WorldWideScience

Sample records for groundwater hydrology calculations

  1. PATHS groundwater hydrologic model

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  2. Groundwater hydrology instructional system

    Science.gov (United States)

    Schmidt, Ronald G.

    Wright State University, Dayton, Ohio, is preparing for its third cycle of the Interactive Remote Instructional System (IRIS) in groundwater hydrology, beginning January 15, 1986. The first cycle finished with an impressive completion ratio for registered participants, and the second cycle has currently been underway since July. This comprehensive hydrogeology program was originally developed for the Soil Conservation Service (of the U.S. Department of Agriculture) to prepare their personnel for professional practice work. Since its evolution into IRIS, an 80% participant completion rate has been recorded for the first cycle, which is a significant departure from success rates traditionally recorded by correspondence courses. This excellent rate of success is the result of 2 years of refinement and demonstrates the progressive nature of the program. IRIS has met the needs of participants by developing a curriculum that reflects current trends in the groundwater industry and has provided a unique educational approach that ensures maximum interaction between the instructional staff and participants.

  3. Remote instruction in groundwater hydrology

    Science.gov (United States)

    staff of the Interactive Remote Instructional System

    Wright State University (Dayton, Ohio) is preparing for its fourth cycle of the Interactive Remote Instructional System (IRIS) in groundwater hydrology beginning July 15, 1986. The Department of Geological Sciences proudly announces that the first two cycles recorded an impressive 83% completion ratio for registered participants. This completion rate is a significant departure from success rates traditionally recorded by courses of this nature; it is the result of 2 years of implementation and refinement and demonstrates the progressive orientation of the program. The third cycle has been underway since January. This comprehensive hydrogeology program was originally developed for the U.S. Department of Agriculture Soil Conservation Service to prepare their personnel for professional practice work. As a result of that cooperative effort, the IRIS program has evolved to meet the needs of participants by developing a curriculum that reflects current trends in the groundwater industry and has provided a unique educational approach that ensures maximum interaction between the instructional staff and participants.

  4. [Remedial action plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah]. Appendix F, Groundwater hydrology calculations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This document contains the ground water hydrology calculations for the remedial action plan for the codisposal and stabilization of uranium mill tailings at Mexican Hat, Utah. Included are calculations for the following: slug test analyses for monitor wells, analyses of packer tests, hydraulic gradients and ground water velocities, volume of released water, aquifer pumping test analysis, slug test analysis to determine hydraulic conductivity, and gradient calculations.

  5. A Comparison of Groundwater Storage Using GRACE Data, Groundwater Levels, and a Hydrological Model in Californias Central Valley

    Science.gov (United States)

    Kuss, Amber; Brandt, William; Randall, Joshua; Floyd, Bridget; Bourai, Abdelwahab; Newcomer, Michelle; Skiles, Joseph; Schmidt, Cindy

    2011-01-01

    The Gravity Recovery and Climate Experiment (GRACE) measures changes in total water storage (TWS) remotely, and may provide additional insight to the use of well-based data in California's agriculturally productive Central Valley region. Under current California law, well owners are not required to report groundwater extraction rates, making estimation of total groundwater extraction difficult. As a result, other groundwater change detection techniques may prove useful. From October 2002 to September 2009, GRACE was used to map changes in TWS for the three hydrological regions (the Sacramento River Basin, the San Joaquin River Basin, and the Tulare Lake Basin) encompassing the Central Valley aquifer. Net groundwater storage changes were calculated from the changes in TWS for each of the three hydrological regions and by incorporating estimates for additional components of the hydrological budget including precipitation, evapotranspiration, soil moisture, snow pack, and surface water storage. The calculated changes in groundwater storage were then compared to simulated values from the California Department of Water Resource's Central Valley Groundwater- Surface Water Simulation Model (C2VSIM) and their Water Data Library (WDL) Geographic Information System (GIS) change in storage tool. The results from the three methods were compared. Downscaling GRACE data into the 21 smaller Central Valley sub-regions included in C2VSIM was also evaluated. This work has the potential to improve California's groundwater resource management and use of existing hydrological models for the Central Valley.

  6. Hydrologic Influences on the Potential Benefits of Basinwide Groundwater Management

    Science.gov (United States)

    Reichard, Eric G.

    1987-01-01

    The potential benefits of basinwide groundwater management in agricultural areas are analyzed with an optimization model. The model incorporates functions to compute spatial and temporal groundwater responses to hydraulic stresses, net agricultural revenues as a function of water use, and groundwater recharge from individual stream reaches. Stream recharge is computed on the basis of both groundwater elevations and the amount of streamflow. The model can be run either to maximize basinwide net revenue over a planning period or to simulate private optimization by individual agricultural sectors. The effects of several hydrologic factors on the benefits of basinwide groundwater management are estimated by comparing model results for conditions in the Salinas Valley in California prior to reservoir construction with a number of other hydrologic scenarios. Results indicate that basinwide groundwater management and reservoir operation may be close substitutes for each other under certain conditions, that an interesting relationship appears to exist between the potential benefits of groundwater management and the annual amount of streamflow available for recharge, and that consideration of stochastic variations in streamflow is unnecessary in the analysis of systems relying primarily on groundwater. A framework is also presented for identifying strategies that meet environmental constraints while minimizing the revenue losses to current water users. For all scenarios considered, basinwide groundwater management generates larger revenues than private optimization while using considerably less water.

  7. Large-scale hydrological modeling for calculating water stress indices: implications of improved spatiotemporal resolution, surface-groundwater differentiation, and uncertainty characterization.

    Science.gov (United States)

    Scherer, Laura; Venkatesh, Aranya; Karuppiah, Ramkumar; Pfister, Stephan

    2015-04-21

    Physical water scarcities can be described by water stress indices. These are often determined at an annual scale and a watershed level; however, such scales mask seasonal fluctuations and spatial heterogeneity within a watershed. In order to account for this level of detail, first and foremost, water availability estimates must be improved and refined. State-of-the-art global hydrological models such as WaterGAP and UNH/GRDC have previously been unable to reliably reflect water availability at the subbasin scale. In this study, the Soil and Water Assessment Tool (SWAT) was tested as an alternative to global models, using the case study of the Mississippi watershed. While SWAT clearly outperformed the global models at the scale of a large watershed, it was judged to be unsuitable for global scale simulations due to the high calibration efforts required. The results obtained in this study show that global assessments miss out on key aspects related to upstream/downstream relations and monthly fluctuations, which are important both for the characterization of water scarcity in the Mississippi watershed and for water footprints. Especially in arid regions, where scarcity is high, these models provide unsatisfying results.

  8. Hydrological drought. Processes and estimation methods for streamflow and groundwater

    NARCIS (Netherlands)

    Tallaksen, L.; Lanen, van H.A.J.

    2004-01-01

    Hydrological drought is a textbook for university students, practising hydrologists and researchers. The main scope of this book is to provide the reader with a comprehensive review of processes and estimation methods for streamflow and groundwater drought. It includes a qualitative conceptual

  9. Minimal groundwater leakage restricts salinity in a hydrologically terminal basin of northwest Australia

    Science.gov (United States)

    Skrzypek, Grzegorz; Dogramaci, Shawan; Rouillard, Alexandra; Grierson, Pauline

    2016-04-01

    The Fortescue Marsh (FM) is one of the largest wetlands of arid northwest Australia (~1200 km2) and is thought to act as a terminal basin for the Upper Fortescue River catchment. Unlike the playa lake systems that predominate in most arid regions, where salinity is driven by inflow and evaporation of groundwater, the hydrological regime of the FM is driven by inundation from irregular cyclonic events [1]. Surface water of the FM is fresh to brackish and the salinity of the deepest groundwater (80 m b.g.l.) does not exceed 160 g/L; salt efflorescences are rarely present on the surface [2]. In this study, we tested the hypothesis that persistent but low rates of groundwater outflow have restricted the accumulation of salt in the FM over time. Using hydrological, hydrochemical data and dimensionless time evaporation modelling along with the water and salt budget, we calculated the time and the annual groundwater discharge volume that would be required to achieve and maintain the range of salinity levels observed in the Marsh. Groundwater outflow from alluvial and colluvial aquifers to the Lower Fortescue catchment is limited by an extremely low hydraulic gradient of 0.001 and is restricted to a relatively small 'alluvial window' of 0.35 km2 because of the elevation of the basement bedrock at the Marsh outflow. We show that if the Marsh was 100% "leakage free" i.e., a true terminal basin for the Upper Fortescue Catchment, the basin water would have achieved salt saturation after ~45 ka. This is not the case and only a very small outflow of saline groundwater of Marsh and the steady-state conditions for salt concentration is between 58 and 164 ka. This is a minimum age of the Marsh but it can be much older as nearly steady-state conditions could be maintained infinitely. Our approach using a combined water and salt mass balance allows a more robust assessment of the hydrological budget of such a large-scale basin. The dimensionless time versus inflow over outflow ratio

  10. Multivariate hydrological data assimilation of soil moisture and groundwater head

    Science.gov (United States)

    Zhang, Donghua; Madsen, Henrik; Ridler, Marc E.; Kidmose, Jacob; Jensen, Karsten H.; Refsgaard, Jens C.

    2016-10-01

    Observed groundwater head and soil moisture profiles are assimilated into an integrated hydrological model. The study uses the ensemble transform Kalman filter (ETKF) data assimilation method with the MIKE SHE hydrological model code. The method was firstly tested on synthetic data in a catchment of less complexity (the Karup catchment in Denmark), and later implemented using data from real observations in a larger and more complex catchment (the Ahlergaarde catchment in Denmark). In the Karup model, several experiments were designed with respect to different observation types, ensemble sizes and localization schemes, to investigate the assimilation performance. The results showed the necessity of using localization, especially when assimilating both groundwater head and soil moisture. The proposed scheme with both distance localization and variable localization was shown to be more robust and provide better results. Using the same assimilation scheme in the Ahlergaarde model, groundwater head and soil moisture were successfully assimilated into the model. The hydrological model with assimilation showed an overall improved performance compared to the model without assimilation.

  11. Groundwater hydrochemistry evolution in cyclone driven hydrological regimes, NW Australia

    Science.gov (United States)

    Skrzypek, G.; Dogramaci, S.; Grierson, P.

    2013-12-01

    Groundwater reserves supply the water needs of many arid regions around the world. Aquifer recharge in these regions is primarily depended on the amount and distribution of rainfall, coupled with exceedingly high rates of evaporation and interactions with both local and regional geomorphology and geology. In semi-arid northwest Australia, the majority of rainfall is delivered by large but infrequent cyclonic events and relatively more frequent but low intensity frontal systems. Changes to rainfall patterns due to global climate change may impact hydrological regimes, recharge rates and groundwater hydrochemistry. These changes may significantly restrict freshwater resources in the future. Between 2008 and 2012, we analysed >400 groundwater, surface and rainwater samples for stable isotope composition (δ2H and δ18O) and major ion chemistry. We then developed conceptual geochemical models of groundwater evolution for the Hamersley Basin (>100,000 km2) and a salt inventory for the Fortescue Marsh (the largest wetland in NW Australia) [1,2]. Fresh groundwater from the alluvium (-8.02 × 0.83‰) and fractured aquifers (-8.22 × 0.70‰) were hydrochemically similar and characterised by a very narrow range of δ18O [1]. In contrast, δ18O of saline and brine groundwater (TDS >10 g L-1) varies in wide range from +2.5 to -7.2‰ [2]. Most of the fresh and brackish groundwater reflects modern recharge and is evaporated by water and older deep groundwater. The Fortescue Marsh primarily acts as a terminal basin for surface water from the upper Fortescue River catchment [2]. The stable isotope composition of the deep brine groundwater under the Marsh suggests a complex evolution, which cannot be explained by evaporation under current climatic conditions. The observed salinity and δ18O values may result from progressive evaporation from highly saline lake that existed in the past, as the dynamic fractionation from brine is much different compared to that in fresh and

  12. Quantifying shallow and deep groundwater inputs to rivers with groundwater dating in hydrological observatories.

    Science.gov (United States)

    Aquilina, Luc; Marçais, Jean; Gauvain, Alexandre; Kolbe, Tamara; de Dreuzy, Jean-Raynald; Labasque, Thierry; Abbott, Benjamin W.; Vergnaud, Virginie; Chatton, Eliot; Thomas, Zahra; Ruiz, Laurent; Bour, Olivier; Pinay, Gilles

    2017-04-01

    River water derives in part from groundwater—water that has spent some time in the subsurface (e.g. soil, unsaturated zone, saturated zone). However, because groundwater residence times vary from months to millennia, determining the proportion of shallow and deep groundwater contribution can be challenging. Groundwater dating with anthropogenic gases and natural geochemical tracers can decipher the origin of groundwater contribution to rivers, particularly when repeat samplings are carried out in different hydrological conditions. Here, we present two different applications of this approach from three hydrological observatories (H+ hydrogeological network; Aghrys and Armorique observatories) in western France, all these observatories belonging to the OZCAR national network. We carried out a regional investigation of mean groundwater ages in hard rock aquifers in Brittany, using long-term chronicles from hydrological observatories and regional monitoring sites. We determined the mean residence-time (RT) and annual renewal rate (RR) of four compartments of these aquifers: the direct contribution of a very young water component (i.e. RT less than 1-2 yr), the upper variably saturated zone (RR 27-33%), the weathered layer (RR 1.8-2.1%) and the fractured zone (RR 0.1%). From these values and a nitrate chronicle, we were able to determine the respective contributions of each compartment to the largest river in Brittany, the Vilaine, which drains 30% of the region. We found that the deep fractured compartment with very slow renewal times contributed to 25-45% of river water in winter and 30-60% in summer. The very young water which includes direct precipitation and soil fluxes constituted 40-65% of the winter river water (Aquilina et al., 2012). To complement these estimates, we investigated the relationship between dissolved silica and groundwater age in the Armorique hydrological observatory in northern Brittany. We computed the silica concentration expected along the

  13. Field site investigation: Effect of mine seismicity on groundwater hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Ofoegbu, G.I.; Hsiung, S.; Chowdhury, A.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses; Philip, J. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-04-01

    The results of a field investigation on the groundwater-hydrologic effect of mining-induced earthquakes are presented in this report. The investigation was conducted at the Lucky Friday Mine, a silver-lead-zinc mine in the Coeur d`Alene Mining District of Idaho. The groundwater pressure in sections of three fracture zones beneath the water table was monitored over a 24-mo period. The fracture zones were accessed through a 360-m-long inclined borehole, drilled from the 5,700 level station of the mine. The magnitude, source location, and associated ground motions of mining-induced seismic events were also monitored during the same period, using an existing seismic instrumentation network for the mine, augmented with additional instruments installed specifically for the project by the center for Nuclear Waste Regulatory Analyses (CNWRA). More than 50 seismic events of Richter magnitude 1.0 or larger occurred during the monitoring period. Several of these events caused the groundwater pressure to increase, whereas a few caused it to decrease. Generally, the groundwater pressure increased as the magnitude of seismic event increased; for an event of a given magnitude, the groundwater pressure increased by a smaller amount as the distance of the observation point from the source of the event increased. The data was examined using regression analysis. Based on these results, it is suggested that the effect of earthquakes on groundwater flow may be better understood through mechanistic modeling. The mechanical processes and material behavior that would need to be incorporated in such a model are examined. They include a description of the effect of stress change on the permeability and water storage capacity of a fracture rock mass; transient fluid flow; and the generation and transmission of seismic waves through the rock mass.

  14. Groundwater seepage controls salinity in a hydrologically terminal basin of semi-arid northwest Australia

    Science.gov (United States)

    Skrzypek, Grzegorz; Dogramaci, Shawan; Rouillard, Alexandra; Grierson, Pauline F.

    2016-11-01

    Very small groundwater outflows have the potential to significantly impact the hydrochemistry and salt accumulation processes of notionally terminal basins in arid environments. However, this limited groundwater outflow can be very difficult to quantify using classical water budget calculations due to large uncertainties in estimates of evaporation and evapotranspiration rates from the surface of dry lake beds. In this study, we used a dimensionless time evaporation model to estimate the range of groundwater outflow required to maintain salinity levels observed at the Fortescue Marsh (FM), one of the largest wetlands of semi-arid northwest Australia (∼1100 km2). The groundwater outflow from aquifers underlying the FM to the Lower Fortescue catchment is constrained by an extremely low hydraulic gradient of flood water is fresh to brackish, and salt efflorescences are very sparse and evident only when the FM is dry. We show that if the FM was 100% "leakage free" i.e., a true terminal basin, groundwater would have achieved halite saturation (>300 g/L) after ∼45 ka. We calculated that only a very small seepage of ∼2G L/yr (∼0.03% of the FM water volume) is sufficient to maintain current salinity conditions. The minimum time required to develop the current hydrochemical groundwater composition under the FM ranges from ∼60 to ∼165 ka. We conclude that a dimensionless time evaporation model versus inflow over outflow ratio model is likely more suitable than classical water budget calculations for determining outflow from large saline lakes and to estimate groundwater seepage from hydrologically terminal basins.

  15. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    Science.gov (United States)

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  16. Aquifers of Arkansas: protection, management, and hydrologic and geochemical characteristics of groundwater resources in Arkansas

    Science.gov (United States)

    Kresse, Timothy M.; Hays, Phillip D.; Merriman, Katherine R.; Gillip, Jonathan A.; Fugitt, D. Todd; Spellman, Jane L.; Nottmeier, Anna M.; Westerman, Drew A.; Blackstock, Joshua M.; Battreal, James L.

    2014-01-01

    Sixteen aquifers in Arkansas that currently serve or have served as sources of water supply are described with respect to existing groundwater protection and management programs, geology, hydrologic characteristics, water use, water levels, deductive analysis, projections of hydrologic conditions, and water quality. State and Federal protection and management programs are described according to regulatory oversight, management strategies, and ambient groundwater-monitoring programs that currently (2013) are in place for assessing and protecting groundwater resources throughout the State.

  17. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Appendix B of Attachment 3: Groundwater hydrology report, Attachment 4: Water resources protection strategy, Final

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    Attachment 3 Groundwater Hydrology Report describes the hydrogeology, water quality, and water resources at the processing site and Dry Flats disposal site. The Hydrological Services calculations contained in Appendix A of Attachment 3, are presented in a separate report. Attachment 4 Water Resources Protection Strategy describes how the remedial action will be in compliance with the proposed EPA groundwater standards.

  18. Data base dictionary for the Oak Ridge Reservation Hydrology and Geology Study Groundwater Data Base

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, B.K.

    1993-04-01

    The Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) Groundwater Data Base has been compiled to consolidate groundwater data from the three US Department of Energy facilities located on the Oak Ridge Reservation: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant. Each of these facilities maintains its own groundwater and well construction data bases. Data were extracted from the existing data bases, converted to a consistent format, and integrated into the ORRHAGS Groundwater Data Base structures. This data base dictionary describes the data contained in the ORRHAGS Groundwater Data Base and contains information on data base structure, conventions, contents, and use.

  19. Using Hydrologic Data from Africa in a Senior-Level Course in Groundwater Hydrology (Invited)

    Science.gov (United States)

    Silliman, S. E.

    2010-12-01

    Ongoing research efforts in Benin, West Africa, and Uganda, East Africa, have provided substantial data sets involving groundwater quality, applied geophysics, water use, and response of local populations / government agencies to challenges related to water development, protection and management. Ranging from characterization of coastal salt-water encroachment to a major well field to nitrate and microbial contamination of rural water supplies, these data sets were developed by interdisciplinary / international teams that included both undergraduate and graduate students. The present discussion focuses on the integration of the resulting data sets into a senior-level (and lower-level graduate student) course in Groundwater Hydrology. The data sets are employed in multiple ways, including: (i) support of concepts introduced during lectures, (ii) problem sets involving analysis of the data, and (iii) foundation material for open-ended discussions on comparative water resource strategies in developed and developing countries. Most significant in terms of the use of these data sets to advance educational opportunities, the African case studies have been integrated into semester-long projects completed by teams of students as a significant component of their final grade as well as one of their engineering design experiences used to fulfill ABET requirements. During the 2009-2010 academic year, these data sets (as well as published data bases by other agencies) were used by individual groups to design water development strategies for rural villages. During the present semester, two teams of students are pursuing long-term sustainability analyses, the first focused on an aquifer system in northern Indiana (USA) and the second focused on a coastal aquifer system serving Cotonou, Benin. The goal of pursuing these parallel projects is to illustrate to the students the similarities and differences involved in water resource management / protection in different parts of the

  20. Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)

    Energy Technology Data Exchange (ETDEWEB)

    Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.

    1996-09-01

    In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.

  1. Scarce data in hydrology and hydrogeology: Estimation and modelling of groundwater recharge for a numerical groundwater flow model in a semi-arid to arid catchment

    Science.gov (United States)

    Gräbe, Agnes; Schulz, Stephan; Rödiger, Tino; Kolditz, Olaf

    2013-04-01

    Water resources are strongly limited in semi-arid to arid regions and groundwater constitutes often the only possibility for fresh water for the population and industry. An understanding of the hydrological processes and the estimation of magnitude of water balance parameters also includes the knowledge of processes of groundwater recharge. For the sustainable management of water resources, it is essential to estimate the potential groundwater recharge under the given climatic conditions. We would like to present the results of a hydrological model, which is based on the HRU- concept and intersected the parameters of climatic conditions, topography, geology, soil, vegetation and land use to calculate the groundwater recharge. This model was primarily developed for humid area applications and has now been adapted to the regional conditions in the semi-arid to arid region. It was quite a challenge to understand the hydrological processes in the semi-arid to arid study area and to implement those findings (e.g. routing [Schulz (in prep.)]) into the model structure. Thus we compared the existing approaches for groundwater recharge estimations (chloride mass balance [Marei et. al 2000], empirical relations such as rainfall and base flow-relation [Goldschmidt 1960; Guttman 2000; Hughes 2008; Issar 1993; Lerner 1990; De Vries et. al 2002]) with the results of our numerical model. References: De Vries, J. J., I. Simmers (2002): Groundwater recharge: an overview of processes and challenges. Hydrogeology Journal (2002) 10: 5-17. DOI 10.1007/s10040-001-0171-7. Guttman, J., 2000. Multi-Lateral Project B: Hydrogeology of the Eastern Aquifer in the Judea Hills and Jordan Valley. Mekorot Water Company, Report 468, p. 36. Hughes, A. G., M. M. Mansour, N. S. Robins (2008): Evaluation of distributed recharge in an upland semi-arid karst system: the West Bank Mountain Aquifer, Middle East. Hydrogeology Journal (2008) 16: 845-854. DOI 10.1007/s10040-008-0273-6 Issar, A. S. (1993

  2. Land cover or climate? In search of dominant factors inducing groundwater recharge and fen hydrology in European scale

    Science.gov (United States)

    Grygoruk, Mateusz; Kotowski, Wiktor

    2016-04-01

    Groundwater recharge plays the crucial role in development and stability of fens. It was hypothesized that the mid- and late-Holocene acceleration of fens' development in Europe could have been induced by changes in land cover: decreasing areas of forests resulting from the expanding agriculture have enhanced groundwater recharge by decreasing evapotranspiration and interception and promoting infiltration. However, regardless human-related changes of the landscape, recorded climatic fluctuations could also be considered as drivers of changing groundwater recharge that affects fen stability and development. Nowadays, when up to 90% of European wetlands is considered degraded, assessing vulnerability of groundwater recharge to changing landscape and climate is of the crucial importance for setting fen restoration and management strategies. Main goal of our study was to assess the magnitude of changes in groundwater recharge estimation resulting from modelled changes of the landscape and climatic features in >300 fens located in Poland, Germany, The Netherlands, Sweden, UK and Norway. In our approach we (1) delineated the most probable extents of catchments of particular fens analysed, (2) assumed hypothetical and the most probable changes of land cover within these catchments, (3) assumed the most probable ranges of climatic changes in each of the catchments including historical reconstructions (Holocene) and future projections (A1B scenario, CSIRO:MK3 and UKMO:HADCM3 GCM-RCM ensembles), (4) developed, tested and calibrated automatic, GIS-based groundwater recharge calculation algorithm to be applied in the study, (5) calculated groundwater recharge in multiple probable combinations of landscape and climatic conditions and (6) performed statistical analysis in order to reveal whether the climate or landscape changes were the dominant factors that could have probably influenced groundwater recharge in catchments of fens analysed. We revealed that in the case of 80% of

  3. Hydrology

    Science.gov (United States)

    Eisenbies, Mark H.; Hughes, W. Brian

    2000-01-01

    Hydrologic process are the main determinants of the type of wetland located on a site. Precipitation, groundwater, or flooding interact with soil properties and geomorphic setting to yield a complex matrix of conditions that control groundwater flux, water storage and discharge, water chemistry, biotic productivity, biodiversity, and biogeochemical cycling. Hydroperiod affects many abiotic factors that in turn determine plant and animal species composition, biodiversity, primary and secondary productivity, accumulation, of organic matter, and nutrient cycling. Because the hydrologic regime has a major influence on wetland functioning, understanding how hydrologic changes influence ecosystem processes is essential, especially in light of the pressures placed on remaining wetlands by society's demands for water resources and by potential global changes in climate.

  4. Hydrology and numerical simulation of groundwater flow and streamflow depletion by well withdrawals in the Malad-Lower Bear River Area, Box Elder County, Utah

    Science.gov (United States)

    Stolp, Bernard J.; Brooks, Lynette E.; Solder, John

    2017-03-28

    The Malad-Lower Bear River study area in Box Elder County, Utah, consists of a valley bounded by mountain ranges and is mostly agricultural or undeveloped. The Bear and Malad Rivers enter the study area with a combined average flow of about 1,100,000 acre-feet per year (acre-ft/yr), and this surface water dominates the hydrology. Groundwater occurs in consolidated rock and basin fill. Groundwater recharge occurs from precipitation in the mountains and moves through consolidated rock to the basin fill. Recharge occurs in the valley from irrigation. Groundwater discharge occurs to rivers, springs and diffuse seepage areas, evapotranspiration, field drains, and wells. Groundwater, including springs, is a source for municipal and domestic water supply. Although withdrawal from wells is a small component of the groundwater budget, there is concern that additional groundwater development will reduce the amount of flow in the Malad River. Historical records of surface-water diversions, land use, and groundwater levels indicate relatively stable hydrologic conditions from the 1960s to the 2010s, and that current groundwater development has had little effect on the groundwater system. Average annual recharge to and discharge from the groundwater flow system are estimated to be 164,000 and 228,000 acre-ft/yr, respectively. The imbalance between recharge and discharge represents uncertainties resulting from system complexities, and the possibility of groundwater inflow from surrounding basins.This study reassesses the hydrologic system, refines the groundwater budget, and creates a numerical groundwater flow model that is used to analyze the effects of groundwater withdrawals on surface water. The model uses the detailed catalog of locations and amounts of groundwater recharge and discharge defined during this study. Calibrating the model to adequately simulate recharge, discharge, and groundwater levels results in simulated aquifer properties that can be used to understand

  5. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    Science.gov (United States)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or

  6. Hydrological control of As concentrations in Bangladesh groundwater

    Science.gov (United States)

    Stute, M.; Zheng, Y.; Schlosser, P.; Horneman, A.; Dhar, R. K.; Datta, S.; Hoque, M. A.; Seddique, A. A.; Shamsudduha, M.; Ahmed, K. M.; van Geen, A.

    2007-09-01

    The elevated arsenic (As) content of groundwater from wells across Bangladesh and several other South Asian countries is estimated to slowly poison at least 100 million people. The heterogeneous distribution of dissolved arsenic in the subsurface complicates understanding of its release from the sediment matrix into the groundwater, as well as the design of mitigation strategies. Using the tritium-helium (3H/3He) groundwater dating technique, we show that there is a linear correlation between groundwater age at depths <20 m and dissolved As concentration, with an average slope of 19 μg L-1 yr-1 (monitoring wells only). We propose that either the kinetics of As mobilization or the removal of As by groundwater flushing is the mechanism underlying this relationship. In either case, the spatial variability of As concentrations in the top 20 m of the shallow aquifers can to a large extent be attributed to groundwater age controlled by the hydrogeological heterogeneity in the local groundwater flow system.

  7. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, O.; Namar, R. (In2Earth Modelling Ltd (Switzerland)); Jansson, P. (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2010-10-15

    The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the

  8. Estimating groundwater dynamics at a Colorado River floodplain site using historical hydrological data and climate information

    Science.gov (United States)

    Chen, Jinsong; Hubbard, Susan S.; Williams, Kenneth H.; Ficklin, Darren L.

    2016-03-01

    Long-term prediction of groundwater dynamics is important for assessing water resources and their impacts on biogeochemical cycling. However, estimating future groundwater dynamics is challenging due to the wide range of spatiotemporal scales in hydrological processes and uncertainty in future climate conditions. In this study, we develop a Bayesian model to combine small-scale historical hydrological data with large-scale climate information to estimate groundwater dynamics at a floodplain site in Rifle, Colorado. Although we have only a few years of groundwater elevation measurements, we have 47 years of streamflow data from a gaging station approximately 43 km upstream and long-term climate prediction on the Upper Colorado River Basin. To estimate future daily groundwater dynamics, we first develop a time series model to downscale the monthly streamflow derived from climate information to daily streamflow, and then transform the daily streamflow to groundwater dynamics at the downstream floodplain site. We use Monte Carlo methods to estimate future groundwater dynamics at the site through sampling from the joint posterior probability distribution. The results suggest that although future groundwater levels are expected to be similar to the current levels, the timing of the high groundwater levels is predicted to occur about 1 month earlier. The developed framework is extendable to other sites to estimate future groundwater dynamics given disparate data sets and climate projections. Additionally, the obtained estimates are being used as input to a site-specific watershed reactive transport models to predict how climate-induced changes will influence future biogeochemical cycling relevant to a variety of ecosystem services.

  9. ANALYSIS AND CALCULATION OF REGULATED WATER RESOURCES OF GROUNDWATER RESERVOIR

    Institute of Scientific and Technical Information of China (English)

    DAI Chang-lei; CHI Bao-ming; GAO Shu-qin

    2005-01-01

    Groundwater reservoir is a kind of important engineering, which can optimize water resources arran-gement by means of artificial regulation. Regulated water is the blood and value performance of groundwater reser-voir. To resolve the problem of real-time quantification of regulated water, the paper analyzed sources and composi-tions of regulated water in detail. Then, under the conditions of satisfying water demand inside research area, the pa-per analyzed quantity available and regulation coefficient of different regulated water and established a formula tocalculate regulated water. At last, based on a pore groundwater reservoir in the middle reaches of the Yinma River,Jilin Province, the paper calculated regulated water with the formula and the result shows that the method is feasible.With some constraint conditions, the formula can be adopted in other similar areas.

  10. Implications of groundwater hydrology to buffer design in the southeastern U.S.

    Science.gov (United States)

    Ge Sun; James M. Vose; Devendra M. Amatya; Carl Trettin; Steven G. McNulty

    2008-01-01

    The objective of this study was to examine the hydrologic processes of shallow groundwater to better define and design forest riparian management zones in headwater streams of two contrasting terrains in the southeastern U.S. We employed two long-term experimental watersheds, WS80 (206 ha) and WS77 (151 ha) at the Santee Experimental Forests in South Carolina, and WS2...

  11. Multi-scale experimental programs for estimating groundwater recharge in hydrologically changing basins

    Science.gov (United States)

    McIntyre, Neil; Larsen, Josh; Reading, Lucy; Bulovic, Nevenka; Jarihani, Abdollah; Finch, Warren

    2015-04-01

    Groundwater recharge estimates are required to evaluate sustainable groundwater abstractions and to support groundwater impacts assessments associated with minerals and energy extraction. Increasingly, recharge estimates are also needed for regional and global scale water cycle modelling. This is especially the case in the great arid and semi-arid basins of the world due to increased water scarcity and dependence of ecosystems and livelihoods on their water supplies, and the considerable potential influence of groundwater on the hydrological cycle. Groundwater resources in the semi-arid Surat Basin of south-east Queensland, Australia, support extensive groundwater-dependent ecosystems and have historically been utilised for regional agriculture and urban water-use. Large volumes of water are currently being produced and will continue to do so as a part of coal seam gas extraction. There is considerable uncertainty about the impacts of gas extraction on water resources and the hydrological cycle, and much of this uncertainty stems from our limited knowledge about recharge processes and how to upscale them. Particular questions are about the role of storm events in controlling annual recharge, the relative contributions of local 'recharge zones' versus diffuse recharge and the translation of (relatively easily quantified) shallow drainage estimates to groundwater recharge. A multi-scale recharge research program is addressing these questions, using multiple approaches in estimating groundwater recharge, including plot and catchment scale monitoring, use of remote sensed data and simulation models. Results during the first year of the program have resulted in development of process hypotheses and experimental designs at three field sites representing key gaps in knowledge. The presentation will overview the process of designing the experimental program; how the results from these sites will be integrated with existing knowledge; and how results will be used to advance

  12. Sustainable groundwater management system based on the regional hydrological cycle in the warm humid country, Japan

    Science.gov (United States)

    Shimada, J.; Crest Kumamoto Groundwater Team

    2011-12-01

    The increase of precipitation variability with the global warming and the rapid population growth lead to the shortage of water resources on a global scale. Groundwater bocome attracted as a relatively stable water resource because of its larger reservoir and a longer residence time. As our country belongs to a warm humid climate with much precipitation and a steep topography, the regional hydrological cycle is extremely active. Surface water could be taken easily and was often used to a water supply until now, but recently groundwater is taking the place of surface water because of the stability of water supply. While in our hydro-climatic condition, the sustainable use of groundwater is possible under the appropriative management, that is, groundwater pumping rate does not exceed the recharge rate in a basin. For the sustainable use of groundwater resources, this project aims to develop new technologies relating to the quantity and quality aspects of groundwater resources. For the precise understanding of groundwater flow system, new technologies will be developed, like frequency changeable electric resistivity exploration method to evaluate an aquifer structure. There are many problems about groundwater quality including nitrate-nitrogen contamination and toxic substances from the domestic and industrial waste disposals. It is necessary to understand the production mechanism to prevent groundwater contamination and the degradation process of nitrate-nitrogen contamination to improve the water quality. Therefore this project will develop new technologies including the reduction of NO3=N and natural toxic substances loads before groundwater recharge, the on-site removal of contaminants from aquifers, and simple and effective equipment to improve groundwater quality after pumping. Furthermore, this project will also develop a new biological monitoring technique for local groundwater users to notice the contamination at a glance; change colar fish by specific ion

  13. Hydrologic and nutrient response of groundwater to flooding of cranberry farms in southeastern Massachusetts, USA

    Science.gov (United States)

    Kennedy, Casey D.

    2015-06-01

    Seasonal flooding of cranberry farms is essential for commercial production of cranberries in southeastern Massachusetts, with close to 90% of growers using a flood for harvesting and winter protection. Although periodic flooding results in increased groundwater recharge, it may also exacerbate subsurface transport of dissolved forms of nitrogen and phosphorus. Given the paucity of information on groundwater exchange with cranberry floodwaters, hydrometric measurements were used to solve for the residual term of groundwater recharge in water budgets for three cranberry farms during the harvest and winter floods. Combined with continuous monitoring of water-table depth and discrete sampling of groundwater for analysis of nitrate (NO3-), ammonium (NH4+), and total dissolved phosphorus (TDP), values of groundwater recharge were used to evaluate the hydrologic and nutrient response of groundwater to flooding of cranberry farms. Mean values of groundwater recharge were 11 (±6) and 47 (±11) cm for the harvest and winter floods, respectively (one standard deviation in parentheses). The factor-of-four difference in ground recharge was related to flood holding times that, on average, were twenty days longer for the winter flood. The total estimated seasonal groundwater recharge of 58 cm was about four times higher than that assigned to cranberry farms in regional groundwater flow models. During the floods, 10 to 20-cm increases in water-table depth were observed for wells within 10 m of the farm, contrasting with decreases (or minimal variation) in water-table depth for wells located 100 m or farther from the farm. These spatial patterns in the hydrologic response of groundwater suggested a zone of influence of approximately 100 m from the flooded edge of the farm. Analysis of 43 groundwater samples collected from 10 wells indicated generally low concentrations of TDP in groundwater (edge of farms). For one groundwater well located in proximity to the farm (∼10 m

  14. Hydrologic factors controlling groundwater salinity in northwestern coastal zone, Egypt

    Indian Academy of Sciences (India)

    Nahla A Morad; M H Masoud; S M Abdel Moghith

    2014-10-01

    The aim of this article is to assess the main factors influencing salinity of groundwater in the coastal area between El Dabaa and Sidi Barani, Egypt. The types and ages of the main aquifers in this area are the fractured limestone of Middle Miocene, the calcareous sandstone of Pliocene and the Oolitic Limestone of Pleistocene age. The aquifers in the area are recharged by seasonal rainfall of the order of 150 mm/year. The relationship of groundwater salinity against the absolute water level, the well drilling depth, and the ability of aquifer to recharge has been discussed in the present work. The ability of aquifer to locally recharge by direct rainfall is a measure of the vertical permeability due to lithological and structural factors that control groundwater salinity in the investigated aquifers. On the other hand, the fracturing system as well as the attitude of the surface water divide has a prime role in changing both the mode of occurrence and the salinity of groundwater in the area. Directly to the west of Matrouh, where the coastal plain is the narrowest, and east of Barrani, where the coastal plain is the widest, are good examples of this concept, where the water salinity attains its maximum and minimum limits respectively. Accordingly, well drilling in the Miocene aquifer, in the area between El Negila and Barrani to get groundwater of salinities less than 5000 mg/l is recommended in this area, at flow rate less than 10m3/hr/well. In other words, one can expect that the brackish water is probably found where the surface water divide is far from the shore line, where the Wadi fill deposits dominate (Quaternary aquifer), acting as a possible water salinity by direct rainfall and runoff.

  15. Hydrological challenges to groundwater trading: Lessons from south-west Western Australia

    Science.gov (United States)

    Skurray, James H.; Roberts, E. J.; Pannell, David J.

    2012-01-01

    SummaryPerth, Western Australia (pop. 1.6 m) derives 60% of its public water supply from the Gnangara groundwater system (GGS). Horticulture, domestic self-supply, and municipal parks are other major consumers of GGS groundwater. The system supports important wetlands and groundwater-dependent ecosystems. Underlying approximately 2200 km 2 of the Swan Coastal Plain, the GGS comprises several aquifer levels with partial interconnectivity. Supplies of GGS groundwater are under unprecedented stress, due to reduced recharge and increases in extraction. Stored reserves in the superficial aquifer fell by 700 GL between 1979 and 2008. Over a similar period, annual extraction for public supply increased by more than 350% from the system overall. Some management areas are over-allocated by as much as 69%. One potential policy response is a trading scheme for groundwater use. There has been only limited trading between GGS irrigators. Design and implementation of a robust groundwater trading scheme faces hydrological and/or hydro-economic challenges, among others. Groundwater trading involves transfers of the right to extract water. The resulting potential for spatial (and temporal) redistribution of the impacts of extraction requires management. Impacts at the respective selling and buying locations may differ in scale and nature. Negative externalities from groundwater trading may be uncertain as well as not monetarily compensable. An ideal groundwater trading scheme would ensure that marginal costs from trades do not exceed marginal benefits, incorporating future effects and impacts on third-parties. If this condition could be met, all transactions would result in constant or improved overall welfare. This paper examines issues that could reduce public welfare if groundwater trading is not subject to well-designed governance arrangements that are appropriate to meeting the above condition. It also outlines some opportunities to address key risks within the design of a

  16. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.

    Science.gov (United States)

    Narula, Kapil K; Gosain, A K

    2013-12-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11,600 km(2) with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO3) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO3 transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash-Sutcliffe and R(2) correlations greater than +0.7). Nitrate loading obtained after nitrification, denitrification, and NO3 removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO3 concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the century. Water yield estimates under

  17. Augmenting a Large-Scale Hydrology Model to Reproduce Groundwater Variability

    Science.gov (United States)

    Stampoulis, D.; Reager, J. T., II; Andreadis, K.; Famiglietti, J. S.

    2016-12-01

    To understand the influence of groundwater on terrestrial ecosystems and society, global assessment of groundwater temporal fluctuations is required. A water table was initialized in the Variable Infiltration Capacity (VIC) hydrologic model in a semi-realistic approach to account for groundwater variability. Global water table depth data derived from observations at nearly 2 million well sites compiled from government archives and published literature, as well as groundwater model simulations, were used to create a new soil layer of varying depth for each model grid cell. The new 4-layer version of VIC, hereafter named VIC-4L, was run with and without assimilating NASA's Gravity Recovery and Climate Experiment (GRACE) observations. The results were compared with simulations using the original VIC version (named VIC-3L) with GRACE assimilation, while all runs were compared with well data.

  18. Stream-groundwater exchange and hydrologic turnover at the network scale

    Science.gov (United States)

    Covino, Tim; McGlynn, Brian; Mallard, John

    2011-12-01

    The exchange of water between streams and groundwater can influence stream water quality, hydrologic mass balances, and attenuate solute export from watersheds. We used conservative tracer injections (chloride, Cl-) across 10 stream reaches to investigate stream water gains and losses from and to groundwater at larger spatial and temporal scales than typically associated with hyporheic exchanges. We found strong relationships between reach discharge, median tracer velocity, and gross hydrologic loss across a range of stream morphologies and sizes in the 11.4 km2 Bull Trout Watershed of central ID. We implemented these empirical relationships in a numerical network model and simulated stream water gains and losses and subsequent fractional hydrologic turnover across the stream network. We found that stream gains and losses from and to groundwater can influence source water contributions and stream water compositions across stream networks. Quantifying proportional influences of source water contributions from runoff generation locations across the network on stream water composition can provide insight into the internal mechanisms that partially control the hydrologic and biogeochemical signatures observed along networks and at watershed outlets.

  19. Isotope hydrology of deep groundwater in Syria: renewable and non-renewable groundwater and paleoclimate impact

    Science.gov (United States)

    Al-Charideh, A.; Kattaa, B.

    2016-02-01

    The Regional Deep Cretaceous Aquifer (RDCA) is the principal groundwater resource in Syria. Isotope and hydrochemical data have been used to evaluate the geographic zones in terms of renewable and non-renewable groundwater and the inter-relation between current and past recharge. The chemical and isotopic character of groundwater together with radiometric 14C data reflect the existence of three different groundwater groups: (1) renewable groundwater, in RDCA outcropping areas, in western Syria along the Coastal and Anti-Lebanon mountains. The mean δ18O value (-7.2 ‰) is similar to modern precipitation with higher 14C values (up to 60-80 pmc), implying younger groundwater (recent recharge); (2) semi-renewable groundwater, which is located in the unconfined section of the RDCA and parallel to the first zone. The mean δ18O value (-7.0 ‰) is also similar to modern precipitation with a 14C range of 15-45 pmc; (3) non-renewable groundwater found in most of the Syrian interior, where the RDCA becomes confined. A considerable depletion in δ18O (-8.0 ‰) relative to the modern rainfall and low values of 14C (<15 pmc) suggest that the large masses of deep groundwater are non-renewable and related to an older recharge period. The wide scatter of all data points around the two meteoric lines in the δ18O-δ2H diagram indicates considerable variation in recharge conditions. There is limited renewable groundwater in the mountain area, and most of the stored deep groundwater in the RDCA is non-renewable, with corrected 14C ages varying between 10 and 35 Kyr BP.

  20. Understanding High-Resolution Spatiotemporal Dynamics of Groundwater Recharge Using Process Based Hydrologic Modeling

    Science.gov (United States)

    Kang, G.; Qiu, H.; Li, S. G.; Lusch, D.; Phanikumar, M. S.

    2016-12-01

    Quantifying the natural rates of groundwater recharge and identifying the location and timing of major recharge events are essential for maintaining sustainable water yields and for understanding contaminant transport mechanisms in groundwater systems. Using Ottawa County, Michigan as a case study in sustainable water resources management, this research is part of a larger project that examines the issues of declining water tables and increasing chloride concentrations within the county. A process-based hydrologic model (PAWS) is used to mechanistically evaluate the integrated hydrologic response of both the surface and subsurface systems to further compute daily fluxes due to evapotranspiration, surface runoff, recharge and groundwater-stream interactions. Both rain gauge (NCDC) and NEXRAD precipitation data are used as input for the model. The model is built based on three major watersheds at 300m spatial resolution and daily temporal resolution, covering all of Ottawa County and is calibrated using streamflow data from USGS gauging stations. In addition, synoptic and time-series baseflow data collected using Acoustic Doppler Current Profilers and electromagnetic flow meters during the summer of 2015 are used to test the ability of the model to simulate baseflows and to quantify the uncertainty. The MODIS evapotranspiration product is used to evaluate model performance in simulating ET. The primary objectives of this study are to (1) understand the periods of high and low groundwater recharge in the county between the years 2009 and 2015; and (2) analyze the impacts of different types of land use, soil, elevation, and slope on groundwater recharge.

  1. Investigating In-Situ Mass Transfer Processes in a Groundwater U Plume Influenced by Groundwater-River Hydrologic and Geochemical Coupling (Invited)

    Science.gov (United States)

    Zachara, J. M.

    2009-12-01

    The Hanford Integrated Field Research Challenge (IFRC) site is a DOE/BER-supported experimental and monitoring facility focused on multi-scale mass transfer processes (hanfordifc@pnl.gov). It is located within the footprint of a historic uranium (U) waste disposal pond that overlies a contaminated vadose zone and a 1 km+ groundwater U plume. The plume is under a regulatory clean-up mandate. The site is in hydraulic connectivity with the Columbia River that is located approximately 300 m distant. Dramatic seasonal variations in Columbia River stage cause 2m+ variations in water table and associated changes in groundwater flow directions and composition that are believed to recharge contaminant U to the plume through lower vadose zone pumping. The 60 m triangular shaped facility contains 37 monitoring wells equipped with down-hole electrical resistance tomography electrode and thermistor arrays, pressure transducers for continual water level monitoring, and specific conductance electrodes. Well spacings allow cross-hole geophysical interrogation and dynamic plume monitoring. Various geophysical and hydrologic field characterizations were performed during and after well installation, and retrieved sediments are being subjected to a hierarchal laboratory characterization process to support geostatistical models of hydrologic properties, U(VI) distribution and speciation, and equilibrium and kinetic reaction parameters for robust but tractable field-scale reactive transport calculations. Three large scale (10,000 gal+), non-reactive tracer experiments have been performed to evaluate groundwater flowpaths and velocities, facies scale mass transfer, and subsurface heterogeneity effects under different hydrologic conditions (e.g., flow vectors toward or away from the river). A passive monitoring experiment was completed during spring and summer of 2009 that documents spatially variable U(VI) release and plume recharge from the contaminated lower vadose zone during

  2. Error covariance calculation for forecast bias estimation in hydrologic data assimilation

    Science.gov (United States)

    Pauwels, Valentijn R. N.; De Lannoy, Gabriëlle J. M.

    2015-12-01

    To date, an outstanding issue in hydrologic data assimilation is a proper way of dealing with forecast bias. A frequently used method to bypass this problem is to rescale the observations to the model climatology. While this approach improves the variability in the modeled soil wetness and discharge, it is not designed to correct the results for any bias. Alternatively, attempts have been made towards incorporating dynamic bias estimates into the assimilation algorithm. Persistent bias models are most often used to propagate the bias estimate, where the a priori forecast bias error covariance is calculated as a constant fraction of the unbiased a priori state error covariance. The latter approach is a simplification to the explicit propagation of the bias error covariance. The objective of this paper is to examine to which extent the choice for the propagation of the bias estimate and its error covariance influence the filter performance. An Observation System Simulation Experiment (OSSE) has been performed, in which ground water storage observations are assimilated into a biased conceptual hydrologic model. The magnitudes of the forecast bias and state error covariances are calibrated by optimizing the innovation statistics of groundwater storage. The obtained bias propagation models are found to be identical to persistent bias models. After calibration, both approaches for the estimation of the forecast bias error covariance lead to similar results, with a realistic attribution of error variances to the bias and state estimate, and significant reductions of the bias in both the estimates of groundwater storage and discharge. Overall, the results in this paper justify the use of the traditional approach for online bias estimation with a persistent bias model and a simplified forecast bias error covariance estimation.

  3. Hydrological connectivity of alluvial Andean valleys: a groundwater/surface-water interaction case study in Ecuador

    Science.gov (United States)

    Guzmán, Pablo; Anibas, Christian; Batelaan, Okke; Huysmans, Marijke; Wyseure, Guido

    2016-06-01

    The Andean region is characterized by important intramontane alluvial and glacial valleys; a typical example is the Tarqui alluvial plain, Ecuador. Such valley plains are densely populated and/or very attractive for urban and infrastructural development. Their aquifers offer opportunities for the required water resources. Groundwater/surface-water (GW-SW) interaction generally entails recharge to or discharge from the aquifer, dependent on the hydraulic connection between surface water and groundwater. Since GW-SW interaction in Andean catchments has hardly been addressed, the objectives of this study are to investigate GW-SW interaction in the Tarqui alluvial plain and to understand the role of the morphology of the alluvial valley in the hydrological response and in the hydrological connection between hillslopes and the aquifers in the valley floor. This study is based on extensive field measurements, groundwater-flow modelling and the application of temperature as a groundwater tracer. Results show that the morphological conditions of a valley influence GW-SW interaction. Gaining and losing river sections are observed in narrow and wide alluvial valley sections, respectively. Modelling shows a strong hydrological connectivity between the hillslopes and the alluvial valley; up to 92 % of recharge of the alluvial deposits originates from lateral flow from the hillslopes. The alluvial plain forms a buffer or transition zone for the river as it sustains a gradual flow from the hills to the river. Future land-use planning and development should include concepts discussed in this study, such as hydrological connectivity, in order to better evaluate impact assessments on water resources and aquatic ecosystems.

  4. Isotope hydrology and geochemistry of northern Chile groundwaters

    Directory of Open Access Journals (Sweden)

    1995-01-01

    no renovable. This paper reviews studies that applied isotope techniques in aquifers located in the Pampa del Tamarugal and the Salar de Atacama Basins in northern Chile. The main aims of these studies were to obtain information about the origin and residence time of groundwater, groundwater quality, evaporation rates from Salares, and the relationship between flooding and aquifer recharge. The main conclusions of these studies, that have implications for water resources management in this region are: a most of the groundwater is of good quality, with the exception of areas close to the Salares b a multiaquifer system was identified in the Pampa del Tamarugal basin, associated with recharge areas located at different altitudes and c a significant portion of the groundwaters in the Pampa aquifers should be treated as a non renewable water resource.

  5. Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Altman, S.J.; Ho, C.K.; Arnold, B.W.; McKenna, S.A.

    1995-12-31

    Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM). Results of comparisons of the ECM and DK model are also presented in Ho et al.

  6. Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Altman, S.J.; Ho, C.K.; Arnold, B.W.; McKenna, S.A. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-01

    Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty (infiltration, fracture-matrix connectivity, fracture frequency, and matrix air entry pressure or van Genuchten {alpha}); and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM)). Results of comparisons of the ECM and DK model are also presented in Ho et al.

  7. Data base dictionary for the Oak Ridge Reservation Hydrology and Geology Study Groundwater Data Base. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, B.K.

    1993-04-01

    The Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) Groundwater Data Base has been compiled to consolidate groundwater data from the three US Department of Energy facilities located on the Oak Ridge Reservation: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant. Each of these facilities maintains its own groundwater and well construction data bases. Data were extracted from the existing data bases, converted to a consistent format, and integrated into the ORRHAGS Groundwater Data Base structures. This data base dictionary describes the data contained in the ORRHAGS Groundwater Data Base and contains information on data base structure, conventions, contents, and use.

  8. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Kapil K., E-mail: kkn2104@columbia.edu [Columbia Water Center (India Office), Columbia University, New Delhi 110 016 (India); Gosain, A.K. [Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016 (India)

    2013-12-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11 600 km{sup 2} with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO{sub 3}) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO{sub 3} transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash–Sutcliffe and R{sup 2} correlations greater than + 0.7). Nitrate loading obtained after nitrification, denitrification, and NO{sub 3} removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO{sub 3} concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the

  9. Eco-hydrological process simulations within an integrated surface water-groundwater model

    DEFF Research Database (Denmark)

    Butts, Michael; Loinaz, Maria Christina; Bauer-Gottwein, Peter

    2014-01-01

    . In the second, we examine ecological impacts related to the flows and temperatures in the Silver Creek ecosystem that are important for the fish habitat. The Silver Creek ecosystem is controlled by large-scale interactions of surface water and groundwater systems in the Lower Wood River Valley, USA......Integrated water resources management requires tools that can quantify changes in groundwater, surface water, water quality and ecosystem health, as a result of changes in catchment management. To address these requirements we have developed an integrated eco-hydrological modelling framework...... water and ground water are important for the ecosystem. In the first, simulations are performed to understand the importance of surface water-groundwater interactions for a restored riparian wetland on the Odense River in Denmark as part of a larger investigation of water quality and nitrate retention...

  10. Calculating and Evaluating the Groundwater Resource of Jian San Jiang Area

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    According to the method of water balance,the parameters of groundwater resouce of Jian San Jiang area have been calculated in the paper. At the same time,the quality of water supplying and water mining can be calculated. Furthermore ,the groundwater resource have been evaluated. Thus ,the paper provides the important references for managers to using groundwater reasonable.

  11. Hydrologic, abiotic and biotic interactions: plant density, windspeed, leaf size and groundwater all affect oak water use efficiency

    Science.gov (United States)

    Darin J. Law; Deborah M. Finch

    2011-01-01

    Plant water use in drylands can be complex due to variation in hydrologic, abiotic and biotic factors, particularly near ephemeral or intermittent streams. Plant use of groundwater may be important but is usually uncertain. Disturbances like fire contribute to complex spatiotemporal heterogeneity. Improved understanding of how such hydrologic, abiotic, and biotic...

  12. Near shore groundwater acidification during and after a hydrological drought in the Lower Lakes, South Australia

    Science.gov (United States)

    Leyden, Emily; Cook, Freeman; Hamilton, Benjamin; Zammit, Benjamin; Barnett, Liz; Lush, Ann Marie; Stone, Dylan; Mosley, Luke

    2016-06-01

    An extreme hydrological drought in the Lower Lakes of the Murray-Darling Basin (Ramsar listed site) resulted in exposure of large areas of lake bed (25% of pre-drought lake area), containing the reduced iron (Fe) sulfide mineral pyrite. The pyrite oxidised and the resulting acidification (pH quality was undertaken for six years from 2009 (drought) to 2014 (4 years post-reinundation). Acidic (pH 3-5) groundwater was recorded at three of the four piezometer locations and included sites close to the lake water. The acidic groundwater (0.5-2 m below lake bed) at these sites is likely to have originated from the transport of acid from the upper oxidised sediment layer formed during the drought. High soluble metal (Fe, Al, Mn) levels were also recorded at acidic locations. Acidic shallow groundwater has persisted at many sites for over 4 years following reinundation post-drought, and is likely due to slow diffusion and limited sulfate reduction. Increases in dissolved Fe and Mn with decreases in redox potential suggest that reductive dissolution of Fe and Mn hydrous oxides and Fe oxy-hydroxysulfate minerals (e.g. jarosite) occurred post-drought. Groundwater hydraulic head gradients were low, indicating there was limited potential for groundwater to discharge to the lake. The hydraulic gradients at all locations were dynamic with complex relationships along the near-shore environment. The results highlight the long lasting and severe effects on groundwater that can occur following hydrological drought in aquatic environments with sulfidic sediments.

  13. Common problematic aspects of coupling hydrological models with groundwater flow models on the river catchment scale

    Directory of Open Access Journals (Sweden)

    R. Barthel

    2006-01-01

    Full Text Available Model coupling requires a thorough conceptualisation of the coupling strategy, including an exact definition of the individual model domains, the "transboundary" processes and the exchange parameters. It is shown here that in the case of coupling groundwater flow and hydrological models – in particular on the regional scale – it is very important to find a common definition and scale-appropriate process description of groundwater recharge and baseflow (or "groundwater runoff/discharge" in order to achieve a meaningful representation of the processes that link the unsaturated and saturated zones and the river network. As such, integration by means of coupling established disciplinary models is problematic given that in such models, processes are defined from a purpose-oriented, disciplinary perspective and are therefore not necessarily consistent with definitions of the same process in the model concepts of other disciplines. This article contains a general introduction to the requirements and challenges of model coupling in Integrated Water Resources Management including a definition of the most relevant technical terms, a short description of the commonly used approach of model coupling and finally a detailed consideration of the role of groundwater recharge and baseflow in coupling groundwater models with hydrological models. The conclusions summarize the most relevant problems rather than giving practical solutions. This paper aims to point out that working on a large scale in an integrated context requires rethinking traditional disciplinary workflows and encouraging communication between the different disciplines involved. It is worth noting that the aspects discussed here are mainly viewed from a groundwater perspective, which reflects the author's background.

  14. Common problematic aspects of coupling hydrological models with groundwater flow models on the river catchment scale

    Science.gov (United States)

    Barthel, R.

    2006-09-01

    Model coupling requires a thorough conceptualisation of the coupling strategy, including an exact definition of the individual model domains, the "transboundary" processes and the exchange parameters. It is shown here that in the case of coupling groundwater flow and hydrological models - in particular on the regional scale - it is very important to find a common definition and scale-appropriate process description of groundwater recharge and baseflow (or "groundwater runoff/discharge") in order to achieve a meaningful representation of the processes that link the unsaturated and saturated zones and the river network. As such, integration by means of coupling established disciplinary models is problematic given that in such models, processes are defined from a purpose-oriented, disciplinary perspective and are therefore not necessarily consistent with definitions of the same process in the model concepts of other disciplines. This article contains a general introduction to the requirements and challenges of model coupling in Integrated Water Resources Management including a definition of the most relevant technical terms, a short description of the commonly used approach of model coupling and finally a detailed consideration of the role of groundwater recharge and baseflow in coupling groundwater models with hydrological models. The conclusions summarize the most relevant problems rather than giving practical solutions. This paper aims to point out that working on a large scale in an integrated context requires rethinking traditional disciplinary workflows and encouraging communication between the different disciplines involved. It is worth noting that the aspects discussed here are mainly viewed from a groundwater perspective, which reflects the author's background.

  15. Hydrological and geochemical constraints on the mechanism of formation of arsenic contaminated groundwater in Sonargaon, Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Itai, Takaaki [Institute for Study of the Earth' s Interior, Okayama University, Misasa, Tottori 682-0193 (Japan)], E-mail: itai-epss@hiroshima-u.ac.jp; Masuda, Harue [Department of Geosciences, Osaka-City University, Sugimoto-tyo, Sumiyoshi, Osaka 558-8585 (Japan); Seddique, Ashraf A. [Department of Geosciences, Osaka-City University, Sugimoto-tyo, Sumiyoshi, Osaka 558-8585 (Japan); Department of Geology, University of Dhaka, Dhaka 1000 (Bangladesh); Mitamura, Muneki [Department of Geosciences, Osaka-City University, Sugimoto-tyo, Sumiyoshi, Osaka 558-8585 (Japan); Maruoka, Teruyuki [Department of Integrative Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8572 (Japan); Li, Xiaodong [Department of Geosciences, Osaka-City University, Sugimoto-tyo, Sumiyoshi, Osaka 558-8585 (Japan); Kusakabe, Minoru [Institute for Study of the Earth' s Interior, Okayama University, Misasa, Tottori 682-0193 (Japan); Dipak, Biswas K. [Department of Geology, University of Dhaka, Dhaka 1000 (Bangladesh); Farooqi, Abida [Department of Geosciences, Osaka-City University, Sugimoto-tyo, Sumiyoshi, Osaka 558-8585 (Japan); Yamanaka, Toshiro [Department of Earth Systems Science, Okayama University, 3-1-1 Tsushima-naka Okayama 700-8530 (Japan); Nakaya, Shinji [Department of Civil Engineering, Shinshu University, Wakazato, Nagano 380-8553 (Japan); Matsuda, Jun-ichi [Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama-tyo, Toyonaka-shi, Osaka 560-0043 (Japan); Ahmed, Kazi Matin [Department of Geology, University of Dhaka, Dhaka 1000 (Bangladesh)

    2008-11-15

    The geochemical characteristics and hydrological constraints of high As groundwater in Sonargaon, in mid-eastern Bangladesh were investigated in order to ascertain the mechanism of As release into the groundwaters from host sediments in the Ganges-Brahmaputra delta. Samples of groundwater were collected from ca. 230 tube wells in both the rainy and dry seasons. Similar to previous studies, high As groundwater was found in the Holocene unconfined aquifer but not in the Pleistocene aquifer. Groundwaters in the Holocene aquifer were of the Ca-Mg-HCO{sub 3} type with major solutes derived from chemical weathering of detrital minerals such as plagioclase and biotite. Groundwater with high As was generally characterized by high NH{sub 4}{sup +}, possibly derived from the agricultural application of fertilizer as suggested by the small variation of {delta}{sup 15}N{sub NH4} (mostly 2-4 per mille ). Concentrations of Fe changed between the rainy and dry seasons by precipitation/dissolution of Fe oxyhydroxide and siderite, whilst there was not an apparent concomitant change in As. Inhomogeneous spatial distribution of {delta}{sup 18}O in the Holocene unconfined aquifer indicates poor mixing of groundwater in the horizontal direction. Spatial variation of redox conditions is associated with localized variations in subsurface permeability and the recharge/discharge cycle of groundwater. Hydrogeochemical data presented in this paper suggest that reduction of Fe oxyhydroxide is not the only mechanism of As mobilization, and chemical weathering of biotite and/or other basic minerals in the Holocene aquifer could also be important as a primary cause of As mobilization.

  16. Groundwater Isolation Governs Chemistry and Microbial Community Structure along Hydrologic Flowpaths

    Science.gov (United States)

    Ben Maamar, Sarah; Aquilina, Luc; Quaiser, Achim; Pauwels, Hélène; Michon-Coudouel, Sophie; Vergnaud-Ayraud, Virginie; Labasque, Thierry; Roques, Clément; Abbott, Benjamin W.; Dufresne, Alexis

    2015-01-01

    This study deals with the effects of hydrodynamic functioning of hard-rock aquifers on microbial communities. In hard-rock aquifers, the heterogeneous hydrologic circulation strongly constrains groundwater residence time, hydrochemistry, and nutrient supply. Here, residence time and a wide range of environmental factors were used to test the influence of groundwater circulation on active microbial community composition, assessed by high throughput sequencing of 16S rRNA. Groundwater of different ages was sampled along hydrogeologic paths or loops, in three contrasting hard-rock aquifers in Brittany (France). Microbial community composition was driven by groundwater residence time and hydrogeologic loop position. In recent groundwater, in the upper section of the aquifers or in their recharge zone, surface water inputs caused high nitrate concentration and the predominance of putative denitrifiers. Although denitrification does not seem to fully decrease nitrate concentrations due to low dissolved organic carbon concentrations, nitrate input has a major effect on microbial communities. The occurrence of taxa possibly associated with the application of organic fertilizers was also noticed. In ancient isolated groundwater, an ecosystem based on Fe(II)/Fe(III) and S/SO4 redox cycling was observed down to several 100 of meters below the surface. In this depth section, microbial communities were dominated by iron oxidizing bacteria belonging to Gallionellaceae. The latter were associated to old groundwater with high Fe concentrations mixed to a small but not null percentage of recent groundwater inducing oxygen concentrations below 2.5 mg/L. These two types of microbial community were observed in the three sites, independently of site geology and aquifer geometry, indicating hydrogeologic circulation exercises a major control on microbial communities. PMID:26733990

  17. Mapping irrigation potential from renewable groundwater in Africa - a quantitative hydrological approach

    Science.gov (United States)

    Altchenko, Y.; Villholth, K. G.

    2015-02-01

    Groundwater provides an important buffer to climate variability in Africa. Yet, groundwater irrigation contributes only a relatively small share of cultivated land, approximately 1% (about 2 × 106 hectares) as compared to 14% in Asia. While groundwater is over-exploited for irrigation in many parts in Asia, previous assessments indicate an underutilized potential in parts of Africa. As opposed to previous country-based estimates, this paper derives a continent-wide, distributed (0.5° spatial resolution) map of groundwater irrigation potential, indicated in terms of fractions of cropland potentially irrigable with renewable groundwater. The method builds on an annual groundwater balance approach using 41 years of hydrological data, allocating only that fraction of groundwater recharge that is in excess after satisfying other present human needs and environmental requirements, while disregarding socio-economic and physical constraints in access to the resource. Due to high uncertainty of groundwater environmental needs, three scenarios, leaving 30, 50 and 70% of recharge for the environment, were implemented. Current dominating crops and cropping rotations and associated irrigation requirements in a zonal approach were applied in order to convert recharge excess to potential irrigated cropland. Results show an inhomogeneously distributed groundwater irrigation potential across the continent, even within individual countries, mainly reflecting recharge patterns and presence or absence of cultivated cropland. Results further show that average annual renewable groundwater availability for irrigation ranges from 692 to 1644 km3 depending on scenario. The total area of cropland irrigable with renewable groundwater ranges from 44.6 to 105.3 × 106 ha, corresponding to 20.5 to 48.6% of the cropland over the continent. In particular, significant potential exists in the semi-arid Sahel and eastern African regions which could support poverty alleviation if developed

  18. Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes

    Science.gov (United States)

    Hayashi, Masaki; van der Kamp, Garth; Rosenberry, Donald O.

    2016-01-01

    Wetland managers and policy makers need to make decisions based on a sound scientific understanding of hydrological and ecological functions of wetlands. This article presents an overview of the hydrology of prairie wetlands intended for managers, policy makers, and researchers new to this field (e.g., graduate students), and a quantitative conceptual framework for understanding the hydrological functions of prairie wetlands and their responses to changes in climate and land use. The existence of prairie wetlands in the semi-arid environment of the Prairie-Pothole Region (PPR) depends on the lateral inputs of runoff water from their catchments because mean annual potential evaporation exceeds precipitation in the PPR. Therefore, it is critically important to consider wetlands and catchments as highly integrated hydrological units. The water balance of individual wetlands is strongly influenced by runoff from the catchment and the exchange of groundwater between the central pond and its moist margin. Land-use practices in the catchment have a sensitive effect on runoff and hence the water balance. Surface and subsurface storage and connectivity among individual wetlands controls the diversity of pond permanence within a wetland complex, resulting in a variety of eco-hydrological functionalities necessary for maintaining the integrity of prairie-wetland ecosystems.

  19. Groundwater dynamics in the Amazon basin from remotely sensed observations and hydrological models

    Science.gov (United States)

    Frappart, Frédéric; Papa, Fabrice; Tomasella, Javier; Ramillien, Guillaume; Güntner, Andreas; Emilio, Thaise; Schietti, Juliana; da Silva Carvalho, João

    2014-05-01

    Groundwater plays a key role in the terrestrial hydrological cycle and the water balance on the continents. It accounts for more than 30% (i.e., 8,000,000 km3 to 10,000,000 km3) of global fresh-water resources, and is also the major resource of water supply for 40% of the world's population and 50% of the world's food production. However, groundwater storage and its variations are still poorly known at global scale due to the limited extent of current monitoring networks. Most of the studies on geohydrology in the Amazon basin were carried out at local scale except a recent study that pointed out evidences on regional scale groundwater flows using a geothermal method. Gravimetry from space offers the unique opportunity to monitor water resources at basin to continental scales. The Gravity Recovery And Climate Experiment (GRACE) mission, launched in 2002, detects tiny changes in the Earth's gravity field which can be related to spatio-temporal variations of TWS at monthly or sub-monthly time-scales. Variations in groundwater storage (GW) can be separated from the TWS anomalies measured by GRACE using external information on the other hydrological reservoirs such as in situ observations, model outputs, or both. Very few studies have been undertaken yet in large river basins characterized by extensive wetlands and floodplains, due to the lack of reliable and timely information about the extent, spatial distribution, as well as the amount of water stored in wetlands and floods and their temporal variations. Using multi-satellite observations for surface water storage (SW) and hydrological outputs for soil moisture (SM), variations in GW were estimated in the Negro basin, the second largest tributary of the Amazon in terms of discharge. Here, the same approach was applied in the whole Amazon basin, allowing to estimate the contribution of each hydrological reservoir to TWS, to monitor its time variations, and to map the annual changes in the aquifers over 2003

  20. Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen: Implications for Conservation.

    Directory of Open Access Journals (Sweden)

    Prasanna Venkatesh Sampath

    Full Text Available The sources of water and corresponding delivery mechanisms to groundwater-fed fens are not well understood due to the multi-scale geo-morphologic variability of the glacial landscape in which they occur. This lack of understanding limits the ability to effectively conserve these systems and the ecosystem services they provide, including biodiversity and water provisioning. While fens tend to occur in clusters around regional groundwater mounds, Ives Road Fen in southern Michigan is an example of a geographically-isolated fen. In this paper, we apply a multi-scale groundwater modeling approach to understand the groundwater sources for Ives Road fen. We apply Transition Probability geo-statistics on more than 3000 well logs from a state-wide water well database to characterize the complex geology using conditional simulations. We subsequently implement a 3-dimensional reverse particle tracking to delineate groundwater contribution areas to the fen. The fen receives water from multiple sources: local recharge, regional recharge from an extensive till plain, a regional groundwater mound, and a nearby pond. The regional sources deliver water through a tortuous, 3-dimensional "pipeline" consisting of a confined aquifer lying beneath an extensive clay layer. Water in this pipeline reaches the fen by upwelling through openings in the clay layer. The pipeline connects the geographically-isolated fen to the same regional mound that provides water to other fen clusters in southern Michigan. The major implication of these findings is that fen conservation efforts must be expanded from focusing on individual fens and their immediate surroundings, to studying the much larger and inter-connected hydrologic network that sustains multiple fens.

  1. Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen: Implications for Conservation.

    Science.gov (United States)

    Sampath, Prasanna Venkatesh; Liao, Hua-Sheng; Curtis, Zachary Kristopher; Doran, Patrick J; Herbert, Matthew E; May, Christopher A; Li, Shu-Guang

    2015-01-01

    The sources of water and corresponding delivery mechanisms to groundwater-fed fens are not well understood due to the multi-scale geo-morphologic variability of the glacial landscape in which they occur. This lack of understanding limits the ability to effectively conserve these systems and the ecosystem services they provide, including biodiversity and water provisioning. While fens tend to occur in clusters around regional groundwater mounds, Ives Road Fen in southern Michigan is an example of a geographically-isolated fen. In this paper, we apply a multi-scale groundwater modeling approach to understand the groundwater sources for Ives Road fen. We apply Transition Probability geo-statistics on more than 3000 well logs from a state-wide water well database to characterize the complex geology using conditional simulations. We subsequently implement a 3-dimensional reverse particle tracking to delineate groundwater contribution areas to the fen. The fen receives water from multiple sources: local recharge, regional recharge from an extensive till plain, a regional groundwater mound, and a nearby pond. The regional sources deliver water through a tortuous, 3-dimensional "pipeline" consisting of a confined aquifer lying beneath an extensive clay layer. Water in this pipeline reaches the fen by upwelling through openings in the clay layer. The pipeline connects the geographically-isolated fen to the same regional mound that provides water to other fen clusters in southern Michigan. The major implication of these findings is that fen conservation efforts must be expanded from focusing on individual fens and their immediate surroundings, to studying the much larger and inter-connected hydrologic network that sustains multiple fens.

  2. Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen: Implications for Conservation

    Science.gov (United States)

    Sampath, Prasanna Venkatesh; Liao, Hua-Sheng; Curtis, Zachary Kristopher; Doran, Patrick J.; Herbert, Matthew E.; May, Christopher A.; Li, Shu-Guang

    2015-01-01

    The sources of water and corresponding delivery mechanisms to groundwater-fed fens are not well understood due to the multi-scale geo-morphologic variability of the glacial landscape in which they occur. This lack of understanding limits the ability to effectively conserve these systems and the ecosystem services they provide, including biodiversity and water provisioning. While fens tend to occur in clusters around regional groundwater mounds, Ives Road Fen in southern Michigan is an example of a geographically-isolated fen. In this paper, we apply a multi-scale groundwater modeling approach to understand the groundwater sources for Ives Road fen. We apply Transition Probability geo-statistics on more than 3000 well logs from a state-wide water well database to characterize the complex geology using conditional simulations. We subsequently implement a 3-dimensional reverse particle tracking to delineate groundwater contribution areas to the fen. The fen receives water from multiple sources: local recharge, regional recharge from an extensive till plain, a regional groundwater mound, and a nearby pond. The regional sources deliver water through a tortuous, 3-dimensional “pipeline” consisting of a confined aquifer lying beneath an extensive clay layer. Water in this pipeline reaches the fen by upwelling through openings in the clay layer. The pipeline connects the geographically-isolated fen to the same regional mound that provides water to other fen clusters in southern Michigan. The major implication of these findings is that fen conservation efforts must be expanded from focusing on individual fens and their immediate surroundings, to studying the much larger and inter-connected hydrologic network that sustains multiple fens. PMID:26452279

  3. Examining regional groundwater-surface water dynamics using an integrated hydrologic model of the San Joaquin River basin

    Science.gov (United States)

    Gilbert, James M.; Maxwell, Reed M.

    2017-02-01

    Widespread irrigated agriculture and a growing population depend on the complex hydrology of the San Joaquin River basin in California. The challenge of managing this complex hydrology hinges, in part, on understanding and quantifying how processes interact to support the groundwater and surface water systems. Here, we use the integrated hydrologic platform ParFlow-CLM to simulate hourly 1 km gridded hydrology over 1 year to study un-impacted groundwater-surface water dynamics in the basin. Comparisons of simulated results to observations show the model accurately captures important regional-scale partitioning of water among streamflow, evapotranspiration (ET), snow, and subsurface storage. Analysis of this simulated Central Valley groundwater system reveals the seasonal cycle of recharge and discharge as well as the role of the small but temporally constant portion of groundwater recharge that comes from the mountain block. Considering uncertainty in mountain block hydraulic conductivity, model results suggest this component accounts for 7-23 % of total Central Valley recharge. A simulated surface water budget guides a hydrograph decomposition that quantifies the temporally variable contribution of local runoff, valley rim inflows, storage, and groundwater to streamflow across the Central Valley. Power spectra of hydrograph components suggest interactions with groundwater across the valley act to increase longer-term correlation in San Joaquin River outflows. Finally, model results reveal hysteresis in the relationship between basin streamflow and groundwater contributions to flow. Using hourly model results, we interpret the hysteretic cycle to be a result of daily-scale fluctuations from precipitation and ET superimposed on seasonal and basin-scale recharge and discharge.

  4. Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta

    Directory of Open Access Journals (Sweden)

    M. Shamsudduha

    2009-12-01

    Full Text Available Groundwater levels in shallow aquifers underlying Asian mega-deltas are characterized by strong seasonal variations associated with monsoon rainfall. To resolve trend and seasonal components in weekly groundwater levels in the Ganges-Brahmaputra-Meghna (GBM Delta, we apply a nonparametric seasonal-trend decomposition procedure (STL to observations compiled from 1985–2005 in Bangladesh. Seasonality dominates observed variance in groundwater levels but declining groundwater levels (>1 m/yr are detected in urban and peri-urban areas around Dhaka as well as in north-central, northwestern, and southwestern parts of the country (0.1–0.5 m/yr where intensive abstraction of groundwater is conducted for dry-season rice cultivation. Rising groundwater levels (0.5–2.5 cm/yr are observed in the estuarine and southern coastal regions. This novel application of the STL procedure reveals, for the first time, the unsustainability of irrigation supplied by shallow aquifers in some areas (e.g., High Barind Tract of the GBM Delta and the hydrological impact of potential seawater intrusion of coastal aquifers associated with sea-level rise. Our findings provide important insight into the hydrological impacts of groundwater-fed irrigation and sea-level rise in other Asian mega-deltas where monitoring data are limited.

  5. Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta

    Directory of Open Access Journals (Sweden)

    M. Shamsudduha

    2009-06-01

    Full Text Available Groundwater levels in shallow aquifers underlying Asian mega-deltas are characterized by strong seasonal variations associated with monsoon rainfall. To resolve trend and seasonal components in weekly groundwater levels in the Ganges-Brahmaputra-Meghna (GBM Delta, we apply a nonparametric seasonal-trend decomposition procedure (STL to observations compiled from 1985 to 2005 in Bangladesh. Seasonality dominates observed variance in groundwater levels but declining groundwater levels (>1 m/yr are detected in urban and peri-urban areas around Dhaka as well as in north-central, northwestern, and southwestern parts of the country (0.1 to 0.5 m/yr where intensive abstraction of groundwater is conducted for dry-season rice cultivation. Rising groundwater levels (0.5 to 2.5 cm/yr are observed in the estuarine and southern coastal regions. This novel application of the STL procedure reveals, for the first time, the unsustainability of irrigation supplied by shallow aquifers in some areas of the GBM Delta and the hydrological impact of seawater intrusion of coastal aquifers associated with sea-level rise. Our findings provide important insight into the hydrological impacts of groundwater-fed irrigation and sea-level rise in other Asian mega-deltas where monitoring data are limited.

  6. Precipitation, Ground-water Hydrology, and Recharge Along the Eastern Slopes of the Sandia Mountains, Bernalillo County, New Mexico

    Science.gov (United States)

    McCoy, Kurt J.; Blanchard, Paul J.

    2008-01-01

    The spatial and temporal distribution of recharge to carbonate and clastic aquifers along the eastern slopes of the Sandia Mountains was investigated by using precipitation, water-level, dissolved chloride, and specific-conductance data. The U.S. Geological Survey (USGS), in cooperation with the Bernalillo County Public Works Division, conducted a study to assess ground-water conditions and provide technical data that could be used as a basis for management and future planning of eastern Bernalillo County water resources. The intent of the investigation was to improve the current understanding of subsurface mechanisms controlling recharge dynamics in a geologically complex aquifer system. In the Sandia Mountains, precipitation events are generally limited to snowfalls in winter months and monsoon rainfall in late summer. Monthly meteorological data from weather stations in the study area indicate that monsoon rainfall during July and August constitutes close to one-third of annual precipitation totals. Following precipitation and snowmelt events, daily ground-water level data show low-amplitude, long-duration peaks in hydrographs of wells north and west of the Tijeras Fault. Hydrographs of monthly and biannual water-level data from across the study area show seasonal variation and water-level fluctuations in excess of 30 ft during a period of below-average precipitation. Water level observations in 67 percent of wells showing drought-induced water-level declines rebounded to at or near predrought conditions within 6 months of return to normal climate conditions. Cross-correlation of annual hydrologic data shows aquifer response to periods of monsoon recharge to persist from 1 to 6 months following events. The lag time between precipitation input and response of water levels or solute concentrations was largest near the Tijeras and Gutierrez Faults. These results indicate regional faults hydrologically isolate the Tijeras Graben from groundwater recharge originating

  7. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites

    Science.gov (United States)

    Döll, Petra; Müller Schmied, Hannes; Schuh, Carina; Portmann, Felix T.; Eicker, Annette

    2014-07-01

    Groundwater depletion (GWD) compromises crop production in major global agricultural areas and has negative ecological consequences. To derive GWD at the grid cell, country, and global levels, we applied a new version of the global hydrological model WaterGAP that simulates not only net groundwater abstractions and groundwater recharge from soils but also groundwater recharge from surface water bodies in dry regions. A large number of independent estimates of GWD as well as total water storage (TWS) trends determined from GRACE satellite data by three analysis centers were compared to model results. GWD and TWS trends are simulated best assuming that farmers in GWD areas irrigate at 70% of optimal water requirement. India, United States, Iran, Saudi Arabia, and China had the highest GWD rates in the first decade of the 21st century. On the Arabian Peninsula, in Libya, Egypt, Mali, Mozambique, and Mongolia, at least 30% of the abstracted groundwater was taken from nonrenewable groundwater during this time period. The rate of global GWD has likely more than doubled since the period 1960-2000. Estimated GWD of 113 km3/yr during 2000-2009, corresponding to a sea level rise of 0.31 mm/yr, is much smaller than most previous estimates. About 15% of the globally abstracted groundwater was taken from nonrenewable groundwater during this period. To monitor recent temporal dynamics of GWD and related water abstractions, GRACE data are best evaluated with a hydrological model that, like WaterGAP, simulates the impact of abstractions on water storage, but the low spatial resolution of GRACE remains a challenge.

  8. Understanding Prairie Fen Hydrology - a Hierarchical Multi-Scale Groundwater Modeling Approach

    Science.gov (United States)

    Sampath, P.; Liao, H.; Abbas, H.; Ma, L.; Li, S.

    2012-12-01

    Prairie fens provide critical habitat to more than 50 rare species and significantly contribute to the biodiversity of the upper Great Lakes region. The sustainability of these globally unique ecosystems, however, requires that they be fed by a steady supply of pristine, calcareous groundwater. Understanding the hydrology that supports the existence of such fens is essential in preserving these valuable habitats. This research uses process-based multi-scale groundwater modeling for this purpose. Two fen-sites, MacCready Fen and Ives Road Fen, in Southern Michigan were systematically studied. A hierarchy of nested steady-state models was built for each fen-site to capture the system's dynamics at spatial scales ranging from the regional groundwater-shed to the local fens. The models utilize high-resolution Digital Elevation Models (DEM), National Hydrologic Datasets (NHD), a recently-assembled water-well database, and results from a state-wide groundwater mapping project to represent the complex hydro-geological and stress framework. The modeling system simulates both shallow glacial and deep bedrock aquifers as well as the interaction between surface water and groundwater. Aquifer heterogeneities were explicitly simulated with multi-scale transition probability geo-statistics. A two-way hydraulic head feedback mechanism was set up between the nested models, such that the parent models provided boundary conditions to the child models, and in turn the child models provided local information to the parent models. A hierarchical mass budget analysis was performed to estimate the seepage fluxes at the surface water/groundwater interfaces and to assess the relative importance of the processes at multiple scales that contribute water to the fens. The models were calibrated using observed base-flows at stream gauging stations and/or static water levels at wells. Three-dimensional particle tracking was used to predict the sources of water to the fens. We observed from the

  9. Climate change impacts on groundwater hydrology – where are the main uncertainties and can they be reduced?

    DEFF Research Database (Denmark)

    Refsgaard, Jens C.; Sonnenborg, Torben; Butts, Michael;

    2016-01-01

    This paper assesses how various sources of uncertainty propagate through the uncertainty cascade from emission scenarios through climate models and hydrological models to impacts with particular focus on groundwater aspects for a number of coordinated studies in Denmark. We find results similar...... to surface water studies showing that climate model uncertainty dominates for projections of climate change impacts on streamflow and groundwater heads. However, we find uncertainties related to geological conceptualisation and hydrological model discretisation to be dominating for projections of well field...... capture zones, while the climate model uncertainty here is of minor importance. The perspectives of reducing the uncertainties on climate change impact projections related to groundwater are discussed with particular focus on the potentials for reducing climate model biases through use of fully coupled...

  10. Hydrological and Chemical Assessment of Groundwater Flow and Quality in Costal Brine Aquifers of Laizhou Bay, China

    Science.gov (United States)

    Zhang, Xiaoying; Hu, Bill X.; Miao, Jinjie

    2016-04-01

    In geological time, seawater had been intruded groundwater several times since Late Pleistocene in the coastal area of Laizhou Bay, china. This unique phenomenon caused freshwater and brine water interbedded each other in the aquifers and forged Laizhou Bay became a multiple sources dynamic coastal area. In the last two decades, massive exploitation of fresh groundwater and brine water has significantly increased seawater intrusion and strengthened mixture of brine water and freshwater in the coastal area, which threatens local groundwater resources and severely impacts local ecological geo-environment. In this study, the hydrological and chemical (HC) process was studied according to the monitoring wells and chemical ionic constituents. The groundwater level continuously decreasing rather than showing a typical seasonal variation in areas close to the depression cone. A groundwater divide was formed along Yingli-Houzhen-Yangzi accounted for the exploitation of fresh water in the south and brine extraction in the north. This divide prevented the saltwater intrusion to fresh groundwater further south in study area. The results also showed that during concentration process, a series of complex reactions including water chemistry metamorphic role and evolution took place, such as mineral precipitation, cation ion exchange, dedolomitization and silicate alteration, etc. This work highlighted hydrological-chemical coupling process and provided a better insight into hydrogeological system.

  11. Identification of Groundwater Nitrate Contamination from Explosives Used in Road Construction: Isotopic, Chemical, and Hydrologic Evidence.

    Science.gov (United States)

    Degnan, James R; Böhlke, J K; Pelham, Krystle; Langlais, David M; Walsh, Gregory J

    2016-01-19

    Explosives used in construction have been implicated as sources of NO3(-) contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3(-) can be complicated by other NO3(-) sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3(-) transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3(-) sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3(-) (low δ(15)N, high δ(18)O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3(-) subjected to partial denitrification (high δ(15)N, high δ(18)O); (3) relatively persistent concentrations of blasting-related biogenic NO3(-) derived from nitrification of NH4(+) (low δ(15)N, low δ(18)O); and (4) stable but spatially variable biogenic NO3(-) concentrations, consistent with recharge from septic systems (high δ(15)N, low δ(18)O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ(15)N/Δδ(18)O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.

  12. Hydrology and simulation of ground-water flow in Kamas Valley, Summit County, Utah

    Science.gov (United States)

    Brooks, L.E.; Stolp, B.J.; Spangler, L.E.

    2003-01-01

    Kamas Valley, Utah, is located about 50 miles east of Salt Lake City and is undergoing residential development. The increasing number of wells and septic systems raised concerns of water managers and prompted this hydrologic study. About 350,000 acre-feet per year of surface water flows through Kamas Valley in the Weber River, Beaver Creek, and Provo River, which originate in the Uinta Mountains east of the study area. The ground-water system in this area consists of water in unconsolidated deposits and consolidated rock; water budgets indicate very little interaction between consolidated rock and unconsolidated deposits. Most recharge to consolidated rock occurs at higher altitudes in the mountains and discharges to streams and springs upgradient of Kamas Valley. About 38,000 acre-feet per year of water flows through the unconsolidated deposits in Kamas Valley. Most recharge is from irrigation and seepage from major streams; most discharge is to Beaver Creek in the middle part of the valley. Long-term water-level fluctuations range from about 3 to 17 feet. Seasonal fluctuations exceed 50 feet. Transmissivity varies over four orders of magnitude in both the unconsolidated deposits and consolidated rock and is typically 1,000 to 10,000 feet squared per day in unconsolidated deposits and 100 feet squared per day in consolidated rock as determined from specific capacity. Water samples collected from wells, streams, and springs had nitrate plus nitrite concentrations (as N) substantially less than 10 mg/L. Total and fecal coliform bacteria were detected in some surface-water samples and probably originate from livestock. Septic systems do not appear to be degrading water quality. A numerical ground-water flow model developed to test the conceptual understanding of the ground-water system adequately simulates water levels and flow in the unconsolidated deposits. Analyses of model fit and sensitivity were used to refine the conceptual and numerical models.

  13. Evaluation of groundwater resources of the Chesapeake Bay Watershed using an integrated hydrologic model

    Science.gov (United States)

    Seck, A.; Welty, C.; Maxwell, R. M.

    2013-12-01

    We present results from a distributed integrated hydrologic model of the Chesapeake Bay Watershed using ParFlow-CLM. The model covers an area of 400,000 km2 spanning five physiographic provinces, discretized at a horizontal resolution of 2 km and vertical resolution of 5 m. Synthesis of published hydrogeologic data as well as analysis of well completion reports from state agencies were used to construct a hydrogeologic model framework. The model was run for the period of 2003-2004 using National Land Data Assimilation System (NLDAS) meteorological forcing. Model output captures seasonal and spatial variability in subsurface storage and surface storage, and produces water table depths consistent with the topography, meteorological forcing, and hydrogeological setting. Model results show spatial variability in evaporation fluxes correlated to land cover at higher resolution than either NLDAS outputs or the EPA Chesapeake Bay Watershed Model Phase 5.3. Comparison with USGS streamflow data at selected stream gages shows good agreement in daily discharge timing and fluxes for high and average flows, whereas the model does not perform as well for low flows during summer and dry periods. Analysis of groundwater stores and fluxes showed marked variability across physiographic provinces. Highest groundwater stores were expectedly found in the Coastal Plain, while the Blue Ridge physiographic province had the lowest stores. The Appalachian Plateau was characterized by the highest net recharge rates. The highest discharge rates were found in the Valley and Ridge, Piedmont and Coastal Plain. The construction of this model constitutes a step forward in understanding the groundwater system in the Chesapeake Bay Watershed and its role in solute delivery to the Chesapeake Bay.

  14. Groundwater hydrology and estimation of horizontal groundwater flux from the Rio Grande at selected locations in Albuquerque, New Mexico, 2009–10

    Science.gov (United States)

    Rankin, Dale R.; Oelsner, Gretchen P.; McCoy, Kurt J.; Goeff J.M. Moret,; Jeffery A. Worthington,; Kimberly M. Bandy-Baldwin,

    2016-03-17

    The Albuquerque area of New Mexico has two principal sources of water: (1) groundwater from the Santa Fe Group aquifer system, and (2) surface water from the Rio Grande. From 1960 to 2002, pumping from the Santa Fe Group aquifer system caused groundwater levels to decline more than 120 feet while water-level declines along the Rio Grande in Albuquerque were generally less than 40 feet. These differences in water-level declines in the Albuquerque area have resulted in a great deal of interest in quantifying the river-aquifer interaction associated with the Rio Grande.In 2003, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, acting as fiscal agent for the Middle Rio Grande Endangered Species Collaborative Program, and the U.S. Army Corps of Engineers, began a study to characterize the hydrogeology of the Rio Grande inner valley alluvial aquifer in the Albuquerque area of New Mexico. The study provides hydrologic data in order to enhance the understanding of rates of water leakage from the Rio Grande to the alluvial aquifer, groundwater flow through the aquifer, and discharge of water from the aquifer to riverside drains. The study area extends about 20 miles along the Rio Grande in the Albuquerque area. Piezometers and surface-water gages were installed in paired transects at eight locations. Nested piezometers, completed at various depths in the alluvial aquifer, and surface-water gages, installed in the Rio Grande and riverside drains, were instrumented with pressure transducers. Water-level and water-temperature data were collected from 2009 to 2010.Water levels from the piezometers indicated that groundwater movement was usually away from the river towards the riverside drains. Annual mean horizontal groundwater gradients in the inner valley alluvial aquifer ranged from 0.0024 (I-25 East) to 0.0144 (Pajarito East). The median hydraulic conductivity values of the inner valley alluvial aquifer, determined from slug tests, ranged from 30

  15. Modeling of vegetation dynamics in hydrological models for the assessment of the effects of climate change on evapotranspiration and groundwater recharge

    Directory of Open Access Journals (Sweden)

    M. Wegehenkel

    2009-08-01

    Full Text Available Vegetation affects water balance of the land surface by e.g. storage of precipitation water in the canopy and soil water extraction by transpiration. Therefore, it is essential to consider the role of vegetation in affecting water balance by taking into account the temporal dynamics of e.g. leaf area index, rooting depth and stomatal conductance in hydrological models. However until now, most conceptual hydrological models do not treat vegetation as a dynamic component. This paper presents an analysis of the effects of the application of two different complex vegetation models combined with a hydrological model on the model outputs evapotranspiration and groundwater recharge. Both model combinations were used for the assessment of the effects of climate change on water balance in a mesoscale catchment loctated in the Northeastern German Lowlands. One vegetation model assumes a static vegetation development independent from environmental conditions. The other vegetation model calculates dynamic development of vegetation based on photosynthesis, respiration, allocation, and phenology. The analysis of the results obtained from both model combinations indicated the importance of taking into account vegetation dynamics in hydrological models especially if such models are used for the assessment of the impacts of climate change on water balance components.

  16. Improved ground hydrology calculations for global climate models (GCMs) - Soil water movement and evapotranspiration

    Science.gov (United States)

    Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.

    1988-01-01

    A physically based ground hydrology model is presented that includes the processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff. Data from the Goddard Institute for Space Studies GCM were used as inputs for off-line tests of the model in four 8 x 10 deg regions, including Brazil, Sahel, Sahara, and India. Soil and vegetation input parameters were caculated as area-weighted means over the 8 x 10 deg gridbox; the resulting hydrological quantities were compared to ground hydrology model calculations performed on the 1 x 1 deg cells which comprise the 8 x 10 deg gridbox. Results show that the compositing procedure worked well except in the Sahel, where low soil water levels and a heterogeneous land surface produce high variability in hydrological quantities; for that region, a resolution better than 8 x 10 deg is needed.

  17. Road impacts on the Baca National Wildlife Refuge, Colorado, with emphasis on effects to surface and shallow ground-water hydrology : a literature review

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A review of published research on unpaved road effects on surface-water and shallow ground-water hydrology was undertaken to assist the Baca National Wildlife...

  18. Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Drici, Warda

    2004-02-01

    This report documents the analysis of the available hydrologic data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

  19. Identification of groundwater nitrate contamination from explosives used in road construction: Isotopic, chemical, and hydrologic evidence

    Science.gov (United States)

    Degnan, James R.; Böhlke, John Karl; Pelham, Krystle; David M. Langlais,; Walsh, Gregory J.

    2015-01-01

    Explosives used in construction have been implicated as sources of NO3– contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3– can be complicated by other NO3– sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3– transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3– sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3– (low δ15N, high δ18O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3– subjected to partial denitrification (high δ15N, high δ18O); (3) relatively persistent concentrations of blasting-related biogenic NO3– derived from nitrification of NH4+ (low δ15N, low δ18O); and (4) stable but spatially variable biogenic NO3– concentrations, consistent with recharge from septic systems (high δ15N, low δ18O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ15N/Δδ18O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.

  20. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone: U TRANSPORT IN A GROUNDWATER-SURFACE WATER TRANSITION ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M. [Pacific Northwest National Laboratory, Richland Washington USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA; Murray, Chris [Pacific Northwest National Laboratory, Richland Washington USA; Hammond, Glenn [Sandia National Laboratories, Albuquerque New Mexico USA

    2016-03-01

    A tightly spaced well-field within a groundwater uranium (U) plume in the groundwater-surface water transition zone was monitored for a three year period for groundwater elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from mountain snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (Uaq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time series trends for Uaq and SpC were complex and displayed large temporal well-to well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common temporal behaviors resulting from the intrusion dynamics of river water and the location of source terms. Concentration hot spots were observed in groundwater that varied in location with increasing water table elevation. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While uranium time-series concentration trends varied significantly from year to year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of the river water intrusion event.

  1. Socio-hydrological perspectives of the co-evolution of humans and groundwater in Cangzhou, North China Plain

    Science.gov (United States)

    Han, Songjun; Tian, Fuqiang; Liu, Ye; Duan, Xianhui

    2017-07-01

    This paper presents a historical analysis from socio-hydrological perspectives of the coupled human-groundwater system of the Cangzhou region in the North China Plain (NCP). The history of the pendulum swing for water allocation between the economic development and aquifer environmental health of the system is divided into five eras (i.e., natural, exploitation, degradation and restoration, drought-triggered deterioration, and returning to equilibrium). The system's evolution was interpreted using the Taiji-Tire model. Over-exploitation was considered as the main cause of aquifer depletion, and the groundwater utilization pattern was affected by the varying groundwater table. The aquifer depletion enhanced community sensitivity toward environmental issues, and upgraded the social productive force for restoration. The evolution of the system was substantially impacted by two droughts. The drought in 1965 induced the system from natural conditions to groundwater exploiting. The drought from 1997 to 2002 resulted in a surge in further groundwater abstraction and dramatic aquifer deterioration, and community sensitivity increased rapidly and induced the social productive force to a tipping point. From then on, the system returns to equilibrium through new policies and water-saving technologies. Along with the establishment of a strict water resource management strategy and the launch of the South-to-North Water Diversion Project, further restoration of groundwater environment was implemented. However, a comprehensive and coordinated drought management plan should be devised to avoid irreversible change in the system.

  2. Future Flows Hydrology: an ensemble of daily river flow and monthly groundwater levels for use for climate change impact assessment across Great Britain

    Directory of Open Access Journals (Sweden)

    C. Prudhomme

    2012-12-01

    Full Text Available The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels" to provide a consistent set of transient daily river flow and monthly groundwater levels projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future.

    Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology.

    Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided.

    Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961–1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for

  3. Future Flows Hydrology: an ensemble of daily river flow and monthly groundwater levels for use for climate change impact assessment across Great Britain

    Directory of Open Access Journals (Sweden)

    C. Prudhomme

    2013-03-01

    Full Text Available The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels'' to provide a consistent set of transient daily river flow and monthly groundwater level projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate–hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961–1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice

  4. Monitoring the hydrologic system for potential effects of geothermal and ground-water development in the Long Valley caldera, Mono County, California, U.S.A.

    Science.gov (United States)

    Farrar, C.D.; Lyster, D. L.

    1990-01-01

    In the early 1980's, renewed interest in the geothermal potential of the Long Valley caldera, California, highlighted the need to balance the benefits of energy development with the established recreational activities of the area. The Long Valley Hydrologic Advisory Committee, formed in 1987, instituted a monitoring program to collect data during the early stages of resource utilization to evaluate potential effects on the hydrologic system. Early data show declines in streamflow, spring flow, and ground-water levels caused by 6 years of below-average precipitation. Springs in the Hot Creek State Fish Hatchery area discharge water that is a mixture of nonthermal and hydrothermal components. Possible sources of nonthermal water have been identified by comparing deuterium concentrations in streams and springs. The equivalent amount of undiluted thermal water discharged from the springs was calculated on the basis of boron and chloride concentrations. Quantifying the thermal and nonthermal fractions of the total flow may allow researchers to assess changes in flow volume or temperature of the springs caused by groundwater or geothermal development.

  5. Climate Change Impacts on Precipitation and Groundwater Recharge in Denmark: A Distributed Hydrological Modeling Study using Multiple Downscaling Methods on the Climate Inputs

    Science.gov (United States)

    Seaby, L. P.; Refsgaard, J.; Sonnenborg, T.; Jensen, K. H.

    2011-12-01

    Future changes in climate are expected to result in more extreme hydrological conditions globally. For Denmark, most climate models predict increases in annual precipitation, with higher intensity rainfall events occurring in winter and reduced precipitation and higher evapotranspiration in summer. Changes in the quantity, timing, and delivery of precipitation is expected to result in higher rates of groundwater recharge in the winter months, as well as flooding and water logging in low lying areas, and decreased water tables, dry root zones, and reduced low flows in the summer months. There is, however, variability between climate models on the direction and strength of the climate change signal. Additionally, regional climate models (RCMs) are subject to systematic errors making their outputs, especially precipitation, require further downscaling and bias correction prior to use in hydrological simulations. Consequently, hydrological outputs simulated under climate change compound the uncertainties within individual climate model predictions, between various climate models, and in the choice of downscaling and bias correction method. This study compares 11 transient climate change scenarios from the EU project ENSMEBLES, which makes available a matrix of GCM-RCM pairings for all of Europe at a 25 km2 grid scale to the year 2100. Temperature, precipitation, and potential evapotranspiration (calculated from climate model outputs) are downscaled using two methods: a monthly delta change approach that transfers absolute (state variables) or relative (flux variables) climate change from the RCM scenarios to the observed data, and a seasonal histogram equalization method that fits gamma distributions based on the instensity of daily observed and scenario data (flux variables) and scales scenario data based on the difference in gamma functions. Downscaling is spatially distributed within Denmark according to the seven sub-model regions in the National Water Resources

  6. Understanding the hydrologic impacts of wastewater treatment plant discharge to shallow groundwater: Before and after plant shutdown

    Science.gov (United States)

    Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph; Hutchinson, Kasey J.; Bradley, Paul M.

    2016-01-01

    Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.

  7. Hydrology of Eagle Creek Basin and effects of groundwater pumping on streamflow, 1969-2009

    Science.gov (United States)

    Matherne, Anne Marie; Myers, Nathan C.; McCoy, Kurt J.

    2010-01-01

    Urban and resort development and drought conditions have placed increasing demands on the surface-water and groundwater resources of the Eagle Creek Basin, in southcentral New Mexico. The Village of Ruidoso, New Mexico, obtains 60-70 percent of its water from the Eagle Creek Basin. The village drilled four production wells on Forest Service land along North Fork Eagle Creek; three of the four wells were put into service in 1988 and remain in use. Local citizens have raised questions as to the effects of North Fork well pumping on flow in Eagle Creek. In response to these concerns, the U.S. Geological Survey, in cooperation with the Village of Ruidoso, conducted a hydrologic investigation from 2007 through 2009 of the potential effect of the North Fork well field on streamflow in North Fork Eagle Creek. Mean annual precipitation for the period of record (1942-2008) at the Ruidoso climate station is 22.21 inches per year with a range from 12.27 inches in 1970 to 34.81 inches in 1965. Base-flow analysis indicates that the 1970-80 mean annual discharge, direct runoff, and base flow were 2,260, 1,440, and 819 acre-ft/yr, respectively, and for 1989-2008 were 1,290, 871, and 417 acre-ft/yr, respectively. These results indicate that mean annual discharge, direct runoff, and base flow were less during the 1989-2008 period than during the 1970-80 period. Mean annual precipitation volume for the study area was estimated to be 12,200 acre-feet. Estimated annual evapotranspiration for the study area ranged from 8,730 to 8,890 acre-feet. Estimated annual basin yield for the study area was 3,390 acre-ft or about 28 percent of precipitation. On the basis of basin-yield computations, annual recharge was estimated to be 1,950 acre-ft, about 16 percent of precipitation. Using a chloride mass-balance method, groundwater recharge over the study area was estimated to average 490 acre-ft, about 4.0 percent of precipitation. Because the North Fork wells began pumping in 1988, 1969

  8. Integrated groundwater-surface water modeling at the neighborhood scale in urbanized hydrologic systems

    Science.gov (United States)

    Barnes, M.; Welty, C.; Miller, A. J.; Cole, J.

    2013-12-01

    Modification of the hydrologic cycle by urban development is influenced by fine-scale spatial characteristics of cut-and-fill topography, road networks, and subsurface utilities. To address impacts on both groundwater and surface water in an integrated manner, we are using ParFlow, a parallel distributed watershed model, to conduct high-resolution simulations. We are applying ParFlow across six watershed subbasins with drainage areas of 0.3-0.6 km2 using a horizontal grid resolution of 10 m and vertical resolution of 1 m. Sites have been selected to represent a range of development intensity, age, and stormwater management practices, and each is instrumented for stage and discharge. A LIDAR-derived DEM defines model topography, and an orthoimagery and LIDAR-derived land cover classification from U. Vermont is used to develop model surface hydrologic properties. In some cases, portions of the watershed divide modified by large infrastructure elements, such as freeways, roads, and stormwater features, pose difficulties to overland flow routing within the model and to watershed delineation. In these cases, additional information, including the location of stormwater infrastructure, has been used to modify the DEM and represent where surface flow paths follow the storm drain network instead of topography. Results of these methods have improved estimation of domain extent and flow paths in overland flow tests of these basins. Boundary and initial conditions have been selected for each basin using legacy well data and a conceptual model of the Piedmont physiographic province hydrogeology. Steady-state simulations have been conducted in some cases to help refine model boundary conditions. Model spin-up has been conducted using surface forcing (P and ET) for the years 2008-2009 from NLDAS2 dataset. Ongoing analysis is focused on modeling the impact of development patterns and type of stormwater management. Challenges related to applying a coupled model in an urban setting

  9. Nitrate fluxes to groundwater under citrus orchards in a Mediterranean climate: observations, calibrated models, simulations and agro-hydrological conclusions.

    Science.gov (United States)

    Kurtzman, Daniel; Shapira, Roi H; Bar-Tal, Asher; Fine, Pinchas; Russo, David

    2013-08-01

    Nitrate contamination of groundwater under land used for intensive-agriculture is probably the most worrisome agro-hydrological sustainability problem worldwide. Vadose-zone samples from 0 to 9 m depth under citrus orchards overlying an unconfined aquifer were analyzed for variables controlling water flow and the fate and transport of nitrogen fertilizers. Steady-state estimates of water and NO3-N fluxes to groundwater were found to vary spatially in the ranges of 90-330 mm yr(-1) and 50-220 kg ha(-1) yr(-1), respectively. Calibration of transient models to two selected vadose-zone profiles required limiting the concentration of NO3-N in the solution that is taken up by the roots to 30 mg L(-1). Results of an independent lysimeter experiment showed a similar nitrogen-uptake regime. Simulations of past conditions revealed a significant correlation between NO3-N flux to groundwater and the previous year's precipitation. Simulations of different nitrogen-application rates showed that using half of the nitrogen fertilizer added to the irrigation water by farmers would reduce average NO3-N flux to groundwater by 70%, decrease root nitrogen uptake by 20% and reduce the average pore water NO3-N concentration in the deep vadose zone to below the Israeli drinking water standard; hence this rate of nitrogen application was found to be agro-hydrologically sustainable. Beyond the investigation of nitrate fluxes to groundwater under citrus orchards and the interesting case-study aspects, this work demonstrates a methodology that enables skillful decisions concerning joint sustainability of both the water resource and agricultural production in a common environmental setting.

  10. Hydrologic data and groundwater flow simulations in the vicinity of Long Lake, Indiana Dunes National Lakeshore, near Gary, Indiana

    Science.gov (United States)

    Lampe, David C.; Bayless, E. Randall

    2013-01-01

    The U.S. Geological Survey (USGS) collected data and simulated groundwater flow to increase understanding of the hydrology and the effects of drainage alterations to the water table in the vicinity of Long Lake, near Gary, Indiana. East Long Lake and West Long Lake (collectively known as Long Lake) make up one of the largest interdunal lakes within the Indiana Dunes National Lakeshore. The National Park Service is tasked with preservation and restoration of wetlands in the Indiana Dunes National Lakeshore along the southern shoreline of Lake Michigan. Urban development and engineering have modified drainage and caused changes in the distribution of open water, streams and ditches, and groundwater abundance and flow paths. A better understanding of the effects these modifications have on the hydrologic system in the area will help the National Park Service, the Gary Sanitary District (GSD), and local stakeholders manage and protect the resources within the study area. This study used hydrologic data and steady-state groundwater simulations to estimate directions of groundwater flow and the effects of various engineering controls and climatic conditions on the hydrology near Long Lake. Periods of relatively high and low groundwater levels were examined and simulated by using MODFLOW and companion software. Simulated hydrologic modifications examined the effects of (1) removing the beaver dams in US-12 ditch, (2) discontinuing seepage of water from the filtration pond east of East Long Lake, (3) discontinuing discharge from US-12 ditch to the GSD sewer system, (4) decreasing discharge from US-12 ditch to the GSD sewer system, (5) connecting East Long Lake and West Long Lake, (6) deepening County Line Road ditch, and (7) raising and lowering the water level of Lake Michigan. Results from collected hydrologic data indicate that East Long Lake functioned as an area of groundwater recharge during October 2002 and a “flow-through” lake during March 2011, with the

  11. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  12. Ground-water hydrology of Ogden Valley and surrounding area, eastern Weber County, UT, and simulation of ground-water flow in the Valley-fill aquifer system

    Science.gov (United States)

    Avery, Charles

    1994-01-01

    The ground-water resources in Ogden Valley, eastern Weber County, Utah, were the subject of a study to provide a better understanding of the hydrologic system in the valley and to estimate the hydrologic effects of future ground-water development. The study area included the drainage basin of the Ogden River upstream from Pineview Reservoir dam and the drainage basin of Wheeler Creek. Ogden Valley and the surrounding area are underlain by rocks that range in age from Precambrian to Quaternary.The consolidated rocks that transmit and yield the most water in the area surrounding Ogden Valley are the Paleozoic carbonate rocks and the Wasatch Formation of Tertiary age. Much of the recharge to the consolidated rocks is from snowmelt that infiltrates the Wasatch Formation, which underlies a large part of the study area. Discharge from the consolidated rocks is by streams, evapotranspiration, springs, subsurface outflow, and pumping from wells. Water in the consolidated rocks is a calcium bicarbonate type and has a dissolved-solids concentration of less than 250 milligrams per liter.

  13. Hydrology

    Science.gov (United States)

    Brutsaert, Wilfried

    2005-08-01

    Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. Hydrology - An Introduction presents a coherent introduction to the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the last thirty years. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other earth sciences. Emphasis on fundamentals Clarification of the underlying physical processes Applications of fluid mechanics in the natural environment

  14. U.S. Geological Survey groundwater toolbox, a graphical and mapping interface for analysis of hydrologic data (version 1.0): user guide for estimation of base flow, runoff, and groundwater recharge from streamflow data

    Science.gov (United States)

    Barlow, Paul M.; Cunningham, William L.; Zhai, Tong; Gray, Mark

    2015-01-01

    This report is a user guide for the streamflow-hydrograph analysis methods provided with version 1.0 of the U.S. Geological Survey (USGS) Groundwater Toolbox computer program. These include six hydrograph-separation methods to determine the groundwater-discharge (base-flow) and surface-runoff components of streamflow—the Base-Flow Index (BFI; Standard and Modified), HYSEP (Fixed Interval, Sliding Interval, and Local Minimum), and PART methods—and the RORA recession-curve displacement method and associated RECESS program to estimate groundwater recharge from streamflow data. The Groundwater Toolbox is a customized interface built on the nonproprietary, open source MapWindow geographic information system software. The program provides graphing, mapping, and analysis capabilities in a Microsoft Windows computing environment. In addition to the four hydrograph-analysis methods, the Groundwater Toolbox allows for the retrieval of hydrologic time-series data (streamflow, groundwater levels, and precipitation) from the USGS National Water Information System, downloading of a suite of preprocessed geographic information system coverages and meteorological data from the National Oceanic and Atmospheric Administration National Climatic Data Center, and analysis of data with several preprocessing and postprocessing utilities. With its data retrieval and analysis tools, the Groundwater Toolbox provides methods to estimate many of the components of the water budget for a hydrologic basin, including precipitation; streamflow; base flow; runoff; groundwater recharge; and total, groundwater, and near-surface evapotranspiration.

  15. Integrating geophysics and hydrology for reducing the uncertainty of groundwater model predictions and improved prediction performance

    DEFF Research Database (Denmark)

    Christensen, Nikolaj Kruse; Christensen, Steen; Ferre, Ty

    constructed from geological and hydrological data. However, geophysical data are increasingly used to inform hydrogeologic models because they are collected at lower cost and much higher density than geological and hydrological data. Despite increased use of geophysics, it is still unclear whether......, ‘true’, hydrogeological and geophysical systems. The two types of ‘true’ systems can be used together with corresponding forward codes to generate hydrological and geophysical datasets, respectively. These synthetic datasets can be interpreted using any hydrogeophysical inversion scheme...

  16. Hydrologi

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    Hydro1ogi er den videnskab, der omhand1er jordens vand, dets forekomst, cirku1ation og forde1ing, dets kemiske og fysiske egenskaber samt indvirkning på omgivelserne, herunder dets relation ti1 alt liv på jorden. Således lyder en b1andt mange definitioner på begrebet hydrologi, og som man kan se...

  17. Hydrologi

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    Hydro1ogi er den videnskab, der omhand1er jordens vand, dets forekomst, cirku1ation og forde1ing, dets kemiske og fysiske egenskaber samt indvirkning på omgivelserne, herunder dets relation ti1 alt liv på jorden. Således lyder en b1andt mange definitioner på begrebet hydrologi, og som man kan se...

  18. Hydrogeology, groundwater seepage, nitrate distribution, and flux at the Raleigh hydrologic research station, Wake County, North Carolina, 2005-2007

    Science.gov (United States)

    McSwain, Kristen Bukowski; Bolich, Richard E.; Chapman, Melinda J.

    2013-01-01

    rom 2005 to 2007, the U.S. Geological Survey and the North Carolina Department of Environment and Natural Resources, Division of Water Quality, conducted a study to describe the geologic framework, measure groundwater quality, characterize the groundwater-flow system, and describe the groundwater/surface-water interaction at the 60-acre Raleigh hydrogeologic research station (RHRS) located at the Neuse River Waste Water Treatment Plant in eastern Wake County, North Carolina. Previous studies have shown that the local groundwater quality of the surficial and bedrock aquifers at the RHRS had been affected by high levels of nutrients. Geologic, hydrologic, and water-quality data were collected from 3 coreholes, 12 wells, and 4 piezometers at 3 well clusters, as well as from 2 surface-water sites, 2 multiport piezometers, and 80 discrete locations in the streambed of the Neuse River. Data collected were used to evaluate the three primary zones of the Piedmont aquifer (regolith, transition zone, and fractured bedrock) and characterize the interaction of groundwater and surface water as a mechanism of nutrient transport to the Neuse River. A conceptual hydrogeologic cross section across the RHRS was constructed using new and existing data. Two previously unmapped north striking, nearly vertical diabase dikes intrude the granite beneath the site. Groundwater within the diabase dike appeared to be hydraulically isolated from the surrounding granite bedrock and regolith. A correlation exists between foliation and fracture orientation, with most fractures striking parallel to foliation. Flowmeter logging in two of the bedrock wells indicated that not all of the water-bearing fractures labeled as water bearing were hydraulically active, even when stressed by pumping. Groundwater levels measured in wells at the RHRS displayed climatic and seasonal trends, with elevated groundwater levels occurring during the late spring and declining to a low in the late fall. Vertical

  19. Hydrologic response to multimodel climate output using a physically based model of groundwater/surface water interactions

    Science.gov (United States)

    Sulis, M.; Paniconi, C.; Marrocu, M.; Huard, D.; Chaumont, D.

    2012-12-01

    General circulation models (GCMs) are the primary instruments for obtaining projections of future global climate change. Outputs from GCMs, aided by dynamical and/or statistical downscaling techniques, have long been used to simulate changes in regional climate systems over wide spatiotemporal scales. Numerous studies have acknowledged the disagreements between the various GCMs and between the different downscaling methods designed to compensate for the mismatch between climate model output and the spatial scale at which hydrological models are applied. Very little is known, however, about the importance of these differences once they have been input or assimilated by a nonlinear hydrological model. This issue is investigated here at the catchment scale using a process-based model of integrated surface and subsurface hydrologic response driven by outputs from 12 members of a multimodel climate ensemble. The data set consists of daily values of precipitation and min/max temperatures obtained by combining four regional climate models and five GCMs. The regional scenarios were downscaled using a quantile scaling bias-correction technique. The hydrologic response was simulated for the 690 km2des Anglais catchment in southwestern Quebec, Canada. The results show that different hydrological components (river discharge, aquifer recharge, and soil moisture storage) respond differently to precipitation and temperature anomalies in the multimodel climate output, with greater variability for annual discharge compared to recharge and soil moisture storage. We also find that runoff generation and extreme event-driven peak hydrograph flows are highly sensitive to any uncertainty in climate data. Finally, the results show the significant impact of changing sequences of rainy days on groundwater recharge fluxes and the influence of longer dry spells in modifying soil moisture spatial variability.

  20. Hydrologic data and groundwater-flow simulations in the Brown Ditch Watershed, Indiana Dunes National Lakeshore, near Beverly Shores and Town of Pines, Indiana

    Science.gov (United States)

    Lampe, David C.

    2016-03-15

    The U.S. Geological Survey (USGS) collected data and simulated groundwater flow to increase understanding of the hydrology and the effects of drainage alterations on the water table in the vicinity of Great Marsh, near Beverly Shores and Town of Pines, Indiana. Prior land-management practices have modified drainage and caused changes in the distribution of open water, streams and ditches, and groundwater abundance and flow paths.

  1. Stochastic Modeling of Isolated Wetland Hydrologic Variability: Effects of Hydro-climatic Forcing, Wetland Bathymetry, and Groundwater-Surface Water Connectivity

    Science.gov (United States)

    Park, Jeryang; Botter, Gianluca; Jawitz, Jim; Rao, Suresh

    2014-05-01

    Hydrological regimes regulate many wetland eco-hydrological functions, such as aquatic habitat integrity and biogeochemical processes. We examined hydrologic temporal variability of geographically isolated wetlands (GIWs), and derived analytical expressions for probability density functions (pdfs) of water storage volume, water stage, and water surface area. We conceptualize a GIW as a non-linear reservoir, subject to stochastic "shot-noise" (Poisson rainfall inputs) modulated by recession through evapotranspiration and drainage during inter-event periods. The derived analytical pdfs are defined by three dimensionless parameters: scaled aridity index; mean daily stage increment (during rainfall events); and wetland shape coefficient. These key parameters define the similarity or diversity of hydrologic regimes of different GIWs at a location, or at different sites by capturing the essential features of the wetlandscape: stochastic hydro-climatic forcing, bathymetry, and connectivity to groundwater and/or upland. Numerical simulation of hydrologic variability of groundwater-dependent GIWs allowed us to further examine the role of groundwater-surface water connectivity, and how an adjustment to the effective rate of water loss can be made to match the derived analytical pdf solutions. We also compared the analytical pdfs with observed data from an isolated wetland in Florida. This model framework has utility for managers seeking to achieve target eco-hydrological regimes of GIWs.

  2. Road impacts on the Baca National Wildlife Refuge, Colorado, with emphasis on effects to surface- and shallow ground-water hydrology - A literature review

    Science.gov (United States)

    Andersen, Douglas C.

    2007-01-01

    A review of published research on unpaved road effects on surface-water and shallow ground-water hydrology was undertaken to assist the Baca National Wildlife Refuge, Colorado, in understanding factors potentially influencing refuge ecology. Few studies were found that addressed hydrological effects of roads on a comparable area of shallow slope in a semiarid region. No study dealt with road effects on surface- and ground-water supplies to ephemeral wetlands, which on the refuge are sustained by seasonal snowmelt in neighboring mountains. Road surfaces increase runoff, reduce infiltration, and serve as a sediment source. Roadbeds can interfere with normal surface- and ground-water flows and thereby influence the quantity, timing, and duration of water movement both across landscapes and through the soil. Hydrologic effects can be localized near the road as well as widespread and distant. The number, arrangement, and effectiveness of road-drainage structures (culverts and other devices) largely determine the level of hydrologic alteration produced by a road. Undesirable changes to natural hydrologic patterns can be minimized by considering potential impacts during road design, construction, and maintenance. Road removal as a means to restore desirable hydrologic conditions to landscapes adversely affected by roads has yet to be rigorously evaluated.

  3. Streamflow, groundwater hydrology, and water quality in the upper Coleto Creek watershed in southeast Texas, 2009–10

    Science.gov (United States)

    Braun, Christopher L.; Lambert, Rebecca B.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Goliad County Groundwater Conservation District, Victoria County Groundwater Conservation District, Pecan Valley Groundwater Conservation District, Guadalupe-Blanco River Authority, and San Antonio River Authority, did a study to examine the hydrology and stream-aquifer interactions in the upper Coleto Creek watershed. Findings of the study will enhance the scientific understanding of the study-area hydrology and be used to support water-management decisions to help ensure protection of the Evangeline aquifer and surface-water resources in the study area. This report describes the results of streamflow measurements, groundwater-level measurements, and water quality (from both surface-water and groundwater sites) collected from three sampling events (July–August 2009, January 2010, and June 2010) designed to characterize groundwater (from the Evangeline aquifer) and surface water, and the interaction between them, in the upper Coleto Creek watershed upstream from Coleto Creek Reservoir in southeast Texas. This report also provides a baseline level of water quality for the upper Coleto Creek watershed. Three surface-water gain-loss surveys—July 29–30, 2009, January 11–13, 2010, and June 21–22, 2010—were done under differing hydrologic conditions to determine the locations and amounts of streamflow recharging or discharging from the Evangeline aquifer. During periods when flow in the reaches of the upper Coleto Creek watershed was common (such as June 2010, when 12 of 25 reaches were flowing) or probable (such as January 2010, when 22 of 25 reaches were flowing), most of the reaches appeared to be gaining (86 percent in January 2010 and 92 percent in June 2010); however, during drought conditions (July 2009), streamflow was negligible in the entire upper Coleto Creek watershed; streamflow was observed in only two reaches during this period, one that receives inflow directly from Audilet Spring and

  4. Hydrologic controls on nitrogen cycling processes and functional gene abundance in sediments of a groundwater flow-through lake

    Science.gov (United States)

    Stoliker, Deborah L.; Repert, Deborah A.; Smith, Richard L.; Song, Bongkeun; LeBlanc, Denis R.; McCobb, Timothy D.; Conaway, Christopher; Hyun, Sung Pil; Koh, Dong-Chan; Moon, Hee Sun; Kent, Douglas B.

    2016-01-01

    The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient.

  5. The Role of River Morphodynamic Disturbance and Groundwater Hydrology As Driving Factors of Riparian Landscape Patterns in Mediterranean Rivers.

    Science.gov (United States)

    Rivaes, Rui; Pinheiro, António N; Egger, Gregory; Ferreira, Teresa

    2017-01-01

    Fluvial disturbances, especially floods and droughts, are the main drivers of the successional patterns of riparian vegetation. Those disturbances control the riparian landscape dynamics through the direct interaction between flow and vegetation. The main aim of this work is to investigate the specific paths by which fluvial disturbances, distributed by its components of groundwater hydrology (grndh) and morphodynamic disturbance (mrphd), drive riparian landscape patterns as characterized by the location (position in the river corridor) and shape (physical form of the patch) of vegetation patches in Mediterranean rivers. Specifically, this work assesses how the different components of fluvial disturbances affect these features in general and particularly in each succession phase of riparian vegetation. grndh and mrphd were defined by time and intensity weighted indexes calculated, respectively, from the mean annual water table elevations and the annual maximum instantaneous discharge shear stresses of the previous decade. The interactions between riparian landscape features and fluvial disturbances were assessed by confirmatory factor analysis using structural equation modeling. Two hypothetical models for patch location and shape were conceptualized and tested against empirical data collected from 220 patches at four different study sites. Both models were successfully fitted, meaning that they adequately depicted the relationships between the variables. Furthermore, the models achieved a good adjustment for the observed data, based on the evaluation of several approximate fit indexes. The patch location model explained approximately 80% of the patch location variability, demonstrating that the location of the riparian patches is primarily driven by grndh, while the mrphd had very little effect on this feature. In a multigroup analysis regarding the succession phases of riparian vegetation, the fitted model explained more than 68% of the variance of the data

  6. Hydrologic assessment of the shallow groundwater flow system beneath the Shinnecock Nation tribal lands, Suffolk County, New York

    Science.gov (United States)

    Noll, Michael L.; Rivera, Simonette L.; Busciolano, Ronald

    2016-12-02

    Defining the distribution and flow of shallow groundwater beneath the Shinnecock Nation tribal lands in Suffolk County, New York, is a crucial first step in identifying sources of potential contamination to the surficial aquifer and coastal ecosystems. The surficial or water table aquifer beneath the tribal lands is the primary source of potable water supply for at least 6 percent of the households on the tribal lands. Oyster fisheries and other marine ecosystems are critical to the livelihood of many residents living on the tribal lands, but are susceptible to contamination from groundwater entering the embayment from the surficial aquifer. Contamination of the surficial aquifer from flooding during intense coastal storms, nutrient loading from fertilizers, and septic effluent have been identified as potential sources of human and ecological health concerns on tribal lands.The U.S. Geological Survey (USGS) facilitated the installation of 17 water table wells on and adjacent to the tribal lands during March 2014. These wells were combined with other existing wells to create a 32-well water table monitoring network that was used to assess local hydrologic conditions. Survey-grade, global-navigation-satellite systems provided centimeter-level accuracy for positioning wellhead surveys. Water levels were measured by the USGS during May (spring) and November (fall) 2014 to evaluate seasonal effects on the water table. Water level measurements were made at high and low tide during May 2014 to identify potential effects on the water table caused by changes in tidal stage (tidal flux) in Shinnecock Bay. Water level contour maps indicate that the surficial aquifer is recharged by precipitation and upgradient groundwater flow that moves from the recharge zone located generally beneath Sunrise Highway, to the discharge zone beneath the tribal lands, and eventually discharges into the embayment, tidal creeks, and estuaries that bound the tribal lands to the east, south, and

  7. Supplement to a hydrologic framework for the Oak Ridge Reservation, Oak Ridge, Tennessee. Summary of groundwater modeling

    Energy Technology Data Exchange (ETDEWEB)

    Moore, G.K. [Tennessee Univ., Knoxville, TN (United States). Dept. of Civil Engineering; Toran, L.E. [Oak Ridge National Lab., TN (United States)

    1992-11-01

    The information in this report should prove useful for flow and contaminant-transport modeling of groundwater and for evaluating the alternatives for remedial action. New data on porosity and permeability have been analyzed and interpreted to produce a better understanding of the relationships between unfractured rock, low permeability intervals, and relatively permeable intervals. Specifically, the dimensions, orientations, depths, and spacings of pervious fractures have been measured or calculated; the depths and directions of subsurface flow paths (Solomon et al. 1992, pp. 3--21 to 3--23) have been corroborated with new data; fractures near the water table have been shown to have different characteristics than those at deeper levels; and the relationships between groundwater flows in fractures and flows in the continuum have been described. This is the information needed for the numerical modeling of groundwater flows. Other information in this report should result in a better understanding of spatial and temporal differences in water chemistry, including changes in contaminant concentrations. Temporal changes in groundwater chemistry have been shown to occur mostly near the water table. These changes consist of a periodic dilution of chemical constituents by recharge and a slow increase in constituent concentrations between recharge events. At discharge locations, spatial differences in groundwater chemistry are integrated by mixing. The monitoring of water chemistry in streams near contaminant sources may produce a better indication of contaminant releases and trends than do the records obtained from a few upgradient and downgradient wells.

  8. Calculating soil moisture by remote sensing and analyzing hydrologic cycle process in the Yellow River basin

    Institute of Scientific and Technical Information of China (English)

    YANG Shengtian; LIU Changming

    2004-01-01

    Based on the AVHRR pathfinder remote sensing data, soil moisture,precipitation and evaporation during the period of 1982-1998, soil moisture of all layers of soil-profile (0-1 m) in the Yellow River basin over the 17 years are calculated by the remote sensing model of calculating soil water. The Yellow River basin is divided into seven subcatchments as control sections at the location of six hydrologic stations (Lanzhou, Toudaoguai, Longmen, Sanmenxia, Huayuankou and Lijin). After calculating soil moisture and obtaining runoff data and precipitation data, the dynamical features of hydrological cycle in the Yellow River basin are analyzed for the period from 1982 to 1988using water balance method. The conclusions are as follows: It is feasible to calculate the soil water on the macro-scale, in the soil profile with temporal continuity by means of remote sensing and survey in land. Some values of the key water cycle factors in the Yellow River are obtained, which include the annual precipitation of 4000 km3, the evapotranspiration of 3000-3500 km3, and the soil moisture transformation of -500-500 km3. Consequently, we analyzed the process of the water cycle in the Yellow River over the 17 years, and the results show that the segment upstream of Lanzhou city is a relatively humid region, and the area of internal waters and the reaches of Shanshan is the most desiccated region. Therefore, the runoff in the depth process is intensive and the runoff-generating process is weak in more arid regions.

  9. Calculating soil moisture by remote sensing and analyzing hydrologic cycle process in the Yellow River basin

    Institute of Scientific and Technical Information of China (English)

    YANG; Shengtian; LIU; Changming

    2004-01-01

    Based on the AVHRR pathfinder remote sensing data, soil moisture,precipitation and evaporation during the period of 1982-1998, soil moisture of all layers of soil-profile (0-1 m) in the Yellow River basin over the 17 years are calculated by the remote sensing model of calculating soil water. The Yellow River basin is divided into seven subcatchments as control sections at the location of six hydrologic stations (Lanzhou, Toudaoguai, Longmen, Sanmenxia, Huayuankou and Lijin). After calculating soil moisture and obtaining runoff data and precipitation data, the dynamical features of hydrological cycle in the Yellow River basin are analyzed for the period from 1982 to 1988using water balance method. The conclusions are as follows: It is feasible to calculate the soil water on the macro-scale, in the soil profile with temporal continuity by means of remote sensing and survey in land. Some values of the key water cycle factors in the Yellow River are obtained, which include the annual precipitation of 4000 km3, the evapotranspiration of 3000-3500 km3, and the soil moisture transformation of -500-500 km3. Consequently, we analyzed the process of the water cycle in the Yellow River over the 17 years, and the results show that the segment upstream of Lanzhou city is a relatively humid region, and the area of internal waters and the reaches of Shanshan is the most desiccated region. Therefore, the runoff in the depth process is intensive and the runoff-generating process is weak in more arid regions.

  10. Interpretation of hydrologic trends from a water balance perspective: The role of groundwater storage in the Budyko hypothesis

    Science.gov (United States)

    Istanbulluoglu, Erkan; Wang, Tiejun; Wright, Olivia M.; Lenters, John D.

    2012-03-01

    We investigate the observed positive trends in annual runoff in several basins in central Nebraska using the Budyko hypothesis as a diagnostic tool. In basins where runoff is dominated by base flow we found that the estimated annual evapotranspiration (ETa) to precipitation (P) ratio (ETa/P) from data is negatively related to the aridity index (ETp/P, where ETp is potential annual evapotranspiration). This observation is inconsistent with the Budyko hypothesis. We hypothesized that the observed negative trend results from significant interannual changes in basin water storage. This hypothesis is tested using data from groundwater monitoring wells in the Sand Hills region of Nebraska. Plots of the yearly changes in groundwater storage versus the annual aridity index revealed the mean annual aridity index as a critical climatological variable that controls basin storage gain-loss dynamics. For the same absolute deviation from the mean climate, we found that a wetter year leads to a larger gain in groundwater storage than the net loss in a drier year. We argue that this storage gain-loss behavior builds a climate memory in the hydrologic system, causing persistence and statistically significant trends in annual runoff. A parsimonious model was developed that couples the Budyko hypothesis with a linear reservoir equation for base flow and was used to examine the possible causes of observed positive trends of annual runoff. We found that subtle, statistically insignificant, increases in annual P have led to positive and statistically insignificant trends in annual ETa and P - ETa. Annual runoff, on the other hand, was predicted to have high persistence and statistical significance, consistent with observations. Further model sensitivity analyses showed that increasing the size of the groundwater reservoir is associated with increased long-term (multidecadal) persistence in annual runoff and translates high-frequency, high-amplitude variation in climate to low

  11. A tidal creek water budget: Estimation of groundwater discharge and overland flow using hydrologic modeling in the Southern Everglades

    Science.gov (United States)

    Michot, Béatrice; Meselhe, Ehab A.; Rivera-Monroy, Victor H.; Coronado-Molina, Carlos; Twilley, Robert R.

    2011-07-01

    Taylor Slough is one of the natural freshwater contributors to Florida Bay through a network of microtidal creeks crossing the Everglades Mangrove Ecotone Region (EMER). The EMER ecological function is critical since it mediates freshwater and nutrient inputs and controls the water quality in Eastern Florida Bay. Furthermore, this region is vulnerable to changing hydrodynamics and nutrient loadings as a result of upstream freshwater management practices proposed by the Comprehensive Everglades Restoration Program (CERP), currently the largest wetland restoration project in the USA. Despite the hydrological importance of Taylor Slough in the water budget of Florida Bay, there are no fine scale (˜1 km 2) hydrodynamic models of this system that can be utilized as a tool to evaluate potential changes in water flow, salinity, and water quality. Taylor River is one of the major creeks draining Taylor Slough freshwater into Florida Bay. We performed a water budget analysis for the Taylor River area, based on long-term hydrologic data (1999-2007) and supplemented by hydrodynamic modeling using a MIKE FLOOD (DHI, http://dhigroup.com/) model to evaluate groundwater and overland water discharges. The seasonal hydrologic characteristics are very distinctive (average Taylor River wet vs. dry season outflow was 6 to 1 during 1999-2006) with a pronounced interannual variability of flow. The water budget shows a net dominance of through flow in the tidal mixing zone, while local precipitation and evapotranspiration play only a secondary role, at least in the wet season. During the dry season, the tidal flood reaches the upstream boundary of the study area during approximately 80 days per year on average. The groundwater field measurements indicate a mostly upwards-oriented leakage, which possibly equals the evapotranspiration term. The model results suggest a high importance of groundwater contribution to the water salinity in the EMER. The model performance is satisfactory

  12. Phase II Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2004-12-01

    This report documents pertinent hydrologic data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU): CAU 98. The purpose of this data compilation and related analyses is to provide the primary reference to support the development of the Phase II FF CAU groundwater flow model.

  13. Hydrological budget of Lake Chad: assessment of lake-groundwater interaction by coupling Bayesian approach and chemical budget

    Science.gov (United States)

    Bouchez, Camille; Goncalves, Julio; Deschamps, Pierre; Seidel, Jean-Luc; Doumnang, Jean-Claude; Sylvestre, Florence

    2014-05-01

    Estimation of lake-groundwater interactions is a crucial step to constrain water balance of lacustrine and aquifer systems. Located in the Sahel, the Lake Chad is at the center of an endorheic basin of 2,5.106 km2. One of the most remarkable features of this terminal lake is that, despite the semi-arid context and high evaporation rates of the area, its waters are fresh. It is proposed in the literature that the solutes are evacuated in the underlying quaternary aquifer bearing witness to the importance of surface water and groundwater exchanges for the chemical regulation of the lake. The water balance of this system is still not fully understood. The respective roles of evaporation versus infiltration into the quaternary aquifer are particularly under constrained. To assess lake-groundwater flows, we used the previous conceptual hydrological model of the lake Chad proposed by Bader et al. (Hydrological Sciences Journal, 2011). This model involves six parameters including infiltration rate. A probabilistic inversion of parameters, based on an exploration of the parameters space through a Metropolis algorithm (a Monte Carlo Markov Chain method), allows the construction of an a posteriori Probability Density Function of each parameter yielding to the best fits between observed lake levels and simulated. Then, a chemical budget of a conservative element, such as chloride, is introduced in the water balance model using the optimal parameters resulting from the Bayesian inverse approach. The model simulates lake level and chloride concentration variations of lake Chad from 1956 up to 2008. Simulated lake levels are in overall agreement with the observations, with a Nash-Sutcliffe efficiency coefficient above 0.94 for all sets of parameters retained. The infiltration value, obtained by such probabilistic inversion approach, accounts for 120±20 mm/yr, representing 5% of the total outputs of the lake. However, simulated chloride concentrations are overestimated in

  14. GRACE Assimilation into Hydrological Model Improves Representation of Drought-induced Groundwater Trend over Murray-Darling Basin, Australia

    Science.gov (United States)

    Schumacher, Maike; Forootan, Ehsan; Van Dijk, Albert I. J. M.; Müller Schmied, Hannes; Crosbie, Russell S.; Kusche, Jürgen; Döll, Petra

    2016-04-01

    The Murray-Darling Basin, one of the largest and driest river basins over the world, experienced a long-term drought (over 2003-2009), the so-called Millennium Drought. As a result, the terrestrial water storage in the region decreased, which was attributed to dry meteorological conditions and extensive irrigation for agriculture. We used simulations of the WaterGAP Global Hydrology Model (WGHM) driven by monthly climate fields from the Climate Research Unit's Time Series (CRU TS 3.2) and precipitation data from the Global Precipitation Climatology Center (GPCC) to estimate linear trends in soil, surface and groundwater compartments, as well as total water storage changes (TWSC). However, the model was not able to capture the effect of the Millennium Drought on the storage compartments likely due to missing processes in dry regions or climate forcing uncertainties. Particularly, TWSC simulated by standard WGHM did not reproduce the negative trend during 2003-2009. Therefore, in this study, we investigate whether assimilating TWSC from the Gravity Recovery And Climate Experiment (GRACE) satellite mission into WGHM enables a more realistic representation of the Millennium Drought on the basin hydrology. Firstly, the quality of monthly GRACE TWSC and its post-processing over the Murray-Darling Basin was assessed. An improved calibration and data assimilation (C/DA) approach (Schumacher et al., JoG-2016) was then applied to integrate GRACE TWSC along with its full error covariance information into WGHM during 2003-2009. Independent observations of soil moisture, groundwater and surface water extent were used to validate the model outputs after C/DA. Our investigations indicate that the integration of GRACE data indeed introduces a negative trend to TWSC simulations of WGHM, which occurred predominantly in the south (Murray Basin). The trend was found to be associated with the changes in groundwater storage, which was confirmed through validation with in

  15. Regional scale hydrological and biogeochemical processes controlling high biodiversity of a groundwater fed alkaline fen

    Science.gov (United States)

    van der Zee, Sjoerd E. A. T. M.; (D. G.) Cirkel, Gijsbert; (J. P. M) witte, Flip

    2014-05-01

    The high floral biodiversity of groundwater fed fens and mesotrophic grasslands depends on the different chemical signatures of the shallow rainwater fed topsoil water and the slightly deeper geochemically affected groundwater. The relatively abrupt gradients between these two layers of groundwater enable the close proximity of plants that require quite different site factors and have different rooting depths. However, sulphur inflow into such botanically interesting areas is generally perceived as a major threat to biodiversity. Although in Europe atmospheric deposition of sulphur has decreased considerably over the last decades, groundwater pollution by sulphate may still continue due to pyrite oxidation in soil as a result of excessive fertilisation. Inflowing groundwater rich in sulphate can change biogeochemical cycling in nutrient-poor wetland ecosystems because of 'so called' internal eutrophication as well as the accumulation of dissolved sulphide, which is phytotoxic. Complementary to conventions, we propose that upwelling sulphate rich groundwater may, in fact, promote the conservation of rare and threatened alkaline fens: excessive fertilisation and pyrite oxidation also produces acidity, which invokes calcite dissolution, and increased alkalinity and hardness of the inflowing groundwater. For a very species-rich wetland nature reserve, we show that sulphate is reduced and effectively precipitated as iron sulphides, when this calcareous and sulphate rich groundwater flows upward through the organic soil of the investigated nature reserve. Also, we show that sulphate reduction occurs simultaneously with an increase in alkalinity production, which in our case results in active calcite precipitation in the soil. In spite of the occurring sulphate reduction, we found no evidence for internal eutrophication. Extremely low phosphorous concentration in the pore water could be attributed to a high C:P ratio of soil organic matter and co-precipitation with

  16. Calculation of Permeability Change Due to Coupled Thermal-Hydrological-Mechanical Effects

    Energy Technology Data Exchange (ETDEWEB)

    S. Blair

    2000-06-28

    The purpose of this calculation is to provide a bounding estimate of how thermal-hydrological-mechanical (THM) behavior of rock in the region surrounding an emplacement drift in a Monitored Geologic Repository subsurface facility may affect the permeability of fractures in the rock mass forming the region. The bounding estimate will provide essential input to performance assessment analysis of the potential repository system. This calculation also supports the Near Field Environment Process Model Report (NFE PMR) and will contribute to Site Recommendation. The geologic unit being considered as a potential repository horizon at Yucca Mountain, Nevada lies within a fractured, densely welded ash-flow tuff located in the Topopah Spring Tuff member of the Paintbrush Group. Fractures form the primary conduits for fluid flow in the rock mass. Considerable analysis has been performed to characterize the thermal-hydrologic (TH) behavior of this rock unit (e.g., CRWMS M&O 2000a, pp. 83-87), and recently the dual permeability model (DKM) has proved to be an effective tool for predicting TH behavior (CRWMS M&O 2000a). The DKM uses fracture permeability as a primary input parameter, and it is well known that fracture permeability is strongly dependent on fracture deformation (Brown. 1995). Consequently, one major unknown is how deformation during heating and cooling periods may change fracture permeability. Opening of fractures increases their permeability, whereas closing reduces permeability. More importantly, shear displacement on fractures increases their permeability, and fractures undergoing shear are likely to conduct fluids. This calculation provides a bounding estimate of how heating and cooling in the rock surrounding an emplacement drift and the resulting mechanical deformation may affect the fracture permeability of the rock.

  17. Concept for calculating dose rates from activated groundwater at accelerator sites

    CERN Document Server

    Prolingheuer, N; Vanderborght, J; Schlögl, B; Nabbi, R; Moormann, R

    Licensing of particle accelerators requires the proof that the groundwater outside of the site will not be significantly contaminated by activation products formed below accelerator and target. In order to reduce the effort for this proof, a site independent simplified but conservative method is under development. The conventional approach for calculation of activation of soil and groundwater is shortly described on example of a site close to Forschungszentrum Juelich, Germany. Additionally an updated overview of a data library for partition coefficients for relevant nuclides transported in the aquifer at the site is presented. The approximate model for transport of nuclides with ground water including exemplary results on nuclide concentrations outside of the site boundary and of resulting effective doses is described. Further applications and developments are finally outlined.

  18. Is the groundwater reservoir linear? Learning from data in hydrological modelling

    NARCIS (Netherlands)

    Fenicia, F.; Savenije, H.H.G.; Matgen, P.; Pfister, L.

    2006-01-01

    Although catchment behaviour during recession periods is better identifiable than in other periods, the representation of hydrograph recession is often weak in hydrological simulations. Among the various aspects that influence model performance during low flows, in this paper we concentrate on those

  19. Multi-tracer characterisation of saline groundwater bodies in coastal areas and implications for paleo-hydrology

    Science.gov (United States)

    Post, V.; Cook, P. G.; Banks, E.

    2014-12-01

    In coastal aquifers a wedge of intruded seawater extends inland from the coastline and is separated from the freshwater part of the aquifer by a sloping transition zone. Few studies have provided a detailed characterisation of the chemical composition and the age of groundwater within the wedge. This paper presents the results of a field study from South Australia in which a series of multi-level observation wells were installed in a semi-confined aquifer along a transect that extends 1 km inland from the coast. An unexpected finding was that, apart from intruded seawater, a second saltwater type was present in the form of hypersaline groundwater residing in the bottom part of the aquifer. Using the conservative tracers chloride and the stable isotopes of water, a three-end member mixing model was developed. Age tracers, in particular 14C, revealed that the hypersaline end member is older than the intruded seawater by at least tens of thousands of years. It is postulated that the hypersaline water formed as a result of strong evaporation during a time with dryer climatic conditions than the present, and that the seawater intruded over the hypersaline body when sea level rose during the Holocene. The results of this study testify that the hydrological evolution of coastal areas often lead to much more complex salinity distributions than those based on the classical conception of a coastal aquifer in a steady equilibrium with the present sea level and coastline position.

  20. Subsurface hydrological information in rock-slide phenomena from groundwater spring monitoring.

    Science.gov (United States)

    Rochetti, Francesco; Corsini, Alessandro; Deiana, Manuela; Loche, Roberto; Mulas, Marco; Russo, Michele

    2016-04-01

    Frequently rock-slide phenomena are characterized by rough topography and high declivity of the slope. Due to these characteristics, the drilling of boreholes is not so common and in some circumstance expensive. Consequently, the exact information about depth of the sliding surface and about groundwater processes, groundwater levels or pore water pressure distribution are missing. Alternately, some information about the groundwater can be obtained from the physical-chemical monitoring of springs. The research highlights preliminary results, about the groundwater processes, obtained from the continuous flow-rate monitoring of a spring located in the active Piagneto rock-slide (northern Apennine). The spring has been monitored from Sept-2014 until Oct-2015 using a piezometer transducer (sampling frequency 1 h) and a triangular weir. The landslide was monitored in continuous since the 2009 using an automatic total station and some reflectors. The monitoring of the rock-slide displacements showed creep phenomena in the summer and acceleration phases from autumn to late spring, during periods characterized by high rainfall intensity; rainfall with intensity higher than 10 mm/d and duration less than 15 days can produce the acceleration of the sliding mass. Before 2014 any information about groundwater was collected. The successively spring monitoring shows the follow results: the spring flow rate is strongly variable in the time; only some rainfall events, with particular intensity and duration (generally total amount higher than 100 mm), are responsible of strong changes in the flow rate, and the flow rate starts to increase only after some hours; the snow melting events, also when there is a fast reduction of the snow thickness, don't produce high variation in the flow rate discharge; there is a strong correlation between the flow rate peaks and the rock-slide acceleration; an infiltration coefficient higher than 70% is estimated through the comparison between the

  1. Effects of Land Use and Climate Change on Groundwater and Ecosystems at the Middle Reaches of the Tarim River Using the MIKE SHE Integrated Hydrological Model

    Directory of Open Access Journals (Sweden)

    Patrick Keilholz

    2015-06-01

    Full Text Available The Tarim basin is a unique ecosystem. The water from the Tarim River supports both wildlife and humans. To analyze the effects of both land use and climate changes on groundwater, a research site was established at Yingibazar, which is a river oasis along the middle section of the Tarim River. A hydrological survey was performed to assess the general water cycle in this area with special emphasis on groundwater replenishment as well as the impact of agricultural irrigation on the riparian natural vegetation with respect to salt transport and depth of groundwater. Although high-resolution input data is scarce for this region, simulation of water cycle processes was performed using the hydrological model MIKE SHE (DHI. The results of the calibrated model show that natural flooding is the major contributor to groundwater recharge. There is also a close interaction between irrigated agricultural areas and the adjacent natural vegetation for groundwater levels and salinity up to 300 m away from the fields. Furthermore, the source of water used for irrigation (i.e., river and/or groundwater has a high impact on groundwater levels and salt transportation efficiency. The ongoing expansion of agricultural areas is rapidly destroying natural vegetation, floodplains, and their natural flow paths. Our results show that more unstable annual Tarim floods will occur in the future under the background of climate change. Therefore, integrated hydrological simulations were also performed for 2050 and 2100 using MIKE SHE. The results confirm that after the glaciers melt in the Tian Shan Mountains, serious aquifer depletion and environmental degradation will occur in the area, causing great difficulties for the local people.

  2. Experiential Education in Groundwater Hydrology: Bridging the Technical-Policy-Populace Gap Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, Andrew F.B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Maxwell, Reed M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Richardson, Jeffrey H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); El Sha' r, Wa' il Abu [Jordan Univ. of Science and Technology, Ar Ramtha (Jordan); Rihani, Jehan F.F. [Jordan Univ. of Science and Technology, Ar Ramtha (Jordan); El-Naser, Hazim [Jordan Ministry of Water and Irrigation, Amman (Jordan); Al-Hadidi, Khair [Jordan Ministry of Water and Irrigation, Amman (Jordan); Al-Awamleh, Mohammed [Jordan Ministry of Water and Irrigation, Amman (Jordan); Subah, Ali [Jordan Ministry of Water and Irrigation, Amman (Jordan); Al-Foqaha, Manal [Royal Society for the Conservation of Nature, Amman (Jordan); Abu-Eid, Omar [Royal Society for the Conservation of Nature, Amman (Jordan); Hayyaneh, Raed Abu [Royal Society for the Conservation of Nature, Amman (Jordan)

    2003-07-17

    It is well recognized that half the countries in the world will face significant fresh water shortages in the next 20 years, due largely to growing populations and increased agricultural and industrial demands (Gleick, 1997). These shortages will significantly limit economic growth, decrease the quality of life and human health for billions of people, and could potentially lead to violence and conflict over securing scarce supplies of water. In the Middle East, groundwater represents an important part of water supply in most locations, yet it is the least understood and one of the most fragile components of the entire water resource system. The occurrence of water underground contributes to the illusion of an infinite resource that is immune to anthropogenic activities. Nevertheless, as has been learned in the West, it can become highly impaired through the actions of man--through the disposal of human, animal, or industrial wastes, from excessive irrigation and fertilization practices in agriculture, or from simple overproduction and overexploitation--and can remain so for decades or even centuries. Finding solutions to groundwater resource and quality problems can be complex, time consuming, and costly. As is the case in many places in the world, but especially in the Middle East, there is a large gap between professionals, policy makers, and the general population with respect to their understanding of groundwater, its abundance, distribution, movement, and pollution. In a region where water supply and quality problems can be extremely acute, it becomes that much more necessary to protect and preserve the water that does exist. To sustain groundwater as a long-term reliable resource, increased understanding of factors affecting both the quality and quantity of groundwater must be better understood by all aspects of society. This report describes the outcome of a collaborative project between Lawrence Livermore National Laboratory (LLNL) in the US and the Jordan

  3. Assessing irrigated agriculture's surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling.

    Science.gov (United States)

    Peña-Arancibia, Jorge L; Mainuddin, Mohammed; Kirby, John M; Chiew, Francis H S; McVicar, Tim R; Vaze, Jai

    2016-01-15

    Globally, irrigation accounts for more than two thirds of freshwater demand. Recent regional and global assessments indicate that groundwater extraction (GWE) for irrigation has increased more rapidly than surface water extraction (SWE), potentially resulting in groundwater depletion. Irrigated agriculture in semi-arid and arid regions is usually from a combination of stored surface water and groundwater. This paper assesses the usefulness of remotely-sensed (RS) derived information on both irrigation dynamics and rates of actual evapotranspiration which are both input to a river-reach water balance model in order to quantify irrigation water use and water provenance (either surface water or groundwater). The assessment is implemented for the water-years 2004/05-2010/11 in five reaches of the Murray-Darling Basin (Australia); a heavily regulated basin with large irrigated areas and periodic droughts and floods. Irrigated area and water use are identified each water-year (from July to June) through a Random Forest model which uses RS vegetation phenology and actual evapotranspiration as predicting variables. Both irrigated areas and actual evapotranspiration from irrigated areas were compared against published estimates of irrigated areas and total water extraction (SWE+GWE).The river-reach model determines the irrigated area that can be serviced with stored surface water (SWE), and the remainder area (as determined by the Random Forest Model) is assumed to be supplemented by groundwater (GWE). Model results were evaluated against observed SWE and GWE. The modelled SWE generally captures the observed interannual patterns and to some extent the magnitudes, with Pearson's correlation coefficients >0.8 and normalised root-mean-square-errormodelling. The RS irrigated areas and actual evapotranspiration can be used to: (i) understand irrigation dynamics, (ii) constrain irrigation models in data scarce regions, as well as (iii) pinpointing areas that require better ground

  4. A Combined Hydrological, Geochemical and Geophysical Reconnaissance of Groundwater Contamination In Oilfield Environment (republic of Tatarstan, Russia)

    Science.gov (United States)

    Levitski, A.; Titov, K.; Buès, M.; Ilyin, Yu.; Konosavski, P.; Kharkhordin, I.; Uchaev, V.; Sapozhnikov, B.; Kharkovski, K.

    Numerous brine leakages from production and injection wells and pipelines were ob- served at the site of study situated in Romashkinskoye oilfield. The groundwater flow, which follows the relief, is manifested by five springs. The salinity of these springs significantly increased during 20 years of oil exploitation at the site. The subsurface consists of sandstone, clayey sandstone, siltstone and limestone. Sampling of spring water and soils, as well as geophysical investigations, were carried out to develop the groundwater and contamination flow model of the site. In addition to the traditional bulk soil sampling, the mobile forms of chemical elements were investigated using the diffusion sampling technique (Levitski et al., 1995). The dipole-dipole resistivity and Spontaneous Polarization (SP) maps of the site were obtained. One prospecting bore- hole of 40 m was sunk. Vertical Electrical Sounding (VES) and Time Domain Spec- tral Induced Polarization Sounding (SIP), conducted at several points, were inverted to obtain rock and soil resistivity. The SIP measurements were performed to help geo- logical interpretation of the obtained resistivity cross-sections. The groundwater flow model was developed on the basis of borehole data, debits of the observed springs, and surface geophysical data. The model was calibrated using numerical modelling of SP. The 2D program GWFGEM based on the SillSs approach (1983) was applied. First, the preliminary groundwater flow model was obtained. Based on the coupling flow theory, sources of SP were calculated from water heads. Then, SP was calculated on the basis of SP sources and subsurface resistivity derived from the VES inversion. The above procedure was repeated several times to minimise the discrepancy between the observed and calculated SP. The flow balance for the whole site was obtained. The best indicators of the oil-related contamination at the site were found to be: (1) in groundwater U K, Na and Sr; (2) in bulk soil U Ca

  5. A modified calculation model for groundwater flowing to horizontal seepage wells

    Indian Academy of Sciences (India)

    Wei Wang; Peng Chen; Qingqing Zheng; Xinyu Zheng; Kunming Lu

    2013-04-01

    The simulation models for groundwater flowing to horizontal seepage wells proposed by Wang and Zhang (2007) are based on the theory of coupled seepage-pipe flow model which treats the well pipe as a highly permeable medium. However, the limitations of the existing model were found during applications. Specifically, a high-resolution grid is required to depict the complex structure of horizontal seepage wells; the permeability of the screen or wall material of radiating bores is usually neglected; and the irregularly distributed radiating bores cannot be accurately simulated. A modified calculation model of groundwater flowing to a horizontal seepage well is introduced in this paper. The exchange flow between well pipe and aquifer couples the turbulent flow inside the horizontal seepage well with laminar flow in the aquifer. The modified calculation model can reliably calculate the pumpage of a real horizontal seepage well. The characteristics of radiating bores, including the diameter, the permeability of screen material and irregular distribution of radiating bores, can be accurately depicted using the modified model that simulates the scenario in which several horizontal seepage wells work together.

  6. Hydrologic conditions, groundwater quality, and analysis of sink hole formation in the Albany area of Dougherty County, Georgia, 2009

    Science.gov (United States)

    Gordon, Debbie W.; Painter, Jaime A.; McCranie, John M.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Albany Water, Gas, and Light Commission has conducted water resources investigations and monitored groundwater conditions and availability in the Albany, Georgia, area since 1977. This report presents an overview of hydrologic conditions, water quality, and groundwater studies in the Albany area of Dougherty County, Georgia, during 2009. Historical data also are presented for comparison with 2009 data. During 2009, groundwater-level data were collected in 29 wells in the Albany area to monitor water-level trends in the surficial, Upper Floridan, Claiborne, Clayton, and Providence aquifers. Groundwater-level data from 21 of the 29 wells indicated an increasing trend during 2008–09. Five wells show no trend due to lack of data and three wells have decreasing trends. Period-of-record water levels (period of record ranged between 1957–2009 and 2003–2009) declined slightly in 10 wells and increased slightly in 4 wells tapping the Upper Floridan aquifer; declined in 1 well and increased in 2 wells tapping the Claiborne aquifer; declined in 4 wells and increased in 2 wells tapping the Clayton aquifer; and increased in 1 well tapping the Providence aquifer. Analyses of groundwater samples collected during 2009 from 12 wells in the Upper Floridan aquifer in the vicinity of a well field located southwest of Albany indicate that overall concentrations of nitrate plus nitrite as nitrogen increased slightly from 2008 in 8 wells. A maximum concentration of 12.9 milligrams per liter was found in a groundwater sample from a well located upgradient from the well field. The distinct difference in chemical constituents of water samples collected from the Flint River and samples collected from wells located in the well-field area southwest of Albany indicates that little water exchange occurs between the Upper Floridan aquifer and Flint River where the river flows adjacent to, but downgradient of, the well field. Water

  7. Calculation of an interaction index between extractive activity and groundwater resources

    Science.gov (United States)

    Collier, Louise; Hallet, Vincent; Barthélemy, Johan; Moriamé, Marie; Cartletti, Timotéo

    2015-04-01

    There are two underground resources intensively exploited in Wallonia (the southern Region of Belgium): groundwater and rock. Groundwater production rate is about 380*106 cubic meter per year from which 80 % is used for drinking water (SPW-DGO3, 2014). Annual rock extraction is about 73*106 tons per year and 80.6% of the materials are carbonate rocks (Collier and Hallet, 2013) corresponding to the most important aquifer formations. Given the high population density and environmental pressures, lateral quarry extensions are limited and the only solution for the operators is to excavate deeper. In this context, the aquifer level of the exploited formation is often reached and dewatering systems have to be installed to depress the water table below the quarry pit bottom. This affects the regional hydrogeology and, in some cases, the productivity of the water catchments is threatened. Using simple geological and hydrogeological parameters, an interaction index was developed to assess the interaction between extractive activity and groundwater resources and, in consequence, to define how far the feasibility study should go into detailed hydrogeological investigations. The interaction index is based on the equation used in the assessment of natural hazards (Dauphiné, 2003), which gives: Interaction = F (Quarry, Aquifer). The interaction is the risk, which is equal to a function where the hazard is defined from parameters corresponding to the quarry and vulnerability from parameters related to groundwater resources. Six parameters have been determined. The parameters chosen to represent the hazard of a quarry are: the geological, the hydrogeological and the piezometric contexts. The parameters chosen to represent the vulnerability of the water resources are: the relative position between the quarry and the water catchment (well, spring, gallery, etc.) sites, the productivity of the catchment and the quality of the groundwater. Each parameter was classified into four

  8. Simulation of groundwater flow and hydrologic effects of groundwater withdrawals from the Kirkwood-Cohansey aquifer system in the Pinelands of southern New Jersey

    Science.gov (United States)

    Charles, Emmanuel G.; Nicholson, Robert S.

    2012-01-01

    flow. Pumping stresses at aquifer-test sites resulted in measurable drawdown in each observation well installed for the tests. The magnitude of drawdown in shallow wetland observation wells at the end of pumping ranged from 5.5 to 16.7 centimeters (cm). The stresses induced by the respective tests reduced the flow of the smallest stream (McDonalds Branch) by 75 percent and slightly reduced flow in a side channel of Morses Mill Stream, but did not measurably affect the flow of Morses Mill Stream or Albertson Brook. Results of aquifer-test simulations were used to refine the estimates of hydraulic properties used in the models and to confirm the ability of the model to replicate observed hydrologic responses to pumping. Steady-state sensitivity simulation results for a variety of single well locations and depths were used to define overall “best-case” (smallest effect on wetland water levels and base flow) and “worst-case” (greatest effect on wetland water levels and base flow) groundwater withdrawal configurations. “Best-case” configurations are those for which the extent of the wetland areas within a 1-kilometer (km) radius of the withdrawal well is minimized, the well is located at least 100 m and as far from wetland boundaries as possible, and the withdrawal is from a deep well (50–90 m deep). “Worst-case” configurations are those for which the extent of wetlands within a 1-km radius of the withdrawal well is maximized, the well is located 100 m or less from a wetland boundary, and the withdrawal is from a relatively shallow well (30–67 m deep). “Best-” and “worst-case” simulations were applied by locating hypothetical wells across the study areas and assigning groundwater withdrawals so that the sum of the withdrawals for the basin is equal to 5, 10, 15, and 30 percent of overall recharge. The results were compared to the results of simulations of no groundwater withdrawals. Results for withdrawals of 5 percent of recharge show that the

  9. Assessment model validity document. NAMMU: A program for calculating groundwater flow and transport through porous media

    Energy Technology Data Exchange (ETDEWEB)

    Cliffe, K.A.; Morris, S.T.; Porter, J.D. [AEA Technology, Harwell (United Kingdom)

    1998-05-01

    NAMMU is a computer program for modelling groundwater flow and transport through porous media. This document provides an overview of the use of the program for geosphere modelling in performance assessment calculations and gives a detailed description of the program itself. The aim of the document is to give an indication of the grounds for having confidence in NAMMU as a performance assessment tool. In order to achieve this the following topics are discussed. The basic premises of the assessment approach and the purpose of and nature of the calculations that can be undertaken using NAMMU are outlined. The concepts of the validation of models and the considerations that can lead to increased confidence in models are described. The physical processes that can be modelled using NAMMU and the mathematical models and numerical techniques that are used to represent them are discussed in some detail. Finally, the grounds that would lead one to have confidence that NAMMU is fit for purpose are summarised.

  10. Hydrology and Ground-Water Quality in the Mine Workings within the Picher Mining District, Northeastern Oklahoma, 2002-03

    Science.gov (United States)

    DeHay, Kelli L.; Andrews, William J.; Sughru, Michael P.

    2004-01-01

    The Picher mining district of northeastern Ottawa County, Oklahoma, was a major site of mining for lead and zinc ores in the first half of the 20th century. The primary source of lead and zinc were sulfide minerals disseminated in the cherty limestones and dolomites of the Boone Formation of Mississippian age, which comprises the Boone aquifer. Ground water in the aquifer and seeping to surface water in the district has been contaminated by sulfate, iron, lead, zinc, and several other metals. The U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, investigated hydrology and ground-water quality in the mine workings in the mining district, as part of the process to aid water managers and planners in designing remediation measures that may restore the environmental quality of the district to pre-mining conditions. Most ground-water levels underlying the mining district had similar altitudes, indicating a large degree of hydraulic connection in the mine workings and overlying aquifer materials. Recharge-age dates derived from concentrations of chlorofluorocarbons and other dissolved gases indicated that water in the Boone aquifer may flow slowly from the northeast and southeast portions of the mining district. However, recharge-age dates may have been affected by the types of sites sampled, with more recent recharge-age dates being associated with mine-shafts, which are more prone to atmospheric interactions and surface runoff than the sampled airshafts. Water levels in streams upstream from the confluence of Tar and Lytle Creeks were several feet higher than those in adjacent portions of the Boone aquifer, perhaps due to low-permeability streambed sediments and indicating the streams may be losing water to the aquifer in this area. From just upstream to downstream from the confluence of Tar and Lytle Creeks, surface-water elevations in these streams were less than those in the surrounding Boone aquifer, indicating that

  11. Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model

    KAUST Repository

    Ajami, Hoori

    2014-03-01

    Integrated land surface-groundwater models are valuable tools in simulating the terrestrial hydrologic cycle as a continuous system and exploring the extent of land surface-subsurface interactions from catchment to regional scales. However, the fidelity of model simulations is impacted not only by the vegetation and subsurface parameterizations, but also by the antecedent condition of model state variables, such as the initial soil moisture, depth to groundwater, and ground temperature. In land surface modeling, a given model is often run repeatedly over a single year of forcing data until it reaches an equilibrium state: the point at which there is minimal artificial drift in the model state or prognostic variables (most often the soil moisture). For more complex coupled and integrated systems, where there is an increased computational cost of simulation and the number of variables sensitive to initialization is greater than in traditional uncoupled land surface modeling schemes, the challenge is to minimize the impact of initialization while using the smallest spin-up time possible. In this study, multicriteria analysis was performed to assess the spin-up behavior of the ParFlow.CLM integrated groundwater-surface water-land surface model over a 208 km2 subcatchment of the Ringkobing Fjord catchment in Denmark. Various measures of spin-up performance were computed for model state variables such as the soil moisture and groundwater storage, as well as for diagnostic variables such as the latent and sensible heat fluxes. The impacts of initial conditions on surface water-groundwater interactions were then explored. Our analysis illustrates that the determination of an equilibrium state depends strongly on the variable and performance measure used. Choosing an improper initialization of the model can generate simulations that lead to a misinterpretation of land surface-subsurface feedback processes and result in large biases in simulated discharge. Estimated spin

  12. Combining hydrologic and groundwater modelling to characterize a regional aquifer system within a rift setting (Gidabo River Basin, Main Ethiopian Rift)

    Science.gov (United States)

    Birk, Steffen; Mechal, Abraham; Wagner, Thomas; Dietzel, Martin; Leis, Albrecht; Winkler, Gerfried; Mogessie, Aberra

    2016-04-01

    The development of groundwater resources within the Ethiopian Rift is complicated by the strong physiographic contrasts between the rift floor and the highland and by the manifold hydrogeological setting composed of volcanic rocks of different type and age that are intersected by numerous faults. Hydrogeochemical and isotope data from various regions within the Ethiopian Rift suggest that the aquifers within the semi-arid rift floor receive a significant contribution of groundwater flow from the humid highland. For example, the major ion composition of groundwater samples from Gidabo River Basin (3302 km²) in the southern part of the Main Ethiopian Rift reveals a mixing trend from the highland toward the rift floor; moreover, the stable isotopes of water, deuterium and O-18, of the rift-floor samples indicate a component recharged in the highland. This work aims to assess if the hydrological and hydrogeological data available for Gidabo River Basin is consistent with these findings and to characterize the regional aquifer system within the rift setting. For this purpose, a two-step approach is employed: First, the semi-distributed hydrological model SWAT is used to obtain an estimate of the spatial and temporal distribution of groundwater recharge within the watershed; second, the numerical groundwater flow model MODFLOW is employed to infer aquifer properties and groundwater flow components. The hydrological model was calibrated and validated using discharge data from three stream gauging stations within the watershed (Mechal et al., Journal of Hydrology: Regional Studies, 2015, doi:10.1016/j.ejrh.2015.09.001). The resulting recharge distribution exhibits a strong decrease from the highland, where the mean annual recharge amounts to several hundred millimetres, to the rift floor, where annual recharge largely is around 100 mm and below. Using this recharge distribution as input, a two-dimensional steady-state groundwater flow model was calibrated to hydraulic

  13. Reactive chemical transport in ground-water hydrology: Challenges to mathematical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, T.N.; Apps, J.A.

    1990-07-01

    For a long time, earth scientists have qualitatively recognized that mineral assemblages in soils and rocks conform to established principles of chemistry. In the early 1960's geochemists began systematizing this knowledge by developing quantitative thermodynamic models based on equilibrium considerations. These models have since been coupled with advective-dispersive-diffusive transport models, already developed by ground-water hydrologists. Spurred by a need for handling difficult environmental issues related to ground-water contamination, these models are being improved, refined and applied to realistic problems of interest. There is little doubt that these models will play an important role in solving important problems of engineering as well as science over the coming years. Even as these models are being used practically, there is scope for their improvement and many challenges lie ahead. In addition to improving the conceptual basis of the governing equations, much remains to be done to incorporate kinetic processes and biological mediation into extant chemical equilibrium models. Much also remains to be learned about the limits to which model predictability can be reasonably taken. The purpose of this paper is to broadly assess the current status of knowledge in modeling reactive chemical transport and to identify the challenges that lie ahead.

  14. Ground-water hydrology of the Punjab region of West Pakistan, with emphasis on problems caused by canal irrigation

    Science.gov (United States)

    Greenman, D.W.; Swarzenski, W.V.; Bennett, G.D.

    1967-01-01

    Rising water tables and the salinization of land as the result of canal irrigation threaten the agricultural economy of the Punjab. Since 1954 the Water and Soils Investigation Division of the West Pakistan Water and Power Development Authority has inventoried the water and soils resources of the Punjab and investigated the relations between irrigation activities, the natural hydrologic factors, and the incidence of waterlogging and subsurface-drainage problems. This report summarizes the findings of the investigation, which was carried out under a cooperative agreement between the Government of Pakistan and the U.S. Agency for International Development, and its predecessor, the U.S. International Cooperation Administration. Leakage from the canal systems, some of which have been in operation for more than 100 years, is the principal cause of rising water levels and constitutes the major component of ground-water recharge in the Punjab. Geologic studies have shown that virtually the entire Punjab is underlain to depths of 1,000 feet or more by unconsolidated alluvium, which is saturated to within a few feet of land surface. The alluvium varies in texture from medium sand to silty clay, but sandy sediments predominate. Large capacity wells, yielding 4 cfs or more, can be developed almost everywhere. Ground water occurring within a depth of 500 feet below the surface averages less than 1,000 ppm of dissolved solids throughout approximately two-thirds of the Punjab. It is estimated that the volume of usable ground water in storage in this part of the alluvial aquifer is on the order of 2 billion acre-feet. In the other one-third of the Punjab, total dissolved solids range from 1,000 to about 20,000 ppm. In about one-half of this area (one-sixth of the area of the Punjab) some ground water can be utilized by diluting with surface water from canals. The ground-water reservoir underlying the Punjab is an unexploited resource of enormous economic value. It is recognized

  15. Geology, water-quality, hydrology, and geomechanics of the Cuyama Valley groundwater basin, California, 2008--12

    Science.gov (United States)

    Everett, Rhett; Gibbs, Dennis R.; Hanson, Randall T.; Sweetkind, Donald S.; Brandt, Justin T.; Falk, Sarah E.; Harich, Christopher R.

    2013-01-01

    To assess the water resources of the Cuyama Valley groundwater basin in Santa Barbara County, California, a series of cooperative studies were undertaken by the U.S. Geological Survey and the Santa Barbara County Water Agency. Between 2008 and 2012, geologic, water-quality, hydrologic and geomechanical data were collected from selected sites throughout the Cuyama Valley groundwater basin. Geologic data were collected from three multiple-well groundwater monitoring sites and included lithologic descriptions of the drill cuttings, borehole geophysical logs, temperature logs, as well as bulk density and sonic velocity measurements of whole-core samples. Generalized lithologic characterization from the monitoring sites indicated the water-bearing units in the subsurface consist of unconsolidated to partly consolidated sand, gravel, silt, clay, and occasional cobbles within alluvial fan and stream deposits. Analysis of geophysical logs indicated alternating layers of finer- and coarser-grained material that range from less than 1 foot to more than 20 feet thick. On the basis of the geologic data collected, the principal water-bearing units beneath the monitoring-well sites were found to be composed of younger alluvium of Holocene age, older alluvium of Pleistocene age, and the Tertiary-Quaternary Morales Formation. At all three sites, the contact between the recent fill and younger alluvium is approximately 20 feet below land surface. Water-quality samples were collected from 12 monitoring wells, 27 domestic and supply wells, 2 springs, and 4 surface-water sites and were analyzed for a variety of constituents that differed by site, but, in general, included trace elements; nutrients; dissolved organic carbon; major and minor ions; silica; total dissolved solids; alkalinity; total arsenic and iron; arsenic, chromium, and iron species; and isotopic tracers, including the stable isotopes of hydrogen and oxygen, activities of tritium, and carbon-14 abundance. Of the 39

  16. A hydrological-economic model for sustainable groundwater use in sparse-data drylands: Application to the Amtoudi Oasis in southern Morocco, northern Sahara.

    Science.gov (United States)

    Alcalá, Francisco J; Martínez-Valderrama, Jaime; Robles-Marín, Pedro; Guerrera, Francesco; Martín-Martín, Manuel; Raffaelli, Giuliana; de León, Julián Tejera; Asebriy, Lahcen

    2015-12-15

    A hydrological-economic model is introduced to describe the dynamics of groundwater-dependent economics (agriculture and tourism) for sustainable use in sparse-data drylands. The Amtoudi Oasis, a remote area in southern Morocco, in the northern Sahara attractive for tourism and with evidence of groundwater degradation, was chosen to show the model operation. Governing system variables were identified and put into action through System Dynamics (SD) modeling causal diagrams to program basic formulations into a model having two modules coupled by the nexus 'pumping': (1) the hydrological module represents the net groundwater balance (G) dynamics; and (2) the economic module reproduces the variation in the consumers of water, both the population and tourists. The model was operated under similar influx of tourists and different scenarios of water availability, such as the wet 2009-2010 and the average 2010-2011 hydrological years. The rise in international tourism is identified as the main driving force reducing emigration and introducing new social habits in the population, in particular concerning water consumption. Urban water allotment (PU) was doubled for less than a 100-inhabitant net increase in recent decades. The water allocation for agriculture (PI), the largest consumer of water, had remained constant for decades. Despite that the 2-year monitoring period is not long enough to draw long-term conclusions, groundwater imbalance was reflected by net aquifer recharge (R) less than PI+PU (Gtechnology actions are tentatively proposed to mitigate groundwater degradation, such as: wastewater capture, treatment, and reuse for irrigation; storm-water harvesting for irrigation; and active maintenance of the irrigation system to improve its efficiency.

  17. Delineation of areas contributing groundwater to selected receiving surface water bodies for long-term average hydrologic conditions from 1968 to 1983 for Long Island, New York

    Science.gov (United States)

    Misut, Paul E.; Monti,, Jack

    2016-10-05

    To assist resource managers and planners in developing informed strategies to address nitrogen loading to coastal water bodies of Long Island, New York, the U.S. Geological Survey and the New York State Department of Environmental Conservation initiated a program to delineate a comprehensive dataset of groundwater recharge areas (or areas contributing groundwater), travel times, and outflows to streams and saline embayments on Long Island. A four-layer regional three-dimensional finite-difference groundwater-flow model of hydrologic conditions from 1968 to 1983 was used to provide delineations of 48 groundwater watersheds on Long Island. Sixteen particle starting points were evenly spaced within each of the 4,000- by 4,000-foot model cells that receive water-table recharge and tracked using forward particle-tracking analysis modeling software to outflow zones. For each particle, simulated travel times were grouped by age as follows: less than or equal to 10 years, greater than 10 years and less than or equal to 100 years, greater than 100 years and less than or equal to 1,000 years, and greater than 1,000 years; and simulated ending zones were grouped into 48 receiving water bodies, based on the New York State Department of Environmental Conservation Waterbody Inventory/Priority Waterbodies List. Areal delineation of travel time zones and groundwater contributing areas were generated and a table was prepared presenting the sum of groundwater outflow for each area.

  18. Simulation of groundwater flow and hydrologic effects of groundwater withdrawals from the Kirkwood-Cohansey aquifer system in the Pinelands of southern New Jersey

    Science.gov (United States)

    Charles, Emmanuel G.; Nicholson, Robert S.

    2012-01-01

    flow. Pumping stresses at aquifer-test sites resulted in measurable drawdown in each observation well installed for the tests. The magnitude of drawdown in shallow wetland observation wells at the end of pumping ranged from 5.5 to 16.7 centimeters (cm). The stresses induced by the respective tests reduced the flow of the smallest stream (McDonalds Branch) by 75 percent and slightly reduced flow in a side channel of Morses Mill Stream, but did not measurably affect the flow of Morses Mill Stream or Albertson Brook. Results of aquifer-test simulations were used to refine the estimates of hydraulic properties used in the models and to confirm the ability of the model to replicate observed hydrologic responses to pumping. Steady-state sensitivity simulation results for a variety of single well locations and depths were used to define overall “best-case” (smallest effect on wetland water levels and base flow) and “worst-case” (greatest effect on wetland water levels and base flow) groundwater withdrawal configurations. “Best-case” configurations are those for which the extent of the wetland areas within a 1-kilometer (km) radius of the withdrawal well is minimized, the well is located at least 100 m and as far from wetland boundaries as possible, and the withdrawal is from a deep well (50–90 m deep). “Worst-case” configurations are those for which the extent of wetlands within a 1-km radius of the withdrawal well is maximized, the well is located 100 m or less from a wetland boundary, and the withdrawal is from a relatively shallow well (30–67 m deep). “Best-” and “worst-case” simulations were applied by locating hypothetical wells across the study areas and assigning groundwater withdrawals so that the sum of the withdrawals for the basin is equal to 5, 10, 15, and 30 percent of overall recharge. The results were compared to the results of simulations of no groundwater withdrawals. Results for withdrawals of 5 percent of recharge show that the

  19. Scoping Calculations for Potential Groundwater Impacts from Operation of the APT Facility at SRS

    Energy Technology Data Exchange (ETDEWEB)

    Thibault, J.J.

    1999-10-07

    The purpose of this study was to determine the potential travel times and paths of the postulated activated groundwater beneath the facility and to examine the fate and transport of this activated groundwater.

  20. Application of the Netherlands Groundwater Model, LGM, for calculating concentration of nitrate and pesticides at abstraction wells in sandy soil areas of the Netherlands

    NARCIS (Netherlands)

    Kovar K; Pastoors MJH; Tiktak A; Gaalen FW van; LBG, LWD

    1998-01-01

    In a study aimed at assessing the impact of historical and future solute leaching into saturated groundwater, the quasi-three-dimensional RIVM groundwater model, LGM (version 2), was used for calculating pathlines, travel times and concentration breakthrough curves at 165 groundwater abstraction loc

  1. Groundwater nitrate pollution: High-resolution approach of calculating the nitrogen balance surplus for Germany

    Science.gov (United States)

    Klement, Laura; Bach, Martin; Breuer, Lutz; Häußermann, Uwe

    2017-04-01

    The latest inventory of the EU Water Framework Directive determined that 26.3% of Germany's groundwater bodies are in a poor chemical state regarding nitrate. As of late October 2016, the European Commission has filed a lawsuit against Germany for not taking appropriate measures against high nitrate levels in water bodies and thus failing to comply with the EU Nitrate Directive. Due to over-fertilization and high-density animal production, Agriculture was identified as the main source of nitrate pollution. One way to characterize the potential impact of reactive nitrogen on water bodies is the soil surface nitrogen balance where all agricultural nitrogen inputs within an area are contrasted with the output, i.e. the harvest. The surplus nitrogen (given in kg N per ha arable land and year) can potentially leach into the groundwater and thus can be used as a risk indicator. In order to develop and advocate appropriate measures to mitigate the agricultural nitrogen surplus with spatial precision, high-resolution data for the nitrogen surplus is needed. In Germany, not all nitrogen input data is available with the required spatial resolution, especially the use of mineral fertilizers is only given statewide. Therefore, some elements of the nitrogen balance need to be estimated based on agricultural statistics. Hitherto, statistics from the Federal Statistical Office and the statistical offices of the 16 federal states of Germany were used to calculate the soil surface balance annually for the spatial resolution of the 402 districts of Germany (mean size 890 km2). In contrast, this study presents an approach to estimate the nitrogen surplus at a much higher spatial resolution by using the comprehensive Agricultural census data collected in 2010 providing data for 326000 agricultural holdings. This resulted in a nitrogen surplus map with a 5 km x 5 km grid which was subsequently used to calculate the nitrogen concentration of percolation water. This provides a

  2. Ground-water hydrology of the Lower Milliken-Sarco-Tulucay Creeks area, Napa County, California

    Science.gov (United States)

    Johnson, Michael J.

    1977-01-01

    The Sonoma Volcanics are the principal water-bearing materials in the lower Milliken-Sarco-Tulucay Creeks area, which occupies about 15 square miles (39 square kilometers) in and east of Napa, Calif. The distribution and composition of these volcanic units are highly variable and complex. Within the Sonoma Volcanics the tuffs constitute the best ground-water reservoir. They are principally pumicitic ash-flow tuffs, partly welded and moderately permeable. These tuffs extend to a depth exceeding 500 feet (150 meters), and are irregularly interbedded with clay, igneous flows, and other volcanically derived material of very low permeability which locally confine the tuffs. Recharge and movement of ground water within these tuffs are affected by the highly variable character of this rock sequence, by adjacent formations, and by tectonic features such as the Cup and Saucer ridge and the Soda Creek fault. The lithology of the area limits specific yields to about 4 percent (unconfined conditions). Specific capacities of wells average less than 3 gallons per minute per foot of drawdown (0.6 liter per second per meter) except in the most permeable areas.

  3. The groundwater recharge response and hydrologic services of tropical humid forest ecosystems to use and reforestation: Support for the “infiltration-evapotranspiration trade-off hypothesis”

    Science.gov (United States)

    Krishnaswamy, Jagdish; Bonell, Michael; Venkatesh, Basappa; Purandara, Bekal K.; Rakesh, K. N.; Lele, Sharachchandra; Kiran, M. C.; Reddy, Veerabasawant; Badiger, Shrinivas

    2013-08-01

    The hydrologic effects of forest use and reforestation of degraded lands in the humid tropics has implications for local and regional hydrologic services but such issues have been relatively less studied when compared to the impacts of forest conversion. In particular, the “infiltration-evapotranspiration trade-off” hypothesis which predicts a net gain or loss to baseflow and dry-season flow under both, forest degradation or reforestation depending on conditions has not been tested adequately. In the Western Ghats of India, we examined the hydrologic responses and groundwater recharge and hydrologic services linked with three ecosystems, (1) remnant tropical evergreen forest (NF), (2) heavily-used former evergreen forest which now has been converted to tree savanna, known as degraded forest(DF), and (3) exotic Acacia plantations (AC, Acacia auriculiformis) on degraded former forest land. Instrumented catchments ranging from 7 to 23 ha representing these three land-covers (3 NF, 4 AC and 4 DF, in total 11 basins), were established and maintained between 2003 and 2005 at three sites in two geomorphological zones, Coastal and Up-Ghat (Malnaad). Four larger (1-2 km2) catchments downstream of the head-water catchments in the Malnaad with varying proportions of different land-cover and providing irrigation water for areca-nut and paddy rice were also measured for post-monsoon baseflow. Daily hydrological and climate data was available at all the sites. In addition, 36 min data was available at the Coastal site for 41 days as part of the opening phase of the summer monsoon, June-July 2005. Low potential and actual evapotranspiration rates during the monsoon that are similar across all land-cover ensures that the main control on the extent of groundwater recharge during the south-west monsoon is the proportion of rainfall that is converted into quick flow rather than differences in evapotranspiration between the different land cover types. The Flow duration curves

  4. A Data Model for Hydrologic Sensor Networks Monitoring River- Groundwater Interactions

    Science.gov (United States)

    Schneider, Philipp; Wombacher, Andreas

    2010-05-01

    Real-time operated wireless sensor networks produce large amounts of data, so that typical eyeball based analysis of data comes to its limits. Consequently we have to adapt and automate our data handling and archiving procedures, as well as our data analysis tools. Management of sensor data requires metadata to understand the semantics of observations. While modelers have high demands on metadata, experimentalists prefer to minimize entering metadata, as this is an additional effort. Quite often this is done on subjective basis ("field notes") without following a strict and predefined structure with transparent criteria and consistent vocabulary. Nevertheless, data has to be semantically annotated. The claim of this presentation is to focus on the essentials, being described by location, time, owner, instrument and measurement. The applicability is demonstrated in a case study focussing on monitoring changes of river-groundwater interactions in the context of river restoration. Fundamental steps are (i) a proper storage in a database, (ii) traceable link between data and meta-data and (iii) semantically annotation tagged to the data, e.g. concerning data quality and data interpretation. To some extend this can be done automatically (e.g. plausibility check, if values are in expected range). The scientific challenge lies in identifying periods (data strings) where high resolution data stresses expected system behavior and established process representations/conceptualizations used in well accepted and widely used models. When and where do we measure data which do not match our expectations? As the amount of data will increase dramatically, pre-aggregation and visualization have to be automated to focus on critical parts of time series which needs interpretation with further expert knowledge.

  5. Shallow Groundwater and Brine Processes in Antarctica: Linking Seasonal and Interannual Changes in Active Layer Hydrology to Ecosystem Change and Thermokarst Formation

    Science.gov (United States)

    Levy, J. S.

    2015-12-01

    We report on measurements of soil hydrological and thermal properties from the McMurdo Dry Valleys of Antarctica (MDV), and relate them to changes in the spatial patterns of shallow groundwater flow (water tracks), landscape subsidence (thermokarst), and microbial and invertebrate ecosystem response. We show that shallow groundwater in the MDV is primarily derived from snowfall and seasonal ground ice melt, but is evaporatively concentrated during the summer flow period to produce saline to hypersaline active layer solutions. Multi-year profiles of soil temperature and soil moisture indicate that water track flow is largely limited to the duration of active layer conditions (~2 months) and that water track discharge is characterized by an early season pulse as ground ice melts, and a late season pulse as solutions flowing downslope accumulate at the base of the water tracks. Evaporative concentration of water track fluids, coupled with soil salt dissolution, and/or cation exchange reactions, result in enrichment of water track fluids in chloride and sulfate salts (depending on local soil chemistry) such that initially fresh snowmelt becomes saline to hypersaline over several km of groundwater flow. These brines shape soil ecosystems in the MDV by controlling salinity-dependent habitat suitability for invertebrates and microbial organisms. We show that these soil salts and shallow groundwater solutions accumulate in local depressions to form ponds, and that where these ponds are located above buried ice, the presence of salts leads to expansion of the basins to form large thermokarst depressions. Because water tracks are primarily snow-fed, and are moderated by shallow groundwater processes, they represent a component of the Antarctic hydrological system that is likely to respond rapidly to regional changes in temperature and precipitation, altering Antarctic terrestrial ecosystems, carbon budgets, and ground ice distribution.

  6. Using the PCRaster-POLFLOW approach to GIS-based modelling of coupled groundwater-surface water hydrology in the Forsmark Area

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, Jerker; Shibuo, Yoshihiro; Destouni, Georgia [Stockholm Univ. (Sweden). Dept. of Physical Geography and Quaternary Geology

    2004-09-01

    The catchment-scale hydrologic modelling approach PCRaster-POLFLOW permits the integration of environmental process modelling functions with classical GIS functions such as database maintenance and screen display. It has previously successfully been applied at relatively large river basins and catchments, such as Rhine, Elbe and Norrstroem, for modelling stream water flow and nutrient transport. In this study, we review the PCRaster-POLFLOW modelling approach and apply it using a relatively fine spatial resolution to the smaller catchment of Forsmark. As input we use data from SKB's database, which includes detailed data from Forsmark (and Simpevarp), since these locations are being investigated as part of the process to find a suitable location for a deep repository for spent nuclear fuel. We show, by comparison with independently measured, area-averaged runoff data, that the PCRaster-POLFLOW model produces results that, without using site-specific calibration, agree well with these independent measurements. In addition, we deliver results for four planned hydrological stations within the Forsmark catchment thus allowing for future direct comparisons with streamflow monitoring. We also show that, and how, the PCRaster-POLFLOW model in its present state can be used for predicting average seasonal streamflow. The present modelling exercise provided insights into possible ways of extending and using the PCRaster-POLFLOW model for applications beyond its current main focus of surface water hydrology. In particular, regarding analysis of possible surface water-groundwater interactions, we identify the Analytic Element Method for groundwater modelling together with its GIS-based pre- and post processor ArcFlow as suitable and promising for use in combination with the PCRaster-POLFLOW modelling approach. Furthermore, for transport modelling, such as that of radionuclides entering the coupled shallow groundwater-surface water hydrological system from possible deep

  7. Isotope hydrology applied to evaluation of groundwater in arid areas. Development of instruments for evaluating endangered groundwater resources. Isotopenhydrologische Methoden zur Begutachtung von Grundwasser in Trockengebieten. Entwicklung eines Instrumentariums fuer die Beurteilung gefaehrdeter Vorkommmen

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, K.; Geyh, M.A.; Verhagen, B.T.; Wirth, K.

    1987-01-01

    Capture of underground water in arid or semi-arid areas in developing countries is essential to safeguarding life. In order to realize in time, or to prevent, endangerment of exploitable groundwater resources due to pollution or excess exploitation, isotope hydrology offers low-cost methods that are applied along with other methods. Their results contribute to determine the origin, mixing, residence time (or age), and pollution of endangered groundwater resources. The research report in hand uses the results of hydrochemical analyses and isotope hydrological data from hydrogeological studies made over some years by the Bundesanstalt fuer Geowissenschaften und Rohstoffe in six selected countries: Jordan, Cyprus, Brazil, Sudan, Djibouti, Senegal. It also uses data of recent analyses of the years 1985 and 1986. Data evaluation is done applying modern, qualitative and quantitative methods of interpretation. The available long-term series of isotopic data are scanned for any early information on water quality deterioration that is not otherwise detected. The information thus obtained is a prerequisite of urgently needed measures for protecting the groundwater reserves.

  8. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  9. Groundwater arsenic contamination on the Ganges Delta: biogeochemistry, hydrology, human perturbations, and human suffering on a large scale

    Science.gov (United States)

    Harvey, Charles F.; Swartz, Christopher H.; Badruzzaman, Abu Bohran M.; Keon-Blute, Nicole; Yu, Winston; Ali, M. Ashraf; Jay, Jenny; Beckie, Roger; Niedan, Volker; Brabander, Daniel; Oates, Peter M.; Ashfaque, Khandaker N.; Islam, Shafiqul; Hemond, Harold F.; Ahmed, M. Feroze

    2005-02-01

    Over the last several decades, much of population of Bangladesh and West Bengal switched their water supply from surface water to groundwater. Tragically, much of the region's groundwater is dangerously contaminated by arsenic, and consumption of this water has already created severe health effects. Here we consider how groundwater flow may affect arsenic biogeochemistry and we compare the vertical patterns of groundwater chemistry at our intensive study site with the average values across the country. Detailed hydraulic data are presented from our field site that begins to characterize the groundwater flow system. To cite this article: C.F. Harvey et al., C. R. Geoscience 337 (2005).

  10. Hydrological and geochemical processes constraining groundwater salinity in wetland areas related to evaporitic (karst) systems. A case study from Southern Spain

    Science.gov (United States)

    Gil-Márquez, J. M.; Barberá, J. A.; Andreo, B.; Mudarra, M.

    2017-01-01

    Chemical and isotopic evolution of groundwater in an evaporite karst plateau (including wetland areas and saline to hyper-saline springs) located at S Spain was studied. Physicochemical parameters, major ions and stable isotopes were analyzed in rain, brine spring, wetland and leakage water samples, from which the most common mineral saturation indexes were computed and geochemical and isotopic modelling were performed. Results show an apparent relationship between the elevation of brine springs and their water mineralization, indicating that drainage at higher altitude may be associated to gravity-driven flows, since brackish groundwater is isotopically fractionated due to evaporation. On the other hand, the lower altitude springs could drain deeper flows with longer residence time, resulting in highly mineralized and warmer (briny) groundwater. The dissolution of halite and gypsum has proved to be the main geochemical processes, which are favored by the great ionic strength of groundwater. Calcite precipitation occurs in brackish waters draining wetlands, being boosted by common ion effect (when CaSO4 waters are present) and solute concentration caused by evaporation. Modelling results strongly support the hypothesis that most of the selected springs geochemically evolve in a common (S-N) flowpath. The methods used in this research contribute to a better understanding of the hydrogeological processes occurring in the studied evaporitic system, but also in equivalent hydrological environments worldwide.

  11. [Groundwater].

    Science.gov (United States)

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  12. Transpiration and Groundwater Uptake Dynamics of Pinus Brutia on a Fractured Mediterranean Mountain Slope during Two Hydrologically Contrasting Years

    Science.gov (United States)

    Eliades, Marinos; Bruggeman, Adriana; Lubczynski, Maciek; Christou, Andreas; Camera, Corrado; Djuma, Hakan

    2017-04-01

    Semi-arid environments tend to have extreme temporal variability in rainfall, resulting in extended periods with little to no precipitation. The mountainous topography is characterized by steep slopes, often leading to shallow soil layers with limited water storage capacity. Tree species survive in these environments by developing various adaptation mechanisms to access water. The main objective of this study is to examine the differences of two hydrologically contrasting years on the transpiration and groundwater uptake dynamics of Pinus brutia trees. We selected four trees for sap flow monitoring in an 8966-m2 fenced area of Pinus brutia forest. The site is located at 620 m elevation, on the northern foothills of the Troodos mountains in Cyprus. The slope of the site ranges between 0 and 82%. The average daily minimum temperature is 5 0C in January and the average daily maximum temperature is 35 oC in August. The mean annual rainfall is 425 mm. Monitoring started on 1 January 2015 and is ongoing. We measured soil depth in a 1-m grid around each of the selected trees for monitoring. We processed soil depths in ArcGIS software (ESRI) to create a soil depth map. We used a Total Station and a differential GPS for the creation of a high resolution DEM of the area covering the selected trees. We installed seventeen soil moisture sensors at 12-cm depth and two at 30-cm depth, where the soil was deeper than 24 cm. We randomly installed 28 metric manual rain gauges under the trees' canopy to measure throughfall. For stemflow we installed a plastic tube around each tree trunk and connected it to a manual rain gauge. We used sap flow heat ratio method (HRM) instruments to determine sap flow rates of the Pinus brutia. Hourly meteorological conditions were observed by an automatic meteorological station. Here we present the results of the January to October periods, in order to have comparable results for the two contrasting years. During the wet year of 2015, we measured 439

  13. Deep Groundwater Circulation within Crystalline Basement Rocks and the Role of Hydrologic Windows in the Formation of the Truth or Consequences, New Mexico Low-Temperature Geothermal System

    Science.gov (United States)

    Pepin, J.; Person, M. A.; Phillips, F. M.; Kelley, S.; Timmons, S.; Owens, L.; Witcher, J. C.; Gable, C. W.

    2014-12-01

    Hot Springs are common in amagmatic settings, but the mechanisms of heating are often obscure. We have investigated the origin of the Truth or Consequences, New Mexico low-temperature (~ 41 °C) hot springs in the southern Rio Grande rift. We tested two mechanisms that could account for the geothermal anomaly. The first scenario is that the anomaly is the result of lateral forced convection associated with a gently-dipping carbonate aquifer. The second scenario is that high permeability of crystalline basement rocks permits circulation of groundwater down to depths of 8 km prior to discharging in Truth or Consequences. To test these hypotheses, we constructed a two-dimensional hydrothermal model of the region using FEMOC. Model parameters were constrained by calibrating to measured temperatures, specific discharge rates and groundwater residence times. We collected 16 temperature profiles, 11 geochemistry samples and 6 carbon-14 samples within the study area. The geothermal waters are Na+/Cl- dominated and have apparent groundwater ages ranging from 5,500 to 11,500 years. Hot Springs geochemistry is consistent with water/rock interaction in a silicate geothermal reservoir, rather than a carbonate system. Peclet-number analysis of temperature profiles suggests specific discharge rates beneath Truth or Consequences range from 2 to 4 m/year. Geothermometry indicates maximum reservoir temperatures are around 167 °C. We were able to reasonably reproduce observed measurements using the permeable-basement scenario (10-12 m2). The carbonate-aquifer scenario failed to match observations. Our findings imply that the Truth or Consequences geothermal system formed as a result of deep groundwater circulation within permeable crystalline basement rocks. Focused geothermal discharge is the result of localized faulting, which has created a hydrologic window through a regional confining unit. In tectonically active areas, deep groundwater circulation within fractured crystalline

  14. Geochemistry and hydrology of perched groundwater springs: assessing elevated uranium concentrations at Pigeon Spring relative to nearby Pigeon Mine, Arizona (USA)

    Science.gov (United States)

    Beisner, Kimberly R.; Paretti, Nicholas; Tillman, Fred; Naftz, David L.; Bills, Donald; Walton-Day, Katie; Gallegos, Tanya J.

    2017-01-01

    The processes that affect water chemistry as the water flows from recharge areas through breccia-pipe uranium deposits in the Grand Canyon region of the southwestern United States are not well understood. Pigeon Spring had elevated uranium in 1982 (44 μg/L), compared to other perched springs (2.7–18 μg/L), prior to mining operations at the nearby Pigeon Mine. Perched groundwater springs in an area around the Pigeon Mine were sampled between 2009 and 2015 and compared with material from the Pigeon Mine to better understand the geochemistry and hydrology of the area. Two general groups of perched groundwater springs were identified from this study; one group is characterized by calcium sulfate type water, low uranium activity ratio 234U/238U (UAR) values, and a mixture of water with some component of modern water, and the other group by calcium-magnesium sulfate type water, higher UAR values, and radiocarbon ages indicating recharge on the order of several thousand years ago. Multivariate statistical principal components analysis of Pigeon Mine and spring samples indicate Cu, Pb, As, Mn, and Cd concentrations distinguished mining-related leachates from perched groundwater springs. The groundwater potentiometric surface indicates that perched groundwater at Pigeon Mine would likely flow toward the northwest away from Pigeon Spring. The geochemical analysis of the water, sediment and rock samples collected from the Snake Gulch area indicate that the elevated uranium at Pigeon Spring is likely related to a natural source of uranium upgradient from the spring and not likely related to the Pigeon Mine.

  15. Geochemistry and hydrology of perched groundwater springs: assessing elevated uranium concentrations at Pigeon Spring relative to nearby Pigeon Mine, Arizona (USA)

    Science.gov (United States)

    Beisner, Kimberly R.; Paretti, Nicholas V.; Tillman, Fred D.; Naftz, David L.; Bills, Donald J.; Walton-Day, Katie; Gallegos, Tanya J.

    2017-03-01

    The processes that affect water chemistry as the water flows from recharge areas through breccia-pipe uranium deposits in the Grand Canyon region of the southwestern United States are not well understood. Pigeon Spring had elevated uranium in 1982 (44 μg/L), compared to other perched springs (2.7-18 μg/L), prior to mining operations at the nearby Pigeon Mine. Perched groundwater springs in an area around the Pigeon Mine were sampled between 2009 and 2015 and compared with material from the Pigeon Mine to better understand the geochemistry and hydrology of the area. Two general groups of perched groundwater springs were identified from this study; one group is characterized by calcium sulfate type water, low uranium activity ratio 234U/238U (UAR) values, and a mixture of water with some component of modern water, and the other group by calcium-magnesium sulfate type water, higher UAR values, and radiocarbon ages indicating recharge on the order of several thousand years ago. Multivariate statistical principal components analysis of Pigeon Mine and spring samples indicate Cu, Pb, As, Mn, and Cd concentrations distinguished mining-related leachates from perched groundwater springs. The groundwater potentiometric surface indicates that perched groundwater at Pigeon Mine would likely flow toward the northwest away from Pigeon Spring. The geochemical analysis of the water, sediment and rock samples collected from the Snake Gulch area indicate that the elevated uranium at Pigeon Spring is likely related to a natural source of uranium upgradient from the spring and not likely related to the Pigeon Mine.

  16. Geochemistry and hydrology of perched groundwater springs: assessing elevated uranium concentrations at Pigeon Spring relative to nearby Pigeon Mine, Arizona (USA)

    Science.gov (United States)

    Beisner, Kimberly R.; Paretti, Nicholas V.; Tillman, Fred D.; Naftz, David L.; Bills, Donald J.; Walton-Day, Katie; Gallegos, Tanya J.

    2016-11-01

    The processes that affect water chemistry as the water flows from recharge areas through breccia-pipe uranium deposits in the Grand Canyon region of the southwestern United States are not well understood. Pigeon Spring had elevated uranium in 1982 (44 μg/L), compared to other perched springs (2.7-18 μg/L), prior to mining operations at the nearby Pigeon Mine. Perched groundwater springs in an area around the Pigeon Mine were sampled between 2009 and 2015 and compared with material from the Pigeon Mine to better understand the geochemistry and hydrology of the area. Two general groups of perched groundwater springs were identified from this study; one group is characterized by calcium sulfate type water, low uranium activity ratio 234U/238U (UAR) values, and a mixture of water with some component of modern water, and the other group by calcium-magnesium sulfate type water, higher UAR values, and radiocarbon ages indicating recharge on the order of several thousand years ago. Multivariate statistical principal components analysis of Pigeon Mine and spring samples indicate Cu, Pb, As, Mn, and Cd concentrations distinguished mining-related leachates from perched groundwater springs. The groundwater potentiometric surface indicates that perched groundwater at Pigeon Mine would likely flow toward the northwest away from Pigeon Spring. The geochemical analysis of the water, sediment and rock samples collected from the Snake Gulch area indicate that the elevated uranium at Pigeon Spring is likely related to a natural source of uranium upgradient from the spring and not likely related to the Pigeon Mine.

  17. Hillslope hydrologic connectivity controls riparian groundwater turnover: Implications of catchment structure for riparian buffering and stream water sources

    Science.gov (United States)

    Kelsey G. Jencso; Brian L. McGlynn; Michael N. Gooseff; Kenneth E. Bencala; Steven M. Wondzell

    2010-01-01

    Hydrologic connectivity between catchment upland and near stream areas is essential for the transmission of water, solutes, and nutrients to streams. However, our current understanding of the role of riparian zones in mediating landscape hydrologic connectivity and the catchment scale export of water and solutes is limited. We tested the relationship between the...

  18. A SMART groundwater portal: An OGC web services orchestration framework for hydrology to improve data access and visualisation in New Zealand

    Science.gov (United States)

    Klug, Hermann; Kmoch, Alexander

    2014-08-01

    Transboundary and cross-catchment access to hydrological data is the key to designing successful environmental policies and activities. Electronic maps based on distributed databases are fundamental for planning and decision making in all regions and for all spatial and temporal scales. Freshwater is an essential asset in New Zealand (and globally) and the availability as well as accessibility of hydrological information held by or held for public authorities and businesses are becoming a crucial management factor. Access to and visual representation of environmental information for the public is essential for attracting greater awareness of water quality and quantity matters. Detailed interdisciplinary knowledge about the environment is required to ensure that the environmental policy-making community of New Zealand considers regional and local differences of hydrological statuses, while assessing the overall national situation. However, cross-regional and inter-agency sharing of environmental spatial data is complex and challenging. In this article, we firstly provide an overview of the state of the art standard compliant techniques and methodologies for the practical implementation of simple, measurable, achievable, repeatable, and time-based (SMART) hydrological data management principles. Secondly, we contrast international state of the art data management developments with the present status for groundwater information in New Zealand. Finally, for the topics (i) data access and harmonisation, (ii) sensor web enablement and (iii) metadata, we summarise our findings, provide recommendations on future developments and highlight the specific advantages resulting from a seamless view, discovery, access, and analysis of interoperable hydrological information and metadata for decision making.

  19. Seasonal variation of redox species and redox potentials in shallow groundwater: A comparison of measured and calculated redox potentials

    Science.gov (United States)

    Ramesh Kumar, A.; Riyazuddin, P.

    2012-06-01

    SummaryThe seasonal variation of redox potential (Eh) and redox species such as As(V)/As(III), Cr(VI)/Cr(III), Fe(III)/Fe(II), NO3-/NO2-, and Se(VI)/Se(IV) were studied in a shallow groundwater for a period of three years (May, 2004-January, 2007). The study area was Chrompet area of Chennai city, India. Groundwater samples from 65 wells were monitored for pH, electrical conductivity, dissolved oxygen (DO), and major ions during pre-(May) and post-monsoon (January) seasons. The objective of the study was to gain insight into the temporal variation of the redox species due to groundwater recharge and to identify the redox reactions controlling the measured Eh of the groundwater. The study revealed that the shallow groundwater was "oxic" with DO ranging between 0.25 and 5.00 mg L-1, and between 0.38 and 5.05 mg L-1 during pre-(May, 2004) and post-monsoon (January, 2005) seasons, respectively. The measured Eh (with respect to standard hydrogen electrode, SHE) ranged between 65 and 322 mV, and between 110 and 330 mV during pre- and post-monsoon seasons, respectively. During post-monsoon seasons, DO and Eh increased in most of the wells due to groundwater recharge. The calculated Eh using the redox couples As(V)/As(III), NO3-/NO2-, O2/H2O and Se(VI)/Se(IV) neither agreed among themselves nor with the measured Eh during all the seasons. It shows that in the shallow groundwater, the various redox couples are in disequilibrium among themselves and with the Pt electrode. However, 41% (n = 122) of the Eh values calculated from Fe(III)/Fe(II) couple agreed with the measured Eh within ±30 mV, the uncertainty of Pt-electrode measurement. The post-monsoon seasons showed higher values of As(V)/As(III) and Se(VI)/Se(IV) compared to the pre-monsoon seasons, whereas Fe(III)/Fe(II) behaved in the opposite manner. This pattern of variation is consistent with the increased oxidizing nature, as shown by the higher DO and Eh values observed during post-monsoon seasons. The results

  20. netherland hydrological modeling instrument

    Science.gov (United States)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.

    2012-04-01

    decision supports and evaluations. The main focus of the instrument is operational drought management and evaluating adaptive measures for different climate scenario's. It has also been used though as a basis to evaluate water quality of WFD-water bodies and measures, nutrient-leaching and describing WFD groundwater bodies. There is a toolkit to translate the hydrological NHI results to values for different water users. For instance with the NHI results agricultural yields can be calculated, effects on ground water dependant ecosystems, subsidence, shipping, drinking water supply. This makes NHI a valuable decision support system in Dutch water management.

  1. Climate change impact on shallow groundwater conditions in Hungary: Conclusions from a regional modelling study

    Science.gov (United States)

    Kovács, Attila; Marton, Annamária; Tóth, György; Szöcs, Teodóra

    2016-04-01

    A quantitative methodology has been developed for the calculation of groundwater table based on measured and simulated climate parameters. The aim of the study was to develop a toolset which can be used for the calculation of shallow groundwater conditions for various climate scenarios. This was done with the goal of facilitating the assessment of climate impact and vulnerability of shallow groundwater resources. The simulated groundwater table distributions are representative of groundwater conditions at the regional scale. The introduced methodology is valid for modelling purposes at various scales and thus represents a versatile tool for the assessment of climate vulnerability of shallow groundwater bodies. The calculation modules include the following: 1. A toolset to calculate climate zonation from climate parameter grids, 2. Delineation of recharge zones (Hydrological Response Units, HRUs) based on geology, landuse and slope conditions, 3. Calculation of percolation (recharge) rates using 1D analytical hydrological models, 4. Simulation of the groundwater table using numerical groundwater flow models. The applied methodology provides a quantitative link between climate conditions and shallow groundwater conditions, and thus can be used for assessing climate impacts. The climate data source applied in our calculation comprised interpolated daily climate data of the Central European CARPATCLIM database. Climate zones were determined making use of the Thorntwaite climate zonation scheme. Recharge zones (HRUs) were determined based on surface geology, landuse and slope conditions. The HELP hydrological model was used for the calculation of 1D water balance for hydrological response units. The MODFLOW numerical groundwater modelling code was used for the calculation of the water table. The developed methodology was demonstrated through the simulation of regional groundwater table using spatially averaged climate data and hydrogeological properties for various time

  2. Hydrological conditions and evaluation of sustainable groundwater use in the Sierra Vista Subwatershed, Upper San Pedro Basin, southeastern Arizona

    Science.gov (United States)

    Gungle, Bruce; Callegary, James B.; Paretti, Nicholas V.; Kennedy, Jeffrey R.; Eastoe, Christopher J.; Turner, Dale S.; Dickinson, Jesse E.; Levick, Lainie R.; Sugg, Zachary P.

    2016-08-18

    This study assessed progress toward achieving sustainable groundwater use in the Sierra Vista Subwatershed of the Upper San Pedro Basin, Arizona, through evaluation of 14 indicators of sustainable use. Sustainable use of groundwater in the Sierra Vista Subwatershed requires, at a minimum, a stable rate of groundwater discharge to, and thus base flow in, the San Pedro River. Many of the 14 indicators are therefore related to long-term or short-term effects on base flow and provide us with a means to evaluate groundwater discharge to and base flow in the San Pedro River. The indicators were based primarily on 10 to 20 years of data monitoring in the subwatershed, ending in 2012, and included subwatershedwide indicators, riparian-system indicators, San Pedro River indicators, and springs indicators.

  3. Methods for Calculating a Simplified Hydrologic Source Term for Frenchman Flat Sensitivity Studies of Radionuclide Transport Away from Underground Nuclear Tests

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, A; Zavarin, M; Bruton, C J; Pawloski, G A

    2004-01-06

    The purpose of this report is to provide an approach for the development of a simplified unclassified hydrologic source term (HST) for the ten underground nuclear tests conducted in the Frenchman Flat Corrective Action Unit (CAU) at the Nevada Test Site (NTS). It is being prepared in an analytic form for incorporation into a GOLDSIM (Golder Associates, 2000) model of radionuclide release and migration in the Frenchman Flat CAU. This model will be used to explore, in an approximate and probabilistic fashion, sensitivities of the 1,000-year radionuclide contaminant boundary (FFACO, 1996; 2000) to hydrologic and other related parameters. The total inventory (or quantity) of radionuclides associated with each individual test, regardless of its form and distribution, is referred to as the radiologic source term (RST) of that test. The subsequent release of these radionuclides over time into groundwater is referred to as the hydrologic source term (HST) of that test (Tompson, et al., 2002). The basic elements of the simplified hydrologic source term model include: (1) Estimation of the volumes of geologic material physically affected by the tests. (2) Identification, quantification, and distribution of the radionuclides of importance. (3) Development of simplified release and retardation models for these radionuclides in groundwater. The simplifications used in the current HST model are based upon more fundamental analyses that are too complicated for use in a GOLDSIM sensitivity study. These analyses are based upon complex, three-dimensional flow and reactive transport simulations summarized in the original CAMBRIC hydrologic source term model (Tompson et al., 1999), unclassified improvements of this model discussed in Pawloski et al. (2000), as well as more recent studies that are part of an ongoing model of the HST at the CHESHIRE test in Pahute Mesa (Pawloski et al., 2001).

  4. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2012-15

    Science.gov (United States)

    Bartholomay, Roy C.; Maimer, Neil V.; Rattray, Gordon W.; Fisher, Jason C.

    2017-04-10

    Since 1952, wastewater discharged to in ltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater-monitoring networks at the INL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from the ESRP aquifer, multilevel monitoring system (MLMS) wells in the ESRP aquifer, and perched groundwater wells in the USGS groundwater monitoring networks during 2012-15.

  5. Hydrologic requirements of and consumptive ground-water use by riparian vegetation along the San Pedro River, Arizona. Chapters A-D.

    Science.gov (United States)

    Leenhouts, James M.; Stromberg, Juliet C.; Scott, Russell L.; authors include Leenhouts, James M.; Lite, Sharon J.; Dixon, Mark; Rychener, Tyler; Makings, Elizabeth; Williams, David G.; Goodrich, David C.; Cable, William L.; Levick, Lainie R.; McGuire, Roberta; Gazal, Rico M.; Yepez, Enrico A.; Ellsworth, Patrick; Huxman, Travis E.

    2006-01-01

    This study is a coordinated effort by the U.S. Geological Survey (USGS), the U.S. Department of Agriculture, Agricultural Research Service (USDA ARS), and Arizona State University, with assistance from the U.S. Army Corps of Engineers, the University of Wyoming, and the University of Arizona. The specific objectives of the study were: to determine the water needs of riparian vegetation through the riparian growing season and throughout the SPRNCA to ensure its long-term ecological integrity; to quantify the total water use of riparian vegetation within the SPRNCA; and to determine the source of water used by key riparian plant species within the SPRNCA. To meet these objectives, the study was divided into three elements: (1) a characterization of the status and variability of hydrologic factors within the riparian system (USGS), (2) a riparian biohydrology study to relate spatial and temporal aspects of riparian changes and condition to the hydrologic variables (Arizona State University), and (3) a water-use evapotranspiration (ET) study to quantify annual consumptive ground-water use by riparian transpiration and direct evaporation from the stream channel (USDA ARS) in cooperation with the U.S. Army Corps of Engineers, the University of Wyoming, and the University of Arizona. Twenty-six sites within the SPRNCA were selected for collection of vegetation data from three primary streamflow regimes (perennial, intermittent-wet, intermittent-dry), which include the principal vegetation communities. Detailed hydrologic-condition data were collected at a subset of 16 of these sites, called the SPRNCA biohydrology sites. Water-use and water-source data were collected at a subset of 5 of the 16 biohydrology sites. Vegetation data also were collected at supplemental sites within the SPRNCA boundary in the Upper San Pedro Basin and in the Lower San Pedro Basin. In addition to information about vegetation and geomorphic conditions, hydrologic data collected at the 16

  6. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Nathan Bryant

    2008-05-01

    This document presents a summary and framework of the available hydrologic data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater flow models. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  7. Hydrologic conditions in urban Miami-Dade County, Florida, and the effect of groundwater pumpage and increased sea level on canal leakage and regional groundwater flow

    Science.gov (United States)

    Hughes, Joseph D.; White, Jeremy T.

    2014-01-01

    The extensive and highly managed surface-water system in southeastern Florida constructed during the 20th Century has allowed for the westward expansion of urban and agricultural activities in Miami-Dade County. In urban areas of the county, the surface-water system is used to (1) control urban flooding, (2) supply recharge to production well fields, and (3) control seawater intrusion. Previous studies in Miami-Dade County have determined that on a local scale, leakage from canals adjacent to well fields can supply a large percentage (46 to 78 percent) of the total groundwater pumpage from production well fields. Canals in the urban areas also receive seepage from the Biscayne aquifer that is derived from a combination of local rainfall and groundwater flow from Water Conservation Area 3 and Everglades National Park, which are west of urban areas of Miami-Dade County.

  8. Uncertainty in the modelling of spatial and temporal patterns of shallow groundwater flow paths: The role of geological and hydrological site information

    Science.gov (United States)

    Woodward, Simon J. R.; Wöhling, Thomas; Stenger, Roland

    2016-03-01

    Understanding the hydrological and hydrogeochemical responses of hillslopes and other small scale groundwater systems requires mapping the velocity and direction of groundwater flow relative to the controlling subsurface material features. Since point observations of subsurface materials and groundwater head are often the basis for modelling these complex, dynamic, three-dimensional systems, considerable uncertainties are inevitable, but are rarely assessed. This study explored whether piezometric head data measured at high spatial and temporal resolution over six years at a hillslope research site provided sufficient information to determine the flow paths that transfer nitrate leached from the soil zone through the shallow saturated zone into a nearby wetland and stream. Transient groundwater flow paths were modelled using MODFLOW and MODPATH, with spatial patterns of hydraulic conductivity in the three material layers at the site being estimated by regularised pilot point calibration using PEST, constrained by slug test estimates of saturated hydraulic conductivity at several locations. Subsequent Null Space Monte Carlo uncertainty analysis showed that this data was not sufficient to definitively determine the spatial pattern of hydraulic conductivity at the site, although modelled water table dynamics matched the measured heads with acceptable accuracy in space and time. Particle tracking analysis predicted that the saturated flow direction was similar throughout the year as the water table rose and fell, but was not aligned with either the ground surface or subsurface material contours; indeed the subsurface material layers, having relatively similar hydraulic properties, appeared to have little effect on saturated water flow at the site. Flow path uncertainty analysis showed that, while accurate flow path direction or velocity could not be determined on the basis of the available head and slug test data alone, the origin of well water samples relative to the

  9. Use of precipitation and groundwater isotopes to interpret regional hydrology on a tropical volcanic island: Kilauea volcano area, Hawaii

    Science.gov (United States)

    Scholl, M.A.; Ingebritsen, S.E.; Janik, C.J.; Kauahikaua, J.P.

    1996-01-01

    Isotope tracer methods were used to determine flow paths, recharge areas, and relative age for groundwater in the Kilauea volcano area of the Island of Hawaii. A network of up to 66 precipitation collectors was emplaced in the study area and sampled twice yearly for a 3-year period. Stable isotopes in rainfall show three distinct isotopic gradients with elevation, which are correlated with trade wind, rain shadow, and high- elevation climatological patterns. Temporal variations in precipitation isotopes are controlled more by the frequency of storms than by seasonal temperature fluctuations. Results from this study suggest that (1) sampling network design must take into account areal variations in rainfall patterns on islands and in continental coastal areas and (2) isotope/elevation gradients on other tropical islands may be predictable on the basis of similar climatology. Groundwater was sampled yearly in coastal springs, wells, and a few high-elevation springs. Areal contrasts in groundwater stable isotopes and tritium indicate that the volcanic rift zones compartmentalize the regional groundwater system, isolating the groundwater south of Kilauea's summit and rift zones. Part of the Southwest Rift gone appears to act as a conduit for water from higher elevation, but there is no evidence for downrift flow in the springs and shallow wells sampled in the lower East Rift Zone.

  10. Calculation of the Instream Ecological Flow of the Wei River Based on Hydrological Variation

    Directory of Open Access Journals (Sweden)

    Shengzhi Huang

    2014-01-01

    Full Text Available It is of great significance for the watershed management department to reasonably allocate water resources and ensure the sustainable development of river ecosystems. The greatly important issue is to accurately calculate instream ecological flow. In order to precisely compute instream ecological flow, flow variation is taken into account in this study. Moreover, the heuristic segmentation algorithm that is suitable to detect the mutation points of flow series is employed to identify the change points. Besides, based on the law of tolerance and ecological adaptation theory, the maximum instream ecological flow is calculated, which is the highest frequency of the monthly flow based on the GEV distribution and very suitable for healthy development of the river ecosystems. Furthermore, in order to guarantee the sustainable development of river ecosystems under some bad circumstances, minimum instream ecological flow is calculated by a modified Tennant method which is improved by replacing the average flow with the highest frequency of flow. Since the modified Tennant method is more suitable to reflect the law of flow, it has physical significance, and the calculation results are more reasonable.

  11. Hydrologic Evaluation of a Humid Climate Poplar Phytoremediation Barrier

    Science.gov (United States)

    Swensen, K.; Rabideau, A. J.

    2016-12-01

    The emplacement of hybrid poplar trees to function as phytoremediation barriers is an appealing and sustainable groundwater management strategy because of low maintenance costs and the potential to extract large amounts of groundwater without pumping. While the effectiveness of poplar barriers has been assessed by groundwater quality monitoring, less attention has been given to physical hydrologic evaluations needed to improve barrier designs. In this research, a five year hydrologic evaluation was conducted at a poplar phytoremediation site in western NY, with the goal of quantifying ETg (evapotranspiration from groundwater) as a measure of the barrier's effectiveness in a humid climate. To consider transpiration from both vadose zone and groundwater, the hydrologic evaluation included four components: physical ET measurements, theoretical ET calculations, analysis of diurnal groundwater table fluctuations, and vadose zone modeling. The direct measurements of ETT (total) were obtained using sap flow meters installed on multiple trees within the barrier. These data were interpreted using a regression model that included theoretical ET calculations and site-specific measurements of weather parameters and poplar trunk area. Application of this model was challenged by the spatial variation in rooting depth as determined by tree excavations. To further quantify the removal of groundwater by the phytobarrier (ETg), the White Method was applied to interpret diurnal groundwater fluctuations from monitoring wells located within the barrier, in conjunction with a variably saturated-saturated flow model configured to confirm water extraction from ETg. Taken together, the results of this five year hydrologic evaluation highlight the complexity in quantifying humid climate groundwater extraction, as a large number of variables were found to influence these rates. Improved understanding of these controls will contribute to improved barrier designs that maximize ETg.

  12. The importance of hydraulic groundwater theory in catchment hydrology: The legacy of Wilfried Brutsaert and Jean-Yves Parlange

    NARCIS (Netherlands)

    Troch, P.A.A.; Berne, A.D.; Harman, C.; Hilberts, A.G.J.; Lyon, S.W.; Paniconi, C.; Pauwels, V.R.N.; Rupp, D.E.; Selker, J.S.; Teuling, A.J.; Uijlenhoet, R.; Verhoest, N.E.C.

    2013-01-01

    Based on a literature overview, this paper summarizes the impact and legacy of the contributions of Wilfried Brutsaert and Jean-Yves Parlange (Cornell University) with respect to the current state-of-the-art understanding in hydraulic groundwater theory. Forming the basis of many applications in cat

  13. The importance of hydraulic groundwater theory in catchment hydrology: The legacy of Wilfried Brutsaert adn Jean-Yves Parlange

    NARCIS (Netherlands)

    Troch, P.A.; Berne, A.; Bogaart, P.W.; Harman, C.; Hilberts, A.G.J.; Lyon, S.W.; Paniconi, C.; Pauwels, V.R.N.; Rupp, D.E.; Selker, J.S.; Teuling, A.J.; Uijlenhoet, R.; Verhoest, N.E.C.

    2013-01-01

    Based on a literature overview, this paper summarizes the impact and legacy of the contributions of Wilfried Brutsaert and Jean-Yves Parlange (Cornell University) with respect to the current state-of-the-art understanding in hydraulic groundwater theory. Forming the basis of many applications in cat

  14. The importance of hydraulic groundwater theory in catchment hydrology: The legacy of Wilfried Brutsaert adn Jean-Yves Parlange

    NARCIS (Netherlands)

    Troch, P.A.; Berne, A.; Bogaart, P.W.; Harman, C.; Hilberts, A.G.J.; Lyon, S.W.; Paniconi, C.; Pauwels, V.R.N.; Rupp, D.E.; Selker, J.S.; Teuling, A.J.; Uijlenhoet, R.; Verhoest, N.E.C.

    2013-01-01

    Based on a literature overview, this paper summarizes the impact and legacy of the contributions of Wilfried Brutsaert and Jean-Yves Parlange (Cornell University) with respect to the current state-of-the-art understanding in hydraulic groundwater theory. Forming the basis of many applications in cat

  15. Comparing large-scale hydrological model predictions with observed streamflow in the Pacific Northwest: effects of climate and groundwater

    Science.gov (United States)

    Mohammad Safeeq; Guillaume S. Mauger; Gordon E. Grant; Ivan Arismendi; Alan F. Hamlet; Se-Yeun Lee

    2014-01-01

    Assessing uncertainties in hydrologic models can improve accuracy in predicting future streamflow. Here, simulated streamflows using the Variable Infiltration Capacity (VIC) model at coarse (1/16°) and fine (1/120°) spatial resolutions were evaluated against observed streamflows from 217 watersheds. In...

  16. A detailed examination of the chemical, hydrological, and geological properties influencing the mobility of {sup 222}radon and parent radionuclides in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Sexsmith, K.S.

    1996-12-31

    This study examines hydrological, geological and geochemical controls on {sup 222}Rn variability in groundwater in the Front Range of Colorado. Specific objectives of the study are: (1) to determine if there are any correlations or spatial relationships between {sup 222}Rn and the geological, geochemical and hydrogeological data; and (2) to determine whether it is geochemically reasonable for observed {sup 222}Rn levels to be the result of U and {sup 226}Ra accumulation by fracture filling minerals. Domestic-water wells were sampled and tested to determine the local aquifer characteristics and aqueous geochemistry. A multivariate and staged approach was used in the data analyses. Analysis of variance tests were used to test for relationships between {sup 222}Rn and the lithology of the study wells. The effects of rock-type were then removed from the chemical and hydrological variables by subtracting the mean value for each rock-type from each of the measured values within that rock-type (a residual transformation). Linear and linear multiple regression techniques were used to test for expected relationships between residual {sup 222}Rn levels and these variables, and stepwise linear regressions were used to test for any unforeseen multivariate relationships in the data. Correlograms, distance-weighted average and inverse-distance-weighted average predictions were used to look for spatial relationships in the data.

  17. Review on research progress of Arc Hydro and Arc Hydro Groundwater hydrological data model%Arc Hydro与Arc Hydro Groundwater水文数据模型研究综述

    Institute of Scientific and Technical Information of China (English)

    崔素芳; 张保祥; 崔峻岭; 潘英华; 张振华; 吴泉源; 衣华鹏

    2016-01-01

    由于目前在地表水与地下水的联合模拟研究中备受青睐的Arc Hydro与Arc Hydro Groundwater水文数据模型能否应用于水文模拟尚缺少实证性研究,通过查阅大量文献资料,分析这两个水文数据模型的功能和优点,以及存在的问题和未来发展趋势。指出Arc Hydro模型虽然具备强大的水文分析与提取功能,但其本身并不能实现水文模拟,必须与独立的水文模型利用数据交换来完成水文模拟;Arc Hydro Groundwater模型虽然包含MODFLOW分析模型,但只能对MODFLOW模型输出的结果进行可视化处理,目前还不具备独立的地下水模拟功能。认为地表水与地下水联合模型与GIS耦合集成平台的开发将是未来研究的热点。%Arc Hydro and Arc Hydro Groundwater hydrological data model are favored by scholars in the joint simulation of surface water and groundwater, but empirical researches on whether hydrological simulation can apply Arc Hydro and Arc Hydro Groundwater model are lack. According to this problem, the functions and advantages of these two hydrological models were analyzed, furthermore, the remaining problems and the development trend were also discussed by a review of a large number of documents. It is pointed out that although Arc Hydro has function of strong hydrological analysis and extraction, this model cannot realize hydrological simulation, data exchange is necessary to complete hydrological simulation with independent hydrological model. Arc Hydro Groundwater contains MODFLOW analysis model, however, it only can visualize process for MODFLOW model outputs and does not yet have independent groundwater simulation function. The development of integrated platform combining joint simulation model of surface water and groundwater with GIS coupling is supposed to be a hot research.

  18. Relations between precipitation, groundwater withdrawals, and changes in hydrologic conditions at selected monitoring sites in Volusia County, Florida, 1995--2010

    Science.gov (United States)

    Murray, Louis C.

    2012-01-01

    precipitation conditions than during wetter than average conditions. For precipitation-averaged hydrologic conditions, water-level changes in the surficial aquifer system were statistically correlated solely with precipitation or were more highly correlated with precipitation than with groundwater withdrawals. Changes in Upper Floridan aquifer water levels and in water-surface stage (stage) at Indian and Scoggin Lakes tended to be highly correlated with both precipitation and withdrawals. The greater influence of withdrawals on stage changes, relative to changes in nearby surficial aquifer system water levels, indicates that these karstic lakes may be better connected hydraulically with the underlying Upper Floridan aquifer than is the surficial aquifer system at the other monitoring sites. At most sites, and for both aquifers, the 2-month moving average of precipitation or groundwater withdrawals included as an explanatory variable in the regression models indicates that water-level changes are not only influenced by stressor conditions across the current month, but also by those of the previous month. The relations between changes in water levels, precipitation, and groundwater withdrawals varied seasonally and in response to a period of drought. Water-level changes tended to be most highly correlated with withdrawals during the spring, when relatively large increases contributed to water-level declines, and during the fall when reduced withdrawal rates contributed to water-level recovery. Water-level changes tended to be most highly (or solely) correlated with precipitation in the winter, when withdrawals are minimal, and in the summer when precipitation is greatest. Water-level changes measured during the drought of October 2005 to June 2008 tended to be more highly correlated with groundwater withdrawals at Upper Floridan aquifer sites than at surficial aquifer system sites, results that were similar to those for precipitation-averaged conditions. Also, changes in stage at

  19. An approach to improve direct runoff estimates and reduce uncertainty in the calculated groundwater component in water balances of large lakes

    Science.gov (United States)

    Wiebe, Andrew J.; Conant, Brewster; Rudolph, David L.; Korkka-Niemi, Kirsti

    2015-12-01

    Groundwater is important in the overall water budget of a lake because it affects the quantity and quality of surface water and the ecological health of the lake. The water balance equation is frequently used to estimate the net groundwater flow for small lakes but is seldom used to determine net groundwater flow components for large lakes because: (1) errors accumulate in the calculated groundwater term, and (2) there is an inability to accurately quantify the direct runoff component. In this water balance study of Lake Pyhäjärvi (155 km2) in Finland, it was hypothesized a hydrograph separation model could be used to estimate direct runoff to the lake and, when combined with a rigorous uncertainty analyses, would provide reliable net groundwater flow estimates. The PART hydrograph separation model was used to estimate annual per unit area direct runoff values for the watershed of the inflowing Yläneenjoki River (a subwatershed of the lake) which were then applied to other physically similar subwatersheds of the lake to estimate total direct runoff to the lake. The hydrograph separation method provided superior results and had lower uncertainty than the common approach of using a runoff coefficient based method. The average net groundwater flow into the lake was calculated to be +43 mm per year (+3.0% of average total inflow) for the 38 water years 1971-2008. It varied from -197 mm to 284 mm over that time, and had a magnitude greater than the uncertainty for 17 of the 38 years. The average indirect groundwater contribution to the lake (i.e., the groundwater part of the inflowing rivers) was 454 mm per year (+32% of average total inflow) and demonstrates the overall importance of groundwater. The techniques in this study are applicable to other large lakes and may allow small net groundwater flows to be reliably quantified in settings that might otherwise be unquantifiable or completely lost in large uncertainties.

  20. A hydrological budget (2002-2008) for a large subtropical wetland ecosystem indicates marine groundwater discharge accompanies diminished freshwater flow

    Science.gov (United States)

    Saha, Amartya K.; Moses, Christopher S.; Price, Rene M.; Engel, Victor; Smith, Thomas J.; Anderson, Gordon

    2012-01-01

    Water budget parameters are estimated for Shark River Slough (SRS), the main drainage within Everglades National Park (ENP) from 2002 to 2008. Inputs to the water budget include surface water inflows and precipitation while outputs consist of evapotranspiration, discharge to the Gulf of Mexico and seepage losses due to municipal wellfield extraction. The daily change in volume of SRS is equated to the difference between input and outputs yielding a residual term consisting of component errors and net groundwater exchange. Results predict significant net groundwater discharge to the SRS peaking in June and positively correlated with surface water salinity at the mangrove ecotone, lagging by 1 month. Precipitation, the largest input to the SRS, is offset by ET (the largest output); thereby highlighting the importance of increasing fresh water inflows into ENP for maintaining conditions in terrestrial, estuarine, and marine ecosystems of South Florida.

  1. Gaining the necessary geologic, hydrologic, and geochemical understanding for additional brackish groundwater development, coastal San Diego, California, USA

    Science.gov (United States)

    Danskin, Wesley R.

    2012-01-01

    Local water agencies and the United States Geological Survey are using a combination of techniques to better understand the scant freshwater resources and the much more abundant brackish resources in coastal San Diego, California, USA. Techniques include installation of multiple-depth monitoring well sites; geologic and paleontological analysis of drill cuttings; geophysical logging to identify formations and possible seawater intrusion; sampling of pore-water obtained from cores; analysis of chemical constituents including trace elements and isotopes; and use of scoping models including a three-dimensional geologic framework model, rainfall-runoff model, regional groundwater flow model, and coastal density-dependent groundwater flow model. Results show that most fresh groundwater was recharged during the last glacial period and that the coastal aquifer has had recurring intrusions of fresh and saline water. These intrusions disguise the source, flowpaths, and history of ground water near the coast. The flow system includes a freshwater lens resting on brackish water; a 100-meter-thick flowtube of freshwater discharging under brackish estuarine water and above highly saline water; and broad areas of fine-grained coastal sediment filled with fairly uniform brackish water. Stable isotopes of hydrogen and oxygen indicate the recharged water flows through many kilometers of fractured crystalline rock before entering the narrow coastal aquifer.

  2. Groundwater quality assessment for the Chestnut Ridge Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several hazardous and non-hazardous waste- management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (CRHR), which is one of the three regimes defined for the purposes of groundwater quality monitoring and remediation (Figure 2). The Health, Safety, Environment, and Accountability (HSEA) Division of the Y-12 Plant Environmental Management Department manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  3. Reconnaissance of the geology and ground-water hydrology of the Belle Fourche irrigation project, South Dakota

    Science.gov (United States)

    Rosier, Arthur J.

    1952-01-01

    The Belle Fourche irrigation project is in western South Dakota on the plains adjacent to the northeastern edge of the Black Hills. The project is drained by the Belle Fourche River and is characterized generally by broad shallow valleys that lie between hills with gentle slopes. The climate is semiarid. Most of the area is mantled by residual clay, terrace deposits, and alluvium. The terrace deposits contain much water and are the most permeable deposits in the project area. The alluvial deposits of the Belle Fourche River and of the creeks south of the river contain much sand and gravel and are relatively permeable. The alluvium of the creeks north of the river is predominantly clay and is only slightly permeable; it greatly resembles the residual clay of the weathered bedrock formations, which are mostly shale in this area. Although relatively abundant ground water is found in the unconsolidated materials above the bedrock formations, the ground water from the clayey deposits generally contains too great a concentration of objectionable salts to be fit for human or livestock consumption. The ground water in the more coarse materials is of better quality and in some small areas is satisfactory for domestic use. Most of the water for domestic use is hauled from deep artesian wells within the area. The chief source of ground water is seepage from irrigation canals in the terrace and alluvial deposits. When this water moves to areas of lower permeability a correspondingly greater rise of the water table compensates for the lower permeability and results in the waterlogging of many areas. Open drainage ditches have been constructed in all large areas that are affected by high ground-water levels. Except in those areas that are underlain predominantly by clayey materials, these ditches usually have proven to be satisfactory for the control of ground-water levels. However, lining the canals seems to be a more satisfactory method of preventing the seepage that causes

  4. Fundamentals of watershed hydrology

    Science.gov (United States)

    Pamela J. Edwards; Karl W.J. Williard; Jon E. Schoonover

    2015-01-01

    This is a primer about hydrology, the science of water. Watersheds are the basic land unit for water resource management and their delineation, importance, and variation are explained and illustrated. The hydrologic cycle and its components (precipitation, evaporation, transpiration, soil water, groundwater, and streamflow) which collectively provide a foundation for...

  5. Groundwater quantitative status assessment for River Basin Management Plan 2015-2021 in Slovenia

    Directory of Open Access Journals (Sweden)

    Mišo Andjelov

    2016-12-01

    Full Text Available The improved methodological approach of the groundwater quantitative status assessment in Slovenia and the results of the assessment period 2010-2013, taking into account the new reference thirty-year period 1981- 2010, are presented. Within the assessment period quantitative status in all shallow alluvial aquifers of 21 groundwater bodies in Slovenia is assessed as good, with a medium to high level of confience. Groundwater quantitative status assessment methodology considers the processes of the whole hydrological cycle and the results of groundwater recharge modelling. The methodology incorporates the concept of sustainable groundwater use to preserve the quantities not causing environmental and other harm (unacceptable environmental and other consequences. Legislative baseline for assessing the impacts of groundwater abstraction on renewable and available quantities of groundwater introduces new methodology by abandoning obsolete mining concept of "calculation of groundwater reserves".

  6. Understanding hydrological flow paths in conceptual catchment models using uncertainty and sensitivity analysis

    Science.gov (United States)

    Mockler, Eva M.; O'Loughlin, Fiachra E.; Bruen, Michael

    2016-05-01

    Increasing pressures on water quality due to intensification of agriculture have raised demands for environmental modeling to accurately simulate the movement of diffuse (nonpoint) nutrients in catchments. As hydrological flows drive the movement and attenuation of nutrients, individual hydrological processes in models should be adequately represented for water quality simulations to be meaningful. In particular, the relative contribution of groundwater and surface runoff to rivers is of interest, as increasing nitrate concentrations are linked to higher groundwater discharges. These requirements for hydrological modeling of groundwater contribution to rivers initiated this assessment of internal flow path partitioning in conceptual hydrological models. In this study, a variance based sensitivity analysis method was used to investigate parameter sensitivities and flow partitioning of three conceptual hydrological models simulating 31 Irish catchments. We compared two established conceptual hydrological models (NAM and SMARG) and a new model (SMART), produced especially for water quality modeling. In addition to the criteria that assess streamflow simulations, a ratio of average groundwater contribution to total streamflow was calculated for all simulations over the 16 year study period. As observations time-series of groundwater contributions to streamflow are not available at catchment scale, the groundwater ratios were evaluated against average annual indices of base flow and deep groundwater flow for each catchment. The exploration of sensitivities of internal flow path partitioning was a specific focus to assist in evaluating model performances. Results highlight that model structure has a strong impact on simulated groundwater flow paths. Sensitivity to the internal pathways in the models are not reflected in the performance criteria results. This demonstrates that simulated groundwater contribution should be constrained by independent data to ensure results

  7. Groundwater quality assessment for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The report contains groundwater and surface water quality data obtained during the 1991 calendar year at several hazardous and non- hazardous waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (BCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation (Figure 2). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Division manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  8. Health Risk Assessment for Uranium in Groundwater - An Integrated Case Study Based on Hydrogeological Characterization and Dose Calculation

    Science.gov (United States)

    Franklin, M. R.; Veiga, L. H.; Py, D. A., Jr.; Fernandes, H. M.

    2010-12-01

    The uranium mining and milling facilities of Caetité (URA) is the only active uranium production center in Brazil. Operations take place at a very sensitive semi-arid region in the country where water resources are very scarce. Therefore, any contamination of the existing water bodies may trigger critical consequences to local communities because their sustainability is closely related to the availability of the groundwater resources. Due to the existence of several uranium anomalies in the region, groundwater can present radionuclide concentrations above the world average. The radiological risk associated to the ingestion of these waters have been questioned by members of the local communities, NGO’s and even regulatory bodies that suspected that the observed levels of radionuclide concentrations (specially Unat) could be related to the uranium mining and milling operations. Regardless the origin of these concentrations the fear that undesired health effects were taking place (e.g. increase in cancer incidence) remain despite the fact that no evidence - based on epidemiological studies - is available. This paper intends to present the connections between the local hydrogeology and the radiological characterization of groundwater in the neighboring areas of the uranium production center to understand the implications to the human health risk due to the ingestion of groundwater. The risk assessment was performed, taking into account the radiological and the toxicological risks. Samples from 12 wells have been collected and determinations of Unat, Thnat, 226Ra, 228Ra and 210Pb were performed. The radiation-related risks were estimated for adults and children by the calculation of the annual effective doses. The potential non-carcinogenic effects due to the ingestion of uranium were evaluated by the estimation of the hazard index (HI). Monte Carlo simulations were used to calculate the uncertainty associated with these estimates, i.e. the 95% confidence interval

  9. Hydrogeologic framework, hydrology, and refined conceptual model of groundwater flow for Coastal Plain aquifers at the Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2005-12

    Science.gov (United States)

    Brayton, Michael J.; Cruz, Roberto M.; Myers, Luke; Degnan, James R.; Raffensperger, Jeff P.

    2015-01-01

    From 1966 to 2002, activities at the Standard Chlorine of Delaware chemical facility in New Castle County, Delaware resulted in the contamination of groundwater, soils, and wetland sediment. In 2005, the U.S. Geological Survey (USGS), in partnership with the U.S. Environmental Protection Agency, Region 3, and the Delaware Department of Natural Resources and Environmental Control began a multi-year investigation of the hydrogeologic framework and hydrology of the confined aquifer system. The goals of the ongoing study at the site (the Potomac Aquifer Study) are to determine the hydraulic connection between the Columbia and Potomac aquifers, determine the direction of groundwater flow in the Potomac aquifer, and identify factors affecting the fate of contaminated groundwater. This report describes progress made towards these goals based on available data collected through September 2012.

  10. Balancing practicality and hydrologic realism: a parsimonious approach for simulating rapid groundwater recharge via unsaturated-zone preferential flow

    Science.gov (United States)

    Mirus, Benjamin B.; Nimmo, J.R.

    2013-01-01

    The impact of preferential flow on recharge and contaminant transport poses a considerable challenge to water-resources management. Typical hydrologic models require extensive site characterization, but can underestimate fluxes when preferential flow is significant. A recently developed source-responsive model incorporates film-flow theory with conservation of mass to estimate unsaturated-zone preferential fluxes with readily available data. The term source-responsive describes the sensitivity of preferential flow in response to water availability at the source of input. We present the first rigorous tests of a parsimonious formulation for simulating water table fluctuations using two case studies, both in arid regions with thick unsaturated zones of fractured volcanic rock. Diffuse flow theory cannot adequately capture the observed water table responses at both sites; the source-responsive model is a viable alternative. We treat the active area fraction of preferential flow paths as a scaled function of water inputs at the land surface then calibrate the macropore density to fit observed water table rises. Unlike previous applications, we allow the characteristic film-flow velocity to vary, reflecting the lag time between source and deep water table responses. Analysis of model performance and parameter sensitivity for the two case studies underscores the importance of identifying thresholds for initiation of film flow in unsaturated rocks, and suggests that this parsimonious approach is potentially of great practical value.

  11. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation. This report was prepared for informational purposes. Included are the analytical data for groundwater samples collected from selected monitoring wells during 1991 and the results for quality assurance/quality control (QA/QC) samples associated with each groundwater sample. This report also contains summaries of selected data, including ion-charge balances for each groundwater sample, a summary of analytical results for nitrate (a principle contaminant in the UEFPCHR), results of volatile organic compounds (VOCs) analyses validated using the associated QA/QC sample data, a summary of trace metal concentrations which exceeded drinking-water standards, and a summary of radiochemical analyses and associated counting errors.

  12. Hydrogeology, water quality, water budgets, and simulated responses to hydrologic changes in Santa Rosa and San Simeon Creek ground-water basins, San Luis Obispo County, California

    Science.gov (United States)

    Yates, Eugene B.; Van Konyenburg, Kathryn M.

    1998-01-01

    result in numerous dry wells, seawater intrusion, and subsidence. Digital ground-water-flow models were used to estimate several items in the ground-water budgets and to investigate the effects of pumpage and drought. The models also were used to investigate the hydrologic effects of selected water-resources management alternatives. Selection of alternatives was not constrained by issues related to water rights, which were under dispute during the study. Increases in the area and intensity of irrigation could increase agricultural water demand by 26 to 35 percent, an increase that would lower water levels by as much as 10 feet and possibly cause subsidence in the lower Santa Rosa Basin. An additional municipal well in the lower Santa Rosa Basin could withdraw 100 acre-feet per year without causing seawater intrusion, but subsidence might occur. Transferring 270 acre-feet per year of treated wastewater from a percolation area near the coast to an area about 0.5 mile upstream of the municipal well field in the San Simeon Basin could raise upstream water levels by as much as 12 feet without causing significant water-table mounding or seawater intrusion. Decreases in agricultural pumping after a winter without streamflow could prevent seawater intrusion while allowing municipal pumping to continue at normal rates.

  13. Fast calculation of groundwater exfiltration salinity in a lowland catchment using a lumped celerity/velocity approach

    NARCIS (Netherlands)

    Delsman, Joost R.; De Louw, Perry G.B.; De Lange, Wim; Oude Essink, G.H.P.

    2017-01-01

    To support operational water management of freshwater resources in coastal lowlands, a need exists for a rapid, well-identifiable model to simulate salinity dynamics of exfiltrating groundwater. This paper presents the lumped Rapid Saline Groundwater Exfiltration Model (RSGEM). RSGEM simulates groun

  14. Groundwater hydrology” is redundant

    Science.gov (United States)

    While in the Netherlands a few months ago, I mentioned “groundwater hydrology” to a very well-educated, very literary, and non-hydrologic old friend. She shuddered and told me in no uncertain words that this was a horrible term, completely redundant like a round circle, or as the linguists call it, a pleonasm. This is, of course, because hydrology already means water science (from the Greek words udor, or hydor for water, and logos for science), so that groundwater hydrology really stands for groundwater water science, and surface water hydrology for surface water science.These are pleonasms of the first kind and insults to any language purist, which all of us should strive to be! So I propose that henceforth groundwater hydrology be called subterranean hydrology. Other possibilities would be subsurface hydrology, but this sounds too shallow, or underground hydrology, which, however, could give the impression of some clandestine activity. Besides, subterranean hydrology would be in keeping with the words for groundwater in Latin-based languages (eau souterrain in French, acqua sotierranea in Italian, and aguas subterraneas in Spanish). Also, subterranean hydrology includes the vadose zone, which, of course, groundwater hydrology as such does not. Surface water hydrology would simply be called surface hydrology, and anything above that atmospheric hydrology.

  15. Groundwater regime and calculation of yield response in North China Plain: a case study of Luancheng County in Hebei Province

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The groundwater table has been declining at a rate of 0.65 m/yr in Luancheng County since large scale groundwater extraction carried out in the 1960s. The drop of precipitation, substantial increase in agricultural output, variations of crop planting structure and construction of water conservancy projects in the headwater area all tie up with the decline of the groundwater table. On the basis of analyzing the hydrogeological conditions and the water resources utilization of Luancheng County, a three-dimensional groundwater flow model was developed to simulate the county's groundwater flow through finite-difference method using Visual Modflow software. We divide the research field into four parts after analyzing the hydrogeological condition. Based on parameter calibration and adjustment using measured data, the hydraulic conductivity and specific yield were simulated. Using the calibrated model, we analyze the agricultural water saving potentiality and its influence on the groundwater. The results are as follows: (1) if we decrease the amount of water extracted by 0.14× 108 m3, the average groundwater table of the five observation wells in December will rise by 0.33 m; (2) if we decrease the water by 0.29×10s m3, the average groundwater table of the five observation wells in December will rise by 0.64 m; and (3) if we increase the water by 0.29× 108 m3, the average groundwater table of the five observation wells in December will decline by 0.45 m. So we can draw a conclusion that controlling the agricultural water use is an important way to prevent the decline of groundwater table.

  16. Compilation of geologic, hydrologic, and ground-water flow modeling information for the Spokane Valley-Rathdrum Prairie aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Kahle, Sue C.; Caldwell, Rodney R.; Bartolino, James R.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources and Washington Department of Ecology compiled and described geologic, hydrologic, and ground-water flow modeling information about the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in northern Idaho and northeastern Washington. Descriptions of the hydrogeologic framework, water-budget components, ground- and surface-water interactions, computer flow models, and further data needs are provided. The SVRP aquifer, which covers about 370 square miles including the Rathdrum Prairie, Idaho and the Spokane valley and Hillyard Trough, Washington, was designated a Sole Source Aquifer by the U.S. Environmental Protection Agency in 1978. Continued growth, water management issues, and potential effects on water availability and water quality in the aquifer and in the Spokane and Little Spokane Rivers have illustrated the need to better understand and manage the region's water resources. The SVRP aquifer is composed of sand, gravel, cobbles, and boulders primarily deposited by a series of catastrophic glacial outburst floods from ancient Glacial Lake Missoula. The material deposited in this high-energy environment is coarser-grained than is typical for most basin-fill deposits, resulting in an unusually productive aquifer with well yields as high as 40,000 gallons per minute. In most places, the aquifer is bounded laterally by bedrock composed of granite, metasedimentary rocks, or basalt. The lower boundary of the aquifer is largely unknown except along the margins or in shallower parts of the aquifer where wells have penetrated its entire thickness and reached bedrock or silt and clay deposits. Based on surface geophysics, the thickness of the aquifer is about 500 ft near the Washington-Idaho state line, but more than 600 feet within the Rathdrum Prairie and more than 700 feet in the Hillyard trough based on drilling records. Depth to water in the aquifer is greatest in the northern

  17. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2006-06-01

    data that is completed in two parts: the first addressing the groundwater flow model, and the second the transport model. (2) Development of a groundwater flow model. (3) Development of a groundwater transport model. This report presents the results of the first part of the first step, documenting the data compilation, evaluation, and analysis for the groundwater flow model. The second part, documentation of transport model data will be the subject of a separate report. The purpose of this document is to present the compilation and evaluation of the available hydrologic data and information relevant to the development of the Yucca Flat/Climax Mine CAU groundwater flow model, which is a fundamental tool in the prediction of the extent of contaminant migration. Where appropriate, data and information documented elsewhere are summarized with reference to the complete documentation. The specific task objectives for hydrologic data documentation are as follows: (1) Identify and compile available hydrologic data and supporting information required to develop and validate the groundwater flow model for the Yucca Flat/Climax Mine CAU. (2) Assess the quality of the data and associated documentation, and assign qualifiers to denote levels of quality. (3) Analyze the data to derive expected values or spatial distributions and estimates of the associated uncertainty and variability.

  18. Modeling falling groundwater tables in major cities of the world

    Science.gov (United States)

    Sutanudjaja, Edwin; Erkens, Gilles

    2016-04-01

    Groundwater use and its over-consumption are one of the major drivers in the hydrology of many major cities in the world, particularly in delta regions. Yet, a global assessment to identify cities with declining groundwater table problems has not been done yet. In this study we used the global hydrological model PCR-GLOBWB (10 km resolution, for 1960-2010). Using this model, we globally calculated groundwater recharge and river discharge/surface water levels, as well as global water demand and abstraction from ground- and surface water resources. The output of PCR-GLOBWB model was then used to force a groundwater MODFLOW-based model simulating spatio-temporal groundwater head dynamics, including groundwater head declines in all major cities - mainly in delta regions - due to escalation in abstraction of groundwater to meet increasing water demand. Using these coupled models, we managed to identify a number of critical cities having groundwater table falling rates above 50 cm/year (average in 2000-2010), such as Barcelona, Houston, Los Angeles, Mexico City, New York, Rome and many large cities in China, Libya, India and Pakistan, as well as in Middle East and Central Asia regions. However, our simulation results overestimate the depletion rates in San Jose, Tokyo, Venice, and other cities where groundwater usages have been aggressively managed and replaced by importing surface water from other places. Moreover, our simulation might underestimate the declining groundwater head trends in some familiar cases, such as Bangkok (12 cm/year), Ho Chi Minh City (34 cm/year), and Jakarta (26 cm/year). The underestimation was due to an over-optimistic model assumption in allocating surface water for satisfying urban water needs. In reality, many big cities, although they are located in wet regions and have abundant surface water availability, still strongly rely on groundwater sources due to inadequate facilities to treat and distribute surface water resources.

  19. Assessing land-ocean connectivity via submarine groundwater discharge (SGD) in the Ria Formosa Lagoon (Portugal): combining radon measurements and stable isotope hydrology

    Science.gov (United States)

    Rocha, Carlos; Veiga-Pires, Cristina; Scholten, Jan; Knoeller, Kay; Gröcke, Darren R.; Carvalho, Liliana; Anibal, Jaime; Wilson, Jean

    2016-08-01

    Natural radioactive tracer-based assessments of basin-scale submarine groundwater discharge (SGD) are well developed. However, SGD takes place in different modes and the flow and discharge mechanisms involved occur over a wide range of spatial and temporal scales. Quantifying SGD while discriminating its source functions therefore remains a major challenge. However, correctly identifying both the fluid source and composition is critical. When multiple sources of the tracer of interest are present, failure to adequately discriminate between them leads to inaccurate attribution and the resulting uncertainties will affect the reliability of SGD solute loading estimates. This lack of reliability then extends to the closure of local biogeochemical budgets, confusing measures aiming to mitigate pollution.Here, we report a multi-tracer study to identify the sources of SGD, distinguish its component parts and elucidate the mechanisms of their dispersion throughout the Ria Formosa - a seasonally hypersaline lagoon in Portugal. We combine radon budgets that determine the total SGD (meteoric + recirculated seawater) in the system with stable isotopes in water (δ2H, δ18O), to specifically identify SGD source functions and characterize active hydrological pathways in the catchment. Using this approach, SGD in the Ria Formosa could be separated into two modes, a net meteoric water input and another involving no net water transfer, i.e., originating in lagoon water re-circulated through permeable sediments. The former SGD mode is present occasionally on a multi-annual timescale, while the latter is a dominant feature of the system. In the absence of meteoric SGD inputs, seawater recirculation through beach sediments occurs at a rate of ˜ 1.4 × 106 m3 day-1. This implies that the entire tidal-averaged volume of the lagoon is filtered through local sandy sediments within 100 days ( ˜ 3.5 times a year), driving an estimated nitrogen (N) load of ˜ 350 Ton N yr-1 into the system

  20. Questa baseline and pre-mining ground-water quality investigation. 21. Hydrology and water balance of the Red River basin, New Mexico 1930-2004

    Science.gov (United States)

    Naus, Cheryl A.; McAda, Douglas P.; Myers, Nathan C.

    2006-01-01

    A study of the hydrology of the Red River Basin of northern New Mexico, including development of a pre- mining water balance, contributes to a greater understanding of processes affecting the flow and chemistry of water in the Red River and its alluvial aquifer. Estimates of mean annual precipitation for the Red River Basin ranged from 22.32 to 25.19 inches. Estimates of evapotranspiration for the Red River Basin ranged from 15.02 to 22.45 inches or 63.23 to 94.49 percent of mean annual precipitation. Mean annual yield from the Red River Basin estimated using regression equations ranged from 45.26 to 51.57 cubic feet per second. Mean annual yield from the Red River Basin estimated by subtracting evapotranspiration from mean annual precipitation ranged from 55.58 to 93.15 cubic feet per second. In comparison, naturalized 1930-2004 mean annual streamflow at the Red River near Questa gage was 48.9 cubic feet per second. Although estimates developed using regression equations appear to be a good representation of yield from the Red River Basin as a whole, the methods that consider evapotranspiration may more accurately represent yield from smaller basins that have a substantial amount of sparsely vegetated scar area. Hydrograph separation using the HYSEP computer program indicated that subsurface flow for 1930-2004 ranged from 76 to 94 percent of streamflow for individual years with a mean of 87 percent of streamflow. By using a chloride mass-balance method, ground-water recharge was estimated to range from 7 to 17 percent of mean annual precipitation for water samples from wells in Capulin Canyon and the Hansen, Hottentot, La Bobita, and Straight Creek Basins and was 21 percent of mean annual precipitation for water samples from the Red River. Comparisons of mean annual basin yield and measured streamflow indicate that streamflow does not consistently increase as cumulative estimated mean annual basin yield increases. Comparisons of estimated mean annual yield and

  1. Groundwater dynamics in the complex aquifer system of Gidabo River Basin, southern Main Ethiopian Rift: Evidences from hydrochemistry and isotope hydrology

    Science.gov (United States)

    Degu, Abraham; Birk, Steffen; Dietzel, Martin; Winkler, Gerfried; Moggessie, Aberra

    2014-05-01

    Located in the tectonically active Main Ethiopian Rift system, the Gidabo River Basin in Ethiopia has a complex hydrogeological setting. The strong physiographic variation from highland to rift floor, variability in volcanic structures and disruption of lithologies by cross-cutting faults contribute for their complex nature of hydrogeology in the area. Until now, the groundwater dynamics and the impact of the tectonic setting on groundwater flow in this region are not well understood, though the local population heavily depends on groundwater as the major water supply. A combined approach based on hydrochemical and isotopic data was applied to investigate the regional flow dynamics of the groundwater and the impact of tectonic setting. Groundwater evolves from slightly mineralized Ca-Mg-HCO3 on the highland to highly mineralized Na-HCO3 dominating type in the deep rift floor aquifers. δ18O and δD composition of groundwater show a general progressive enrichment from the highland to the rift floor, except in thermal and deep rift floor aquifers. Relatively the thermal and deep rift floor aquifers are depleted and show similar signature to the groundwaters of highland, indicating groundwater inflow from the highland. Correspondingly, rising HCO3 and increasingly enriched signatures of δ 13C points to hydrochemical evolution of DIC and diffuse influx of mantle CO2 into the groundwater system. Thermal springs gushing out along some of the fault zones, specifically in the vicinity of Dilla town, display clear influence of mantle CO2 and are an indication of the role of the faults acting as a conduit for deep circulating thermal water to the surface. By considering the known geological structures of the rift, hydrochemical and isotopic data we propose a conceptual groundwater flow model by characterizing flow paths to the main rift axis. The connection between groundwater flow and the impact of faults make this model applicable to other active rift systems with similar

  2. Unsaturated-zone fast-path flow calculations for Yucca Mountain groundwater travel time analyses (GWTT-94)

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, B.W.; Altman, S.J. [Sandia National Labs., Albuquerque, NM (United States); Robey, T.H. [Spectra Research Institute, Albuquerque, NM (United States)] [and others

    1995-08-01

    Evaluation of groundwater travel time (GWTT) is required as part of the investigation of the suitability of Yucca Mountain as a potential high-level nuclear-waste repository site. The Nuclear Regulatory Commission`s GWTT regulation is considered to be a measure of the intrinsic ability of the site to contain radionuclide releases from the repository. The work reported here is the first step in a program to provide an estimate of GWTT at the Yucca Mountain site in support of the DOE`s Technical Site Suitability and as a component of a license application. Preliminary estimation of the GWTT distribution in the unsaturated zone was accomplished using a numerical model of the physical processes of groundwater flow in the fractured, porous medium of the bedrock. Based on prior investigations of groundwater flow at the site, fractures are thought to provide the fastest paths for groundwater flow; conditions that lead to flow in fractures were investigated and simulated. Uncertainty in the geologic interpretation of Yucca Mountain was incorporated through the use of geostatistical simulations, while variability of hydrogeologic parameters within each unit was accounted for by the random sampling of parameter probability density functions. The composite-porosity formulation of groundwater flow was employed to simulate flow in both the matrix and fracture domains. In this conceptualization, the occurrence of locally saturated conditions within the unsaturated zone is responsible for the initiation of fast-path flow through fractures. The results of the GWTT-94 study show that heterogeneity in the hydraulic properties of the model domain is an important factor in simulating local regions of high groundwater saturation. Capillary-pressure conditions at the surface boundary influence the extent of the local saturation simulated.

  3. Determination of hydrologic properties needed to calculate average linear velocity and travel time of ground water in the principal aquifer underlying the southeastern part of Salt Lake Valley, Utah

    Science.gov (United States)

    Freethey, G.W.; Spangler, L.E.; Monheiser, W.J.

    1994-01-01

    A 48-square-mile area in the southeastern part of the Salt Lake Valley, Utah, was studied to determine if generalized information obtained from geologic maps, water-level maps, and drillers' logs could be used to estimate hydraulic conduc- tivity, porosity, and slope of the potentiometric surface: the three properties needed to calculate average linear velocity of ground water. Estimated values of these properties could be used by water- management and regulatory agencies to compute values of average linear velocity, which could be further used to estimate travel time of ground water along selected flow lines, and thus to determine wellhead protection areas around public- supply wells. The methods used to estimate the three properties are based on assumptions about the drillers' descriptions, the depositional history of the sediments, and the boundary con- ditions of the hydrologic system. These assump- tions were based on geologic and hydrologic infor- mation determined from previous investigations. The reliability of the estimated values for hydro- logic properties and average linear velocity depends on the accuracy of these assumptions. Hydraulic conductivity of the principal aquifer was estimated by calculating the thickness- weighted average of values assigned to different drillers' descriptions of material penetrated during the construction of 98 wells. Using these 98 control points, the study area was divided into zones representing approximate hydraulic- conductivity values of 20, 60, 100, 140, 180, 220, and 250 feet per day. This range of values is about the same range of values used in developing a ground-water flow model of the principal aquifer in the early 1980s. Porosity of the principal aquifer was estimated by compiling the range of porosity values determined or estimated during previous investigations of basin-fill sediments, and then using five different values ranging from 15 to 35 percent to delineate zones in the study area that were assumed to

  4. Groundwater and climate change: mitigating the global groundwater crisis and adapting to climate change model

    Science.gov (United States)

    To better understand the effects of climate change on global groundwater resources, the United Nations Educational, Scientific, and Cultural Organization (UNESCO) International Hydrological Programme (IHP) initiated the GRAPHIC (Groundwater Resources Assessment under the Pressures of Humanity and Cl...

  5. Global-scale modeling of groundwater recharge

    Science.gov (United States)

    Döll, P.; Fiedler, K.

    2008-05-01

    Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the-art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3

  6. Modelling water flow and seasonal soil moisture dynamics in analluvial groundwater-fed wetland

    Directory of Open Access Journals (Sweden)

    I. Joris

    2003-01-01

    Full Text Available Complex interactions occur in riparian wetlands between groundwater, surface water and climatic conditions. Knowledge of the hydrology of these systems is necessary to understand their functioning and their value and models are a useful and probably essential tool to capture their hydrological complexity. In this study, a 2D-model describing saturated-unsaturated water flow is applied to a transect through a groundwater-fed riparian wetland located along the middle reach of the river Dijle. The transect has high levees close to the river and a depression further into the floodplain. Scaling factors are introduced to describe the variability of soil hydraulic properties along the transect. Preliminary model calculations for one year show a good agreement between model calculations and measurements and demonstrate the capability of the model to capture the internal groundwater dynamics. Seasonal variations in soil moisture are reproduced well by the model thus translating external hydrological boundary conditions to root zone conditions. The model proves to be a promising tool for assessing effects of changes in hydrological boundary conditions on vegetation type distribution and to gain more insight in the highly variable internal flow processes of riparian wetlands. Keywords: riparian wetland,eco-hydrology, upward seepage, floodplain hydrology

  7. Using an Integrated Surface Water - Groundwater Flow Model for Evaluating the Hydrologic Impacts of Historic and Potential Future Dry Periods on Simulated Water Budgets in the Santa Rosa Plain Watershed, Northern California, USA

    Science.gov (United States)

    Hevesi, J. A.; Woolfenden, L. R.; Nishikawa, T.

    2014-12-01

    Communities in the Santa Rosa Plain watershed (SRPW), Sonoma County, CA, USA are experiencing increasing demand for limited water resources. Streamflow in the SRPW is runoff dominated; however, groundwater also is an important resource in the basin. The watershed has an area of 262 mi2 that includes natural, agricultural, and urban land uses. To evaluate the hydrologic system, an integrated hydrologic model was developed using the U.S. Geological Survey coupled groundwater and surface-water flow model, GSFLOW. The model uses a daily time step and a grid-based discretization of the SRPW consisting of 16,741 10-acre cells for 8 model layers to simulate all water budget components of the surface and subsurface hydrologic system. Simulation results indicate significant impacts on streamflow and recharge in response to the below average precipitation during the dry periods. The recharge and streamflow distributions simulated for historic dry periods were compared to future dry periods projected from 4 GCM realizations (two different GCMs and two different CO2 forcing scenarios) for the 21st century, with the dry periods defined as 3 consecutive years of below average precipitation. For many of the projected dry periods, the decreases in recharge and streamflow were greater than for the historic dry periods due to a combination of lower precipitation and increases in simulated evapotranspiration for the warmer 21st century projected by the GCM realizations. The greatest impact on streamflow for both historic and projected future dry periods is the diminished baseflow from late spring to early fall, with an increase in the percentage of intermittent and dry stream reaches. The results indicate that the coupled model is a useful tool for water managers to better understand the potential effects of future dry periods on spatially and temporally distributed streamflow and recharge, as well as other components of the water budget.

  8. Subdaily evapotranspiration rate calculation from streamflow summer diel signal

    Science.gov (United States)

    Gribovszki, Z.; Kalicz, P.; Szilágyi, J.

    2009-04-01

    Diel signal of hydrological variables (e.g., shallow groundwater level or streamflow rate) are rarely investigated in the hydrologic literature although these short-term fluctuations may incorporate useful information for the characterization of hydro-ecological systems. Riparian vegetation (especially forest) typically has a great influence on groundwater level and groundwater-sustained baseflow, therefore calculation of the correct evapotranspiration rates is very important for natural protection tasks and water resources management. Recently a new technique was developed by us to calculate daily or even subdaily evapotranspiration rates from groundwater-level measurements, and that method now is modified to estimate evapotranspiration rates from the baseflow diel signal only. The method was successfully tested with hydro-meteorological data from the Hidegvíz Valley experimental catchment in the Sopron Hills at the western border of Hungary. The evapotranspiration rates calculated from the groundwater signal only, are typically (a magnitude) higher than those obtained with an already existing method. With the application of our new technique exploiting the baseflow diel signal of the stream, evapotranspiration rates, very similar to those gained from groundwater level readings and the Penman-Monteith equation, can be obtained. Keywords: baseflow diel signal, evapotranspiration, riparian zone

  9. Hydrological heterogeneity in agricultural riparian buffer strips

    Science.gov (United States)

    Hénault-Ethier, Louise; Larocque, Marie; Perron, Rachel; Wiseman, Natalie; Labrecque, Michel

    2017-03-01

    Riparian buffer strips (RBS) may protect surface water and groundwater in agricultural settings, although their effectiveness, observed in field-scale studies, may not extend to a watershed scale. Hydrologically-controlled leaching plots have often shown RBS to be effective at buffering nutrients and pesticides, but uncontrolled field studies have sometimes suggested limited effectiveness. The limited RBS effectiveness may be explained by the spatiotemporal hydrological heterogeneity near non-irrigated fields. This hypothesis was tested in conventional corn and soy fields in the St. Lawrence Lowlands of southern Quebec (Canada), where spring melt brings heavy and rapid runoff, while summer months are hot and dry. One field with a mineral soil (Saint-Roch-de-l'Achigan) and another with an organic-rich soil (Boisbriand) were equipped with passive runoff collectors, suction cup lysimeters, and piezometers placed before and after a 3 m-wide RBS, and monitored from 2011 to 2014. Soil topography of the RBS was mapped to a 1 cm vertical precision and a 50 cm sampling grid. On average, surface runoff intersects the RBS perpendicularly, but is subject to substantial local heterogeneity. Groundwater saturates the root zones, but flows little at the time of snowmelt. Groundwater flow is not consistently perpendicular to the RBS, and may reverse, flowing from stream to field under low water flow regimes with stream-aquifer connectivity, thus affecting RBS effectiveness calculations. Groundwater flow direction can be influenced by stratigraphy, local soil hydraulic properties, and historical modification of the agricultural stream beds. Understanding the spatiotemporal heterogeneity of surface and groundwater flows is essential to correctly assess the effectiveness of RBS in intercepting agro-chemical pollution. The implicit assumption that water flows across vegetated RBS, from the field to the stream, should always be verified.

  10. Biotic, water-quality, and hydrologic metrics calculated for the analysis of temporal trends in National Water Quality Assessment Program Data in the Western United States

    Science.gov (United States)

    Wiele, Stephen M.; Brasher, Anne M.D.; Miller, Matthew P.; May, Jason T.; Carpenter, Kurt D.

    2012-01-01

    The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program was established by Congress in 1991 to collect long-term, nationally consistent information on the quality of the Nation's streams and groundwater. The NAWQA Program utilizes interdisciplinary and dynamic studies that link the chemical and physical conditions of streams (such as flow and habitat) with ecosystem health and the biologic condition of algae, aquatic invertebrates, and fish communities. This report presents metrics derived from NAWQA data and the U.S. Geological Survey streamgaging network for sampling sites in the Western United States, as well as associated chemical, habitat, and streamflow properties. The metrics characterize the conditions of algae, aquatic invertebrates, and fish. In addition, we have compiled climate records and basin characteristics related to the NAWQA sampling sites. The calculated metrics and compiled data can be used to analyze ecohydrologic trends over time.

  11. Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model study

    Directory of Open Access Journals (Sweden)

    F. C. Sperna Weiland

    2012-03-01

    Full Text Available Potential evaporation (PET is one of the main inputs of hydrological models. Yet, there is limited consensus on which PET equation is most applicable in hydrological climate impact assessments. In this study six different methods to derive global scale reference PET daily time series from Climate Forecast System Reanalysis (CFSR data are compared: Penman-Monteith, Priestley-Taylor and original and re-calibrated versions of the Hargreaves and Blaney-Criddle method. The calculated PET time series are (1 evaluated against global monthly Penman-Monteith PET time series calculated from CRU data and (2 tested on their usability for modeling of global discharge cycles.

    A major finding is that for part of the investigated basins the selection of a PET method may have only a minor influence on the resulting river flow. Within the hydrological model used in this study the bias related to the PET method tends to decrease while going from PET, AET and runoff to discharge calculations. However, the performance of individual PET methods appears to be spatially variable, which stresses the necessity to select the most accurate and spatially stable PET method. The lowest root mean squared differences and the least significant deviations (95% significance level between monthly CFSR derived PET time series and CRU derived PET were obtained for a cell-specific re-calibrated Blaney-Criddle equation. However, results show that this re-calibrated form is likely to be unstable under changing climate conditions and less reliable for the calculation of daily time series. Although often recommended, the Penman-Monteith equation applied to the CFSR data did not outperform the other methods in a evaluation against PET derived with the Penman-Monteith equation from CRU data. In arid regions (e.g. Sahara, central Australia, US deserts, the equation resulted in relatively low PET values and, consequently, led to relatively high discharge values for dry basins (e

  12. Monitoring Groundwater Variations from Satellite Gravimetry and Hydrological Models: A Comparison with in-situ Measurements in the Mid-Atlantic Region of the United States

    Directory of Open Access Journals (Sweden)

    Ruya Xiao

    2015-01-01

    Full Text Available Aimed at mapping time variations in the Earth’s gravity field, the Gravity Recovery and Climate Experiment (GRACE satellite mission is applicable to access terrestrial water storage (TWS, which mainly includes groundwater, soil moisture (SM, and snow. In this study, SM and accumulated snow water equivalent (SWE are simulated by the Global Land Data Assimilation System (GLDAS land surface models (LSMs and then used to isolate groundwater anomalies from GRACE-derived TWS in Pennsylvania and New York States of the Mid-Atlantic region of the United States. The monitoring well water-level records from the U.S. Geological Survey Ground-Water Climate Response Network from January 2005 to December 2011 are used for validation. The groundwater results from different combinations of GRACE products (from three institutions, CSR, GFZ and JPL and GLDAS LSMs (CLM, NOAH and VIC are compared and evaluated with in-situ measurements. The intercomparison analysis shows that the solution obtained through removing averaged simulated SM and SWE of the three LSMs from the averaged GRACE-derived TWS of the three centers would be the most robust to reduce the noises, and increase the confidence consequently. Although discrepancy exists, the GRACE-GLDAS estimated groundwater variations generally agree with in-situ observations. For monthly scales, their correlation coefficient reaches 0.70 at 95% confidence level with the RMSE of the differences of 2.6 cm. Two-tailed Mann-Kendall trend test results show that there is no significant groundwater gain or loss in this region over the study period. The GRACE time-variable field solutions and GLDAS simulations provide precise and reliable data sets in illustrating the regional groundwater storage variations, and the application will be meaningful and invaluable when applied to the data-poor regions.

  13. Relation of hydrologic processes to groundwater and surface-water levels and flow directions in a dune-beach complex at Indiana Dunes National Lakeshore and Beverly Shores, Indiana

    Science.gov (United States)

    Buszka, Paul M.; Cohen, David A.; Lampe, David C.; Pavlovic, Noel B.

    2011-01-01

    Shores. Perennial mounding of the water table in the surficial aquifer indicates that the recharge that created the water-table mound originates within the dune-beach complex and not through flow from the adjacent hydrologic boundaries: the restored wetland, Lake Michigan, and Derby Ditch. Infiltrating precipitation causes most seasonal and episodic rises in groundwater levels beneath the dune-beach complex. Groundwater-level fluctuations lasting days to weeks in the dune-beach complex in 2008-9 were superimposed on a seasonal high water-table altitude that began with the recharge from snowmelt and rain in February 2009 and maintained through July 2009. Increases in water-table-mound altitude under the dune-beach complex recurred in 2008-9 in response to the largest rain events of 1 inch or more and to snowmelt. Smaller, shorter-term rises in water level after individual rain events persisted over hours to less than 1 week. Groundwater-level fluctuations varied over a relatively narrow range of about 2 to 3 feet, with no net fluctuations greater than 4 feet. Groundwater levels in or near low parts of the dune-beach complex were frequently within 0 to 6 feet of the land surface and indicate the potential for groundwater flooding. Groundwater-level gradients from the water-table mound to wells next to surface-water discharges increase after rainfall and snowmelt events and recede slowly as groundwater discharges from the aquifer. Evapotranspiration is responsible for part of the general pattern of decreasing water-table altitudes observed from May to August 2009. Rapid water-level rises in the restored wetland after precipitation do not likely have an effect on groundwater flooding elsewhere in the dune-beach complex. Surface-water-level fluctuations during this study generally varied over a narrower range, approximately from 1 to 1.5 feet, as compared with groundwater fluctuations, except after a very large, 10.77-inch rainfall. Time-delayed and smaller groundwater-level

  14. Eco-Hydrological Modelling of Stream Valleys

    DEFF Research Database (Denmark)

    Johansen, Ole

    Predicting the effects of hydrological alterations on terrestrial stream valley ecosystems requires multidisciplinary approaches involving both engineers and ecologists. Groundwater discharge in stream valleys and other lowland areas support a number of species rich ecosystems, and their protection...... is prioritised worldwide. Protection requires improved knowledge on the functioning of these ecosystems and especially the linkages between vegetation, groundwater discharge and water level conditions are crucial for management applications. Groundwater abstraction affects catchment hydrology and thereby also...... groundwater discharge. Numerical hydrological modelling has been widely used for evaluation of sustainable groundwater resources and effects of abstraction, however, the importance of local scale heterogeneity becomes increasingly important in the assessment of local damage to these groundwater dependent...

  15. Identification of the influencing factors on groundwater drought and depletion in north-western Bangladesh

    Science.gov (United States)

    Mustafa, Syed Md. Touhidul; Abdollahi, Khodayar; Verbeiren, Boud; Huysmans, Marijke

    2017-08-01

    Groundwater drought is a specific type of hydrological drought that concerns groundwater bodies. It may have a significant adverse effect on the socio-economic, agricultural, and environmental conditions. Investigating the effect of different climatic and anthropogenic factors on groundwater drought provides essential information for sustainable planning and management of (ground) water resources. The aim of this study is to identify the influencing factors on groundwater drought in north-western Bangladesh, to understand the forcing mechanisms. A multi-step methodology is proposed to achieve this objective. The standardised precipitation index (SPI) and reconnaissance drought index (RDI) have been used to quantify the aggregated deficit between precipitation and the evaporative demand of the atmosphere, i.e. meteorological drought. The influence of land-cover patterns on the groundwater drought has been identified by calculating spatially distributed groundwater recharge as a function of land cover. Groundwater drought is defined by a threshold method. The results show that the evapotranspiration and rainfall deficits are determining meteorological drought, which shows a direct relation with groundwater recharge deficits. Land-cover change has a small effect on groundwater recharge but does not seem to be the main cause of groundwater-level decline (depletion) in the study area. The groundwater depth and groundwater-level deficit (drought) is continuously increasing with little correlation to meteorological drought or recharge anomalies. Overexploitation of groundwater for irrigation seems to be the main cause of groundwater-level decline in the study area. Efficient irrigation management is essential to reduce the growing pressure on groundwater resources and ensure sustainable water management.

  16. Identification of the influencing factors on groundwater drought and depletion in north-western Bangladesh

    Science.gov (United States)

    Mustafa, Syed Md. Touhidul; Abdollahi, Khodayar; Verbeiren, Boud; Huysmans, Marijke

    2017-02-01

    Groundwater drought is a specific type of hydrological drought that concerns groundwater bodies. It may have a significant adverse effect on the socio-economic, agricultural, and environmental conditions. Investigating the effect of different climatic and anthropogenic factors on groundwater drought provides essential information for sustainable planning and management of (ground) water resources. The aim of this study is to identify the influencing factors on groundwater drought in north-western Bangladesh, to understand the forcing mechanisms. A multi-step methodology is proposed to achieve this objective. The standardised precipitation index (SPI) and reconnaissance drought index (RDI) have been used to quantify the aggregated deficit between precipitation and the evaporative demand of the atmosphere, i.e. meteorological drought. The influence of land-cover patterns on the groundwater drought has been identified by calculating spatially distributed groundwater recharge as a function of land cover. Groundwater drought is defined by a threshold method. The results show that the evapotranspiration and rainfall deficits are determining meteorological drought, which shows a direct relation with groundwater recharge deficits. Land-cover change has a small effect on groundwater recharge but does not seem to be the main cause of groundwater-level decline (depletion) in the study area. The groundwater depth and groundwater-level deficit (drought) is continuously increasing with little correlation to meteorological drought or recharge anomalies. Overexploitation of groundwater for irrigation seems to be the main cause of groundwater-level decline in the study area. Efficient irrigation management is essential to reduce the growing pressure on groundwater resources and ensure sustainable water management.

  17. Groundwater recharge from point to catchment scale

    Science.gov (United States)

    Leterme, Bertrand; Di Ciacca, Antoine; Laloy, Eric; Jacques, Diederik

    2016-04-01

    Accurate estimation of groundwater recharge is a challenging task as only a few devices (if any) can measure it directly. In this study, we discuss how groundwater recharge can be calculated at different temporal and spatial scales in the Kleine Nete catchment (Belgium). A small monitoring network is being installed, that is aimed to monitor the changes in dominant processes and to address data availability as one goes from the point to the catchment scale. At the point scale, groundwater recharge is estimated using inversion of soil moisture and/or water potential data and stable isotope concentrations (Koeniger et al. 2015). At the plot scale, it is proposed to monitor the discharge of a small drainage ditch in order to calculate the field groundwater recharge. Electrical conductivity measurements are necessary to separate shallow from deeper groundwater contribution to the ditch discharge (see Di Ciacca et al. poster in session HS8.3.4). At this scale, two or three-dimensional process-based vadose zone models will be used to model subsurface flow. At the catchment scale though, using a mechanistic, process-based model to estimate groundwater recharge is debatable (because of, e.g., the presence of numerous drainage ditches, mixed land use pixels, etc.). We therefore investigate to which extent various types of surrogate models can be used to make the necessary upscaling from the plot scale to the scale of the whole Kleine Nete catchment. Ref. Koeniger P, Gaj M, Beyer M, Himmelsbach T (2015) Review on soil water isotope based groundwater recharge estimations. Hydrological Processes, DOI: 10.1002/hyp.10775

  18. Geology, hydrology, water quality, and potential for interbasin invasive-species spread by way of the groundwater pathway near Lemont, Illinois

    Science.gov (United States)

    Kay, Robert T.; Mills, Patrick C.; Jackson, P. Ryan

    2016-08-23

    Invasive species such as Asian carps have the potential to travel in the egg, larval, or fry stages from the Des Plaines River (DPR) to the Chicago Sanitary and Ship Canal (CSSC) by way of the network of secondary-permeability features in the dolomite aquifer between these water bodies. Such movement would circumvent the electric fish barrier on the canal and allow Asian carps to travel unimpeded into Lake Michigan. This potential pathway for the spread of Asian carps and other invasive species was evaluated by the U.S. Geological Survey.The bed of the DPR appears to be in at least partial contact with the exposed bedrock in most of the area from about 1 mile west of Kingery Highway to Romeo Road (the study area). Areas of exposed bedrock are the most likely places for Asian carps to enter the groundwater system from the DPR. Water levels in the DPR typically are about 7–16 feet higher than those in the CSSC in most of the study area. This difference in water level provides the driving force for the potential spread of Asian carps from the DPR to the CSSC by way of groundwater.Groundwater flow (and potentially invasive-species movement) is through an interconnected network of permeable vertical and horizontal fractures within the Silurian dolomite bedrock. At least some of the fractures are associated with paleo-karst features. Several investigative techniques identified horizontal permeable fractures at about 546–552 feet above the North American Vertical Datum of 1988 within about 55 feet of the CSSC in the focus area between Lemont Road and Interstate 355. The elevation of the bottom of the CSSC in this area is about 551 feet, indicating that a direct conduit for flow of groundwater to the CSSC may be present. Wells further away from the CSSC in this area do not intercept fractures, so the fracture network may not be continuous between the DPR and the CSSC. These data are consistent with field observations of the secondary-permeability network along the CSSC

  19. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Attachment 3, Groundwater hydrology report. Revised final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites. According to the Uranium Mill Tailings Radiation Control Act of 1978, (UMTRCA) the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined this assessment shall include information on hydrogeologic site characterization. The water resources protection strategy that describes how the proposed action will comply with the EPA groundwater protection standards is presented in Attachment 4. Site characterization activities discussed in this section include: Characterization of the hydrogeologic environment; characterization of existing groundwater quality; definition of physical and chemical characteristics of the potential contaminant source; and description of local water resources.

  20. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    Science.gov (United States)

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, Jody L.; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation

  1. Sustainable groundwater management in California

    Science.gov (United States)

    Phillips, Steven P.; Rogers, Laurel Lynn; Faunt, Claudia

    2015-12-01

    The U.S. Geological Survey (USGS) uses data collection, modeling tools, and scientific analysis to help water managers plan for, and assess, hydrologic issues that can cause “undesirable results” associated with groundwater use. This information helps managers understand trends and investigate and predict effects of different groundwater-management strategies.

  2. Validating a spatially distributed hydrological model with soil morphology data

    Directory of Open Access Journals (Sweden)

    T. Doppler

    2013-10-01

    Full Text Available Spatially distributed hydrological models are popular tools in hydrology and they are claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time-series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be judged. An example of spatial predictions in hydrology is the prediction of saturated areas in agricultural catchments. These areas can be important source areas for the transport of agrochemicals to the stream. We set up a spatially distributed model to predict saturated areas in a 1.2 km2 catchment in Switzerland with moderate topography. Around 40% of the catchment area are artificially drained. We measured weather data, discharge and groundwater levels in 11 piezometers for 1.5 yr. For broadening the spatially distributed data sets that can be used for model calibration and validation, we translated soil morphological data available from soil maps into an estimate of the duration of soil saturation in the soil horizons. We used redox-morphology signs for these estimates. This resulted in a data set with high spatial coverage on which the model predictions were validated. In general, these saturation estimates corresponded well to the measured groundwater levels. We worked with a model that would be applicable for management decisions because of its fast calculation speed and rather low data requirements. We simultaneously calibrated the model to the groundwater levels in the piezometers and discharge. The model was able to reproduce the general hydrological behavior of the catchment in terms of discharge and absolute groundwater levels. However, the accuracy of the groundwater level predictions was not high enough to be used for the prediction of saturated areas

  3. The concept of hydrologic landscapes

    Science.gov (United States)

    Winter, T.C.

    2001-01-01

    Hydrologic landscapes are multiples or variations of fundamental hydrologic landscape units. A fundamental hydrologic landscape unit is defined on the basis of land-surface form, geology, and climate. The basic land-surface form of a fundamental hydrologic landscape unit is an upland separated from a lowland by an intervening steeper slope. Fundamental hydrologic landscape units have a complete hydrologic system consisting of surface runoff, ground-water flow, and interaction with atmospheric water. By describing actual landscapes in terms of land-surface slope, hydraulic properties of soils and geologic framework, and the difference between precipitation and evapotranspiration, the hydrologic system of actual landscapes can be conceptualized in a uniform way. This conceptual framework can then be the foundation for design of studies and data networks, syntheses of information on local to national scales, and comparison of process research across small study units in a variety of settings. The Crow Wing River watershed in central Minnesota is used as an example of evaluating stream discharge in the context of hydrologic landscapes. Lake-research watersheds in Wisconsin, Minnesota, North Dakota, and Nebraska are used as an example of using the hydrologic-landscapes concept to evaluate the effect of ground water on the degree of mineralization and major-ion chemistry of lakes that lie within ground-water flow systems.

  4. Sodium and chloride levels in rainfall, mist, streamwater and groundwater at the Plynlimon catchments, mid-Wales: inferences on hydrological and chemical controls

    Directory of Open Access Journals (Sweden)

    C. Neal

    2000-01-01

    Full Text Available Variations in sodium and chloride in atmospheric inputs (rainfall and mist, stream runoff and groundwater stores are documented for the upper Severn River (Afon Hafren and Afon Hore catchments, Plynlimon, mid-Wales. The results show five salient features. Sodium and chloride concentrations are highly variable and highly correlated in rainfall and mist. The sodium-chloride relationship in rainfall has a slope close to the sodium/chloride ratio in sea-water, and an intercept that is not significantly different from zero. This indicates that sea-salt is the dominant source of both sodium and chloride in rainfall, which would be expected given the maritime nature of the metrology. For mist, there is also a straight line with near-zero intercept, but with a slightly higher gradient than the sea-salt ratio, presumably due to small additional sodium inputs from other sources. There is an approximate input-output balance for both sodium and chloride, with the exception of one groundwater well, in which high chemical weathering results in an anomalous high Na/Cl ratio. Thus, atmospheric deposition is the dominant source of both sodium and chloride in groundwater and streamflow. The fluctuations in sodium and chloride concentrations in the streams and groundwaters are strongly damped compared to those in the rain and the mist, reflecting the storage and mixing of waters in the subsurface. On all timescales, from weeks to years, sodium fluctuations are more strongly damped than chloride fluctuations in streamflow. The additional damping of sodium is consistent with ion exchange buffering of sodium in the catchment soils.  Sodium and chloride concentrations are linearly correlated in the streams and groundwaters, but the slope is almost universally less than the sea-salt ratio and there is a non-zero intercept. The Na/Cl ratio in streamflow and groundwater is higher than the sea-salt ratio when salinity is low and lower than the sea-salt ratio when

  5. Strontium isotope geochemistry of alluvial groundwater: a tracer for groundwater resources characterisation

    Directory of Open Access Journals (Sweden)

    P. Négrel

    2004-01-01

    Full Text Available This study presents strontium isotope and major ion data of shallow groundwater and river water from the Ile du Chambon catchment, located on the Allier river in the Massif Central (France. There are large variations in the major-element contents in the surface- and groundwater. Plotting of Na vs. Cl contents and Ca, Mg, NO3, K, SO4, HCO3, Sr concentrations reflect water–rock interaction (carbonate dissolution for Ca, Mg, HCO3 and Sr because the bedrock contains marly limestones, agricultural input (farming and fertilising and sewage effluents (for NO3, K, SO4, although some water samples are unpolluted. Sr contents and isotope ratios (87Sr/86Sr vary from 0.70892 to 0.71180 along the hydrological cycle in the groundwater agree with previous work on groundwater in alluvial aquifers in the Loire catchment. The data plot along three directions in a 87Sr/86Sr v. 1/Sr diagram as a result of mixing, involving at least three geochemical signatures–Allier river water, and two distinct signatures that might be related to different water-rock interactions in the catchment. Mixing proportions are calculated and discussed. The alluvial aquifer of the Ile du Chambon catchment is considered, within the Sr isotope systematic, in a larger scheme that includes several alluvial aquifers of the Loire Allier catchment. Keywords: : Loire river, major and trace elements, Sr isotopic ratio, alluvial aquifer, hydrology

  6. Hydrologic conditions, recharge, and baseline water quality of the surficial aquifer system at Jekyll Island, Georgia, 2012-13

    Science.gov (United States)

    Gordon, Debbie W.; Torak, Lynn J.

    2016-03-08

    An increase of groundwater withdrawals from the surficial aquifer system on Jekyll Island, Georgia, prompted an investigation of hydrologic conditions and water quality by the U.S. Geological Survey during October 2012 through December 2013. The study demonstrated the importance of rainfall as the island’s main source of recharge to maintain freshwater resources by replenishing the water table from the effects of hydrologic stresses, primarily evapotranspiration and pumping. Groundwater-flow directions, recharge, and water quality of the water-table zone on the island were investigated by installing 26 shallow wells and three pond staff gages to monitor groundwater levels and water quality in the water-table zone. Climatic data from Brunswick, Georgia, were used to calculate potential maximum recharge to the water-table zone on Jekyll Island. A weather station located on the island provided only precipitation data. Additional meteorological data from the island would enhance potential evapotranspiration estimates for recharge calculations.

  7. Characterization of Flow Paths, Residence Time and Media Chemistry in Complex Landscapes to Integrate Surface, Groundwater and Stream Processes and Inform Models of Hydrologic and Water Quality Response to Land Use Activities; Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Bitew, Menberu [Univ. of Georgia Research Foundation, Inc., Athens, GA (United States); Jackson, Rhett [University of Georgia Research Foundation, Inc.

    2015-02-01

    The objective of this report is to document the methodology used to calculate the three hydro-geomorphic indices: C Index, Nhot spot, and Interflow Contributing Area (IFC Area). These indices were applied in the Upper Four Mile Creek Watershed in order to better understand the potential mechanisms controlling retention time, path lengths, and potential for nutrient and solute metabolism and exchange associated with the geomorphic configurations of the upland contributing areas, groundwater, the riparian zone, and stream channels.

  8. Numerical modeling of geothermal groundwater flow in karst aquifer system in eastern Weibei, Shaanxi Province, China

    Institute of Scientific and Technical Information of China (English)

    LI Ming; LI GuoMin; YANG Liao; DANG XueYa; ZHAO ChunHu; HOU GuangCai; ZHANG MaoSheng

    2007-01-01

    The quantitative assessment of geothermal water resources is important to the exploitation and utilization of geothermal resources. In the geothermal water systems the density of groundwater changes with the temperature, therefore the variations in hydraulic heads and temperatures are very complicated. A three-dimensional density-dependent model coupling the groundwater flow and heat transport is established and used to simulate the geothermal water flow in the karst aquifers in eastern Weibei,Shaanxi Province, China. The multilayered karst aquifer system in the study area is cut by some major faults which control the regional groundwater flow. In order to calibrate and simulate the effect of the major faults, each fault is discretized as a belt of elements with special hydrological parameters in the numerical model. The groundwater dating data are used to be integrated with the groundwater flow pattern and calibrate the model. Simulation results show that the calculated hydraulic heads and temperature fit with the observed data well.

  9. The numerical calculation of hydrological processes in the coastal zone of the Black Sea region in the city of Poti

    Science.gov (United States)

    Saghinadze, Ivane; Pkhakadze, Manana

    2016-04-01

    (The article was published with support of the Sh. Rustaveli National Science Foundation) The serious environmental problems started in Poti after transfer of the main flow of the river Rioni to the north. As a result the flooding of the city stopped, but the reduction of water consumption in the city channel, caused a decrease of the sediments carried away by the river, what leads to coastal erosion. The coast changes are connected with the movement of the waves and currents in the coastal part of the sea. In the paper, the three-dimensional mathematical model of sediment transport and coastal zone lithodynamics is developed. The finite element formulations for the problems of wave modes, coastal currents, sediment transport and evolution of the coastal zone of the sea, are given. The numerical algorithms, implemented in the form of software. Programs are allowing to bring the solutions of the tasks to numerical results. The numerical modeling was developed in three stages. In the first stage the topography of the coast and the initial geometry of the structures are considered as an input parameters. Then, coastal wave field is calculated for the conditions prescribed in the initial wave. In the second stage, the calculated wave field is used to estimate the spatial distribution of the radiation stresses near-bottom orbital velocity. In the third stage the coastal wave fields and flow fields are used in the sub-models of sediment transport and changes in the topography of the coast. In the numerical solution of basic equations of motion of the waves, coastal currents and changes in sea bottom topography we use: finite element, finite difference methods and the method of upper relaxation, Crank-Nicolson scheme. As an example, we are giving the results of research of the wave regime in the coastal area of the city of Poti (700X600m) adjacent to the port of Poti. The bottom profile, in this area is rather complicated. During the calculations of the average rise of

  10. Groundwater types in Southeast Srem

    Directory of Open Access Journals (Sweden)

    Gregorić Enike

    2009-01-01

    Full Text Available The region of Southeast Srem is rich in ground waters, which is of great significance to agricultural production. The objective of this paper was to designate the zones of different groundwater types from the aspect of recharge, based on the analysis of groundwater regimes in the study area. A very complex groundwater regime in Southeast Srem, which depends on a great number of natural and some anthropogenic factors, makes it difficult to designate clearly the zones of the three main types of groundwater regime. Still, the boundaries of the zones of groundwater regime types were defined based on the results of correlation analysis of the basic factors affecting the groundwater regime. Zone I includes the climatic type of groundwater. Its fluctuation corresponds to the vertical factors of water balance (precipitation and evaporation and it is not affected by the river water level. This zone extends North and East of the line Putinci, Golubinci, Stara Pazova, Batajnica, Dobanovci, mainly in the area of the loess plateau. Within the zone, groundwater is at a relatively great depth. Only exceptionally, in the valleys, it appears almost on the surface. Zone II includes the climatic-hydrological groundwater type, which is the transition between the climatic type and the hydrological type. The fluctuation of groundwater regime is affected both by the effect of vertical balance factors, and by the effect of watercourses. Climatic-hydrological groundwater type covers the central and the lowest part of the study area and the South part of the middle terrace. Zone III is classified as the hydrological groundwater type and it covers the riparian areas along the Sava and the Danube. The aquifer is hydraulically connected with the river Sava.

  11. Effect of sea-level rise and climate change on groundwater salinity and agro-hydrology in a low coastal region of the Netherlands

    NARCIS (Netherlands)

    Stuyt, L.C.P.M.; Kabat, P.; Postma, J.; Pomper, A.B.

    1995-01-01

    Scenario studies were carried out to predict the effects of doubled carbon dioxide levels, a 1 °C temperature increase and a 1.2 m sea level rise on seepage, groundwater and crop production. Climatic change was simulated, showing increased precipitation. Simulation of effects of sea level rise on

  12. REACH SPECIFIC CHANNEL STABILIZATION BASED ON COMPREHENSIVE EVALUATION OF VALLEY FILL HISTORY, ALLUVIAL ARCHITECTURE AND GROUNDWATER HYDROLOGY IN A MOUNTAIN STREAM IN THE CENTRAL GREAT BASIN, NEVADA

    Science.gov (United States)

    Kingston meadow, located in the Toiyabe Range, is one of many wet meadow complexes threatened by rapid channel incision in the mountain ranges of the central Great Basin. Channel incision can lower the baselevel for groundwater discharge and de-water meadow complexes resulting in...

  13. Groundwater in the hydrological functioning of wetlands in the Southeast of Buenos Aires Province, Argentina; El agua subterranea en el funcionamiento hidrologico de los humedales del Sudeste Bonaerense, Provincia de Buenos Aires, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Romanelli, A.; Quiroz, O.M.; Massone, H.E.; Martinez, D.E.; Bocanegra, E.

    2010-07-01

    The understanding of the hydrological functioning and the interaction among the different water bodies in an area is essential when a sustainable use of the hydric resources is considered. The hydrogeochemical interpretation of representative water-sample analyses is a useful tool developed for the analysis of hydrological systems. Isotopic techniques are also important tools for the validation and adjustment of conceptual hydrogeological models. The aim of the present paper is to develop depth of knowledge of the conceptual hydrogeological models for wetlands of the Pampa Plain by using hydrochemical and stable isotopic techniques. Three wetlands of different origin were sampled for hydrochemical and stable isotopic analysis (18O and 2H) at different depths. Groundwater and streams were also sampled. Hydrochemical analysis classified La Brava and Los Padres basins as sodium bicarbonate waters, and La Salada Basin as sodium chloride bicarbonate waters. Differences in the isotopic fingerprints and the electrical conductivity values were evident among wetlands: 6.766,8, 762,2 y 647,8 iS/cm in La Salada, Los Padres and La Brava respectively. Hydrochemical and isotopic data allowed us to define the effluent-influent behavior of these wetlands, their main recharge sources and their importance as aquifer recharge areas. (Author).

  14. Comparing Sediment Yield Predictions from Different Hydrologic Modeling Schemes

    Science.gov (United States)

    Dahl, T. A.; Kendall, A. D.; Hyndman, D. W.

    2015-12-01

    Sediment yield, or the delivery of sediment from the landscape to a river, is a difficult process to accurately model. It is primarily a function of hydrology and climate, but influenced by landcover and the underlying soils. These additional factors make it much more difficult to accurately model than water flow alone. It is not intuitive what impact different hydrologic modeling schemes may have on the prediction of sediment yield. Here, two implementations of the Modified Universal Soil Loss Equation (MUSLE) are compared to examine the effects of hydrologic model choice. Both the Soil and Water Assessment Tool (SWAT) and the Landscape Hydrology Model (LHM) utilize the MUSLE for calculating sediment yield. SWAT is a lumped parameter hydrologic model developed by the USDA, which is commonly used for predicting sediment yield. LHM is a fully distributed hydrologic model developed primarily for integrated surface and groundwater studies at the watershed to regional scale. SWAT and LHM models were developed and tested for two large, adjacent watersheds in the Great Lakes region; the Maumee River and the St. Joseph River. The models were run using a variety of single model and ensemble downscaled climate change scenarios from the Coupled Model Intercomparison Project 5 (CMIP5). The initial results of this comparison are discussed here.

  15. How Darcy's Law sparked various fields of subsurface hydrology.

    Science.gov (United States)

    de Rooij, Gerrit H.

    2016-04-01

    Henry Darcy built the drinking water supply system of the French city of Dijon in the mid-19th century. In doing so, he developed an interest in the flow of water through sands, and, experimented with water flow in a vertical cylinder filled with different sands. He found Darcy's Law in this way, and until this day it is the cornerstone of the theory of water flow in porous media. Darcy's Law was quickly adopted for calculating groundwater flow, which blossomed after the introduction of a few very useful simplifying assumptions that permitted a host of analytical solutions to groundwater problems, including flows toward pumped drinking water wells and toward drain tubes. In soil hydrology, Darcy's Law itself required modification to facilitate its application for different soil water contents. The understanding of the relationship between the potential energy of soil water and the soil water content emerged early in the 20th century. The mathematical formalization of the consequences for the flow rate and storage change of soil water was established in the 1930s, but only after the 1970s did computers become powerful enough to tackle unsaturated flows head-on. In combination with crop growth models, this allowed Darcy-based models to aid in the setup of irrigation practices and to optimize drainage designs. In the past decades, spatial variation of the hydraulic properties of aquifers and soils has been shown to affect the transfer of solutes from soils to groundwater and from groundwater to surface water. All this emerged from a law derived from a few experiments on a cylinder filled with sand in the 1850s. The poster tracks this development of groundwater hydrology and soil water hydrology through seminal contributions over the past 160 years.

  16. TRACER: an EXCEL workbook to calculate mean residence time in groundwater by use of tracers CFC-11, CFC-12 and tritium

    Science.gov (United States)

    Bayari, Serdar

    2002-06-01

    An EXCEL workbook is presented for calculating the mean residence time of groundwater based on the environmental tracers, tritium, CFC-11 and CFC-12. The program TRACER is written in Visual Basic for Application language and uses piston, exponential, linear, exponential-piston and linear-piston flow types of lumped-parameter models. Input and output data are stored in worksheets and a graph of results that are best fitted to observations is drawn for visual evaluation. Recharge temperature and altitude are used to convert atmospheric partial pressures of CFC-11 and CFC-12 to dissolved concentrations to provide a direct comparison between the models' output and observed data. The model can also be used to check whether an inferred flow type could be valid in the groundwater system being investigated. Other radioactive and gaseous environmental tracers and reactions such as, sorption and degradation can be included either as decay constant or with modifications in the program code. TRACER matches, satisfactorily, the results obtained from other softwares.

  17. Groundwater Waters

    Directory of Open Access Journals (Sweden)

    Ramón Llamas

    1999-10-01

    Full Text Available The groundwaters released through springs constituted a basic element for the survival and progressive development of human beings. Man came to learn how to take better advantage of these waters by digging wells, irrigation channels, and galleries. Nevertheless, these activities do not require cooperation nor the collective agreement of relatively large groups of people, as in the case of creating the necessary structures to take advantage of the resources of surfacewaters. The construction and operation of these structures was a powerful factor in the birth of an urban or civil society – the designated water civilizations. The difference between people taking advantage of groundwater, quasi-individually, and those of surface water, where people work in a group, has continued to the present day. Whereas earlier, this difference did not bring about any special problems, the technological advances of this century, especially theturbine pump, have led to a spectacular increase in the use of roundwater. This advance has significantly contributed to reducing hunger in the world and has provided potable water in developing countries. However, the almost generalized lack of planning and control in the exploitation of these groundwaters reflects that they are little or badly understood by the managers of water policy in almost every country. As such, problems have occurred which have often become exaggerated, giving rise to water-myths. These problems, though, should be addressed if the aim is the sustainable usage of surface water as well as groundwater. To counter any misconceptions and to seek solutions to the problems, distinct plans of action can be highlighted: educating the public; fomenting a system of participative management and decisive support for the communities of users of subterranean waters; integrating a sufficient number of experts in hydrology in the various water management organizations;and assuring transparency of the data on

  18. Understanding similarity of groundwater systems with empirical copulas

    Science.gov (United States)

    Haaf, Ezra; Kumar, Rohini; Samaniego, Luis; Barthel, Roland

    2016-04-01

    Within the classification framework for groundwater systems that aims for identifying similarity of hydrogeological systems and transferring information from a well-observed to an ungauged system (Haaf and Barthel, 2015; Haaf and Barthel, 2016), we propose a copula-based method for describing groundwater-systems similarity. Copulas are an emerging method in hydrological sciences that make it possible to model the dependence structure of two groundwater level time series, independently of the effects of their marginal distributions. This study is based on Samaniego et al. (2010), which described an approach calculating dissimilarity measures from bivariate empirical copula densities of streamflow time series. Subsequently, streamflow is predicted in ungauged basins by transferring properties from similar catchments. The proposed approach is innovative because copula-based similarity has not yet been applied to groundwater systems. Here we estimate the pairwise dependence structure of 600 wells in Southern Germany using 10 years of weekly groundwater level observations. Based on these empirical copulas, dissimilarity measures are estimated, such as the copula's lower- and upper corner cumulated probability, copula-based Spearman's rank correlation - as proposed by Samaniego et al. (2010). For the characterization of groundwater systems, copula-based metrics are compared with dissimilarities obtained from precipitation signals corresponding to the presumed area of influence of each groundwater well. This promising approach provides a new tool for advancing similarity-based classification of groundwater system dynamics. Haaf, E., Barthel, R., 2015. Methods for assessing hydrogeological similarity and for classification of groundwater systems on the regional scale, EGU General Assembly 2015, Vienna, Austria. Haaf, E., Barthel, R., 2016. An approach for classification of hydrogeological systems at the regional scale based on groundwater hydrographs EGU General Assembly

  19. Impact of hydrological alterations on river-groundwater exchange and water quality in a semi-arid area: Nueces River, Texas.

    Science.gov (United States)

    Murgulet, Dorina; Murgulet, Valeriu; Spalt, Nicholas; Douglas, Audrey; Hay, Richard G

    2016-12-01

    There is a lack of understanding and methods for assessing the effects of anthropogenic disruptions, (i.e. river fragmentation due to dam construction) on the extent and degree of groundwater-surface water interaction and geochemical processes affecting the quality of water in semi-arid, coastal catchments. This study applied a novel combination of electrical resistivity tomography (ERT) and elemental and isotope geochemistry in a coastal river disturbed by extended drought and periodic flooding due to the operation of multiple dams. Geochemical analyses show that the saltwater barrier causes an increase in salinity in surface water in the downstream river as a result of limited freshwater inflows, strong evaporation effects on shallow groundwater and mostly stagnant river water, and is not due to saltwater intrusion by tidal flooding. Discharge from bank storage is dominant (~84%) in the downstream fragment and its contribution could increase salinity levels within the hyporheic zone and surface water. When surface water levels go up due to upstream freshwater releases the river temporarily displaces high salinity water trapped in the hyporheic zone to the underlying aquifer. Geochemical modeling shows a higher contribution of distant and deeper groundwater (~40%) in the upstream river and lower discharge from bank storage (~13%) through the hyporheic zone. Recharge from bank storage is a source of high salt to both upstream and downstream portions of the river but its contribution is higher below the dam. Continuous ERT imaging of the river bed complements geochemistry findings and indicate that while lithologically similar, downstream of the dam, the shallow aquifer is affected by salinization while fresher water saturates the aquifer in the upstream fragment. The relative contribution of flows (i.e. surface water releases or groundwater discharge) as related to the river fragmentation control changes of streamwater chemistry and likely impact the interpretation

  20. Forest hydrology

    Science.gov (United States)

    Ge Sun; Devendra Amatya; Steve McNulty

    2016-01-01

    Forest hydrology studies the distribution, storage, movement, and quality of water and the hydrological processes in forest-dominated ecosystems. Forest hydrological science is regarded as the foundation of modern integrated water¬shed management. This chapter provides an overview of the history of forest hydrology and basic principles of this unique branch of...

  1. Groundwater Hydrology and Chemistry in and near an Emulsified Vegetable-Oil Injection Zone, Solid Waste Management Unit 17, Naval Weapons Station Charleston, North Charleston, South Carolina, 2004-2009

    Science.gov (United States)

    Vroblesky, Don A.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Casey, Clifton C.

    2010-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated the hydrology and groundwater chemistry in the vicinity of an emulsified vegetable-oil injection zone at Solid Waste Management Unit (SWMU) 17, Naval Weapons Station Charleston, North Charleston, South Carolina. In May 2004, Solutions-IES initiated a Phase-I pilot-scale treatability study at SWMU17 involving the injection of an edible oil emulsion into the aquifer near wells 17PS-01, 17PS-02, and 17PS-03 to treat chlorinated solvents. The Phase-I injection of emulsified vegetable oil resulted in dechlorination of trichloroethene (TCE) to cis-1,2-dichloroethene (cDCE), but the dechlorination activity appeared to stall at cDCE, with little further dechlorination of cDCE to vinyl chloride (VC) or to ethene. The purpose of the present investigation was to examine the groundwater hydrology and chemistry in and near the injection zone to gain a better understanding of the apparent remediation stall. It is unlikely that the remediation stall was due to the lack of an appropriate microbial community because groundwater samples showed the presence of Dehalococcoides species (sp.) and suitable enyzmes. The probable causes of the stall were heterogeneous distribution of the injectate and development of low-pH conditions in the injection area. Because groundwater pH values in the injection area were below the range considered optimum for dechlorination activity, a series of tests was done to examine the effect on dechlorination of increasing the pH within well 17PS-02. During and following the in-well pH-adjustment tests, VC concentrations gradually increased in some wells in the injection zone that were not part of the in-well pH-adjustment tests. These data possibly reflect a gradual microbial acclimation to the low-pH conditions produced by the injection. In contrast, a distinct increase in VC concentration was observed in well 17PS-02 following the in-well pH increase. Adjustment

  2. Limits to global groundwater consumption

    Science.gov (United States)

    de Graaf, I.; Van Beek, L. P.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2016-12-01

    Groundwater is the largest accessible freshwater resource worldwide and is of critical importance for irrigation, and so for global food security. For many regions of the world where groundwater abstraction exceeds groundwater recharge, persistent groundwater depletion occurs. A direct consequence of depletion is falling groundwater levels, reducing baseflows to rivers, harming ecosystems. Also, pumping costs increase, wells dry up and land subsidence can occur. Water demands are expected to increase further due to growing population, economic development and climate change, posing the urgent question how sustainable current water abstractions are worldwide and where and when these abstractions approach conceivable limits with all the associated problems. Here, we estimated past and future trends (1960-2050) in groundwater levels resulting from changes in abstractions and climate and predicted when limits of groundwater consumption are reached. We explored these limits by predicting where and when groundwater levels drop that low that groundwater becomes unattainable for abstractions and how river flows are affected. Water availabilities, abstractions, and lateral groundwater flows are simulated (5 arcmin. resolution) using a coupled version of the global hydrological model PCR-GLOBWB and a groundwater model based on MODFLOW. The groundwater model includes a parameterization of the worlds confined and unconfined aquifer systems, needed for a realistic simulation of groundwater head dynamics. Results show that, next to the existing regions experiencing groundwater depletion (like India, Pakistan, Central Valley) new regions will develop, e.g. Southern Europe, the Middle East, and Africa. Using a limit that reflects present-day feasibility of groundwater abstraction, we estimate that in 2050 groundwater becomes unattainable for 20% of the global population, mainly in the developing countries and pumping cost will increase significantly. Largest impacts are found

  3. Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.

    2014-01-01

    The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

  4. Data assimilation in hydrological modelling

    DEFF Research Database (Denmark)

    Drecourt, Jean-Philippe

    Data assimilation is an invaluable tool in hydrological modelling as it allows to efficiently combine scarce data with a numerical model to obtain improved model predictions. In addition, data assimilation also provides an uncertainty analysis of the predictions made by the hydrological model...... with model non-linearities and biased errors. A literature review analyzes the most popular techniques and their application in hydrological modelling. Since bias is an important problem in groundwater modelling, two bias aware Kalman filters have been implemented and compared using an artificial test case...

  5. Limits to Global Groundwater Consumption

    Science.gov (United States)

    Graaf, I. D.; Van Beek, R.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2015-12-01

    In regions with frequent water stress and large aquifer systems, groundwater is often used as an additional fresh water source. For many regions of the world groundwater abstraction exceeds groundwater recharge and persistent groundwater depletion occurs. The most direct effect of groundwater depletion is declining of water tables, leading to reduced groundwater discharge needed to sustain base-flow to e.g. rivers. Next to that, pumping costs increase, wells dry up and land subsidence occurs. These problems are expected to increase in the near future due to growing population and climate changes. This poses the urgent question of what the limits are of groundwater consumption worldwide. We simulate global water availability (5 arc-minute resolution, for 1960-2050) using the hydrological model PCR-GLOBWB (van Beek et al. 2011), coupled to a groundwater model based on MODFLOW (de Graaf et al. 2015), allowing for groundwater - surface water interactions. The groundwater model includes a parameterization of world's confined and unconfined aquifer systems needed for a realistic simulation of groundwater head dynamics. Water demands are included (from Wada et al. 2014). We study the limits to water consumption, focusing on locally attainable groundwater and groundwater levels critical to rivers to sustain low flows. We show an increasing trend (1960-2050) in groundwater head declines, due to increase in groundwater demand. Also, stream flow will decrease and low flow conditions will occur more frequent and will be longer in duration in the near future, especially for irrigated areas. Next to that, we provide a global overview of the years it takes until groundwater gets unattainable for e.g. a local farmer (100 m below land-surface used as a proxy), and estimate the increase in pumping cost for the near future. The results show where and when limits of groundwater consumption are reached globally.

  6. Radon as a hydrological indicator

    Energy Technology Data Exchange (ETDEWEB)

    Komae, Takami [National Research Inst. of Agricultural Engineering, Tsukuba, Ibaraki (Japan)

    1997-02-01

    The radon concentration in water is measured by a liquid scintillation method. After the radioactive equilibrium between radon and the daughter nuclides was attained, the radon concentration was determined by the liquid scintillation analyzer. {alpha}-ray from radon, then two {beta}- and two {alpha}-ray from the daughter nuclei group were released, so that 500% of the apparent counting efficiency was obtained. The detector limit is about 0.03 Bq/l, the low value, which corresponds to about 5.4x10{sup -15} ppm. By determining the radon concentration in groundwater, behavior of radon in hydrological process, the groundwater exchange caused by pumping and exchange between river water and groundwater were investigated. The water circulation analysis by means of radon indicator in the environment was shown. By using the large difference of radon concentration between in river water and in groundwater, arrival of injected water to the sampling point of groundwater was detected. (S.Y.)

  7. Catalogue of methods of calculation, interpolation, smoothing, and reduction for the physical, chemical, and biological parameters of deep hydrology (CATMETH) (NODC Accession 7700442)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The document presents the methods, formulas and citations used by the BNDO to process physical, chemical, and biological data for deep hydrology including...

  8. Interpolations of groundwater table elevation in dissected uplands.

    Science.gov (United States)

    Chung, Jae-won; Rogers, J David

    2012-01-01

    The variable elevation of the groundwater table in the St. Louis area was estimated using multiple linear regression (MLR), ordinary kriging, and cokriging as part of a regional program seeking to assess liquefaction potential. Surface water features were used to determine the minimum water table for MLR and supplement the principal variables for ordinary kriging and cokriging. By evaluating the known depth to the water and the minimum water table elevation, the MLR analysis approximates the groundwater elevation for a contiguous hydrologic system. Ordinary kriging and cokriging estimate values in unsampled areas by calculating the spatial relationships between the unsampled and sampled locations. In this study, ordinary kriging did not incorporate topographic variations as an independent variable, while cokriging included topography as a supporting covariable. Cross validation suggests that cokriging provides a more reliable estimate at known data points with less uncertainty than the other methods. Profiles extending through the dissected uplands terrain suggest that: (1) the groundwater table generated by MLR mimics the ground surface and elicits a exaggerated interpolation of groundwater elevation; (2) the groundwater table estimated by ordinary kriging tends to ignore local topography and exhibits oversmoothing of the actual undulations in the water table; and (3) cokriging appears to give the realistic water surface, which rises and falls in proportion to the overlying topography. The authors concluded that cokriging provided the most realistic estimate of the groundwater surface, which is the key variable in assessing soil liquefaction potential in unconsolidated sediments.

  9. Tracing and quantifying groundwater inflow into lakes using radon-222

    Directory of Open Access Journals (Sweden)

    T. Kluge

    2007-06-01

    Full Text Available Due to its high activities in groundwater, the radionuclide 222Rn is a sensitive natural tracer to detect and quantify groundwater inflow into lakes, provided the comparatively low activities in the lakes can be measured accurately. Here we present a simple method for radon measurements in the low-level range down to 3 Bq m−3, appropriate for groundwater-influenced lakes, together with a concept to derive inflow rates from the radon budget in lakes. The analytical method is based on a commercially available radon detector and combines the advantages of established procedures with regard to efficient sampling and sensitive analysis. Large volume (12 l water samples are taken in the field and analyzed in the laboratory by equilibration with a closed air loop and alpha spectrometry of radon in the gas phase. After successful laboratory tests, the method has been applied to a small dredging lake without surface in- or outflow in order to estimate the groundwater contribution to the hydrological budget. The inflow rate calculated from a 222Rn balance for the lake is around 530 m3 per day, which is comparable to the results of previous studies. In addition to the inflow rate, the vertical and horizontal radon distribution in the lake provides information on the spatial distribution of groundwater inflow to the lake. The simple measurement and sampling technique encourages further use of radon to examine groundwater-lake interaction.

  10. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater quality data and calculated rate of contaminant migration, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  11. VALLECITO HYDROLOGY

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  12. Calendar year 1995 groundwater quality report for the Chestnut Ridge Hydrogeological Regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. 1995 Groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater quality data obtained during the 1995 calendar year (CY) at several hazardous and nonhazardous waste management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The U.S. Environmental Protection Agency (EPA) identification number for the Y-12 Plant is TN.

  13. Introduction to the geologic and geophysical studies of Fort Irwin, California: Chapter A in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    Science.gov (United States)

    Buesch, David C.

    2014-01-01

    Geologic and geophysical investigations in the vicinity of Fort Irwin National Training Center, California, have been completed in support of groundwater investigations, and are presented in eight chapters of this report. A generalized surficial geologic map along with field and borehole investigations conducted during 2010–11 provide a lithostratigraphic and structural framework for the area during the Cenozoic. Electromagnetic properties of resistivity were measured in the laboratory on hand and core samples, and compared to borehole geophysical resistivity data. These data were used in conjunction with ground-based time-domain and airborne data and interpretations to provide a framework for the shallow lithologic units and structure. Gravity and aeromagnetic maps cover areas ~4 to 5 times that of Fort Irwin. Each chapter includes hydrogeologic applications of the data or model results.

  14. Airborne electromagnetic data and processing within Leach Lake Basin, Fort Irwin, California: Chapter G in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    Science.gov (United States)

    Bedrosian, Paul A.; Ball, Lyndsay B.; Bloss, Benjamin R.

    2014-01-01

    From December 2010 to January 2011, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of Leach Lake Basin within the National Training Center, Fort Irwin, California. These data were collected to characterize the subsurface and provide information needed to understand and manage groundwater resources within Fort Irwin. A resistivity stratigraphy was developed using ground-based time-domain electromagnetic soundings together with laboratory resistivity measurements on hand samples and borehole geophysical logs from nearby basins. This report releases data associated with the airborne surveys, as well as resistivity cross-sections and depth slices derived from inversion of the airborne electromagnetic data. The resulting resistivity models confirm and add to the geologic framework, constrain the hydrostratigraphy and the depth to basement, and reveal the distribution of faults and folds within the basin.

  15. Gravity survey and interpretation of Fort Irwin and vicinity, Mojave Desert, California: Chapter H in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    Science.gov (United States)

    Jachens, Robert C.; Langenheim, V.E.; Buesch, David C.

    2014-01-01

    In support of a hydrogeologic study of the groundwater resources on Fort Irwin, we have combined new gravity data with preexisting measurements to produce an isostatic residual gravity map, which we then separated into two components reflecting (1) the density distribution in the pre-Cenozoic basement complex and (2) the distribution of low-density Cenozoic volcanic and sedimentary deposits that lie on top of the basement complex. The second component was inverted to estimate the three-dimensional distribution of Cenozoic deposits by using constraints from geology, drillholes, and time-domain electromagnetic soundings. In most of the base, the Cenozoic deposits are no more than 300 m thick, except in the basins with more than 500 m of fill beneath Coyote Lake, Red Pass Lake, west of Nelson Lake, west of Superior Lake, Bicycle Lake, and in the vicinity of Nelson Lake.

  16. Chemical dissolution-front instability associated with water-rock reactions in groundwater hydrology: Analyses of porosity-permeability relationship effects

    Science.gov (United States)

    Zhao, Chongbin; Hobbs, B. E.; Ord, A.

    2016-09-01

    Because dissolution of rocks may create and enhance groundwater flow channels, the chemical dissolution-front instability (CDFI) can control the quality of groundwater. This paper presents the theoretical analyses of porosity-permeability relationship effects on the CDFI in water-saturated porous rocks. Since the CDFI in a water-rock reaction system can be assessed by comparing the comprehensive dimensionless dynamic characteristic (CDDC) number with the corresponding critical CDDC number of the geochemical dissolution system, it is necessary to investigate theoretically how different porosity-permeability relationships can affect the CDDC number and critical CDDC number of a water-rock reaction system. With the commonly-used Kozeny-Carman (KC) formula taken as a reference porosity-permeability formula, the permeability variation indicator (PVI), which is defined as the ratio of the permeability obtained from any porosity-permeability formula to that obtained from the KC formula, is proposed to reflect the effect of the porosity-permeability formula on the CDFI in a water-rock reaction system. The theoretical results demonstrated that: (1) since the porosity-permeability formula with a higher PVI can result in a stronger Darcy flow velocity, it may have a significant influence on the CDFI in the water-rock reaction system. (2) With an increase in the PVI of a porosity-permeability formula, there is a decrease in the critical CDDC number of the water-rock reaction system. This means that the porous rock with a higher PVI can enable the CDFI to take place much easier in the water-rock reaction system. (3) The use of the porosity-permeability formula with a higher PVI can also cause an increase in both the dimensionless growth rate of a perturbation and the propagation speed of the chemical dissolution front in the water-rock reaction system.

  17. Generalized surficial geologic map of the Fort Irwin area, San Bernadino: Chapter B in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    Science.gov (United States)

    Miller, David M.; Menges, Christopher M.; Lidke, David J.; Buesch, David C.

    2014-01-01

    The geology and landscape of the Fort Irwin area, typical of many parts of the Mojave Desert, consist of rugged mountains separated by broad alluviated valleys that form the main coarse-resolution features of the geologic map. Crystalline and sedimentary rocks, Mesozoic and older in age, form most of the mountains with lesser accumulations of Miocene sedimentary and volcanic rocks. In detail, the area exhibits a fairly complex distribution of surficial deposits resulting from diverse rock sources and geomorphology that has been driven by topographic changes caused by recent and active faulting. Depositional environments span those typical of the Mojave Desert: alluvial fans on broad piedmonts, major intermittent streams along valley floors, eolian sand dunes and sheets, and playas in closed valleys that lack through-going washes. Erosional environments include rocky mountains, smooth gently sloping pediments, and badlands in readily eroded sediment. All parts of the landscape, from regional distribution of mountains, valleys, and faults to details of degree of soil development in surface materials, are portrayed by the surficial geologic map. Many of these attributes govern infiltration and recharge, and the surface distribution of permeable rock units such as Miocene sedimentary and volcanic rocks provides a basis for evaluating potential groundwater storage. Quaternary faults are widespread in the Fort Irwin area and include sinistral, east-striking faults that characterize the central swath of the area and the contrasting dextral, northwest-striking faults that border the east and west margins. Bedrock distribution and thickness of valley-fill deposits are controlled by modern and past faulting, and faults on the map help to identify targets for groundwater exploration.

  18. Data assimilation in hydrological modelling

    DEFF Research Database (Denmark)

    Drecourt, Jean-Philippe

    Data assimilation is an invaluable tool in hydrological modelling as it allows to efficiently combine scarce data with a numerical model to obtain improved model predictions. In addition, data assimilation also provides an uncertainty analysis of the predictions made by the hydrological model...... with model non-linearities and biased errors. A literature review analyzes the most popular techniques and their application in hydrological modelling. Since bias is an important problem in groundwater modelling, two bias aware Kalman filters have been implemented and compared using an artificial test case....... In this thesis, the Kalman filter is used for data assimilation with a focus on groundwater modelling. However the developed techniques are general and can be applied also in other modelling domains. Modelling involves conceptualization of the processes of Nature. Data assimilation provides a way to deal...

  19. Addendum for the Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0 (page changes)

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2007-05-01

    This document, which makes changes to Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, S-N/99205--077, Revision 0 (June 2006), was prepared to address review comments on this final document provided by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 4, 2006. The document includes revised pages that address NDEP review comments and comments from other document users. Change bars are included on these pages to identify where the text was revised. In addition to the revised pages, the following clarifications are made for the two plates inserted in the back of the document: • Plate 4: Disregard the repeat of legend text ‘Drill Hole Name’ and ‘Drill Hole Location’ in the lower left corner of the map. • Plate 6: The symbol at the ER-16-1 location (white dot on the lower left side of the map) is not color-coded because no water level has been determined. The well location is included for reference. • Plate 6: The symbol at the ER-12-1 location (upper left corner of the map), a yellow dot, represents the lower water level elevation. The higher water level elevation, represented by a red dot, was overprinted.

  20. Effects of brush management on the hydrologic budget and water quality in and adjacent to Honey Creek State Natural Area, Comal County, Texas, 2001--10

    Science.gov (United States)

    Banta, J. Ryan; Slattery, Richard N.

    2012-01-01

    Woody vegetation, including ashe juniper (Juniperus ashei), has encroached on some areas in central Texas that were historically oak grassland savannah. Encroachment of woody vegetation is generally attributed to overgrazing and fire suppression. Removing the ashe juniper and allowing native grasses to reestablish in the area as a brush management conservation practice (hereinafter referred to as "brush management") might change the hydrology in the watershed. These hydrologic changes might include changes to surface-water runoff, evapotranspiration, or groundwater recharge. The U.S. Geological Survey (USGS), in cooperation with Federal, State, and local partners, examined the hydrologic effects of brush management in two adjacent watersheds in Comal County, Tex. Hydrologic data were collected in the watersheds for 3-4 years (pre-treatment) depending on the type of data, after which brush management occurred on one watershed (treatment watershed) and the other was left in its original condition (reference watershed). Hydrologic data were collected in the study area for another 6 years (post-treatment). These hydrologic data included rainfall, streamflow, evapotranspiration, and water quality. Groundwater recharge was not directly measured, but potential groundwater recharge was calculated by using a simplified mass balance approach. This fact sheet summarizes highlights of the study from the USGS Scientific Investigations Report on which it is based.

  1. Prediction maps of land subsidence caused by groundwater exploitation in Hanoi, Vietnam

    Directory of Open Access Journals (Sweden)

    Thinh Hong Phi

    2015-12-01

    Full Text Available The article presents study results of the land subsidence caused by groundwater exploitation in Hanoi, Vietnam. The study includes collection and analysis of data on geology, hydrology, soil properties and settlements observed at 10 monitoring stations as well as models of the time-dependent settlement. The calculated settlements are relatively close to actual monitoring data. The models were done for prediction of the land subsidence at 92 selected points by the finite element method. Prediction maps are made for prediction of the land subsidence in 2020 and 2030. Recommendations are proposed for potential zones of groundwater exploitation in Hanoi.

  2. Analysis of confidence in continental-scale groundwater recharge estimates for Africa using a distributed water balance model

    Science.gov (United States)

    Mackay, Jonathan; Mansour, Majdi; Bonsor, Helen; Pachocka, Magdalena; Wang, Lei; MacDonald, Alan; Macdonald, David; Bloomfield, John

    2014-05-01

    sensitivity analysis has been undertaken in two stages. For the first stage, individual parameters are perturbed from each component of the model. For the second stage, different methods for calculating groundwater recharge are introduced. Both stages aim to investigate which aspects of the model most impact on groundwater recharge and consequently how confidently we can simulate the complex recharge processes that occur in Africa using large scale hydrological models. Preliminary results from the analysis indicate the parameters that control runoff generation from the land surface and the choice of groundwater recharge calculation method both have a significant impact on groundwater recharge simulations.

  3. Hydrological data concerning submarine groundwater discharge along the western margin of Indian River Lagoon, east-central Florida - December 2016 and January 2017

    Science.gov (United States)

    McCloskey, Terrence; Smith, Christopher G.; Zaremba, Nicholas; McBride, Elsie; Everhart, Cheyenne

    2017-01-01

    Indian River Lagoon, one of the most biologically diverse estuarine systems in the continental United States, is a shallow brackish lagoon stretching along approximately 200 kilometers (km) of the Atlantic coast of central Florida. Lagoon width varies from ~0.5 – 9.0 km, with substantial human infrastructure lining both shores. Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center investigated submarine groundwater discharge at Eau Gallie North, a site along the western shore in the central section of the lagoon, using continuous resistivity profiling (CRP). The CRP array was towed behind a boat along five shore-parallel transects located ~125, 200, 350, 500 and 750 meters offshore and traversing ~1.5 km along north-south transects. Each transect was given a track name (EB., EC., ED., EE., and EF.) and lines were run both north to south and south to north. Repetitive profiles will be conducted along these same tracks, at various times, in order to determine temporal variability. As resistivity is a function of both geology and salinity, temporal changes will reflect salinity changes, as the underlying geology will be presumed to remain constant. Resistivity data were assigned geographic coordinates and water depth values, in order to produce modeled resistivity, accounting for salinity and geologic parameters.  This data release provides the raw resistivity, geographical and water parameter data collected in December 2016 and January 2017.

  4. Wetland Hydrology | Science Inventory | US EPA

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefits and types, and explains the role and importance of hydrology on wetland functioning. The chapter continues with the description of wetland hydrologic terms and related estimation and modeling techniques. The chapter provides a quick but valuable information regarding hydraulics of surface and subsurface flow, groundwater seepage/discharge, and modeling groundwater/surface water interactions in wetlands. Because of the aggregated effects of the wetlands at larger scales and their ecosystem services, wetland hydrology at the watershed scale is also discussed in which we elaborate on the proficiencies of some of the well-known watershed models in modeling wetland hydrology. This chapter can serve as a useful reference for eco-hydrologists, wetland researchers and decision makers as well as watershed hydrology modelers. In this chapter, the importance of hydrology for wetlands and their functional role are discussed. Wetland hydrologic terms and the major components of water budget in wetlands and how they can be estimated/modeled are also presented. Although this chapter does not provide a comprehensive coverage of wetland hydrology, it provides a quick understanding of the basic co

  5. Calendar year 1993 groundwater quality report for the Bear Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater and surface water quality data and calculated rate of contaminant migration, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report contains groundwater and surface-water quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (Bear Creek Regime), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater and surface water report for the Bear Creek Regime is completed in two-parts; Part 1 (this report) containing the groundwater and surface-water quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater and surface-water quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  6. The assessment of the required groundwater quantity for the conservation of ecosystems and the achievement of a good ecological status of surface waters

    Directory of Open Access Journals (Sweden)

    Mitja Janža

    2016-12-01

    Full Text Available Assessment of the available quantity of groundwater is of essential importance for its sustainable use. Modern approaches for estimation of groundwater availability take into account all potential impacts of abstractions, including impacts on groundwater dependent ecosystems and impacts on surface waters ecological status. Groundwater body is in good quantitative status if groundwater abstractions do not cause signifiant damages to groundwater dependent ecosystems and signifiant diminution in the ecological status of surface water bodies. The methodology presented in this paper was developed as an integral part of the assessment of the quantitative status of groundwater bodies in Slovenia and is tailored to the characteristics of the groundwater dependent ecosystems as well as hydrological and hydrogeological conditions in the Slovenian territory. Two different approaches were implemented; for forest habitats on alluvial aquifers, and habitats of amphibians and molluscs in karst areas. Estimates of the required quantity of groundwater for groundwater dependent ecosystems conservation were performed at the level of groundwater bodies and annual averages of temporal variables of the water balance, calculated with the regional water balance model GROWA-SI. In the areas of groundwater bodies with groundwater dependent ecosystems estimated quantity present 0.1 % - 12.4 % of the groundwater recharge. The estimated share of annual renewable quantity of groundwater to maintain the ecological status of surface waters for the entire territory of Slovenia is 23.2 %. The largest share, 30 % is in north-eastern Slovenia and the lowest in the north-west part of Slovenia with a 16.6 % average annual renewable quantity.

  7. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2009–11

    Science.gov (United States)

    Davis, Linda C.; Bartholomay, Roy C.; Rattray, Gordon W.

    2013-01-01

    Since 1952, wastewater discharged to infiltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer, multilevel monitoring system (MLMS), and perched groundwater wells in the USGS groundwater monitoring networks during 2009–11. Water in the ESRP aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March–May 2009 to March–May 2011, water levels in wells generally declined in the northern part of the INL. Water levels generally rose in the central and eastern parts of the INL. Detectable concentrations of radiochemical constituents in water samples from aquifer wells or MLMS equipped wells in the ESRP aquifer at the INL generally decreased or remained constant during 2009–11. Decreases in concentrations were attributed to radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In 2011, concentrations of tritium in groundwater from 50 of 127 aquifer wells were greater than or equal to the reporting level and ranged from 200±60 to 7,000±260 picocuries per liter. Tritium concentrations from one or more discrete zones from four wells equipped with MLMS were greater than or

  8. Hydrologic Resources of Guam

    Science.gov (United States)

    Gingerich, Stephen B.

    2003-01-01

    Introduction The U.S. Territory of Guam, which lies in the western Pacific Ocean near latitude 13?28'N and longitude 144?45'E, is the largest (211 mi2) and southernmost of the islands in the Mariana chain. Ground water supplies about 80 percent of the drinking water for the island's 150,000 residents and nearly one million visitors per year. In northern Guam, water is obtained from wells that tap the upper part of a fresh ground-water lens in an aquifer composed mainly of limestone. About 180 wells, nearly all in the north, withdraw about 35 Mgal/d of water with chloride concentrations ranging from 6 to 585 mg/L. In southern Guam, the main source of freshwater is from surface water that runs off the weathered volcanic rocks that are exposed over much of the area. About 9.9 Mgal/d of freshwater is obtained using surface reservoirs. The island's freshwater resources are adequate to meet current (2003) needs, but future demands will eventually be higher. To better understand the hydrology of the island, the U.S. Geological Survey (USGS) entered into a cooperative study with the Water and Environmental Research Institute of the Western Pacific (WERI) at the University of Guam. The objective of the study was to provide a better understanding of the water resources of the island through analysis of data collected by the USGS on Guam. This report provides a description of the general hydrologic principles of the island's ground-water systems, as well as of the rainfall and geology of Guam. Hydrologic data described in the report include water levels, chloride concentrations, and pumpage from ground-water wells and streamflow data from southern Guam.

  9. MODFLOW-2005 and MODPATH6 models used to delineate areas contributing groundwater to selected surface receiving waters for long-term average hydrologic stress conditions from 1968 to 1983, Long Island, New York

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A regional groundwater-flow model and particle-tracking program were used to delineate areas contributing groundwater to coastal and freshwater bodies and to...

  10. Groundwater recharge estimation under semi arid climate: Case of Northern Gafsa watershed, Tunisia

    Science.gov (United States)

    Melki, Achraf; Abdollahi, Khodayar; Fatahi, Rouhallah; Abida, Habib

    2017-08-01

    Natural groundwater recharge under semi arid climate, like rainfall, is subjected to large variations in both time and space and is therefore very difficult to predict. Nevertheless, in order to set up any strategy for water resources management in such regions, understanding the groundwater recharge variability is essential. This work is interested in examining the impact of rainfall on the aquifer system recharge in the Northern Gafsa Plain in Tunisia. The study is composed of two main parts. The first is interested in the analysis of rainfall spatial and temporal variability in the study basin while the second is devoted to the simulation of groundwater recharge. Rainfall analysis was performed based on annual precipitation data recorded in 6 rainfall stations over a period of 56 years (1960-2015). Potential evapotranspiration data were also collected from 1960 to 2011 (52 years). The hydrologic distributed model WetSpass was used for the estimation of groundwater recharge. Model calibration was performed based on an assessment of the agreement between the sum of recharge and runoff values estimated by the WetSpass hydrological model and those obtained by the climatic method. This latter is based on the difference calculated between rainfall and potential evapotranspiration recorded at each rainy day. Groundwater recharge estimation, on monthly scale, showed that average annual precipitation (183.3 mm/year) was partitioned to 5, 15.3, 36.8, and 42.8% for interception, runoff, actual evapotranspiration and recharge respectively.

  11. Entropy based groundwater monitoring network design considering spatial distribution of annual recharge

    Science.gov (United States)

    Leach, James M.; Coulibaly, Paulin; Guo, Yiping

    2016-10-01

    This study explores the inclusion of a groundwater recharge based design objective and the impact it has on the design of optimum groundwater monitoring networks. The study was conducted in the Hamilton, Halton, and Credit Valley regions of Ontario, Canada, in which the existing Ontario Provincial Groundwater Monitoring Network was augmented with additional monitoring wells. The Dual Entropy-Multiobjective Optimization (DEMO) model was used in these analyses. The value of using this design objective is rooted in the information contained within the estimated recharge. Recharge requires knowledge of climate, geomorphology, and geology of the area, thus using this objective function can help account for these physical characteristics. Two sources of groundwater recharge data were examined and compared, the first was calculated using the Precipitation-Runoff Modeling System (PRMS), and the second was an aggregation of recharge found using both the PRMS and Hydrological Simulation Program-Fortran (HSP-F). The entropy functions are used to identify optimal trade-offs between the maximum information content and the minimum shared information between the monitoring wells. The recharge objective will help to quantify hydrological characteristics of the vadose zone, and thus provide more information to the optimization algorithm. Results show that by including recharge as a design objective, the spatial coverage of the monitoring network can be improved. The study also highlights the flexibility of DEMO and its ability to incorporate additional design objectives such as the groundwater recharge.

  12. Hydrological data

    NARCIS (Netherlands)

    Rees, G.; Marsh, T.J.; Roald, L.; Demuth, S.; Lanen, van H.A.J.; Kasparek, L.

    2004-01-01

    The objective of this chapter is to provide an overview of the hydrological data that are typically available for the analysis of hydrological drought and the procedures that ought to be applied to ensure that this data is of good quality

  13. Wetland Hydrology

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefit...

  14. Injected radiotracer techniques in hydrology

    Science.gov (United States)

    Rao, S. M.

    1984-08-01

    Radioactive tracers which have several advantages over conventional tracers made significant contributions to the development of the injected tracer method in hydrology. A review of the nuclear and the physico-chemical characteristics of the possible radiotracer compounds leads us to conclude that the most effective groundwater tracers are tritiated water (HTO),82Br- and58Co or60Co as a hexacyanocobaltate complex. A discussion of the various case studies in India and abroad covering the three groups of applications mentioned helps us to conclude that well established radiotracer methods with associated interpretational techniques are available for many short range studies in surface and subsurface hydrology.

  15. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.

    2011-01-01

    Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...... and the geotechnical stability of the fill. Understanding landfill hydrology is thus important for many aspects of landfill, in particular siting, design and operation. The objective of this chapter is to give a basic understanding of the hydrology of landfills, and to present ways to estimate leachate quantities......-circuiting. In the final section different existing hydrological models for landfills are presented with a special focus on the HELP model. This model is the most widely used tool for the prediction of leachate quantities in landfills, and for the sizing of leachate control and management infrastructure....

  16. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.

    2011-01-01

    Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...... and the geotechnical stability of the fill. Understanding landfill hydrology is thus important for many aspects of landfill, in particular siting, design and operation. The objective of this chapter is to give a basic understanding of the hydrology of landfills, and to present ways to estimate leachate quantities......-circuiting. In the final section different existing hydrological models for landfills are presented with a special focus on the HELP model. This model is the most widely used tool for the prediction of leachate quantities in landfills, and for the sizing of leachate control and management infrastructure....

  17. Hydrologic Drought Decision Support System (HyDroDSS)

    Science.gov (United States)

    Granato, Gregory E.

    2014-01-01

    to a simulated record of unaltered streamflow. Rank correlation analysis in the HyDroDSS indicates the persistence of hydrologic measurements from month to month for the prediction of developing hydrologic drought conditions and quantitatively indicates which hydrologic variables may be used to indicate the onset of hydrologic drought conditions. Rank correlation analysis also indicates the potential use of each variable for estimating the monthly minimum unaltered flow at a site of interest for use in the drought-projection analysis. Rank correlation analysis in the HyDroDSS is done by calculating Spearman’s rho for paired samples and the 95-percent confidence limits of this rho value. Rank correlation analysis can be done by using precipitation, groundwater levels, measured streamflows, and estimated unaltered streamflows. Serial correlation analysis, which indicates relations between current and future values, can be done for a single site. Cross correlation analysis, which indicates relations among current values at one site and current and future values at a second site, also can be done. Drought-projection analysis in the HyDroDSS indicates the risk for being in a hydrologic drought condition during the current month and the five following months with and without pumping. Drought-projection analysis also indicates the potential effectiveness of water-conservation methods for mitigating the effect of withdrawals in the coming months on the basis of the amount of depletion caused by different pumping plans and on the risk of unaltered flows being below streamflow targets. Drought-projection analysis in the HyDroDSS is done with Monte Carlo methods by using the position analysis method. In this method the initial value of estimated unaltered streamflows is calculated by correlation to a measured hydrologic variable (monthly precipitation, groundwater levels, or streamflows from an index station identified with the rank correlation analysis). Then a pseudorandom

  18. The hydrology of a drained topographical depression within an agricutlural field in north-central Iowa

    Science.gov (United States)

    Roth, Jason L.; Capel, Paul D.

    2012-01-01

    North-central Iowa is an agriculturally intensive area comprising the southeastern portion of the Prairie Pothole Region, a landscape containing a high density of enclosed topographical depressions. Artificial drainage practices have been implemented throughout the area to facilitate agricultural production. Vertical surface drains are utilized to drain the topographical depressions that accumulate water. This study focuses on the hydrology of a drained topographical depression located in a 39.5 ha agricultural field. To assess the hydrology of the drained depression, a water balance was constructed for 11 ponding events during the 2008 growing season. Continuous pond and groundwater level data were obtained with pressure transducers. Flows into the vertical surface drain were calculated based on pond depth. Precipitation inflows and evaporative outflows of the ponds were calculated using climatic data. Groundwater levels were used to assess groundwater/pond interactions. Results of the water balances show distinct differences between the inflows to and outflows from the depression based on antecedent conditions. In wet conditions, groundwater inflow sustained the ponds. The ponds receded only after the groundwater level declined to below the land surface. In drier conditions, groundwater was not a source of water to the depression. During these drier conditions, infiltration comprised 30% of the outflows from the depression during declining pond stages. Over the entire study period, the surface drain, delivering water to the stream, was the largest outflow from the pond, accounting for 97% of the outflow, while evapotranspiration was just 2%. Precipitation onto the pond surface proved to be a minor component, accounting for 4% of the total inflows.

  19. Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin

    Directory of Open Access Journals (Sweden)

    E. H. Sutanudjaja

    2011-09-01

    Full Text Available The current generation of large-scale hydrological models does not include a groundwater flow component. Large-scale groundwater models, involving aquifers and basins of multiple countries, are still rare mainly due to a lack of hydro-geological data which are usually only available in developed countries. In this study, we propose a novel approach to construct large-scale groundwater models by using global datasets that are readily available. As the test-bed, we use the combined Rhine-Meuse basin that contains groundwater head data used to verify the model output. We start by building a distributed land surface model (30 arc-second resolution to estimate groundwater recharge and river discharge. Subsequently, a MODFLOW transient groundwater model is built and forced by the recharge and surface water levels calculated by the land surface model. Results are promising despite the fact that we still use an offline procedure to couple the land surface and MODFLOW groundwater models (i.e. the simulations of both models are separately performed. The simulated river discharges compare well to the observations. Moreover, based on our sensitivity analysis, in which we run several groundwater model scenarios with various hydro-geological parameter settings, we observe that the model can reasonably well reproduce the observed groundwater head time series. However, we note that there are still some limitations in the current approach, specifically because the offline-coupling technique simplifies the dynamic feedbacks between surface water levels and groundwater heads, and between soil moisture states and groundwater heads. Also the current sensitivity analysis ignores the uncertainty of the land surface model output. Despite these limitations, we argue that the results of the current model show a promise for large-scale groundwater modeling practices, including for data-poor environments and at the global scale.

  20. Hydrologic impact of urbanization with extensive stormwater infiltration

    DEFF Research Database (Denmark)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen

    2017-01-01

    This paper presents a novel modeling analysis of a 40-year-long dataset to examine the impact of urbanization, with widespread stormwater infiltration, on groundwater levels and the water balance of a watershed. A dataset on the hydrologic impact of urbanization with extensive stormwater...... is analyzed using a distributed and dynamic hydrological model to simulate the groundwater response. The model explicitly couples a soakwell model with a groundwater model so that the performance of the soakwells is reduced by the increase of groundwater levels. The groundwater observation data is used...... to setup, calibrate and validate a coupled MIKE SHE-MIKE URBAN groundwater model and the model is used to quantify the extent of groundwater rise as a result of the urbanization process. The modeled urbanization processes included the irrigation of new established private and public gardens, the reduction...

  1. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

    2006-04-01

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit.

  2. Hydrological model uncertainty due to spatial evapotranspiration estimation methods

    Science.gov (United States)

    Yu, Xuan; Lamačová, Anna; Duffy, Christopher; Krám, Pavel; Hruška, Jakub

    2016-05-01

    Evapotranspiration (ET) continues to be a difficult process to estimate in seasonal and long-term water balances in catchment models. Approaches to estimate ET typically use vegetation parameters (e.g., leaf area index [LAI], interception capacity) obtained from field observation, remote sensing data, national or global land cover products, and/or simulated by ecosystem models. In this study we attempt to quantify the uncertainty that spatial evapotranspiration estimation introduces into hydrological simulations when the age of the forest is not precisely known. The Penn State Integrated Hydrologic Model (PIHM) was implemented for the Lysina headwater catchment, located 50°03‧N, 12°40‧E in the western part of the Czech Republic. The spatial forest patterns were digitized from forest age maps made available by the Czech Forest Administration. Two ET methods were implemented in the catchment model: the Biome-BGC forest growth sub-model (1-way coupled to PIHM) and with the fixed-seasonal LAI method. From these two approaches simulation scenarios were developed. We combined the estimated spatial forest age maps and two ET estimation methods to drive PIHM. A set of spatial hydrologic regime and streamflow regime indices were calculated from the modeling results for each method. Intercomparison of the hydrological responses to the spatial vegetation patterns suggested considerable variation in soil moisture and recharge and a small uncertainty in the groundwater table elevation and streamflow. The hydrologic modeling with ET estimated by Biome-BGC generated less uncertainty due to the plant physiology-based method. The implication of this research is that overall hydrologic variability induced by uncertain management practices was reduced by implementing vegetation models in the catchment models.

  3. The influence of conceptual model uncertainty on management decisions for a groundwater-dependent ecosystem in karst

    Science.gov (United States)

    Gondwe, Bibi R. N.; Merediz-Alonso, Gonzalo; Bauer-Gottwein, Peter

    2011-03-01

    SummaryGroundwater management in karst is often based on limited hydrologic understanding of the aquifer. The geologic heterogeneities controlling the water flow are often insufficiently mapped. As karst aquifers are very vulnerable to pollution, groundwater protection and land use management are crucial to preserve water resources and maintain ecosystem services. Multiple Model Simulation highlights the impact of model structure uncertainty on management decisions using several plausible conceptual models. Multiple Model Simulation was used for this purpose on the Yucatan Peninsula, which is one of the world's largest karstic aquifers. The aquifer is the only available fresh water source for human users and ecosystems on the Peninsula. One of Mexico's largest protected areas, the groundwater-dependent Sian Ka'an Biosphere Reserve (5280 km 2) is fed by the aquifer's thin freshwater lens. Increasing groundwater abstractions and pollution threatens the fresh water resource, and consequently the ecosystem integrity of both Sian Ka'an and the adjacent coastal environment. Seven different catchment-scale conceptual models were implemented in a distributed hydrological modelling approach. Equivalent porous medium conceptualizations with uniform and heterogeneous distributions of hydraulic conductivities were used. The models demonstrated that Sian Ka'an's wetlands are indeed groundwater-fed. The water quantities in the wetlands and the flooding dynamics are determined by the larger groundwater catchment. The overall water balance for the model domain showed that recharge constitutes 4400 ± 700 million m 3/year. Of this, 4-12% exits as overland flow, and 88-96% exits as groundwater flow. Net groundwater outflow from the model domain to the north via the Holbox fracture zone appears as an important cross-basin transfer between regions of the Peninsula. Probability maps of Sian Ka'an's catchment were obtained through automatic calibration and stochastic modelling

  4. Global assessments of submarine groundwater discharge and groundwater resources under the pressures of humanity and climate change

    Science.gov (United States)

    Taniguchi, M.; Burnett, W. C.; Aureli, A.

    2006-12-01

    We report here the global-scale assessment of both fresh and saline groundwater discharges based solely on observational data. Prior estimates have been limited to various water balance and hydrodynamic modeling calculations and range over orders of magnitude. Our observations suggest the global volumes of fresh groundwater discharge and recirculated seawater per unit shoreline length depending on the distance from the shoreline, precipitation, and seawater depth. On a world-wide scale, these flows are compared with the global river discharge. We show via automated measurements that precipitation and wave pumping are important controls of terrestrial (fresh) and marine-induced (recirculated seawater) subterranean flows, respectively. The Groundwater Resources Assessment under the Pressures of Humanity and Climate Changes (GRAPHIC) Project, an initiative of UNESCO International Hydrological Programme (IHP), seeks to improve the understanding and management of groundwater as a vital contributor to the global water cycle, ecosystems and communities, under changing climatic and anthropomorphic regimes. GRAPHIC focuses on variations of the flows, stocks, and quality of groundwater recharge, discharge and storage and on groundwater-related management and policy (http://www.chikyu.ac.jp/USE/GRAPHIC/GRAPHIC.htm). This GRAPHIC project will deal with groundwater resources assessment and future forecasting under the various pressures of humanity and climate changes. The structure of the GRAPHIC project has been divided into; (A) Subjects; thematic, cross-region issues, (B) Methods; methodological approaches (1:Database and Monitoring, 2:Satelite GRACE (Gravity Recovery and Climate Experiment), 3:Modeling and Simulation, 4:Paleohydrology), and (C) Regions; representative geographical areas, where pilot studies will be made.

  5. Wetland hydrology of the Elmley marshes

    OpenAIRE

    Gavin, H.

    2001-01-01

    Despite the importance of the hydrological regime for the functioning of wetland environments, the understanding of hydrological processes, particularly evaporative dynamics and clay soil moisture fluxes, is limited and the original research outlined in this thesis constitutes a real contribution to further the scientific understanding of wetland systems. Two lines of investigation are followed based upon field experiments and monitoring of groundwater and ditch water levels to...

  6. Groundwater simulation and management models for the upper Klamath Basin, Oregon and California

    Science.gov (United States)

    Gannett, Marshall W.; Wagner, Brian J.; Lite, Kenneth E.

    2012-01-01

    The upper Klamath Basin encompasses about 8,000 square miles, extending from the Cascade Range east to the Basin and Range geologic province in south-central Oregon and northern California. The geography of the basin is dominated by forested volcanic uplands separated by broad interior basins. Most of the interior basins once held broad shallow lakes and extensive wetlands, but most of these areas have been drained or otherwise modified and are now cultivated. Major parts of the interior basins are managed as wildlife refuges, primarily for migratory waterfowl. The permeable volcanic bedrock of the upper Klamath Basin hosts a substantial regional groundwater system that provides much of the flow to major streams and lakes that, in turn, provide water for wildlife habitat and are the principal source of irrigation water for the basin's agricultural economy. Increased allocation of surface water for endangered species in the past decade has resulted in increased groundwater pumping and growing interest in the use of groundwater for irrigation. The potential effects of increased groundwater pumping on groundwater levels and discharge to springs and streams has caused concern among groundwater users, wildlife and Tribal interests, and State and Federal resource managers. To provide information on the potential impacts of increased groundwater development and to aid in the development of a groundwater management strategy, the U.S. Geological Survey, in collaboration with the Oregon Water Resources Department and the Bureau of Reclamation, has developed a groundwater model that can simulate the response of the hydrologic system to these new stresses. The groundwater model was developed using the U.S. Geological Survey MODFLOW finite-difference modeling code and calibrated using inverse methods to transient conditions from 1989 through 2004 with quarterly stress periods. Groundwater recharge and agricultural and municipal pumping are specified for each stress period. All

  7. Spatiotemporal variation of the surface water effect on the groundwater recharge in a low-precipitation region: Application of the multi-tracer approach to the Taihang Mountains, North China

    Science.gov (United States)

    Sakakibara, Koichi; Tsujimura, Maki; Song, Xianfang; Zhang, Jie

    2017-02-01

    Groundwater recharge variations in time and space are crucial for effective water management, especially in low-precipitation regions. To determine comprehensive groundwater recharge processes in a catchment with large seasonal hydrological variations, intensive field surveys were conducted in the Wangkuai Reservoir watershed located in the Taihang Mountains, North China, during three different times of the year: beginning of the rainy season (June 2011), mid-rainy season (August 2012), and dry season (November 2012). Oxygen and hydrogen isotope and chemical analyses were conducted on the groundwater, spring water, stream water, and reservoir water of the Wangkuai Reservoir watershed. The results were processed using endmember mixing analysis to determine the amount of contribution of the groundwater recharging processes. Similar isotopic and chemical signatures between the surface water and groundwater in the target area indicate that the surface water in the mountain-plain transitional area and the Wangkuai Reservoir are the principal groundwater recharge sources, which result from the highly permeable geological structure of the target area and perennial large-scale surface water, respectively. Additionally, the widespread and significant effect of the diffuse groundwater recharge on the Wangkuai Reservoir was confirmed with the deuterium (d) excess indicator and the high contribution throughout the year, calculated using endmember mixing analysis. Conversely, the contribution of the stream water to the groundwater recharge in the mountain-plain transitional area clearly decreases from the beginning of the rainy season to the mid-rainy season, whereas that of the precipitation increases. This suggests that the main groundwater recharge source shifts from stream water to episodic/continuous heavy precipitation in the mid-rainy season. In other words, the surface water and precipitation commonly affect the groundwater recharge in the rainy season, whereas the

  8. Reliability of groundwater supply from a coastal aquifer in the context of climate and socio-economic changes

    Science.gov (United States)

    Eley, Malte; Schöniger, Hans Matthias; Gelleszun, Marlene; Wolf, Jens; Schneider, Anke; Wiederhold, Helga; Meon, Günter

    2017-04-01

    Especially coastal areas are vulnerable in case of sea level rise and changing climate conditions. Therefore, the NAWAK study (design of sustainable adaptation strategies for infrastructures in water management under the conditions of climatic and demographic change) started in 2013. It is designed to assess impairments of groundwater availability for a coastal lowland aquifer system in North-West Germany (> 1.000 km2) in the context of climate and socio-economic changes. The research results are focused on the quantification of the groundwater availability for past and future scenarios. Impacts from both climatic and socio-economic changes on the water availability and water balance are assessed by means of hydrologic, hydrogeological and geophysical models and methods, which where developed and adapted by project partners. For the model area there are three fields of work to create the conditions for a density dependent calculation of changings in salt-freshwater budget with the numerical model d3f++ (distributed density-driven Flow). The first is the description of initial conditions in three dimensions, especially for the salt-freshwater boundary. That description is based on airborne electromagnetic data of the underground and a complex processing to identify the differences between salt and freshwater, without anthropogenic and geologic influences. A validation is possible by comparison with groundwater measurements and an online monitoring of specific conductivity. The second is the calculation and measurement of flow conditions to derive the boundary conditions and the groundwater recharge. The groundwater recharge was calculated by using the hydrologic model PANTA RHEI. It is a conceptual model with partly physic-based modules, especially for the soil water processes. The model was calibrated and validated by discharge measurements and groundwater levels. The third step is a detailed information about the spatial discretization and the reconstruction of

  9. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    Science.gov (United States)

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  10. Promoting local management in groundwater

    Science.gov (United States)

    van Steenbergen, Frank

    2006-03-01

    There is a strong case for making greater effort to promote local groundwater management—in addition to other measures that regulate groundwater use. Though scattered, there are several examples—from India, Pakistan, Yemen and Egypt—where groundwater users effectively self-imposed restrictions on the use of groundwater. There are a number of recurrent themes in such spontaneously-developed examples of local regulation: the importance of not excluding potential users; the importance of simple, low transaction cost rules; the power of correct and accessible hydrogeological information; the possibility of making more use of demand and supply management strategies; and the important supportive role of local governments. The case is made, using examples, for actively promoting local groundwater management as an important element in balancing groundwater uses. Two programmes for promoting local groundwater management in South India are described—one focussing on participatory hydrological monitoring, and one focussing on micro-resource planning and training. In both cases the response was very positive and the conclusion is that promoting local groundwater regulation is not difficult, costly or sensitive and can reach the necessary scale quickly.

  11. Uncertainty in hydrological change modelling

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige

    methodology for basin discharge and groundwater heads. The ensemble of 11 climate models varied in strength, significance, and sometimes in direction of the climate change signal. The more complex daily DBS correction methods were more accurate at transferring precipitation changes in mean as well...... as the variance, and improving the characterisation of day to day variation as well as heavy events. However, the most highly parameterised of the DBS methods were less robust under climate change conditions. The spatial characteristics of groundwater head and stream discharge were best represented by DBS methods...... applied at the grid scale. Flux and state hydrological outputs which integrate responses over time and space showed more sensitivity to precipitation mean spatial biases and less so on extremes. In the investigated catchments, the projected change of groundwater levels and basin discharge between current...

  12. Remedies proposed for China's groundwater problems

    Science.gov (United States)

    Loaiciga, Hugo A.

    Groundwater experts and hydrologists from China and 10 other nations recently gathered in Beijing to exchange state-of-the-art scientific and technological knowledge on groundwater hydrology, modeling, remediation, and management. The participants also reviewed groundwater environmental conditions in China, identified key problems, and made recommendations to help guide the nation's groundwater policy.The Regional Workshop on Ground Water Contamination, held from July 31 to August 4, 1995, was the fifth of a series of regional workshops sponsored by the Scientific Committee on Problems of the Environment of the United Nations Environmental Program. Earlier workshops were held in Thailand (1991), Costa Rica (1993), the Czech Republic (1994), and Australia (1994).

  13. Hydrologic and geochemical modeling of a karstic Mediterranean watershed

    Directory of Open Access Journals (Sweden)

    N. P. Nikolaidis

    2012-01-01

    Full Text Available The SWAT model was modified to simulate the hydrologic and chemical response of karstic systems and assess the impacts of land use management and climate change of an intensively managed Mediterranean watershed in Crete, Greece. A methodology was developed for the determination of the extended karst area contributing to the spring flow as well as the degree of dilution of nitrates due to permanent karst water volume. The modified SWAT model has been able to capture the temporal variability of both karst flow and surface runoff using high frequency monitoring data collected since 2004 in addition to long term flow time series collected since 1973. The overall hydrologic budget of the karst was estimated and its evaporative losses were calculated to be 28% suggesting a very high rate of karst infiltration. Nitrate chemistry of the karst was simulated by calibrating a dilution factor allowing for the estimation of the total karstic groundwater volume to approximately 500 million m3 of reserve water. The nitrate simulation results suggested a significant impact of livestock grazing on the karstic groundwater and on surface water quality. Finally, simulation results for a set of climate change scenarios suggested a 17% decrease in precipitation, 8% decrease in ET and 22% decrease in flow in 2030–2050 compared to 2010–2020. A validated tool for integrated water management of karst areas has been developed, providing policy makers an instrument for water management that could tackle the increasing water scarcity in the island.

  14. MODFLOW-NWT groundwater flow model used to evaluate conditions in the Northern High Plains Aquifer in Colorado, Kansas, Nebraska, South Dakota, and Wyoming: U.S. Geological Survey data release

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A three-dimensional groundwater flow model was developed to characterize groundwater resources and the interaction of groundwater with streams and other hydrologic...

  15. Modelling Peatland Hydrology: Three cases from Northern Europe

    NARCIS (Netherlands)

    Querner, E.P.; Mioduszewski, W.; Povilaitis, A.; Slesicka, A.

    2010-01-01

    Many of the peatlands that used to extend over large parts of Northern Europe have been reclaimed for agriculture. Human influence continues to have a major impact on the hydrology of those that remain, affecting river flow and groundwater levels. In order to understand this hydrology it is necessar

  16. Analysis of hydrological triggered clayey landslides by small scale Experiments

    NARCIS (Netherlands)

    Spickermann, A.; Malet, J.P.; Asch, Th.W.J. van; Schanz, T.

    2010-01-01

    Hydrological processes, such as slope saturation by water, are a primary cause of landslides. This effect can occur in the form of e.g. intense rainfall, snowmelt or changes in ground-water levels. Hydrological processes can trigger a landslide and control subsequent movement. In order to forecast p

  17. Tracing and quantifying groundwater inflow into lakes using a simple method for radon-222 analysis

    Directory of Open Access Journals (Sweden)

    T. Kluge

    2007-09-01

    Full Text Available Due to its high activities in groundwater, the radionuclide 222Rn is a sensitive natural tracer to detect and quantify groundwater inflow into lakes, provided the comparatively low activities in the lakes can be measured accurately. Here we present a simple method for radon measurements in the low-level range down to 3 Bq m−3, appropriate for groundwater-influenced lakes, together with a concept to derive inflow rates from the radon budget in lakes. The analytical method is based on a commercially available radon detector and combines the advantages of established procedures with regard to efficient sampling and sensitive analysis. Large volume (12 l water samples are taken in the field and analyzed in the laboratory by equilibration with a closed air loop and alpha spectrometry of radon in the gas phase. After successful laboratory tests, the method has been applied to a small dredging lake without surface in- or outflow in order to estimate the groundwater contribution to the hydrological budget. The inflow rate calculated from a 222Rn balance for the lake is around 530 m³ per day, which is comparable to the results of previous studies. In addition to the inflow rate, the vertical and horizontal radon distribution in the lake provides information on the spatial distribution of groundwater inflow to the lake. The simple measurement and sampling technique encourages further use of radon to examine groundwater-lake water interaction.

  18. Alpine Groundwater - Pristine Aquifers Under Threat?

    Science.gov (United States)

    Schneider, P.; Lange, A.

    2014-12-01

    Glacier and permafrost retreat are prominent climate change indicators. However, the characteristics of climate and hydrology in mountain areas remain poorly understood relative to lowland areas. Specifically, not much is known about alpine groundwater, its recharge and water quality variations, as these remote reservoirs are rarely monitored. As global temperatures rise, glaciers and permafrost will continue to retreat forming new sediment deposits and changing infiltration conditions in high alpine terrain. Climate change impacts the hydro-chemical composition of alpine waters, accelerates weathering processes, and potentially triggers mobilization of pollutants. Accordingly, we monitored groundwater quantity and quality parameters of an alpine porous aquifer near the Tiefenbach glacier in the Gotthard Massif in Switzerland. The goal of this research was to assess quality and seasonal storage dynamics of groundwater above the timberline (2000 m). To translate hydrological science into an ecosystem service context, we focused on four attributes: Water quantity: observations of groundwater level fluctuations combined with analysis of contributing water sources based on stable isotope analysis to give a quantitative understanding of origin and amount of water, Water quality: groundwater level, groundwater temperature and electrical conductivity were used as proxies for sampling of hydro-chemical parameters with automated water samplers during primary groundwater recharge periods (snowmelt and rainfall events), Location: Alpine terrain above the timberline, especially recharge into/out of an alpine porous aquifer at a pro-glacial floodplain and Date of annual melt (albedo effect) and timing of flow (snow- and icemelt from May to September) and groundwater recharge during the growing season. The study found that the summer groundwater temperatures depend on the date of annual melt and are more sensitive to climate forcing than lowland groundwater temperatures

  19. Reconstruction of groundwater depletion using a global scale groundwater model

    Science.gov (United States)

    de Graaf, Inge; van Beek, Rens; Sutanudjaja, Edwin; Wada, Yoshi; Bierkens, Marc

    2015-04-01

    Groundwater forms an integral part of the global hydrological cycle and is the world's largest accessible source of fresh water to satisfy human water needs. It buffers variable recharge rates over time, thereby effectively sustaining river flows in times of drought as well as evaporation in areas with shallow water tables. Moreover, although lateral groundwater flows are often slow, they cross topographic and administrative boundaries at appreciable rates. Despite the importance of groundwater, most global scale hydrological models do not consider surface water-groundwater interactions or include a lateral groundwater flow component. The main reason of this omission is the lack of consistent global-scale hydrogeological information needed to arrive at a more realistic representation of the groundwater system, i.e. including information on aquifer depths and the presence of confining layers. The latter holds vital information on the accessibility and quality of the global groundwater resource. In this study we developed a high resolution (5 arc-minutes) global scale transient groundwater model comprising confined and unconfined aquifers. This model is based on MODFLOW (McDonald and Harbaugh, 1988) and coupled with the land-surface model PCR GLOBWB (van Beek et al., 2011) via recharge and surface water levels. Aquifers properties were based on newly derived estimates of aquifer depths (de Graaf et al., 2014b) and thickness of confining layers from an integration of lithological and topographical information. They were further parameterized using available global datasets on lithology (Hartmann and Moosdorf, 2011) and permeability (Gleeson et al., 2014). In a sensitivity analysis the model was run with various hydrogeological parameter settings, under natural recharge only. Scenarios of past groundwater abstractions and corresponding recharge (Wada et al., 2012, de Graaf et al. 2014a) were evaluated. The resulting estimates of groundwater depletion are lower than

  20. Norwegian Hydrological Reference Dataset for Climate Change Studies

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, Inger Helene; Killingland, Magnus; Spilde, Dag

    2012-07-01

    Based on the Norwegian hydrological measurement network, NVE has selected a Hydrological Reference Dataset for studies of hydrological change. The dataset meets international standards with high data quality. It is suitable for monitoring and studying the effects of climate change on the hydrosphere and cryosphere in Norway. The dataset includes streamflow, groundwater, snow, glacier mass balance and length change, lake ice and water temperature in rivers and lakes.(Author)

  1. Calculating the water and heat balances of the Eastern Mediterranean basin using ocean modelling and available meteorological, hydrological, and ocean data

    OpenAIRE

    2011-01-01

    This paper analyses the Eastern Mediterranean water and heat balances over a 52-yr period. The modelling uses a process-oriented approach resolving the one-dimensional equations of momentum, heat, and salt conservation, with turbulence modelled using a two-equation model. The exchange through the Sicily Channel connecting the Eastern and Western basins is calculated from satellite altimeter data. The results illustrates that calculated surface temperature and salinity follow the reanalysed da...

  2. Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes

    Directory of Open Access Journals (Sweden)

    L. Yang

    2012-05-01

    Full Text Available The Jialu River, a secondary tributary of the Huaihe River, has been severely contaminated for the major contaminant sources, such as a number of untreated or lightly treated sewage wastes in some cities. Groundwater along the river is not an isolated component of the hydrologic system, but instead connected with the surface water. This study aims to characterize the relationships between surface water (e.g. reservoirs, lakes and rivers and groundwater near the river in the shallow Quaternary aquifer. The concentration of Cl in North Zhengzhou City increased prominently due to the discharge of a large amount of domestic water. Nitrate and potassium show maximum concentrations in groundwater in Fugou County. These high levels can be attributed to the use of a large quantity of fertilizer over this region. The regional well had water with a constant stable isotopic signature, which illustrates that the groundwater never or rarely receive recharge from surface water. However, the groundwater of transitional well (location SY3 seemed to be recharged by river water via bank infiltration in September 2010. Fractional contributions of river water to the groundwater were calculated based on isotopic and chemical data using a mass-balance approach. Results show that the groundwater was approximately composed of 60–70% river water. These findings would be useful for a better understanding of hydrogeological processes at the river-aquifer interface and ultimately benefit water management in the future.

  3. Controls on shallow landslide initiation: Diverse hydrologic pathways, 3D failure geometries, and unsaturated soil suctions

    Science.gov (United States)

    Reid, Mark; Iverson, Richard; Brien, Dianne; Iverson, Neal; LaHusen, Richard; Logan, Matthew

    2017-04-01

    pressures. Using coupled 2D variably saturated groundwater flow modeling and 3D limit-equilibrium analyses, we simulated the observed hydrologic behaviors and the time evolution of changes in factors of safety. Our measured parameters successfully reproduced pore pressure observations without calibration. We also quantified the mechanical effects of 3D geometry and unsaturated soil suction on stability. Although suction effects appreciably increased the stability of drier sediment, they were dampened (to 20% in wet or dry sediment. Importantly, both 3D and suction effects enabled more accurate simulation of failure times. Without these effects, failure timing and/or back-calculated shear strengths would be markedly incorrect. Our results indicate that simplistic models could not consistently predict the timing of slope failure given diverse hydrologic pathways. Moreover, high frequency monitoring (with sampling periods < ˜60 s) would be required to measure and interpret the effects of rapid hydrologic triggers, such as intense rain bursts.

  4. Surface-groundwater interactions in hard rocks in Sardon Catchment of western Spain: an integrated modeling approach

    NARCIS (Netherlands)

    Tanvir Hassan, S.M.; Lubczynski, M.; Niswonger, R.G.; Su, Zhongbo

    2014-01-01

    The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic

  5. Hydrologic considerations in defining isolated wetlands

    Science.gov (United States)

    Winter, T.C.; LaBaugh, J.W.

    2003-01-01

    Wetlands that are not connected by streams to other surface-water bodies are considered to be isolated. Although the definition is based on surface-water connections to other water bodies, isolated wetlands commonly are integral parts of extensive ground-water flow systems, and isolated wetlands can spill over their surface divides into adjacent surface-water bodies during periods of abundant precipitation and high water levels. Thus, characteristics of ground-water flow and atmospheric-water flow affect the isolation of wetlands. In general, the degree that isolated wetlands are connected through the ground-water system to other surface-water bodies depends to a large extent on the rate that ground water moves and the rate that hydrologic stresses can be transmitted through the ground-water system. Water that seeps from an isolated wetland into a gravel aquifer can travel many kilometers through the ground-water system in one year. In contrast, water that seeps from an isolated wetland into a clayey or silty substrate may travel less than one meter in one year. For wetlands that can spill over their surface watersheds during periods of wet climate conditions, their isolation is related to the height to a spill elevation above normal wetland water level and the recurrence interval of various magnitudes of precipitation. The concepts presented in this paper indicate that the entire hydrologic system needs to be considered in establishing a definition of hydrologic isolation.

  6. The Central Valley Hydrologic Model

    Science.gov (United States)

    Faunt, C.; Belitz, K.; Hanson, R. T.

    2009-12-01

    Historically, California’s Central Valley has been one of the most productive agricultural regions in the world. The Central Valley also is rapidly becoming an important area for California’s expanding urban population. In response to this competition for water, a number of water-related issues have gained prominence: conjunctive use, artificial recharge, hydrologic implications of land-use change, subsidence, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS made a detailed assessment of the Central Valley aquifer system that includes the present status of water resources and how these resources have changed over time. The principal product of this assessment is a tool, referred to as the Central Valley Hydrologic Model (CVHM), that simulates surface-water flows, groundwater flows, and land subsidence in response to stresses from human uses and from climate variability throughout the entire Central Valley. The CVHM utilizes MODFLOW combined with a new tool called “Farm Process” to simulate groundwater and surface-water flow, irrigated agriculture, land subsidence, and other key processes in the Central Valley on a monthly basis. This model was discretized horizontally into 20,000 1-mi2 cells and vertically into 10 layers ranging in thickness from 50 feet at the land surface to 750 feet at depth. A texture model constructed by using data from more than 8,500 drillers’ logs was used to estimate hydraulic properties. Unmetered pumpage and surface-water deliveries for 21 water-balance regions were simulated with the Farm Process. Model results indicate that human activities, predominately surface-water deliveries and groundwater pumping for irrigated agriculture, have dramatically influenced the hydrology of the Central Valley. These human activities have increased flow though the aquifer system by about a factor of six compared to pre-development conditions. The simulated hydrology reflects spatial

  7. Monitoring groundwater drought with GRACE data assimilation

    Science.gov (United States)

    Li, B.; Rodell, M.; Beaudoing, H. K.; Getirana, A.; Zaitchik, B. F.

    2015-12-01

    Groundwater drought is a distinct class of drought, not a sub-class of meteorological, agricultural and hydrological drought and has profound impacts on natural environments and societies. Due to a deficiency of in situ measurements, we developed a groundwater drought indicator using groundwater change estimates derived by assimilating GRACE derived terrestrial water storage (TWS) anomalies into the NASA Catchment land surface model. Data assimilation enables spatial and temporal downscaling of coarse GRACE TWS observations (monthly and ~150,000 km2 effective spatial resolution) and extrapolation to near-real time. In this talk, we will present our latest progress on using GRACE satellite data for groundwater drought monitoring in the U.S. and globally. Characteristics of this groundwater drought indicator will be discussed, including its relationship with other types of drought and how they are influenced by model physics and climate conditions. Results are evaluated using in situ groundwater observations.

  8. Quantification of Seepage in Groundwater Dependent Wetlands

    DEFF Research Database (Denmark)

    Johansen, Ole; Beven, Keith; Jensen, Jacob Birk

    2017-01-01

    Restoration and management of groundwater dependent wetlands require tools for quantifying the groundwater seepage process. A method for determining point estimates of the groundwater seepage based on water level observations is tested. The study is based on field data from a Danish rich fen....... Therefore secondly a much simpler mass balance approach is used with lumped descriptions of the most important hydrological processes controlling water level and groundwater inflow to the system. The water level dynamics are here described and bracketed nicely and a dynamic description of the seepage rate...... the dynamic description of groundwater seepage can be very useful in future studies of the links between seepage, soil water chemistry and vegetation in groundwater dependent terrestrial ecosystems....

  9. 地下水化学组分存在形式及其质量浓度的计算%Existing forms of groundwater chemical components and calculation to its mass concentration

    Institute of Scientific and Technical Information of China (English)

    胡筱; 张永祥; 王一凡; 张晓叶; 兰双双

    2015-01-01

    根据质量守恒定律以及化学热力学平衡常数法,建立了地下水水质组分存在形式及其质量浓度计算的数学模型,并利用MATLAB编写了相应程序,对北京市朝阳区地下水水质检测数据进行实例计算。结果表明:水中化学组分的存在形式包括单一离子、复阴离子、络合离子以及络合分子;游离态的Ca2+、Mg2+、SO2-4占各自离子总质量浓度的百分数分别为85.26%,87.01%,69.85%,表明水样分析质量浓度与计算质量浓度间存在差异;pH值对地下水中游离离子的质量浓度将产生影响,造成离子迁移能力的变化。%Based on the mass conservation law and the method of chemical thermodynamic equilibrium constant , a mathematical model for calculating the existing forms of groundwater chemical components and its mass concentration was established .Based on MATLAB , a corresponding program to calculate the groundwater quality testing data of Chaoyang District , Beijing was written .The results show that the existing forms of groundwater chemical components include single ions , complex anions , complex ions and complex molecules; Dissociative Ca2+, Mg2+, SO42-accounted for mass concentration of Ca 2+, Mg2+, SO42-, respectively, 85.26%,87.01%, 69.85%, which claims the difference between analysis concentration and calculated concentration; The value of pH exerts an influence on the concentration of free ions in groundwater , which causes the changes of ion migration ability.

  10. Simulating the hydrologic cycle in coal mining subsidence areas with a distributed hydrologic model

    Science.gov (United States)

    Wang, Jianhua; Lu, Chuiyu; Sun, Qingyan; Xiao, Weihua; Cao, Guoliang; Li, Hui; Yan, Lingjia; Zhang, Bo

    2017-01-01

    Large-scale ground subsidence caused by coal mining and subsequent water-filling leads to serious environmental problems and economic losses, especially in plains with a high phreatic water level. Clarifying the hydrologic cycle in subsidence areas has important practical value for environmental remediation, and provides a scientific basis for water resource development and utilisation of the subsidence areas. Here we present a simulation approach to describe interactions between subsidence area water (SW) and several hydrologic factors from the River-Subsidence-Groundwater Model (RSGM), which is developed based on the distributed hydrologic model. Analysis of water balance shows that the recharge of SW from groundwater only accounts for a small fraction of the total water source, due to weak groundwater flow in the plain. The interaction between SW and groundwater has an obvious annual cycle. The SW basically performs as a net source of groundwater in the wet season, and a net sink for groundwater in the dry season. The results show there is an average 905.34 million m3 per year of water available through the Huainan coal mining subsidence areas (HCMSs). If these subsidence areas can be integrated into water resource planning, the increasingly precarious water supply infrastructure will be strengthened. PMID:28106048

  11. Simulating the hydrologic cycle in coal mining subsidence areas with a distributed hydrologic model

    Science.gov (United States)

    Wang, Jianhua; Lu, Chuiyu; Sun, Qingyan; Xiao, Weihua; Cao, Guoliang; Li, Hui; Yan, Lingjia; Zhang, Bo

    2017-01-01

    Large-scale ground subsidence caused by coal mining and subsequent water-filling leads to serious environmental problems and economic losses, especially in plains with a high phreatic water level. Clarifying the hydrologic cycle in subsidence areas has important practical value for environmental remediation, and provides a scientific basis for water resource development and utilisation of the subsidence areas. Here we present a simulation approach to describe interactions between subsidence area water (SW) and several hydrologic factors from the River-Subsidence-Groundwater Model (RSGM), which is developed based on the distributed hydrologic model. Analysis of water balance shows that the recharge of SW from groundwater only accounts for a small fraction of the total water source, due to weak groundwater flow in the plain. The interaction between SW and groundwater has an obvious annual cycle. The SW basically performs as a net source of groundwater in the wet season, and a net sink for groundwater in the dry season. The results show there is an average 905.34 million m3 per year of water available through the Huainan coal mining subsidence areas (HCMSs). If these subsidence areas can be integrated into water resource planning, the increasingly precarious water supply infrastructure will be strengthened.

  12. Regression methodology in groundwater composition estimation with composition predictions for Romuvaara borehole KR10

    Energy Technology Data Exchange (ETDEWEB)

    Luukkonen, A.; Korkealaakso, J.; Pitkaenen, P. [VTT Communities and Infrastructure, Espoo (Finland)

    1997-11-01

    Teollisuuden Voima Oy selected five investigation areas for preliminary site studies (1987Ae1992). The more detailed site investigation project, launched at the beginning of 1993 and presently supervised by Posiva Oy, is concentrated to three investigation areas. Romuvaara at Kuhmo is one of the present target areas, and the geochemical, structural and hydrological data used in this study are extracted from there. The aim of the study is to develop suitable methods for groundwater composition estimation based on a group of known hydrogeological variables. The input variables used are related to the host type of groundwater, hydrological conditions around the host location, mixing potentials between different types of groundwater, and minerals equilibrated with the groundwater. The output variables are electrical conductivity, Ca, Mg, Mn, Na, K, Fe, Cl, S, HS, SO{sub 4}, alkalinity, {sup 3}H, {sup 14}C, {sup 13}C, Al, Sr, F, Br and I concentrations, and pH of the groundwater. The methodology is to associate the known hydrogeological conditions (i.e. input variables), with the known water compositions (output variables), and to evaluate mathematical relations between these groups. Output estimations are done with two separate procedures: partial least squares regressions on the principal components of input variables, and by training neural networks with input-output pairs. Coefficients of linear equations and trained networks are optional methods for actual predictions. The quality of output predictions are monitored with confidence limit estimations, evaluated from input variable covariances and output variances, and with charge balance calculations. Groundwater compositions in Romuvaara borehole KR10 are predicted at 10 metre intervals with both prediction methods. 46 refs.

  13. Calculating the water and heat balances of the Eastern Mediterranean basin using ocean modelling and available meteorological, hydrological, and ocean data

    Directory of Open Access Journals (Sweden)

    M. Shaltout

    2011-06-01

    Full Text Available This paper analyses the Eastern Mediterranean water and heat balances over a 52-yr period. The modelling uses a process-oriented approach resolving the one-dimensional equations of momentum, heat, and salt conservation, with turbulence modelled using a two-equation model. The exchange through the Sicily Channel connecting the Eastern and Western basins is calculated from satellite altimeter data. The results illustrates that calculated surface temperature and salinity follow the reanalysed data well and with biases of −0.4 °C and −0.004, respectively. Monthly and yearly temperature and salinity cycles are also satisfactory simulated. Reanalysed data and calculated water mass structure and heat balance components are in good agreement, indicating that the air-sea interaction and the turbulent mixing are realistically simulated. The study illustrates that the water balance in the Eastern Mediterranean basin is controlled by the difference between inflows/outflows through the Sicily Channel and by the net precipitation rates. The heat balance is controlled by the heat loss from the water surface, sun radiation into the sea, and heat flow through the Sicily Channel, the first two displaying both climate trends. An annual net heat loss of approximately 9 W m−2 was balanced by net heat in flow through the Sicily Channel.

  14. Calculating the water and heat balances of the Eastern Mediterranean basin using ocean modelling and available meteorological, hydrological, and ocean data

    Science.gov (United States)

    Shaltout, M.; Omstedt, A.

    2011-06-01

    This paper analyses the Eastern Mediterranean water and heat balances over a 52-yr period. The modelling uses a process-oriented approach resolving the one-dimensional equations of momentum, heat, and salt conservation, with turbulence modelled using a two-equation model. The exchange through the Sicily Channel connecting the Eastern and Western basins is calculated from satellite altimeter data. The results illustrates that calculated surface temperature and salinity follow the reanalysed data well and with biases of -0.4 °C and -0.004, respectively. Monthly and yearly temperature and salinity cycles are also satisfactory simulated. Reanalysed data and calculated water mass structure and heat balance components are in good agreement, indicating that the air-sea interaction and the turbulent mixing are realistically simulated. The study illustrates that the water balance in the Eastern Mediterranean basin is controlled by the difference between inflows/outflows through the Sicily Channel and by the net precipitation rates. The heat balance is controlled by the heat loss from the water surface, sun radiation into the sea, and heat flow through the Sicily Channel, the first two displaying both climate trends. An annual net heat loss of approximately 9 W m-2 was balanced by net heat in flow through the Sicily Channel.

  15. Statistical analysis of hydrologic data for Yucca Mountain; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, B.M.; Hall, I.J.; Peters, R.R.; Easterling, R.G.; Klavetter, E.A.

    1992-02-01

    The geologic formations in the unsaturated zone at Yucca Mountain are currently being studied as the host rock for a potential radioactive waste repository. Data from several drill holes have been collected to provide the preliminary information needed for planning site characterization for the Yucca Mountain Project. Hydrologic properties have been measured on the core samples and the variables analyzed here are thought to be important in the determination of groundwater travel times. This report presents a statistical analysis of four hydrologic variables: saturated-matrix hydraulic conductivity, maximum moisture content, suction head, and calculated groundwater travel time. It is important to modelers to have as much information about the distribution of values of these variables as can be obtained from the data. The approach taken in this investigation is to (1) identify regions at the Yucca Mountain site that, according to the data, are distinctly different; (2) estimate the means and variances within these regions; (3) examine the relationships among the variables; and (4) investigate alternative statistical methods that might be applicable when more data become available. The five different functional stratigraphic units at three different locations are compared and grouped into relatively homogeneous regions. Within these regions, the expected values and variances associated with core samples of different sizes are estimated. The results provide a rough estimate of the distribution of hydrologic variables for small core sections within each region.

  16. The global volume and distribution of modern groundwater

    Science.gov (United States)

    Gleeson, Tom; Befus, Kevin; Jasechko, Scott; Luijendijk, Elco; Cardenas, Bayani

    2017-04-01

    Groundwater is important for energy and food security, human health and ecosystems. The time since groundwater was recharged - or groundwater age - can be important for diverse geologic processes such as chemical weathering, ocean eutrophication and climate change. However, measured groundwater ages range from months to millions of years. The global volume and distribution of groundwater less than 50 years old - modern groundwater that is the most recently recharged and also the most vulnerable to global change - are unknown. Here we combine geochemical, geological, hydrologic and geospatial datasets with numerical simulations of groundwater flow and analyze tritium ages to show that less than 6% of the groundwater in the uppermost portion of Earth's landmass is modern. We find that the total groundwater volume in the upper 2 km of continental crust is approximately 22.6 million km3, of which 0.1 to 5.0 million km3 is less than 50 years old. Although modern groundwater represents a small percentage of the total groundwater on Earth, the volume of modern groundwater is equivalent to a body of water with a depth of about 3 m spread over the continents. This water resource dwarfs all other components of the active hydrologic cycle.

  17. The global volume and distribution of modern groundwater

    Science.gov (United States)

    Gleeson, Tom; Befus, Kevin M.; Jasechko, Scott; Luijendijk, Elco; Cardenas, M. Bayani

    2016-02-01

    Groundwater is important for energy and food security, human health and ecosystems. The time since groundwater was recharged--or groundwater age--can be important for diverse geologic processes, such as chemical weathering, ocean eutrophication and climate change. However, measured groundwater ages range from months to millions of years. The global volume and distribution of groundwater less than 50 years old--modern groundwater that is the most recently recharged and also the most vulnerable to global change--are unknown. Here we combine geochemical, geologic, hydrologic and geospatial data sets with numerical simulations of groundwater and analyse tritium ages to show that less than 6% of the groundwater in the uppermost portion of Earth’s landmass is modern. We find that the total groundwater volume in the upper 2 km of continental crust is approximately 22.6 million km3, of which 0.1-5.0 million km3 is less than 50 years old. Although modern groundwater represents a small percentage of the total groundwater on Earth, the volume of modern groundwater is equivalent to a body of water with a depth of about 3 m spread over the continents. This water resource dwarfs all other components of the active hydrologic cycle.

  18. Groundwater Governance in the United States: Common Priorities and Challenges.

    Science.gov (United States)

    Megdal, Sharon B; Gerlak, Andrea K; Varady, Robert G; Huang, Ling-Yee

    2015-01-01

    Groundwater is a critical component of the water supply for agriculture, urban areas, industry, and ecosystems, but managing it is a challenge because groundwater is difficult to map, quantify, and evaluate. Until recently, study and assessment of governance of this water resource has been largely neglected. A survey was developed to query state agency officials about the extent and scope of groundwater use, groundwater laws and regulations, and groundwater tools and strategies. Survey responses revealed key findings: states' legal frameworks for groundwater differ widely in recognizing the hydrologic connection between surface water and groundwater, the needs of groundwater-dependent ecosystems, and the protection of groundwater quality; states reported a range in capacity to enforce groundwater responsibilities; and states have also experienced substantial changes in groundwater governance in the past few decades. Overall, groundwater governance across the United States is fragmented. States nevertheless identified three common priorities for groundwater governance: water quality and contamination, conflicts between users, and declining groundwater levels. This survey represents an initial step in a broader, continuing effort to characterize groundwater governance practices in the United States.

  19. Hydrologic budget of the Beaverdam Creek basin, Maryland

    Science.gov (United States)

    Rasmussen, W.C.; Andreasen, Gordon E.

    1959-01-01

    unmeasured, but not entirely unknown, quantities, evapotranspiration, (ET) and gravity yield, (Yg), are included in the equation. They are derived statistically by a method of convergent approximations, one of the contributions of this investigation. On the basis of laboratory analysis, well-field tests, and general information on rates of drainage from saturated sediments, a gravity yield of 14 percent was assumed as a first approximation. The equation was then solved, by weeks, for evapotranspiration, ET. The evapotranspiration losses were plotted against the calendar week. Using the time of year as a control, a smooth curve was fitted to the evapotranspiration data, and modified values of ET were read from the curve. These were used to compute weekly values of the infiltration residual which were plotted against ground-water stage. The slope of the line of best fit gave a closer approximation of gravity yield, Yg. The process was repeated. The approximations converged, so that a fourth and final approximation resulted in a close grouping of all the points along a line whose slope indicated a Yg of 11.0 percent, and a slightly asymmetric bell-shaped curve of total evapotranspiration by weeks was obtained that is considered representative of this area. Check calculations of gravity yield were made during periods of low evapotranspiration and high infiltration, which substantiate the computed average of 11.0 percent. Refinements in the method of deriving the ground-water budget were introduced to supplement the techniques developed by Meinzer and Stearns in the study of the Pomperaug River basin in Connecticut in 1913 and 1916. The hydrologic equation for the ground-water cycle may be written Gr=D + delta H. x Yg + ETg, in which Gr is ground-water recharge (infiltration); D is ground-water drainage; delta H is the change in mean ground-water stage (final stage minus initial stage); Yg is gravity yield (taken as 11.0 percent in computations here); an

  20. Sandcastle Moats and Petunia Bed Holes. A Book about Groundwater.

    Science.gov (United States)

    Nickinson, Pat

    This book provides five instructional units on groundwater. Units included are: (1) "Where's the Groundwater?" (describing the concepts of a saturated zone, water table, hydrologic cycle, recharge and discharge, core of depression, subsidence, and saltwater intrusion); (2) "How Does It Travel?" (discussing porosity,…

  1. Estimating the Spatial Distribution of Groundwater Demand In the Texas High Plains

    OpenAIRE

    Zhao, Shiliang; Wang, Chenggang; James P. Bordovsky; Sheng, Zhuping; Gastelum, Jesus R.

    2011-01-01

    Developing groundwater management plans requires a good understanding of the interdependence of groundwater hydrology and producer water use behavior. While state-of-the-art groundwater models require water demand data at highly disaggregated levels, the lack of producer water use data has held up the progress to meet that need. This paper proposes an econometric framework that links county-level crop acreage data to well-level hydrologic data to produce heterogeneous patterns of crop choice ...

  2. Estimating the Spatial Distribution of Groundwater Demand In the Texas High Plains

    OpenAIRE

    Zhao, Shiliang; Wang, Chenggang; James P. Bordovsky; Sheng, Zhuping; Gastelum, Jesus R.

    2011-01-01

    Developing groundwater management plans requires a good understanding of the interdependence of groundwater hydrology and producer water use behavior. While state-of-the-art groundwater models require water demand data at highly disaggregated levels, the lack of producer water use data has held up the progress to meet that need. This paper proposes an econometric framework that links county-level crop acreage data to well-level hydrologic data to produce heterogeneous patterns of crop choice ...

  3. Study on Calculation Method of Groundwater Resources Amount for A Region without Data%基于无资料地区地下水资源量计算方法的研究

    Institute of Scientific and Technical Information of China (English)

    王舒凌; 许海东; 丛梅梅

    2014-01-01

    Groundwater is stored below ground pore,fissure and cave in rock and soil saturated water.Groundwater resources amount refers to total amount of water for aquifers receiving precipitation, surface water,lateral runoff and artificial recharge,infiltration recharge in a period.Among them,the surface water is consisted of infiltration recharge by the lake (reservoir,pool)surrounding infiltration recharge,river and canal seepage recharge and irrigation infiltration recharge.But for the area without data,the data near the area,the similar terrain landform,nearby stations are borrowed to calculate the groundwater resources amount.%地下水是指储存在地面以下饱和岩土孔隙、裂隙及溶洞的水。地下水资源量是指某时段内地下含水层接收降水、地表水体、侧向径流及人工回灌等项渗透补给量的总和。其中,地表水体渗透补给量由湖泊(水库、坑塘)周边渗透补给量、河道及渠系渗透补给量和田间灌溉入渗补给量组成。对无资料地区通常采用临近站地形、地貌等相似的地区借用其现有的水文资料来计算地下水资源量。文章对此进行探讨研究。

  4. Groundwater uptake of forest and agricultural land covers in regions of recharge and discharge

    Directory of Open Access Journals (Sweden)

    Móricz N

    2016-10-01

    Full Text Available Groundwater uptake of vegetation in discharge regions is known to play an important role, e.g., in the Hungarian Great Plain. Nevertheless, only little detailed monitoring of water table fluctuations and groundwater uptake (ETgw were reported under varying hydrologic conditions and vegetation cover. In this study, results of water table monitoring under forest plantations and adjacent corn plots in discharge and recharge regions were analyzed to gain better understanding of the relation of vegetation cover to groundwater uptake. A poplar (Populus tremula plantation and adjacent corn field plot were surveyed in a local discharge area, while a black locust (Robinia pseudoacacia plantation and adjacent corn field plot were analyzed in a recharge area. The water table under the poplar plantation displayed a night-time recovery in the discharge region, indicating significant groundwater supply. In this case an empirical version of the water table fluctuation method was used for calculating the ETgw that included the groundwater supply. The mean ETgw of the poplar plantation was 3.6 mm day-1, whereas no water table fluctuation was observed at the nearby corn plot. Naturally, the root system of the poplar was able to tap the groundwater in depths of 3.0-3.3 m while the shallower roots of the corn did not reach the groundwater reservoir in depths of 2.7-2.8 m. In the recharge zone the water table under the black locust plantation showed step-like changes referring to the lack of groundwater supply. The mean ETgw was 0.7 mm day-1 (groundwater depths of 3.0-3.2 m and similarly no ETgw was detected at the adjacent corn plot with groundwater depths between 3.2 and 3.4 m. The low ETgw of the young black locust plantation was due to the lack of groundwater supply in recharge area, but also the shallow root system might have played a role. Our results suggest that considerations should be given to local estimations of ETgw from water table measurements that

  5. Coastal groundwater table estimation by an elevation fluctuation neural model

    Institute of Scientific and Technical Information of China (English)

    HE Bin; WANG Yi

    2007-01-01

    Restrictions of groundwater management are often derived from the insufficient or missing groundwater database. A suitable and complete groundwater database will allow sound engineering plans for sustainable water usage, including the drilling of wells, rates of water withdrawal, and eventually artificial recharge of the aquifer. The spatial-temporal variations of groundwater monitoring data are fluently influenced by the presence of manual factors, monitor equipment malfunctioning, natural phenomena, etc. Thus, it is necessary for researchers to check and infill the groundwater database before running the numerical groundwater model. In this paper, an artificial neural network (ANN)-based model is formulated using the hydrological and meteorological data to infill the inadequate data in the groundwater database. Prediction results present that ANN method could be a desirable choice for estimating the missing groundwater data.

  6. Water allocation assessment in low flow river under data scarce conditions: a study of hydrological simulation in Mediterranean basin.

    Science.gov (United States)

    Bangash, Rubab F; Passuello, Ana; Hammond, Michael; Schuhmacher, Marta

    2012-12-01

    River Francolí is a small river in Catalonia (northeastern Spain) with an average annual low flow (~2 m(3)/s). The purpose of the River Francolí watershed assessments is to support and inform region-wide planning efforts from the perspective of water protection, climate change and water allocation. In this study, a hydrological model of the Francolí River watershed was developed for use as a tool for watershed planning, water resource assessment, and ultimately, water allocation purposes using hydrological data from 2002 to 2006 inclusive. The modeling package selected for this application is DHI's MIKE BASIN. This model is a strategic scale water resource management simulation model, which includes modeling of both land surface and subsurface hydrological processes. Topographic, land use, hydrological, rainfall, and meteorological data were used to develop the model segmentation and input. Due to the unavailability of required catchment runoff data, the NAM rainfall-runoff model was used to calculate runoff of all the sub-watersheds. The results reveal a potential pressure on the availability of groundwater and surface water in the lower part of River Francolí as was expected by the IPCC for Mediterranean river basins. The study also revealed that due to the complex hydrological regime existing in the study area and data scarcity, a comprehensive physically based method was required to better represent the interaction between groundwater and surface water. The combined ArcGIS/MIKE BASIN models appear as a useful tool to assess the hydrological cycle and to better understand water allocation to different sectors in the Francolí River watershed.

  7. Hydrological and biogeochemical investigation of an agricultural watershed, southeast New Hampshire, USA

    Science.gov (United States)

    Davis, J. M.; McDowell, W. H.; Campbell, J. E.; Hristov, A. N.

    2010-12-01

    Developing sustainable agricultural practices and policies requires an understanding of the hydrological and biological processes that control nutrient fluxes and how those processes are manifested in nutrient loading of surface water bodies. Groundwater and surface water from the UNH Organic Research Dairy, located in southeast New Hampshire, flow into the Lamprey River and then into the Great Bay, New Hampshire; both are experiencing increasing nutrient loads. The farm hosts approximately 80 Jersey cows (40 milking) and is located on relatively thin (marine silt and clay overlying fractured calcareous quartzite. Recharge of precipitation is the dominant mode through which nutrients are introduced into the hydrologic system. Intensive meteorological, hydrological, and biogeochemical monitoring of a 35 hectare watershed that includes the main farm operation buildings and several pastures has been underway since June 2009. A three-dimensional transient unsaturated-saturated groundwater flow model was developed using LIDAR topography and detailed field mapping. The transient model was calibrated to observed water level and streamflow observations. Model results suggest that summer recharge rates vary considerably across the site and depth to the water table is the dominant control on the recharge flux. Areas having depth to water of 1-2 m experience the greatest recharge (up to 60% of precipitation). Areas with deeper water tables experience greater evapotranspiration from the vadose zone, and shallower water tables experience greater runoff. Water budget calculations suggest that the hydrologic fluxes occur predominately in the shallow groundwater, wetlands, and small surface streams draining the watershed. High dissolved nitrogen (N) concentrations (up to an average concentration of 35 mg N/L) are observed in groundwater immediately downgradient from the main farm operation and decrease more than an order of magnitude along the flowpaths. However, Nitrogen-15

  8. Effect of Groundwater Abstraction on Fen Ecosystems

    DEFF Research Database (Denmark)

    Johansen, Ole; Pedersen, Morten Lauge; Jensen, Jacob Birk

    2011-01-01

    hydrological conditions have been monitored intensively since March 2007. In the early spring 2009 two full scale pumping test were conducted in the regional high yield limestone aquifer. The evaluation focuses on three isolated fens covering an area of approximately 5000 m2 each and two natural springs all...... and spring habitats. Continuous water level data from deep and shallow wells in the fens reflect the hydrological conditions. Large differences in water level drawdown during dry summer periods have been observed in the monitored fens and it is hypothesised, that these differences are directly related...... of the monitored ecosystems and the response towards groundwater abstraction and forms a solid foundation for hydrological modelling....

  9. Risk assessment of groundwater level variability using variable Kriging methods

    Science.gov (United States)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2015-04-01

    Assessment of the water table level spatial variability in aquifers provides useful information regarding optimal groundwater management. This information becomes more important in basins where the water table level has fallen significantly. The spatial variability of the water table level in this work is estimated based on hydraulic head measured during the wet period of the hydrological year 2007-2008, in a sparsely monitored basin in Crete, Greece, which is of high socioeconomic and agricultural interest. Three Kriging-based methodologies are elaborated in Matlab environment to estimate the spatial variability of the water table level in the basin. The first methodology is based on the Ordinary Kriging approach, the second involves auxiliary information from a Digital Elevation Model in terms of Residual Kriging and the third methodology calculates the probability of the groundwater level to fall below a predefined minimum value that could cause significant problems in groundwater resources availability, by means of Indicator Kriging. The Box-Cox methodology is applied to normalize both the data and the residuals for improved prediction results. In addition, various classical variogram models are applied to determine the spatial dependence of the measurements. The Matérn model proves to be the optimal, which in combination with Kriging methodologies provides the most accurate cross validation estimations. Groundwater level and probability maps are constructed to examine the spatial variability of the groundwater level in the basin and the associated risk that certain locations exhibit regarding a predefined minimum value that has been set for the sustainability of the basin's groundwater resources. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the

  10. Calculating the water and heat balances of the Eastern Mediterranean Basin using ocean modelling and available meteorological, hydrological and ocean data

    Directory of Open Access Journals (Sweden)

    Anders Omstedt

    2012-04-01

    Full Text Available Eastern Mediterranean water and heat balances wereanalysed over 52 years. The modelling uses a process-orientedapproach resolving the one-dimensional equations of momentum,heat and salt conservation; turbulence is modelled using a two-equation model. The results indicate that calculated temperature and salinity follow the reanalysed data well. The water balance in the Eastern Mediterranean basin was controlled by the difference between inflows and outflows through the Sicily Channel and by net precipitation. The freshwater component displayed a negative trend over the study period, indicating increasing salinity in the basin.The heat balance was controlled by heat loss from the water surface, solar radiation into the sea and heat flow through the Sicily Channel. Both solar radiation and net heat loss displayed increasing trends, probably due to decreased total cloud cover. In addition, the heat balance indicated a net import of approximately 9 W m-2 of heat to the Eastern Mediterranean Basin from the Western Basin.

  11. Hydroeconomic modeling of sustainable groundwater management

    Science.gov (United States)

    MacEwan, Duncan; Cayar, Mesut; Taghavi, Ali; Mitchell, David; Hatchett, Steve; Howitt, Richard

    2017-03-01

    In 2014, California passed legislation requiring the sustainable management of critically overdrafted groundwater basins, located primarily in the Central Valley agricultural region. Hydroeconomic modeling of the agricultural economy, groundwater, and surface water systems is critically important to simulate potential transition paths to sustainable management of the basins. The requirement for sustainable groundwater use by 2040 is mandated for many overdrafted groundwater basins that are decoupled from environmental and river flow effects. We argue that, for such cases, a modeling approach that integrates a biophysical response function from a hydrologic model into an economic model of groundwater use is preferable to embedding an economic response function in a complex hydrologic model as is more commonly done. Using this preferred approach, we develop a dynamic hydroeconomic model for the Kings and Tulare Lake subbasins of California and evaluate three groundwater management institutions—open access, perfect foresight, and managed pumping. We quantify the costs and benefits of sustainable groundwater management, including energy pumping savings, drought reserve values, and avoided capital costs. Our analysis finds that, for basins that are severely depleted, losses in crop net revenue are offset by the benefits of energy savings, drought reserve value, and avoided capital costs. This finding provides an empirical counterexample to the Gisser and Sanchez Effect.

  12. Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water–seawater interface in two Hawaiian groundwater systems

    Science.gov (United States)

    Dimova, Natasha T.; Swarzenski, Peter W.; Dulaiova, Henrieta; Glenn, Craig R.

    2012-01-01

    Multichannel electrical resistivity (ER) measurements were conducted at two contrasting coastal sites in Hawaii to obtain new information on the spatial scales and dynamics of the fresh water–seawater interface and rates of coastal groundwater exchange. At Kiholo Bay (located on the dry, Kona side of the Big Island) and at a site in Maunalua Bay (Oahu), there is an evidence for abundant submarine groundwater discharge (SGD). However, the hydrologic and geologic controls on coastal groundwater discharge are likely to be different at these two sites. While at Kiholo Bay SGD is predominantly through lava tubes, at the Maunalua Bay site exchange occurs mostly through nearshore submarine springs. In order to calculate SGD fluxes, it is important to understand the spatial and temporal scales of coastal groundwater exchange. From ER time series data, subsurface salinity distributions were calculated using site-specific formation factors. A salinity mass balance box model was then used to calculate rates of point source (i.e., spatially discreet) and total fresh water discharge. From these data, mean SGD rates were calculated for Kiholo Bay (∼9,200 m3/d) and for the Maunalua Bay site (∼5,900 m3/d). While such results are on the same order of magnitude to geochemical tracer-derived SGD rates, the ER SGD rates provide enhanced details of coastal groundwater exchange that can enable a more cohesive whole watershed perspective.

  13. Simulating groundwater-induced sewer flooding

    Science.gov (United States)

    Mijic, A.; Mansour, M.; Stanic, M.; Jackson, C. R.

    2016-12-01

    During the last decade, Chalk catchments of southern England experienced severe groundwater flooding. High groundwater levels resulted in the groundwater ingress into the sewer network that led to restricted toilet use and the overflow of diluted, but untreated sewage to road surfaces, rivers and water courses. In response to these events the water and sewerage company Thames Water Utilities Ltd (TWUL) had to allocate significant funds to mitigate the impacts. It was estimated that approximately £19m was spent responding to the extreme wet weather of 2013-14, along with the use of a fleet of over 100 tankers. However, the magnitude of the event was so large that these efforts could not stop the discharge of sewage to the environment. This work presents the analysis of the risk of groundwater-induced sewer flooding within the Chalk catchment of the River Lambourn, Berkshire. A spatially distributed groundwater model was used to assess historic groundwater flood risk and the potential impacts of changes in future climate. We then linked this model to an urban groundwater model to enable us to simulate groundwater-sewer interaction in detail. The modelling setup was used to identify relationships between infiltration into sewers and groundwater levels at specific points on TWUL's sewer network, and to estimate historic and future groundwater flood risk, and how this varies across the catchment. The study showed the significance of understanding the impact of groundwater on the urban water systems, and producing information that can inform a water company's response to groundwater flood risk, their decision making process and their asset management planning. However, the knowledge gained through integrated modelling of groundwater-sewer interactions has highlighted limitations of existing approaches for the simulation of these coupled systems. We conclude this work with number of recommendations about how to improve such hydrological/sewer analysis.

  14. Uncertainties in the simulation of groundwater recharge at different scales

    Directory of Open Access Journals (Sweden)

    H. Bogena

    2005-01-01

    Full Text Available Digital spatial data always imply some kind of uncertainty. The source of this uncertainty can be found in their compilation as well as the conceptual design that causes a more or less exact abstraction of the real world, depending on the scale under consideration. Within the framework of hydrological modelling, in which numerous data sets from diverse sources of uneven quality are combined, the various uncertainties are accumulated. In this study, the GROWA model is taken as an example to examine the effects of different types of uncertainties on the calculated groundwater recharge. Distributed input errors are determined for the parameters' slope and aspect using a Monte Carlo approach. Landcover classification uncertainties are analysed by using the conditional probabilities of a remote sensing classification procedure. The uncertainties of data ensembles at different scales and study areas are discussed. The present uncertainty analysis showed that the Gaussian error propagation method is a useful technique for analysing the influence of input data on the simulated groundwater recharge. The uncertainties involved in the land use classification procedure and the digital elevation model can be significant in some parts of the study area. However, for the specific model used in this study it was shown that the precipitation uncertainties have the greatest impact on the total groundwater recharge error.

  15. Hydrologic budget and conditions of Permian, Pennsylvanian, and Mississippian aquifers in the Appalachian Plateaus physiographic province

    Science.gov (United States)

    McCoy, Kurt J.; Yager, Richard M.; Nelms, David L.; Ladd, David E.; Monti,, Jack; Kozar, Mark D.

    2015-08-13

    In response to challenges to groundwater availability posed by historic land-use practices, expanding development of hydrocarbon resources, and drought, the U.S. Geological Survey Groundwater Resources Program began a regional assessment of the Appalachian Plateaus aquifers in 2013 that incorporated a hydrologic landscape approach to estimate all components of the hydrologic system: surface runoff, base flow from groundwater, and interaction with atmospheric water (precipitation and evapotranspiration). This assessment was intended to complement other Federal and State investigations and provide foundational groundwater-related datasets in the Appalachian Plateaus.

  16. Baseline groundwater model update for p-area groundwater operable unit, NBN

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. [Savannah River Site (SRS), Aiken, SC (United States); Amidon, M. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-09-01

    This report documents the development of a numerical groundwater flow and transport model of the hydrogeologic system of the P-Area Reactor Groundwater Operable Unit at the Savannah River Site (SRS) (Figure 1-1). The P-Area model provides a tool to aid in understanding the hydrologic and geochemical processes that control the development and migration of the current tritium, tetrachloroethene (PCE), and trichloroethene (TCE) plumes in this region.

  17. Global analysis of sensitivity of bioretention cell design elements to hydrologic performance

    Directory of Open Access Journals (Sweden)

    Yan-wei SUN

    2011-09-01

    Full Text Available Analysis of sensitivity of bioretention cell design elements to their hydrologic performances is meaningful in offering theoretical guidelines for proper design. Hydrologic performance of bioretention cells was facilitated with consideration of four metrics: the overflow ratio, groundwater recharge ratio, ponding time, and runoff coefficients. The storm water management model (SWMM and the bioretention infiltration model RECARGA were applied to generating runoff and outflow time series for calculation of hydrologic performance metrics. Using a parking lot to build a bioretention cell, as an example, the Morris method was used to conduct global sensitivity analysis for two groups of bioretention samples, one without underdrain and the other with underdrain. Results show that the surface area is the most sensitive element to most of the hydrologic metrics, while the gravel depth is the least sensitive element whether bioretention cells are installed with underdrain or not. The saturated infiltration rate of planting soil and the saturated infiltration rate of native soil are the other two most sensitive elements for bioretention cells without underdrain, while the saturated infiltration rate of native soil and underdrain size are the two most sensitive design elements for bioretention cells with underdrain.

  18. Evaluating groundwater flow using passive electrical measurements

    Science.gov (United States)

    Voytek, E.; Revil, A.; Singha, K.

    2016-12-01

    Accurate quantification of groundwater flow patterns, both in magnitude and direction, is a necessary component of evaluating any hydrologic system. Groundwater flow patterns are often determined using a dense network of wells or piezometers, which can be limited due to logistical or regulatory constraints. The self-potential (SP) method, a passive geophysical technique that relies on currents generated by water movement through porous materials, is a re-emerging alternative or addition to traditional piezometer networks. Naturally generated currents can be measured as voltage differences at the ground surface using only two electrodes, or a more complex electrode array. While the association between SP measurements and groundwater flow was observed as early as 1890s, the method has seen resurgence in hydrology since the governing equations were refined in the 1980s. The method can be used to analyze hydrologic processes at various temporal and spatial scales. Here we present the results of multiple SP surveys collected a multiple scales (1 to 10s of meters). Here single SP grid surveys are used to evaluate flow patterns through artic hillslopes at a discrete point in time. Additionally, a coupled groundwater and electrical model is used to analyze multiple SP data sets to evaluate seasonal changes in groundwater flow through an alpine meadow.

  19. Present-day groundwater recharge estimation in parts of the Indian Sub-Continent

    Science.gov (United States)

    Bhanja, S. N.; Mukherjee, A.; Wada, Y.; Scanlon, B. R.; Taylor, R. G.; Rodell, M.; Malakar, P.

    2015-12-01

    Large part of global population has been dependent on groundwater as a source of fresh water. The demand would further increase with increasing population and stress associated with climate change. We tried to provide regional-scale groundwater recharge estimates in a large part of Indian Sub-Continent. A combination of ground-based, satellite-based and numerical model simulated recharge estimates were presented in the densely populated region. Three different methods: an intense network of observational wells (n>13,000 wells), a satellite (TRMM) and global land-surface model (CLM) outputs, and a global-scale hydrological model (PCR GLOBWB) were employed to calculate recharge estimates. Groundwater recharge values exhibit large spatial variations over the entire region on the basis of aquifer hydrogeology, precipitation and groundwater withdrawal patterns. Groundwater recharge estimates from all three estimation techniques were found to be higher (>300 mm/year) in fertile planes of Indus-Ganges-Brahmaputra (IGB) river basins. A combination of favorable hydrogeologic conditions (porosity, permeability etc.), comparatively higher rates of precipitation, and return flow from rapidly withdrawn irrigation water might influence occurrence of high recharge rates. However, central and southern study area experiences lower recharge rates (recharge estimates show good matches in some of the areas. Recharge estimates indicate dynamic nature of groundwater recharge as a function of precipitation, land use pattern, and hydrogeologic parameters. On a first hand basis, the estimates will help policy makers to understand groundwater recharge process over the densely populated region and finally would facilitate to implement sustainable policy for securing water security.

  20. Groundwater Availability Alters Soil-plant Nutrient Cycling in a Stand of Invasive, N-fixing Phreatophytes

    Science.gov (United States)

    Dudley, B. D.; Miyazawa, Y.; Hughes, F.; Ostertag, R.; Kettwich, S. K.; MacKenzie, R.; Dulaiova, H.; Waters, C. A.; Bishop, J.; Giambelluca, T. W.

    2013-12-01

    N-fixing phreatophytic trees are common in arid and semi-arid regions worldwide, and can play significant roles in modifying hydrology and soil-plant nutrient cycling where they are present. In light of reductions in groundwater levels in many arid regions we estimated annual transpiration rates at a stand level, and alterations to C, N and P accretion in soils as a function of groundwater depth in a ca.120 year old stand of Prosopis pallida along an elevation gradient in coastal leeward Hawaii. We measured sapflow and stand level sapwood area to quantify transpiration, and calculated groundwater transpiration rates using P. pallida stem water δ18O values. By measuring soil resistivity, we were able to compare the volume of groundwater transpired by these trees to groundwater depth across the stand. We examined nutrient deposition and accretion in soils in lowland areas of the stand with accessible shallow groundwater, compared to upland areas with no groundwater access, as indicated by stem water δ18O values. Resistivity results suggested that groundwater was at a height close to sea level throughout the stand. Transpiration was around 1900 m3 ha-1 year-1 in the areas of the stand closest to the sea (where groundwater was at around 1-4 m below ground level) and decreased to around a tenth of that volume where groundwater was not accessible. Litterfall rates over the course of the year studied were 17 times greater at lowland sites, but this litterfall contributed ca. 24 times the N, and 35 times the P of upland sites. Thus, groundwater access contributed to the total mass of nitrogen and phosphorus deposited in the form of litter through higher litter quantity and quality. Total N content of soils was 4.7 times greater and inorganic N pools were eight times higher at lowland plots. These results suggest that groundwater depth can have strong effects on soil-plant nutrient cycling, so that reductions in the availability of shallow groundwater are likely to impact

  1. Hydrogeologic framework and groundwater/surface-water interactions of the upper Yakima River Basin, Kittitas County, central Washington

    Science.gov (United States)

    Gendaszek, Andrew S.; Ely, D. Matthew; Hinkle, Stephen R.; Kahle, Sue C.; Welch, Wendy B.

    2014-01-01

    unconfined part of the aquifers in unconsolidated sediments indicate generalized groundwater movement toward the Yakima River and its tributaries and the outlet of the study area. Groundwater movement through fractures within the bedrock aquifers is complex and varies over spatial scales depending on the architecture of the fracture-flow system and its hydraulic properties. The complexity of the fracturedbedrock groundwater-flow system is supported by a wide range of groundwater ages determined from geochemical analyses of carbon-14, sulfur hexafluoride, and tritium in groundwater. These geochemical data also indicate that the shallow groundwater system is actively flushing with young, isotopically heavy groundwater, but isotopicallylight, Pleistocene-age groundwater with a geochemicallyevolved composition occurs at depth within the fracturedbedrock aquifers of upper Kittitas County. An eastward depletion of stable isotopes in groundwater is consistent with hydrologically separate subbasins. This suggests that groundwater that recharges in one subbasin is not generally available for withdrawal or discharge into surface-water features within other subbasins. Water budget components were calculated for 11 subbasins using a watershed model and varied based on the climate, land uses, and geology of the subbasin. Synoptic streamflow measurements made in August 2011 indicate that groundwater discharges into several tributaries of the Yakima River with several losses of streamflow measured where the streams exit bedrock uplands and flow over unconsolidated sediments. Profiles of stream temperature during late summer suggest cool groundwater inflow over discrete sections of streams. This groundwater/surfacewater connection is further supported by the stable-isotope composition of stream water, which reflects the local stableisotope composition of groundwater measured at some wells and springs. Collectively, these hydrogeologic, hydrologic, and geochemical data support a framework

  2. Connections between groundwater flow and transpiration partitioning

    Science.gov (United States)

    Maxwell, Reed M.; Condon, Laura E.

    2016-07-01

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes.

  3. Using hydrochemical data and modelling to enhance the knowledge of groundwater flow and quality in an alluvial aquifer of Zagreb, Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Marković, Tamara, E-mail: tmarkovic@hgi-cgs.hr; Brkić, Željka; Larva, Ozren

    2013-08-01

    The Zagreb alluvial aquifer system is located in the southwest of the Pannonian Basin in the Sava Valley in Croatia. It is composed of Quaternary unconsolidated deposits and is highly utilised, primarily as a water supply for the more than one million inhabitants of the capital city of Croatia. To determine the origin and dynamics of the groundwater and to enhance the knowledge of groundwater flow and the interactions between the groundwater and surface water, extensive hydrogeological and hydrochemical investigations have been completed. The groundwater levels monitored in nested observation wells and the lithological profile indicate that the aquifer is a single hydrogeologic unit, but the geochemical characteristics of the aquifer indicate stratification. The weathering of carbonate and silicate minerals has an important role in groundwater chemistry, especially in the area where old meanders of the Sava River existed. Groundwater quality was observed to be better in the deeper parts of the aquifer than in the shallower parts. Furthermore, deterioration of the groundwater quality was observed in the area under the influence of the landfill. The stable isotopic composition of all sampled waters indicates meteoric origin. NETPATH-WIN was used to calculate the mixing proportions between initial waters (water from the Sava River and groundwater from “regional” flow) in the final water (groundwater sampled from observation wells). According to the results, the mixing proportions of “regional” flow and the river water depend on hydrological conditions, the duration of certain hydrological conditions and the vicinity of the Sava River. Moreover, although the aquifer system behaves as a single hydrogeologic unit from a hydraulic point of view, it still clearly demonstrates geochemical stratification, which could be a decisive factor in future utilisation strategies for the aquifer system. - Highlights: • The Zagreb aquifer is the largest utilised source of

  4. Groundwater recharge and agricultural contamination

    Science.gov (United States)

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  5. Integrated hydrological SVAT model for climate change studies in Denmark

    Science.gov (United States)

    Mollerup, M.; Refsgaard, J.; Sonnenborg, T. O.

    2010-12-01

    In a major Danish funded research project (www.hyacints.dk) a coupling is being established between the HIRHAM regional climate model code from Danish Meteorological Institute and the MIKE SHE distributed hydrological model code from DHI. The linkage between those two codes is a soil vegetation atmosphere transfer scheme, which is a module of MIKE SHE. The coupled model will be established for the entire country of Denmark (43,000 km2 land area) where a MIKE SHE based hydrological model already exists (Henriksen et al., 2003, 2008). The present paper presents the MIKE SHE SVAT module and the methodology used for parameterising and calibrating the MIKE SHE SVAT module for use throughout the country. As SVAT models previously typically have been tested for research field sites with comprehensive data on energy fluxes, soil and vegetation data, the major challenge lies in parameterisation of the model when only ordinary data exist. For this purpose annual variations of vegetation characteristics (Leaf Area Index (LAI), Crop height, Root depth and the surface albedo) for different combinations of soil profiles and vegetation types have been simulated by use of the soil plant atmosphere model Daisy (Hansen et al., 1990; Abrahamsen and Hansen, 2000) has been applied. The MIKE SHE SVAT using Daisy generated surface/soil properties model has been calibrated against existing data on groundwater heads and river discharges. Simulation results in form of evapotranspiration and percolation are compared to the existing MIKE SHE model and to observations. To analyse the use of the SVAT model in climate change impact assessments data from the ENSEMBLES project (http://ensembles-eu.metoffice.com/) have been analysed to assess the impacts on reference evapotranspiration (calculated by the Makkink and the Penmann-Monteith equations) as well as on the individual elements in the Penmann-Monteith equation (radiation, wind speed, humidity and temperature). The differences on the

  6. Hydrogeologic framework and groundwater/surface-water interactions of the South Fork Nooksack River Basin, northwestern Washington

    Science.gov (United States)

    Gendaszek, Andrew S.

    2014-01-01

    A hydrogeologic framework of the South Fork (SF) Nooksack River Basin in northwestern Washington was developed and hydrologic data were collected to characterize the groundwater-flow system and its interaction with surface‑water features. In addition to domestic, agricultural, and commercial uses of groundwater within the SF Nooksack River Basin, groundwater has the potential to provide ecological benefits by maintaining late-summer streamflows and buffering stream temperatures. Cold-water refugia, created and maintained in part by groundwater, have been identified by water-resource managers as key elements to restore the health and viability of threatened salmonids in the SF Nooksack River. The SF Nooksack River drains a 183-square mile area of the North Cascades and the Puget Lowland underlain by unconsolidated glacial and alluvial sediments deposited over older sedimentary, metamorphic, and igneous bedrock. The primary aquifer that interacts with the SF Nooksack River was mapped within unconsolidated glacial outwash and alluvial sediment. The lower extent of this unit is bounded by bedrock and fine-grained, poorly sorted unconsolidated glaciomarine and glaciolacustrine sediments. In places, these deposits overlie and confine an aquifer within older glacial sediments. The extent and thickness of the hydrogeologic units were assembled from mapped geologic units and lithostratigraphic logs of field-inventoried wells. Generalized groundwater-flow directions within the surficial aquifer were interpreted from groundwater levels measured in August 2012; and groundwater seepage gains and losses to the SF Nooksack River were calculated from synoptic streamflow measurements made in the SF Nooksack River and its tributaries in September 2012. A subset of the field-inventoried wells was measured at a monthly interval to determine seasonal fluctuations in groundwater levels during water year 2013. Taken together, these data provide the foundation for a future groundwater

  7. Recharge Net Metering to Incentivize Sustainable Groundwater Management

    Science.gov (United States)

    Fisher, A. T.; Coburn, C.; Kiparsky, M.; Lockwood, B. S.; Bannister, M.; Camara, K.; Lozano, S.

    2016-12-01

    Stormwater runoff has often been viewed as a nuisance rather than a resource, but with passage of the Sustainable Groundwater Management Act (2014), many basins in California are taking a fresh look at options to enhance groundwater supplies with excess winter flows. In some basins, stormwater can be used for managed aquifer recharge (MAR), routing surface water to enhance groundwater resources. As with many public infrastructure programs, financing for stormwater-MAR projects can be a challenge, and there is a need for incentives that will engage stakeholders and offset operation and maintenance costs. The Pajaro Valley Water Management Agency (PVWMA), in central costal California, recently launched California's first Recharge Net Metering (ReNeM) program. MAR projects that are part of the ReNeM program are intended to generate ≥100 ac-ft/yr of infiltration benefit during a normal water year. A team of university and Resource Conservation District partners will collaborate to identify and assess potential project sites, screening for hydrologic conditions, expected runoff, ease and cost of project construction, and ability to measure benefits to water supply and quality. The team will also collect data and samples to measure the performance of each operating project. Groundwater wells within the PVWMA's service area are metered, and agency customers pay an augmentation fee for each unit of groundwater pumped. ReNeM projects will earn rebates of augmentation fees based on the amount of water infiltrated, with rebates calculated using a formula that accounts for uncertainties in the fate of infiltrated water, and inefficiencies in recovery. The pilot ReNeM program seeks to contribute 1000 ac-ft/yr of infiltration benefit by the end of the initial five-year operating period. ReNeM offers incentives that are distinct from those derived from traditional groundwater banking, and thus offers the potential for an innovative addition to the portfolio of options for

  8. Thresholds for earthquake-induced hydrological changes in sedimentary aquifers: a record from 9 earthquakes and 107 boreholes in central New Zealand

    Science.gov (United States)

    Weaver, Konrad; Cox, Simon; Holden, Caroline; Townend, John

    2016-04-01

    A dense hydrogeological network in central New Zealand has recorded groundwater fluctuations from 12 years of seismic events. Hydrological data over the past 15 years were assessed in 107 boreholes at depths of 4 - 405 m. Nine seismic events (M≥5.9) occurred at near- to far-field distances of 10 - 913 km, shaking the sedimentary aquifers at a wide range of 10-4 to 103 J/m3 seismic energy densities. The earthquakes produced 258 detectable hydrological responses, exhibiting different polarities (rise or fall), amplitudes (2 to 820 mm, -859 to -2 mm) and timescales (15 min to day [s]). Shaking parameters were calculated from 28 proximal GeoNet broadband seismometers, providing local estimates of peak ground acceleration (PGA) and velocity (PGV), Arias intensity, and spectral amplitudes. ShakeMap model solutions, utilising ground motion prediction equations (GMPEs), were also acquired at borehole sites. Continuous oceanic tidal responses of 38 boreholes were derived using Baytap08, with temporal transmissivity and earthquake-induced changes estimated from tidal properties. The earthquake-induced changes to groundwater level and tidal response are used to infer those events which caused aquifer deformation and changes to the groundwater flow regime. A transient (15 min to 2 hr) / permanent (15 min to day [s]) deformation boundary is observed when shaking reaches ˜1 %g PGA. As well as defining thresholds at which hydrological changes occurred, the central New Zealand dataset provided an opportunity to examine aquifer ability in resistance to the effects induced by earthquakes. Where monitoring is dense and continuous, the absence of responses under certain levels of shaking is equally informative and helps delineate causative processes. On-going work utilises data mining to assess the contribution of seismic, hydrological, and geological parameters to earthquake-induced hydrological changes in sedimentary aquifer systems.

  9. Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes

    Directory of Open Access Journals (Sweden)

    L. Yang

    2012-11-01

    Full Text Available The Jialu River, a secondary tributary of the Huaihe River, has been severely contaminated from major contaminant sources, such as a number of untreated or lightly treated sewage waste in some cities. Groundwater along the river is not an isolated component of the hydrologic system, but is instead connected with the surface water. This study aims to investigate temporal and spatial variations in water chemistry affected by humans and to characterize the relationships between surface water (e.g. reservoirs, lakes and rivers and groundwater near the river in the shallow Quaternary aquifer. Concentration of Cl in north Zhengzhou City increased prominently due to the discharge of a large amount of domestic water. Nitrate and potassium show maximum concentrations in groundwater in Fugou County. These high levels can be attributed to the use of a large quantity of fertilizer over this region. Most surface water appeared to be continuously recharged from the surrounding groundwater (regional wells based on comparison surface water with groundwater levels, stable-isotopes and major ion signatures. However, the groundwater of a transitional well (location SY3 seemed to be recharged by river water via bank infiltration in September 2010. Fractional contributions of river water to the groundwater were calculated based on isotopic and chemical data using a mass-balance approach. Results show that the groundwater was approximately composed of 60–70% river water. These findings should be useful for a better understanding of hydrogeological processes at the river-aquifer interface and ultimately benefit water management in the future.

  10. Steponas Kolupaila's contribution to hydrological science development

    Science.gov (United States)

    Valiuškevičius, Gintaras

    2017-08-01

    Steponas Kolupaila (1892-1964) was an important figure in 20th century hydrology and one of the pioneers of scientific water gauging in Europe. His research on the reliability of hydrological data and measurement methods was particularly important and contributed to the development of empirical hydrological calculation methods. Kolupaila was one of the first who standardised water-gauging methods internationally. He created several original hydrological and hydraulic calculation methods (his discharge assessment method for winter period was particularly significant). His innate abilities and frequent travel made Kolupaila a universal specialist in various fields and an active public figure. He revealed his multilayered scientific and cultural experiences in his most famous book, Bibliography of Hydrometry. This book introduced the unique European hydrological-measurement and computation methods to the community of world hydrologists at that time and allowed the development and adaptation of these methods across the world.

  11. The earth's hydrological cycle

    CERN Document Server

    Bonnet, R-M; Calisto, M; Destouni, G; Gurney, R; Johannessen, J; Kerr, Y; Lahoz, WA; Rast, M

    2014-01-01

    This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the ...

  12. Pursuing Solutions to Sustain Groundwater in California's Changing Climate

    Science.gov (United States)

    Gilbert, James

    2014-08-01

    A century of groundwater development in California with comparatively little regulation has yielded enduring legal, political, and hydrologic challenges compounded by drought, population growth and shifts, and climate change. With the debate over state and local roles in managing the resource garnering considerable attention, focus is shifting to how best to address groundwater issues for future sustainability. Groundwater does not exist in isolation, and sustainable management requires understanding interconnections with climate, land surface, and human actions. This integrated approach to California's groundwater raises significant cross-disciplinary questions that will need to be answered by the next generation of scientists, managers, and policy makers.

  13. groundwater contribution to crop water requirement groundwater ...

    African Journals Online (AJOL)

    eobe

    Keywords: Groundwater, water table, capillary rise, soil type, waterleaf, ... GROUNDWATER CONTRIBUTION TO WATERLEAF (TALINUM TRIANGULARE) IN OXISOLS, I. J. ... Nutritionally, ... information to facilitate increased crop production,.

  14. Simulations of ecosystem hydrological processes using a unified multi-scale model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin; Hinkle, Ross; Li, Hong-Yi; Bailey, Vanessa; Bond-Lamberty, Ben

    2015-01-01

    This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling of hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.

  15. Hydrologic refugia, plants, and climate change.

    Science.gov (United States)

    McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E

    2017-08-01

    Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.

  16. Hydrological sciences and water security: An overview

    Science.gov (United States)

    Young, G.; Demuth, S.; Mishra, A.; Cudennec, C.

    2015-04-01

    This paper provides an introduction to the concepts of water security including not only the risks to human wellbeing posed by floods and droughts, but also the threats of inadequate supply of water in both quantity and quality for food production, human health, energy and industrial production, and for the natural ecosystems on which life depends. The overall setting is one of constant change in all aspects of Earth systems. Hydrological systems (processes and regimes) are changing, resulting from varying and changing precipitation and energy inputs, changes in surface covers, mining of groundwater resources, and storage and diversions by dams and infrastructures. Changes in social, political and economic conditions include population and demographic shifts, political realignments, changes in financial systems and in trade patterns. There is an urgent need to address hydrological and social changes simultaneously and in combination rather than as separate entities, and thus the need to develop the approach of `socio-hydrology'. All aspects of water security, including the responses of both UNESCO and the International Association of Hydrological Sciences (IAHS) to the concepts of socio-hydrology, are examined in detailed papers within the volume titled Hydrological Sciences and Water Security: Past, Present and Future.

  17. Modeling the time-varying interaction between surface water and groundwater bodies

    Science.gov (United States)

    Gliege, Steffen; Steidl, Jörg; Lischeid, Gunnar; Merz, Christoph

    2016-04-01

    The countless kettle holes (small lakes) in the Late Pleistocene landscapes of Northern Europe have important ecological and hydrological functions. On the one hand they act as depressions in which water and solutes of mainly agriculturally used catchments accumulate. On the other hand they operate as biochemical reactors with respect to greenhouse gas emissions, carbon sequestration, and as major sinks for nutrients and contaminants. Even small kettle holes often are hydraulically connected to the uppermost groundwater system: Groundwater discharges into the kettle hole on one side, and the aquifer is recharged from the kettle hole water body on the other side. Thus kettle hole biogeochemical processes are both affected by groundwater and vice versa. Groundwater flow direction and velocity into and out of the kettle hole often is not stable over time. Groundwater flow direction might reverse at the downstream part, resulting in repeated recycling of groundwater and corresponding solute turnover within the kettle holes. A sound understanding of this intricate interplay is a necessary prerequisite for better understanding of the biogeochemistry of this terrestrial-aquatic interface. A numerical experiment was used to quantify the lateral solute exchange between a kettle hole and the surrounding groundwater. A vertical cross section through the real existing catchment of a kettle hole was chosen. Glacial till represents the lower boundary. The heterogeneity of the subsurface was reproduced by various parameterizations of the soil hydraulic properties as well as varying the thickness of the unconfined aquifer or the lateral boundary conditions. In total 24 different parameterizations were implemented in the modeling software HydroGeoSphere (HGS). HGS is suitable to calculate the fluid exchange between surface and subsurface simultaneously and in a physically based way. The simulation runs were done for the period from November 1994 to October 2014. All results were

  18. Quantification of surface water and groundwater flows to open- and closed-basin lakes in a headwaters watershed using a descriptive oxygen stable isotope model

    Science.gov (United States)

    Stets, Edward G.; Winter, T. C.; Rosenberry, Donald O.; Striegl, Robert G.

    2010-01-01

    Accurate quantification of hydrologic fluxes in lakes is important to resource management and for placing hydrologic solute flux in an appropriate biogeochemical context. Water stable isotopes can be used to describe water movements, but they are typically only effective in lakes with long water residence times. We developed a descriptive time series model of lake surface water oxygen-18 stable isotope signature (δL) that was equally useful in open- and closed-basin lakes with very different hydrologic residence times. The model was applied to six lakes, including two closed-basin lakes and four lakes arranged in a chain connected by a river, located in a headwaters watershed. Groundwater discharge was calculated by manual optimization, and other hydrologic flows were constrained by measured values including precipitation, evaporation, and streamflow at several stream gages. Modeled and observed δL were highly correlated in all lakes (r = 0.84–0.98), suggesting that the model adequately described δL in these lakes. Average modeled stream discharge at two points along the river, 16,000 and 11,800 m3 d−1, compares favorably with synoptic measurement of stream discharge at these sites, 17,600 and 13,700 m3 d−1, respectively. Water yields in this watershed were much higher, 0.23–0.45 m, than water yields calculated from gaged streamflow in regional rivers, approximately 0.10 m, suggesting that regional groundwater discharge supports water flux through these headwaters lakes. Sensitivity and robustness analyses also emphasized the importance of considering hydrologic residence time when designing a sampling protocol for stable isotope use in lake hydrology studies.

  19. Groundwater recharge in a semi-arid environment under high climatic variability and over-pumping: Ajlun Highlands example, Jordan.

    Science.gov (United States)

    Raggad, Marwan; Salameh, Elias; Magri, Fabien; Siebert, Christian; Roediger, Tino; Moller, Peter

    2016-04-01

    Jordan's ground water resources are being exploited up to 190% of the safe yield while rainfall rates are decreasing and highly variable, thereby affecting recharge volumes of the aquifers. The Ajlun highlands, forming the northwestern edge of Jordan are characterized by annual rainfall rates exceeding 500 mm, the highest in the country, which leads to accordingly high replenishment of almost the entire groundwater system in northern Jordan. The high recharge and the NW-wards dipping strata lead to a groundwater flow towards the north and northwest, areas which host the vital aquifers of the region. Limited and degraded groundwater recharge combined with growing over-pumping are the main issues that regard the northern groundwater basins, such as Wadi Arab, Yarmouk and the Jordan Valley side basins. To evaluate the groundwater potential under high recharge variability, groundwater recharge was modeled and compared to different Global Circulation Models (GCMs). Groundwater recharge was calculated based on climatic data covering the time period from 1965 to 2014. Recharge modeling was conducted by applying the J2000 water budget model. The simulation of hydrologic processes uses independent parameters that are calculated prior to simulate the recharge flow. The simulations estimate recharge of 47.6 MCM, which is 12% less than the values given by the Jordanian authorities. The low calculated recharge is likely due to an overestimation of the evapotranspiration in areas with high topographic slopes. To examine the variability of groundwater recharge under current climatic conditions, statistical downscaling of global circulation models was conducted for the time period 1965 - 2000. Data for the time period 2001 - 2014 was used for the model validation. Results indicated a decline of 18.7% in precipitation by the year 2050 with an increase of 1.7 and 2.2 degrees in maximum and minimum temperatures respectively. Accordingly recharge for the year 2050 is 27% less than

  20. Artificial recharge of groundwater

    Science.gov (United States)

    The Task Committee on Guidelines for Artificial Recharge of Groundwater, of the American Society of Civil Engineers' (ASCE) Irrigation and Drainage Division, sponsored an International Symposium on Artificial Recharge of Groundwater at the Inn-at-the-Park Hotel in Anaheim, Calif., August 23-27, 1988. Cosponsors were the U.S. Geological Survey, California Department of Water Resources, University of California Water Resources Center, Metropolitan Water District of Southern California, with cooperation from the U.S. Bureau of Reclamation, International Association of Hydrological Sciences, American Water Resources Association, U.S. Agency for International Development, World Bank, United Nations Department of Technical Cooperation for Development, and a number of local and state organizations.Because of the worldwide interest in artificial recharge and the need to develop efficient recharge facilities, the Anaheim symposium brought together an interdisciplinary group of engineers and scientists to provide a forum for many professional disciplines to exchange experiences and findings related to various types of artificial recharge; learn from both successful and unsuccessful case histories; promote technology transfer between the various disciplines; provide an education resource for communication with those who are not water scientists, such as planners, lawyers, regulators, and the public in general; and indicate directions by which cities or other entities can save funds by having reasonable technical guidelines for implementation of a recharge project.

  1. Groundwater dependence degree, hydrological functioning index and main threats in the Guadalquivir basin continental wetlands; Grado de dependencia de las aguas subterraneas, indice de funcionamiento hidrologico y principales amenazas en los principales humedales continentales de la depresion del Guadalquivir

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Rodirguez, M.; Moral, F.; Benavente, J.

    2009-07-01

    The main morphometric, hydrogeochemical and climatic indexes were analyzed in 26 ponds of the of the Guadalquivir basin, related to the materials of the subbetic front. It has been verified that, inmost cases, the surface basin (CVS) is the hydrologic unit from which these ecosystems receive the surface and ground water inputs. Therefore, the CVSs can be considered as basic hydrological management units for the ponds studied. The average flooded area (AMI) in each pond is conditioned by two main factors: the extension of the CVS and the effective rainfall, which has been estimated as the surplus of the soil water budget. The AMIs adjusts to these two factors in the systems that are not altered by human activities and that are related to the conceptual model developed. Thus, it has been possible to create an index of hydrological functioning (IFH) that relates these variables and that allow us to discriminate the ecosystems that adjust to the proposed model from the rest of the ponds studied. The morphology of the basin (maximum depth) is the main factor related to the hydro period of the ponds. On the other hand, the hydro geochemistry, highly variable, is partially related to the hydrogeological functioning of the ecosystems and can be employed as another variable to determine it. Finally, these variables have been related by statistical analysis and various clusters have been discriminated, that are in accordance with field observations. The main human modifications that have been detected in the systems are related to the filling of the basins as a result of changes in land uses, and future climate changes that would affect to all the ponds studied. (Author) 23 refs.

  2. Hydrogeologic framework and selected components of the groundwater budget for the upper Umatilla River Basin, Oregon

    Science.gov (United States)

    Herrera, Nora B.; Ely, Kate; Mehta, Smita; Stonewall, Adam J.; Risley, John C.; Hinkle, Stephen R.; Conlon, Terrence D.

    2017-05-31

    Executive SummaryThis report presents a summary of the hydrogeology of the upper Umatilla River Basin, Oregon, based on characterization of the hydrogeologic framework, horizontal and vertical directions of groundwater flow, trends in groundwater levels, and components of the groundwater budget. The conceptual model of the groundwater flow system integrates available data and information on the groundwater resources of the upper Umatilla River Basin and provides insights regarding key hydrologic processes, such as the interaction between the groundwater and surface water systems and the hydrologic budget.The conceptual groundwater model developed for the study area divides the groundwater flow system into five hydrogeologic units: a sedimentary unit, three Columbia River basalt units, and a basement rock unit. The sedimentary unit, which is not widely used as a source of groundwater in the upper basin, is present primarily in the lowlands and consists of conglomerate, loess, silt and sand deposits, and recent alluvium. The Columbia River Basalt Group is a series of Miocene flood basalts that are present throughout the study area. The basalt is uplifted in the southeastern half of the study area, and either underlies the sedimentary unit, or is exposed at the surface. The interflow zones of the flood basalts are the primary aquifers in the study area. Beneath the flood basalts are basement rocks composed of Paleogene to Pre-Tertiary sedimentary, volcanic, igneous, and metamorphic rocks that are not used as a source of groundwater in the upper Umatilla River Basin.The major components of the groundwater budget in the upper Umatilla River Basin are (1) groundwater recharge, (2) groundwater discharge to surface water and wells, (3) subsurface flow into and out of the basin, and (4) changes in groundwater storage.Recharge from precipitation occurs primarily in the upland areas of the Blue Mountains. Mean annual recharge from infiltration of precipitation for the upper

  3. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina)

    Science.gov (United States)

    Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.

    2014-01-01

    Multiple techniques, including thermal infrared aerial remote sensing, geophysical and geological data, geochemical characterization and radium isotopes, were used to evaluate the role of groundwater as a source of dissolved nutrients, carbon, and trace gases to the Okatee River estuary, South Carolina. Thermal infrared aerial remote sensing surveys illustrated the presence of multiple submarine groundwater discharge sites in Okatee headwaters. Significant relationships were observed between groundwater geochemical constituents and 226Ra activity in groundwater with higher 226Ra activity correlated to higher concentrations of organics, dissolved inorganic carbon, nutrients, and trace gases to the Okatee system. A system-level radium mass balance confirmed a substantial submarine groundwater discharge contribution of these constituents to the Okatee River. Diffusive benthic flux measurements and potential denitrification rate assays tracked the fate of constituents in creek bank sediments. Diffusive benthic fluxes were substantially lower than calculated radium-based submarine groundwater discharge inputs, showing that advection of groundwater-derived nutrients dominated fluxes in the system. While a considerable potential for denitrification in tidal creek bank sediments was noted, in situ denitrification rates were nitrate-limited, making intertidal sediments an inefficient nitrogen sink in this system. Groundwater geochemical data indicated significant differences in groundwater chemical composition and radium activity ratios between the eastern and western sides of the river; these likely arose from the distinct hydrological regimes observed in each area. Groundwater from the western side of the Okatee headwaters was characterized by higher concentrations of dissolved organic and inorganic carbon, dissolved organic nitrogen, inorganic nutrients and reduced metabolites and trace gases, i.e. methane and nitrous oxide, than groundwater from the eastern side

  4. Hydrologic impact of urbanization with extensive stormwater infiltration

    Science.gov (United States)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten; Deletic, Ana; Roldin, Maria; Binning, Philip John

    2017-01-01

    This paper presents a novel modeling analysis of a 40-year-long dataset to examine the impact of urbanization, with widespread stormwater infiltration, on groundwater levels and the water balance of a watershed. A dataset on the hydrologic impact of urbanization with extensive stormwater infiltration is not widely available, and is important because many municipalities are considering infiltration as an alternative to traditional stormwater systems. This study analyzes groundwater level observations from an urban catchment located in Perth, Western Australia. The groundwater observation data cover approximately a 40-year-long period where land use changes (particularly due to urbanization) occurred; moreover, the monitored area contains both undeveloped and urbanized areas where stormwater infiltration is common practice via soakwells (shallow vertical infiltration wells). The data is analyzed using a distributed and dynamic hydrological model to simulate the groundwater response. The model explicitly couples a soakwell model with a groundwater model so that the performance of the soakwells is reduced by the increase of groundwater levels. The groundwater observation data is used to setup, calibrate and validate a coupled MIKE SHE-MIKE URBAN groundwater model and the model is used to quantify the extent of groundwater rise as a result of the urbanization process. The modeled urbanization processes included the irrigation of new established private and public gardens, the reduction of evapotranspiration due to a decrease in green areas, and the development of artificial stormwater infiltration. The study demonstrates that urbanization with stormwater infiltration affects the whole catchment water balance, increasing recharge and decreasing evapotranspiration. These changes lead to a rise in the groundwater table and an increase in the probability of groundwater seepage above terrain.

  5. Effect of Groundwater Abstraction on Fen Ecosystems

    DEFF Research Database (Denmark)

    Johansen, Ole; Pedersen, Morten Lauge; Jensen, Jacob Birk

    2011-01-01

    Quantifying the effects of groundwater abstraction on fen ecosystems located in discharge areas can be complicated. The water level in fens is close to the terrain surface most of the year and it is controlled by a relatively constant groundwater exfiltration. It is difficult to measure...... the exfiltration fluxes and thus water level data is typically used to evaluate if the ecosystem is affected. The paper presents collected data and analysis from a case study, where the hydrological effect of groundwater abstraction on rich fens and springs in a Danish river valley has been studied. The natural...... within a distance of 1.5 km to a planned well field. In the river valley the interaction between groundwater and surface water is strongly affected by low permeable sediments. These sediments reduce the direct discharge to the river and have a large impact on the functioning and presence of the rich fen...

  6. Science, society, and the coastal groundwater squeeze

    Science.gov (United States)

    Michael, Holly A.; Post, Vincent E. A.; Wilson, Alicia M.; Werner, Adrian D.

    2017-04-01

    Coastal zones encompass the complex interface between land and sea. Understanding how water and solutes move within and across this interface is essential for managing resources for society. The increasingly dense human occupation of coastal zones disrupts natural groundwater flow patterns and degrades freshwater resources by both overuse and pollution. This pressure results in a "coastal groundwater squeeze," where the thin veneers of potable freshwater are threatened by contaminant sources at the land surface and saline groundwater at depth. Scientific advances in the field of coastal hydrogeology have enabled responsible management of water resources and protection of important ecosystems. To address the problems of the future, we must continue to make scientific advances, and groundwater hydrology needs to be firmly embedded in integrated coastal zone management. This will require interdisciplinary scientific collaboration, open communication between scientists and the public, and strong partnerships with policymakers.

  7. Estimating groundwater exchange with lakes: 1. The stable isotope mass balance method

    Science.gov (United States)

    Krabbenhoft, David P.; Bowser, Carl J.; Anderson, Mary P.; Valley, John W.

    1990-01-01

    Groundwater inflow and outflow contributions to the hydrologic budget of lakes can be determined using a stable isotope (18O/16O) mass balance method. The stable isotope method provides a way of integrating the spatial and temporal complexities of the flow field around a lake, thereby offering an appealing alternative to the traditional time and labor intensive methods using seepage meters and an extensive piezometer network. In this paper the method is applied to a lake in northern Wisconsin, demonstrating that it can be successfully applied to lakes in the upper midwest where thousands of similar lakes exist. Inflow and outflow rates calculated for the Wisconsin lake using the isotope mass balance method are 29 and 54 cm/yr, respectively, which compare well to estimates, derived independently using a three-dimensional groundwater flow and solute transport model, of 20 and 50 cm/yr. Such a favorable comparison lends confidence to the use of the stable isotope method to estimate groundwater exchange with lakes. In addition, utilization of stable isotopes in studies of groundwater-lake systems lends insight into mixing processes occurring in the unsaturated zone and in the aquifer surrounding the lake and verifies assumed flow paths based on head measurements in piezometers.

  8. The groundwater balance in alluvial plain aquifer at Dehgolan, Kurdistan, Iran

    Science.gov (United States)

    Amini, Ata; Homayounfar, Vafa

    2016-07-01

    In this research, groundwater balance in Dehgolan plain, Kurdistan, Iran was carried out to assess changes in the level and volume of groundwater and water resources management. For this purpose, water resources supplies and consumption data, amount of charging and discharge and water level data recorded from wells and piezometers from 2010 to 2011 water year were gathered and analyzed. Rainfall and water losses of the study area were determined and required maps, including Iso-maps of the temperature, the evaporation, the groundwater level and the aquifer conductivity, were drawn by GIS software. Using the information and drawn maps and the equality of inputs and outputs data, the aquifer water balance was calculated. The results of balance equations showed that the balance is negative indicated a notably decline of groundwater equal to 15.029 million cubic meter (MCM). Such rate of decline is due to the large number of agricultural wells in the region, without considering the hydrological potential of the aquifer.

  9. Documentation of a groundwater flow model developed to assess groundwater availability in the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to North Carolina

    Science.gov (United States)

    Masterson, John P.; Pope, Jason P.; Fienen, Michael N.; Monti, Jr., Jack; Nardi, Mark R.; Finkelstein, Jason S.

    2016-08-31

    of 12.3 feet is about 3 percent of the total observed water-level range throughout the aquifer system.Streamflow observation data of base flow conditions were derived for 153 sites from the U.S. Geological Survey National Hydrography Dataset Plus and National Water Information System. An average residual of about –8 cubic feet per second and an average absolute residual of about 21 cubic feet per second for a range of computed base flows of about 417 cubic feet per second were calculated for the 122 sites from the National Hydrography Dataset Plus. An average residual of about 10 cubic feet per second and an average absolute residual of about 34 cubic feet per second were calculated for the 568 flow measurements in the 31 sites obtained from the National Water Information System for a range in computed base flows of about 1,141 cubic feet per second.The numerical representation of the hydrogeologic information used in the development of this regional flow model was dependent upon how the aquifer system and simulated hydrologic stresses were discretized in space and time. Lumping hydraulic parameters in space and hydrologic stresses and time-varying observational data in time can limit the capabilities of this tool to simulate how the groundwater flow system responds to changes in hydrologic stresses, particularly at the local scale.

  10. Uncertainty in hydrological signatures

    Science.gov (United States)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty

  11. Effects of brush management on the hydrologic budget and water quality in and adjacent to Honey Creek State Natural Area, Comal County, Texas, 2001-10

    Science.gov (United States)

    Banta, J. Ryan; Slattery, Richard N.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Natural Resources Conservation Service, the Edwards Region Grazing Lands Conservation Initiative, the Texas State Soil and Water Conservation Board, the San Antonio River Authority, the Edwards Aquifer Authority, Texas Parks and Wildlife, the Guadalupe Blanco River Authority, and the San Antonio Water System, evaluated the hydrologic effects of ashe juniper (Juniperus ashei) removal as a brush management conservation practice in and adjacent to the Honey Creek State Natural Area in Comal County, Tex. By removing the ashe juniper and allowing native grasses to reestablish in the area as a brush management conservation practice, the hydrology in the watershed might change. Using a simplified mass balance approach of the hydrologic cycle, the incoming rainfall was distributed to surface water runoff, evapotranspiration, or groundwater recharge. After hydrologic data were collected in adjacent watersheds for 3 years, brush management occurred on the treatment watershed while the reference watershed was left in its original condition. Hydrologic data were collected for another 6 years. Hydrologic data include rainfall, streamflow, evapotranspiration, and water quality. Groundwater recharge was not directly measured but potential groundwater recharge was calculated using a simplified mass balance approach. The resulting hydrologic datasets were examined for differences between the watersheds and between pre- and post-treatment periods to assess the effects of brush management. The streamflow to rainfall relation (expressed as event unit runoff to event rainfall relation) did not change between the watersheds during pre- and post-treatment periods. The daily evapotranspiration rates at the reference watershed and treatment watershed sites exhibited a seasonal cycle during the pre- and post-treatment periods, with intra- and interannual variability. Statistical analyses indicate the mean

  12. Description of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof (Artesia Grundvattenkonsult AB, Taeby (Sweden))

    2008-12-15

    This report describes the modelling of the surface hydrology and near-surface hydrogeology that was performed for the final site descriptive model of Forsmark produced in the site investigation stage, SDM-Site Forsmark. The comprehensive investigation and monitoring programme forms a strong basis for the developed conceptual and descriptive model of the hydrological and near-surface hydrological system of the site investigation area. However, there are some remaining uncertainties regarding the interaction of deep and near-surface groundwater and surface water of importance for the understanding of the system: The groundwaters in till below Lake Eckarfjaerden, Lake Gaellbotraesket, Lake Fiskarfjaerden and Lake Bolundsfjaerden have high salinities. The hydrological and hydrochemical interpretations indicate that these waters are relict waters of mainly marine origin. From the perspective of the overall water balance, the water below the central parts of the lakes can be considered as stagnant. However, according to the hydrochemical interpretation, these waters also contain weak signatures of deep saline water. Rough chloride budget calculations for the Gaellbotraesket depression also raise the question of a possible upward flow of deep groundwater. No absolute conclusion can be drawn from the existing data analyses regarding the key question of whether there is a small ongoing upward flow of deep saline water. However, Lake Bolundsfjaerden is an exception where the clear downward flow gradient from the till to the bedrock excludes the possibility of an active deep saline source. The available data indicate that there are no discharge areas for flow systems involving deep bedrock groundwater in the northern part of the tectonic lens, where the repository is planned to be located (the so-called 'target area'). However, it can not be excluded that such discharge areas exist. Data indicate that the prevailing downward vertical flow gradients from the QD to

  13. Time-domain electromagnetic surveys at Fort Irwin, San Bernardino County, California, 2010-12: Chapter F in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    Science.gov (United States)

    Burgess, Matthew K.; Bedrosian, Paul A.; Buesch, David C.

    2014-01-01

    Between 2010 and 2012, a total of 79 time-domain electromagnetic (TEM) soundings were collected in 12 groundwater basins in the U.S. Army Fort Irwin National Training Center (NTC) study area to help improve the understanding of the hydrogeology of the NTC. The TEM data are discussed in this chapter in the context of geologic observations of the study area, the details of which are provided in the other chapters of this volume. Selection of locations for TEM soundings in unexplored basins was guided by gravity data that estimated depth to pre-Tertiary basement complex of crystalline rock and alluvial thickness. Some TEM data were collected near boreholes with geophysical logs. The TEM response at locations near boreholes was used to evaluate sounding data for areas without boreholes. TEM models also were used to guide site selection of subsequent boreholes drilled as part of this study. Following borehole completion, geophysical logs were used to ground-truth and reinterpret previously collected TEM data. This iterative process was used to site subsequent TEM soundings and borehole locations as the study progressed. Although each groundwater subbasin within the NTC boundaries was explored using the TEM method, collection of TEM data was focused in those basins identified as best suited for development of water resources. At the NTC, TEM estimates of some lithologic thicknesses and electrical properties in the unsaturated zone are in good accordance with borehole data; however, water-table elevations were not easily identifiable from TEM data.

  14. Network analysis applications in hydrology

    Science.gov (United States)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  15. Mean Transit Time as a Predictor of Groundwater Discharge Response in the Upper Colorado River Basin

    Science.gov (United States)

    Solder, J. E.; Heilweil, V. M.; Stolp, B. J.; Susong, D.

    2015-12-01

    The Colorado River and its tributaries support 40 million municipal water users and 5.5 million acres of agriculture in the south western United States (U.S. Bureau of Reclamation, 2012). Recent estimates by Rumsey et al. (2015) suggest that a significant portion (about 50 percent) of surface water flow in the Upper Colorado River Basin (UCRB) is sustained by groundwater discharge to streams. Predicted climate variation (Cook et al., 2015) and increased water demand (U.S. Bureau of Reclamation, 2012) within the UCRB suggest future decreases in groundwater discharge, however transient groundwater responses are not well understood. In this study we calculate groundwater mean transit time (MTT) and transit time distribution (TTD) as predictors of the pattern and timing of groundwater response to hydraulic stress. Samples from nineteen large springs within the UCRB were analyzed for environmental tracers to determine MTT and TTD. The predictive value of the MTT is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the 19 springs range from 10 to 15,000 years with a flow-weighted average of 1,650 years. The composite TTD of the 19 springs suggest that flowpaths representing 45 percent of their combined discharge have transit times greater than 100 years. However, spring discharge records indicate that flow responds to drought on much shorter (0.5 - 6 year) time scales, indicative of a hydraulic pressure response. Springs with shorter MTTs ( 100) also show a hydraulic pressure response. While not fully representative of the UCRB, results from the 19 springs indicate that groundwater discharge responds to climate variation and water-demand imbalances over a relatively short time period of years.

  16. Groundwater regulation and integrated planning

    Science.gov (United States)

    Quevauviller, Philippe; Batelaan, Okke; Hunt, Randall J.

    2016-01-01

    The complex nature of groundwater and the diversity of uses and environmental interactions call for emerging groundwater problems to be addressed through integrated management and planning approaches. Planning requires different levels of integration dealing with: the hydrologic cycle (the physical process) including the temporal dimension; river basins and aquifers (spatial integration); socioeconomic considerations at regional, national and international levels; and scientific knowledge. The great natural variation in groundwater conditions obviously affects planning needs and options as well as perceptions from highly localised to regionally-based approaches. The scale at which planning is done therefore needs to be carefully evaluated against available policy choices and options in each particular setting. A solid planning approach is based on River Basin Management Planning (RBMP), which covers: (1) objectives that management planning are designed to address; (2) the way various types of measures fit into the overall management planning; and (3) the criteria against which the success or failure of specific strategies or interventions can be evaluated (e.g. compliance with environmental quality standards). A management planning framework is to be conceived as a “living” or iterated document that can be updated, refined and if necessary changed as information and experience are gained. This chapter discusses these aspects, providing an insight into European Union (EU), United States and Australia groundwater planning practices.

  17. Groundwater Resources: Investigation and Development

    Science.gov (United States)

    Anderson, Mary P.

    A glance through the table of contents of this volume might suggest that it is yet another introductory text on principles of groundwater hydrology. All of the usual basic topics are covered including definitions of terms and concepts, aquifer types, drilling methods, and pumping tests. But partly because this book is intended for practicing groundwater consultants rather than students, other less elementary topics such as environmental isotope techniques, geochemical methods, interpretation and utilization of spring flow, geophysical methods, and groundwater balances are also included.According to the preface, ‘practical applicability’ is stressed ‘to show how groundwater investigations should be conducted using a systematic, well-directed effort’ and to describe ‘… what to do, what to avoid, and what kind of results one can reasonably expect …’ While this book was published as part of a series of monographs on water pollution, it is more in the nature of a handbook than a true monograph. That is, it is not an in-depth treatment of a single topic but presents a broad introduction to the ways in

  18. Global Groundwater related Risk Indicators: quantifying groundwater stress and groundwater table decline (1990-2010) at global scale

    Science.gov (United States)

    Faneca Sanchez, Marta; Sutanudjaja, Edwin; Kuijper, Marijn; Bierkens, Marc

    2016-04-01

    Groundwater is an invisible but indispensable resource for the economic development of many countries. Due to the need for this resource, in many cases it is exploited under severe pressure and the exploitation can become not sustainable. The non-sustainable exploitation of water is a well-known problem on both regional and global scales. However, most currently-available assessments on water stress still mostly focus on surface water and on water balances. In this work, we presented two global maps of groundwater risk indicators: an updated version of the groundwater stress (Gleeson et al., 2011, DOI: 10.1038/nature11295) and an indicator on groundwater table decline for the period 1990-2010. To calculate both indicators, we used the updated PCR-GLOBWB model output at 5 arcmin resolution (about 10 km at the equator), that is extended with an offline coupling to a global groundwater MODFLOW model. PCR-GLOBWB simulates daily river discharge and groundwater recharge, as well as surface water and groundwater abstraction rates. The latter are estimated internally within the model based on the simulation of their availabilities and water demands for irrigation and other sectors. The daily output of PCR-GLOBWB would then be aggregated to the monthly resolution and used to force the MODFLOW groundwater model resolving spatio-temporal groundwater table dynamics, incorporating the simulated groundwater abstraction of PCR-GLOBWB. Using the PCR-GLOBWB and MODFLOW simulation results from the period 1990-2010, we then quantified groundwater stress and assessed the groundwater table decline. Results are presented on four different spatial scales: 5 arcmin pixel, drainage/sub-catchment unit, state level, and major aquifer unit. The maps clearly show where groundwater is under stress, where there is a trend in the drop of the groundwater table, the slope of the drop and the significance of it.

  19. The role of wetlands in the hydrological cycle

    Directory of Open Access Journals (Sweden)

    A. Bullock

    2003-01-01

    Full Text Available It is widely accepted that wetlands have a significant influence on the hydrological cycle. Wetlands have therefore become important elements in water management policy at national, regional and international level. There are many examples where wetlands reduce floods, recharge groundwater or augment low flows. Less recognised are the many examples where wetlands increase floods, act as a barrier to recharge, or reduce low flows. This paper presents a database of 439 published statements on the water quantity functions of wetlands from 169 studies worldwide. This establishes a benchmark of the aggregated knowledge of wetland influences upon downstream river flows and groundwater aquifers. Emphasis is placed on hydrological functions relating to gross water balance, groundwater recharge, base flow and low flows, flood response and river flow variability. The functional statements are structured according to wetland hydrological type and the manner in which functional conclusions have been drawn. A synthesis of functional statements establishes the balance of scientific evidence for particular hydrological measures. The evidence reveals strong concurrence for some hydrological measures for certain wetland types. For other hydrological measures, there is diversity of functions for apparently similar wetlands. The balance of scientific evidence that emerges gives only limited support to the generalised model of flood control, recharge promotion and flow maintenance by wetlands portrayed throughout the 1990s as one component of the basis for wetland policy formulation. That support is confined largely to floodplain wetlands, while many other wetland types perform alternate functions – partly or fully. This paper provides the first step towards a more scientifically defensible functional assessment system. Keywords: wetlands, hydrological functions, flood reduction, groundwater recharge, low flows, evaporation

  20. Hydrologic Literacy in the Southwest

    Science.gov (United States)

    Washburne, J.; Madden, J.

    2008-12-01

    Improving hydrologic literacy at all levels has been the keystone to the education mission at NSF's SAHRA Science and Technology Center since its inception in 2000. Water issues and water education are particularly relevant in the semi-arid southwest, which has experienced a series of droughts and tremendous growth throughout this period. One of our strategies has been to focus our efforts on the high school and undergraduate level, for which there are far fewer water education materials available. Early on, we worked with local water educators and employed an Understanding by Design methodology to develop a series of Enduring Understandings in the critical areas of water quality, aquatic life, watersheds and urban hydrology. These basic concepts have helped guide our development of content and training opportunities. A prime example of this process is our Watershed Visualization project, which includes a series of animated videos focused on understanding the geographic and hydrologic setting of the Verde Watershed in central Arizona. This series also addresses the interaction of climate and groundwater recharge in this rapidly changing area. This past year, we developed a new program called Arizona Rivers, which emphasizes local and student- based monitoring and research of the interactions between riparian hydrology and ecology. One key feature of this program is an extended summer field trip/research experience for high school students called the Riparian Research Experience. A goal of this program is to raise the level of critical analysis and environmental stewardship among high school students and their teachers. A more comprehensive effort of raising the hydrologic literacy of non-science university freshman has been taking place at the University of Arizona for the past five years through the general education course titled Arizona Water Issues or HWR203. This course focuses equally on fundamental hydrologic understandings, beginning with the water cycle as

  1. Water balance and its intra-annual variability in a permafrost catchment: hydrological interactions between catchment, lake and talik

    Directory of Open Access Journals (Sweden)

    E. Bosson

    2013-07-01

    Full Text Available Few hydrological studies have been made in Greenland with focus on permafrost hydrology rather than on the glacial hydrology associated with the Greenland ice sheet. Understanding permafrost hydrology, and its reflection and propagation of hydroclimatic change and variability, however, can be a key to understand important climate change effects and feedbacks in arctic landscapes. This paper presents a new extensive and detailed hydrological dataset, with high temporal resolution of main hydrological parameters, for a permafrost catchment with a lake underlain by a talik close to the Greenland ice sheet in the Kangerlussuaq region, western Greenland. The paper describes the hydrological site investigations and data collection, and their synthesis and interpretation to develop a conceptual hydrological model. The catchment and lake water balances and their intra-annual variability, and uncertainty intervals for key water balance components, are quantified. The study incorporates all relevant hydrological processes within the catchment and, specifically, links the surface water system to both supra-permafrost and sub-permafrost groundwater. The dataset enabled water balance quantification with high degree of confidence. The measured hydraulic gradient between the lake and the groundwater in the talik shows this to be a groundwater recharging talik. Surface processes, dominated by evapotranspiration during the active flow period, and by snow dynamics during the frozen winter period, influence the temporal variation of groundwater pressure in the talik. This shows the hydrology in the catchment as being rather independent from external large-scale landscape features, including those of the close-by ice sheet.

  2. MODFLOW-NWT model used to simulate and assess groundwater flow and surface-water exchanges in lakes of the Northeast Twin Cities Metropolitan Area, Minnesota, 2003 through 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A three-dimensional, steady-state groundwater-flow model representing 2003-13 mean hydrologic conditions was developed and calibrated to assess groundwater and...

  3. Status report: A hydrologic framework for the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, D.K.; Toran, L.E.; Dreier, R.B. [Oak Ridge National Lab., TN (United States); Moore, G.K.; McMaster, W.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Civil Engineering

    1992-05-01

    This first status report on the Hydrologic Studies Task of the Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) revises earlier concepts of subsurface hydrology and hydrogeochemistry of the ORR. A new classification of hydrogeologic units is given, as well as new interpretations of the gydrogeologic properties and processes that influence contaminant migration. The conceptual hydrologic framework introduced in this report is based primarily on reinterpretations of data acquired during earlier hydrologic investigations of waste areas at and near the three US Department of Energy Oak Ridge (DOE-OR) plant facilities. In addition to describing and interpreting the properties and processes of the groundwater systems as they are presently understood, this report describes surface water-subsurface water relations, influences on contaminant migration,and implications to environmental restoration, environmental monitoring, and waste management.

  4. Tuning hydrological models for ecological modeling - improving simulations of low flows critical to stream ecology

    DEFF Research Database (Denmark)

    Olsen, Martin; Troldborg, Lars; Boegh, Eva

    2008-01-01

    The consequences of using simulated discharge from a conventional hydrological model as input in stream physical habitat modelling was investigated using output from the Danish national hydrological model and a physical habitat model of three small streams. It was found that low flow simulation...... errors could have large impact on simulation of physical habitat conditions. If these two models are to be used to assess groundwater abstraction impact on physical habitat conditions the hydrological model should be tuned to the purpose...

  5. Tuning hydrological models for ecological modeling - improving simulations of low flows critical to stream ecology

    DEFF Research Database (Denmark)

    Olsen, Martin; Troldborg, Lars; Boegh, Eva;

    2008-01-01

    The consequences of using simulated discharge from a conventional hydrological model as input in stream physical habitat modelling was investigated using output from the Danish national hydrological model and a physical habitat model of three small streams. It was found that low flow simulation...... errors could have large impact on simulation of physical habitat conditions. If these two models are to be used to assess groundwater abstraction impact on physical habitat conditions the hydrological model should be tuned to the purpose...

  6. Quantifying the impact of land use change on hydrological responses in the Upper Ganga Basin, India

    Science.gov (United States)

    Tsarouchi, Georgia-Marina; Mijic, Ana; Moulds, Simon; Chawla, Ila; Mujumdar, Pradeep; Buytaert, Wouter

    2013-04-01

    Quantifying how changes in land use affect the hydrological response at the river basin scale is a challenge in hydrological science and especially in the tropics where many regions are considered data sparse. Earlier work by the authors developed and used high-resolution, reconstructed land cover maps for northern India, based on satellite imagery and historic land-use maps for the years 1984, 1998 and 2010. Large-scale land use changes and their effects on landscape patterns can impact water supply in a watershed by altering hydrological processes such as evaporation, infiltration, surface runoff, groundwater discharge and stream flow. Three land use scenarios were tested to explore the sensitivity of the catchment's response to land use changes: (a) historic land use of 1984 with integrated evolution to 2010; (b) land use of 2010 remaining stable; and (c) hypothetical future projection of land use for 2030. The future scenario was produced with Markov chain analysis and generation of transition probability matrices, indicating transition potentials from one land use class to another. The study used socio-economic (population density), geographic (distances to roads and rivers, and location of protected areas) and biophysical drivers (suitability of soil for agricultural production, slope, aspect, and elevation). The distributed version of the land surface model JULES was integrated at a resolution of 0.01° for the years 1984 to 2030. Based on a sensitivity analysis, the most sensitive parameters were identified. Then, the model was calibrated against measured daily stream flow data. The impact of land use changes was investigated by calculating annual variations in hydrological components, differences in annual stream flow and surface runoff during the simulation period. The land use changes correspond to significant differences on the long-term hydrologic fluxes for each scenario. Once analysed from a future water resources perspective, the results will be

  7. From submarine to lacustrine groundwater discharge

    Science.gov (United States)

    Lewandowski, Jörg; Meinikmann, Karin; Pöschke, Franziska; Nützmann, Gunnar; Rosenberry, Donald O.

    2017-01-01

    Submarine groundwater discharge (SGD) and its role in marine nutrient cycling are well known since the last decade. The freshwater equivalent, lacustrine groundwater discharge (LGD), is often still disregarded, although first reports of LGD are more than 50 years old. We identify nine different reasons why groundwater has long been disregarded in both freshwater and marine environments such as invisibility of groundwater discharge, the size of the interface and its difficult accessibility. Although there are some fundamental differences in the hydrology of SGD and LGD, caused primarily by seawater recirculation that occurs only in cases of SGD, there are also a lot of similarities such as a focusing of discharge to near-shore areas. Nutrient concentrations in groundwater near the groundwater–surface water interface might be anthropogenically enriched. Due to spatial heterogeneity of aquifer characteristics and biogeochemical processes, the quantification of groundwater-borne nutrient loads is challenging. Both nitrogen and phosphorus might be mobile in near-shore aquifers and in a lot of case studies large groundwater-borne nutrient loads have been reported.

  8. The shadow price of fossil groundwater

    Science.gov (United States)

    Bierkens, Marc F. P.; Reinhard, Stijn; de Bruijn, Jens A.; Wada, Yoshihide

    2017-04-01

    The expansion of irrigated agriculture into areas with limited precipitation and surface water during the growing season has greatly increased the use of fossil groundwater (Wada et al., 2012). As a result, the depletion rate of fossil groundwater resources has shown an increasing rate during the last decades (Wada et al, 2010; Konikow, 2011; Wada et al., 2012; De Graaf et al. 2015; Ritchy et al., 2015). Although water pricing has been used extensively to stimulate efficient application of water to create maximum value (e.g. Medellín-Azuara et al., 2012; Rinaudo et al., 2012; Dinar et al., 2015), it does not preclude the use of non-renewable water resources. Here, we use a global hydrological model and historical crop production and price data to assess the shadow price of non-renewable or fossil groundwater applied to major crops in countries that use large quantities of fossil groundwater. Our results show that shadow prices for many crops are very low, indicating economically inefficient or even wasteful use of fossil groundwater resources. Using India as an example, we show that small changes in the crop mix could lead to large reductions in fossil groundwater use or alternatively, create additional financial means to invest in water saving technologies. Our study thus provides a hydro-economic basis to further the sustainable use of finite groundwater resources.

  9. Groundwater use on southern Idaho dairies

    Science.gov (United States)

    Dairy production has expanded in irrigated areas of the western and southwestern US, potentially competing for limited water supplies. Groundwater withdrawal was measured for two years on six dairy farms with 660 to 6400 milk cows in southern Idaho. Groundwater withdrawal was calculated on an equiva...

  10. Detection and quantification of localized groundwater inflow in small streams using ground-based infrared thermography

    Science.gov (United States)

    Schuetz, Tobias; Weiler, Markus

    2010-05-01

    Localized groundwater (GW) inflow into small streams can be a major source of runoff during low flow periods in headwater catchments. The localization and determination of the fraction of runoff corresponding to a certain area may give insights into aquifer type, flow processes, the composition of base-flow concerning the spatial distribution of catchment storage and water quality issues. Though GW temperature has a small amplitude during the year compared to surface water, a significant temperature difference between stream water and groundwater can be expected in summer and winter. As the technical development of infrared thermography is progressing (the spatial resolution of infrared camera systems is increasing and the measuring error is decreasing) we tested ground based infrared thermography as a non-invasive and remote applicable method to detect and quantify GW entries in small streams during baseflow periods (INFRATEC). In addition, water temperature and electric conductivity of the groundwater entering the stream and of the stream water up- and downstream of localized GW inflow were measured with temperature and EC sensors. Though the zones of complete mixing were identified, point measurements and surface radiation temperatures were taken from the same areas. Discharge measurements were conducted using the salt dilution method with continuous injection. End-member mixing calculations were done using the measured EC and water temperature data and compared to the results of mixing calculations of observed water surface radiation temperatures. The discharge observations were used to validate the fraction calculations. Calculated GW entries using thermogramms had comparable deviations from the measured runoff fractions to those from direct temperature and EC measurements. This leads to the conclusion that the use of ground-based infrared thermography for the detection and quantification of localized groundwater inflows into small streams is a valuable and

  11. Optimising a monitoring network for groundwater pollution using stochastic simulation and a cost model

    NARCIS (Netherlands)

    Bierkens, M.F.P.

    2002-01-01

    The goal is to detect pollution at industrial sites at some distance from the site's boundary so that it can be cleaned up or hydrologically contained before contaminating groundwater outside the site

  12. Groundwater Discharge Area for the Diamond Valley Flow System, Central Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central Nevada....

  13. Evapotranspiration Units for the Diamond Valley Flow System Groundwater Discharge Area, Central Nevada, 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central Nevada....

  14. Origin of hexavalent chromium in groundwater

    DEFF Research Database (Denmark)

    Kazakis, N.; Kantiranis, N.; Kalaitzidou, K.

    2017-01-01

    Hexavalent chromium constitutes a serious deterioration factor for the groundwater quality of several regions around the world. High concentrations of this contaminant have been also reported in the groundwater of the Sarigkiol hydrological basin (near Kozani city, NW Greece). Specific interest....... Accordingly, detailed geochemical, mineralogical, hydro-chemical, geophysical and hydrogeological studies were performed on the rocks, soils, sediments and water resources of this basin. Cr(VI) concentrations varied in the different aquifers, with the highest concentration (up to 120 μg L− 1) recorded...

  15. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    previous hypothesis that regional groundwater flow from the piedmont groundwater recharge zone predominantly discharges at the coastline may therefore be false. A more reliable alternative might be to conceptualize deep groundwater below the coastal plains a hydrodynamically stagnant zone, responding gradually to landscape and hydrological change on geologic timescales. This study brings a new and original understanding of the groundwater flow system in an important regional basin, in the context of its geometry and evolution over geological timescales. There are important implications for the sustainability of the ongoing high rates of groundwater extraction in the NCB.

  16. Data assimilation in integrated hydrological modeling using ensemble Kalman filtering

    DEFF Research Database (Denmark)

    Rasmussen, Jørn; Madsen, H.; Jensen, Karsten Høgh

    2015-01-01

    Groundwater head and stream discharge is assimilated using the ensemble transform Kalman filter in an integrated hydrological model with the aim of studying the relationship between the filter performance and the ensemble size. In an attempt to reduce the required number of ensemble members...

  17. Probabilistic analysis of hydrological drought characteristics using meteorological drought

    NARCIS (Netherlands)

    Wong, G.; Lanen, van H.A.J.; Torfs, P.J.J.F.

    2013-01-01

    Droughts are an inevitable consequence of climate variability and are pervasive across many regions. Their effects can vary on an extensive scale, depending on the type of drought and people’s vulnerability. Crucial characteristics of both hydrological (groundwater, streamflow) and meteorological (p

  18. Probabilistic analysis of hydrological drought characteristics using meteorological drought

    NARCIS (Netherlands)

    Wong, G.; Lanen, van H.A.J.; Torfs, P.J.J.F.

    2013-01-01

    Droughts are an inevitable consequence of climate variability and are pervasive across many regions. Their effects can vary on an extensive scale, depending on the type of drought and people’s vulnerability. Crucial characteristics of both hydrological (groundwater, streamflow) and meteorological

  19. Data assimilation in integrated hydrological modeling using ensemble Kalman filtering

    DEFF Research Database (Denmark)

    Rasmussen, Jørn; Madsen, H.; Jensen, Karsten Høgh;

    2015-01-01

    Groundwater head and stream discharge is assimilated using the ensemble transform Kalman filter in an integrated hydrological model with the aim of studying the relationship between the filter performance and the ensemble size. In an attempt to reduce the required number of ensemble members...

  20. Hydrological Effects in the EarthScope Plate Boundary Observatory

    Science.gov (United States)

    Meertens, C.; Wahr, J.; Borsa, A.; Jackson, M.; Wahr, A.

    2008-12-01

    The dense network of 1,100 continuously operating GPS stations in the Plate Boundary Observatory (PBO) is providing high quality position time series. Data are processed by PBO Analysis Centers at the New Mexico Institute of Mining and Technology and at Central Washington University. The results are combined by the Analysis Center Coordinator at the Massachusetts Institute of Technology and are made available from the UNAVCO Data Center in Boulder. Analysis software of Langbein, 2008, was used to estimate secular trends and annual variations in the time series. The results were interpreted in terms of hydrological loading and poroelastic effects, from both natural and anthropogenic changes in water storage. The effects of monument stability were also considered. The density of PBO observations allows for the identification of spatial patterns that appear coherent over relatively broad areas. Vertical annual signals of 8-10 mm peak-to-peak amplitude are evident at stations in the mountains of northern and central California and southern Oregon showing peak uplift in October and are correlated to hydrological loading. The vertical elastic loading signal, calculated from the 0.25 by 0.25 degree community Noah land-surface model, fits the annual signal well and appears also to model the secular trends, although the time duration of ~3 years is still limited. In contrast to mountainous regions, stations in the valleys of California show greater spatial variability ranging from stations with almost no detectable annual signal to stations with very large, 20-30 mm, amplitudes with peak uplift in March. The vertical signals are temporally correlated to ground-water variations caused by pumping for agricultural irrigation and likely are caused by poroelastic effects in the sediments rather than loading. Annual vertical signals in southern California, where not obviously influenced from localized ground-water fluctuations, are small with ~2 mm amplitude and may be due to

  1. HYDROLOGY, STEARNS COUNTY, MN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  2. Hydrology, DARLINGTON COUNTY, SC

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  3. HYDROLOGY, Steuben COUNTY, IN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  4. HYDROLOGY, DOUGLAS COUNTY, MINNESOTA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  5. HYDROLOGY, Blackford COUNTY, IN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  6. HYDROLOGY, Cass COUNTY, IN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  7. HYDROLOGY, JACKSON COUNTY, MICHIGAN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  8. HYDROLOGY, LAKE COUNTY, FL

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  9. HYDROLOGY, GREENE County, ARKANSAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  10. HYDROLOGY, LAKE COUNTY, MONTANA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  11. HYDROLOGY, GILCHRIST COUNTY, FL

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  12. Hydrology, MECKLENBURG COUNTY, NC

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  13. HYDROLOGY, JONES COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  14. HYDROLOGY, Butler COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  15. Hydrology, OCONEE COUNTY, SC

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  16. HYDROLOGY, SCOTT COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  17. HYDROLOGY, TALLAHATCHIE COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  18. HYDROLOGY, Sheridan County, WY

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  19. Hydrology, Rains County, Texas

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  20. HYDROLOGY, HOUSTON COUNTY, ALABAMA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating ALood discharges for a ALood Insurance...

  1. Hydrology, ANDROSCOGGIN COUNTY, MAINE

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  2. HYDROLOGY, BRANCH COUNTY, MICHIGAN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  3. HYDROLOGY, LENAWEE COUNTY, MICHIGAN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  4. HYDROLOGY, JACKSON COUNTY, OHIO

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  5. HYDROLOGY, CALHOUN COUNTY, MICHIGAN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  6. HYDROLOGY, POWESHIEK COUNTY, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  7. HYDROLOGY, TUSCARAWAS COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  8. HYDROLOGY, HARVEYCOUNTY, KS USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  9. HYDROLOGY, MUSKINGUM COUNTY, OHIO

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  10. HYDROLOGY, LINCOLN COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  11. HYDROLOGY, MONROE COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  12. HYDROLOGY, Lawrence County, ARKANSAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  13. HYDROLOGY, SUMNER COUNTY, TN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  14. HYDROLOGY, Wabash COUNTY, IN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  15. HYDROLOGY, LEE COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  16. HYDROLOGY, TATE COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  17. LOS PINOS HYDROLOGY

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  18. HYDROLOGY, LEE COUNTY, TEXAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  19. HYDROLOGY, GLADES COUNTY, FLORIDA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  20. HYDROLOGY, NEWTON COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  1. Hydrology, BENNINGTON COUNTY, VERMONT

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  2. HYDROLOGY, Henry COUNTY, IN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  3. HYDROLOGY, RANKIN COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  4. HYDROLOGY, TISHOMINGO COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  5. HYDROLOGY, LAKE COUNTY, MONTANA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  6. HYDROLOGY, Allegheny County, PA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  7. HYDROLOGY, CITRUS COUNTY, FLORIDA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  8. Hydrology, ABBEVILLE COUNTY, SC

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  9. HYDROLOGY, FAIRFIELD COUNTY, SC

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  10. HYDROLOGY, NESHOBA COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  11. Technology demonstration: geostatistical and hydrologic analysis of salt areas. Assessment of effectiveness of geologic isolation systems

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, P.G.; Oberlander, P.L.; Rice, W.A.; Devary, J.L.; Nelson, R.W.; Tucker, P.E.

    1982-09-01

    The Office of Nuclear Waste Isolation (ONWI) requested Pacific Northwest Laboratory (PNL) to: (1) use geostatistical analyses to evaluate the adequacy of hydrologic data from three salt regions, each of which contains a potential nuclear waste repository site; and (2) demonstrate a methodology that allows quantification of the value of additional data collection. The three regions examined are the Paradox Basin in Utah, the Permian Basin in Texas, and the Mississippi Study Area. Additional and new data became available to ONWI during and following these analyses; therefore, this report must be considered a methodology demonstration here would apply as illustrated had the complete data sets been available. A combination of geostatistical and hydrologic analyses was used for this demonstration. Geostatistical analyses provided an optimal estimate of the potentiometric surface from the available data, a measure of the uncertainty of that estimate, and a means for selecting and evaluating the location of future data. The hydrologic analyses included the calculation of transmissivities, flow paths, travel times, and ground-water flow rates from hypothetical repository sites. Simulation techniques were used to evaluate the effect of optimally located future data on the potentiometric surface, flow lines, travel times, and flow rates. Data availability, quality, quantity, and conformance with model assumptions differed in each of the salt areas. Report highlights for the three locations are given.

  12. A 3D analysis of spatial relationship between geological structure and groundwater profile around Kobe City, Japan: based on ARCGIS 3D Analyst.

    Science.gov (United States)

    Shibahara, A.; Tsukamoto, H.; Kazahaya, K.; Morikawa, N.; Takahashi, M.; Takahashi, H.; Yasuhara, M.; Ohwada, M.; Oyama, Y.; Inamura, A.; Handa, H.; Nakama, J.

    2008-12-01

    Kobe city is located on the northern side of Osaka sedimentary basin, Japan, containing 1,000-2,000 m thick Quaternary sediments. After the Hanshin-Awaji Earthquake (January 17, 1995), a number of geological and geophysical surveys were conducted in this region. Then high-temperature anomaly of groundwater accompanied with high Cl concentration was detected along fault systems in this area. In addition, dissolved He in groundwater showed nearly upper mantle-like 3He/4He ratio, although there were no Quaternary volcanic activities in this region. Some recent studies have assumed that these groundwater profiles are related with geological structure because some faults and joints can function as pathways for groundwater flow, and mantle-derived water can upwell through the fault system to the ground surface. To verify these hypotheses, we established 3D geological and hydrological model around Osaka sedimentary basin. Our primary goal is to analyze spatial relationship between geological structure and groundwater profile. In the study region, a number of geological and hydrological datasets, such as boring log data, seismic profiling data, groundwater chemical profile, were reported. We converted these datasets to meshed data on the GIS, and plotted in the three dimensional space to visualize spatial distribution. Furthermore, we projected seismic profiling data into three dimensional space and calculated distance between faults and sampling points, using Visual Basic for Applications (VBA) scripts. All 3D models are converted into VRML format, and can be used as a versatile dataset on personal computer. This research project has been conducted under the research contract with the Japan Nuclear Energy Safety Organization (JNES).

  13. Effectiveness of basin morphometry, remote sensing, and applied geosciences on groundwater recharge potential mapping: a comparative study within a small watershed

    Science.gov (United States)

    Roy, Suvendu; Sahu, Abhay Sankar

    2016-06-01

    A multidisciplinary approach using the integrated field of geosciences (e.g., geomorphology, geotectonics, geophysics, and hydrology) is established to conduct groundwater recharge potential mapping of the Kunur River Basin, India. The relative mean error (RME) calculation of the results of three applied techniques and water table data from twenty-four observation wells in the basin over the 2000-2010 period are presented. Nine subbasins were identified and ranked for the RME calculation, where the observation wells-based ranking was taken as standard order for comparison. A linear model has been developed using six factors (drainage density, surface slope, ruggedness index, lineament density, Bouguer gravity anomaly, and potential maximum water retention capacity) and a grid-wise weighted index. In a separate comparative approach, the sub-basin and grid-wise analyses have been conducted to identify the suitable spatial unit for watershed level hydrological modeling.

  14. Debris-flow initiation experiments using diverse hydrologic triggers

    Science.gov (United States)

    Reid, Mark E.; LaHusen, Richard G.; Iverson, Richard M.

    1997-01-01

    Controlled debris-flow initiation experiments focused on three hydrologic conditions that can trigger slope failure: localized ground-water inflow; prolonged moderate-intensity rainfall; and high-intensity rainfall. Detailed monitoring of slope hydrology and deformation provided exceptionally complete data on conditions preceding and accompanying slope failure and debris-flow mobilization. Ground-water inflow and high-intensity sprinkling led to abrupt, complete failure whereas moderate-intensity sprinkling led to retrogressive, block-by-block failure. Failure during ground-water inflow and during moderate-intensity sprinkling occurred with a rising water table and positive pore pressures. Failure during high-intensity sprinkling occurred without widespread positive pore pressures. In all three cases, pore pressures in most locations increased dramatically (within 2-3 seconds) during failure. In some places, pressures in unsaturated materials rapidly 'flashed' from zero to elevated positive values. Transiently elevated pore pressures and partially liquefied soil enhanced debris-flow mobilization.

  15. Revising Hydrology of a Land Surface Model

    Science.gov (United States)

    Le Vine, Nataliya; Butler, Adrian; McIntyre, Neil; Jackson, Christopher

    2015-04-01

    Land Surface Models (LSMs) are key elements in guiding adaptation to the changing water cycle and the starting points to develop a global hyper-resolution model of the terrestrial water, energy and biogeochemical cycles. However, before this potential is realised, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. An important limitation is the simplistic or non-existent representation of the deep subsurface in LSMs; and another is the lack of connection of LSM parameterisations to relevant hydrological information. In this context, the paper uses a case study of the JULES (Joint UK Land Environmental Simulator) LSM applied to the Kennet region in Southern England. The paper explores the assumptions behind JULES hydrology, adapts the model structure and optimises the coupling with the ZOOMQ3D regional groundwater model. The analysis illustrates how three types of information can be used to improve the model's hydrology: a) observations, b) regionalized information, and c) information from an independent physics-based model. It is found that: 1) coupling to the groundwater model allows realistic simulation of streamflows; 2) a simple dynamic lower boundary improves upon JULES' stationary unit gradient condition; 3) a 1D vertical flow in the unsaturated zone is sufficient; however there is benefit in introducing a simple dual soil moisture retention curve; 4) regionalized information can be used to describe soil spatial heterogeneity. It is concluded that relatively simple refinements to the hydrology of JULES and its parameterisation method can provide a substantial step forward in realising its potential as a high-resolution multi-purpose model.

  16. Vadose Zone Hydrology and Eco-hydrology in China

    Science.gov (United States)

    Wang, Wenke

    2016-04-01

    Vadose zone hydrology has long been a concern regarding groundwater recharge, evaporation, pollution, and the ecological effects induced by groundwater and water & salt contents in the unsaturated zone. The greater difference between day and night temperatures in arid and semi-arid areas influences water movement and heat transport in the vadose zone, and further influences the water and heat fluxes between the water table and the atmosphere as well as ecological environment. Unfortunately, these studies are lack in a systematic viewpoint in China. One of the main reasons is that the movement of water, vapor and heat from the surface to the water table is very complex in the arid and semi-arid areas. Another reason is lack of long term field observations for water content, vapor, heat, and soil matrix potential in the vadose zone. Three field observation sites, designed by the author, were set up to measure the changes in climate, water content , temperature and soil matrix potential of the unsaturated zone and groundwater level under the different conditions of climate and soil types over the period of 1-5 years. They are located at the Zhunngger Basin of Xinjing Uygur Autonomous Region in northwestern China, the Guanzhong Basin of Shaanxi Province in central China, and the Ordos Basin of the Inner Monggol Autonomous Region in north China, respectively. These three field observation sites have different climate and soil types in the vadose zone and the water table depth are also varied. Based on the observation data of climate, groundwater level, water content, temperature and soil matrix potential in the vadose zone from the three sites in associated with the field survey and numerical simulation method, the water movement and heat transport in the vadose zone, and the evaporation of phreatic water for different groundwater depths and soil types have been well explored. The differences in water movement of unsaturated zone between the bare surface soil and

  17. The influence of riparian-hyporheic zone on the hydrological responses in an intermittent stream

    Directory of Open Access Journals (Sweden)

    A. Butturini

    2002-01-01

    Full Text Available Stream and riparian groundwater hydrology has been studied in a small intermittent stream draining a forested catchment for a system representative of a Mediterranean climate. The relationship between precipitation and stream runoff and the interactions between stream water and the surrounding riparian groundwater have been analysed under a wide spectrum of meteorological conditions. The hypothesis that the hydrological condition of the near-stream groundwater compartment can regulate the runoff generation during precipitation events was tested. Stream runoff is characterised by a summer dry period, and precipitation input explained only 25% of runoff variability over the study period (r2 =0.25, d.f.=51, p2=0.80, d.f.=34, p Keywords: riparian zone, groundwater hydrology, runoff, intermittent stream, Mediterranean climate

  18. Groundwater and security

    NARCIS (Netherlands)

    Conti, K.I.; Kukurić, N.; Gupta, J.; Pahl-Wostl, C.; Bhaduri, A.; Gupta, J.

    2016-01-01

    Humans abstract two hundred times more groundwater than oil, annually. Ironically, the role of groundwater in water management and supply is underappreciated, partially due to its invisibility. By conducting a literature survey and investigating groundwater information databases, this chapter answer

  19. Hydrogeochemical and isotopic characterization of the groundwater ...

    African Journals Online (AJOL)

    POSTE7

    : ... is also affected by the relief, while the southward shift of the isohyets .... Solids (TDS) were calculated by adding the main ionic species ... (Davis and De Wiest, 1966; Freeze and Cherry, 1979). ... depression point of groundwater discharge.

  20. A hydrological model of New Zealand

    Science.gov (United States)

    Woods, R. A.; Tarboton, D. G.; Ibbitt, R. P.; Wild, M.; Henderson, R. D.; Turner, R.

    2003-04-01

    We present initial results from a hydrological model of New Zealand, using Topnet, a variant of TOPMODEL, linked to a kinematic wave channel network routing algorithm. This model run uses daily timesteps for the period 1985-2001, and subdivides the country into approximately 35,000 sub-catchments of 7-10 sq km each. The sub-catchments are linked by 55,000 river reaches, which route sub-catchment runoff. The model subcatchments and reaches are defined automatically by DEM analyses, and initial estimates of model parameters are defined by GIS overlay, coupled with purpose-built model assembly code, and lookup tables for model parameters. A daily simulation for 1 year over New Zealand takes two hours on a standard desktop computer. The model is forced by gridded daily rainfall and temperature data, and it calculates daily water balance for each of the sub-catchments (rain, evaporation, throughfall, infiltration, soil drainage, surface runoff, subsurface runoff, and changes in storage in the canopy, root zone, and saturated storage), as well as daily flows in each river reach. The model as currently implemented does not include snow, glaciers, or deep groundwater flow (i.e. across sub-catchment boundaries). The first applications of the model are for developing an annual water balance of New Zealand for the period 1994-2001, at the regional scale, and for driving a high-spatial resolution, daily time-stepping national erosion model. We are moving to further applications for water resource modeling (e.g. impact of abstraction and/or storage), and for flood forecasting, using hourly rainfall from a mesoscale atmospheric model.

  1. Groundwater management options in North district of Delhi, India: A groundwater surplus region in over-exploited aquifers

    Directory of Open Access Journals (Sweden)

    Shashank Shekhar

    2015-09-01

    New hydrological insights in the region: Three distinct hydrogeological domains are identified with subtle differences in groundwater occurrence. Insights are obtained in stream–aquifer interaction and baseflow to the Yamuna River is quantified. The salinity enrichment in groundwater has been attributed to water logging in clay rich formations under semi arid condition. The viability of limited dewatering of shallow aquifers and its replenishment by enhanced recharge from surface runoff and flood waters during the monsoon period have been established.

  2. Modelling of the groundwater flow in Baltic Artesian Basin

    Science.gov (United States)

    Virbulis, J.; Sennikovs, J.; Bethers, U.

    2012-04-01

    Baltic Artesian Basin (BAB) is a multi-layered complex hydrogeological system underlying about 480'000 km2 in the territory of Latvia, Lithuania, Estonia, Poland, Russia, Belarus and the Baltic Sea. The model of the geological structure contains 42 layers including aquifers and aquitards from Cambrian up to the Quaternary deposits. The finite element method was employed for the calculation of the steady state three-dimensional groundwater flow with free surface. The horizontal and vertical hydraulic conductivities of geological materials were assumed constant in each of the layers. The Precambrian basement forms the impermeable bottom of the model. The zero water exchange is assumed through the side boundaries of BAB. Simple hydrological model is applied on the surface. The level of the lakes, rivers and the sea is fixed as constant hydraulic head in corresponding mesh points. The infiltration is set as a flux boundary condition elsewhere. Instead of extensive coupling with hydrology model, a constant mean value of 70 mm/year was assumed as an infiltration flux for the whole BAB area and this value was adjusted during the automatic calibration process. Averaged long-term water extraction was applied at the water supply wells with large debits. In total 49 wells in Lithuania (total abstraction 45000 m3/day), 161 in Latvia (184000 m3/day) and 172 in Estonia (24000 m3/day) are considered. The model was calibrated on the statistically weighted (using both spatial and temporal weighting function) borehole water level measurements applying automatic parameter optimization method L-BFGS-B for hydraulic conductivities of each layer. The steady-stade calculations were performed for the situations corresponding to undisturbed situation (1950-ies), intensive groundwater use (1980-ies) and present state situation (after 2000). The distribution of piezometric heads and principal flows inside BAB was analyzed based on the model results. The results demonstrate that generally the

  3. Hydrologic Conditions in Kansas, water year 2015

    Science.gov (United States)

    May, Madison R.

    2016-03-31

    The U.S. Geological Survey (USGS), in cooperation with Federal, State, and local agencies, maintains a long-term network of hydrologic monitoring sites in Kansas. In 2015, the network included about 200 real-time streamgages (hereafter referred to as “gages”), 12 real-time reservoir-level monitoring stations, and 30 groundwater-level monitoring wells. These data and associated analyses provide a unique overview of hydrologic conditions and help improve the understanding of Kansas’s water resources.Real-time data are verified by the USGS throughout the year with regular measurements of streamflow, lake levels, and groundwater levels. These data are used in protecting life and property; and managing water resources for agricultural, industrial, public supply, ecological, and recreational purposes. Yearly hydrologic conditions are characterized by comparing statistical analyses of current and historical water year (WY) data for the period of record. A WY is the 12-month period from October 1 through September 30 and is designated by the year in which it ends.

  4. Ecology and living conditions of groundwater fauna

    Energy Technology Data Exchange (ETDEWEB)

    Thulin, Barbara (Geo Innova AB (Sweden)); Hahn, Hans Juergen (Arbeitsgruppe Grundwasseroekologie, Univ. of Koblenz-Landau (Germany))

    2008-09-15

    This report presents the current state of ecological knowledge and applied research relating to groundwater. A conceptual picture is given of groundwater fauna occurrence in regard to Swedish environmental conditions. Interpretation features for groundwater fauna and applications are outlined. Groundwater is one of the largest and oldest limnic habitats populated by a rich and diverse fauna. Both very old species and species occurring naturally in brackish or salt water can be found in groundwater. Groundwater ecosystems are heterotrophic; the fauna depends on imports from the surface. Most species are meiofauna, 0.3-1 mm. The food chain of groundwater fauna is the same as for relatives in surface water and salt water. Smaller animals graze biofilms and detritus, larger animals act facutatively as predators. A difference is that stygobiotic fauna has become highly adapted to its living space and tolerates very long periods without food. Oxygen is a limiting factor, but groundwater fauna tolerates periods with low oxygen concentrations, even anoxic conditions. For longer periods of time a minimum oxygen requirement of 1 mg/l should be fulfilled. Geographic features such as Quaternary glaciation and very old Pliocene river systems are important for distribution patterns on a large spatial scale, but aquifer characteristics are important on a landscape scale. Area diversity is often comparable to surface water diversity. However, site diversity is low in groundwater. Site specific hydrological exchange on a geological facies level inside the aquifer, e.g. porous, fractured and karstic aquifers as well as the hyporheic zone, controls distribution patterns of groundwater fauna. For a better understanding of controlling factors indicator values are suggested. Different adequate sampling methods are available. They are representative for the aquifer, but a suitable number of monitoring wells is required. The existence of groundwater fauna in Sweden is considered as very

  5. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools.

    Science.gov (United States)

    Iqbal, Naveed; Hossain, Faisal; Lee, Hyongki; Akhter, Gulraiz

    2017-03-01

    Reliable and frequent information on groundwater behavior and dynamics is very important for effective groundwater resource management at appropriate spatial scales. This information is rarely available in developing countries and thus poses a challenge for groundwater managers. The in situ data and groundwater modeling tools are limited in their ability to cover large domains. Remote sensing technology can now be used to continuously collect information on hydrological cycle in a cost-effective way. This study evaluates the effectiveness of a remote sensing integrated physical modeling approach for groundwater management in Indus Basin. The Gravity Recovery and Climate Experiment Satellite (GRACE)-based gravity anomalies from 2003 to 2010 were processed to generate monthly groundwater storage changes using the Variable Infiltration Capacity (VIC) hydrologic model. The groundwater storage is the key parameter of interest for groundwater resource management. The spatial and temporal patterns in groundwater storage (GWS) are useful for devising the appropriate groundwater management strategies. GRACE-estimated GWS information with large-scale coverage is valuable for basin-scale monitoring and decision making. This frequently available information is found useful for the identification of groundwater recharge areas, groundwater storage depletion, and pinpointing of the areas where groundwater sustainability is at risk. The GWS anomalies were found to favorably agree with groundwater model simulations from Visual MODFLOW and in situ data. Mostly, a moderate to severe GWS depletion is observed causing a vulnerable situation to the sustainability of this groundwater resource. For the sustainable groundwater management, the region needs to implement groundwater policies and adopt water conservation techniques.

  6. Options of sustainable groundwater development in Beijing Plain, China

    Science.gov (United States)

    Zhou, Yangxiao; Wang, Liya; Liu, Jiurong; Li, Wenpeng; Zheng, Yuejun

    Overexploitation of groundwater resources has supported rapid social and economical developments in Beijing City in last 30 years. The newly constructed emergency well fields have saved Beijing from a critical water crisis caused by a long drought spell of eight consecutive years from 1999 to 2006. But this unsustainable development has resulted in serious consequences: discharges to rivers ceased, large number of pumping wells went dry, and land subsidence caused destruction of underground infrastructure. The completion of the middle route of South to North water transfer project to transfer water from Yangtze river to Beijing City by 2010 provides opportunity to reverse the trend of groundwater depletion and to achieve a long-term sustainable development of groundwater resources in Beijing Plain. Four options of groundwater development in Beijing Plain were formulated and assessed with a regional transient groundwater flow model. The business as usual scenario was used as a reference for the comparative analysis and indicates fast depletion of groundwater resources. The reduction of abstraction scenario has immediate and fast recovery of groundwater levels, especially at the cone of depression. The scenario of artificially enhanced groundwater recharge would replenish groundwater resources and maintain the capacity of present water supply well fields. The combined scenario of the reduction of abstraction and the increase of recharge could bring the aquifer systems into a new equilibrium state in 50 years. A hydrological sustainability of groundwater resources development could then be achieved in Beijing Plain.

  7. Analysis of groundwater recoverable resource by numerical method in Linfen Basin of Shanxi, North China

    Institute of Scientific and Technical Information of China (English)

    Liping BAI; Yeyao WANG; Jinsheng WANG

    2008-01-01

    Calculation of the groundwater recoverable resource is the main part of groundwater resource evaluation. The three-dimensional groundwater flow model in Linfen Basin was established by GMS software. Then the numerical model was calibrated by observed groundwater level from February to December in 2 000. Based on the calibrated model, the groundwater recoverable resource is calculated. The simulation result shows that under the given value of the groundwater recoverable resource, the groundwater level would decrease significantly in the first 1 000 days, while the water level would drop slowly in 1 000 to 2 000 days, and the water level change tend to be stable after 2000 days.

  8. Simulation of Groundwater Flow, Denpasar-Tabanan Groundwater Basin, Bali Province

    Directory of Open Access Journals (Sweden)

    Heryadi Tirtomihardjo

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i3.123Due to the complex structure of the aquifer systems and its hydrogeological units related with the space in which groundwater occurs, groundwater flows were calculated in three-dimensional method (3D Calculation. The geometrical descritization and iteration procedures were based on an integrated finite difference method. In this paper, all figures and graphs represent the results of the calibrated model. Hence, the model results were simulated by using the actual input data which were calibrated during the simulation runs. Groundwater flow simulation of the model area of the Denpasar-Tabanan Groundwater Basin (Denpasar-Tabanan GB comprises steady state run, transient runs using groundwater abstraction in the period of 1989 (Qabs-1989 and period of 2009 (Qabs-2009, and prognosis run as well. Simulation results show, in general, the differences of calculated groundwater heads and observed groundwater heads at steady and transient states (Qabs-1989 and Qabs-2009 are relatively small. So, the groundwater heads situation simulated by the prognosis run (scenario Qabs-2012 are considerably valid and can properly be used for controlling the plan of groundwater utilization in Denpasar-Tabanan GB.

  9. Delineating groundwater/surface water interaction in a karst watershed: Lower Flint River Basin, southwestern Georgia, USA

    Directory of Open Access Journals (Sweden)

    Kathleen Rugel

    2016-03-01

    New hydrological insights for the region: Prior water resource studies in the LFRB were based on regional modeling that neglected local heterogeneities in groundwater/surface water connectivity. Our results demonstrated groundwater inputs were concentrated around five of fifty sampled reaches, evidenced by increases in multiple groundwater indicators at these sites. These five reaches contributed up to 42% of the groundwater detected along the entire 50-km sampling section, with ∼24% entering through one groundwater-dominated tributary, Chickasawhatchee Creek. Intermittent flows occurred in two of these upstream reaches during extreme drought and heavy groundwater pumping, suggesting reach-scale behaviors should be considered in resource management and policy.

  10. Characterization of the hydrologic resources of San Miguel County, New Mexico, and identification of hydrologic data gaps, 2011

    Science.gov (United States)

    Matherne, Anne Marie; Stewart, Anne M.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with San Miguel County, New Mexico, conducted a study to assess publicly available information regarding the hydrologic resources of San Miguel County and to identify data gaps in that information and hydrologic information that could aid in the management of available water resources. The USGS operates four continuous annual streamgages in San Miguel County. Monthly discharge at these streamgages is generally bimodally distributed, with most runoff corresponding to spring runoff and to summer monsoonal rains. Data compiled since 1951 on the geology and groundwater resources of San Miguel County are generally consistent with the original characterization of depth and availability of groundwater resources and of source aquifers. Subsequent exploratory drilling identified deep available groundwater in some locations. Most current (2011) development of groundwater resources is in western San Miguel County, particularly in the vicinity of El Creston hogback, the hogback ridge just west of Las Vegas, where USGS groundwater-monitoring wells indicate that groundwater levels are declining. Regarding future studies to address identified data gaps, the abil