoelscher Wasserbau GmbH) and funded by Deutsche Bundesstiftung Umwelt (DBU). To provide the basic principle of the method, we present numerical models solving the differential equation, which is derived from Darcy's Law and mass conservation, describing groundwater flow. We set up stationary numerical models in 2D (vertical cross section for single well case) and 3D (multi well case and/or when ambient groundwater flow is considered) using COMSOL Multiphysics. Since our model region only involves the saturated part of the unconfined aquifer, the numerical model solves a free boundary problem using hydraulic pressure as unknown variable. Two physical modes are included

  2. Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS

    NARCIS (Netherlands)

    Ganapuram, Sreedhar; Vijaya Kumar, G.T.; Murali Krishna, I.V.; Kahya, Ercan; Demirel, M. Cüneyd

    2009-01-01

    The objective of this study is to explore the groundwater availability for agriculture in the Musi basin. Remote sensing data and geographic information system were used to locate potential zones for groundwater in the Musi basin. Various maps (i.e., base, hydrogeomorphological, geological, structur

  3. Data base dictionary for the Oak Ridge Reservation Hydrology and Geology Study Groundwater Data Base. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, B.K.

    1993-04-01

    The Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) Groundwater Data Base has been compiled to consolidate groundwater data from the three US Department of Energy facilities located on the Oak Ridge Reservation: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant. Each of these facilities maintains its own groundwater and well construction data bases. Data were extracted from the existing data bases, converted to a consistent format, and integrated into the ORRHAGS Groundwater Data Base structures. This data base dictionary describes the data contained in the ORRHAGS Groundwater Data Base and contains information on data base structure, conventions, contents, and use.

  4. Y-12 Groundwater Protection Program Groundwater and Surface water Sampling and Analysis Plan for Calendar Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2006-01-01

    this report provide details regarding the CY 2006 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3; sample collection methods and procedures are described in Section 4; and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. The monitoring frequency and selection criteria for each sampling location is in Appendix C. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix D. If issued, addenda to this plan will be inserted in Appendix E, and Groundwater Monitoring Schedules (when issued) will be inserted in Appendix F. Guidance for managing purged groundwater is provided in Appendix G.

  5. Thermal management of an unconsolidated shallow urban groundwater body

    Directory of Open Access Journals (Sweden)

    J. Epting

    2013-05-01

    Full Text Available This study presents the development of tools for the sustainable thermal management of a shallow unconsolidated urban groundwater body in the city of Basel (Switzerland. The concept of the investigations is based on (1 a characterization of the present thermal state of the urban groundwater body, and (2 the evaluation of potential mitigation measures for the future thermal management of specific regions within the groundwater body. The investigations focus on thermal processes down-gradient of thermal groundwater use, effects of heated buildings in the subsurface as well as the thermal influence of river–groundwater interaction. Investigation methods include (1 short- and long-term data analysis, (2 high-resolution multilevel groundwater temperature monitoring, as well as (3 3-D numerical groundwater flow and heat transport modeling and scenario development. The combination of these methods allows for the quantifying of the thermal influences on the investigated urban groundwater body, including the influences of thermal groundwater use and heated subsurface constructions. Subsequently, first implications for management strategies are discussed, including minimizing further groundwater temperature increase, targeting "potential natural" groundwater temperatures for specific aquifer regions and exploiting the thermal potential.

  6. Global Depletion of Groundwater Resources: Past and Future Analyses

    Science.gov (United States)

    Bierkens, M. F.; de Graaf, I. E. M.; Van Beek, L. P.; Wada, Y.

    2014-12-01

    Globally, about 17% of the crops are irrigated, yet irrigation accounts for 40% of the global food production. As more than 40% of irrigation water comes from groundwater, groundwater abstraction rates are large and exceed natural recharge rates in many regions of the world, thus leading to groundwater depletion. In this paper we provide an overview of recent research on global groundwater depletion. We start with presenting various estimates of global groundwater depletion, both from flux based as well as volume based methods. We also present estimates of the contribution of non-renewable groundwater to irrigation water consumption and how this contribution developed during the last 50 years. Next, using a flux based method, we provide projections of groundwater depletion for the coming century under various socio-economic and climate scenarios. As groundwater depletion contributes to sea-level rise, we also provide estimates of this contribution from the past as well as for future scenarios. Finally, we show recent results of groundwater level changes and change in river flow as a result of global groundwater abstractions as obtained from a global groundwater flow model.

  7. California Groundwater Management During Drought: Existing and Future Regulatory Approaches

    Science.gov (United States)

    Ekdahl, E.; Boland-Brien, S.; Vanderburgh, B.; Landau, K.; Bean, J.; Peltier, T.

    2015-12-01

    Groundwater has served as an effective buffer to California's crippling drought of 2012-2015, allowing continued agricultural production in many areas where surface water deliveries have been curtailed. However, over-reliance on groundwater has caused plummeting groundwater levels in much of the state's heavily agricultural regions, with annual groundwater overdraft state-wide estimated in the millions of acre-feet per year. Prior to 2015, California water law did not allow for the effective monitoring or assessment of groundwater use; passage of new state regulations will require development of locally-managed plans that, for the first time, require comprehensive groundwater management and groundwater basin sustainability. Because these plans are not required to be implemented for another 25 years, groundwater levels will likely continue to decrease. Some communities that are 100-percent reliant on groundwater as a source of municipal supply may face shortages and supply issues, which may exacerbate known water quality concerns. Examination of community water systems that are reliant on groundwater, their existing water quality issues, and their response to the current drought (through existing mandatory conservation requirements imposed by California state regulators) can identify areas that are particularly susceptible to continued groundwater overdraft.

  8. Selective sorption of technetium from groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.M. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    Groundwater used for processing uranium or plutonium at DOE sites is frequently contaminated with the radionuclide {sup 99}Tc. DOE`s Paducah and Portsmouth sites are typical of the contamination problem. Solutions contaminated with radionuclides were poured into lagoons and burial pits, which created a plume that has seeped into the sandy aquifers below the vadose zone. Technetium is the principal radioactive metal-ion contaminant in Paducah site ground-water, and it is present at a concentration of about 25 ng/L. At Portsmouth, Tc is present in the groundwater at a concentration that varies greatly with distance from the source, and concentrations of >400 ng/L have been reported. Commercially available anion-exchange resins can remove the TcO{sub 4}{sup {minus}} ion in the presence of typical anions found in groundwater, but improving the selectivity will result in substantial cost savings in terms of the quantity of resin needed and the scale of the equipment required to treat huge flows rates. The pertechnetate anion is strongly sorbed on commercially-available strong-base anion-exchange resins, but in view of the low (typically nanomolar) concentrations of Tc involved, enhanced selectivity for the pertechnetate anion over other anions commonly found in groundwater such as chloride, sulfate, and nitrite will be needed. The authors have prepared and evaluated new anion-exchange resins that were designed to be highly selective for pertechnetate. The technology involves building those features that are known to enhance the selectivity of pertechnetate over other anions into the exchange sites of the resin (hydrophobicity), while at the same time maintaining favorable exchange kinetics.

  9. Analysis of groundwater flow beneath ice sheets

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G. S.; Zatsepin, S.; Maillot, B. [Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix.

  10. America's water: Agricultural water demands and the response of groundwater

    Science.gov (United States)

    Ho, M.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-07-01

    Agricultural, industrial, and urban water use in the conterminous United States (CONUS) is highly dependent on groundwater that is largely drawn from nonsurficial wells (>30 m). We use a Demand-Sensitive Drought Index to examine the impacts of agricultural water needs, driven by low precipitation, high agricultural water demand, or a combination of both, on the temporal variability of depth to groundwater across the CONUS. We characterize the relationship between changes in groundwater levels, agricultural water deficits relative to precipitation during the growing season, and winter precipitation. We find that declines in groundwater levels in the High Plains aquifer and around the Mississippi River Valley are driven by groundwater withdrawals used to supplement agricultural water demands. Reductions in agricultural water demands for crops do not, however, lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors in regions such as Utah, Maryland, and Texas.

  11. Evaluation of Groundwater Renewability in the Henan Plains, China

    Science.gov (United States)

    Dong, W.; Shi, X.

    2011-12-01

    The sustainability of groundwater resources in the Henan Plains, located in the eastern portion of central China, has been threatened by both increasing industrial and agricultural pumping and periods of drought occurring since the 1990s. Therefore, there is an urgent need to improve water resources management in the Henan Plains. However, the recharge and annual renewal rate are very difficult to calculate when based only on traditional hydrogeological methods because of inadequate hydrometeorologic data. In this study, tritium concentrations in groundwater and reconstructed 3H concentration time series from 1953~2009 in precipitation were used to determine the annual groundwater renewal rate. The 3H concentrations mostly range from 2.91 to 40.30 TU in the shallow groundwater with a mean 3H concentration of 19.13TU, which suggests that the shallow groundwater is recharged from modern precipitation after 1953 in the study area. Three exceptionally low 3H concentration(less than 1TU) wells were sampled in Xinxiang, Puyang and Zhengyang which indicates that those wells contain deep old groundwater recharge before 1953 as a result of over-pumping. High renewal rates (more than 4%/a) of groundwater are located mainly in the recharge area such as along the Yellow River and in the pediments of Taihang Mountain, Songqi Mountain, Funiu Mountain, Dabie Mountain, where the groundwater extraction volume could be increased. Moderate renewal rates (2%/a~3%/a) of groundwater are mainly in the runoff area where the groundwater extraction volume can be kept at current levels. Low renewal rates (1%/a~2%/a) of groundwater are located mainly in the discharge areas in the eastern regions of Nanle, Puyang, Shangqiu, Luyi where the groundwater extraction volume should be reduced. The lowest renewal rates of (less than 1%/a) groundwater are in Puyang, Xinxiang, Zhengyang and Xixian, where the groundwater extraction volume should be restricted.

  12. Dynamic evaluation of groundwater resources in Zhangye Basin

    Institute of Scientific and Technical Information of China (English)

    LiNa Mi; HongLang Xiao; ZhengLiang Yin; ShengChun Xiao

    2016-01-01

    Groundwater resource is vital to the sustainable development of socio-economics in arid and semi-arid regions of Northwest China. An estimation of the groundwater resources variation in Zhangye Basin was made during 1985–2013 based on long-term groundwater observation data and geostatistical method. The results show that from 1985 to 2013, groundwater storage exhibited tremendous dissimilarity on temporal and spatial scale for the whole Zhangye Basin, especially before and after implementation of the water diversion policy. Trend of groundwater storage varied from quick to slow decline or increase. The accumulative groundwater storage decreased nearly 47.52×108 m3, and annual average depletion rate reached 1.64×108 m3/a. Among which, the accumulative groundwater storage of the river and well water mixed irrigation district decreased by 37.48×108 m3, accounting for about 78.87% of the total groundwater depletion of the Zhangye Basin. Accumulative depletion of groundwater storage varied in respective irrigation districts. Though groundwater resources depletion rate slowed down from 2005, the overall storage in the whole basin and re-spective districts during 1985–2013 was still in a severe deficit such that, the groundwater resource was in a rather negative balance, which could threaten the local aquifer. This is the joint effect of climate change and human activities, however human activities, such as water diversion policy and groundwater exploitation, became increasingly intense. Our research results could provide a reasonable estimation for the groundwater balance in Zhangye Basin, providing a scientific basis for water resources unified planning and, this method can provide a relatively reliable way of estimation for large scale groundwater resources.

  13. Separating Pumping and Other Influences on Groundwater Head Variation

    Science.gov (United States)

    Shapoori, V.; Western, A. W.; Peterson, T. J.; Costelloe, J.

    2012-12-01

    to estimating the pumping effect on head, preliminary work indicates that the volume of extraction from the surface body due to pumping and the transmissivity and storativity of the aquifer can be estimated. The latter are very consistent with pumping test results. This method could efficiently provide important information for management of coupled surface-groundwater systems and for characterising aquifer properties from observation and pumping data only. Moreover, the time series parameters have a reasonable spatial correlation. Future work will use this to develop multi-site groundwater time series methods. Reference Peterson ,T.J. and Western A.W.(2011). Time-series modelling of groundwater head and its de-composition to historic climate periods, 34th IAHR World Congress, Brisbane, Australia Shapoori, V., T. J. Peterson , A. W. Western and J. Costelloe (2011). Quantifying the impact of pumping on groundwater heads using observation data and advanced time series analysis. International Congress On Modelling and Simulation (MODSIM) Perth, Australia Von asmuth, J. R., Bierkens, M. F. P. and Maas, K.(2002). Transfer function-noise modeling in continuous time using predefined impulse reponse functions, Water Resources Research 46(1), 30-40

  14. Estimation of groundwater flow directions and the tensor of hydraulic conductivity in crystalline massif rocks using information from surface structural geology and mining exploration boreholes

    Science.gov (United States)

    Florez, C.; Romero, M. A.; Ramirez, M. I.; Monsalve, G.

    2013-05-01

    In the elaboration of a hydrogeological conceptual model in regions of mining exploration where there is significant presence of crystalline massif rocks., the influence of physical and geometrical properties of rock discontinuities must be evaluated. We present the results of a structural analysis of rock discontinuities in a region of the Central Cordillera of Colombia (The upper and middle Bermellon Basin) in order to establish its hydrogeological characteristics for the improvement of the conceptual hydrogeological model for the region. The geology of the study area consists of schists with quartz and mica and porphyritic rocks, in a region of high slopes with a nearly 10 m thick weathered layer. The main objective of this research is to infer the preferential flow directions of groundwater and to estimate the tensor of potential hydraulic conductivity by using surface information and avoiding the use of wells and packer tests. The first step of our methodology is an analysis of drainage directions to detect patterns of structural controls in the run-off; after a field campaign of structural data recollection, where we compile information of strike, dip, continuity, spacing, roughness, aperture and frequency, we built equal area hydro-structural polar diagrams that indicate the potential directions for groundwater flow. These results are confronted with records of Rock Quality Designation (RQD) that have been systematically taken from several mining exploration boreholes in the area of study. By using all this information we estimate the potential tensor of hydraulic conductivity from a cubic law, obtaining the three principal directions with conductivities of the order of 10-5 and 10-6 m/s; the more conductive joint family has a NE strike with a nearly vertical dip.

  15. Background phosphorus concentrations in Danish groundwater and surface water bodies

    Science.gov (United States)

    Kronvang, Brian; Bøgestrand, Jens; Windolf, Jørgen; Ovesen, Niels; Troldborg, Lars

    2013-04-01

    Quantitative information on the background concentration and loading of phosphorus is important when establishing the pressure-impact pathway for Danish streams, lakes and estuaries The background phosphorus loading thus determines present day lowest phosphorus loadings without influence from point sources and agriculture. We have mapped the background concentration of phosphorus in Danish groundwater and streams based on monitoring in 3000 groundwater wells, 7 small streams draining undisturbed catchments (1990-2010) and 19 streams draining small undisturbed catchments being monitored during 2004-2005. The concentration particulate P (PP) was found to be nearly constant within eight major georegions of Denmark (0.018 mg ± 0.010 mg P L-1. On contrary, the concentration of total dissolved P (TDP) was found to vary between 0.011-0.071 mg P L-1 within the eight georegions. We have also time series of background total P concentrations from 7 small undisturbed catchments covering the period 1990-2010. No significant trends have been observed in total P concentrations from these streams during the period 1990-2010. The average annual background loss of total phosphorus amounts to 730 tonnes P or 29% of the total loading of phosphorus from the Danish land to sea during the period 2007-2011. The measured TDP concentration in groundwater was much higher under reduced conditions (median: 0.10-0.15 mg P L-1) than in oxidized groundwater (Journal of Hydrology (280) 52-71.

  16. Dilution and volatilization of groundwater contaminant discharges in streams

    Science.gov (United States)

    Aisopou, Angeliki; Bjerg, Poul L.; Sonne, Anne T.; Balbarini, Nicola; Rosenberg, Louise; Binning, Philip J.

    2015-01-01

    An analytical solution to describe dilution and volatilization of a continuous groundwater contaminant plume into streams is developed for risk assessment. The location of groundwater plume discharge into the stream (discharge through the side versus bottom of the stream) and different distributions of the contaminant plume concentration (Gaussian, homogeneous or heterogeneous distribution) are considered. The model considering the plume discharged through the bank of the river, with a uniform concentration distribution was the most appropriate for risk assessment due to its simplicity and limited data requirements. The dilution and volatilization model is able to predict the entire concentration field, and thus the mixing zone, maximum concentration and fully mixed concentration in the stream. It can also be used to identify groundwater discharge zones from in-stream concentration measurement. The solution was successfully applied to published field data obtained in a large and a small Danish stream and provided valuable information on the risk posed by the groundwater contaminant plumes. The results provided by the dilution and volatilization model are very different to those obtained with existing point source models, with a distributed source leading to a larger mixing length and different concentration field. The dilution model can also provide recommendations for sampling locations and the size of impact zones in streams. This is of interest for regulators, for example when developing guidelines for the implementation of the European Water Framework Directive.

  17. Groundwater Modeling of the Texas High Plains using Modflow

    Science.gov (United States)

    Hernandez, J. E.; Gowda, P. H.; Misra, D.; Marek, T.; Howell, T. A.

    2008-12-01

    The objective of this study was to develop and calibrate a groundwater model for a 4-county area in the Texas High Plains of the Ogallala Aquifer Region. This study is a major component of a comprehensive regional analysis of groundwater depletion in the Ogallala Aquifer Region with the purpose of understanding short- and long-term effects of existing and alternative land use scenarios on groundwater changes. A comprehensive geographic information system (GIS) database was developed for this purpose that included a recent land cover map. This 2008 land cover map was developed using Landsat satellite imagery with ground-truth points for Dallam, Sherman, Hartley, and Moore Counties in Texas. Other GIS layers included aquifer elevation contours, surficial geology, hydraulic conductivity contours, saturated thickness areas, well locations and piezometric heads, aquifer discharge and recharge areas, topography, hydrographic data, ecological regions, and soil type data. The hydrologic simulations were done using MODFLOW. Anticipated outcomes from this modeling effort include the effect of change in land use/land cover on sustainability of the aquifer life in the study region. Our results will be used to develop strategies to conserve groundwater in the Ogallala Aquifer beneath Central High Plains and improve regional water planning.

  18. Erratum to "Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta".

    Science.gov (United States)

    Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

    2009-04-15

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and Jakarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl- concentration and delta18O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3--N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas.

  19. Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta.

    Science.gov (United States)

    Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

    2008-10-15

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and Jakarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl(-) concentration and delta(18)O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3(-)-N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas.

  20. Groundwater vulnerability maps for pesticides for Flanders

    Science.gov (United States)

    Dams, Jef; Joris, Ingeborg; Bronders, Jan; Van Looy, Stijn; Vanden Boer, Dirk; Heuvelmans, Griet; Seuntjens, Piet

    2017-04-01

    Pesticides are increasingly being detected in shallow groundwater and and are one of the main causes of the poor chemical status of phreatic groundwater bodies in Flanders. There is a need for groundwater vulnerability maps in order to design monitoring strategies and land-use strategies for sensitive areas such as drinking water capture zones. This research focuses on the development of generic vulnerability maps for pesticides for Flanders and a tool to calculate substance-specific vulnerability maps at the scale of Flanders and at the local scale. (1) The generic vulnerability maps are constructed using an index based method in which maps of the main contributing factors in soil and saturated zone to high concentrations of pesticides in groundwater are classified and overlain. Different weights are assigned to the contributing factors according to the type of pesticide (low/high mobility, low/high persistence). Factors that are taken into account are the organic matter content and texture of soil, depth of the unsaturated zone, organic carbon and redox potential of the phreatic groundwater and thickness and conductivity of the phreatic layer. (2) Secondly a tool is developed that calculates substance-specific vulnerability maps for Flanders using a hybrid approach where a process-based leaching model GeoPEARL is combined with vulnerability indices that account for dilution in the phreatic layer. The GeoPEARL model is parameterized for Flanders in 1434 unique combinations of soil properties, climate and groundwater depth. Leaching is calculated for a 20 year period for each 50 x 50 m gridcell in Flanders. (3) At the local scale finally, a fully process-based approach is applied combining GeoPEARL leaching calculations and flowline calculations of pesticide transport in the saturated zone to define critical zones in the capture zone of a receptor such as a drinking water well or a river segment. The three approaches are explained more in detail and illustrated

  1. Understanding Groundwater Storage Changes and Recharge in Rajasthan, India through Remote Sensing

    Directory of Open Access Journals (Sweden)

    Pennan Chinnasamy

    2015-10-01

    Full Text Available Groundwater management practices need to take hydrogeology, the agro-climate and demand for groundwater into account. Since agroclimatic zones have already been demarcated by the Government of India, it would aid policy makers to understand the status of groundwater recharge and discharge in each agroclimatic zone. However, developing effective policies to manage groundwater at agroclimatic zone and state levels is constrained due to a paucity of temporal data and information. With the launch of the Gravity Recovery and Climate Experiment (GRACE mission in 2002, it is now possible to obtain frequent data at broad spatial scales and use it to examine past trends in rain induced recharge and groundwater use. In this study, the GRACE data were used to estimate changes to monthly total water storage (TWS and groundwater storage in different agroclimatic zones of Rajasthan, India. Furthermore, the long-term annual and seasonal groundwater storage trends in the state were estimated using the GRACE data and the trends were compared with those in rainfall data. The methodology based on GRACE data was found to be useful in detecting large scale trends in groundwater storage changes covering different agroclimatic zones. The analysis of data shows that groundwater storage trends depend on rainfall in previous years and, therefore, on the antecedent moisture conditions. Overall, the study indicates that if suitable groundwater recharge methods and sites are identified for the state, there is potential to achieve more groundwater recharge than what is currently occurring and, thus, enhancing the availability of water for irrigated agriculture.

  2. Use of hydrochemistry as a standalone and complementary groundwater age tracer

    Science.gov (United States)

    Beyer, Monique; Jackson, Bethanna; Daughney, Chris; Morgenstern, Uwe; Norton, Kevin

    2016-12-01

    Groundwater age or residence time is the time water has resided in the subsurface since recharge. This can provide information on groundwater mixing and flow, and volumes of groundwater and recharge, etc. Groundwater age can be inferred from environmental tracers, such as SF6 and tritium that have a known input to groundwater and/or undergo known alteration processes in groundwater. Multiple tracers are often applied complementarily in order to increase the robustness of age interpretations. To this end, it is desirable to develop cost-effective and easily applicable age tracers/techniques to supplement the existing ones. A number of hydrochemical parameters are spatially and temporally widely available due to national and regional groundwater monitoring programmes. Their determination is cost-effective and relatively simple compared to existing age tracers. Hydrochemistry has been used as an age proxy but its use as an independent age tracer has only been demonstrated for water recharged weeks to months ago (relying on seasonal changes). This study focuses on the Lower Hutt Groundwater Zone, New Zealand, and assesses whether hydrochemistry can be used as an independent indicator of groundwater age, or if not, whether hydrochemistry can be used to complement groundwater age measurements based on other tracers. This study also examines the use of hydrochemistry as an indicator for recharge sources and weathering processes. This study shows that, when used independently, hydrochemistry could only be used as an age proxy, but in combination with tritium measurements, hydrochemistry provided useful additional constraint on age of groundwater recharged days to ∼100 years ago.

  3. Methods and Indicators for Assessment of Regional Ground-Water Conditions in the Southwestern United States

    Science.gov (United States)

    Tillman, Fred D; Leake, Stanley A.; Flynn, Marilyn E.; Cordova, Jeffrey T.; Schonauer, Kurt T.; Dickinson, Jesse E.

    2008-01-01

    Monitoring the status and trends in the availability of the Nation's ground-water supplies is important to scientists, planners, water managers, and the general public. This is especially true in the semiarid to arid southwestern United States where rapid population growth and limited surface-water resources have led to increased use of ground-water supplies and water-level declines of several hundred feet in many aquifers. Individual well observations may only represent aquifer conditions in a limited area, and wells may be screened over single or multiple aquifers, further complicating single-well interpretations. Additionally, changes in ground-water conditions may involve time scales ranging from days to many decades, depending on the timing of recharge, soil and aquifer properties, and depth to the water table. The lack of an easily identifiable ground-water property indicative of current conditions, combined with differing time scales of water-level changes, makes the presentation of ground-water conditions a difficult task, particularly on a regional basis. One approach is to spatially present several indicators of ground-water conditions that address different time scales and attributes of the aquifer systems. This report describes several methods and indicators for presenting differing aspects of ground-water conditions using water-level observations in existing data-sets. The indicators of ground-water conditions developed in this study include areas experiencing water-level decline and water-level rise, recent trends in ground-water levels, and current depth to ground water. The computer programs written to create these indicators of ground-water conditions and display them in an interactive geographic information systems (GIS) format are explained and results illustrated through analyses of ground-water conditions for selected alluvial basins in the Lower Colorado River Basin in Arizona.

  4. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2009-09-01

    . The following sections of this report provide details regarding the CY 2010 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2010) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

  5. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2007-09-01

    analysis plan. The following sections of this report provide details regarding the CY 2008 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3; sample collection methods and procedures are described in Section 4; and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E. The updated sampling frequency for each monitoring well is in Appendix F, and an approved Waste Management Plan is provided in Appendix G.

  6. Modelling wetland-groundwater interactions in the boreal Kälväsvaara esker, Northern Finland

    Science.gov (United States)

    Jaros, Anna; Rossi, Pekka; Ronkanen, Anna-Kaisa; Kløve, Bjørn

    2016-04-01

    contrast, the simulations were not able to capture small scale point groundwater discharge i.e. springs. This reflects that modelling small scale groundwater input to wetland ecosystems can be challenging without detailed information on the aquifer and wetland geology. Overall, the good consistency between simulations and observations demonstrated that wetland-groundwater interactions can be studied using fully-integrated physically-based groundwater-surface water models.

  7. Groundwater vulnerability to pollution mapping of Ranchi district using GIS.

    Science.gov (United States)

    Krishna, R; Iqbal, J; Gorai, A K; Pathak, G; Tuluri, F; Tchounwou, P B

    2015-12-01

    Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table (D), net recharge (R), aquifer media (A), soil media (S), topography or slope (T), impact of vadose zone (I) and hydraulic Conductivity(C)] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management.

  8. Options of sustainable groundwater development in Beijing Plain, China

    Science.gov (United States)

    Zhou, Yangxiao; Wang, Liya; Liu, Jiurong; Li, Wenpeng; Zheng, Yuejun

    Overexploitation of groundwater resources has supported rapid social and economical developments in Beijing City in last 30 years. The newly constructed emergency well fields have saved Beijing from a critical water crisis caused by a long drought spell of eight consecutive years from 1999 to 2006. But this unsustainable development has resulted in serious consequences: discharges to rivers ceased, large number of pumping wells went dry, and land subsidence caused destruction of underground infrastructure. The completion of the middle route of South to North water transfer project to transfer water from Yangtze river to Beijing City by 2010 provides opportunity to reverse the trend of groundwater depletion and to achieve a long-term sustainable development of groundwater resources in Beijing Plain. Four options of groundwater development in Beijing Plain were formulated and assessed with a regional transient groundwater flow model. The business as usual scenario was used as a reference for the comparative analysis and indicates fast depletion of groundwater resources. The reduction of abstraction scenario has immediate and fast recovery of groundwater levels, especially at the cone of depression. The scenario of artificially enhanced groundwater recharge would replenish groundwater resources and maintain the capacity of present water supply well fields. The combined scenario of the reduction of abstraction and the increase of recharge could bring the aquifer systems into a new equilibrium state in 50 years. A hydrological sustainability of groundwater resources development could then be achieved in Beijing Plain.

  9. Temperature-driven groundwater convection in cold climates

    Science.gov (United States)

    Engström, Maria; Nordell, Bo

    2016-08-01

    The aim was to study density-driven groundwater flow and analyse groundwater mixing because of seasonal changes in groundwater temperature. Here, density-driven convection in groundwater was studied by numerical simulations in a subarctic climate, i.e. where the water temperature was ground was also studied. An initial disturbance in the form of a horizontal groundwater flow was necessary to start the convection. Transient solutions describe the development of convective cells in the groundwater and it took 22 days before fully developed convection patterns were formed. The thermal convection reached a maximum depth of 1.0 m in soil of low permeability (2.71 · 10-9 m2). At groundwater temperature close to its density maximum (4 °C), the physical size (in m) of the convection cells was reduced. Small stones or frost lenses in the ground slightly affect the convective flow, while larger obstacles change the size and shape of the convection cells. Performed simulations show that "seasonal groundwater turnover" occurs. This knowledge may be useful in the prevention of nutrient leakage to underlying groundwater from soils, especially in agricultural areas where no natural vertical groundwater flow is evident. An application in northern Sweden is discussed.

  10. Nitrate in groundwater of the United States, 1991-2003

    Science.gov (United States)

    Burow, Karen R.; Nolan, Bernard T.; Rupert, Michael G.; Dubrovsky, Neil M.

    2010-01-01

    An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.

  11. Potential corrosivity of untreated groundwater in the United States

    Science.gov (United States)

    Belitz, Kenneth; Jurgens, Bryant C.; Johnson, Tyler D.

    2016-07-12

    Corrosive groundwater, if untreated, can dissolve lead and other metals from pipes and other components in water distribution systems. Two indicators of potential corrosivity—the Langelier Saturation Index (LSI) and the Potential to Promote Galvanic Corrosion (PPGC)—were used to identify which areas in the United States might be more susceptible to elevated concentrations of metals in household drinking water and which areas might be less susceptible. On the basis of the LSI, about one-third of the samples collected from about 21,000 groundwater sites are classified as potentially corrosive. On the basis of the PPGC, about two-thirds of the samples collected from about 27,000 groundwater sites are classified as moderate PPGC, and about one-tenth as high PPGC. Potentially corrosive groundwater occurs in all 50 states and the District of Columbia.National maps have been prepared to identify the occurrence of potentially corrosive groundwater in the 50 states and the District of Columbia. Eleven states and the District of Columbia were classified as having a very high prevalence of potentially corrosive groundwater, 14 states as having a high prevalence of potentially corrosive groundwater, 19 states as having a moderate prevalence of potentially corrosive groundwater, and 6 states as having a low prevalence of potentially corrosive groundwater. These findings have the greatest implication for people dependent on untreated groundwater for drinking water, such as the 44 million people that are self-supplied and depend on domestic wells or springs for their water supply.

  12. Upscaling of lysimeter measurements to regional groundwater nitrate distribution

    Science.gov (United States)

    Klammler, Gernot; Fank, Johann; Kupfersberger, Hans; Rock, Gerhard

    2015-04-01

    generates sequences of crop rotations derived from municipal statistical data. Required retention and unsaturated hydraulic conductivity curves are derived from information out of the Austrian Soil Mapping (BMLF, 1974) by pedotransferfunctions. In summary, we present a method to quantify the temporal and spatial nitrate distribution at the aquifer scale with focus on the importance of lysimeter measurements also for modelling issues. BMLF (1974) Österreichische Bodenkartierung - Erläuterungen zur Bodenkarte 1:25.000 (Kartierungsbereich Leibnitz, Steiermark). Bundesministerium für Land- und Forstwirtschaft, Vienna, Austria Diersch HJG (2009) FEFLOW Reference Manual, DHI-WASY GmbH, Berlin Feichtinger, F. (1998). STOTRASIM - Ein Modell zur Simulation der Stickstoffdynamik in der ungesättigten Zone eines Ackerstandortes. Schriftenreihe des Bundesamtes für Wasserwirtschaft, Bd. 7, 14-41. Groenendijk, P., M. Heinen, G. Klammler, J. Fank, H. Kupfersberger, V. Pisinaras, A. Gemitzi, S. Peña-Haro, A. García-Prats, M. Pulido-Velazquez, A. Perego, M. Acutis, M. Trevisan (2014): Performance assessment of nitrate leaching models for highly vulnerable soils used in low-input farming based on lysimeter data. Sci. Tot. Environ. 499:463-480. Klammler, G., Rock, G., Fank, J. & H. Kupfersberger, H. (2011): Generating land use information to derive diffuse water and nitrate transfer as input for groundwater modelling at the aquifer scale, Proc of MODELCARE 2011 Models - Repository of Knowledge, Leipzig. Stenitzer, E. (1988). SIMWASER - Ein numerisches Modell zur Simulation des Bodenwasserhaushaltes und des Pflanzenertrages eines Standortes. Mitteilung Nr. 31, Bundesanstalt für Kulturtechnik und Bodenwasserhaushalt, A-3252 Petzenkirchen.

  13. Water balance of global aquifers revealed by groundwater footprint.

    Science.gov (United States)

    Gleeson, Tom; Wada, Yoshihide; Bierkens, Marc F P; van Beek, Ludovicus P H

    2012-08-09

    Groundwater is a life-sustaining resource that supplies water to billions of people, plays a central part in irrigated agriculture and influences the health of many ecosystems. Most assessments of global water resources have focused on surface water, but unsustainable depletion of groundwater has recently been documented on both regional and global scales. It remains unclear how the rate of global groundwater depletion compares to the rate of natural renewal and the supply needed to support ecosystems. Here we define the groundwater footprint (the area required to sustain groundwater use and groundwater-dependent ecosystem services) and show that humans are overexploiting groundwater in many large aquifers that are critical to agriculture, especially in Asia and North America. We estimate that the size of the global groundwater footprint is currently about 3.5 times the actual area of aquifers and that about 1.7 billion people live in areas where groundwater resources and/or groundwater-dependent ecosystems are under threat. That said, 80 per cent of aquifers have a groundwater footprint that is less than their area, meaning that the net global value is driven by a few heavily overexploited aquifers. The groundwater footprint is the first tool suitable for consistently evaluating the use, renewal and ecosystem requirements of groundwater at an aquifer scale. It can be combined with the water footprint and virtual water calculations, and be used to assess the potential for increasing agricultural yields with renewable groundwaterref. The method could be modified to evaluate other resources with renewal rates that are slow and spatially heterogeneous, such as fisheries, forestry or soil.

  14. Exchange between a river and groundwater, assessed with hydrochemical data

    Directory of Open Access Journals (Sweden)

    E. Hoehn

    2011-03-01

    Full Text Available We describe the chemical composition of groundwater from an alluvial granular aquifer in a valley fill flood plain (River Thur Valley. The river flows along this valley and is mostly downwelling on its way, indirectly through an unsaturated zone in the upstream part, and directly through the water-saturated bed in the downstream part. River Thur has been channelized with barriers for more than a century. In 1992, the authorities started to restore a section of River Thur with riverbed enlargements. The land use in the flood plain and the seasonal and climatic conditions (e.g., hot dry summer 2003 result in alterations of the natural geochemical composition of the river water. This groundwater is partly to mainly recharged by bank filtration. Several wells exist near the river that draw groundwater for drinking. In some of these wells, the groundwater has a very short residence time in the subsurface of days to weeks. Bed enlargements and other operations for an enhancement of the exchange of water between the river and groundwater increase the contamination risk of the nearby wells. During bank filtration, the groundwater changes gradually its composition, with increasing distance from the river and with depth in the aquifer. From today's changes of the water quality during riverbank filtration, we tried to extrapolate to the groundwater quality that may arise from future river restorations. Today the groundwater body consists of a mixture of groundwater from the seepage of precipitation and from riverbank filtration. The main difference between river water and groundwater results from the microbial activity in riverbed and bank materials. This activity leads to a consumption of O2 and to a higher partial pressure of CO2 in the groundwater. Criteria for the distinction of different groundwater compositions are the distance of a well from the river and the subsurface residence time of the groundwater to reach this well.

  15. Interaction between river water and groundwater: Geochemical and anthropogenic influence

    Science.gov (United States)

    Elango, L.; Karthikeyan, B.

    2011-12-01

    River water generally controls the quality and quantity of groundwater in its vicinity. Contribution by the rivers to groundwater is significant if there is over extraction. This is common in large cities where dependence on groundwater is high due to limited piped water supply. Chennai, India is one such large city where the river flowing is contaminated and the people in the near locality depend on groundwater for domestic use (Figure). The objective of this study is to understand the linkage between the river water and groundwater, and to assess the role played by the geochemical processes and anthropogenic influence. This study was carried out in and around Adyar River basin, Chennai by the collection of surface water and groundwater samples. Rainfall, lake water level and groundwater level from January 2005 to December 2009 was compared to understand their relationship. The concentration of major ion concentration vary widely in groundwater and surface water with respect to space and time. Na-Cl and Ca-Mg-Cl were the dominant groundwater and surface water type. Seawater intrusion may also be one of the reasons for Na-Cl dominant nature. In general, the ionic concentration of surface water increases towards the eastern part as in the case of groundwater. Evaporation and ion exchange were the major processes controlling groundwater chemistry in this area. Groundwater chemistry is similar to that of surface water. The surface water is contaminated due to discharge of industrial effluents and domestic sewage into the Adyar River by partly or untreated domestic sewage. Ecological restoration of Adyar River is planned and to be implemented shortly by the Government agencies which is expected to improve the river water quality. Systematic monitoring of water quality in this area will help to assess the improvement in surface water quality during the restoration process as well as its impact on groundwater.

  16. Quantifying shallow and deep groundwater inputs to rivers with groundwater dating in hydrological observatories.

    Science.gov (United States)

    Aquilina, Luc; Marçais, Jean; Gauvain, Alexandre; Kolbe, Tamara; de Dreuzy, Jean-Raynald; Labasque, Thierry; Abbott, Benjamin W.; Vergnaud, Virginie; Chatton, Eliot; Thomas, Zahra; Ruiz, Laurent; Bour, Olivier; Pinay, Gilles

    2017-04-01

    River water derives in part from groundwater—water that has spent some time in the subsurface (e.g. soil, unsaturated zone, saturated zone). However, because groundwater residence times vary from months to millennia, determining the proportion of shallow and deep groundwater contribution can be challenging. Groundwater dating with anthropogenic gases and natural geochemical tracers can decipher the origin of groundwater contribution to rivers, particularly when repeat samplings are carried out in different hydrological conditions. Here, we present two different applications of this approach from three hydrological observatories (H+ hydrogeological network; Aghrys and Armorique observatories) in western France, all these observatories belonging to the OZCAR national network. We carried out a regional investigation of mean groundwater ages in hard rock aquifers in Brittany, using long-term chronicles from hydrological observatories and regional monitoring sites. We determined the mean residence-time (RT) and annual renewal rate (RR) of four compartments of these aquifers: the direct contribution of a very young water component (i.e. RT less than 1-2 yr), the upper variably saturated zone (RR 27-33%), the weathered layer (RR 1.8-2.1%) and the fractured zone (RR 0.1%). From these values and a nitrate chronicle, we were able to determine the respective contributions of each compartment to the largest river in Brittany, the Vilaine, which drains 30% of the region. We found that the deep fractured compartment with very slow renewal times contributed to 25-45% of river water in winter and 30-60% in summer. The very young water which includes direct precipitation and soil fluxes constituted 40-65% of the winter river water (Aquilina et al., 2012). To complement these estimates, we investigated the relationship between dissolved silica and groundwater age in the Armorique hydrological observatory in northern Brittany. We computed the silica concentration expected along the

  17. Effects of urbanization on groundwater evolution in an urbanizing watershed

    Science.gov (United States)

    Reyes, D.; Banner, J. L.; Bendik, N.

    2011-12-01

    The Jollyville Plateau Salamander (Eurycea tonkawae), a candidate species for listing under the Endangered Species Act, is endemic to springs and caves within the Bull Creek Watershed of Austin, Texas. Rapid urbanization endangers known populations of this salamander. Conservation strategies lack information on the extent of groundwater contamination from anthropogenic sources in this karst watershed. Spring water was analyzed for strontium (Sr) isotopes and major ions from sites classified as "urban" or "rural" based on impervious cover estimates. Previous studies have shown that the 87Sr/86Sr value of municipal water is significantly higher than values for natural streamwater, which are similar to those for the Cretaceous limestone bedrock of the region's watersheds. We investigate the application of this relationship to understanding the effects of urbanization on groundwater quality. The use of Sr isotopes as hydrochemical tracers is complemented by major ion concentrations, specifically the dominant ions in natural groundwater (Ca and HCO3) and the ions associated with the addition of wastewater (Na and Cl). To identify high priority salamander-inhabited springs for water quality remediation, we explore the processes controlling the chemical evolution of groundwater such as municipal water inputs, groundwater-soil interactions, and solution/dissolution reactions. 87Sr/86Sr values for water samples from within the watershed range from 0.70760 to 0.70875, the highest values corresponding to sites located in the urbanized areas of the watershed. Analyses of the covariation of Sr isotopes with major ion concentrations help elucidate controls on spring water evolution. Springs located in rural portions of the watershed have low 87Sr/86Sr, high concentrations of Ca and HCO3, and low concentrations of Na and Cl. This is consistent with small inputs of municipal water. Three springs located in urban portions of the watershed have high 87Sr/86Sr, low Ca and HCO3, and

  18. A groundwater development program for semi-arid northeast Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Maurice, Y. [Geological Survey of Canada, Ottawa, ON (Canada)

    2001-07-01

    A four-year technology transfer program, the Northeastern Brazil Groundwater Project, was initiated by the Geological Survey of Canada and the Geological Survey of Brazil (CPRM), in collaboration with several public and private institutions in both countries and was approved in April 2000. The program also benefits from support from the Canadian International Development Agency. The objective of the program is to develop the groundwater resources of northeast Brazil to provide the long-term stability socio-economic of the region. The area covers approximately one million square kilometres, touches three states and is frequently affected by droughts. The population hovers around the 25 million mark. The groundwater is brackish and contained in open bedrock fractures in the Precambrian basement and shallow alluvial aquifers. The difficulty associated with the predictability of the distribution forced many communities to store rain water in small reservoirs, increasing the risk of contamination and causing evaporation problems. A groundwater resource assessment program of the entire area was launched by CPRM in early 2000, which involved geological mapping, inventorying water wells, and measuring standard well and groundwater parameters, documenting water usage and supply and quality problems. The harder hit regions are the sites of more technologically advanced activities combined with considerable social work performed by Canadians and Brazilians alike. Seminars, short courses, in-field demonstrations of techniques and equipment, joint pilot-scale projects, technical visits and the training of Brazilians in Canada are the methods of choice for the transfer of technology and know-how by Canadians. Ground and airborne geophysics,remote sensing, hydrofrac, artificial aquifer recharge, groundwater modeling and geographic information system techniques are the technologies to be introduced. Great expectations are placed on the use of airborne electromagnetics (EM) for the

  19. Entropy-Based Approach to Remove Redundant Monitoring Wells from Regional-Scale Groundwater Network

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An entropy-based approach is applied to identify redundant wells in the network. In the process of this research, groundwater-monitoring network is considered as a communication system with a capability to transfer information, and monitoring wells are taken as information receivers. The concepts of entropy and mutual information are then applied to measure the information content of individual monitoring well and information relationship between monitoring well pairs. The efficiency of information transfer among monitoring wells is the basis to judge the redundancy in the network. And the capacity of the monitoring wells to provide information on groundwater is the point of evaluation to identify redundant monitoring wells. This approach is demonstrated using the data from a regional-scale groundwater network in Hebei plain, China. The result shows that the entropy-based method is recommendable in optimizing groundwater networks, especially for those within media of higher heterogeneities and anisotropies.

  20. Nitrate contamination of groundwater and its countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    Mitamura, Hisayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The inevitable increases of food production and energy consumption with an increase in world population become main causes of an increase of nitrate load to the environment. Although nitrogen is essential for the growth of animal and plant as a constituent element of protein, excessive nitrate load to the environment contaminates groundwater resources used as drinking water and leads to seriously adverse effects on the health of man and livestock. In order to clarify the problem of nitrate contamination of groundwater and search a new trend of technology development from the viewpoint of environment remediation and protection, the present paper has reviewed adverse effects of nitrate on human health, the actual state of nitrogen cycle, several kinds of nitrate sources, measures for reducing nitrate level, etc. (author)

  1. Modeling groundwater flow on massively parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, S.F.; Falgout, R.D.; Fogwell, T.W.; Tompson, A.F.B.

    1994-12-31

    The authors will explore the numerical simulation of groundwater flow in three-dimensional heterogeneous porous media. An interdisciplinary team of mathematicians, computer scientists, hydrologists, and environmental engineers is developing a sophisticated simulation code for use on workstation clusters and MPPs. To date, they have concentrated on modeling flow in the saturated zone (single phase), which requires the solution of a large linear system. they will discuss their implementation of preconditioned conjugate gradient solvers. The preconditioners under consideration include simple diagonal scaling, s-step Jacobi, adaptive Chebyshev polynomial preconditioning, and multigrid. They will present some preliminary numerical results, including simulations of groundwater flow at the LLNL site. They also will demonstrate the code`s scalability.

  2. Simple chloride sensors for continuous groundwater monitoring

    DEFF Research Database (Denmark)

    Thorn, Paul; Mortensen, John

    2012-01-01

    The development of chloride sensors which can be used for continuous, on-line monitoring of groundwater could be very valuable in the management of our coastal water resources. However, sensor stability, drift, and durability all need to be addressed in order for the sensors to be used...... in continuous application. This study looks at the development of a simple, inexpensive chloride electrode, and evaluates its performance under continuous use, both in the laboratory and in a field test in a monitoring well. The results from the study showed a consistent response to changing chloride...... sensor remained responsive even at low chloride concentrations, where the conductivity electrode was no longer responding to changing chloride levels. With the results, it is believed that the simple chloride sensor could be used for continuous monitoring of groundwater quality....

  3. Ground-water quality atlas of Wisconsin

    Science.gov (United States)

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  4. Connections between groundwater flow and transpiration partitioning

    Science.gov (United States)

    Maxwell, Reed M.; Condon, Laura E.

    2016-07-01

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes.

  5. Procedures for ground-water investigations

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual.

  6. Using the Community Land Model to Assess Uncertainty in Basin Scale GRACE-Based Groundwater Estimates

    Science.gov (United States)

    Swenson, S. C.; Lawrence, D. M.

    2015-12-01

    One method for interpreting the variability in total water storage observed by GRACE is to partition the integrated GRACE measurement into its component storage reservoirs based on information provided by hydrological models. Such models, often designed to be used in couple Earth System models, simulate the stocks and fluxes of moisture through the land surface and subsurface. One application of this method attempts to isolate groundwater changes by removing modeled surface water, snow, and soil moisture changes from GRACE total water storage estimates. Human impacts on groundwater variability can be estimated by further removing model estimates of climate-driven groundwater changes. Errors in modeled water storage components directly affect the residual groundwater estimates. Here we examine the influence of model structure and process representation on soil moisture and groundwater uncertainty using the Community Land Model, with a particular focus on basins in the western U.S.

  7. Temporal and spatial dynamical simulation of groundwater characteristics in Minqin Oasis

    Institute of Scientific and Technical Information of China (English)

    XIAO DuNing; LI XiaoYu; SONG DongMei; YANG GuoJing

    2007-01-01

    Application scope of geostatistics has been gradually extended from original geologic field to soil science and ecological field, etc. And its successful application results have been widely demonstrated. But little information is reported as to the direct use of geostatistical method to work out the distribution map of groundwater characteristics. In this paper the semivariogram of geostatistics, in combination with GIS, was used to quantitatively study the spatial variation characteristics of groundwater table depth and mineralization degree and their relation to the landuse changes. F test of the used spherical model reached a very significant level, and the theoretical model can well reflect the spatial structural characteristics of groundwater table depth and mineralization degree and achieve an ideal result. This shows that the application of the method in the dynamical simulation of groundwater is feasible. And this paper also provides useful reference for the application of geostatistics in the study of the dynamical variations of groundwater resources in the oasis.

  8. Temporal and spatial dynamical simulation of groundwater characteristics in Minqin Oasis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Application scope of geostatistics has been gradually extended from original geologic field to soil science and ecological field, etc. and its successful application results have been widely demonstrated. But little information is reported as to the direct use of geostatistical method to work out the distribu- tion map of groundwater characteristics. In this paper the semivariogram of geostatistics, in combina- tion with GIS, was used to quantitatively study the spatial variation characteristics of groundwater table depth and mineralization degree and their relation to the landuse changes. F test of the used spherical model reached a very significant level, and the theoretical model can well reflect the spatial structural characteristics of groundwater table depth and mineralization degree and achieve an ideal result. This shows that the application of the method in the dynamical simulation of groundwater is feasible. And this paper also provides useful reference for the application of geostatistics in the study of the dy- namical variations of groundwater resources in the oasis.

  9. Risk Analysis on Groundwater Resources Carrying Capacity Based on Blind Number Theory

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji; YU Sujun

    2007-01-01

    Blind numbers of evaluation indices about groundwater resources carrying capacity are defined from the concomitancy of randomness, fuzziness, grey property and unascertainment of groundwater system.Based on fuzzy theory, a comprehensive evaluation model on groundwaterresources carrying capacity is constructed with blind information. Then arisk assessment model of surcharge about groundwater resources carryingcapacity is established on blind reliability theory. The probable value"*"'matrix of fuzzy membership degree about carrying capacity corresponding to each judgment level can be obtained with the aid of blind algorithm as well as the subjective reliability "×" matrix. And then a graph of"groundwater carrying capacity v.s. accumulative reliability" can be gained.Based on the graph, fuzzy membership degree of groundwater resourcescarrying capacity to each judgment level under different risk probabilitycan be got. Thus, a comparatively reasonable judgment to groundwaterresources carrying capacity might be obtained, with comprehensive analysis to the state of society, economy technology and ecology.

  10. An approach to managing cumulative effects to groundwater resources in the Alberta oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Fennell, J.; Forrest, Francine [WorleyParsons Canada, Infrastructure and Environment (Canada); Klebek, Margaret [Alberta Environment, Clean Energy Policy Branch (Canada)

    2011-07-01

    In the Athabasca region of Northern Alberta, oil sands activity has raised many concerns over how mining and extracting processes might affect groundwater quality and quantity. The groundwater management framework was developed by Alberta Environment to address these concerns by identifying and managing the potential environmental effects of oil sands activity on groundwater in a science-based manner. This paper develops the framework using risk identification and performance monitoring. The decision-making approach was conducted using decision support tools such as modeling, monitoring and management. Results showed the complexity and variability of groundwater conditions in the Athabasca region and pointed out that knowledge in this area is still developing. This paper presented how the groundwater management framework was developed and pointed out that it will have to be updated as new information arrives.

  11. Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S.

    Science.gov (United States)

    Sahoo, S.; Russo, T. A.; Elliott, J.; Foster, I.

    2017-05-01

    Climate, groundwater extraction, and surface water flows have complex nonlinear relationships with groundwater level in agricultural regions. To better understand the relative importance of each driver and predict groundwater level change, we develop a new ensemble modeling framework based on spectral analysis, machine learning, and uncertainty analysis, as an alternative to complex and computationally expensive physical models. We apply and evaluate this new approach in the context of two aquifer systems supporting agricultural production in the United States: the High Plains aquifer (HPA) and the Mississippi River Valley alluvial aquifer (MRVA). We select input data sets by using a combination of mutual information, genetic algorithms, and lag analysis, and then use the selected data sets in a Multilayer Perceptron network architecture to simulate seasonal groundwater level change. As expected, model results suggest that irrigation demand has the highest influence on groundwater level change for a majority of the wells. The subset of groundwater observations not used in model training or cross-validation correlates strongly (R > 0.8) with model results for 88 and 83% of the wells in the HPA and MRVA, respectively. In both aquifer systems, the error in the modeled cumulative groundwater level change during testing (2003-2012) was less than 2 m over a majority of the area. We conclude that our modeling framework can serve as an alternative approach to simulating groundwater level change and water availability, especially in regions where subsurface properties are unknown.

  12. Prevalence and magnitude of groundwater use by vegetation: a global stable isotope meta-analysis

    Science.gov (United States)

    Evaristo, Jaivime; McDonnell, Jeffrey J.

    2017-03-01

    The role of groundwater as a resource in sustaining terrestrial vegetation is widely recognized. But the global prevalence and magnitude of groundwater use by vegetation is unknown. Here we perform a meta-analysis of plant xylem water stable isotope (δ2H and δ18O, n = 7367) information from 138 published papers - representing 251 genera, and 414 species of angiosperms (n = 376) and gymnosperms (n = 38). We show that the prevalence of groundwater use by vegetation (defined as the number of samples out of a universe of plant samples reported to have groundwater contribution to xylem water) is 37% (95% confidence interval, 28-46%). This is across 162 sites and 12 terrestrial biomes (89% of heterogeneity explained; Q-value = 1235 P < 0.0001). However, the magnitude of groundwater source contribution to the xylem water mixture (defined as the proportion of groundwater contribution in xylem water) is limited to 23% (95% CI, 20-26% 95% prediction interval, 3-77%). Spatial analysis shows that the magnitude of groundwater source contribution increases with aridity. Our results suggest that while groundwater influence is globally prevalent, its proportional contribution to the total terrestrial transpiration is limited.

  13. A groundwater management plan for Stuttgart.

    Science.gov (United States)

    Vasin, Sandra; Carle, Achim; Lang, Ulrich; Kirchholtes, Hermann Josef

    2016-09-01

    In general, groundwater in urban areas is exposed to anthropogenic influence and suffers from concentrations of contaminants. Stuttgart, as a highly industrialized city, has more than 5000 contaminated sites which might influence the Stuttgart's mineral water quality. Despite tremendous efforts and intensive single site orientated remediation since 1984 in downtown, the mineral springs were still affected with chlorinated hydrocarbons at low concentrations. Therefore, the applied practices of environmental management and measures for mitigation of pollution sources were not sufficient and had to be adjusted. The main goal of this study is to define an integral remediation plan (a groundwater management plan), focusing on the key sources of chlorinated solvents which are relevant for the mineral springs. For the large-scale investigated area of 26.6km(2) and eight aquifers, an extensive investigation and characterization methods were used in order to delineate the contamination plumes. By means of a 3D numerical model, the prioritization of the contaminated sites could be performed. Five contaminated sites with high remediation priority and need for optimized or additional remediation efforts were determined. For those five contaminated sites feasibility studies were performed which resulted in recommendation of remediation measures with total costs of more than 12.5 million euros. The proposed strategy and approach are suitable for multiple sources of contamination. Only in this way, the contributions of single contaminated sites to the total groundwater contamination can be identified and local remediation measures with their spatial impact simulated. Due to very complex geological conditions, technically there is no alternative to this strategy in order to achieve the contamination reduction in groundwater.

  14. Planning for groundwater in South Africa

    CSIR Research Space (South Africa)

    Maherry, A

    2010-09-01

    Full Text Available wetland of international importance under the ramsar convention and a very important bird migration site. the phragmites reeds are a breeding ground for the Black Harrier (classified as vulnerable according to the International union... reserve (KBr) is a unESco site and boasts over 1,800 different plant species of which 77 occur only within the KBr. Fynbos flora rely on complex groundwater and surface water interaction with the table Mountain group sandstone and geological features...

  15. Monitored Natural Attenuation of Perchlorate in Groundwater

    Science.gov (United States)

    2010-09-01

    Center ORP oxidation-reduction potential P&T pump-and-treat pcrA perchlorate reductase RAO remedial action objective SCM site conceptual... SCM ) should be formulated and then calibrated against local data. Physical conditions of the aquifer, groundwater flow characteristics (e.g., flow...8 disadvantage . Flushing and dilution can reduce concentrations rapidly, but solubility can result in extended plumes with low concentrations that

  16. Intercomparison of Rn-222 determination from groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Vesterbacka, P. [Radiation and Nuclear Safety Authority (STUK), Laippatie 4, 00880 Helsinki (Finland)], E-mail: pia.vesterbacka@stuk.fi; Pettersson, H. [Department of Radiation Physics, Faculty of Health Sciences, Linkoeping University, SE-58185 Linkoeping (Sweden); Hanste, U.-M. [Radiation and Nuclear Safety Authority (STUK), Laippatie 4, 00880 Helsinki (Finland); Jakobson, E. [Environmental Board, Radiation Safety Department, Kopli 76, 10416 Tallinn (Estonia); Kolstad, T. [Norwegian Radiation Protection Authority, Grini naeringspark 13, 1361 Osteras (Norway); Roos, P. [Riso National Laboratory, P.O. Box 49, DK-4000 Roskilde (Denmark); Ostergren, I. [Swedish Radiation Safety Authority (SSM), Solna Strandvaeg 96, 171 16 Stockholm (Sweden)

    2010-01-15

    An intercomparison exercise on Rn-222 determination in groundwater was organized between eight Nordic laboratories. The individual laboratory results were in most cases within 20% of the median value and within reported uncertainties. Considering the particular difficulties in preparing, transporting and analyzing Rn-222, being a gaseous radionuclide, the results indicate a high analytical capability among the Nordic laboratories. In order to maintain a high analytical quality, similar intercomparisons will also be needed in the future.

  17. Calendar year 1995 groundwater quality report for the Beak Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. Part 2: 1995 groundwater quality data interpretations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This annual groundwater quality report (GWQR) contains an evaluation of the groundwater and surface water monitoring data obtained during the 1995 calendar year (CY) for several hazardous and nonhazardous waste management facilities associated with the US DOE Y-12 Plant. The sites addressed by this document are located in Bear Creek Valley (BCV) west of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime. The Bear Creek Regime is one of three hydrogeologic regimes defined for the purposes of groundwater and surface water quality monitoring at the Y-12 Plant. The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements. Each annual Part 2 GWQR addresses RCRA interim status reporting requirements regarding assessment of the horizontal and vertical extent of groundwater contamination. This report includes background information regarding the extent of groundwater and surface water contamination in the Bear Creek Regime based on the conceptual models described in the remedial investigation report (Section 2); a summary of the groundwater and surface water monitoring activities performed during CY 1995 (Section 3.0); analysis and interpretation of the CY 1995 monitoring data for groundwater (Section 4.0) and surface water (Section 5.0); a summary of conclusions and recommendations (Section 6.0); and a list of cited references (Section 7.0). Appendices contain diagrams, graphs, data tables, and summaries and the evaluation and decision criteria for data screening.

  18. Waste-water impacts on groundwater: Cl/Br ratios and implications for arsenic pollution of groundwater in the Bengal Basin and Red River Basin, Vietnam.

    Science.gov (United States)

    McArthur, J M; Sikdar, P K; Hoque, M A; Ghosal, U

    2012-10-15

    Across West Bengal and Bangladesh, concentrations of Cl in much groundwater exceed the natural, upper limit of 10 mg/L. The Cl/Br mass ratios in groundwaters range up to 2500 and scatter along mixing lines between waste-water and dilute groundwater, with many falling near the mean end-member value for waste-water of 1561 at 126 mg/L Cl. Values of Cl/Br exceed the seawater ratio of 288 in uncommon NO(3)-bearing groundwaters, and in those containing measurable amounts of salt-corrected SO(4) (SO(4) corrected for marine salt). The data show that shallow groundwater tapped by tube-wells in the Bengal Basin has been widely contaminated by waste-water derived from pit latrines, septic tanks, and other methods of sanitary disposal, although reducing conditions in the aquifers have removed most evidence of NO(3) additions from these sources, and much evidence of their additions of SO(4). In groundwaters from wells in palaeo-channel settings, end-member modelling shows that >25% of wells yield water that comprises ≥10% of waste-water. In palaeo-interfluvial settings, only wells at the margins of the palaeo-interfluvial sequence contain detectable waste water. Settings are identifiable by well-colour survey, owner information, water composition, and drilling. Values of Cl/Br and faecal coliform counts are both inversely related to concentrations of pollutant As in groundwater, suggesting that waste-water contributions to groundwater in the near-field of septic-tanks and pit-latrines (within 30 m) suppress the mechanism of As-pollution and lessen the prevalence and severity of As pollution. In the far-field of such sources, organic matter in waste-water may increase groundwater pollution by As. Copyright © 2012. Published by Elsevier B.V.

  19. Hanford Site Groundwater Monitoring for Fiscal Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J. [and others

    1999-03-24

    This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous

  20. Groundwater-Quality Assessment, Pike County, Pennsylvania, 2007

    Science.gov (United States)

    Senior, Lisa A.

    2009-01-01

    Pike County, a 545 square-mile area in northeastern Pennsylvania, has experienced the largest relative population growth of any county in the state from 1990 to 2000 and its population is projected to grow substantially through 2025. This growing population may result in added dependence and stresses on water resources, including the potential to reduce the quantity and degrade the quality of groundwater and associated stream base flow with changing land use. Groundwater is the main source of drinking water in the county and is derived primarily from fractured-rock aquifers (shales, siltstones, and sandstones) and some unconsolidated glacial deposits that are recharged locally from precipitation. The principal land uses in the county as of 2005 were public, residential, agricultural, hunt club/private recreational, roads, and commercial. The public lands cover a third of the county and include national park, state park, and other state lands, much of which are forested. Individual on-site wells and wastewater disposal are common in many residential areas. In 2007, the U.S. Geological Survey, in cooperation with the Pike County Conservation District, began a study to provide current information on groundwater quality throughout the county that will be helpful for water-resource planning. The countywide reconnaissance assessment of groundwater quality documents current conditions with existing land uses and may serve as a baseline of groundwater quality for future comparison. Twenty wells were sampled in 2007 throughout Pike County to represent groundwater quality in the principal land uses (commercial, high-density and moderate-density residential with on-site wastewater disposal, residential in a sewered area, pre-development, and undeveloped) and geologic units (five fractured-rock aquifers and one glacial unconsolidated aquifer). Analyses selected for the groundwater samples were intended to identify naturally occurring constituents from the aquifer or