WorldWideScience

Sample records for groundwater groundwater samples

  1. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  2. [Groundwater].

    Science.gov (United States)

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  3. AUTOMATING GROUNDWATER SAMPLING AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    CONNELL CW; HILDEBRAND RD; CONLEY SF; CUNNINGHAM DE

    2009-01-16

    Until this past October, Fluor Hanford managed Hanford's integrated groundwater program for the U.S. Department of Energy (DOE). With the new contract awards at the Site, however, the CH2M HILL Plateau Remediation Company (CHPRC) has assumed responsibility for the groundwater-monitoring programs at the 586-square-mile reservation in southeastern Washington State. These programs are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. More than 1,200 wells are sampled each year. Historically, field personnel or 'samplers' have been issued pre-printed forms that have information about the well(s) for a particular sampling evolution. This information is taken from the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS)--official electronic databases. The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and the collected information was posted onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. This is a pilot project for automating this tedious process by providing an electronic tool for automating water-level measurements and groundwater field-sampling activities. The automation will eliminate the manual forms and associated data entry, improve the

  4. Groundwater sampling: Chapter 5

    Science.gov (United States)

    Wang, Qingren; Munoz-Carpena, Rafael; Foster, Adam; Migliaccio, Kati W.; Li, Yuncong; Migliaccio, Kati

    2011-01-01

    About the book: As water quality becomes a leading concern for people and ecosystems worldwide, it must be properly assessed in order to protect water resources for current and future generations. Water Quality Concepts, Sampling, and Analyses supplies practical information for planning, conducting, or evaluating water quality monitoring programs. It presents the latest information and methodologies for water quality policy, regulation, monitoring, field measurement, laboratory analysis, and data analysis. The book addresses water quality issues, water quality regulatory development, monitoring and sampling techniques, best management practices, and laboratory methods related to the water quality of surface and ground waters. It also discusses basic concepts of water chemistry and hydrology related to water sampling and analysis; instrumentation; water quality data analysis; and evaluation and reporting results.

  5. Designing an enhanced groundwater sample collection system

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, R.

    1994-10-01

    As part of an ongoing technical support mission to achieve excellence and efficiency in environmental restoration activities at the Laboratory for Energy and Health-Related Research (LEHR), Pacific Northwest Laboratory (PNL) provided guidance on the design and construction of monitoring wells and identified the most suitable type of groundwater sampling pump and accessories for monitoring wells. The goal was to utilize a monitoring well design that would allow for hydrologic testing and reduce turbidity to minimize the impact of sampling. The sampling results of the newly designed monitoring wells were clearly superior to those of the previously installed monitoring wells. The new wells exhibited reduced turbidity, in addition to improved access for instrumentation and hydrologic testing. The variable frequency submersible pump was selected as the best choice for obtaining groundwater samples. The literature references are listed at the end of this report. Despite some initial difficulties, the actual performance of the variable frequency, submersible pump and its accessories was effective in reducing sampling time and labor costs, and its ease of use was preferred over the previously used bladder pumps. The surface seals system, called the Dedicator, proved to be useful accessory to prevent surface contamination while providing easy access for water-level measurements and for connecting the pump. Cost savings resulted from the use of the pre-production pumps (beta units) donated by the manufacturer for the demonstration. However, larger savings resulted from shortened field time due to the ease in using the submersible pumps and the surface seal access system. Proper deployment of the monitoring wells also resulted in cost savings and ensured representative samples.

  6. Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2009

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Weiss, B.L. Lawrence, D.W. Woolery

    2010-07-08

    This document reports the findings of the groundwater and leachate monitoring and sampling at the Environmental restoration Disposal Facility for calendar year 2009. The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF and report leachate results in fulfillment of the requirements specified in the ERDF ROD and the ERDF Amended ROD.

  7. A new design of groundwater sampling device and its application

    Institute of Scientific and Technical Information of China (English)

    Yih-Jin Tsai; Ming-Ching T.Kuo

    2005-01-01

    Compounds in the atmosphere contaminate samples of groundwater. An inexpensive and simple method for collecting groundwater samples is developed to prevent contamination when the background concentration of contaminants is high. This new design of groundwater sampling device involves a glass sampling bottle with a Teflon-lined valve at each end. A cleaned and dried sampling bottle was connected to a low flow-rate peristaltic pump with Teflon tubing and was filled with water. No headspace volume was remained in the sampling bottle. The sample bottle was then packed in a PVC bag to prevent the target component from infiltrating into the water sample through the valves. In this study, groundwater was sampled at six wells using both the conventional method and the improved method.The analysis of trichlorofluoromethane(CFC-11 ) concentrations at these six wells indicates that all the groundwater samples obtained by the conventional sampling method were contaminated by CFC-11 from the atmosphere. The improved sampling method greatly eliminated theproblems of contamination, preservation and quantitative analysis of natural water.

  8. Sample size reduction in groundwater surveys via sparse data assimilation

    KAUST Repository

    Hussain, Z.

    2013-04-01

    In this paper, we focus on sparse signal recovery methods for data assimilation in groundwater models. The objective of this work is to exploit the commonly understood spatial sparsity in hydrodynamic models and thereby reduce the number of measurements to image a dynamic groundwater profile. To achieve this we employ a Bayesian compressive sensing framework that lets us adaptively select the next measurement to reduce the estimation error. An extension to the Bayesian compressive sensing framework is also proposed which incorporates the additional model information to estimate system states from even lesser measurements. Instead of using cumulative imaging-like measurements, such as those used in standard compressive sensing, we use sparse binary matrices. This choice of measurements can be interpreted as randomly sampling only a small subset of dug wells at each time step, instead of sampling the entire grid. Therefore, this framework offers groundwater surveyors a significant reduction in surveying effort without compromising the quality of the survey. © 2013 IEEE.

  9. Expediting Groundwater Sampling at Hanford and Making It Safer

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Carl W. Jr. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Carr, Jennifer S. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Hildebrand, R. Douglas [Department of Energy - Richland Operations Office, Richland, WA (United States); Schatz, Aaron L. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Conley, S. F. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Brown, W. L. [Lockheed Martin Systems Information, Richland, WA (United States)

    2013-01-22

    The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwatermonitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons.

  10. Integrated sampling and analytical approach for common groundwater dissolved gases.

    Science.gov (United States)

    McLeish, Kimberley; Ryan, M Cathryn; Chu, Angus

    2007-12-15

    A novel passive gas diffusion sampler (PGDS) combines sampling, storage and direct injection into a single gas chromatograph (GC). The sampler has a 4.5 mL internal volume when deployed, is easy to operate, and eliminates sample-partitioning. The associated GC method analyzes for a large, dynamic sampling range from a single, small volume injection. Dissolved gases were separated on parallel Rt-Molsieve 5A and Rt-Q-PLOT columns and eluted solutes were quantified using a pulse discharge helium ionization detector (PD-HID). The combined sampling and analytical method appears to be less prone to systematic bias than conventional sampling and headspace partitioning and analysis. Total dissolved gas pressure used in tandem with the PGDS improved the accuracy of dissolved gas concentrations. The incorporation of routine measurements of dissolved biogeochemical and permanent gases into groundwater investigations will provide increased insight into chemical and biological processes in groundwater and improve chemical mass balance accuracy.

  11. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Marutzky, Sam; Farnham, Irene

    2014-10-01

    The purpose of the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan) is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP). The Plan’s scope comprises sample collection and analysis requirements relevant to assessing the extent of groundwater contamination from underground nuclear testing. This Plan identifies locations to be sampled by corrective action unit (CAU) and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well-purging requirements, detection levels, and accuracy requirements; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling of interest to UGTA. This Plan does not address compliance with requirements for wells that supply the NNSS public water system or wells involved in a permitted activity.

  12. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Science.gov (United States)

    2010-07-01

    ....53 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program must... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water sampling and analysis requirements. 258.53 Section 258.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  13. Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2010

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, R. L.; Lawrence, B. L.

    2011-06-09

    The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF and report leachate results in fulfillment of the requirements specified in the ERDF ROD2 and the ERDF Amended ROD (EPA 1999). The overall objective of the groundwater monitoring program is to determine whether ERDF has impacted the groundwater. This objective is complicated by the fact that the ERDF is situated downgradient of the numerous groundwater contamination plumes originating from the 200 West Area.

  14. AUTOMATING GROUNDWATER SAMPLING AT HANFORD THE NEXT STEP

    Energy Technology Data Exchange (ETDEWEB)

    CONNELL CW; CONLEY SF; HILDEBRAND RD; CUNNINGHAM DE; R_D_Doug_Hildebrand@rl.gov; DeVon_E_Cunningham@rl.gov

    2010-01-21

    Historically, the groundwater monitoring activities at the Department of Energy's Hanford Site in southeastern Washington State have been very "people intensive." Approximately 1500 wells are sampled each year by field personnel or "samplers." These individuals have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from 2 official electronic databases: the Hanford Well information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. A pilot project for automating this extremely tedious process was lauched in 2008. Initially, the automation was focused on water-level measurements. Now, the effort is being extended to automate the meta-data associated with collecting groundwater samples. The project allowed electronic forms produced in the field by samplers to be used in a work flow process where the data is transferred to the database and electronic form is filed in managed records - thus eliminating manually completed forms. Elimating the manual forms and streamlining the data entry not only improved the accuracy of the information recorded, but also enhanced the efficiency and sampling capacity of field office personnel.

  15. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan For Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2008-12-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2009 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2009 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2009 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan

  16. Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2008

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Weiss; D. W. Woolery

    2009-09-03

    The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF, to report leachate results in fulfillment of the requirements specified in the ERDF ROD and the ERDF Amended ROD.

  17. Y-12 Groundwater Protection Program Groundwater and Surface water Sampling and Analysis Plan for Calendar Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2006-01-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2006 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2006 will be in accordance with DOE Order 540.1 requirements and the following goals: {sm_bullet} to maintain surveillance of existing and potential groundwater contamination sources; {sm_bullet} to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; {sm_bullet} to identify and characterize long-term trends in groundwater quality at Y-12; and ! to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2006 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2006 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of

  18. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2007-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2008 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2008 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2008 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2008 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and

  19. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC

    2009-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2010 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2010 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2010 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan

  20. Heavy metal analysis in groundwater samples by SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Ficaris, Maria [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Zucchi, Orgheda L.A.D. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Nascimento Filho, Virgilio Franco do [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br

    2005-07-01

    In order to obtain information about levels of heavy metals in groundwater, analysis were carried out on samples from monitoring and supplying wells located in Campinas, Sao Paulo State, Southeastern Brazil. The analytical technique used was Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF) and all the measurements were performed at Synchrotron Light Source Laboratory, using a white beam and a Si(Li) detector in total reflection condition. The determined elements were Al, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. The results were compared with the maximum allowed values (MPV) established by the Brazilian Health Department. The detection limits obtained varying from 0.10 up to 8 {mu}g.L{sup -1} were in agreement with the values presented by others analytical techniques. (author)

  1. Expediting Groundwater Sampling at Hanford and Making It Safer - 13158

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Carl W. Jr.; Conley, S.F.; Carr, Jennifer S.; Schatz, Aaron L. [CH2M HILL Plateau Remediation Company, P.O. Box 1600, Richland, WA 99352 (United States); Brown, W.L. [Lockheed Martin Systems Information, P.O. Box 950, Richland, WA 99352 (United States); Hildebrand, R. Douglas [Department of Energy - Richland Operations Office, 825 Jadwin Ave., Richland, WA 99352 (United States)

    2013-07-01

    The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwater monitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons. Historically, the monitoring activities have been very 'people intensive'. Field personnel or 'samplers' have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from two official electronic databases: the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers traditionally used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information. In Automating Groundwater Sampling at Hanford (HNF-38542-FP Revision 0, Presented at Waste Management 2009 Conference, March 1 - March 5, 2009, Phoenix, AZ), we described the methods, tools, and techniques that would be used in automating the activities associated with measuring water levels. The Field Logging and Electronic Data Gathering (FLEDG) application/database that automates collecting the water-level measurement data has now been implemented at Hanford. In addition to

  2. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Science.gov (United States)

    2010-07-01

    ... and analysis requirements. (a) The ground-water monitoring program must include consistent sampling... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water sampling and analysis requirements. 257.23 Section 257.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  3. Influence of vertical flows in wells on groundwater sampling.

    Science.gov (United States)

    McMillan, Lindsay A; Rivett, Michael O; Tellam, John H; Dumble, Peter; Sharp, Helen

    2014-11-15

    Pumped groundwater sampling evaluations often assume that horizontal head gradients predominate and the sample comprises an average of water quality variation over the well screen interval weighted towards contributing zones of higher hydraulic conductivity (a permeability-weighted sample). However, the pumping rate used during sampling may not always be sufficient to overcome vertical flows in wells driven by ambient vertical head gradients. Such flows are reported in wells with screens between 3 and 10m in length where lower pumping rates are more likely to be used during sampling. Here, numerical flow and particle transport modeling is used to provide insight into the origin of samples under ambient vertical head gradients and under a range of pumping rates. When vertical gradients are present, sample provenance is sensitive to pump intake position, pumping rate and pumping duration. The sample may not be drawn from the whole screen interval even with extended pumping times. Sample bias is present even when the ambient vertical flow in the wellbore is less than the pumping rate. Knowledge of the maximum ambient vertical flow in the well does, however, allow estimation of the pumping rate that will yield a permeability-weighted sample. This rate may be much greater than that recommended for low-flow sampling. In practice at monitored sites, the sampling bias introduced by ambient vertical flows in wells may often be unrecognized or underestimated when drawing conclusions from sampling results. It follows that care should be taken in the interpretation of sampling data if supporting flow investigations have not been undertaken.

  4. groundwater contribution to crop water requirement groundwater ...

    African Journals Online (AJOL)

    eobe

    Keywords: Groundwater, water table, capillary rise, soil type, waterleaf, ... GROUNDWATER CONTRIBUTION TO WATERLEAF (TALINUM TRIANGULARE) IN OXISOLS, I. J. ... Nutritionally, ... information to facilitate increased crop production,.

  5. Influence of thermal treatments on radiocarbon dating of groundwater samples

    Science.gov (United States)

    Stanciu, Iuliana Madalina; Sava, Tiberiu Bogdan; Pacesila, Doru Gheorghe; Gaza, Oana; Simion, Corina Anca; Stefan, Bianca Maria; Sava, Gabriela Odilia; Ghita, Dan Gabriel; Mosu, Vasile

    2017-06-01

    Radiocarbon measurements of dissolved inorganic carbon (DIC) in water provides information about the formation of oceanic circulation of the water volumes, the hydrogeological systems, and also valuable information can be gained about the aquifer storage and the degree of containment relative to the surface waters. Radiocarbon dating refers to the determination of small quantities of the naturally occurring carbon 14 in the water, which can be integrated in the groundwater mass through the gaseous CO2, carbonaceous deposits dissolved by water and organic remains. The aim of this study is to investigate the influence of the temperature and pressure over the amount of each isotope of carbon during the sample preparation stage. The first step was to evaporate several underground water samples at 65°C under different conditions until the carbonates were obtained, then the CO2 was extracted with orto-phosphoric acid and transformed to graphite. The second step was to obtain graphite from an untreated water sample. Finally, the samples were measured with the 1MV Cockcroft-Walton Tandetron Accelerator by Accelerator Mass Spectrometry.

  6. Interpretation of stable isotope, denitrification, and groundwater age data for samples collected from Sandia National Laboratories /New Mexico (SNL/NM) Burn Site Groundwater Area of Concern

    Energy Technology Data Exchange (ETDEWEB)

    Madrid, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singleton, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Visser, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-02

    This report combines and summarizes results for two groundwater-sampling events (October 2012 and October/November 2015) from the Sandia National Laboratories/New Mexico (SNL/NM) Burn Site Groundwater (BSG) Area of Concern (AOC) located in the Lurance Canyon Arroyo southeast of Albuquerque, NM in the Manzanita Mountains. The first phase of groundwater sampling occurred in October 2012 including samples from 19 wells at three separate sites that were analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory as part of a nitrate Monitored Natural Attenuation (MNA) evaluation. The three sites (BSG, Technical Area-V, and Tijeras Arroyo) are shown on the regional hydrogeologic map and described in the Sandia Annual Groundwater Monitoring Report. The first phase of groundwater sampling included six monitoring wells at the Burn Site, eight monitoring wells at Technical Area-V, and five monitoring wells at Tijeras Arroyo. Each groundwater sample was analyzed using the two specialized analytical methods, age-dating and denitrification suites. In September 2015, a second phase of groundwater sampling took place at the Burn Site including 10 wells sampled and analyzed by the same two analytical suites. Five of the six wells sampled in 2012 were resampled in 2015. This report summarizes results from two sampling events in order to evaluate evidence for in situ denitrification, the average age of the groundwater, and the extent of recent recharge of the bedrock fracture system beneath the BSG AOC.

  7. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2014 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring is performed by the GWPP during CY 2014 to achieve the following goals: 􀁸 to protect the worker, the public, and the environment; 􀁸 to maintain surveillance of existing and potential groundwater contamination sources; 􀁸 to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; 􀁸 to identify and characterize long-term trends in groundwater quality at Y-12; and 􀁸 to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12.

  8. Groundwater monitoring programme. A guide for groundwater sampling and analysis. 2. ed.; Grundwasserueberwachungsprogramm. Leitfaden fuer Probenahme und Analytik von Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Quality assurance guidelines have been developed and introduced in Baden-Wuerttemberg for groundwater monitoring. The contribution contains the fundamentals and technical guides for sampling and measurement of the Baden-Wuerttemberg groundwater monitoring programme, as well as parameter groups and a preliminary assessment of the methods. [German] Bei der Gewinnung von Umweltdaten sind hohe Anforderungen an die Qualitaet der erhobenen Daten zu stellen. Dies trifft in besonderem Masse gerade auch fuer Grundwasseruntersuchungen zu, da hier haeufig Konzentrationen im Bereich der Nachweisgrenze auftreten. Fuer das Grundwassermessnetz Baden-Wuerttemberg sind qualitaetssichernde Regelungen entwickelt und eingefuehrt worden. In der vorliegenden Zusammenstellung sind die Grundsatzpapiere, bzw. Technischen Anleitungen aus dem Grundwasserueberwachungsprogramm Baden-Wuerttemberg fuer die Grundwasserprobennahme sowie zu Messverfahren, Parametergruppen und zur ersten Beurteilung der Messergebnisse enthalten. (orig.)

  9. Data Validation Package May 2016 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site, September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dick [Navarro Nevada Environmental Services (NNES), Las Vegas, NV (United States); Tsosie, Bernadette [US Department of Energy, Washington, DC (United States)

    2016-09-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location 16(SG).

  10. Y-12 Plant Groundwater Protection Program Groundwater and Surface Water sampling and Analysis Plan for Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2000 at the U.S. Department of Energy (DOE) Y-12 Plant that will be managed by tie Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 2000 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant (Figure 1). Groundwater and surface water monitoring performed under the auspices of the Y-12 Plant GWPP during CY 2000 will comply with: Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous Solid Waste Disposal Facilities (SWDF); and DOE Order 5400.1 surveillance monitoring and exit pathway/perimeter monitoring. Some of the data collected for these monitoring drivers also will be used to meet monitoring requirements of the Integrated Water Quality Program, which is managed by Bechtel Jacobs Company LLC. Data from five wells that are monitored for SWDF purposes in the Chestnut Ridge Regime will be used to comply with requirements specified in the Resource Conservation and Recovery Act post closure permit regarding corrective action monitoring. Modifications to the CY 2000 monitoring program may be necessary during implementation. Changes in regulatory or programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan.

  11. Interpretation of stable isotope, denitrification, and groundwater age data for samples collected from Sandia National Laboratories /New Mexico (SNL/NM) Burn Site Groundwater Area of Concern

    Energy Technology Data Exchange (ETDEWEB)

    Madrid, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singleton, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Visser, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-02

    This report combines and summarizes results for two groundwater-sampling events (October 2012 and October/November 2015) from the Sandia National Laboratories/New Mexico (SNL/NM) Burn Site Groundwater (BSG) Area of Concern (AOC) located in the Lurance Canyon Arroyo southeast of Albuquerque, NM in the Manzanita Mountains. The first phase of groundwater sampling occurred in October 2012 including samples from 19 wells at three separate sites that were analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory (LLNL, Madrid et al., 2013) as part of a nitrate Monitored Natural Attenuation (MNA) evaluation. The three sites (BSG, Technical Area-V, and Tijeras Arroyo) are shown on the regional hydrogeologic map (Figure 1) and described in the Sandia Annual Groundwater Monitoring Report (Jackson et al., 2011). The first phase of groundwater sampling included six monitoring wells at the Burn Site, eight monitoring wells at Technical Area-V, and five monitoring wells at Tijeras Arroyo. Each groundwater sample was analyzed using the two specialized analytical methods, age-dating and denitrification suites (Table 1). In September 2015, a second phase of groundwater sampling took place at the Burn Site including 10 wells sampled and analyzed by the same two analytical suites. Five of the six wells sampled in 2012 were resampled in 2015

  12. Groundwater Waters

    Directory of Open Access Journals (Sweden)

    Ramón Llamas

    1999-10-01

    Full Text Available The groundwaters released through springs constituted a basic element for the survival and progressive development of human beings. Man came to learn how to take better advantage of these waters by digging wells, irrigation channels, and galleries. Nevertheless, these activities do not require cooperation nor the collective agreement of relatively large groups of people, as in the case of creating the necessary structures to take advantage of the resources of surfacewaters. The construction and operation of these structures was a powerful factor in the birth of an urban or civil society – the designated water civilizations. The difference between people taking advantage of groundwater, quasi-individually, and those of surface water, where people work in a group, has continued to the present day. Whereas earlier, this difference did not bring about any special problems, the technological advances of this century, especially theturbine pump, have led to a spectacular increase in the use of roundwater. This advance has significantly contributed to reducing hunger in the world and has provided potable water in developing countries. However, the almost generalized lack of planning and control in the exploitation of these groundwaters reflects that they are little or badly understood by the managers of water policy in almost every country. As such, problems have occurred which have often become exaggerated, giving rise to water-myths. These problems, though, should be addressed if the aim is the sustainable usage of surface water as well as groundwater. To counter any misconceptions and to seek solutions to the problems, distinct plans of action can be highlighted: educating the public; fomenting a system of participative management and decisive support for the communities of users of subterranean waters; integrating a sufficient number of experts in hydrology in the various water management organizations;and assuring transparency of the data on

  13. Groundwater and security

    NARCIS (Netherlands)

    Conti, K.I.; Kukurić, N.; Gupta, J.; Pahl-Wostl, C.; Bhaduri, A.; Gupta, J.

    2016-01-01

    Humans abstract two hundred times more groundwater than oil, annually. Ironically, the role of groundwater in water management and supply is underappreciated, partially due to its invisibility. By conducting a literature survey and investigating groundwater information databases, this chapter answer

  14. Data validation report for the 100-HR-3 Operable Unit, fifth round groundwater samples

    Energy Technology Data Exchange (ETDEWEB)

    Vukelich, S.E. [Kearney (A.T.), Inc., Chicago, IL (United States)

    1994-01-20

    The data from the chemical analysis of 68 samples from the 100-HR-3 Operable Unit Third Quarter 1993 Groundwater Sampling Investigation and their related quality assurance samples were reviewed and validated to verify that reported sample results were of sufficient quality to support decisions regarding remedial actions performed at the site. Sample analysis included inorganics and general chemical parameters. Fifty three samples were validated for radiochemical parameters.

  15. Hanford groundwater modeling: statistical methods for evaluating uncertainty and assessing sampling effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, D.B.

    1979-01-01

    This report is the first in a series of three documents which address the role of uncertainty in the Rockwell Hanford Operations groundwater model development and application program at Hanford Site. Groundwater data collection activities at Hanford are reviewed as they relate to Rockwell groundwater modeling. Methods of applying statistical and probability theory in quantifying the propagation of uncertainty from field measurements to model predictions are discussed. It is shown that measures of model accuracy or uncertainty provided by a statistical analysis can be useful in guiding model development and sampling network design. Recommendations are presented in the areas of model input data needs, parameter estimation data needs, and model verification and variance estimation data needs. 8 figures.

  16. The Savannah River Site`s groundwater monitoring program: 1990 sampling schedule

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1991-02-07

    This schedule provides a final record of the 1990 sampling schedule for the SRS groundwater monitoring program conducted by the Environmental Protection Department/Environmental Section (EPD/EMS). It includes all the wells monitored by EPD/EMS at SRS during 1990 and identifies the constituents sampled, the sampling frequency, and the reasons for sampling. Sampling requests are incorporated into the schedule throughout the year. Drafts of the schedule are produced and revised quarterly.

  17. Groundwater recharge: Accurately representing evapotranspiration

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2011-09-01

    Full Text Available Groundwater recharge is the basis for accurate estimation of groundwater resources, for determining the modes of water allocation and groundwater resource susceptibility to climate change. Accurate estimations of groundwater recharge with models...

  18. Groundwater sampling methods using glass wool filtration to trace human enteric viruses in Madison, Wisconsin

    Science.gov (United States)

    Human enteric viruses have been detected in the Madison, Wisconsin deep municipal well system. Earlier projects by the Wisconsin Geological and Natural History Survey (WGNHS) have used glass wool filters to sample groundwater for these viruses directly from the deep municipal wells. Polymerase chain...

  19. Optimization of groundwater sampling approach under various hydrogeological conditions using a numerical simulation model

    Science.gov (United States)

    Qi, Shengqi; Hou, Deyi; Luo, Jian

    2017-09-01

    This study presents a numerical model based on field data to simulate groundwater flow in both the aquifer and the well-bore for the low-flow sampling method and the well-volume sampling method. The numerical model was calibrated to match well with field drawdown, and calculated flow regime in the well was used to predict the variation of dissolved oxygen (DO) concentration during the purging period. The model was then used to analyze sampling representativeness and sampling time. Site characteristics, such as aquifer hydraulic conductivity, and sampling choices, such as purging rate and screen length, were found to be significant determinants of sampling representativeness and required sampling time. Results demonstrated that: (1) DO was the most useful water quality indicator in ensuring groundwater sampling representativeness in comparison with turbidity, pH, specific conductance, oxidation reduction potential (ORP) and temperature; (2) it is not necessary to maintain a drawdown of less than 0.1 m when conducting low flow purging. However, a high purging rate in a low permeability aquifer may result in a dramatic decrease in sampling representativeness after an initial peak; (3) the presence of a short screen length may result in greater drawdown and a longer sampling time for low-flow purging. Overall, the present study suggests that this new numerical model is suitable for describing groundwater flow during the sampling process, and can be used to optimize sampling strategies under various hydrogeological conditions.

  20. A downhole passive sampling system to avoid bias and error from groundwater sample handling.

    Science.gov (United States)

    Britt, Sanford L; Parker, Beth L; Cherry, John A

    2010-07-01

    A new downhole groundwater sampler reduces bias and error due to sample handling and exposure while introducing minimal disturbance to natural flow conditions in the formation and well. This "In Situ Sealed", "ISS", or "Snap" sampling device includes removable/lab-ready sample bottles, a sampler device to hold double end-opening sample bottles in an open position, and a line for lowering the sampler system and triggering closure of the bottles downhole. Before deployment, each bottle is set open at both ends to allow flow-through during installation and equilibration downhole. Bottles are triggered to close downhole without well purging; the method is therefore "passive" or "nonpurge". The sample is retrieved in a sealed condition and remains unexposed until analysis. Data from six field studies comparing ISS sampling with traditional methods indicate ISS samples typically yield higher volatile organic compound (VOC) concentrations; in one case, significant chemical-specific differentials between sampling methods were discernible. For arsenic, filtered and unfiltered purge results were negatively and positively biased, respectively, compared to ISS results. Inorganic constituents showed parity with traditional methods. Overall, the ISS is versatile, avoids low VOC recovery bias, and enhances reproducibility while avoiding sampling complexity and purge water disposal.

  1. Results of groundwater monitoring and vegetation sampling at Everest, Kansas, in 2009 .

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2010-05-13

    In April 2008, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) conducted groundwater sampling for the analysis of volatile organic compounds (VOCs) in the existing network of monitoring points at Everest, Kansas (Argonne 2008). The objective of the 2008 investigation was to monitor the distribution of carbon tetrachloride contamination in groundwater previously identified in CCC/USDA site characterization and groundwater sampling studies at Everest in 2000-2006 (Argonne 2001, 2003, 2006a,b). The work at Everest is being undertaken on behalf of the CCC/USDA by Argonne National Laboratory, under the oversight of the Kansas Department of Health and Environment (KDHE). The findings of the 2008 investigation were as follows: (1) Measurements of groundwater levels obtained manually and through the use of automatic recorders demonstrated a consistent pattern of groundwater flow - and inferred contaminant migration - to the north-northwest from the former CCC/USDA facility toward the Nigh property, and then west-southwest from the Nigh property toward the intermittent creek that lies west of the former CCC/USDA facility and the Nigh property. (2) The range of concentrations and the areal distribution of carbon tetrachloride identified in the groundwater at Everest in April 2008 were generally consistent with previous results. The results of the 2008 sampling (reflecting the period from 2006 to 2008) and the earlier investigations at Everest (representing the period from 2000 to 2006) show that no significant downgradient extension of the carbon tetrachloride plume occurred from 2000 to 2008. (3) The slow contaminant migration indicated by the monitoring data is qualitatively consistent with the low groundwater flow rates in the Everest aquifer unit estimated previously on the basis of site-specific hydraulic testing (Argonne 2006a,b). (4) The April 2008 and earlier sampling results demonstrate that the limits of the plume have been

  2. Groundwater Managment Districts

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset outlines the location of the five Groundwater Management Districts in Kansas. GMDs are locally formed and elected boards for regional groundwater...

  3. Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples

    Science.gov (United States)

    Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R.

    2002-01-01

    The distribution of inorganic arsenic species must be preserved in the field to eliminate changes caused by metal oxyhydroxide precipitation, photochemical oxidation, and redox reactions. Arsenic species sorb to iron and manganese oxyhydroxide precipitates, and arsenite can be oxidized to arsenate by photolytically produced free radicals in many sample matrices. Several preservatives were evaluated to minimize metal oxyhydroxide precipitation, such as inorganic acids and ethylenediaminetetraacetic acid (EDTA). EDTA was found to work best for all sample matrices tested. Storing samples in opaque polyethylene bottles eliminated the effects of photochemical reactions. The preservation technique was tested on 71 groundwater and six acid mine drainage samples. Concentrations in groundwater samples reached 720 ??g-As/L for arsenite and 1080 ??g-As/L for arsenate, and acid mine drainage samples reached 13 000 ??g-As/L for arsenite and 3700 ??g-As/L for arsenate. The arsenic species distribution in the samples ranged from 0 to 90% arsenite. The stability of the preservation technique was established by comparing laboratory arsenic speciation results for samples preserved in the field to results for subsamples speciated onsite. Statistical analyses indicated that the difference between arsenite and arsenate concentrations for samples preserved with EDTA in opaque bottles and field speciation results were analytically insignificant. The percentage change in arsenite:arsenate ratios for a preserved acid mine drainage sample and groundwater sample during a 3-month period was -5 and +3%, respectively.

  4. Effect of the extent of well purging on laboratory parameters of groundwater samples

    Science.gov (United States)

    Reka Mathe, Agnes; Kohler, Artur; Kovacs, Jozsef

    2017-04-01

    Chemicals reaching groundwater cause water quality deterioration. Reconnaissance and remediation demands high financial and human resources. Groundwater samples are important sources of information. Representativity of these samples is fundamental to decision making. According to relevant literature the way of sampling and the sampling equipment can affect laboratory concentrations measured in samples. Detailed and systematic research on this field is missing from even international literature. Groundwater sampling procedures are regulated worldwide. Regulations describe how to sample a groundwater monitoring well. The most common element in these regulations is well purging prior to sampling. The aim of purging the well is to avoid taking the sample from the stagnant water instead of from formation water. The stagnant water forms inside and around the well because the well casing provides direct contact with the atmosphere, changing the physico-chemical composition of the well water. Sample from the stagnant water is not representative of the formation water. Regulations regarding the extent of the purging are different. Purging is mostly defined as multiply (3-5) well volumes, and/or reaching stabilization of some purged water parameters (pH, specific conductivity, etc.). There are hints for sampling without purging. To define the necessary extent of the purging repeated pumping is conducted, triplicate samples are taken at the beginning of purging, at one, two and three times well volumes and at parameter stabilization. Triplicate samples are the means to account for laboratory errors. The subsurface is not static, the test is repeated 10 times. Up to now three tests were completed.

  5. Determination of Organic Pollutants in Small Samples of Groundwaters by Liquid-Liquid Extraction and Capillary Gas Chromatography

    DEFF Research Database (Denmark)

    Harrison, I.; Leader, R.U.; Higgo, J.J.W.

    1994-01-01

    A method is presented for the determination of 22 organic compounds in polluted groundwaters. The method includes liquid-liquid extraction of the base/neutral organics from small, alkaline groundwater samples, followed by derivatisation and liquid-liquid extraction of phenolic compounds after...

  6. Physicochemical Analysis of Selected Groundwater Samples of Amalner Town inJalgaon District, Maharashtra, India

    Directory of Open Access Journals (Sweden)

    V. T. Patil

    2010-01-01

    Full Text Available Physicochemical characteristics of groundwater and municipal water in Amalner town by taking water samples from five different stations. The study was carried out by collecting four groundwater samples (Two open well, two bore well and one municipal water sample during November 2007-February 2008. The results were compared with standards prescribed by WHO and ISI 10500-91. Total 15 parameters were analysed. It was found that the underground water was contaminated at few sampling sites namely Shirud Naka, Cotton Market and Shivaji Nagar. The sampling sites Dekhu road showed physicochemical parameters within the water quality standards and the quality of water is good and it is fit for drinking purpose. The correlation coefficients were calculated for water quality assessment.

  7. Groundwater sampling and chemical characterization of the Laxemar deep borehole KLX02

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, M.; Skaarman, C. [GeoPoint AB, Sollentuna (Sweden); Smellie, J. [Conterra AB, Uppsala (Sweden); Nilsson, A.C. [KTH, Stockholm (Sweden)

    1995-02-01

    The Laxemar deep borehole, KLX02 (1705 m depth), located close to the Aespoe Hard Rock Laboratory (HRL), has been investigated. Groundwater sampling was conducted on two occasions and using different methods. The first sampling was taken in the open borehole using the so-called Tube sampler; the second sampling carried out using the SKB-packer equipment to isolate pre-determined borehole sections. Groundwater compositions consist of two distinct groupings; one shallow to intermediate Sodium-Bicarbonate type (Na(Ca,K):HC{sub 3}Cl(SO{sub 4})) to a depth of 1000 m, and the other of deep origin, a calcium-chloride type (Ca-Na(K):Cl-SO{sub 4}(Br)), occurring below 1000 m. The deep brines contain up to 46000 mg of Cl per litre. The influence of borehole activities are seen in the tritium data which record significant tritium down to 1000 m, and even to 1420 m. Mixing modelling shows that water from the 1960`s is the main source for this tritium. The high tritium values in the 1090-1096.2 m section are due to contamination of 1% shallow water from 1960 and 2% of modern shallow water. The upper 800 m of bedrock at Laxemar lies within a groundwater recharge area; the sub-vertical to moderate angled fracture zones facilitate groundwater circulation to considerable depths, at least to 800 m, thus accounting for some of the low saline brackish groundwaters in these conducting fracture zones. Below 1000 m the system is hydraulically and geochemically `closed` such that highly saline brines exist in a near-stagnant environment. 30 refs, 22 figs, 8 tabs.

  8. Data Validation Package May 2016 Groundwater Sampling at the Lakeview, Oregon, Processing Site August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Hall, Steve [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-08-01

    This biennial event includes sampling five groundwater locations (four monitoring wells and one domestic well) at the Lakeview, Oregon, Processing Site. For this event, the domestic well (location 0543) could not be sampled because no one was in residence during the sampling event (Note: notification was provided to the resident prior to the event). Per Appendix A of the Groundwater Compliance Action Plan, sampling is conducted to monitor groundwater quality on a voluntary basis. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). One duplicate sample was collected from location 0505. Water levels were measured at each sampled monitoring well. The constituents monitored at the Lakeview site are manganese and sulfate. Monitoring locations that exceeded the U.S. Environmental Protection Agency (EPA) Secondary Maximum Contaminant Levels for these constituents are listed in Table 1. Review of time-concentration graphs included in this report indicate that manganese and sulfate concentrations are consistent with historical measurements.

  9. Tehran Groundwater Chemical Pollution

    Directory of Open Access Journals (Sweden)

    M- Shariatpanahi

    1990-06-01

    Full Text Available Seventy eight wells water sample of Tehran plain were examined to determine r its groundwaters chemical pollution. Tehran s groundwaters are slightly acidic and their total dissolved solids are high and are in the hard water category."nThe nitrate concentration of wells water of west region is less than per¬missible level of W.H.O. standard, whereas, the nitrate concentration of some of the other regions wells exceed W.H.O. standard which is indication of pollution"nwith municipal wastewaters. The concentration of toxic elements Cr, Cd, As, Hg and"ni Pb of some of the west, east and south regions wells of Tehran is more than per¬missible level of W.H.O. standard, whereas, the concentration of Cu, Zn,Mn and detergents is below W.H.O. standard."n1"nIn general, the amount of dissolved materials of Tehran s groundwaters and also"ni the potential of their contamination with nitrate is increased as Tehran s ground-"nwaters move further to the south, and even though, Tehran s groundwaters contamination with toxic elements is limited to the industrial west district, industrial-residential east and south districts, but»with regard to the disposal methods of"nt municipal and industrial wastewaters, if Tehran s groundwaters pollution continues,"nlocal contamination of groundwaters is likely to spread. So that finally their quality changes in such a way that this water source may become unfit for most domestic, industrial and agricultural uses. This survey shows the necessity of collection and treatment of Tehran s wastewaters and Prevention of the disposal of untreated wastewaters into the environment.

  10. Data Validation Package, December 2015, Groundwater Sampling at the Bluewater, New Mexico, Disposal Site, September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Tsosie, Bernadette [U. S. Department of Energy, Washington, DC (United States). Office of Legacy Management; Johnson, Richard [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-09-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location HMC-951. Alluvium wells are completed in the alluvial sediments in the former channel of the Rio San Jose, which was covered by basalt lava flows known as the El Malpais, and are identified by the suffix (M). Bedrock wells are completed in the San Andres Limestone/Glorieta Sandstone hydrologic unit (San Andres aquifer) and are identified by the suffix (SG). Wells HMC-951 and OBS-3 are also completed in the San Andres aquifer. The LTSP requires monitoring for molybdenum, selenium, uranium, and polychlorinated biphenyls (PCBs); PCB monitoring occurs only during November sampling events. This event included sampling for an expanded list of analytes to characterize the site aquifers and to support a regional groundwater investigation being conducted by the New Mexico Environment Department.

  11. Recent developments on field gas extraction and sample preparation methods for radiokrypton dating of groundwater

    Science.gov (United States)

    Yokochi, Reika

    2016-09-01

    Current and foreseen population growths will lead to an increased demand in freshwater, large quantities of which is stored as groundwater. The ventilation age is crucial to the assessment of groundwater resources, complementing the hydrological model approach based on hydrogeological parameters. Ultra-trace radioactive isotopes of Kr (81 Kr and 85 Kr) possess the ideal physical and chemical properties for groundwater dating. The recent advent of atom trap trace analyses (ATTA) has enabled determination of ultra-trace noble gas radioisotope abundances using 5-10 μ L of pure Kr. Anticipated developments will enable ATTA to analyze radiokrypton isotope abundances at high sample throughput, which necessitates simple and efficient sample preparation techniques that are adaptable to various sample chemistries. Recent developments of field gas extraction devices and simple and rapid Kr separation method at the University of Chicago are presented herein. Two field gas extraction devices optimized for different sampling conditions were recently designed and constructed, aiming at operational simplicity and portability. A newly developed Kr purification system enriches Kr by flowing a sample gas through a moderately cooled (138 K) activated charcoal column, followed by a gentle fractionating desorption. This simple process uses a single adsorbent and separates 99% of the bulk atmospheric gases from Kr without significant loss. The subsequent two stages of gas chromatographic separation and a hot Ti sponge getter further purify the Kr-enriched gas. Abundant CH4 necessitates multiple passages through one of the gas chromatographic separation columns. The presented Kr separation system has a demonstrated capability of extracting Kr with > 90% yield and 99% purity within 75 min from 1.2 to 26.8 L STP of atmospheric air with various concentrations of CH4. The apparatuses have successfully been deployed for sampling in the field and purification of groundwater samples.

  12. Passive sampling as a tool for identifying micro-organic compounds in groundwater.

    Science.gov (United States)

    Mali, N; Cerar, S; Koroša, A; Auersperger, P

    2017-03-28

    The paper presents the use of a simple and cost efficient passive sampling device with integrated active carbon with which to test the possibility of determining the presence of micro-organic compounds (MOs) in groundwater and identifying the potential source of pollution as well as the seasonal variability of contamination. Advantage of the passive sampler is to cover a long sampling period by integrating the pollutant concentration over time, and the consequently analytical costs over the monitoring period can be reduced substantially. Passive samplers were installed in 15 boreholes in the Maribor City area in Slovenia, with two sampling campaigns covered a period about one year. At all sampling sites in the first series a total of 103 compounds were detected, and 144 in the second series. Of all detected compounds the 53 most frequently detected were selected for further analysis. These were classified into eight groups based on the type of their source: Pesticides, Halogenated solvents, Non-halogenated solvents, Domestic and personal, Plasticizers and additives, Other industrial, Sterols and Natural compounds. The most frequently detected MO compounds in groundwater were tetrachloroethene and trichloroethene from the Halogenated solvents group. The most frequently detected among the compound's groups were pesticides. Analysis of frequency also showed significant differences between the two sampling series, with less frequent detections in the summer series. For the analysis to determine the origin of contamination three groups of compounds were determined according to type of use: agriculture, urban and industry. Frequency of detection indicates mixed land use in the recharge areas of sampling sites, which makes it difficult to specify the dominant origin of the compound. Passive sampling has proved to be useful tool with which to identify MOs in groundwater and for assessing groundwater quality.

  13. Passive sampling and analyses of common dissolved fixed gases in groundwater.

    Science.gov (United States)

    Spalding, Brian P; Watson, David B

    2008-05-15

    An in situ passive sampling and gas chromatographic protocol was developed for analysis of the major and several minor fixed gases (He, Ne, H2, N2, O2, CO, CH4, CO2, and N2O) in groundwater. Using argon carrier gas, a HayeSep DB porous polymer phase, and sequential thermal conductivity and reductive gas detectors, the protocol achieved sufficient separation and sensitivity to measure the mixing ratio of all these gases in a single 0.5 mL gas sample collected in situ, stored, transported, and injected using a gastight syringe. Within 4 days of immersion in groundwater, the simple passive in situ sampler, whether initially filled with He or air, attained an equivalent and constant mixing ratio for five of the seven detected gases. The abundant mixing ratio of N2O, averaging 2.6%, indicated that significant denitrification is likely ongoing within groundwater contaminated with uranium, acidity, nitrate, and organic carbon from a group of four closed radioactive wastewater seepage ponds at the Oak Ridge Field Research Center. Over 1000 passive gas samples from 12 monitoring wells averaged 56% CO2, 32.4% N2, 2.6% O2, 2.6% N2O, 0.21% CH4, 0.093% H2, and 0.025% CO with an average recovery of 95 +/- 14% of the injected gas volume.

  14. Sampling and characterisation of groundwater colloids in ONKALO at Olkiluoto, Finland, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Luste, S.; Takala, M.; Manninen, P. [Ramboll Finland Oy, Espoo (Finland)

    2014-06-15

    The purpose of this study was to estimate the concentration of groundwater colloids and to compare the results with the previous ones. The water samples were collected from groundwater stations ONK-PVA1, ONK-PVA5 and ONK-PVA10 in August 2013. The colloid concentrations were determined from scanning electron microscopy (SEM) micrographs taken from the filters in which the groundwater was run through. The particle calculations were performed with computer software ImageJ 1.47. In addition, field flow fractionation (FFF) measurements were performed from the unfiltered water samples. The colloid concentration (diameter 0 - 1 μm) determined by the single particle analysis of SEM micrographs in ONK-PVA1 was 300 μg/l while the colloid concentration in ONK-PVA5 was 30 μg/l and ONK-PVA10 40 μg/l. FFF measurements supported the results of single particle analyses with a difference that an extra peak was found from ONK-PVA1 sample. The peak, which showed no evidence in single particle analyses, was suspected to contain humic substances. (orig.)

  15. DYNAMICS OF AGRICULTURAL GROUNDWATER EXTRACTION

    OpenAIRE

    Hellegers, Petra J.G.J.; Zilberman, David; van Ierland, Ekko C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

  16. DYNAMICS OF AGRICULTURAL GROUNDWATER EXTRACTION

    OpenAIRE

    Hellegers, Petra J.G.J.; Zilberman, David; van Ierland, Ekko C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

  17. Vertical Sampling in Recharge Areas Versus Lateral Sampling in Discharge Areas: Assessing the Agricultural Nitrogen Legacy in Groundwater

    Science.gov (United States)

    Gilmore, T. E.; Genereux, D. P.; Solomon, D. K.; Mitasova, H.; Burnette, M.

    2014-12-01

    Agricultural nitrogen (N) is a legacy contaminant often found in shallow groundwater systems. This legacy has commonly been observed using well nests (vertical sampling) in recharge areas, but may also be observed by sampling at points in/beneath a streambed using pushable probes along transects across a channel (lateral sampling). We compared results from two different streambed point sampling approaches and from wells in the recharge area to assess whether the different approaches give fundamentally different pictures of (1) the magnitude of N contamination, (2) historic trends in N contamination, and (3) the extent to which denitrification attenuates nitrate transport through the surficial aquifer. Two different arrangements of streambed points (SP) were used to sample groundwater discharging into a coastal plain stream in North Carolina. In July 2012, a 58 m reach was sampled using closely-spaced lateral transects of SP, revealing high average [NO3-] (808 μM, n=39). In March 2013, transects of SP were widely distributed through a 2.7 km reach that contained the 58 m reach and suggested overall lower [NO3-] (210 μM, n=30), possibly due to variation in land use along the longer study reach. Mean [NO3-] from vertical sampling (2 well nests with 3 wells each) was 296 μM. Groundwater apparent ages from SP in the 58 m and 2.7 km reaches suggested lower recharge [NO3-] (observed [NO3-] plus modeled excess N2) in 0-10 year-old water (1250 μM and 525 μM, respectively), compared to higher recharge [NO3-] from 10-30 years ago (about 1600 μM and 900 μM, respectively). In the wells, [NO3-] was highest (835 μM) in groundwater with apparent age of 12-15 years and declined as apparent age increased, a trend that was consistent with SP in the 2.7 km reach. The 58 m reach suggested elevated recharge [NO3-] (>1100 μM) over a 50-year period. Excess N2 from wells suggested that about 62% of nitrate had been removed via denitrification since recharge, versus 51% and 78

  18. Selection of Sampling Pumps Used for Groundwater Monitoring at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, Ronald; Webber, William D.; Smith, Ronald M.

    2001-11-05

    The variable frequency drive centrifugal submersible pump, Redi-Flo2a made by Grundfosa, was selected for universal application for Hanford Site groundwater monitoring. Specifications for the selected pump and five other pumps were evaluated against current and future Hanford groundwater monitoring performance requirements, and the Redi-Flo2 was selected as the most versatile and applicable for the range of monitoring conditions. The Redi-Flo2 pump distinguished itself from the other pumps considered because of its wide range in output flow rate and its comparatively moderate maintenance and low capital costs. The Redi-Flo2 pump is able to purge a well at a high flow rate and then supply water for sampling at a low flow rate. Groundwater sampling using a low-volume-purging technique (e.g., low flow, minimal purge, no purge, or micropurgea) is planned in the future, eliminating the need for the pump to supply a high-output flow rate. Under those conditions, the Well Wizard bladder pump, manufactured by QED Environmental Systems, Inc., may be the preferred pump because of the lower capital cost.

  19. 40 CFR 265.91 - Ground-water monitoring system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  20. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  1. Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems

    Science.gov (United States)

    Korbel, Kathryn; Chariton, Anthony; Stephenson, Sarah; Greenfield, Paul; Hose, Grant C.

    2017-01-01

    When compared to surface ecosystems, groundwater sampling has unique constraints, including limited access to ecosystems through wells. In order to monitor groundwater, a detailed understanding of groundwater biota and what biological sampling of wells truly reflects, is paramount. This study aims to address this uncertainty, comparing the composition of biota in groundwater wells prior to and after purging, with samples collected prior to purging reflecting a potentially artificial environment and samples collected after purging representing the surrounding aquifer. This study uses DNA community profiling (metabarcoding) of 16S rDNA and 18S rDNA, combined with traditional stygofauna sampling methods, to characterise groundwater biota from four catchments within eastern Australia. Aquifer waters were dominated by Archaea and bacteria (e.g. Nitrosopumilales) that are often associated with nitrification processes, and contained a greater proportion of bacteria (e.g. Anaerolineales) associated with fermenting processes compared to well waters. In contrast, unpurged wells contained greater proportions of pathogenic bacteria and bacteria often associated with denitrification processes. In terms of eukaryotes, the abundances of copepods, syncarids and oligochaetes and total abundances of stygofauna were greater in wells than aquifers. These findings highlight the need to consider sampling requirements when completing groundwater ecology surveys. PMID:28102290

  2. Molecular analysis of microbial community in a groundwater sample polluted by landfill leachate and seawater

    Institute of Scientific and Technical Information of China (English)

    TIAN Yang-jie; YANG Hong; WU Xiu-juan; LI Dao-tang

    2005-01-01

    Seashore landfill aquifers are environments of special physicochemical conditions (high organic load and high salinity), and microbes in leachate-polluted aquifers play a significant role for intrinsic bioremediation. In order to characterize microbial diversity and look for clues on the relationship between microbial community structure and hydrochemistry, a culture-independent examination of a typical groundwater sample obtained from a seashore landfill was conducted by sequence analysis of 16S rDNA clone library. Two sets of universal 16S rDNA primers were used to amplify DNA extracted from the groundwater so that problems arising from primer efficiency and specificity could be reduced. Of 74 clones randomly selected from the libraries, 30 contained unique sequences whose analysis showed that the majority of them belonged to bacteria (95.9%), with Proteobacteria (63.5%) being the dominant division. One archaeal sequence and one eukaryotic sequence were found as well. Bacterial sequences belonging to the following phylogenic groups were identified: Bacteroidetes (20.3%), β, γ, δ and ε-subdivisions of Proteobacteria (47.3%, 9.5%, 5.4% and 1.3%, respectively), Firmicutes (1.4%), Actinobacteria (2.7%), Cyanobacteria (2.7%). The percentages of Proteobacteria and Bacteroides in seawater were greater than those in the groundwater from a non-seashore landfill, indicating a possible influence of seawater. Quite a few sequences had close relatives in marine or hypersaline environments. Many sequences showed affiliations with microbes involved in anaerobic fermentation. The remarkable abundance of sequences related to (per)chlorate-reducing bacteria (C1RB) in the groundwater was significant and worthy of further study.

  3. Data Validation Package, June 2016 Groundwater Sampling at the Hallam, Nebraska, Decommissioned Reactor Site, August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Surovchak, Scott [USDOE Office of Legacy Management, Washington, DC (United States); Miller, Michele [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-08-01

    The 2008 Long-Term Surveillance Plan [LTSP] for the Decommissioned Hallam Nuclear Power Facility, Hallam, Nebraska (http://www.lm.doe.gov/Hallam/Documents.aspx) requires groundwater monitoring once every 2 years. Seventeen monitoring wells at the Hallam site were sampled during this event as specified in the plan. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Water levels were measured at all sampled wells and at two additional wells (6A and 6B) prior to the start of sampling. Additionally, water levels of each sampled well were measured at the beginning of sampling. See Attachment 2, Trip Report, for additional details. Sampling and analysis were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department- energy-office-legacy-management-sites). Gross alpha and gross beta are the only parameters that were detected at statistically significant concentrations. Time/concentration graphs of the gross alpha and gross beta data are included in Attachment 3, Data Presentation. The gross alpha and gross beta activity concentrations observed are consistent with values previously observed and are attributed to naturally occurring radionuclides (e.g., uranium and uranium decay chain products) in the groundwater.

  4. Dynamics of Agricultural Groundwater Extraction

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Zilberman, D.; Ierland, van E.C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is

  5. Data Validation Package: April 2016 Groundwater Sampling at the Falls City, Texas, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Jasso, Tashina [USDOE Office of Legacy Management, Washington, DC (United States); Widdop, Michael [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-09-29

    Nine groundwater samples were collected at the Falls City, Texas, Disposal Site as specified in the March 2008 Long-Term Surveillance Plan for the US Department of Energy Falls City Uranium Mill Tailings Disposal Site, Falls City, Texas (DOE-LM/1602-2008). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). The wells sampled included the cell performance monitoring wells (0709, 0858, 0880, 0906, and 0921) and the groundwater monitoring wells (0862, 0886, 0891, 0924, and 0963). A duplicate sample was collected from location 0891. Water levels were measured at each sampled well. Historically, cell performance monitoring wells 0908 and 0916 have not produced water and were confirmed as dry during this sampling event. These wells are completed above the saturated interval in the formation. Notable observations for time-concentration graphs in this report include: (1) uranium concentrations in well 0891 continue to increase; (2) the uranium concentration in well 0880 is higher than the 2015 value and lower than the 2014 value, and it remains within the range of historical values; and (3) uranium concentrations in the other sampled wells are below 2 mg/L and consistent with previous results.

  6. Environmental forensics in groundwater coupling passive sampling and high resolution mass spectrometry for screening.

    Science.gov (United States)

    Soulier, Coralie; Coureau, Charlotte; Togola, Anne

    2016-09-01

    One of the difficulties encountered when monitoring groundwater quality is low and fluctuating concentration levels and complex mixtures of micropollutants, including emerging substances or transformation products. Combining passive sampling techniques with analysis by high resolution mass spectrometry (HRMS) should improve environmental metrology. Passive samplers accumulate compounds during exposure, which improves the detection of organic compounds and integrates pollution fluctuations. The Polar Organic Chemical Integrative Sampler (POCIS) were used in this study to sequester polar to semi-polar compounds. The methodology described here improves our knowledge of environmental pollution by highlighting and identifying pertinent compounds to be monitored in groundwater. The advantage of combining these two approaches is demonstrated on two different sites impacted by agricultural and/or urban pollution sources where groundwater was sampled for several months. Grab and passive sampling were done and analyzed by liquid chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer (LC-QTOF). Various data processing approaches were used (target, suspect and non-target screening). Target screening was based on research from compounds listed in a homemade database and suspect screening used a database compiled using literature data. The non-target screening was done using statistical tools such as principal components analysis (PCA) with direct connections between original chromatograms and ion intensity. Trend plots were used to highlight relevant compounds for their identification. The advantage of using POCIS to improve screening of polar organic compounds was demonstrated. Compounds undetected in water samples were detected with these tools. The subsequent data processing identified sentinel molecules, molecular clusters as compounds never revealed in these sampling sites, and molecular fingerprints. Samples were compared and multidimensional

  7. Data from exploratory sampling of groundwater in selected oil and gas areas of coastal Los Angeles County and Kern and Kings Counties in southern San Joaquin Valley, 2014–15: California oil, gas, and groundwater project

    Science.gov (United States)

    Dillon, David B.; Davis, Tracy A.; Landon, Matthew K.; Land, Michael T.; Wright, Michael T.; Kulongoski, Justin T.

    2016-12-09

    Exploratory sampling of groundwater in coastal Los Angeles County and Kern and Kings Counties of the southern San Joaquin Valley was done by the U.S. Geological Survey from September 2014 through January 2015 as part of the California State Water Resources Control Board’s Water Quality in Areas of Oil and Gas Production Regional Groundwater Monitoring Program. The Regional Groundwater Monitoring Program was established in response to the California Senate Bill 4 of 2013 mandating that the California State Water Resources Control Board design and implement a groundwater-monitoring program to assess potential effects of well-stimulation treatments on groundwater resources in California. The U.S. Geological Survey is in cooperation with the California State Water Resources Control Board to collaboratively implement the Regional Groundwater Monitoring Program through the California Oil, Gas, and Groundwater Project.Many researchers have documented the utility of different suites of chemical tracers for evaluating the effects of oil and gas development on groundwater quality. The purpose of this exploratory sampling effort was to determine whether tracers reported in the literature could be used effectively in California. This reconnaissance effort was not designed to assess the effects of oil and gas on groundwater quality in the sampled areas. A suite of water-quality indicators and geochemical tracers were sampled at groundwater sites in selected areas that have extensive oil and gas development. Groundwater samples were collected from a total of 51 wells, including 37 monitoring wells at 17 multiple-well monitoring sites in coastal Los Angeles County and 5 monitoring wells and 9 water-production wells in southern San Joaquin Valley, primarily in Kern and Kings Counties.Groundwater samples were analyzed for field water-quality indicators; organic constituents, including volatile and semi-volatile organic compounds and dissolved organic carbon indicators; naturally

  8. Determination of Organic Pollutants in Small Samples of Groundwaters by Liquid-Liquid Extraction and Capillary Gas Chromatography

    DEFF Research Database (Denmark)

    Harrison, I.; Leader, R.U.; Higgo, J.J.W.;

    1994-01-01

    A method is presented for the determination of 22 organic compounds in polluted groundwaters. The method includes liquid-liquid extraction of the base/neutral organics from small, alkaline groundwater samples, followed by derivatisation and liquid-liquid extraction of phenolic compounds after...... neutralisation. The extracts were analysed by capillary gas chromatography. Dual detection by flame Ionisation and electron capture was used to reduce analysis time....

  9. Antibiotic resistance patterns of Escherichia coli strains isolated from surface water and groundwater samples in a pig production area

    Directory of Open Access Journals (Sweden)

    Roger Neto Schneider

    2009-09-01

    Full Text Available The use of antibiotics, so excessive and indiscriminate in intensive animal production, has triggered an increase in the number of resistant microorganisms which can be transported to aquatic environments. The aim of this study was to determine the profile of the antimicrobial resistance of samples of Escherichia coli isolated from groundwater and surface water in a region of pig breeding. Through the test of antimicrobial susceptibility, we analyzed 205 strains of E. coli. A high rate of resistance to cefaclor was observed, both in surface water (51.9% and groundwater (62.9%, while all samples were sensitive to amikacin. The percentages of multi-resistant samples were 25.96% and 26.73% in surface water and groundwater, respectively, while 19.23% and 13.86% were sensitive to all antibiotics tested. It was determined that the rate of multiple antibiotic resistance (MAR was 0.164 for surface water and 0.184 for groundwater. No significant differences were found in the profile of the antimicrobial resistance in strains of E. coli isolated in surface water and groundwater, but the index MAR calculated in certain points of groundwater may offer a potential risk of transmission of resistant genes.

  10. An experiment in representative ground-water sampling for water- quality analysis

    Science.gov (United States)

    Huntzinger, T.L.; Stullken, L.E.

    1988-01-01

    Obtaining a sample of groundwater that accurately represents the concentration of a chemical constituent in an aquifer is an important aspect of groundwater-quality studies. Varying aquifer and constituent properties may cause chemical constituents to move within selectively separate parts of the aquifer. An experiment was conducted in an agricultural region in south-central Kansas to address questions related to representative sample collection. Concentrations of selected constituents in samples taken from observation wells completed in the upper part of the aquifer were compared to concentrations in samples taken from irrigation wells to determine if there was a significant difference. Water in all wells sampled was a calcium bicarbonate type with more than 200 mg/L hardness and about 200 mg/L alkalinity. Sodium concentrations were also quite large (about 40 mg/L). There was a significant difference in the nitrite-plus-nitrate concentrations between samples from observation and irrigation wells. The median concentration of nitrite plus nitrate in water from observation wells was 5.7 mg/L compared to 3.4 mg/L in water from irrigation wells. The differences in concentrations of calcium, magnesium, and sodium (larger in water from irrigation wells) were significant at the 78% confidence level but not at the 97% confidence level. Concentrations of the herbicide, atrazine, were less than the detection limit of 0.1 micrograms/L in all but one well. (USGS)

  11. Human health and groundwater

    Science.gov (United States)

    The high quality of most groundwaters, consequent upon the self-purification capacity of subsurface strata, has long been a key factor in human health and wellbeing. More than 50% of the world’s population now rely on groundwater for their supply of drinking water – and in most circumstances a prope...

  12. Groundwater and Distribution Workbook.

    Science.gov (United States)

    Ekman, John E.

    Presented is a student manual designed for the Wisconsin Vocational, Technical and Adult Education Groundwater and Distribution Training Course. This program introduces waterworks operators-in-training to basic skills and knowledge required for the operation of a groundwater distribution waterworks facility. Arranged according to the general order…

  13. Data Validation Package May 2016 Groundwater Sampling at the Sherwood, Washington, Disposal Site August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kreie, Ken [USDOE Office of Legacy Management, Washington, DC (United States); Traub, David [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-08-04

    The 2001 Long-Term Surveillance Plan (LTSP) for the US. Department of Energy Sherwood Project (UMI'RCA Title II) Reclamation Cell, Wellpinit, Washington, does not require groundwater compliance monitoring at the Sherwood site. However, the LTSP stipulates limited groundwater monitoring for chloride and sulfate (designated indicator parameters) and total dissolved solids (TDS) as a best management practice. Samples were collected from the background well, MW-2B, and the two downgradient wells, MW-4 and MW-10, in accordance with the LTSP. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Water levels were measured in all wells prior to sampling and in four piezometers completed in the tailings dam. Time-concentration graphs included in this report indicate that the chloride, sulfate, and TDS concentrations are consistent with historical measurements. The concentrations of chloride and sulfate are well below the State of Washington water quality criteria value of 250 milligrams per liter (mg/L) for both parameters.

  14. Trends in groundwater quality in relation to groundwater age

    NARCIS (Netherlands)

    Visser, A.

    2009-01-01

    Groundwater is a valuable natural resource and as such should be protected from chemical pollution. Because of the long travel times of pollutants through groundwater bodies, early detection of groundwater quality deterioration is necessary to efficiently protect groundwater bodies. The aim of this

  15. Trends in groundwater quality in relation to groundwater age

    NARCIS (Netherlands)

    Visser, A.

    2009-01-01

    Groundwater is a valuable natural resource and as such should be protected from chemical pollution. Because of the long travel times of pollutants through groundwater bodies, early detection of groundwater quality deterioration is necessary to efficiently protect groundwater bodies. The aim of this

  16. Purification and Detection of 39Ar in Groundwater Samples via Low-Level Counting

    Science.gov (United States)

    Mace, E. K.; Aalseth, C.; Brandenberger, J. M.; Humble, P.; Panisko, M.; Seifert, A.; Williams, R. M.

    2015-12-01

    Argon-39 can be used as a radiotracer to age-date groundwater aquifers to study recharge rates and to better understand the mean residence time, or age distributions, of groundwater. Argon-39 (with a half-life of 269 years) is created in the atmosphere by cosmic rays interacting with argon in the air (primarily 40Ar). The use of 39Ar as a radiotracer fills a gap in the age dating range which is currently covered by 3H/3He or 85Kr (1000 years); 39Ar fills the intermediate time scale range from 50-1000 years where the previously established radiotracers are not adequate. We will introduce the process for purifying and detecting 39Ar in ground water using ultra-low-background proportional counters (ULBPCs) at the shallow underground laboratory at Pacific Northwest National Laboratory. Argon-39 is detected through direct beta counting using ULBPCs loaded with a mixture of geologic argon (extracted from a carbon dioxide well with no measureable 39Ar activity) and methane, which enhances the sensitivity for 39Ar measurements. The ULBPCs have been shown to have a background count rate of 148 counts per day (cpd) in the energy range 3-400 keV when filled with 10 atm of P-10 counting gas (90% geologic Ar, 10% CH4). Initial demonstration samples were collected from groundwater aquifers in Fresno, California supported by the United States Geological Survey (USGS). A discussion of the sampling technique to degas the water from these wells and to then purify it for counting will be presented. In order to quantify the 39Ar contribution in the groundwater samples, the ULBPCs were characterized to determine two components: 1) the detector efficiency to modern levels of 39Ar, and 2) the remaining detector background (using geologic sourced argon which is free from 39Ar - no measureable 39Ar activity). These characterization results will be presented along with a discussion of the quantification of the 39Ar age of the demonstration measurements.

  17. Nutrient sampling slam: high resolution surface-water sampling in streams reveals patterns in groundwater chemistry and flow paths

    Science.gov (United States)

    The groundwater–surface water interface (GSWI), consisting of shallow groundwater adjacent to stream channels, is a hot spot for nitrogen removal processes, a storage zone for other solutes, and a target for restoration activities. Characterizing groundwater-surface water intera...

  18. Global depletion of groundwater resources

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P.

    2010-01-01

    In regions with frequent water stress and large aquifer systems groundwater is often used as an additional water source. If groundwater abstraction exceeds the natural groundwater recharge for extensive areas and long times, overexploitation or persistent groundwater depletion occurs. Here we provid

  19. Groundwater data network interoperability

    Science.gov (United States)

    Brodaric, Boyan; Booth, Nathaniel; Boisvert, Eric; Lucido, Jessica M.

    2016-01-01

    Water data networks are increasingly being integrated to answer complex scientific questions that often span large geographical areas and cross political borders. Data heterogeneity is a major obstacle that impedes interoperability within and between such networks. It is resolved here for groundwater data at five levels of interoperability, within a Spatial Data Infrastructure architecture. The result is a pair of distinct national groundwater data networks for the United States and Canada, and a combined data network in which they are interoperable. This combined data network enables, for the first time, transparent public access to harmonized groundwater data from both sides of the shared international border.

  20. Groundwater contamination in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tase, Norio [Univ. of Tsukuba, Ibaraki (Japan)

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed. 9 refs., 3 figs., 4 tabs.

  1. Groundwater contamination in Japan

    Science.gov (United States)

    Tase, Norio

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed.

  2. Physico-Chemical Analysis of Selected Groundwater Samples of Inkollu Mandal, Prakasam District, Andhra Pradesh, India

    Directory of Open Access Journals (Sweden)

    G. Arun Kumar

    2015-04-01

    Full Text Available Physico-chemical parameters of groundwater quality based on Physic-chemical parameters at Inkollu mandal, Prakasam district, Andhra Pradesh, India have been taken up to evaluate its suitability for Drinking purpose. Nine ground water samples were collected from different places of Inkollu mandal of Prakasam district. The quality analysis has been made through the pH, EC, TDS, Total Hardness, Sodium, Potassium, Calcium, Magnesium, Chloride, Sulphate, Nitrate, Fluoride and Iron. By observing the results, it was shown that the parameters from the water samples were compared with WHO (World Health Organization and BIS (Bureau of Indian Standards, USPH (United state Public health for ground water .The results revealed that some parameters were in high concentration and quality of the potable water has deteriorated to a large extent at some sampling locations.

  3. Canada's groundwater resources

    National Research Council Canada - National Science Library

    Rivera, Alfonso

    2014-01-01

    Groundwater is essential for life in arid and semiarid region. It is also important in humid regions, and is one of the fundamental requirements for the maintenance of natural landscapes and aquatic ecosystem...

  4. Groundwater Capture Zones

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Source water protection areas are delineated for each groundwater-based public water supply system using available geologic and hydrogeologic information to...

  5. High-fluoride groundwater.

    Science.gov (United States)

    Rao, N Subba

    2011-05-01

    Fluoride (F(-)) is essential for normal bone growth, but its higher concentration in the drinking water poses great health problems and fluorosis is common in many parts of India. The present paper deals with the aim of establishment of facts of the chemical characteristics responsible for the higher concentration of F(-) in the groundwater, after understanding the chemical behavior of F(-) in relation to pH, total alkalinity (TA), total hardness (TH), carbonate hardness (CH), non-carbonate hardness (NCH), and excess alkalinity (EA) in the groundwater observed from the known areas of endemic fluorosis zones of Andhra Pradesh that have abundant sources of F(-)-bearing minerals of the Precambrians. The chemical data of the groundwater shows that the pH increases with increase F(-); the concentration of TH is more than the concentration of TA at low F(-) groundwater, the resulting water is represented by NCH; the TH has less concentration compared to TA at high F(-) groundwater, causing the water that is characterized by EA; and the water of both low and high concentrations of F(-) has CH. As a result, the F(-) has a positive relation with pH and TA, and a negative relation with TH. The operating mechanism derived from these observations is that the F(-) is released from the source into the groundwater by geochemical reactions and that the groundwater in its flowpath is subjected to evapotranspiration due to the influence of dry climate, which accelerates a precipitation of CaCO(3) and a reduction of TH, and thereby a dissolution of F(-). Furthermore, the EA in the water activates the alkalinity in the areas of alkaline soils, leading to enrichment of F(-). Therefore, the alkaline condition, with high pH and EA, and low TH, is a more conducive environment for the higher concentration of F(-) in the groundwater.

  6. INTEC Groundwater Monitoring Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    J. R. Forbes

    2007-02-01

    This report summarizes 2006 perched water and groundwater monitoring activities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Laboratory (INL). During 2006, groundwater samples were collected from a total of 22 Snake River Plain Aquifer (SRPA) monitoring wells, plus six aquifer wells sampled for the Idaho CERCLA Disposal Facility (ICDF) monitoring program. In addition, perched water samples were collected from 21 perched wells and 19 suction lysimeters. Groundwater and perched water samples were analyzed for a suite of radionuclides and inorganic constituents. Laboratory results in this report are compared to drinking water maximum contaminant levels (MCLs). Such comparison is for reference only and it should be noted that the Operable Unit 3-13 Record of Decision does not require that perched water comply with drinking water standards.

  7. January 2015 Groundwater Sampling at the Gnome-Coach, New Mexico, Site

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, Rick [Navarro Research and Engineering, Oak Ridge, TN (United States); Kautsky, Mark [US Department of Energy, Washington, DC (United States). Office of Legacy Management

    2015-12-01

    Annual sampling was conducted January 27, 2015, to monitor groundwater for potential radionuclide contamination at the Gnome-Coach site in New Mexico. Samples were collected from wells USGS-1, USGS-4, and USGS-8 during this monitoring event. The sampling was performed as specified in the Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from well USGS-8 and water levels were measured in all the monitoring wells onsite. Refer to the sample location map for well locations. Samples were analyzed by GEL Laboratories in Charleston, South Carolina. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, strontium-90, and tritium. The sample from well USGS-1 was analyzed for tritium using the enrichment method to achieve a lower minimum detectable concentration (MDC). Radionuclide contaminants were detected in wells USGS-4 and USGS-8. The detection of radionuclides in these wells was expected because the U.S. Geological Survey conducted a tracer test between these wells in 1963 using the dissolved radionuclides tritium, strontium-90, and cesium-137 as tracers. Radionuclide time-concentration graphs are included in this report for these wells. Analytical data obtained from this and past sampling events are also available in electronic format on the U.S. Department of Energy Office of Legacy Management Geospatial Environmental Mapping System website at http://gems.lm.doe.gov/#site=GNO.

  8. Limits to global groundwater consumption

    Science.gov (United States)

    de Graaf, I.; Van Beek, L. P.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2016-12-01

    Groundwater is the largest accessible freshwater resource worldwide and is of critical importance for irrigation, and so for global food security. For many regions of the world where groundwater abstraction exceeds groundwater recharge, persistent groundwater depletion occurs. A direct consequence of depletion is falling groundwater levels, reducing baseflows to rivers, harming ecosystems. Also, pumping costs increase, wells dry up and land subsidence can occur. Water demands are expected to increase further due to growing population, economic development and climate change, posing the urgent question how sustainable current water abstractions are worldwide and where and when these abstractions approach conceivable limits with all the associated problems. Here, we estimated past and future trends (1960-2050) in groundwater levels resulting from changes in abstractions and climate and predicted when limits of groundwater consumption are reached. We explored these limits by predicting where and when groundwater levels drop that low that groundwater becomes unattainable for abstractions and how river flows are affected. Water availabilities, abstractions, and lateral groundwater flows are simulated (5 arcmin. resolution) using a coupled version of the global hydrological model PCR-GLOBWB and a groundwater model based on MODFLOW. The groundwater model includes a parameterization of the worlds confined and unconfined aquifer systems, needed for a realistic simulation of groundwater head dynamics. Results show that, next to the existing regions experiencing groundwater depletion (like India, Pakistan, Central Valley) new regions will develop, e.g. Southern Europe, the Middle East, and Africa. Using a limit that reflects present-day feasibility of groundwater abstraction, we estimate that in 2050 groundwater becomes unattainable for 20% of the global population, mainly in the developing countries and pumping cost will increase significantly. Largest impacts are found

  9. High Resolution Hydraulic Profiling and Groundwater Sampling using FLUTe™ System in a Fractured Limestone Setting

    DEFF Research Database (Denmark)

    Janniche, Gry Sander; Christensen, Anders G.; Grosen, Bernt;

    innovative investi-gation methods for characterization of the source zone hydrogeology and contamination, including FLUTe system hydraulic profiling and Water-FLUTe multilevel groundwater sampling, in fractured bryo-zoan limestone bedrock. High resolution hydraulic profiling was conducted in three cored......Characterization of the contaminant source zone architecture and the hydraulics is essential to develop accurate site specific conceptual models, delineate and quantify contaminant mass, perform risk as-sessment, and select and design remediation alternatives. This characterization is particularly...... challeng-ing in deposit types as fractured limestone. The activities of a bulk distribution facility for perchloroe-thene (PCE) and trichloroethene (TCE) at the Naverland site near Copenhagen, Denmark, has resulted in PCE and TCE DNAPL impacts to a fractured clay till and an underlying fractured limestone...

  10. Data validation report for the 100-FR-3 Operable Unit, third round groundwater samples

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, J.M.

    1994-03-31

    Westinghouse-Hanford has requested that a minimum of 20% of the total number of Sample Delivery Groups be validated for the 100-FR-3 operable Unit Third Round Groundwater sampling investigation. Therefore, the data from the chemical analysis of 51 samples from this sampling event and their related quality assurance samples were reviewed and validated to verify that reported sample results were of sufficient quality to support decisions regarding remedial actions performed at this site. The report is broken down into sections for each chemical analysis and radiochemical analysis type. Each section addresses the data package completeness, holding time adherence, instrument calibration and tuning acceptability, blank results, accuracy, precision, system performance, as well as the compound identification and quantitation. In addition, each section has an overall assessment and summary for the data packages reviewed for the particular chemical/radiochemical analyses. Detailed backup information is provided to the reader by SDG No. and sample number. For each data package, a matrix of chemical analyses per sample number is presented, as well as data qualification summaries.

  11. Data Validation Package - July 2016 Groundwater Sampling at the Gunnison, Colorado, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Campbell, Sam [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-10-25

    Groundwater sampling at the Gunnison, Colorado, Disposal Site is conducted every 5 years to monitor disposal cell performance. During this event, samples were collected from eight monitoring wells as specified in the 1997 Long-Term Surveillance Plan for the Gunnison, Colorado, Disposal Site. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0723. Water levels were measured at all monitoring wells that were sampled and seven additional wells. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that require additional action or follow-up.

  12. Dynamic groundwater monitoring networks: a manageable method for reviewing sampling frequency.

    Science.gov (United States)

    Moreau-Fournier, Magali F; Daughney, Christopher J

    2012-12-01

    Optimization of a water quality network through a change in sampling frequency is the only way to increase cost-efficiency without any reduction in the robustness of the data. Existing techniques define optimal sampling frequency based on analysis of historical data from the monitoring network under investigation. Their application to a large network comprised of many sites and many monitored parameters is both technical and challenging. This paper presents a simple non-parametric method for reviewing sampling frequency that is consistent with highly censored environmental data and oriented towards reduction of sampling frequency as a cost-saving measure. Based on simple descriptive statistics, the method is applicable to large networks with long time series and many monitored parameters. The method also provides metrics for interpretation of newly collected data, which enables identification of sites for which a future change in sampling frequency may be necessary, ensuring that the monitoring network is both current and adaptive. Application of this method to the New Zealand National Groundwater Monitoring Programme indicates that reduction of sampling frequency at any site would result in a significant loss of information. This paper also discusses the potential for reducing analysis frequency as an alternative to reduction of sampling frequency.

  13. Limits to Global Groundwater Consumption

    Science.gov (United States)

    Graaf, I. D.; Van Beek, R.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2015-12-01

    In regions with frequent water stress and large aquifer systems, groundwater is often used as an additional fresh water source. For many regions of the world groundwater abstraction exceeds groundwater recharge and persistent groundwater depletion occurs. The most direct effect of groundwater depletion is declining of water tables, leading to reduced groundwater discharge needed to sustain base-flow to e.g. rivers. Next to that, pumping costs increase, wells dry up and land subsidence occurs. These problems are expected to increase in the near future due to growing population and climate changes. This poses the urgent question of what the limits are of groundwater consumption worldwide. We simulate global water availability (5 arc-minute resolution, for 1960-2050) using the hydrological model PCR-GLOBWB (van Beek et al. 2011), coupled to a groundwater model based on MODFLOW (de Graaf et al. 2015), allowing for groundwater - surface water interactions. The groundwater model includes a parameterization of world's confined and unconfined aquifer systems needed for a realistic simulation of groundwater head dynamics. Water demands are included (from Wada et al. 2014). We study the limits to water consumption, focusing on locally attainable groundwater and groundwater levels critical to rivers to sustain low flows. We show an increasing trend (1960-2050) in groundwater head declines, due to increase in groundwater demand. Also, stream flow will decrease and low flow conditions will occur more frequent and will be longer in duration in the near future, especially for irrigated areas. Next to that, we provide a global overview of the years it takes until groundwater gets unattainable for e.g. a local farmer (100 m below land-surface used as a proxy), and estimate the increase in pumping cost for the near future. The results show where and when limits of groundwater consumption are reached globally.

  14. Chemical variability of groundwater samples collected from a coal seam gas exploration well, Maramarua, New Zealand.

    Science.gov (United States)

    Taulis, Mauricio; Milke, Mark

    2013-03-01

    A pilot study has produced 31 groundwater samples from a coal seam gas (CSG) exploration well located in Maramarua, New Zealand. This paper describes sources of CSG water chemistry variations, and makes sampling and analytical recommendations to minimize these variations. The hydrochemical character of these samples is studied using factor analysis, geochemical modelling, and a sparging experiment. Factor analysis unveils carbon dioxide (CO(2)) degassing as the principal cause of sample variation (about 33%). Geochemical modelling corroborates these results and identifies minor precipitation of carbonate minerals with degassing. The sparging experiment confirms the effect of CO(2) degassing by showing a steady rise in pH while maintaining constant alkalinity. Factor analysis correlates variations in the major ion composition (about 17%) to changes in the pumping regime and to aquifer chemistry variations due to cation exchange reactions with argillaceous minerals. An effective CSG water sampling program can be put into practice by measuring pH at the wellhead and alkalinity at the laboratory; these data can later be used to calculate the carbonate speciation at the time the sample was collected. In addition, TDS variations can be reduced considerably if a correct drying temperature of 180 °C is consistently implemented.

  15. Alpine Groundwater - Pristine Aquifers Under Threat?

    Science.gov (United States)

    Schneider, P.; Lange, A.

    2014-12-01

    Glacier and permafrost retreat are prominent climate change indicators. However, the characteristics of climate and hydrology in mountain areas remain poorly understood relative to lowland areas. Specifically, not much is known about alpine groundwater, its recharge and water quality variations, as these remote reservoirs are rarely monitored. As global temperatures rise, glaciers and permafrost will continue to retreat forming new sediment deposits and changing infiltration conditions in high alpine terrain. Climate change impacts the hydro-chemical composition of alpine waters, accelerates weathering processes, and potentially triggers mobilization of pollutants. Accordingly, we monitored groundwater quantity and quality parameters of an alpine porous aquifer near the Tiefenbach glacier in the Gotthard Massif in Switzerland. The goal of this research was to assess quality and seasonal storage dynamics of groundwater above the timberline (2000 m). To translate hydrological science into an ecosystem service context, we focused on four attributes: Water quantity: observations of groundwater level fluctuations combined with analysis of contributing water sources based on stable isotope analysis to give a quantitative understanding of origin and amount of water, Water quality: groundwater level, groundwater temperature and electrical conductivity were used as proxies for sampling of hydro-chemical parameters with automated water samplers during primary groundwater recharge periods (snowmelt and rainfall events), Location: Alpine terrain above the timberline, especially recharge into/out of an alpine porous aquifer at a pro-glacial floodplain and Date of annual melt (albedo effect) and timing of flow (snow- and icemelt from May to September) and groundwater recharge during the growing season. The study found that the summer groundwater temperatures depend on the date of annual melt and are more sensitive to climate forcing than lowland groundwater temperatures

  16. DS796 California Groundwater Units

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The California Groundwater Units dataset classifies and delineates the State into one of three groundwater based polygon units: (1) those areas defined as alluvial...

  17. ARSENIC CONTAMINATION IN GROUNDWATER: A STATISTICAL MODELING

    Directory of Open Access Journals (Sweden)

    Palas Roy

    2013-01-01

    Full Text Available High arsenic in natural groundwater in most of the tubewells of the Purbasthali- Block II area of Burdwan district (W.B, India has recently been focused as a serious environmental concern. This paper is intending to illustrate the statistical modeling of the arsenic contaminated groundwater to identify the interrelation of that arsenic contain with other participating groundwater parameters so that the arsenic contamination level can easily be predicted by analyzing only such parameters. Multivariate data analysis was done with the collected groundwater samples from the 132 tubewells of this contaminated region shows that three variable parameters are significantly related with the arsenic. Based on these relationships, a multiple linear regression model has been developed that estimated the arsenic contamination by measuring such three predictor parameters of the groundwater variables in the contaminated aquifer. This model could also be a suggestive tool while designing the arsenic removal scheme for any affected groundwater.

  18. Geochemical Investigations of Groundwater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2006-05-15

    local palaeohydrogeological conditions. It is likely that inland areas have had longer durations of post-glacial fresh water infiltration than coastal areas, possibly causing greater degrees of dilution and dispersion of preexisting groundwaters and thus overprinting their hydrochemical and isotopic 'fingerprints'. Lower post-glacial hydraulic gradients relative to inland sites may account for the occurrence of more relict cold-climate water at coastal sites. Some general observations are based on rather thin evidence and therefore speculative. Firstly, it seems that glacial melt water penetrated many hundreds of metres and in some places to at least 1,000 m depth. However the low remaining proportions of melt water and of much older saline Shield water suggest that melt water flux did not fully displace pre-existing groundwaters at these depths. Secondly, where there has been post-glacial infiltration of palaeo-Baltic sea water, the density stratification or compartmentalisation effect coupled with low hydraulic gradient has reduced rates of subsequent fresh water circulation after shoreline recession. There are many uncertainties in interpreting these geochemical indicators in terms of the penetration depths of glacial melt waters and the degree to which they replace preexisting groundwaters, of other aspects of groundwater stability, and of comparisons between inland and coastal groundwater systems. Uncertainties derive partly from the reliability of groundwater samples as being representative of in situ conditions, and partly from the non-uniqueness of interpretative models. Future investigations using these approaches need to improve sampling, to make conjunctive use of geochemical and isotopic indicators which have varying timescales and sensitivities, and to integrate these indicators with palaeohydrogeological modelling to support the development of reliable groundwater flow and solute transport models for Performance Assessment.

  19. Data Validation Package, December 2015, Groundwater and Surface Water Sampling at the Monument Valley, Arizona, Processing Site March 2016

    Energy Technology Data Exchange (ETDEWEB)

    Tyrrell, Evan [Navarro Research and Engineering, Inc., Oak Ridge, NV (United States); Denny, Angelita [USDOE Office of Legacy Management, Washington, DC (United States)

    2016-03-23

    Fifty-two groundwater samples and one surface water sample were collected at the Monument Valley, Arizona, Processing Site to monitor groundwater contaminants for evaluating the effectiveness of the proposed compliance strategy as specified in the 1999 Final Site Observational Work Plan for the UMTRA Project Site at Monument Valley, Arizona. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department- energy-office-legacy-management-sites). Samples were collected for metals, anions, nitrate + nitrite as N, and ammonia as N analyses at all locations.

  20. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  1. Groundwater: A Community Action Guide.

    Science.gov (United States)

    Boyd, Susan, Ed.; And Others

    Designed to be a guide for community action, this booklet examines issues and trends related to groundwater contamination. Basic concepts about groundwater and information about problems affecting it are covered under the categories of (1) what is groundwater? (2) availability and depletion; (3) quality and contamination; (4) public health…

  2. Groundwater: A Community Action Guide.

    Science.gov (United States)

    Boyd, Susan, Ed.; And Others

    Designed to be a guide for community action, this booklet examines issues and trends related to groundwater contamination. Basic concepts about groundwater and information about problems affecting it are covered under the categories of (1) what is groundwater? (2) availability and depletion; (3) quality and contamination; (4) public health…

  3. Data Validation Package May 2015, Groundwater Sampling at the Shoal, Nevada, Site

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, Rick [Navarro Research and Engineering, Oak Ridge, TN (United States); Kautsky, Mark [US Department of Energy, Washington, DC (United States). Office of Legacy Management

    2016-03-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Shoal, Nevada, Site (Shoal) in May 2015. Groundwater samples were collected from wells MV-1, MV-2, MV-3, MV-4, MV-5, H-3, HC-1, HC-2d, HC-3, HC-4, HC-5, HC-6, HC-7, HC-8, and HS-1. Sampling was conducted as specified in the Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department-energy­ office-legacy-management-sites). Monitoring wells MV-1, MV-2, MV-3, MV-4, MV-5, HC-2d, HC-4, HC-5, HC-7, HC-8, and HS-1 were purged prior to sampling using dedicated submersible pumps. At least one well casing volume was removed, and field parameters (temperature, pH, and specific conductance) were allowed to stabilize before samples were collected. Samples were collected from wells H-3, HC-1, HC-3, and HC-6 using a depth-specific bailer because these wells are not completed with dedicated submersible pumps. Samples were submitted under Requisition Index Number (RIN) 15057042 to ALS Laboratory Group in Fort Collins, Colorado, for the determination of bromide, gross alpha, gross beta, tritium, uranium isotopes, and total uranium (by mass); and under RIN 15057043 to the University of Arizona for the determination of carbon-14 and iodine-129. A duplicate sample from location MV-2 was included with RIN 15057042. The laboratory results from the 2015 sampling event are consistent with those of previous years with the exception of sample results from well HC-4. This well continues to be the only well with tritium concentrations above the laboratory’s minimum detectable concentration which is attributed to the wells proximity to the nuclear detonation. The tritium concentration (731 picocuries per liter [pCi/L]) is consistent with past results and is below the U.S. Environmental Protection Agency's (EPA) maximum contaminant level (MCL) of 20,000 p

  4. Sampling and characterisation of groundwater colloids in ONKALO at Olkiluoto, Finland, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Takala, M.; Ojala, S.; Jarvinen, E.; Manninen, P. [Ramboll Finland Oy, Espoo (Finland)

    2012-11-15

    The purpose of this study was to estimate the concentration of colloids and composition of the colloid phase on the basis of the water chemistry results of filtered and unfiltered water samples and to compare the results with the previous ones. The water samples were collected from groundwater stations ONK-PVA1 and ONK-PVA3 in October 2011. The colloid concentrations were determined from scanning electron microscopy (SEM) micrographs taken from the filters. The change in the water chemistry due to filtration was also analysed. The decrease of element concentrations due to filtration would possibly reflect the composition of the colloid phase. Because the concentration of the colloids is very low, two parallel water samples were analysed five times with an Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) analyser so that the chemical differences between the filtered and unfiltered water could be evaluated. The colloid concentration in ONK-PVA1, determined by the single particle analysis of SEM micrographs, was 6 {mu}g/l while the colloid concentration in ONK-PVA3 was 7 {mu}g/l. The colloid phase composition could not be reliably determined due to the low colloid concentration. (orig.)

  5. Data Validation Package December 2015 Groundwater Sampling at the Ambrosia Lake, New Mexico, Disposal Site March 2016

    Energy Technology Data Exchange (ETDEWEB)

    Tsosie, Bernadette [USDOE Office of Legacy Management, Washington, DC (United States); Johnson, Dick [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-03-01

    The Long-Term Surveillance Plan for the Ambrosia Lake, New Mexico, Disposal Site does not require groundwater monitoring because groundwater in the uppermost aquifer is of limited use, and supplemental standards have been applied to the aquifer. However, at the request of the New Mexico Environment Department, the U.S. Department of Energy conducts annual monitoring at three locations: monitoring wells 0409, 0675, and 0678. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Monitoring Well 0409 was not sampled during this event because it was dry. Water levels were measured at each sampled well. One duplicate sample was collected from location 0675. Groundwater samples from the two sampled wells were analyzed for the constituents listed in Table 1. Time-concentration graphs for selected analytes are included in this report. At well 0675, the duplicate results for total dissolved solids and for most metals (magnesium, molybdenum, potassium, selenium, sodium, and uranium) were outside acceptance criteria, which may indicate non-homogeneous conditions at this location. November 2014 results for molybdenum and uranium at well 0675 also were outside acceptance criteria. The well condition will be evaluated prior to the next sampling event.

  6. Handbook: Collecting Groundwater Samples from Monitoring Wells in Frenchman Flat, CAU 98

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jenny [Desert Research Inst. (DRI), Reno, NV (United States); Lyles, Brad [Desert Research Inst. (DRI), Reno, NV (United States); Cooper, Clay [Desert Research Inst. (DRI), Reno, NV (United States); Hershey, Ron [Desert Research Inst. (DRI), Reno, NV (United States); Healey, John [Desert Research Inst. (DRI), Reno, NV (United States)

    2015-06-01

    Frenchman Flat basin on the Nevada National Security Site (NNSS) contains Corrective Action Unit (CAU) 98, which is comprised of ten underground nuclear test locations. Environmental management of these test locations is part of the Underground Test Area (UGTA) Activity conducted by the U.S. Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended) with the U.S. Department of Defense (DOD) and the State of Nevada. A Corrective Action Decision Document (CADD)/Corrective Action Plan (CAP) has been approved for CAU 98 (DOE, 2011). The CADD/CAP reports on the Corrective Action Investigation that was conducted for the CAU, which included characterization and modeling. It also presents the recommended corrective actions to address the objective of protecting human health and the environment. The recommended corrective action alternative is “Closure in Place with Modeling, Monitoring, and Institutional Controls.” The role of monitoring is to verify that Contaminants of Concern (COCs) have not exceeded the Safe Drinking Water Act (SDWA) limits (Code of Federal Regulations, 2014) at the regulatory boundary, to ensure that institutional controls are adequate, and to monitor for changed conditions that could affect the closure conditions. The long-term closure monitoring program will be planned and implemented as part of the Closure Report stage after activities specified in the CADD/CAP are complete. Groundwater at the NNSS has been monitored for decades through a variety of programs. Current activities were recently consolidated in an NNSS Integrated Sampling Plan (DOE, 2014). Although monitoring directed by the plan is not intended to meet the FFACO long-term monitoring requirements for a CAU (which will be defined in the Closure Report), the objective to ensure public health protection is similar. It is expected that data collected in accordance with the plan will support the transition to long-term monitoring at each

  7. Data Validation Package, July 2016 Groundwater Sampling at the Shirley Basin South, Wyoming, Disposal Site November 2016

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, William [USDOE Office of Legacy Management, Washington, DC (United States); Price, Jeffrey [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-11-01

    Sampling Period: July 14-15, 2016 The 2004 Long-Term Surveillance Plan for the Shirley Basin South (UMTRCA Title II) Disposal Site, Carbon County, Wyoming, requires annual monitoring to verify continued compliance with the pertinent alternate concentration limits (ACLs) and Wyoming Class III (livestock use) groundwater protection standards. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Point-of-compliance (POC) wells 19-DC, 5-DC, and 5-SC, and monitoring wells 10-DC, 110-DC, 112-DC, 113-DC, 40-SC, 54-SC, 100-SC, 102-SC, and K.G.S.#3 were sampled. POC well 51-SC and downgradient well 101-SC were dry at the time of sampling. The water level was measured at each sampled well. See Attachment 2, Trip Report for additional details. Sampling and analyses were conducted in accordance with the Sampling and Analysis Plan for the U S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). ACLs are approved for cadmium, chromium, lead, nickel, radium-226, radium-228, selenium, thorium-230, and uranium in site groundwater. Time-concentration graphs of the contaminants of concern in POC wells are included in Attachment 3, Data Presentation. The only ACL exceedance in a POC well was radium-228 in well 5-DC where the concentration was 30.7 picocuries per liter (pCi/L), exceeding the ACL of 25.7 pCi/L. Concentrations of sulfate and total dissolved solids continue to exceed their respective Wyoming Class III groundwater protection standards for livestock use in wells 5-DC, 5-SC, and 54-SC as they have done throughout the sampling history; however, there is no livestock use of the water from these aquifers at the site, and no constituent concentrations exceed groundwater protection standards at the wells near the site boundary.

  8. PATHS groundwater hydrologic model

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  9. GROUNDWATER RECHARGE AND CHEMICAL ...

    Science.gov (United States)

    The existing knowledge base regarding the presence and significance of chemicals foreign to the subsurface environment is large and growing -the papers in this volume serving as recent testament. But complex questions with few answers surround the unknowns regarding the potential for environmental or human health effects from trace levels of xenobiotics in groundwater, especially groundwater augmented with treated wastewater. Public acceptance for direct or indirect groundwater recharge using treated municipal wastewater ( especially sewage) spans the spectrum from unquestioned embrace to outright rejection. In this article, I detour around the issues most commonly discussed for groundwater recharge and instead focus on some of the less-recognized issues- those that emanate from the mysteries created at the many literal and virtual interfaces involved with the subsurface world. My major objective is to catalyze discussion that advances our understanding of the barriers to public acceptance of wastewater reuse -with its ultimate culmination in direct reuse for drinking. I pose what could be a key question as to whether much of the public's frustration or ambivalence in its decision making process for accepting or rejecting water reuse (for various purposes including personal use) emanates from fundamental inaccuracies, misrepresentation, or oversimplification of what water 'is' and how it functions in the environment -just what exactly is the 'water cyc

  10. Regulating groundwater use

    NARCIS (Netherlands)

    Hoogesteger van Dijk, Jaime; Wester, Flip

    2017-01-01

    Around the world it has proven very difficult to develop policies and interventions that ensure socio-environmentally sustainable groundwater use and exploitation. In the state of Guanajuato, Central Mexico, both the national government and the decentralized state government have pursued to regulate

  11. California GAMA Special Study. Development of a Capability for the Analysis of Krypton-85 in Groundwater Samples

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Ate [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bibby, Richard K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moran, Jean E. [California State Univ. (CalState), Long Beach, CA (United States); Singleton, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-01

    A capability for the analysis of krypton-85 (85Kr) in groundwater samples was developed at LLNL. Samples are collected by extracting gas from 2000-4000 L of groundwater at the well, yielding approximately 0.2 cm3 STP krypton. Sample collection takes 1 to 4 hours. Krypton is purified in the laboratory using a combination of molecular sieve and activated charcoal traps, and transferred to a liquid scintillation vial. The 85Kr activity is measured by liquid scintillation on a Quantulus 1220 liquid scintillation counter from PerkinElmer. The detection limit for a typical 0.2 cm3Kr sample size is 11% of the present day activity in air, corresponding to the decay corrected activity in air in 1987. The typical measurement uncertainty is below 10% for recently recharged samples. Six groundwater samples were collected, purified and counted. 85Kr was not detected in any of the samples counted at LLNL. 85Kr was detected by the low level counting laboratory of Bern University in all samples between 1.5 and 6.6 decays per minute per cm3 krypton, corresponding to decay corrected activities in air between 1971 and 1985. The new capability is an excellent complement to tritium-helium, expanding the existing suite of age dating tools available to the GAMA program (35S, 3H/3He, 14C and radiogenic helium). 85Kr can replace 3H/3He in settings where 3H/3He ages are impossible to determine (for example where terrigenic helium overwhelms tritiogenic helium) and provides additional insight into travel time distributions in complex mixed groundwater systems.

  12. Data Validation Package February 2016 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site April 2016

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Richard [USDOE Office of Legacy Management, Washington, DC (United States); Lemke, Peter [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-04-01

    The groundwater compliance strategy for the Tuba City, Arizona, Disposal Site is defined in the 1999 Phase I Ground Water Compliance Action Plan for the Tuba City, Arizona, UMTRA Site. Samples are collected and analyzed on a semiannual basis to evaluate the performance of the Phase I remediation system. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). U.S. Environmental Protection Agency (EPA) groundwater standards were exceeded in samples collected from monitoring wells as listed in Table 1. The data from this sampling event are generally consistent with previously obtained values and are acceptable for general use as qualified. Data anomalies are not significant with respect to the known nature and extent of contamination and progress of remedial action at the site. The data from this sampling event will be incorporated into the annual performance evaluation report that will present a comprehensive hydrologic summary and evaluation of groundwater remedial action performance at the Tuba City site through March 2016.

  13. Data Validation Package August 2015 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2015

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Richard [USDOE Office of Legacy Management, Washington, DC (United States); Lemke, Peter [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2015-11-01

    The groundwater compliance strategy for the Tuba City, Arizona, Disposal Site is defined in the 1999 Phase I Ground Water Compliance Action Plan for the Tuba City, Arizona, UMTRA Site. Samples are collected and analyzed on a semiannual basis to evaluate the performance of the Phase I remediation system. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). U.S. Environmental Protection Agency (EPA) groundwater standards were exceeded in samples collected from monitoring wells and extraction wells as listed in Table 1. The data from this sampling event are generally consistent with previously obtained values and are acceptable for general use as qualified. Data anomalies are not significant with respect to the known nature and extent of contamination and progress of remedial action at the site. The data from this sampling event will be incorporated into the annual performance evaluation report that will present a comprehensive hydrologic summary and evaluation of groundwater remedial action performance at the Tuba City site through March 2016.

  14. The Influence of Pumping on Observed Bacterial Counts in Groundwater Samples: Implications for Sampling Protocol and Water Quality Interpretation

    Science.gov (United States)

    Kozuskanich, J.; Novakowski, K.; Anderson, B.

    2008-12-01

    Drinking water quality has become an important issue in Ontario following the events in Walkerton in 2000. Many rural communities are reliant on private groundwater wells for drinking water, and it is the responsibility of the owner to have the water tested to make sure it is safe for human consumption. Homeowners can usually take a sample to the local health unit for total coliform and E. Coli analysis at no charge to determine if the water supply is being tainted by surface water or fecal matter, both of which could indicate the potential for negative impacts on human health. However, is the sample coming out of the tap representative of what is going on the aquifer? The goal of this study is to observe how bacterial counts may vary during the course of well pumping, and how those changing results influence the assessment of water quality. Multiple tests were conducted in bedrock monitoring wells to examine the influence of pumping rate and pumped volume on observed counts of total coliform, E. Coli, fecal streptococcus, fecal coliform and heterotrophic plate count. Bacterial samples were collected frequently during the course of continuous purging events lasting up to 8 hours. Typical field parameters (temperature, salinity, pH, dissolved oxygen and ORP) were also continuously monitored during the course of each test. Common practice in groundwater studies is to wait until these parameters have stabilized or three well volumes have been removed prior to sampling, to ensure the sample is taken from new water entering the well from the aquifer, rather than the original water stored in the borehole prior to the test. In general, most bacterial counts were low, but did go above the drinking water standard of 0 counts/100mL (total coliform and E. Coli) at times during the tests. Results show the greatest variability in the observed bacterial counts at the onset of pumping prior to the removal of three well volumes. Samples taken after the removal of three well

  15. Comparison of soil solution sampling techniques to assess metal fluxes from contaminated soil to groundwater.

    Science.gov (United States)

    Coutelot, F; Sappin-Didier, V; Keller, C; Atteia, O

    2014-12-01

    The unsaturated zone plays a major role in elemental fluxes in terrestrial ecosystems. A representative chemical analysis of soil pore water is required for the interpretation of soil chemical phenomena and particularly to assess Trace Elements (TEs) mobility. This requires an optimal sampling system to avoid modification of the extracted soil water chemistry and allow for an accurate estimation of solute fluxes. In this paper, the chemical composition of soil solutions sampled by Rhizon® samplers connected to a standard syringe was compared to two other types of suction probes (Rhizon® + vacuum tube and Rhizon® + diverted flow system). We investigated the effects of different vacuum application procedures on concentrations of spiked elements (Cr, As, Zn) mixed as powder into the first 20 cm of 100-cm columns and non-spiked elements (Ca, Na, Mg) concentrations in two types of columns (SiO2 sand and a mixture of kaolinite + SiO2 sand substrates). Rhizon® was installed at different depths. The metals concentrations showed that (i) in sand, peak concentrations cannot be correctly sampled, thus the flux cannot be estimated, and the errors can easily reach a factor 2; (ii) in sand + clay columns, peak concentrations were larger, indicating that they could be sampled but, due to sorption on clay, it was not possible to compare fluxes at different depths. The different samplers tested were not able to reflect the elemental flux to groundwater and, although the Rhizon® + syringe device was more accurate, the best solution remains to be the use of a lysimeter, whose bottom is kept continuously at a suction close to the one existing in the soil.

  16. Investigation of total and hexavalent chromium in filtered and unfiltered groundwater samples at the Tucson International Airport Superfund Site

    Science.gov (United States)

    Tillman, Fred; McCleskey, R. Blaine; Hermosillo, Edyth

    2016-01-01

    Potential health effects from hexavalent chromium in groundwater have recently become a concern to regulators at the Tucson International Airport Area Superfund site. In 2016, the U.S. Geological Survey sampled 46 wells in the area to characterize the nature and extent of chromium in groundwater, to understand what proportion of total chromium is in the hexavalent state, and to determine if substantial differences are present between filtered and unfiltered chromium concentrations. Results indicate detectable chromium concentrations in all wells, over 75 % of total chromium is in the hexavalent state in a majority of wells, and filtered and unfiltered results differ substantially in only a few high-turbidity total chromium samples.

  17. Sampling Instruction: Investigation of Hexavalent Chromium Flux to Groundwater at the 100-C-7:1 Excavation Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Vermeul, Vincent R.

    2012-05-01

    Several types of data are needed to assess the flux of Cr(VI) from the excavation into the groundwater. As described in this plan, these data include (1) temporal Cr(VI) data in the shallow groundwater beneath the pit; (2) hydrologic data to interpret groundwater flow and contaminant transport; (3) hydraulic gradient data; and (4) as a contingency action if necessary, vertical profiling of Cr(VI) concentrations in the shallow aquifer beyond the depth possible with aquifer tubes.

  18. Data Validation Package October 2016 Groundwater and Surface Water Sampling at the Monticello, Utah, Disposal and Processing Sites January 2017

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Jason [USDOE Office of Legacy Management (LM), Washington, DC (United States); Smith, Fred [Navarro Research and Engineering, Inc., Grand Junction, CO (United States)

    2017-02-01

    Sampling Period: October 10–12, 2016. This semiannual event includes sampling groundwater and surface water at the Monticello Disposal and Processing Sites. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated) and Program Directive MNT-2016-01. Samples were collected from 54 of 64 planned locations (16 of 17 former mill site wells, 15 of 18 downgradient wells, 7 of 9 downgradient permeable reactive barrier wells, 3 of 3 bedrock wells, 4 of 7 seeps and wetlands, and 9 of 10 surface water locations).

  19. Evaluation of the quality of groundwater sampling: Experience derived from radioactive waste disposal programmes in Sweden and Finland during 1980-1992

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, J.A.T. [Conterra AB, Uppsala (Sweden); Laaksoharju, M. [Intera, Solletuna (Sweden); Snellman, M.V. [Posiva Oy, Helsinki (Finland); Ruotsalainen, P.H. [Fintact Oy, (Finland)

    1999-09-01

    Existing Finnish and Swedish hydrogeochemical field data from the 1980s and the early 1990s have been closely examined in the light of other influencing activities, such as geology and hydrology, which form an integral part of site-specific investigations. The report has considered data relating to the monitoring of groundwater chemical trends and groundwater sampling and analysis. These data have been used to simulate the effects of important parameters on groundwater quality and representativeness, to generate recommendations to improve the standard of hydrogeochemical sampling and analyses, and to discuss these results in the broader context of future site-specific investigations. (orig.)

  20. Development and Testing of Active Groundwater Samplers

    DEFF Research Database (Denmark)

    Nilsson, Bertel; Jakobsen, Rasmus; Andersen, Lars Jørgen

    1995-01-01

    Active groundwater sampling techniques are methods where the aquifer is flushed by pumping. The methods developed and tested represent non-dedicated methods for use in existing water wells. This paper describes two different sampling techniques: the Separation Pumping Technique (SP) and the Packer...... on numerical modelling and controlled laboratory experiments. Active groundwater sampling techniques can be used for remedial pumping optimization and in obtaining hydraulic data and represent a fast operational and reliable sampling tool, also under heterogeneous and low permeability conditions....

  1. Groundwater hydrology instructional system

    Science.gov (United States)

    Schmidt, Ronald G.

    Wright State University, Dayton, Ohio, is preparing for its third cycle of the Interactive Remote Instructional System (IRIS) in groundwater hydrology, beginning January 15, 1986. The first cycle finished with an impressive completion ratio for registered participants, and the second cycle has currently been underway since July. This comprehensive hydrogeology program was originally developed for the Soil Conservation Service (of the U.S. Department of Agriculture) to prepare their personnel for professional practice work. Since its evolution into IRIS, an 80% participant completion rate has been recorded for the first cycle, which is a significant departure from success rates traditionally recorded by correspondence courses. This excellent rate of success is the result of 2 years of refinement and demonstrates the progressive nature of the program. IRIS has met the needs of participants by developing a curriculum that reflects current trends in the groundwater industry and has provided a unique educational approach that ensures maximum interaction between the instructional staff and participants.

  2. Groundwater Molybdenum from Emerging Industries in Taiwan.

    Science.gov (United States)

    Tsai, Kuo-Sheng; Chang, Yu-Min; Kao, Jimmy C M; Lin, Kae-Long

    2016-01-01

    This study determined the influence of emerging industries development on molybdenum (Mo) groundwater contamination. A total of 537 groundwater samples were collected for Mo determination, including 295 samples from potentially contaminated areas of 3 industrial parks in Taiwan and 242 samples from non-potentially contaminated areas during 2008-2014. Most of the high Mo samples are located downstream from a thin film transistor-liquid crystal display (TFT-LCD) panel factory. Mean groundwater Mo concentrations from potentially contaminated areas (0.0058 mg/L) were significantly higher (p groundwater and surface water contamination. Nine samples of groundwater exceed the World Health Organization's suggested drinking water guideline of 0.07 mg/L. A non-carcinogenic risk assessment for Mo in adults and children using the Mo concentration of 0.07 mg/L yielded risks of 0.546 and 0.215, respectively. These results indicate the importance of the development of a national drinking water quality standard for Mo in Taiwan to ensure safe groundwater for use. According to the human health risk calculation, the groundwater Mo standard is suggested as 0.07 mg/L. Reduction the discharge of Mo-contaminated wastewater from factories in the industrial parks is also the important task in the future.

  3. Contain contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mutch, R.D. Jr.; Caputi, J.R. [Eckenfelder, Inc., Mahwah, NJ (United States); Ash, R.E. IV [Eckenfelder Inc., Nashville, TN (United States)

    1997-05-01

    Despite recent progress in innovative treatment technologies, many problems with contaminated groundwater still require the use of barrier walls, typically in combination with extraction and treatment systems. New technologies for subsurface barrier walls, mostly based on geomembranes, advancements in self-hardening slurries and permeation grouts with materials such as colloidal silica gel and montan wax emulsions, are being developed at an unprecedented pace. The paper discusses deep soil mixing, jet grouting, slurry trenches, and permeation grouting.

  4. Potential groundwater sampling sites for installation of a well network for long-term monitoring of agricultural chemicals in the High Plains Aquifer, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data are in support of report DS 456 (Arnold and others, 2009). This dataset includes 90 potential groundwater sampling sites randomly generated using...

  5. Ecology and living conditions of groundwater fauna

    Energy Technology Data Exchange (ETDEWEB)

    Thulin, Barbara (Geo Innova AB (Sweden)); Hahn, Hans Juergen (Arbeitsgruppe Grundwasseroekologie, Univ. of Koblenz-Landau (Germany))

    2008-09-15

    This report presents the current state of ecological knowledge and applied research relating to groundwater. A conceptual picture is given of groundwater fauna occurrence in regard to Swedish environmental conditions. Interpretation features for groundwater fauna and applications are outlined. Groundwater is one of the largest and oldest limnic habitats populated by a rich and diverse fauna. Both very old species and species occurring naturally in brackish or salt water can be found in groundwater. Groundwater ecosystems are heterotrophic; the fauna depends on imports from the surface. Most species are meiofauna, 0.3-1 mm. The food chain of groundwater fauna is the same as for relatives in surface water and salt water. Smaller animals graze biofilms and detritus, larger animals act facutatively as predators. A difference is that stygobiotic fauna has become highly adapted to its living space and tolerates very long periods without food. Oxygen is a limiting factor, but groundwater fauna tolerates periods with low oxygen concentrations, even anoxic conditions. For longer periods of time a minimum oxygen requirement of 1 mg/l should be fulfilled. Geographic features such as Quaternary glaciation and very old Pliocene river systems are important for distribution patterns on a large spatial scale, but aquifer characteristics are important on a landscape scale. Area diversity is often comparable to surface water diversity. However, site diversity is low in groundwater. Site specific hydrological exchange on a geological facies level inside the aquifer, e.g. porous, fractured and karstic aquifers as well as the hyporheic zone, controls distribution patterns of groundwater fauna. For a better understanding of controlling factors indicator values are suggested. Different adequate sampling methods are available. They are representative for the aquifer, but a suitable number of monitoring wells is required. The existence of groundwater fauna in Sweden is considered as very

  6. Brackish groundwater in the United States

    Science.gov (United States)

    Stanton, Jennifer S.; Anning, David W.; Brown, Craig J.; Moore, Richard B.; McGuire, Virginia L.; Qi, Sharon L.; Harris, Alta C.; Dennehy, Kevin F.; McMahon, Peter B.; Degnan, James R.; Böhlke, John Karl

    2017-04-05

    in the United States. Previously published digital data relating to brackish groundwater resources were limited to a small number of State- and regional-level studies. Data sources for this assessment ranged from single publications to large datasets and from local studies to national assessments. Geochemical data included concentrations of dissolved solids, major ions, trace elements, nutrients, and radionuclides as well as physical properties of the water (pH, temperature, and specific conductance). Additionally, the database provides selected well information (location, yield, depth, and contributing aquifer) necessary for evaluating the water resource.The assessment was divided into national-, regional-, and aquifer-scale analyses. National-scale analyses included evaluation of the three-dimensional distribution of observed dissolved-solids concentrations in groundwater, the three-dimensional probability of brackish groundwater occurrence, and the geochemical characteristics of saline (greater than or equal to 1,000 mg/L of dissolved solids) groundwater resources. Regional-scale analyses included a summary of the percentage of observed grid cell volume in the region that was occupied by brackish groundwater within the mixture of air, water, and rock for multiple depth intervals. Aquifer-scale analyses focused primarily on four regions that contained the largest amounts of observed brackish groundwater and included a generalized description of hydrogeologic characteristics from previously published work; the distribution of dissolved-solids concentrations; considerations for developing brackish groundwater resources, including a summary of other chemical characteristics that may limit the use of brackish groundwater and the ability of sampled wells producing brackish groundwater to yield useful amounts of water; and the amount of saline groundwater being used in 2010.

  7. Methods to characterize environmental settings of stream and groundwater sampling sites for National Water-Quality Assessment

    Science.gov (United States)

    Nakagaki, Naomi; Hitt, Kerie J.; Price, Curtis V.; Falcone, James A.

    2012-01-01

    Characterization of natural and anthropogenic features that define the environmental settings of sampling sites for streams and groundwater, including drainage basins and groundwater study areas, is an essential component of water-quality and ecological investigations being conducted as part of the U.S. Geological Survey's National Water-Quality Assessment program. Quantitative characterization of environmental settings, combined with physical, chemical, and biological data collected at sampling sites, contributes to understanding the status of, and influences on, water-quality and ecological conditions. To support studies for the National Water-Quality Assessment program, a geographic information system (GIS) was used to develop a standard set of methods to consistently characterize the sites, drainage basins, and groundwater study areas across the nation. This report describes three methods used for characterization-simple overlay, area-weighted areal interpolation, and land-cover-weighted areal interpolation-and their appropriate applications to geographic analyses that have different objectives and data constraints. In addition, this document records the GIS thematic datasets that are used for the Program's national design and data analyses.

  8. Modelling Urban diffuse pollution in groundwater

    Science.gov (United States)

    Jato, Musa; Smith, Martin; Cundy, Andrew

    2017-04-01

    Diffuse urban pollution of surface and ground waters is a growing concern in many cities and towns. Traffic-derived pollutants such as salts, heavy metals and polycyclic aromatic hydrocarbons (PAHs) may wash off road surfaces in soluble or particulate forms which later drain through soils and drainage systems into surface waters and groundwater. In Brighton, about 90% of drinking water supply comes from groundwater (derived from the Brighton Chalk block). In common with many groundwater sources the Chalk aquifer has been relatively extensively monitored and assessed for diffuse rural contaminants such as nitrate, but knowledge on the extent of contamination from road run-off is currently lacking. This project examines the transfer of traffic-derived contaminants from the road surface to the Chalk aquifer, via urban drainage systems. A transect of five boreholes have been sampled on a monthly basis and groundwater samples analysed to examine the concentrations of key, mainly road run-off derived, hydrocarbon and heavy metal contaminants in groundwater across the Brighton area. Trace concentrations of heavy metals and phenols have been observed in groundwater. Electrical conductivity changes in groundwater have also been used to assess local changes in ionic strength which may be associated with road-derived contaminants. This has been supplemented by systematic water and sediment sampling from urban gully pots, with further sampling planned from drainage and settlement ponds adjacent to major roads, to examine initial road to drainage system transport of major contaminants.

  9. Status Report on the Microbial Characterization of Halite and Groundwater Samples from the WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Juliet S. [Los Alamos National Laboratory; Reed, Donald T. [Los Alamos National Laboratory; Ams, David A. [Los Alamos National Laboratory; Norden, Diana [Ohio State University; Simmons, Karen A. [Los Alamos National Laboratory

    2012-07-10

    This report summarizes the progress made in the ongoing task of characterizing the microbial community structures within the WIPP repository and in surrounding groundwaters. Through cultivation and DNA-based identification, the potential activity of these organisms is being inferred, thus leading to a better understanding of their impact on WIPP performance. Members of the three biological domains - Bacteria, Archaea, and Eukarya (in this case, Fungi) - that are associated with WIPP halite have been identified. Thus far, their activity has been limited to aerobic respiration; anaerobic incubations are underway. WIPP halite constitutes the near-field microbial environment. We expect that microbial activity in this setting will proceed from aerobic respiration, through nitrate reduction to focus on sulfate reduction. This is also the current WIPP performance assessment (PA) position. Sulfate reduction can occur at extremely high ionic strengths, and sulfate is available in WIPP brines and in the anhydrite interbeds. The role of methanogenesis in the WIPP remains unclear, due to both energetic constraints imposed by a high-salt environment and substrate selectivity, and it is no longer considered in PA. Archaea identified in WIPP halite thus far fall exclusively within the family Halobacteriaceae. These include Halobacterium noricense, cultivated from both low- and high-salt media, and a Halorubrum-like species. The former has also been detected in other salt mines worldwide; the latter likely constitutes a new species. Little is known of its function, but it was prevalent in experiments investigating the biodegradation of organic complexing agents in WIPP brines. Bacterial signatures associated with WIPP halite include members of the phylum Proteobacteria - Halomonas, Pelomonas, Limnobacter, and Chromohalobacter - but only the latter has been isolated. Also detected and cultivated were Salinicoccus and Nesterenkonia spp. Fungi were also isolated from halite. Although

  10. Impact of oil on groundwater chemical composition

    Science.gov (United States)

    Brakorenko, N. N.

    2015-11-01

    The objective of the paper is to characterize the chemical composition of groundwater samples from the monitoring wells drilled in the petrol station areas within the vicinity of Tomsk. The level of contamination has increased since many macro - and microcomponent concentrations (such as petroleum products, chlorine, sulphates, carbon dioxide and lead, etc.) in groundwater samples of the present study is higher than that in previous period samples.

  11. GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION.

    Energy Technology Data Exchange (ETDEWEB)

    PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.; GOODE,G.A.; LEE,R.J.; KLAUS,K.; HOWE,R.F.; GEIGER,K.

    2002-05-31

    THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.

  12. Groundwater types in Southeast Srem

    Directory of Open Access Journals (Sweden)

    Gregorić Enike

    2009-01-01

    Full Text Available The region of Southeast Srem is rich in ground waters, which is of great significance to agricultural production. The objective of this paper was to designate the zones of different groundwater types from the aspect of recharge, based on the analysis of groundwater regimes in the study area. A very complex groundwater regime in Southeast Srem, which depends on a great number of natural and some anthropogenic factors, makes it difficult to designate clearly the zones of the three main types of groundwater regime. Still, the boundaries of the zones of groundwater regime types were defined based on the results of correlation analysis of the basic factors affecting the groundwater regime. Zone I includes the climatic type of groundwater. Its fluctuation corresponds to the vertical factors of water balance (precipitation and evaporation and it is not affected by the river water level. This zone extends North and East of the line Putinci, Golubinci, Stara Pazova, Batajnica, Dobanovci, mainly in the area of the loess plateau. Within the zone, groundwater is at a relatively great depth. Only exceptionally, in the valleys, it appears almost on the surface. Zone II includes the climatic-hydrological groundwater type, which is the transition between the climatic type and the hydrological type. The fluctuation of groundwater regime is affected both by the effect of vertical balance factors, and by the effect of watercourses. Climatic-hydrological groundwater type covers the central and the lowest part of the study area and the South part of the middle terrace. Zone III is classified as the hydrological groundwater type and it covers the riparian areas along the Sava and the Danube. The aquifer is hydraulically connected with the river Sava.

  13. SPECIFIC SOLUTIONS GROUNDWATER FLOW EQUATION

    OpenAIRE

    Syahruddin, Muhammad Hamzah

    2014-01-01

    Geophysic publication Groundwater flow under surface, its usually slow moving, so that in laminer flow condition can find analisys using the Darcy???s law. The combination between Darcy law and continuity equation can find differential Laplace equation as general equation groundwater flow in sub surface. Based on Differential Laplace Equation is the equation that can be used to describe hydraulic head and velocity flow distribution in porous media as groundwater. In the modeling Laplace e...

  14. Handbook: Collecting Groundwater Samples from Monitoring Wells in Frenchman Flat, CAU 98

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jenny [Desert Research Inst. (DRI), Reno, NV (United States); Lyles, Brad [Desert Research Inst. (DRI), Reno, NV (United States); Cooper, Clay [Desert Research Inst. (DRI), Reno, NV (United States); Hershey, Ron [Desert Research Inst. (DRI), Reno, NV (United States); Healey, John [Desert Research Inst. (DRI), Reno, NV (United States)

    2015-06-01

    Frenchman Flat basin on the Nevada National Security Site (NNSS) contains Corrective Action Unit (CAU) 98, which is comprised of ten underground nuclear test locations. Environmental management of these test locations is part of the Underground Test Area (UGTA) Activity conducted by the U.S. Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended) with the U.S. Department of Defense (DOD) and the State of Nevada. A Corrective Action Decision Document (CADD)/Corrective Action Plan (CAP) has been approved for CAU 98 (DOE, 2011). The CADD/CAP reports on the Corrective Action Investigation that was conducted for the CAU, which included characterization and modeling. It also presents the recommended corrective actions to address the objective of protecting human health and the environment. The recommended corrective action alternative is “Closure in Place with Modeling, Monitoring, and Institutional Controls.” The role of monitoring is to verify that Contaminants of Concern (COCs) have not exceeded the Safe Drinking Water Act (SDWA) limits (Code of Federal Regulations, 2014) at the regulatory boundary, to ensure that institutional controls are adequate, and to monitor for changed conditions that could affect the closure conditions. The long-term closure monitoring program will be planned and implemented as part of the Closure Report stage after activities specified in the CADD/CAP are complete. Groundwater at the NNSS has been monitored for decades through a variety of programs. Current activities were recently consolidated in an NNSS Integrated Sampling Plan (DOE, 2014). Although monitoring directed by the plan is not intended to meet the FFACO long-term monitoring requirements for a CAU (which will be defined in the Closure Report), the objective to ensure public health protection is similar. It is expected that data collected in accordance with the plan will support the transition to long-term monitoring at each

  15. Automated Ground-Water Sampling and Analysis of Hexavalent Chromium using a “Universal” Sampling/Analytical System

    OpenAIRE

    Venedam, Richard J.; Hartman, Mary J.; Hoffman, Dave A.; Scott R. Burge

    2005-01-01

    The capabilities of a “universal platform” for the deployment of analytical sensors in the field for long-term monitoring of environmental contaminants were expanded in this investigation. The platform was previously used to monitor trichloroethene in monitoring wells and at groundwater treatment systems (1,2). The platform was interfaced with chromium (VI) and conductivity analytical systems to monitor shallow wells installed adjacent to the Columbia River at the 100-D Area of the Hanford Si...

  16. The groundwater subsidy to vegetation: groundwater exchanges between landcover patches

    Science.gov (United States)

    Steven, L. I.; Gimenez, R.; Jobbagy, E. G.

    2015-12-01

    The Gran Chaco is a hot, dry plain, that spans over 60 million hectares across Bolivia, Paraguay, Brazil and Argentina. It supports high biodiversity in its dry forest and savannahs, but is rapidly being converted to agriculture in response to growing soy demand and technology including genetic modification and zero-till, that has made cultivation in drier landscapes more viable. Under natural conditions, the deep-rooted, native vegetation of the Chaco effectively captured all rainfall for evapotranspiration resulting in near zero groundwater recharge under the dry forest. Conversion to shallower rooted soy and corn, combined with the fallow period prior to the growing season, reduces evapotranspiration and allows some water to percolate through the root zone and recharge the groundwater system. When this groundwater recharge occurs, it creates groundwater mounding and a hydraulic gradient that drives flow to adjacent landcover patches where recharge does not occur. As the watertable rises, groundwater becomes available to the deep-rooted, dry forest vegetation. We develop a soil and groundwater flow model to simulate infiltration, percolation, evaporation, rootwater uptake, groundwater recharge and the lateral transfer of water between adjacent landcover patches to quantify this groundwater subsidy from converted agricultural lands to remnant patches of dry forest.

  17. Mixed Waste Management Facility Groundwater Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1998-03-01

    During fourth quarter 1997, eleven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  18. Halon-1301, a new Groundwater Age Tracer

    Science.gov (United States)

    Beyer, Monique; van der Raaij, Rob; Morgenstern, Uwe; Jackson, Bethanna

    2015-04-01

    Groundwater dating is an important tool to assess groundwater resources in regards to direction and time scale of groundwater flow and recharge and to assess contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However ambiguous age interpretations are often faced, due to a limited set of available tracers and limitations of each tracer method when applied alone. There is a need for additional, complementary groundwater age tracers. We recently discovered that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate [Beyer et al, 2014]. Halon-1301 can be determined along with SF6, SF5CF3 and CFC-12 in groundwater using a gas chromatography setup with attached electron capture detector developed by Busenberg and Plummer [2008]. Halon-1301 has not been assessed in groundwater. This study assesses the behaviour of Halon-1301 in water and its suitability as a groundwater age tracer. We determined Halon-1301 in 17 groundwater and various modern (river) waters sites located in 3 different groundwater systems in the Wellington Region, New Zealand. These waters have been previously dated with tritium, CFC-12, CFC-11 and SF6 with mean residence times ranging from 0.5 to over 100 years. The waters range from oxic to anoxic and some show evidence of CFC contamination or degradation. This allows us to assess the different properties affecting the suitability of Halon-1301 as groundwater age tracer, such as its conservativeness in water and local contamination potential. The samples are analysed for Halon-1301 and SF6simultaneously, which allows identification of issues commonly faced when using gaseous tracers such as contamination with modern air during sampling. Overall we found in the assessed groundwater samples Halon-1301 is a feasible new groundwater tracer. No sample indicated significantly elevated

  19. Environmental monitoring final report: groundwater chemical analyses

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    This report presents the results of analyses of groundwater qualtiy at the SRC-I Demonstration Plant site in Newman, Kentucky. Samples were obtained from a network of 23 groundwater observation wells installed during previous studies. The groundwater was well within US EPA Interim Primary Drinking Water Standards for trace metals, radioactivity, and pesticides, but exceeded the standard for coliform bacteria. Several US EPA Secondary Drinking Water Standards were exceeded, namely, manganese, color, iron, and total dissolved solids. Based on the results, Dames and Moore recommend that all wells should be sterilized and those wells built in 1980 should be redeveloped. 1 figure, 6 tables.

  20. Solutions Remediate Contaminated Groundwater

    Science.gov (United States)

    2010-01-01

    During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.

  1. Tracer attenuation in groundwater

    Science.gov (United States)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  2. Geochemical evolution of Mexicali Valley groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Makdisi, R.S.; Truesdell, A.H.; Thompson, J.M.; Coplen, T.B.; Sanchez R., J.

    1982-08-10

    Isotopic and chemical compositions of Mexicali Valley groundwaters vary widely. Observed variations reflect different water origins, mineral-water reactions, lateral variations of delta facies as well as evaporation. Regional treatment of the groundwater data shows that northern and central regions are a mixture of old and new Colorado River water. Variations in water chemistry result from different groundwaters origins and the effects of lateral delta facies changes. Dissolution of gypsum and precipitation of carbonates, silicates, and phosphates are suggested. The eastern Mesa de San Luis and southern region water originates primarily from the Gila River catchment area. This water is undersaturated with respect to gypsum and carbonates and is oversaturated with respect to silicates. Most of the western groundwaters are a mixture of Colorado River and geothermal waters in the proximity of the Cerro Prieto geothermal field. Recharge to the geothermal aquifer is from the west as well as the north and east. Calcite is being precipitated out as the groundwater temperatures rise in response to the geothermal anomaly. Other western groundwaters reflect a dominant mixture of Colorado River water and evaporated lake water. Some Western groundwater samples suggest dilution by local rainwater and/or irrigation water.

  3. Data Validation Package - April and July 2015 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [Dept. of Energy (DOE), Washington, DC (United States). Office of Legacy Management; Campbell, Sam [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-02-01

    This event included annual sampling of groundwater and surface water locations at the Gunnison, Colorado, Processing Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. Samples were collected from 28 monitoring wells, three domestic wells, and six surface locations in April at the processing site as specified in the 2010 Ground Water Compliance Action Plan for the Gunnison, Colorado, Processing Site. Domestic wells 0476 and 0477 were sampled in July because the homes were unoccupied in April, and the wells were not in use. Duplicate samples were collected from locations 0113, 0248, and 0477. One equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. No issues were identified during the data validation process that requires additional action or follow-up.

  4. Sustainable groundwater management in California

    Science.gov (United States)

    Phillips, Steven P.; Rogers, Laurel Lynn; Faunt, Claudia

    2015-12-01

    The U.S. Geological Survey (USGS) uses data collection, modeling tools, and scientific analysis to help water managers plan for, and assess, hydrologic issues that can cause “undesirable results” associated with groundwater use. This information helps managers understand trends and investigate and predict effects of different groundwater-management strategies.

  5. Promoting local management in groundwater

    Science.gov (United States)

    van Steenbergen, Frank

    2006-03-01

    There is a strong case for making greater effort to promote local groundwater management—in addition to other measures that regulate groundwater use. Though scattered, there are several examples—from India, Pakistan, Yemen and Egypt—where groundwater users effectively self-imposed restrictions on the use of groundwater. There are a number of recurrent themes in such spontaneously-developed examples of local regulation: the importance of not excluding potential users; the importance of simple, low transaction cost rules; the power of correct and accessible hydrogeological information; the possibility of making more use of demand and supply management strategies; and the important supportive role of local governments. The case is made, using examples, for actively promoting local groundwater management as an important element in balancing groundwater uses. Two programmes for promoting local groundwater management in South India are described—one focussing on participatory hydrological monitoring, and one focussing on micro-resource planning and training. In both cases the response was very positive and the conclusion is that promoting local groundwater regulation is not difficult, costly or sensitive and can reach the necessary scale quickly.

  6. Decadal variations in groundwater quality

    DEFF Research Database (Denmark)

    Jessen, Søren; Postma, Dieke; Thorling, Lærke

    2017-01-01

    Twenty-five years of groundwater quality monitoring in a sandy aquifer beneath agricultural fields showed large temporal and spatial variations in major ion groundwater chemistry, which were linked closely to the nitrate (NO3) content of agricultural recharge. Between 1988 and 2013, the NO3 content...... loading. Agriculture thus is an important determinant of major ion groundwater chemistry. Temporal and spatial variations in the groundwater quality were simulated using a 2D reactive transport model, which combined effects of the historical NO3 leaching and denitrification, with dispersive mixing...... into the pristine groundwater residing deeper in the aquifer. Reactant-to-product ratios across reaction fronts are altered by dispersive mixing and transience in reactant input functions. Modelling therefore allowed a direct comparison of observed and simulated ratios of concentrations of NO3 (reactant...

  7. Groundwater dating for understanding nitrogen in groundwater systems - Time lag, fate, and detailed flow path ways

    Science.gov (United States)

    Morgenstern, Uwe; Hadfield, John; Stenger, Roland

    2014-05-01

    Nitrate contamination of groundwater is a problem world-wide. Nitrate from land use activities can leach out of the root zone of the crop into the deeper part of the unsaturated zone and ultimately contaminate the underlying groundwater resources. Nitrate travels with the groundwater and then discharges into surface water causing eutrophication of surface water bodies. To understand the source, fate, and future nitrogen loads to ground and surface water bodies, detailed knowledge of the groundwater flow dynamics is essential. Groundwater sampled at monitoring wells or discharges may not yet be in equilibrium with current land use intensity due to the time lag between leaching out of the root zone and arrival at the sampling location. Anoxic groundwater zones can act as nitrate sinks through microbial denitrification. However, the effect of denitrification on overall nitrate fluxes depends on the fraction of the groundwater flowing through such zones. We will show results from volcanic aquifers in the central North Island of New Zealand where age tracers clearly indicate that the groundwater discharges into large sensitive lakes like Lake Taupo and Lake Rotorua are not yet fully realising current land use intensity. The majority of the water discharging into these lakes is decades and up to over hundred years old. Therefore, increases in dairy farming over the last decades are not yet reflected in these old water discharges, but over time these increased nitrate inputs will eventually work their way through the large groundwater systems and increasing N loads to the lakes are to be expected. Anoxic zones are present in some of these aquifers, indicating some denitrification potential, however, age tracer results from nested piezo wells show young groundwater in oxic zones indicating active flow in these zones, while anoxic zones tend to have older water indicating poorer hydraulic conductivity in these zones. Consequently, to evaluate the effect of denitrification

  8. Groundwater quality sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of energy and managed by martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling.

  9. Groundwater Quality Sampling and Analysis Plan for Environmental Monitoring Waste Area Grouping 6 at Oak Ridge National Laboratory. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling.

  10. Artificial recharge of groundwater

    Science.gov (United States)

    The Task Committee on Guidelines for Artificial Recharge of Groundwater, of the American Society of Civil Engineers' (ASCE) Irrigation and Drainage Division, sponsored an International Symposium on Artificial Recharge of Groundwater at the Inn-at-the-Park Hotel in Anaheim, Calif., August 23-27, 1988. Cosponsors were the U.S. Geological Survey, California Department of Water Resources, University of California Water Resources Center, Metropolitan Water District of Southern California, with cooperation from the U.S. Bureau of Reclamation, International Association of Hydrological Sciences, American Water Resources Association, U.S. Agency for International Development, World Bank, United Nations Department of Technical Cooperation for Development, and a number of local and state organizations.Because of the worldwide interest in artificial recharge and the need to develop efficient recharge facilities, the Anaheim symposium brought together an interdisciplinary group of engineers and scientists to provide a forum for many professional disciplines to exchange experiences and findings related to various types of artificial recharge; learn from both successful and unsuccessful case histories; promote technology transfer between the various disciplines; provide an education resource for communication with those who are not water scientists, such as planners, lawyers, regulators, and the public in general; and indicate directions by which cities or other entities can save funds by having reasonable technical guidelines for implementation of a recharge project.

  11. Data Validation Package May and June 2015 Groundwater and Surface Water Sampling at the Bluewater, New Mexico, Disposal Site, August 2015

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dick [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States); Tsosie, Bernadette [US Department of Energy, Washington, DC (United States)

    2015-08-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Duplicate samples were collected from locations 14(SG) and 21(M). Sampling originally scheduled for the week of May 11, 2015 was interrupted by heavy rainfall and later completed in June.

  12. Radium isotopes in groundwater around Fuji Volcano, Japan -application for groundwater dating on volcanic area-

    Science.gov (United States)

    Ohta, T.; Mahara, Y.

    2010-12-01

    Young groundwater dating less than 100 years is possible to be obtained from environmental radioactivity with short half life, 3H+3He, 85Kr, or chemical material, CFC-12. The 3H+3He dating method is excellent method to estimate the residence time of shallow groundwater. The one of advantage of the method is small sample volume. The 3He in groundwater is originated by 3 sources, tritiogenic He, mantle He, radiogenic He produced in rock. Especially, as the contribution of the mantle He is greater than the radiogenic and triogenic, when 3H+3He dating apply for groundwater dating on volcanic area, we have to determine ratio of 3 sources. On the other hand, as 85Kr is only originated from atmosphere, it is excellent groundwater dating tracer on volcanic area. However, as 85Kr is ultra low concentration in groundwater, 85Kr is needed to separate from large amount of ground water about 10^5 L. Young groundwater dating by these methods has both advantages and disadvantages, but the disadvantages of the individual methods can be offset by using multiple tracers. Development of a lot of groundwater dating techniques is desired. Therefore, an application of radium isotopes which is simple origin to groundwater dating on volcanic area was tried. Ra-228 and Ra-226 are progenies of Th and U, respectively. The 228Ra/226Ra in ground waters depends on the Th/U in the relevant rocks. As the 228Ra and 226Ra in shallow groundwater on volcanic area are originated from only rock, and the collection of radium isotopes from groundwater is easier than that of 85Kr, implying that it is possible to be good tracer for volcanic area. We aim that groundwater age obtain from 228Ra/226Ra in groundwater and relevant rock on volcanic area. We determined that 228Ra/226Ra observed with river waters and the relevant rocks. The method applied for Kakitagawa around Fuji Volcano, Japan. The relevant rock of Kakitagawa is Mishima lava flow. Our method compared with 3H+3He dating. The residence time of

  13. Reconstruction of groundwater depletion using a global scale groundwater model

    Science.gov (United States)

    de Graaf, Inge; van Beek, Rens; Sutanudjaja, Edwin; Wada, Yoshi; Bierkens, Marc

    2015-04-01

    Groundwater forms an integral part of the global hydrological cycle and is the world's largest accessible source of fresh water to satisfy human water needs. It buffers variable recharge rates over time, thereby effectively sustaining river flows in times of drought as well as evaporation in areas with shallow water tables. Moreover, although lateral groundwater flows are often slow, they cross topographic and administrative boundaries at appreciable rates. Despite the importance of groundwater, most global scale hydrological models do not consider surface water-groundwater interactions or include a lateral groundwater flow component. The main reason of this omission is the lack of consistent global-scale hydrogeological information needed to arrive at a more realistic representation of the groundwater system, i.e. including information on aquifer depths and the presence of confining layers. The latter holds vital information on the accessibility and quality of the global groundwater resource. In this study we developed a high resolution (5 arc-minutes) global scale transient groundwater model comprising confined and unconfined aquifers. This model is based on MODFLOW (McDonald and Harbaugh, 1988) and coupled with the land-surface model PCR GLOBWB (van Beek et al., 2011) via recharge and surface water levels. Aquifers properties were based on newly derived estimates of aquifer depths (de Graaf et al., 2014b) and thickness of confining layers from an integration of lithological and topographical information. They were further parameterized using available global datasets on lithology (Hartmann and Moosdorf, 2011) and permeability (Gleeson et al., 2014). In a sensitivity analysis the model was run with various hydrogeological parameter settings, under natural recharge only. Scenarios of past groundwater abstractions and corresponding recharge (Wada et al., 2012, de Graaf et al. 2014a) were evaluated. The resulting estimates of groundwater depletion are lower than

  14. Groundwater Pollution and Vulnerability Assessment.

    Science.gov (United States)

    Kurwadkar, Sudarshan

    2017-10-01

    Groundwater is a critical resource that serve as a source of drinking water to large human population and, provide long-term water for irrigation purposes. In recent years; however, this precious resource being increasingly threatened, due to natural and anthropogenic activities. A variety of contaminants of emerging concern such as pharmaceuticals and personal care products, perfluorinated compounds, endocrine disruptors, and biological agents detected in the groundwater sources of both developing and developed nations. In this review paper, various studies have been included that documented instances of groundwater pollution and vulnerability to emerging contaminants of concern, pesticides, heavy metals, and leaching potential of various organic and inorganic contaminants from poorly managed residual waste products (biosolids, landfills, latrines, and septic tanks etc.). Understanding vulnerability of groundwater to pollution is critical to maintain the integrity of groundwater. A section on managed artificial recharge studies is included to highlight the sustainable approaches to groundwater conservation, replenishment and sustainability. This review paper is the synthesis of studies published in last one year that either documented the pollution problems or evaluated the vulnerability of groundwater pollution.

  15. Natural Biological Attenuation of Benzene in Groundwater

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Benzene has been found in subsurface unsaturated soil and groundwater beneath a petro-chemical plant. Although the groundwater contained several mg/L of benzene in the area immediately beneath the source, benzene was not detected in monitoring wells approximately 800m down stream. All kinds of physical processes such as adsorption and advection/dispersion are considered to account for the observed attenuation. The results indicated that the attenuation was primarily due to natural biological processes occurring within the aquifer. The evidence for the natural bioremediation of benzene from the groundwater included: (1) analysis of groundwater chemistry, (2) laboratory studies demonstrating benzene biodegradation in aquifer samples, and (3) computer simulations examining benzene transport. Laboratory experiments indicated that for conditions similar to those in the plume, the aerobic degradation of benzene by the naturally occurring microorganisms in the polluted groundwater samples was quite rapid with a half-life time of from 5 to 15 days. In situ analyses indicated the level of dissolved oxygen in the groundwater was over 2mg/L. Thus, oxygen should not limit the biodegradation. In fact, the benzene was also shown to degrade under anaerobic conditions. The results from the modeling simulations indicate that biodegradation is the dominant process influencing attenuation of the benzene.

  16. Data Validation Package April 2016 Groundwater and Surface Water Sampling at the Monticello, Utah, Disposal and Processing Sites August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Jason [USDOE Office of Legacy Management, Washington, DC (United States); Smith, Fred [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-08-01

    This semiannual event includes sampling groundwater and surface water at the Monticello Disposal and Processing Sites. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated) and Program Directive MNT-2016-01. Complete sample sets were collected from 42 of 48 planned locations (9 of 9 former mill site wells, 13 of 13 downgradient wells, 7 of 9 downgradient permeable reactive barrier wells, 4 of 7 seeps and wetlands, and 9 of 10 surface water locations). Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Locations R6-M3, SW00-01, Seep 1, Seep 2, and Seep 5 were not sampled due to insufficient water availability. A partial sample was collected at location R4-M3 due to insufficient water. All samples from the permeable reactive barrier wells were filtered as specified in the program directive. Duplicate samples were collected from surface water location Sorenson and from monitoring wells 92-07 and RlO-Ml. Water levels were measured at all sampled wells and an additional set of wells. See Attachment2, Trip Report for additional details. The contaminants of concern (COCs) for the Monticello sites are arsenic, manganese, molybdenum, nitrate+ nitrite as nitrogen (nitrate+ nitrite as N), selenium, uranium, and vanadium. Locations with COCs that exceeded remediation goals are listed in Table 1 and Table 2. Time-concentration graphs of the COCs for all groundwater and surface water locations are included in Attachment 3, Data Presentation. An assessment of anomalous data is included in Attachment 4.

  17. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junxia; Wang, Yanxin, E-mail: yx.wang@cug.edu.cn; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000–10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ{sup 37}Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. - Highlights: • Natural high arsenic, fluoride and iodine groundwater co-occur with saline water.

  18. Bioremediation of contaminated groundwater

    Science.gov (United States)

    Hazen, Terry C.; Fliermans, Carl B.

    1995-01-01

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  19. Data Validation Package - June 2015 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Price, Jeffrey [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2015-08-01

    Groundwater samples were collected during the 2015 sampling event from point-of-compliance (POC) wells 0171, 0173, 0176, 0179, 0181, and 0813 to monitor the disposition of contaminants in the middle sandstone unit of the Cedar Mountain Formation. Groundwater samples also were collected from alluvium monitoring wells 0188, 0189, 0192, 0194, and 0707, and basal sandstone monitoring wells 0182, 0184, 0185, and 0588 as a best management practice. Surface locations 0846 and 0847 were sampled to monitor for degradation of water quality in the backwater area of Brown’s Wash and in the Green River immediately downstream of Brown’s Wash. The Green River location 0801 is upstream from the site and is sampled to determine background-threshold values (BTVs). Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). Water levels were measured at each sampled well. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. All six POC wells are completed in the middle sandstone unit of the Cedar Mountain Formation and are monitored to measure contaminant concentrations for comparison to proposed alternate concentration limits (ACLs), as provided in Table 1. Contaminant concentrations in the POC wells remain below their respective ACLs.

  20. Data Validation Package October 2015 Groundwater and Surface Water Sampling at the Monticello, Utah, Processing Site January 2016

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Jason [U.S. Dept. of Energy, Washington, DC (United States). Office of Legacy Management; Smith, Fred [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-01-21

    Sampling Period: October 12–14, 2015. This semiannual event includes sampling groundwater and surface water at the Monticello Mill Tailings Site. Sampling and analyses were conducted as specified in the 2004 Monticello Mill Tailings Site Operable Unit III Post-Record of Decision Monitoring Plan, Draft Final and Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Samples were collected from 52 of 61 planned locations (15 of 17 former mill site wells, 17 of 18 downgradient wells, 9 of 9 downgradient permeable reactive barrier wells, 2 of 7 seeps and wetlands, and 9 of 10 surface water locations). Locations MW00-07, Seep 1, Seep 2, Seep 3, Seep 5, Seep 6, SW00-01, T01-13, and T01-19 were not sampled because of insufficient water availability. All samples were filtered as specified in the monitoring plan. Duplicate samples were collected from surface water location W3-04 and from monitoring wells 82-08, 92-09, and 92-10. Water levels were measured at all but one sampled well and an additional set of wells. The contaminants of concern (COCs) for the Monticello Mill Tailings Site are arsenic, manganese, molybdenum, nitrate + nitrite as nitrogen (nitrate + nitrite as N), selenium, uranium, and vanadium. Time-concentration graphs of the COCs for all groundwater and surface water locations are included in this report. Locations with COCs that exceeded remediation goals are listed.

  1. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2012-01-01

    Groundwater is a vital resource and also a dynamic component of the water cycle. Unconfined aquifer storage is less responsive to short term weather conditions than the near surface terrestrial water storage (TWS) components (soil moisture, surface water, and snow). However, save for the permanently frozen regions, it typically exhibits a larger range of variability over multi-annual periods than the other components. Groundwater is poorly monitored at the global scale, but terrestrial water storage (TWS) change data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are a reasonable proxy for unconfined groundwater at climatic scales.

  2. Analysis of s-triazine herbicides in model systems and samples of groundwater by gas and liquid chromatography

    Directory of Open Access Journals (Sweden)

    Kostadinović Ljiljana

    2010-01-01

    Full Text Available In this paper, residues of s-triazine herbicides (Simazine, Atrazine, Amethrine, Promethrine and Azyprothrine have been determined in samples of model systems and real groundwater samples by gas-chromatography and high performance liquid chromatography. S-triazine herbicides were isolated from water samples by chloroform-methanol mixture (1:1, followed by purification of extract on the Al2O3 column. Gas-chromatographic determination the residues of s-triazines is performed on parallel capilar columns ULTRA I and ULTRA II, using specific NP detector. Liquid-chromatographic determination the s-triazines was performed on the column TSK ODS-120 A 5 mm 'LKB', using the mobile phase methanol-water (60:40. Total concentration of s-triazines in samples of Danube water was 3.54 mg dm-3. .

  3. Regional Groundwater Processes and Flow Dynamics from Age Tracer Data

    Science.gov (United States)

    Morgenstern, Uwe; Stewart, Mike K.; Matthews, Abby

    2016-04-01

    Age tracers are now used in New Zealand on regional scales for quantifying the impact and lag time of land use and climate change on the quantity and quality of available groundwater resources within the framework of the National Policy Statement for Freshwater Management 2014. Age tracers provide measurable information on the dynamics of groundwater systems and reaction rates (e.g. denitrification), essential for conceptualising the regional groundwater - surface water system and informing the development of land use and groundwater flow and transport models. In the Horizons Region of New Zealand, around 200 wells have tracer data available, including tritium, SF6, CFCs, 2H, 18O, Ar, N2, CH4 and radon. Well depths range from shallower wells in gravel aquifers in the Horowhenua and Tararua districts, and deeper wells in the aquifers between Palmerston North and Wanganui. Most of the groundwater samples around and north of the Manawatu River west of the Tararua ranges are extremely old (>100 years), even from relatively shallow wells, indicating that these groundwaters are relatively disconnected from fresh surface recharge. The groundwater wells in the Horowhenua tap into a considerably younger groundwater reservoir with groundwater mean residence time (MRT) of 10 - 40 years. Groundwater along the eastern side of the Tararua and Ruahine ranges is significantly younger, typically groundwater recharge rates, as deduced from groundwater depth and MRT, are extremely low in the central coastal area, consistent with confined groundwater systems, or with upwelling of old groundwater close to the coast. Very low vertical recharge rates along the Manawatu River west of the Manawatu Gorge indicate upwelling groundwater conditions in this area, implying groundwater discharge into the river is more likely here than loss of river water into the groundwater system. High recharge rates observed at several wells in the Horowhenua area and in the area east of the Tararua and

  4. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin (ed.); Berg, Cecilia; Harrstroem, Johan; Joensson, Stig; Thur, Pernilla (Geosigma AB (Sweden)); Borgiel, Micke; Qvarfordt, Susanne (Sveriges Vattenekologer AB (Sweden))

    2010-09-15

    The fifth year (2009) of hydrochemical monitoring of groundwaters, surface waters and precipitation in Forsmark is documented in the report. The hydrochemical monitoring programme 2009 included water sampling from: - percussion- and core boreholes equipped with installations for long-term pressure monitoring, tracer tests and water sampling in packed off borehole sections, sampling and analysis performed twice (spring and autumn), - near surface groundwaters (sampling four times a year), - private wells (once per year in October), - surface waters (eleven sampling occasions per year). Due to the somewhat different performance of the hydrogeochemical monitoring of the deep groundwaters during the autumn 2009 compared to previous years, some new findings and knowledge were obtained: 1) Removal of water volumes corresponding to three to five times the volume of the borehole section (the routine procedure) is seldom enough to obtain a complete exchange of the water present in the borehole section when the pumping starts. 2) It is likely that the elevated sulphide concentrations observed in the monitoring programme /1/ is due to contamination from initial water present in the borehole sections when the pumping starts. This water may have a very high sulphide concentration. Dirty water in tubes and in stand pipes may also contribute to the enhanced sulphide concentration. 3) Plug flow calculations will be introduced in the future as a new routine procedure to estimate the water volumes to be removed, in order to exchange the section water volume, prior to groundwater sampling in delimited borehole sections. During the autumn sampling, sample series of five samples per sampling location were collected during continuous pumping in thirteen selected borehole sections. Furthermore, special efforts were put on cleaning of stand pipes and exchange of water prior to sampling. The analytical protocol was rather extensive and included sulphide and uranium analyses for each sample

  5. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater

    Science.gov (United States)

    Han, L. F; Plummer, Niel

    2016-01-01

    Numerous methods have been proposed to estimate the pre-nuclear-detonation 14C content of dissolved inorganic carbon (DIC) recharged to groundwater that has been corrected/adjusted for geochemical processes in the absence of radioactive decay (14C0) - a quantity that is essential for estimation of radiocarbon age of DIC in groundwater. The models/approaches most commonly used are grouped as follows: (1) single-sample-based models, (2) a statistical approach based on the observed (curved) relationship between 14C and δ13C data for the aquifer, and (3) the geochemical mass-balance approach that constructs adjustment models accounting for all the geochemical reactions known to occur along a groundwater flow path. This review discusses first the geochemical processes behind each of the single-sample-based models, followed by discussions of the statistical approach and the geochemical mass-balance approach. Finally, the applications, advantages and limitations of the three groups of models/approaches are discussed.The single-sample-based models constitute the prevailing use of 14C data in hydrogeology and hydrological studies. This is in part because the models are applied to an individual water sample to estimate the 14C age, therefore the measurement data are easily available. These models have been shown to provide realistic radiocarbon ages in many studies. However, they usually are limited to simple carbonate aquifers and selection of model may have significant effects on 14C0 often resulting in a wide range of estimates of 14C ages.Of the single-sample-based models, four are recommended for the estimation of 14C0 of DIC in groundwater: Pearson's model, (Ingerson and Pearson, 1964; Pearson and White, 1967), Han & Plummer's model (Han and Plummer, 2013), the IAEA model (Gonfiantini, 1972; Salem et al., 1980), and Oeschger's model (Geyh, 2000). These four models include all processes considered in single-sample-based models, and can be used in different ranges of

  6. Development and Testing of Active Groundwater Samplers

    DEFF Research Database (Denmark)

    Nilsson, Bertel; Jakobsen, Rasmus; Andersen, Lars Jørgen

    1995-01-01

    on numerical modelling and controlled laboratory experiments. Active groundwater sampling techniques can be used for remedial pumping optimization and in obtaining hydraulic data and represent a fast operational and reliable sampling tool, also under heterogeneous and low permeability conditions.......Active groundwater sampling techniques are methods where the aquifer is flushed by pumping. The methods developed and tested represent non-dedicated methods for use in existing water wells. This paper describes two different sampling techniques: the Separation Pumping Technique (SP) and the Packer...

  7. GROUNDWATER HYDROCHEMISTRY EVALUATION IN RURAL ...

    African Journals Online (AJOL)

    Osondu

    2012-10-09

    Oct 9, 2012 ... the quality of groundwater from domestic water supply boreholes across rural Botswana. Ionic ... quality limits the supply of potable fresh water. To utilize and protect valuable water ..... prescribed specification of World Health.

  8. Groundwater Vulnerability Regions of Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions onThis map represent areas with similar hydrogeologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  9. Optimal and Sustainable Groundwater Extraction

    Directory of Open Access Journals (Sweden)

    Christopher A. Wada

    2010-08-01

    Full Text Available With climate change exacerbating over-exploitation, groundwater scarcity looms as an increasingly critical issue worldwide. Minimizing the adverse effects of scarcity requires optimal as well as sustainable patterns of groundwater management. We review the many sustainable paths for groundwater extraction from a coastal aquifer and show how to find the particular sustainable path that is welfare maximizing. In some cases the optimal path converges to the maximum sustainable yield. For sufficiently convex extraction costs, the extraction path converges to an internal steady state above the level of maximum sustainable yield. We describe the challenges facing groundwater managers faced with multiple aquifers, the prospect of using recycled water, and the interdependence with watershed management. The integrated water management thus described results in less water scarcity and higher total welfare gains from groundwater use. The framework also can be applied to climate-change specifications about the frequency, duration, and intensity of precipitation by comparing before and after optimal management. For the case of South Oahu in Hawaii, the prospect of climate change increases the gains of integrated groundwater management.

  10. Sampling and analysis plan for the site characterization of the waste area Grouping 1 groundwater operable unit at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    Waste Area Grouping (WAG) 1 at Oak Ridge National Laboratory (ORNL) includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative buildings. Site operations have contaminated groundwater, principally with radiological contamination. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to a known extent. In addition, karst geology, numerous spills, and pipeline leaks, together with the long and varied history of activities at specific facilities at ORNL, complicate contaminant migration-pathway analysis and source identification. To evaluate the extent of contamination, site characterization activity will include semiannual and annual groundwater sampling, as well as monthly water level measurements (both manual and continuous) at WAG 1. This sampling and analysis plan provides the methods and procedures to conduct site characterization for the Phase 1 Remedial Investigation of the WAG 1 Groundwater Operable Unit.

  11. Evaluation of Groundwater Renewability in the Henan Plains, China

    Science.gov (United States)

    Dong, W.; Shi, X.

    2011-12-01

    The sustainability of groundwater resources in the Henan Plains, located in the eastern portion of central China, has been threatened by both increasing industrial and agricultural pumping and periods of drought occurring since the 1990s. Therefore, there is an urgent need to improve water resources management in the Henan Plains. However, the recharge and annual renewal rate are very difficult to calculate when based only on traditional hydrogeological methods because of inadequate hydrometeorologic data. In this study, tritium concentrations in groundwater and reconstructed 3H concentration time series from 1953~2009 in precipitation were used to determine the annual groundwater renewal rate. The 3H concentrations mostly range from 2.91 to 40.30 TU in the shallow groundwater with a mean 3H concentration of 19.13TU, which suggests that the shallow groundwater is recharged from modern precipitation after 1953 in the study area. Three exceptionally low 3H concentration(less than 1TU) wells were sampled in Xinxiang, Puyang and Zhengyang which indicates that those wells contain deep old groundwater recharge before 1953 as a result of over-pumping. High renewal rates (more than 4%/a) of groundwater are located mainly in the recharge area such as along the Yellow River and in the pediments of Taihang Mountain, Songqi Mountain, Funiu Mountain, Dabie Mountain, where the groundwater extraction volume could be increased. Moderate renewal rates (2%/a~3%/a) of groundwater are mainly in the runoff area where the groundwater extraction volume can be kept at current levels. Low renewal rates (1%/a~2%/a) of groundwater are located mainly in the discharge areas in the eastern regions of Nanle, Puyang, Shangqiu, Luyi where the groundwater extraction volume should be reduced. The lowest renewal rates of (less than 1%/a) groundwater are in Puyang, Xinxiang, Zhengyang and Xixian, where the groundwater extraction volume should be restricted.

  12. Groundwater vulnerability to pollution mapping of Ranchi district using GIS.

    Science.gov (United States)

    Krishna, R; Iqbal, J; Gorai, A K; Pathak, G; Tuluri, F; Tchounwou, P B

    2015-12-01

    Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table (D), net recharge (R), aquifer media (A), soil media (S), topography or slope (T), impact of vadose zone (I) and hydraulic Conductivity(C)] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management.

  13. Potential corrosivity of untreated groundwater in the United States

    Science.gov (United States)

    Belitz, Kenneth; Jurgens, Bryant C.; Johnson, Tyler D.

    2016-07-12

    Corrosive groundwater, if untreated, can dissolve lead and other metals from pipes and other components in water distribution systems. Two indicators of potential corrosivity—the Langelier Saturation Index (LSI) and the Potential to Promote Galvanic Corrosion (PPGC)—were used to identify which areas in the United States might be more susceptible to elevated concentrations of metals in household drinking water and which areas might be less susceptible. On the basis of the LSI, about one-third of the samples collected from about 21,000 groundwater sites are classified as potentially corrosive. On the basis of the PPGC, about two-thirds of the samples collected from about 27,000 groundwater sites are classified as moderate PPGC, and about one-tenth as high PPGC. Potentially corrosive groundwater occurs in all 50 states and the District of Columbia.National maps have been prepared to identify the occurrence of potentially corrosive groundwater in the 50 states and the District of Columbia. Eleven states and the District of Columbia were classified as having a very high prevalence of potentially corrosive groundwater, 14 states as having a high prevalence of potentially corrosive groundwater, 19 states as having a moderate prevalence of potentially corrosive groundwater, and 6 states as having a low prevalence of potentially corrosive groundwater. These findings have the greatest implication for people dependent on untreated groundwater for drinking water, such as the 44 million people that are self-supplied and depend on domestic wells or springs for their water supply.

  14. Data Validation Package - June 2016 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Price, Jeffrey [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-10-10

    This event included annual sampling of groundwater and surface water locations at the Green River, Utah, Disposal Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lrnldownloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). Samples were collected from 15 monitoring wells and two surface locations at the disposal site as specified in the draft 2011 Ground Water Compliance Action Plan for the Green River, Utah, Disposal Site. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0179. One equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. See Attachment 2, Trip Reports for additional details. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that requires additional action or follow-up.

  15. Erratum to "Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta".

    Science.gov (United States)

    Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

    2009-04-15

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and Jakarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl- concentration and delta18O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3--N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas.

  16. Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta.

    Science.gov (United States)

    Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

    2008-10-15

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and Jakarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl(-) concentration and delta(18)O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3(-)-N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas.

  17. Nitrate in groundwater of the United States, 1991-2003

    Science.gov (United States)

    Burow, Karen R.; Nolan, Bernard T.; Rupert, Michael G.; Dubrovsky, Neil M.

    2010-01-01

    An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.

  18. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2011-01-01

    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of

  19. Groundwater recharge and agricultural contamination

    Science.gov (United States)

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  20. 234U/238U isotope data from groundwater and solid-phase leachate samples near Tuba City Open Dump, Tuba City, Arizona

    Science.gov (United States)

    Johnson, Raymond H.; Horton, Robert J.; Otton, James K.; Ketterer, Michael K.

    2012-01-01

    This report releases 234U/238U isotope data, expressed as activity ratios, and uranium concentration data from analyses completed at Northern Arizona University for groundwater and solid-phase leachate samples that were collected in and around Tuba City Open Dump, Tuba City, Arizona, in 2008.

  1. Interaction between river water and groundwater: Geochemical and anthropogenic influence

    Science.gov (United States)

    Elango, L.; Karthikeyan, B.

    2011-12-01

    River water generally controls the quality and quantity of groundwater in its vicinity. Contribution by the rivers to groundwater is significant if there is over extraction. This is common in large cities where dependence on groundwater is high due to limited piped water supply. Chennai, India is one such large city where the river flowing is contaminated and the people in the near locality depend on groundwater for domestic use (Figure). The objective of this study is to understand the linkage between the river water and groundwater, and to assess the role played by the geochemical processes and anthropogenic influence. This study was carried out in and around Adyar River basin, Chennai by the collection of surface water and groundwater samples. Rainfall, lake water level and groundwater level from January 2005 to December 2009 was compared to understand their relationship. The concentration of major ion concentration vary widely in groundwater and surface water with respect to space and time. Na-Cl and Ca-Mg-Cl were the dominant groundwater and surface water type. Seawater intrusion may also be one of the reasons for Na-Cl dominant nature. In general, the ionic concentration of surface water increases towards the eastern part as in the case of groundwater. Evaporation and ion exchange were the major processes controlling groundwater chemistry in this area. Groundwater chemistry is similar to that of surface water. The surface water is contaminated due to discharge of industrial effluents and domestic sewage into the Adyar River by partly or untreated domestic sewage. Ecological restoration of Adyar River is planned and to be implemented shortly by the Government agencies which is expected to improve the river water quality. Systematic monitoring of water quality in this area will help to assess the improvement in surface water quality during the restoration process as well as its impact on groundwater.

  2. Groundwater resource-directed measures software

    African Journals Online (AJOL)

    2006-07-21

    Jul 21, 2006 ... 1Institute for Groundwater Studies, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa ... In this paper the methods developed for the GRDM .... The geothermal gradient for groundwater, that is, the.

  3. ASSESSMENT OF GROUNDWATER QUALITY IN SHALLOW ...

    African Journals Online (AJOL)

    development of human societies. In Okrika Island ... abstraction of groundwater due to population increase in Port ... 298. Nwankwoala and Walter: Assessment of Groundwater Quality in Shallow Coastal Aquifers ..... and Tai-Eleme areas.

  4. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important barriers to preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to ...

  5. Valuing groundwater: A practical approach for integrating ...

    African Journals Online (AJOL)

    groundwater economic values into decision making ... The methodology incorporates a 2-tiered valuation approach. .... groundwater systems in Botswana (SADC, 2010). .... tion) can be investigated to support water resource management.

  6. Groundwater arsenic contamination throughout China.

    Science.gov (United States)

    Rodríguez-Lado, Luis; Sun, Guifan; Berg, Michael; Zhang, Qiang; Xue, Hanbin; Zheng, Quanmei; Johnson, C Annette

    2013-08-23

    Arsenic-contaminated groundwater used for drinking in China is a health threat that was first recognized in the 1960s. However, because of the sheer size of the country, millions of groundwater wells remain to be tested in order to determine the magnitude of the problem. We developed a statistical risk model that classifies safe and unsafe areas with respect to geogenic arsenic contamination in China, using the threshold of 10 micrograms per liter, the World Health Organization guideline and current Chinese standard for drinking water. We estimate that 19.6 million people are at risk of being affected by the consumption of arsenic-contaminated groundwater. Although the results must be confirmed with additional field measurements, our risk model identifies numerous arsenic-affected areas and highlights the potential magnitude of this health threat in China.

  7. GROUNDWATER QUALITY AND CONTAMINATION INDEX MAPPING IN CHANGCHUN CITY, CHINA

    Institute of Scientific and Technical Information of China (English)

    Hamadoun BOKAR; TANG Jie; LIN Nian-feng

    2004-01-01

    Groundwater in Changchun City, Jilin Province of China tends to be influenced by human activities.Chemical types of groundwater were detected in both shallow and deep groundwater were: HCO3- - Ca2+ and HCO3-of groundwater quality due to the increase of TDS, NO3- + NO2 (as Nitrogen) and TH contents have been observed from 1991 to 1998. Scatter analyses showed strong positive correlations between Ca2+, Cl- and NO3- ions and weak negative correlations between the depth of water table and Ca2+, 8O42-. C1- and NO3-ions. A mapping of contaminant index based on Chinese standard of groundwater showed that a large proportion of the groundwater in 1998 was deteriorated by human process. Despite their low values of sodium adsorption ratio (SAR), the most of the sampled wells were not suitable for drinking and agriculture purposes due to higher contents of NO3-, NO2 and Mn2+ ions.

  8. Integrated monitoring plan for the Hanford groundwater monitoring project

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E.; McDonald, J.P.; Mercer, R.B.; Newcomer, D.R.; Thornton, E.C.

    1998-09-01

    Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy (DOE) manages these activities through the Hanford Groundwater Monitoring Project (groundwater project), which is the responsibility of Pacific Northwest National Laboratory. The groundwater project does not include all of the monitoring to assess performance of groundwater remediation or all monitoring associated with active facilities. This document is the first integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; other, established monitoring plans by reference; and a master well/constituent/frequency matrix for the entire Hanford Site.

  9. Food supply reliance on groundwater

    Science.gov (United States)

    Dalin, Carole; Puma, Michael; Wada, Yoshihide; Kastner, Thomas

    2016-04-01

    Water resources, essential to sustain human life, livelihoods and ecosystems, are under increasing pressure from population growth, socio-economic development and global climate change. As the largest freshwater resource on Earth, groundwater is key for human development and food security. Yet, excessive abstraction of groundwater for irrigation, driven by an increasing demand for food in recent decades, is leading to fast exhaustion of groundwater reserves in major agricultural areas of the world. Some of the highest depletion rates are observed in Pakistan, India, California Central Valley and the North China Plain aquifers. In addition, the growing economy and population of several countries, such as India and China, makes prospects of future available water and food worrisome. In this context, it is becoming particularly challenging to sustainably feed the world population, without exhausting our water resources. Besides, food production and consumption across the globe have become increasingly interconnected, with many areas' agricultural production destined to remote consumers. In this globalisation era, trade is crucial to the world's food system. As a transfer of water-intensive goods, across regions with varying levels of water productivity, food trade can save significant volumes of water resources globally. This situation makes it essential to address the issue of groundwater overuse for global food supply, accounting for international food trade. To do so, we quantify the current, global use of non-renewable groundwater for major crops, accounting for various water productivity and trade flows. This will highlight areas requiring quickest attention, exposing major exporters and importers of non-renewable groundwater, and thus help explore solutions to improve the sustainability of global food supply.

  10. Groundwater and climate change research scoping study

    OpenAIRE

    Jackson, C. R.; Cheetham, M.; Guha, P

    2006-01-01

    This scoping study has reviewed much of the published literature in the field of climate change and groundwater research. Whilst it is not exhaustive with regard to groundwater quality issues, most of the published literature relating to climate change and groundwater resources, particularly in the UK, is covered. Further work is required to identify current research needs relating to the effects of climate change on groundwater quality. The study of the effects of climate chan...

  11. Evaluating data worth for ground-water management under uncertainty

    Science.gov (United States)

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  12. Assessment of Halon-1301 as a groundwater age tracer

    Science.gov (United States)

    Beyer, M.; van der Raaij, R.; Morgenstern, U.; Jackson, B.

    2015-06-01

    Groundwater dating is an important tool to assess groundwater resources in regards to their dynamics, i.e. direction and timescale of groundwater flow and recharge, contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However, ambiguous age interpretations are often faced, due to a limited set of available tracers and their individual restricted application ranges. For more robust groundwater dating multiple tracers need to be applied complementarily (or other characterisation methods need to be used to complement tracer information). It is important that additional, groundwater age tracers are found to ensure robust groundwater dating in future. We have recently suggested that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate, but its behaviour in water and suitability as a groundwater age tracer had not yet been assessed in detail. In this study, we determined Halon-1301 and inferred age information in 17 New Zealand groundwater samples and various modern (river) water samples. The samples were simultaneously analysed for Halon-1301 and SF6, which allowed for identification of issues such as contamination of the water with modern air during sampling. All analysed groundwater sites had also been previously dated with tritium, CFC-12, CFC-11 and SF6, and exhibited mean residence times ranging from modern (close to 0 years) to over 100 years. The investigated groundwater samples ranged from oxic to highly anoxic. All samples with available CFC data were degraded and/or contaminated in one or both of CFC-11 and CFC-12. This allowed us to make a first attempt of assessing the conservativeness of Halon-1301 in water, in terms of presence of local sources and its sensitivity towards degradation, which could affect the suitability of Halon-1301 as groundwater age tracer. Overall we found Halon-1301

  13. Complexed iron removal from groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Munter, R.; Ojaste, H.; Sutt, J. [Tallinn Technical University, Tallinn (Estonia). Dept. of Environmental & Chemical Technology

    2005-07-01

    The paper demonstrates an intensive work carried out and results obtained on the pilot plant of the City of Kogalym Water Treatment Station (Tjumen, Siberia, Russian Federation) to elaborate on a contemporary nonreagent treatment technology for the local iron-rich groundwater. Several filter materials (Birm, Pyrolox, hydroanthracite, Everzit, granulated activated carbon) and chemical oxidants (ozone, chlorine, hydrogen peroxide, oxygen, and potassium permanganate) were tested to solve the problem with complexed iron removal from groundwater. The final elaborated technology consists of raw water intensive aeration in the gas-degas treatment unit followed by sequential filtration through hydroanthracite and the special anthracite Everzit.

  14. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2014-01-01

    Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales.

  15. Determination of submicrogram-per-liter concentrations of caffeine in surface water and groundwater samples by solid-phase extraction and liquid chromatography

    Science.gov (United States)

    Burkhardt, M.R.; Soliven, P.P.; Werner, S.L.; Vaught, D.G.

    1999-01-01

    A method for determining submicrogram-per-liter concentrations of caffeine in surface water and groundwater samples has been developed. Caffeine is extracted from a 1 L water sample with a 0.5 g graphitized carbon-based solid-phase cartridge, eluted with methylene chloride-methanol (80 + 20, v/v), and analyzed by liquid chromatography with photodiode-array detection. The single-operator method detection limit for organic-free water samples was 0.02 ??g/L. Mean recoveries and relative standard deviations were 93 ?? 13% for organicfree water samples fortified at 0.04 ??g/L and 84 ?? 4% for laboratory reagent spikes fortified at 0.5 ??g/L. Environmental concentrations of caffeine ranged from 0.003 to 1.44 ??g/L in surface water samples and from 0.01 to 0.08 ??g/L in groundwater samples.

  16. Mapping groundwater quality in the Netherlands

    NARCIS (Netherlands)

    Pebesma, Edzer Jan

    2001-01-01

    Groundwater quality is the suitability of groundwater for a certain purpose (e.g. for human consumption), and is mostly determined by its chemical composition. Pollution from agricultural and industrial origin threatens the groundwater quality in the Netherlands. Locally, this pollution is me

  17. Groundwater: Illinois' Buried Treasure. Education Activity Guide.

    Science.gov (United States)

    Environmental Education Association of Illinois, Chicago.

    Groundwater is an extremely valuable resource that many feel has been too long neglected and taken for granted. There is growing recognition in Illinois and throughout the United States that comprehensive groundwater protection measures are vital. Illinois embarked on a course in protecting groundwater resources with the passage of the Illinois…

  18. Geochemical modelling baseline compositions of groundwater

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard

    2008-01-01

    Reactive transport models, were developed to explore the evolution in groundwater chemistry along the flow path in three aquifers; the Triassic East Midland aquifer (UK), the Miocene aquifer at Valreas (F) and the Cretaceous aquifer near Aveiro (P). All three aquifers contain very old groundwaters...... of the evolution in natural baseline properties in groundwater....

  19. Groundwater: Illinois' Buried Treasure. Education Activity Guide.

    Science.gov (United States)

    Environmental Education Association of Illinois, Chicago.

    Groundwater is an extremely valuable resource that many feel has been too long neglected and taken for granted. There is growing recognition in Illinois and throughout the United States that comprehensive groundwater protection measures are vital. Illinois embarked on a course in protecting groundwater resources with the passage of the Illinois…

  20. Detection and Remediation of Groundwater Pollution

    Institute of Scientific and Technical Information of China (English)

    王杰

    2016-01-01

    Groundwater is an important part of the water cycle and is also widely used as sources of drinking water. With the increasing de?velopment of groundwater exploitation, the pollution is becoming more and more serious. This paper talks about the main research direc?tions of groundwater pollution, the detection, the remediation and some conclusions.

  1. Groundwater and geothermal: urban district heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Mounts, R.; Frazier, A.; Wood, E.; Pyles, O.

    1982-01-01

    This report describes how several cities use groundwater and geothermal energy in district heating systems. It begins with groundwater, introducing the basic technology and techniques of development, and describing two case studies of cities with groundwater-based district heating systems. The second half of the report consists of three case studies of cities with district heating systems using higher temperature geothermal resources.

  2. State space modeling of groundwater fluctuations

    NARCIS (Netherlands)

    Berendrecht, W.L.

    2004-01-01

    Groundwater plays an important role in both urban and rural areas. It is therefore essential to monitor groundwater fluctuations. However, data that becomes available need to be analyzed further in order to extract specific information on the groundwater system. Until recently, simple linear time se

  3. Environmental isotopes investigation in groundwater of Challaghatta ...

    African Journals Online (AJOL)

    Administrator

    water. Further, from the results of 14C it is inferred that some groundwater samples in Challaghatta valley belongs ... Bangalore, known, as the Silicon Valley of Asia, is one of the major class ... Considering the climatic water balance, soil characteristics ..... basin (central Tunisia) during Holocene period using pluridisplinary.

  4. Data Validation Package, April and June 2016 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing Site, October 2016

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [U. S. Department of Energy, Washington, DC (United States). Office of Legacy Management; Campbell, Sam [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-10-01

    This event included annual sampling of groundwater and surface water locations at the Gunnison, Colorado, Processing Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). Samples were collected from 28 monitoring wells, three domestic wells, and six surface locations in April at the processing site as specified in the draft 2010 Ground Water Compliance Action Plan for the Gunnison, Colorado, Processing Site. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Domestic wells 0476 and 0477 were sampled in June because the homes were unoccupied in April, and the wells were not in use. Duplicate samples were collected from locations 0126, 0477, and 0780. One equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. See Attachment 2, Trip Reports for additional details. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that requires additional action or follow-up. An assessment of anomalous data is included in Attachment 3. Interpretation and presentation of results, including an assessment ofthe natural flushing compliance strategy, will be reported in the upcoming 2016 Verification Monitoring Report. U.S.

  5. Assessment of Halon-1301 as a groundwater age tracer

    Directory of Open Access Journals (Sweden)

    M. Beyer

    2015-01-01

    Full Text Available Groundwater dating is an important tool to assess groundwater resources in regards to their dynamics, i.e. direction and time scale of groundwater flow and recharge, to assess contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However, ambiguous age interpretations are often faced, due to a limited set of available tracers and their individual restricted application ranges. For more robust groundwater dating multiple tracers need to be applied complementarily and it is vital that additional, groundwater age tracers are found to ensure robust groundwater dating in future. We recently suggested that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate, but its behaviour in water and suitability as a groundwater age tracer had not yet been assessed in detail. In this study, we determine Halon-1301 and infer age information in 17 New Zealand groundwaters and various modern (river water samples. The samples are simultaneously analysed for Halon-1301 and SF6, which allows identification of issues such as contamination of the water with modern air during sampling. Water at all analysed groundwater sites have also been previously dated with tritium, CFC-12, CFC-11 and SF6, and exhibit mean residence times ranging from modern (close to 0 years to over 100 years. The investigated groundwater ranged from oxic to highly anoxic, and some showed evidence of CFC contamination or degradation. This allowed us to make a first attempt of assessing the conservativeness of Halon-1301 in water, in terms of presence of local sources and its sensitivity towards degradation etc., which could affect the suitability of Halon-1301 as groundwater age tracer. Overall we found Halon-1301 reliably inferred the mean residence time of groundwater recharged between 1980 and 2014. Where direct age comparison

  6. Global Groundwater related Risk Indicators: quantifying groundwater stress and groundwater table decline (1990-2010) at global scale

    Science.gov (United States)

    Faneca Sanchez, Marta; Sutanudjaja, Edwin; Kuijper, Marijn; Bierkens, Marc

    2016-04-01

    Groundwater is an invisible but indispensable resource for the economic development of many countries. Due to the need for this resource, in many cases it is exploited under severe pressure and the exploitation can become not sustainable. The non-sustainable exploitation of water is a well-known problem on both regional and global scales. However, most currently-available assessments on water stress still mostly focus on surface water and on water balances. In this work, we presented two global maps of groundwater risk indicators: an updated version of the groundwater stress (Gleeson et al., 2011, DOI: 10.1038/nature11295) and an indicator on groundwater table decline for the period 1990-2010. To calculate both indicators, we used the updated PCR-GLOBWB model output at 5 arcmin resolution (about 10 km at the equator), that is extended with an offline coupling to a global groundwater MODFLOW model. PCR-GLOBWB simulates daily river discharge and groundwater recharge, as well as surface water and groundwater abstraction rates. The latter are estimated internally within the model based on the simulation of their availabilities and water demands for irrigation and other sectors. The daily output of PCR-GLOBWB would then be aggregated to the monthly resolution and used to force the MODFLOW groundwater model resolving spatio-temporal groundwater table dynamics, incorporating the simulated groundwater abstraction of PCR-GLOBWB. Using the PCR-GLOBWB and MODFLOW simulation results from the period 1990-2010, we then quantified groundwater stress and assessed the groundwater table decline. Results are presented on four different spatial scales: 5 arcmin pixel, drainage/sub-catchment unit, state level, and major aquifer unit. The maps clearly show where groundwater is under stress, where there is a trend in the drop of the groundwater table, the slope of the drop and the significance of it.

  7. Groundwater regulation and integrated planning

    Science.gov (United States)

    Quevauviller, Philippe; Batelaan, Okke; Hunt, Randall J.

    2016-01-01

    The complex nature of groundwater and the diversity of uses and environmental interactions call for emerging groundwater problems to be addressed through integrated management and planning approaches. Planning requires different levels of integration dealing with: the hydrologic cycle (the physical process) including the temporal dimension; river basins and aquifers (spatial integration); socioeconomic considerations at regional, national and international levels; and scientific knowledge. The great natural variation in groundwater conditions obviously affects planning needs and options as well as perceptions from highly localised to regionally-based approaches. The scale at which planning is done therefore needs to be carefully evaluated against available policy choices and options in each particular setting. A solid planning approach is based on River Basin Management Planning (RBMP), which covers: (1) objectives that management planning are designed to address; (2) the way various types of measures fit into the overall management planning; and (3) the criteria against which the success or failure of specific strategies or interventions can be evaluated (e.g. compliance with environmental quality standards). A management planning framework is to be conceived as a “living” or iterated document that can be updated, refined and if necessary changed as information and experience are gained. This chapter discusses these aspects, providing an insight into European Union (EU), United States and Australia groundwater planning practices.

  8. Groundwater Resources: Investigation and Development

    Science.gov (United States)

    Anderson, Mary P.

    A glance through the table of contents of this volume might suggest that it is yet another introductory text on principles of groundwater hydrology. All of the usual basic topics are covered including definitions of terms and concepts, aquifer types, drilling methods, and pumping tests. But partly because this book is intended for practicing groundwater consultants rather than students, other less elementary topics such as environmental isotope techniques, geochemical methods, interpretation and utilization of spring flow, geophysical methods, and groundwater balances are also included.According to the preface, ‘practical applicability’ is stressed ‘to show how groundwater investigations should be conducted using a systematic, well-directed effort’ and to describe ‘… what to do, what to avoid, and what kind of results one can reasonably expect …’ While this book was published as part of a series of monographs on water pollution, it is more in the nature of a handbook than a true monograph. That is, it is not an in-depth treatment of a single topic but presents a broad introduction to the ways in

  9. Adsorptive Iron Removal from Groundwater

    NARCIS (Netherlands)

    Sharma, S.K.

    2001-01-01

    Iron is commonly present in groundwater worldwide. The presence of iron in drinking water is not harmful to human health, however it is undesirable because of the associated aesthetic and operational problems, namely: bad taste, colour, stains on laundry and plumbing fixtures, and aftergrowth in the

  10. Adsorptive iron removal from groundwater

    NARCIS (Netherlands)

    Sharma, S.K.

    2001-01-01

    Iron is commonly present in groundwater worldwide. The presence of iron in the water supply is not harmful to human health, however it is undesirable. Bad taste, discoloration, staining, deposition in the distribution system leading to aftergrowth, and incidences of high turbidity are some

  11. Plan for proposed aquifer hydraulic testing and groundwater sampling at Everest, Kansas, in January-February 2006.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2006-01-31

    On September 8-9, 2005, representatives of the Kansas Department of Health and Environment (KDHE), the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA), and Argonne National Laboratory met at the KDHE's offices in Topeka to review the status of the CCC/USDA's environmental activities in Kansas. A key CCC/USDA goal for this meeting was to obtain KDHE input on the selection of possible remedial approaches to be examined as part of the Corrective Action Study (CAS) for this site. As a result of the September meeting, the KDHE recommended several additional activities for the Everest site, to further assist in selecting and evaluating remedial alternatives for the CAS. The requested actions included the following: (1) Construction of several additional interpretive cross sections to improve the depiction of the hydrogeologic characteristics affecting groundwater and contaminant movement along the apparent main plume migration pathway to the north-northwest of the former CCC/USDA facility, and in the vicinity of the Nigh property. (2) Identification of potential locations for several additional monitoring wells, to better constrain the apparent western and northwestern margins of the existing groundwater plume. (3) Development of technical recommendations for a stepwise pumping study of the Everest aquifer unit in the area near and to the north of the Nigh property. On October 21, 2005, Argonne issued a brief Cross Section Analysis (Argonne 2006a) addressing these concerns, on behalf of the CCC/USDA. This report includes the following: (1) Preliminary recommendations for the siting of three new monitoring wells, at locations identified by the KDHE. Argonne also suggested, however, that the installation and sampling of these wells be deferred until after completion of the CAS evaluation. (2) A proposed strategy for testing of the Everest aquifer unit near the Nigh property, involving initial test pumping of the former Nigh domestic

  12. Application of the freeze-dried bioluminescent bioreporter Pseudomonas putida mt-2 KG1206 to the biomonitoring of groundwater samples from monitoring wells near gasoline leakage sites.

    Science.gov (United States)

    Ko, Kyung-Seok; Kong, In Chul

    2017-02-01

    This study examined the applicability of a freeze-dried bioluminescent bioreporter, Pseudomonas putida mt-2 KG1206 (called KG1206), to the biomonitoring of groundwater samples. Samples were collected from the monitoring wells of gas station tanks or old pipeline leakage sites in Korea. In general, the freeze-dried strain in the presence of pure inducer chemicals showed low bioluminescence activity and a different activity order compared with that of the subcultured strain. The effects of KNO3 as a bioluminescence stimulant were observed on the pure inducers and groundwater samples. The stimulation rates varied according to the type of inducers and samples, ranging from 2.2 to 20.5 times (for pure inducers) and from 1.1 to 11 times (for groundwater samples) the total bioluminescence of the control. No considerable correlations were observed between the bioluminescence intensity of the freeze-dried strain and the inducer concentrations in the samples (R (2) < 0.1344). However, samples without a high methyl tertiary butyl ether (MTBE) level and those from the gas station leakage site showed reasonable correlations with the bioluminescence activity with R (2) values of 0.3551 and 0.4131, respectively. These results highlight the potential of using freeze-dried bioluminescent bacteria as a rapid, simple, and portable tool for the preliminary biomonitoring of specific pollutants at contaminated sites.

  13. Quantifying renewable groundwater stress with GRACE

    Science.gov (United States)

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min‐Hui; Reager, John T.; Voss, Katalyn; Swenson, Sean; Rodell, Matthew

    2015-01-01

    Abstract Groundwater is an increasingly important water supply source globally. Understanding the amount of groundwater used versus the volume available is crucial to evaluate future water availability. We present a groundwater stress assessment to quantify the relationship between groundwater use and availability in the world's 37 largest aquifer systems. We quantify stress according to a ratio of groundwater use to availability, which we call the Renewable Groundwater Stress ratio. The impact of quantifying groundwater use based on nationally reported groundwater withdrawal statistics is compared to a novel approach to quantify use based on remote sensing observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. Four characteristic stress regimes are defined: Overstressed, Variable Stress, Human‐dominated Stress, and Unstressed. The regimes are a function of the sign of use (positive or negative) and the sign of groundwater availability, defined as mean annual recharge. The ability to mitigate and adapt to stressed conditions, where use exceeds sustainable water availability, is a function of economic capacity and land use patterns. Therefore, we qualitatively explore the relationship between stress and anthropogenic biomes. We find that estimates of groundwater stress based on withdrawal statistics are unable to capture the range of characteristic stress regimes, especially in regions dominated by sparsely populated biome types with limited cropland. GRACE‐based estimates of use and stress can holistically quantify the impact of groundwater use on stress, resulting in both greater magnitudes of stress and more variability of stress between regions. PMID:26900185

  14. Trend Analyses of Nitrate in Danish Groundwater

    Science.gov (United States)

    Hansen, B.; Thorling, L.; Dalgaard, T.; Erlandsen, M.

    2012-04-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded in decreasing the N surplus by 40% since the mid 1980s while at the same time maintaining crop yields and increasing the animal production of especially pigs. Trend analyses prove that the youngest (0-15 years old) oxic groundwater shows more pronounced significant downward nitrate trends (44%) than the oldest (25-50 years old) oxic groundwater (9%). This amounts to clear evidence of the effect of reduced nitrate leaching on groundwater nitrate concentrations in Denmark. Are the Danish groundwater monitoring strategy obtimal for detection of nitrate trends? Will the nitrate concentrations in Danish groundwater continue to decrease or are the Danish nitrate concentration levels now appropriate according to the Water Framework Directive?

  15. Thermal management of an urban groundwater body

    Directory of Open Access Journals (Sweden)

    J. Epting

    2012-06-01

    Full Text Available This study presents a management concept for the sustainable thermal use of an urban groundwater body. The concept is designed to be applied for shallow thermal groundwater use and is based on (1 a characterization of the present thermal state of the investigated urban groundwater body; (2 the definition of development goals for specific aquifer regions, including future aquifer use and urbanization; and (3 an evaluation of the thermal use potential for these regions.

    The investigations conducted in the city of Basel (Switzerland focus on thermal processes down-gradient of thermal groundwater use, effects of heated buildings in the aquifer as well as the thermal influence of river-groundwater interaction. Investigation methods include: (1 short- and long-term data analysis; (2 high-resolution multilevel groundwater temperature monitoring; as well as (3 3-D numerical groundwater flow and heat-transport modeling and scenario development. The combination of these methods allows quantifying the thermal influence on the investigated urban groundwater body, including the influences of thermal groundwater use and additional heat from urbanization. Subsequently, management strategies for minimizing further groundwater temperature increase, targeting "potential natural" groundwater temperatures for specific aquifer regions and exploiting the thermal use potential are discussed.

  16. Groundwater - surface water interactions in the Ayeyarwady river delta, Myanmar

    Science.gov (United States)

    Miyaoka, K.; Haruyama, S.; Kuzuha, Y.; Kay, T.

    2012-12-01

    Groundwater is widely used as a water resource in the Ayeyarwady River delta. But, Groundwater has some chemical problem in part of the area. To use safety groundwater for health, it is important to make clear the actual conditions of physical and chemical characteristics of groundwater in this delta. Besides, Ayeyarwady River delta has remarkable wet and dry season. Surface water - groundwater interaction is also different in each season, and it is concerned that physical and chemical characteristics of groundwater is affected by the flood and high waves through cyclone or monsoon. So, it is necessary to research a good aquifer distribution for sustainable groundwater resource supply. The purposes of this study are evaluate to seasonal change of groundwater - surface water interactions, and to investigate the more safety aquifer to reduce the healthy risk. Water samples are collected at 49 measurement points of river and groundwater, and are analyzed dissolved major ions and oxygen and hydro-stable isotope compositions. There are some groundwater flow systems and these water qualities are different in each depth. These showed that physical and chemical characteristics of groundwater are closely related to climatological, geomorphogical, geological and land use conditions. At the upper Alluvium, groundwater quality changes to lower concentration in wet season, so Ayeyarwady River water is main recharge water at this layer in the wet season. Besides, in the dry season, water quality is high concentration by artificial activities. Shallower groundwater is affected by land surface conditions such as the river water and land use in this layer. At lower Alluvium, Arakan and Pegu mountains are main recharge area of good water quality aquifers. Oxygen18 value showed a little affected by river water infiltration in the wet season, but keep stable good water quality through the both seasons. In the wet season, the same groundwater exists and water quality changes through

  17. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin (ed.); Berg, Cecilia; Harrstroem, Johan; Joensson, Stig; Thur, Pernilla (Geosigma AB (Sweden)); Borgiel, Micke; Qvarfordt, Susanne (Sveriges Vattenekologer AB (Sweden))

    2010-09-15

    The fifth year (2009) of hydrochemical monitoring of groundwaters, surface waters and precipitation in Forsmark is documented in the report. The hydrochemical monitoring programme 2009 included water sampling from: - percussion- and core boreholes equipped with installations for long-term pressure monitoring, tracer tests and water sampling in packed off borehole sections, sampling and analysis performed twice (spring and autumn), - near surface groundwaters (sampling four times a year), - private wells (once per year in October), - surface waters (eleven sampling occasions per year). Due to the somewhat different performance of the hydrogeochemical monitoring of the deep groundwaters during the autumn 2009 compared to previous years, some new findings and knowledge were obtained: 1) Removal of water volumes corresponding to three to five times the volume of the borehole section (the routine procedure) is seldom enough to obtain a complete exchange of the water present in the borehole section when the pumping starts. 2) It is likely that the elevated sulphide concentrations observed in the monitoring programme /1/ is due to contamination from initial water present in the borehole sections when the pumping starts. This water may have a very high sulphide concentration. Dirty water in tubes and in stand pipes may also contribute to the enhanced sulphide concentration. 3) Plug flow calculations will be introduced in the future as a new routine procedure to estimate the water volumes to be removed, in order to exchange the section water volume, prior to groundwater sampling in delimited borehole sections. During the autumn sampling, sample series of five samples per sampling location were collected during continuous pumping in thirteen selected borehole sections. Furthermore, special efforts were put on cleaning of stand pipes and exchange of water prior to sampling. The analytical protocol was rather extensive and included sulphide and uranium analyses for each sample

  18. Shaping the contours of groundwater governance in India

    OpenAIRE

    Kulkarni, Himanshu; Shah, Mihir; P.S. Vijay Shankar

    2015-01-01

    Study region: India. Study focus: India's groundwater dependence and the crises of depletion and contamination of groundwater resources require the development of a robust groundwater dependence framework. Understanding the challenges of developing a groundwater governance framework for regions of extensive groundwater development versus relatively less-developed areas of groundwater development is important. The groundwater typology is a function of both, the hydrogeological aspects of gr...

  19. Calibration of Models Using Groundwater Age (Invited)

    Science.gov (United States)

    Sanford, W. E.

    2009-12-01

    Water-resource managers are frequently concerned with the long-term ability of a groundwater system to deliver volumes of water for both humans and ecosystems under natural and anthropogenic stresses. Analysis of how a groundwater system responds to such stresses usually involves the construction and calibration of a numerical groundwater-flow model. The calibration procedure usually involves the use of both groundwater-level and flux observations. Water-level data are often more abundant, and thus the availability of flux data can be critical, with well discharge and base flow to streams being most often available. Lack of good flux data however is a common occurrence, especially in more arid climates where the sustainability of the water supply may be even more in question. Environmental tracers are frequently being used to estimate the “age” of a water sample, which represents the time the water has been in the subsurface since its arrival at the water table. Groundwater ages provide flux-related information and can be used successfully to help calibrate groundwater models if porosity is well constrained, especially when there is a paucity of other flux data. As several different methods of simulating groundwater age and tracer movement are possible, a review is presented here of the advantages, disadvantages, and potential pitfalls of the various numerical and tracer methods used in model calibration. The usefulness of groundwater ages for model calibration depends on the ability both to interpret a tracer so as to obtain an apparent observed age, and to use a numerical model to obtain an equivalent simulated age observation. Different levels of simplicity and assumptions accompany different methods for calculating the equivalent simulated age observation. The advantages of computational efficiency in certain methods can be offset by error associated with the underlying assumptions. Advective travel-time calculation using path-line tracking in finite

  20. Indicators to identify the source of pesticide contamination to groundwater

    DEFF Research Database (Denmark)

    Thorling, Lærke; Brüsch, Walter; Tuxen, Nina

    In Denmark groundwater is synonym with drinking water. The mainstream Danish political approach favors prevention and action at source over advanced treatments of polluted groundwater. The main pollutants are nitrate and pesticides. Pesticides in groundwater can originate from either diffuse...... intensive diffuse sources (clean keeping of farm yards). It is important to determine the source type in order to make correct management decisions. This project aimed to identify and develop a set of indicators that can be used to determine whether pesticides detected in a groundwater sample (e...... differ. Therefore, a useful indicator for point sources was defined: if a groundwater sample has findings of ≥4 compounds, and/or at ≥ 2 compounds above 0.1g/l. Model results show that the breakthrough curves from point and diffuse sources differ, with diffuse sources resulting in flat breakthrough...

  1. Characterizing the interaction of groundwater and surface water in the karst aquifer of Fangshan, Beijing (China)

    Science.gov (United States)

    Chu, Haibo; Wei, Jiahua; Wang, Rong; Xin, Baodong

    2016-12-01

    Correct understanding of groundwater/surface-water (GW-SW) interaction in karst systems is of greatest importance for managing the water resources. A typical karst region, Fangshan in northern China, was selected as a case study. Groundwater levels and hydrochemistry analyses, together with isotope data based on hydrogeological field investigations, were used to assess the GW-SW interaction. Chemistry data reveal that water type and the concentration of cations in the groundwater are consistent with those of the surface water. Stable isotope ratios of all samples are close to the local meteoric water line, and the 3H concentrations of surface water and groundwater samples are close to that of rainfall, so isotopes also confirm that karst groundwater is recharged by rainfall. Cross-correlation analysis reveals that rainfall leads to a rise in groundwater level with a lag time of 2 months and groundwater exploitation leads to a fall within 1 month. Spectral analysis also reveals that groundwater level, groundwater exploitation and rainfall have significantly similar response periods, indicating their possible inter-relationship. Furthermore, a multiple nonlinear regression model indicates that groundwater level can be negatively correlated with groundwater exploitation, and positively correlated with rainfall. The overall results revealed that groundwater level has a close correlation with groundwater exploitation and rainfall, and they are indicative of a close hydraulic connection and interaction between surface water and groundwater in this karst system.

  2. Characterizing the interaction of groundwater and surface water in the karst aquifer of Fangshan, Beijing (China)

    Science.gov (United States)

    Chu, Haibo; Wei, Jiahua; Wang, Rong; Xin, Baodong

    2017-03-01

    Correct understanding of groundwater/surface-water (GW-SW) interaction in karst systems is of greatest importance for managing the water resources. A typical karst region, Fangshan in northern China, was selected as a case study. Groundwater levels and hydrochemistry analyses, together with isotope data based on hydrogeological field investigations, were used to assess the GW-SW interaction. Chemistry data reveal that water type and the concentration of cations in the groundwater are consistent with those of the surface water. Stable isotope ratios of all samples are close to the local meteoric water line, and the 3H concentrations of surface water and groundwater samples are close to that of rainfall, so isotopes also confirm that karst groundwater is recharged by rainfall. Cross-correlation analysis reveals that rainfall leads to a rise in groundwater level with a lag time of 2 months and groundwater exploitation leads to a fall within 1 month. Spectral analysis also reveals that groundwater level, groundwater exploitation and rainfall have significantly similar response periods, indicating their possible inter-relationship. Furthermore, a multiple nonlinear regression model indicates that groundwater level can be negatively correlated with groundwater exploitation, and positively correlated with rainfall. The overall results revealed that groundwater level has a close correlation with groundwater exploitation and rainfall, and they are indicative of a close hydraulic connection and interaction between surface water and groundwater in this karst system.

  3. Groundwater Policy Research: Collaboration with Groundwater Conservation Districts in Texas

    OpenAIRE

    Johnson, Jeffrey W.; Johnson, Phillip N.; Guerrero, Bridget L.; Weinheimer, Justin; Amosson, Stephen H.; Almas, Lal K.; Golden, Bill B.; Wheeler-Cook, Erin

    2011-01-01

    The unique nature of the Ogallala Aquifer presents interesting and confounding problems for water policymakers who are coping with changing groundwater rules in Texas. The purpose of this article is to link previous efforts in water policy research for the Ogallala Aquifer in Texas with current collaborations that are ongoing with regional water planners. A chronological progression of economic water modeling efforts for the region is reviewed. The results of two recent collaborative studies ...

  4. Groundwater Policy Research: Collaboration with Groundwater Conservation Districts in Texas

    OpenAIRE

    Johnson, Jeffrey W.; Johnson, Phillip N.; Guerrero, Bridget L.; Weinheimer, Justin; Amosson, Stephen H.; Almas, Lal K.; Golden, Bill B.; Wheeler-Cook, Erin

    2011-01-01

    The unique nature of the Ogallala Aquifer presents interesting and confounding problems for water policymakers who are coping with changing groundwater rules in Texas. The purpose of this article is to link previous efforts in water policy research for the Ogallala Aquifer in Texas with current collaborations that are ongoing with regional water planners. A chronological progression of economic water modeling efforts for the region is reviewed. The results of two recent collaborative studies ...

  5. PUMa - modelling the groundwater flow in Baltic Sedimentary Basin

    Science.gov (United States)

    Kalvane, G.; Marnica, A.; Bethers, U.

    2012-04-01

    In 2009-2012 at University of Latvia and Latvia University of Agriculture project "Establishment of interdisciplinary scientist group and modelling system for groundwater research" is implemented financed by the European Social Fund. The aim of the project is to develop groundwater research in Latvia by establishing interdisciplinary research group and modelling system covering groundwater flow in the Baltic Sedimentary Basin. Researchers from fields like geology, chemistry, mathematical modelling, physics and environmental engineering are involved in the project. The modelling system is used as a platform for addressing scientific problems such as: (1) large-scale groundwater flow in Baltic Sedimentary Basin and impact of human activities on it; (2) the evolution of groundwater flow since the last glaciation and subglacial groundwater recharge; (3) the effects of climate changes on shallow groundwater and interaction of hydrographical network and groundwater; (4) new programming approaches for groundwater modelling. Within the frame of the project most accessible geological information such as description of geological wells, geological maps and results of seismic profiling in Latvia as well as Estonia and Lithuania are collected and integrated into modelling system. For example data form more then 40 thousands wells are directly used to automatically generate the geological structure of the model. Additionally a groundwater sampling campaign is undertaken. Contents of CFC, stabile isotopes of O and H and radiocarbon are the most significant parameters of groundwater that are established in unprecedented scale for Latvia. The most important modelling results will be published in web as a data set. Project number: 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060. Project web-site: www.puma.lu.lv

  6. [Construction of groundwater contamination prevention mapping system].

    Science.gov (United States)

    Wang, Jun-Jie; He, Jiang-Tao; Lu, Yan; Liu, Li-Ya; Zhang, Xiao-Liang

    2012-09-01

    Groundwater contamination prevention mapping is an important component of groundwater contamination geological survey and assessment work, which could provide the basis for making and implementing groundwater contamination prevention planning. A groundwater contamination prevention mapping system was constructed in view of the synthetic consideration on nature perspective derived from groundwater contamination sources and aquifer itself, social-economic perspective, policy perspective derived from outside. During the system construction process, analytic hierarchy process and relevant overlaying principles were used to couple groundwater contamination risk assessment, groundwater value as well as wellhead protection area zoning. Data processing and visualization of mapping results were achieved in the GIS environment. The research on groundwater contamination prevention mapping in Beijing Plain indicated that the final groundwater prevention map was in accordance with the actual conditions and well reflected the priorities of groundwater prevention, which could play a guidance role in designing and implementing further practical prevention and supervision measures. Besides, because of the dynamical properties of the system components, it was suggested to analyze the update frequency of the mapping.

  7. Calendar Year 2016 Annual Groundwater Monitoring Report.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jackson, Timmie Okchumpulla [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Li, Jun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Michael Marquand [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractoroperated laboratory. National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., manages and operates SNL/NM for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. Two types of groundwater surveillance monitoring are conducted at SNL/NM: (1) on a site-wide basis as part of the SNL/NM Long-Term Stewardship (LTS) Program’s Groundwater Monitoring Program (GMP) Groundwater Surveillance Task and (2) on a site-specific groundwater monitoring at LTS/Environmental Restoration (ER) Operations sites with ongoing groundwater investigations. This Annual Groundwater Monitoring Report summarizes data collected during groundwater monitoring events conducted at GMP locations and at the following SNL/NM sites through December 31, 2016: Burn Site Groundwater Area of Concern (AOC); Chemical Waste Landfill; Mixed Waste Landfill; Technical Area-V Groundwater AOC; and the Tijeras Arroyo Groundwater AOC. Environmental monitoring and surveillance programs are required by the New Mexico Environment Department (NMED) and DOE Order 436.1, Departmental Sustainability, and DOE Order 231.1B, Environment, Safety, and Health Reporting.

  8. Simulating groundwater-induced sewer flooding

    Science.gov (United States)

    Mijic, A.; Mansour, M.; Stanic, M.; Jackson, C. R.

    2016-12-01

    During the last decade, Chalk catchments of southern England experienced severe groundwater flooding. High groundwater levels resulted in the groundwater ingress into the sewer network that led to restricted toilet use and the overflow of diluted, but untreated sewage to road surfaces, rivers and water courses. In response to these events the water and sewerage company Thames Water Utilities Ltd (TWUL) had to allocate significant funds to mitigate the impacts. It was estimated that approximately £19m was spent responding to the extreme wet weather of 2013-14, along with the use of a fleet of over 100 tankers. However, the magnitude of the event was so large that these efforts could not stop the discharge of sewage to the environment. This work presents the analysis of the risk of groundwater-induced sewer flooding within the Chalk catchment of the River Lambourn, Berkshire. A spatially distributed groundwater model was used to assess historic groundwater flood risk and the potential impacts of changes in future climate. We then linked this model to an urban groundwater model to enable us to simulate groundwater-sewer interaction in detail. The modelling setup was used to identify relationships between infiltration into sewers and groundwater levels at specific points on TWUL's sewer network, and to estimate historic and future groundwater flood risk, and how this varies across the catchment. The study showed the significance of understanding the impact of groundwater on the urban water systems, and producing information that can inform a water company's response to groundwater flood risk, their decision making process and their asset management planning. However, the knowledge gained through integrated modelling of groundwater-sewer interactions has highlighted limitations of existing approaches for the simulation of these coupled systems. We conclude this work with number of recommendations about how to improve such hydrological/sewer analysis.

  9. April 2012 Groundwater and Surface Water Sampling at the Salmon, Mississippi, Site (Data Validation Package)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-10-12

    Sampling and analysis were conducted on April 16-19, 2012, as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office Of Legacy Management Sites (LMS/PLN/S04351, continually updated). Duplicate samples were collected from locations SA1-1-H, HMH-5R, SA3-4-H, SA1-2-H, Pond W of GZ, and SA5-4-4. One trip blank was collected during this sampling event.

  10. POSIVA groundwater flow measuring techniques

    Energy Technology Data Exchange (ETDEWEB)

    Oehberg, A. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland); Rouhiainen, P. [PRG-Tec Oy (Finland)

    2000-08-01

    packers divide the test section into four sectors. The length of the test section between the inflatable packers is two metres. Flow guides are available at the moment for boreholes with diameters 56 mm and 76 mm. The flow sensors operate using a thermal pulse principle. The flow sensors must be calibrated for the acquisition of quantitative information. The sensitivity of the instrument is better than 1 ml/in (millilitre per hour) for the flow across a borehole which corresponds to a flux value of about 2 10-9 m/s. In addition to the flow rate determination across the borehole, the system also makes it possible to determine the approximate direction of flow across the borehole. Both methods have been used to determine hydraulic connections between adjacent boreholes by measuring flow responses in a borehole caused by pumping in another borehole. The suite offered by the Posiva Flow Log tools includes also Electric Conductivity (EC) measurements from the fracture-specific water in the borehole test section. It has been found convenient to conduct EC measurements in connection with the detailed flow logging. In this way hydraulically conductive fractures can be located during the same logging phase as EC values are attained from the most conductive fractures. The results of both the EC and the detailed flow logging measurements give valuable information for the determination of groundwater sampling points. The objective of EC measurement is to determine the distribution of the content of Total Dissolved Solids (TDS) in the groundwater. The detailed flow logging makes it possible to stop on a fracture and to measure there as long as the water volume within the test section is flushed well enough to get a reliable EC reading. EC readings are measured from fractures with higher flow rates than the pre-set limit. In this report all groundwater flow techniques developed by Posiva are presented including the methods and different logging tools. Some background on the

  11. A global-scale two-layer transient groundwater model: Development and application to groundwater depletion

    Science.gov (United States)

    de Graaf, Inge E. M.; van Beek, Rens L. P. H.; Gleeson, Tom; Moosdorf, Nils; Schmitz, Oliver; Sutanudjaja, Edwin H.; Bierkens, Marc F. P.

    2017-04-01

    Groundwater is the world's largest accessible source of freshwater to satisfy human water needs. Moreover, groundwater buffers variable precipitation rates over time, thereby effectively sustaining river flows in times of droughts and evaporation in areas with shallow water tables. In this study, building on previous work, we simulate groundwater head fluctuations and groundwater storage changes in both confined and unconfined aquifer systems using a global-scale high-resolution (5‧) groundwater model by deriving new estimates of the distribution and thickness of confining layers. Inclusion of confined aquifer systems (estimated 6-20% of the total aquifer area) improves estimates of timing and amplitude of groundwater head fluctuations and changes groundwater flow paths and groundwater-surface water interaction rates. Groundwater flow paths within confining layers are shorter than paths in the underlying aquifer, while flows within the confined aquifer can get disconnected from the local drainage system due to the low conductivity of the confining layer. Lateral groundwater flows between basins are significant in the model, especially for areas with (partially) confined aquifers were long flow paths crossing catchment boundaries are simulated, thereby supporting water budgets of neighboring catchments or aquifer systems. The developed two-layer transient groundwater model is used to identify hot-spots of groundwater depletion. Global groundwater depletion is estimated as 7013 km3 (137 km3y-1) over 1960-2010, which is consistent with estimates of previous studies.

  12. A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices.

    Science.gov (United States)

    Vadiati, M; Asghari-Moghaddam, A; Nakhaei, M; Adamowski, J; Akbarzadeh, A H

    2016-12-15

    Due to inherent uncertainties in measurement and analysis, groundwater quality assessment is a difficult task. Artificial intelligence techniques, specifically fuzzy inference systems, have proven useful in evaluating groundwater quality in uncertain and complex hydrogeological systems. In the present study, a Mamdani fuzzy-logic-based decision-making approach was developed to assess groundwater quality based on relevant indices. In an effort to develop a set of new hybrid fuzzy indices for groundwater quality assessment, a Mamdani fuzzy inference model was developed with widely-accepted groundwater quality indices: the Groundwater Quality Index (GQI), the Water Quality Index (WQI), and the Ground Water Quality Index (GWQI). In an effort to present generalized hybrid fuzzy indices a significant effort was made to employ well-known groundwater quality index acceptability ranges as fuzzy model output ranges rather than employing expert knowledge in the fuzzification of output parameters. The proposed approach was evaluated for its ability to assess the drinking water quality of 49 samples collected seasonally from groundwater resources in Iran's Sarab Plain during 2013-2014. Input membership functions were defined as "desirable", "acceptable" and "unacceptable" based on expert knowledge and the standard and permissible limits prescribed by the World Health Organization. Output data were categorized into multiple categories based on the GQI (5 categories), WQI (5 categories), and GWQI (3 categories). Given the potential of fuzzy models to minimize uncertainties, hybrid fuzzy-based indices produce significantly more accurate assessments of groundwater quality than traditional indices. The developed models' accuracy was assessed and a comparison of the performance indices demonstrated the Fuzzy Groundwater Quality Index model to be more accurate than both the Fuzzy Water Quality Index and Fuzzy Ground Water Quality Index models. This suggests that the new hybrid fuzzy

  13. Remote instruction in groundwater hydrology

    Science.gov (United States)

    staff of the Interactive Remote Instructional System

    Wright State University (Dayton, Ohio) is preparing for its fourth cycle of the Interactive Remote Instructional System (IRIS) in groundwater hydrology beginning July 15, 1986. The Department of Geological Sciences proudly announces that the first two cycles recorded an impressive 83% completion ratio for registered participants. This completion rate is a significant departure from success rates traditionally recorded by courses of this nature; it is the result of 2 years of implementation and refinement and demonstrates the progressive orientation of the program. The third cycle has been underway since January. This comprehensive hydrogeology program was originally developed for the U.S. Department of Agriculture Soil Conservation Service to prepare their personnel for professional practice work. As a result of that cooperative effort, the IRIS program has evolved to meet the needs of participants by developing a curriculum that reflects current trends in the groundwater industry and has provided a unique educational approach that ensures maximum interaction between the instructional staff and participants.

  14. The activity concentrations of 222Rn and corresponding health risk in groundwater samples from basement and sandstone aquifer; the correlation to physicochemical parameters

    Science.gov (United States)

    Abdurabu, Wedad Ali; Ramli, Ahmad Termizi; Saleh, Muneer Aziz; Heryansyah, Arien

    2016-10-01

    This study aims to evaluate the activity concentrations of 222Rn and to assess the corresponding health risk in groundwater samples obtained in Juban District, Ad Dali' Governorate, Yemen. The measurements were performed by RAD 7 radon detector manufactured by DURRIDGE COMPANY Inc. The activity concentrations of 222Rn ranged from 1.0±0.2 Bq l-1 to 896.0±0.8 Bq l-1. 57% of the groundwater samples were above the US Environmental Protection Agency (USEPA) recommended value for Rn in water. Induced coupled plasma mass spectrometry (ICP-MS) was used to determine the concentrations of uranium in groundwater samples. The measured concentration of U ranged from 0.33±0.01 μg l-1 to 24.6±0.6 μg l-1. The results were comparable to internationally recommended values. The highest concentration of U and 222Rn were found to be in the basement aquifer, while the lowest concentrations of both radionuclides were in the sandstone aquifer. High concentrations of Rn are found along fault zones. The relationship between the activity concentration of 222Rn, concentration of U and physicochemical parameters were investigated. The results showed a very strong relationship between activity concentrations of 222Rn with concentrations of U and the salinity of water.

  15. Data Validation Package August 2015 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site October 2015

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, William [USDOE Office of Legacy Management (LM), Washington, DC (United States); Baur, Gary [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2015-11-03

    The 1998 Interim Long-Term Surveillance Plan for the Cheney Disposal Site Near Grand Junction, Colorado, requires annual monitoring to assess the performance of the disposal cell. Monitoring wells 0731, 0732 and 0733 were sampled as specified in the plan. Sampling and analyses were conducted in accordance with Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites.

  16. Hanford Site groundwater monitoring: Setting, sources and methods

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Hartman

    2000-04-11

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports.

  17. Groundwater quality and hydrogeological characteristics of Malacca state in Malaysia

    Directory of Open Access Journals (Sweden)

    Shirazi Sharif Moniruzzaman

    2015-03-01

    Full Text Available Groundwater quality and aquifer productivity of Malacca catchment in Peninsular Malaysia are presented in this article. Pumping test data were collected from 210 shallow and 17 deep boreholes to get well inventory information. Data analysis confirmed that the aquifers consisting of schist, sand, limestone and volcanic rocks were the most productive aquifers for groundwater in Malacca state. GIS-based aquifer productivity map was generated based on bedrock and discharge capacity of the aquifers. Aquifer productivity map is classified into three classes, namely high, moderate and low based on discharge capacity. Groundwater potential of the study area is 35, 57 and 8% of low, moderate and high class respectively. Fifty two shallow and 14 deep aquifer groundwater samples were analyzed for water quality. In some cases, groundwater quality analysis indicated that the turbidity, total dissolved solids, iron, chloride and cadmium concentrations exceeded the limit of drinking water quality standards.

  18. Review of Groundwater Protection and Management in China

    Institute of Scientific and Technical Information of China (English)

    LIU Dan; ZHANG Ai-ping

    2008-01-01

    This review begins with an introduction of groundwater resources in China and their distribution characteristic, followed by an elaboration of the exploitation and utilization of groundwater and the negative environmental effects from groundwater overexploitation, and a description of the existing groundwater protection and management measures. At last, the existing problems in groundwater protection and management, with some suggestions, are presented.

  19. Groundwater surface mapping informs sources of catchment baseflow

    OpenAIRE

    J. F. Costelloe; T. J. Peterson; K. Halbert; A. W. Western; J. J. McDonnell

    2014-01-01

    Groundwater discharge is a major contributor to stream baseflow. Quantifying this flux is difficult, despite its considerable importance to water resource management and evaluation of the effects of groundwater extraction on streamflow. It is important to be able to differentiate between contributions to streamflow from regional groundwater discharge (more susceptible to groundwater extraction) compared to interflow processes (arguably less susceptible to groundwater ...

  20. Groundwater Recharge and Hydrogeochemical Evolution in Leizhou Peninsula, China

    Directory of Open Access Journals (Sweden)

    Yintao Lu

    2015-01-01

    Full Text Available An analysis of the stable isotopes and the major ions in the surface water and groundwater in the Leizhou Peninsula was performed to identify the sources and recharge mechanisms of the groundwater. In this study, 70 water samples were collected from rivers, a lake, and pumping wells. The surface water was considered to have a lower salinity than the groundwater in the region of study. The regression equations for δD and δ18O for the surface water and the groundwater are similar to those for precipitation, indicating meteoric origins. The δD and δ18O levels in the groundwater ranged from −60‰; to −25‰; and −8.6‰; to −2.5‰, respectively, and were lower than the stable isotope levels from the winter and spring precipitation. The groundwater in the southern area was classified as the Ca2+-Mg2+-HCO3--type, whereas the groundwater in the northern area included three types (Na+-Cl−-type, Ca2+-Mg2+-HCO3--type, and Ca2+-Mg2+-Cl−-type, indicating rapid and frequent water-rock exchange in the region. A reasonable conclusion is that the groundwater chemistry is dominated by rock weathering and rainwater of local origin, which are influenced by seawater carried by the Asian monsoon.

  1. Groundwater subsidies and penalties to corn yield

    Science.gov (United States)

    Zipper, S. C.; Booth, E.; Loheide, S. P.

    2013-12-01

    Proper water management is critical to closing yield gaps (observed yield below potential yield) as global populations continue to expand. However, the impacts of shallow groundwater on crop production and surface processes are poorly understood. The presence of groundwater within or just below the root zone has the potential to cause (via oxygen stress in poorly drained soils) or eliminate (via water supply in dry regions) yield gaps. The additional water use by a plant in the presence of shallow groundwater, compared to free drainage conditions, is called the groundwater subsidy; the depth at which the groundwater subsidy is greatest is the optimal depth to groundwater (DTGW). In wet years or under very shallow water table conditions, the groundwater subsidy is likely to be negative due to increased oxygen stress, and can be thought of as a groundwater penalty. Understanding the spatial dynamics of groundwater subsidies/penalties and how they interact with weather is critical to making sustainable agricultural and land-use decisions under a range of potential climates. Here, we examine patterns of groundwater subsidies and penalties in two commercial cornfields in the Yahara River Watershed, an urbanizing agricultural watershed in south-central Wisconsin. Water table levels are generally rising in the region due to a long-term trend of increasing precipitation over the last several decades. Biophysical indicators tracked throughout both the 2012 and 2013 growing seasons show a strong response to variable groundwater levels on a field scale. Sections of the field with optimal DTGW exhibit consistently higher stomatal conductance rates, taller canopies and higher leaf area index, higher ET rates, and higher pollination success rates. Patterns in these biophysical lines of evidence allow us to pinpoint specific periods within the growing season that plants were experiencing either oxygen or water stress. Most importantly, groundwater subsidies and penalties are

  2. Situ treatment of contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    McNab, Jr., Walt W. (Concord, CA); Ruiz, Roberto (Tracy, CA); Pico, Tristan M. (Livermore, CA)

    2001-01-01

    A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

  3. June 2012 Groundwater Sampling at the Central Nevada Test Area (Data Validation Package)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Central Nevada Test Area (CNTA) on June 26-27, 2012, in accordance with the 2004 Correction Action Decision Document/Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area (CNTA)-Subsurface and the addendum to the "Corrective Action Decision Document/Corrective Action Plan" completed in 2008. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351), continually updated).

  4. Spatial Prediction and Optimized Sampling Design for Sodium Concentration in Groundwater.

    Science.gov (United States)

    Zahid, Erum; Hussain, Ijaz; Spöck, Gunter; Faisal, Muhammad; Shabbir, Javid; M AbdEl-Salam, Nasser; Hussain, Tajammal

    Sodium is an integral part of water, and its excessive amount in drinking water causes high blood pressure and hypertension. In the present paper, spatial distribution of sodium concentration in drinking water is modeled and optimized sampling designs for selecting sampling locations is calculated for three divisions in Punjab, Pakistan. Universal kriging and Bayesian universal kriging are used to predict the sodium concentrations. Spatial simulated annealing is used to generate optimized sampling designs. Different estimation methods (i.e., maximum likelihood, restricted maximum likelihood, ordinary least squares, and weighted least squares) are used to estimate the parameters of the variogram model (i.e, exponential, Gaussian, spherical and cubic). It is concluded that Bayesian universal kriging fits better than universal kriging. It is also observed that the universal kriging predictor provides minimum mean universal kriging variance for both adding and deleting locations during sampling design.

  5. Data Validation Package August 2015 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site October 2015

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, William [U.S. Dept. of Energy, Washington, DC (United States). Office of Legacy Management; Baur, Gary [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2015-11-03

    Sampling Period: August 4, 2015. The 1998 Interim Long-Term Surveillance Plan for the Cheney Disposal Site Near Grand Junction, Colorado, requires annual monitoring to assess the performance of the disposal cell. Monitoring wells 0731, 0732, and 0733 were sampled as specified in the plan. Sampling and analyses were conducted in accordance with Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). The water level was measured at each sampled well. The water level in well 0733, located in the disposal cell, is lower than water levels in adjacent wells 0731 and 0732, indicating a hydraulic gradient toward the disposal cell. Results from this sampling event were generally consistent with results from the past as shown in the attached concentration-versus-time graphs. There have been no large changes in contaminant concentration observed over the last several years with the following exception. The uranium concentration in well 0733 has been trending upward since 2003. High uranium concentrations are expected in this well because it is located in the disposal cell. The selenium concentrations observed in wells 0731 and 0732 are elevated when compared to the disposal cell 0733. Wells 0731 and 0732 are completed at the alluvium/Mancos contact; here, elevated selenium concentrations are expected due to contributions from the Mancos shale.

  6. Distribution and potential health risk of groundwater uranium in Korea.

    Science.gov (United States)

    Shin, Woosik; Oh, Jungsun; Choung, Sungwook; Cho, Byong-Wook; Lee, Kwang-Sik; Yun, Uk; Woo, Nam-Chil; Kim, Hyun Koo

    2016-11-01

    Chronic exposure even to extremely low specific radioactivity of natural uranium in groundwater results in kidney problems and potential toxicity in bones. This study was conducted to assess the potential health risk via intake of the groundwater containing uranium, based on the determination of the uranium occurrence in groundwater. The groundwater was investigated from a total of 4140 wells in Korea. Most of the groundwater samples showed neutral pH and (sub-)oxic condition that was influenced by the mixing with shallow groundwater due to long-screened (open) wells. High uranium contents exceeding the WHO guideline level of 30 μg L(-1) were observed in the 160 wells located mainly in the plutonic bedrock regions. The statistical analysis suggested that the uranium component was present in groundwater by desorption and re-dissolution processes. Predominant uranium phases were estimated to uranyl carbonates under the Korean groundwater circumstances. These mobile forms of uranium and oxic condition facilitate the increase of potential health risk downgradient. In particular, long-term intake of groundwater containing >200 μg U L(-1) may induce internal exposure to radiation as well as the effects of chemical toxicity. These high uranium concentrations were found in twenty four sampling wells of rural areas in this study, and they were mainly used for drinking. Therefore, the high-level uranium wells and neighboring areas must be properly managed and monitored to reduce the exposure risk for the residents by drinking groundwater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Groundwater and climate change: mitigating the global groundwater crisis and adapting to climate change model

    Science.gov (United States)

    To better understand the effects of climate change on global groundwater resources, the United Nations Educational, Scientific, and Cultural Organization (UNESCO) International Hydrological Programme (IHP) initiated the GRAPHIC (Groundwater Resources Assessment under the Pressures of Humanity and Cl...

  8. Subtask 1.15-Passive Diffusion Sample Bags Made from Expanded Polytetrafluorethylene (ePTFE) to Measure VOC Concentrations in Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Barry W. Botnen

    2006-08-01

    With laboratory testing of expanded polytetrafluoroethylene (ePTFE) membranes complete, collected data support that volatile organic compound (VOC) molecules will readily diffuse across ePTFE membranes. Membrane samples, supplied by BHA Technologies (GE Osmonics), were tested to determine diffusion rates for VOCs in groundwater. Tests were conducted using membranes with two different pore sizes, with and without thermally laminated spun bond backing, and multiple concentrations of contaminated groundwater. Results suggest that typical residence times associated with traditional samplers constructed of polyethylene (2 weeks) can be reduced by 1 week using ePTFE membranes (reducing project costs) and that VOCs will diffuse more readily at lower temperatures (2.2-3.3 C) across ePTFE materials.

  9. Drugs of abuse in urban groundwater. A case study: Barcelona.

    Science.gov (United States)

    Jurado, A.; Mastroianni, N.; Vazquez-Suñe, E.; Carrera, J.; Tubau, I.; Pujades, E.; Postigo, C.; Lopez de Alda, M.; Barceló, D.

    2012-04-01

    This study is concerned with drugs of abuse (DAs) and their metabolites in urban groundwater at field scale in relation to (1) the spatial distribution of the groundwater samples, (2) the depth of the groundwater sample, (3) the presence of DAs in recharge sources, and (4) the identification of processes affecting the fate of DAs in groundwater. To this end, urban groundwater samples were collected in the city of Barcelona and a total of 21 drugs were analyzed including cocainics, amphetamine-like compounds, opioids, lysergics and cannabinoids and the prescribed drugs benzodiazepines. Overall, the highest groundwater concentrations and the largest number of detected DAs were found in zones basically recharged by a river that receives large amounts of effluents from waste water treatment plants (WWTPs). In contrast, the urbanized areas yielded not only lower concentrations but also a much smaller number of drugs, which suggests a local origin. In fact, cocaine and its metabolite were dominant in more prosperous neighbourhoods, whereas the cheaper (MDMA) was the dominant DA in poorer districts. Concentrations of DAs estimated mainly from the waste water fraction in groundwater samples were consistently higher than the measured ones, suggesting that DAs undergo removal processes in both reducing and oxidizing conditions.

  10. Impact of geochemical stressors on shallow groundwater quality

    Science.gov (United States)

    An, Y.-J.; Kampbell, D.H.; Jeong, S.-W.; Jewell, K.P.; Masoner, J.R.

    2005-01-01

    Groundwater monitoring wells (about 70 wells) were extensively installed in 28 sites surrounding Lake Texoma, located on the border of Oklahoma and Texas, to assess the impact of geochemical stressors to shallow groundwater quality. The monitoring wells were classified into three groups (residential area, agricultural area, and oil field area) depending on their land uses. During a 2-year period from 1999 to 2001 the monitoring wells were sampled every 3 months on a seasonal basis. Water quality assay consisted of 25 parameters including field parameters, nutrients, major ions, and trace elements. Occurrence and level of inorganics in groundwater samples were related to the land use and temporal change. Groundwater of the agricultural area showed lower levels of ferrous iron and nitrate than the residential area. The summer season data revealed more distinct differences in inorganic profiles of the two land use groundwater samples. There is a possible trend that nitrate concentrations in groundwater increased as the proportions of cultivated area increased. Water-soluble ferrous iron occurred primarily in water samples with a low dissolved oxygen concentration and/or a negative redox potential. The presence of brine waste in shallow groundwater was detected by chloride and conductivity in oil field area. Dissolved trace metals and volatile organic carbons were not in a form of concentration to be stressors. This study showed that the quality of shallow ground water could be related to regional geochemical stressors surrounding the lake. ?? 2005 Elsevier B.V. All rights reserved.

  11. Monitoring groundwater drought with GRACE data assimilation

    Science.gov (United States)

    Li, B.; Rodell, M.; Beaudoing, H. K.; Getirana, A.; Zaitchik, B. F.

    2015-12-01

    Groundwater drought is a distinct class of drought, not a sub-class of meteorological, agricultural and hydrological drought and has profound impacts on natural environments and societies. Due to a deficiency of in situ measurements, we developed a groundwater drought indicator using groundwater change estimates derived by assimilating GRACE derived terrestrial water storage (TWS) anomalies into the NASA Catchment land surface model. Data assimilation enables spatial and temporal downscaling of coarse GRACE TWS observations (monthly and ~150,000 km2 effective spatial resolution) and extrapolation to near-real time. In this talk, we will present our latest progress on using GRACE satellite data for groundwater drought monitoring in the U.S. and globally. Characteristics of this groundwater drought indicator will be discussed, including its relationship with other types of drought and how they are influenced by model physics and climate conditions. Results are evaluated using in situ groundwater observations.

  12. Quantification of Seepage in Groundwater Dependent Wetlands

    DEFF Research Database (Denmark)

    Johansen, Ole; Beven, Keith; Jensen, Jacob Birk

    2017-01-01

    Restoration and management of groundwater dependent wetlands require tools for quantifying the groundwater seepage process. A method for determining point estimates of the groundwater seepage based on water level observations is tested. The study is based on field data from a Danish rich fen....... Therefore secondly a much simpler mass balance approach is used with lumped descriptions of the most important hydrological processes controlling water level and groundwater inflow to the system. The water level dynamics are here described and bracketed nicely and a dynamic description of the seepage rate...... the dynamic description of groundwater seepage can be very useful in future studies of the links between seepage, soil water chemistry and vegetation in groundwater dependent terrestrial ecosystems....

  13. Quantifying shallow and deep groundwater inputs to rivers with groundwater dating in hydrological observatories.

    Science.gov (United States)

    Aquilina, Luc; Marçais, Jean; Gauvain, Alexandre; Kolbe, Tamara; de Dreuzy, Jean-Raynald; Labasque, Thierry; Abbott, Benjamin W.; Vergnaud, Virginie; Chatton, Eliot; Thomas, Zahra; Ruiz, Laurent; Bour, Olivier; Pinay, Gilles

    2017-04-01

    River water derives in part from groundwater—water that has spent some time in the subsurface (e.g. soil, unsaturated zone, saturated zone). However, because groundwater residence times vary from months to millennia, determining the proportion of shallow and deep groundwater contribution can be challenging. Groundwater dating with anthropogenic gases and natural geochemical tracers can decipher the origin of groundwater contribution to rivers, particularly when repeat samplings are carried out in different hydrological conditions. Here, we present two different applications of this approach from three hydrological observatories (H+ hydrogeological network; Aghrys and Armorique observatories) in western France, all these observatories belonging to the OZCAR national network. We carried out a regional investigation of mean groundwater ages in hard rock aquifers in Brittany, using long-term chronicles from hydrological observatories and regional monitoring sites. We determined the mean residence-time (RT) and annual renewal rate (RR) of four compartments of these aquifers: the direct contribution of a very young water component (i.e. RT less than 1-2 yr), the upper variably saturated zone (RR 27-33%), the weathered layer (RR 1.8-2.1%) and the fractured zone (RR 0.1%). From these values and a nitrate chronicle, we were able to determine the respective contributions of each compartment to the largest river in Brittany, the Vilaine, which drains 30% of the region. We found that the deep fractured compartment with very slow renewal times contributed to 25-45% of river water in winter and 30-60% in summer. The very young water which includes direct precipitation and soil fluxes constituted 40-65% of the winter river water (Aquilina et al., 2012). To complement these estimates, we investigated the relationship between dissolved silica and groundwater age in the Armorique hydrological observatory in northern Brittany. We computed the silica concentration expected along the

  14. DETERMINATION OF CHLOROPHENOLS, NITROPHENOLS, AND METHYLPHENOLS IN GROUND-WATER SAMPLES USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

    Science.gov (United States)

    A high performance liquid chromatography (HPLC) method was developed to quantitatively determine phenolic compounds and their isomers in aqueous samples. The HPLC method can analyze a mixture of 15 contaminants in the same analytical run with an analysis time of 25 minutes. The...

  15. Groundwater characterisation and modelling: problems, facts and possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus [INTERA KB, Sollentuna (Sweden)

    1999-12-01

    For the last 10 years, the Aespoe Hard Rock Laboratory (HRL) in Sweden has been the main test site for the development of suitable methods for the final disposal of spent nuclear fuel. Major achievements have been made in the development of new groundwater sampling and modelling techniques. The natural condition of the groundwater is easily disturbed by drilling and sampling. The effects from borehole activities which may bias the real character of the groundwater have been identified. The development of new sampling techniques has improved the representativeness of the groundwater samples. In addition, methods to judge the representativeness better have been developed. For modelling of the Aespoe site, standard groundwater modelling codes based on thermodynamic laws have been applied. The many limitations of existing geochemical models used at the Aespoe site and the need to decode the complex groundwater information in terms of origin, mixing and reactions at site scale necessitated the development of a new modelling tool. This new modelling concept was named M3. In M3 modelling the assumption is that the groundwater chemistry is a result of mixing as well as water/rock reactions. The M3 model compares the groundwater compositions from a site. The similarities and differences of the groundwater compositions are used to quantify the contribution from mixing and reactions on the measured data. In order to construct a reliable model the major components, stable isotopes and tritium are used. Initially, the method quantifies the contribution from the flow system. Subsequently, contributions from reactions are calculated. The model differs from many other standard models which primarily use reactions rather than mixing to determine the groundwater evolution. The M3 code has been used for the following type of modelling: calculate the mixing portions at Aespoe, quantify the contribution from inorganic and organic reactions such as biogenic decomposition and sulphate

  16. Final work plan : targeted groundwater sampling and monitoring well installation for potential site reclassification at Barnes, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.

    2006-07-11

    This ''Work Plan'' outlines the scope of work for a targeted groundwater sampling investigation and monitoring well installation at Barnes, Kansas. This activity is being conducted at the request of the Kansas Department of Health and Environment (KDHE), in accordance with the intergovernmental agreement between the KDHE and the Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA). Data resulting from the proposed work will be used to determine the hydraulic gradient near the former CCC/USDA facility, delineate the downgradient carbon tetrachloride plume, and determine additional monitoring requirements at Barnes. The overall goal is to establish criteria for monitoring leading to potential site reclassification. The proposed work will be performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy (DOE). The Farm Service Agency of the USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance with environmental site characterization and remediation at former CCC/USDA grain storage facilities. Argonne issued a ''Master Work Plan'' (Argonne 2002) to provide general guidance for all investigations at former CCC/USDA facilities in Kansas. The ''Master Work Plan'', approved by the KDHE, contains the materials common to investigations at all locations in Kansas. This document must be consulted for the complete details of plans for this work associated with the former CCC/USDA facility at Barnes.

  17. Estimation of radon concentration in soil and groundwater samples of Northern Rajasthan, India

    Directory of Open Access Journals (Sweden)

    Sudhir Mittal

    2016-04-01

    Full Text Available In the present investigation, analysis of radon concentration in 20 water and soil samples collected from different locations of Bikaner and Jhunjhunu districts of Rajasthan, India has been carried out by using RAD7 an electronic Radon detector. The measured radon concentration in water samples lies in the range from 0.50 to 22 Bq l−1 with the mean value of 4.42 Bq l−1, which lies within the safe limit from 4 to 40 Bq l−1 recommended by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2008. The total annual effective dose estimated due to radon concentration in water ranges from 1.37 to 60.06 μSV y−1 with the mean value of 12.08 μSV y−1, which is lower than the safe limit 0.1 mSv y−1 as set by World Health Organization (WHO, 2004 and European Council (EU, 1998. Radon measurement in soil samples varies from 941 to 10,050 Bq m−3 with the mean value of 4561 Bq m−3, which lies within the range reported by other investigators. It was observed that the soil and water of Bikaner and Jhunjhunu districts are suitable for drinking and construction purpose without posing any health hazard.

  18. Improved Understanding of Sources of Variability in Groundwater Sampling for Long-Term Monitoring Programs

    Science.gov (United States)

    2013-02-01

    Lab Sample ID: 600-44501-11 Acetone 1100 RL 1000 ug/L 8260B Total/ NA200 MDL 200 Analyte Result Qualifier Unit Dil Fac D Method Prep Type Benzene 8260B...8260B Total/ NA200 MDL 22 Analyte Result Qualifier Unit Dil Fac D Method Prep Type Trichloroethene - DL 8260B Total/NA1100 200 ug/L 20036 cis-1,2...L 8260B Total/ NA200 MDL 200 Benzene 8260B Total/NA7100 200 ug/L 20016 Chlorobenzene 8260B Total/NA2200 200 ug/L 20024 Chloroform 8260B Total/NA57 J

  19. Compendium of ordinances for groundwater protection

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    Groundwater is an extremely important resource in the Tennessee Valley. Nearly two-thirds of the Tennessee Valley's residents rely, at least in part, on groundwater supplies for drinking water. In rural areas, approximately ninety-five percent of residents rely on groundwater for domestic supplies. Population growth and economic development increase the volume and kinds of wastes requiring disposal which can lead to groundwater contamination. In addition to disposal which can lead to groundwater contamination. In addition to disposal problems associated with increases in conventional wastewater and solid waste, technological advancements in recent decades have resulted in new chemicals and increased usage in agriculture, industry, and the home. Unfortunately, there has not been comparable progress in identifying the potential long-term effects of these chemicals, in managing them to prevent contamination of groundwater, or in developing treatment technologies for removing them from water once contamination has occurred. The challenge facing residence of the Tennessee Valley is to manage growth and economic and technological development in ways that will avoid polluting the groundwater resource. Once groundwater has been contaminated, cleanup is almost always very costly and is sometimes impractical or technically infeasible. Therefore, prevention of contamination -- not remedial treatment--is the key to continued availability of usable groundwater. This document discusses regulations to aid in this prevention.

  20. Groundwater Level Predictions Using Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    毛晓敏; 尚松浩; 刘翔

    2002-01-01

    The prediction of groundwater level is important for the use and management of groundwater resources. In this paper, the artificial neural networks (ANN) were used to predict groundwater level in the Dawu Aquifer of Zibo in Eastern China. The first step was an auto-correlation analysis of the groundwater level which showed that the monthly groundwater level was time dependent. An auto-regression type ANN (ARANN) model and a regression-auto-regression type ANN (RARANN) model using back-propagation algorithm were then used to predict the groundwater level. Monthly data from June 1988 to May 1998 was used for the network training and testing. The results show that the RARANN model is more reliable than the ARANN model, especially in the testing period, which indicates that the RARANN model can describe the relationship between the groundwater fluctuation and main factors that currently influence the groundwater level. The results suggest that the model is suitable for predicting groundwater level fluctuations in this area for similar conditions in the future.

  1. The challenges facing sustainable and adaptive groundwater ...

    African Journals Online (AJOL)

    The challenges facing sustainable and adaptive groundwater management ... provide the capacity to assure effective and sustainable resource regulation and allocation. ... of alternative strategies needed to achieve sustainable management.

  2. Remedies proposed for China's groundwater problems

    Science.gov (United States)

    Loaiciga, Hugo A.

    Groundwater experts and hydrologists from China and 10 other nations recently gathered in Beijing to exchange state-of-the-art scientific and technological knowledge on groundwater hydrology, modeling, remediation, and management. The participants also reviewed groundwater environmental conditions in China, identified key problems, and made recommendations to help guide the nation's groundwater policy.The Regional Workshop on Ground Water Contamination, held from July 31 to August 4, 1995, was the fifth of a series of regional workshops sponsored by the Scientific Committee on Problems of the Environment of the United Nations Environmental Program. Earlier workshops were held in Thailand (1991), Costa Rica (1993), the Czech Republic (1994), and Australia (1994).

  3. Estimating Groundwater Development area in Jianan Plain using Standardized Groundwater Index

    Science.gov (United States)

    Yu, Chang Hsiang; Haw, Lee Cheng

    2017-04-01

    Taiwan has been facing severe water crises in recent years owing to the effects of extreme weather conditions. Changes in precipitation patterns have also made the drought phenomenon increasingly prominent, which has indirectly affected groundwater recharge. Hence, in the present study, long-term monitoring data were collected from the study area of the Jianan plain. The standardized groundwater index (SGI) and was then used to analyse the region's drought characteristics. To analyse the groundwater level by using SGI, making SGI180 groundwater level be the medium water crises, and SGI360 groundwater level be the extreme water crises. Through the different water crises signal in SGI180 and SGI360, we divide groundwater in Jianan plain into two sections. Thereby the water crises indicators establishing groundwater level standard line in Jianan Plain, then using the groundwater level standard line to find the study area where could be groundwater development area in Jianan plain. Taking into account relatively more water scarcity in dry season, so the study screen out another emergency backup groundwater development area, but the long-term groundwater development area is still as a priority development area. After finding suitable locations, groundwater modeling systems(GMS) software is used to simulate our sites to evaluate development volume. Finally, the result of study will help the government to grasp the water shortage situation immediately and solve the problem of water resources deployment.

  4. Groundwater management for agriculture and nature: an economic analysis

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.

    2001-01-01

    Key words: desiccation of nature, economics of water management, groundwater extraction, groundwater level management, ecohydrology, agriculture, policy instruments.

    As a result of declining groundwater levels, nature in the Netherlands is suffering

  5. Groundwater Management for Agriculture and Nature : an Economic Analysis

    NARCIS (Netherlands)

    Hellegers, P.

    2001-01-01

    Key words: desiccation of nature, economics of water management, groundwater extraction, groundwater level management, ecohydrology, agriculture, policy instruments.As a result of declining groundwater levels, nature in the Netherlands is suffering from desiccation. Since measures taken to raise gro

  6. Map of Arsenic concentrations in groundwater of the United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The map graphic image at http://water.usgs.gov/GIS/browse/arsenic_map.png illustrates arsenic values, in micrograms per liter, for groundwater samples from about...

  7. Investigation of Hydro-Geochemical Characteristics of Groundwater ...

    African Journals Online (AJOL)

    Investigation of Hydro-Geochemical Characteristics of Groundwater In Port Harcourt City, ... Constituents of the heavy metals as shown in this study reveal that, in some ... Microbial analysis of the water samples to determine the presumptive ...

  8. 2,4-D abatement from groundwater samples by photo-Fenton processes at circumneutral pH using naturally iron present. Effect of inorganic ions.

    Science.gov (United States)

    Gutiérrez-Zapata, Héctor M; Rojas, Karen L; Sanabria, Janeth; Rengifo-Herrera, Julián Andrés

    2017-03-01

    This study evaluated, at laboratory scale, if the using iron naturally present (0.3 mg L(-1)) and adding 10 mg L(-1) of hydrogen peroxide was effective to remove 24.3 mgL(-1) of 2,4-dichlorophenoxyacetic acid (2,4-D) from groundwater samples by simulated solar irradiation (global intensity = 300 W m(-2)). Under these conditions, the degradation of 2,4-D reached 75.2 % and the apparition of its main oxidation byproduct 2,4-dichlorophenol (DCP) was observed. On the other hand, pH exhibited an increasing from 7.0 to 8.3 during the experiment. Experiments using Milli-Q water at pH 7.0, iron, and H2O2 concentrations of 0.3 and 10 mg L(-1), respectively, were carried out in order to study the effect of ions such as carbonate species, phosphate, and fluoride in typical concentrations often found in groundwater. Ion concentrations were combined by using a factorial experimental design 2(3). Results showed that carbonates and fluoride did not produce a detrimental effect on the 2,4-D degradation, while phosphate inhibited the process. In this case, the pH increased also from 7.0 to 7.95 and 8.99. Effect of parameters such as pH, iron concentration, and hydrogen peroxide concentration on the 2,4-D degradation by the photo-Fenton process in groundwater was evaluated by using a factorial experimental design 2(3). Results showed that the pH was the main parameter affecting the process. This study shows for the first time that using the photo-Fenton process at circumneutral pH and iron naturally present seems to be a promising process to remove pesticides from groundwater.

  9. Groundwater Quality Assessment Based on Geographical Information System and Groundwater Quality Index

    Directory of Open Access Journals (Sweden)

    Zahra Derakhshan

    2015-06-01

    Full Text Available Iran is located in an arid and semi-arid part of the world. Accordingly, the management of the water resources in the country is a priority. In this regard, determining the quality and pollution of surface water and groundwater is very important, especially in areas where groundwater resources are used for drinking. Groundwater quality index (GQI checks the components of the available water with various quality levels. To assess the quality of drinking groundwater of Yazd-Ardakan plain according to GQI in geographical information system (GIS environment, the electrical conductivity, sodium, calcium, magnesium, chlorine, pH, sodium adsorption ratio, bicarbonate, sulfate, potassium, water hardness, and all substances dissolved in the waters of 80 wells were determined. The samples were obtained from Yazd Regional Water Organization from 2005 to 2014. Using this data, the map components were plotted by Kriging geostatistical method. Then, the map of GQI was prepared after normalizing each map component, switching to a rating map, and extracting the weight of each component from the rating map. Based on the GQI index map, the index point which was 87 in 2005 has increased to 81 in 2014. These maps show a decline in groundwater quality from west to the east region. This decline in groundwater quality is due to the existence of Neogene Organizations in the east and geomorphologic unit of the bare epandage pediment in the west. The map removal and single-parameter sensitivity analysis showed that GQI index in Yazd-Ardakan plain is more sensitive to the components of electrical conductivity (EC, total dissolved solids (TDS, and total hardness (TH. Therefore, these components should be monitored more carefully and repeatedly.

  10. Groundwater-quality data in 12 GAMA study units: Results from the 2006–10 initial sampling period and the 2008–13 trend sampling period, California GAMA Priority Basin Project

    Science.gov (United States)

    Mathany, Timothy M.

    2017-03-09

    The Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) program was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey in cooperation with the California State Water Resources Control Board. From 2004 through 2012, the GAMA-PBP collected samples and assessed the quality of groundwater resources that supply public drinking water in 35 study units across the State. Selected sites in each study unit were sampled again approximately 3 years after initial sampling as part of an assessment of temporal trends in water quality by the GAMA-PBP. Twelve of the study units, initially sampled during 2006–11 (initial sampling period) and sampled a second time during 2008–13 (trend sampling period) to assess temporal trends, are the subject of this report.The initial sampling was designed to provide a spatially unbiased assessment of the quality of untreated groundwater used for public water supplies in the 12 study units. In these study units, 550 sampling sites were selected by using a spatially distributed, randomized, grid-based method to provide spatially unbiased representation of the areas assessed (grid sites, also called “status sites”). After the initial sampling period, 76 of the previously sampled status sites (approximately 10 percent in each study unit) were randomly selected for trend sampling (“trend sites”). The 12 study units sampled both during the initial sampling and during the trend sampling period were distributed among 6 hydrogeologic provinces: Coastal (Northern and Southern), Transverse Ranges and Selected Peninsular Ranges, Klamath, Modoc Plateau and Cascades, and Sierra Nevada Hydrogeologic Provinces. For the purposes of this trend report, the six hydrogeologic provinces were grouped into two hydrogeologic regions based on location: Coastal and Mountain.The groundwater samples were analyzed for a number of synthetic organic

  11. DESIGN OF GROUNDWATER LEVEL MONITORING NETWORK WITH ORDINARY KRIGING

    Institute of Scientific and Technical Information of China (English)

    YANG Feng-guang; CAO Shu-you; LIU Xing-nian; YANG Ke-jun

    2008-01-01

    The primary network of groundwater level observation wells aims at realizing a regional groundwater management policy. It may give a regional picture of groundwater level with emphasis on the natural situation. Observation data from the primary network can be used to estimate the actual state of groundwater system. Since the cost of the installation and maintenance of a groundwater monitoring network is extremely high, the assessment of effectiveness of the network becomes very necessary. Groundwater level monitoring networks are the examples of discontinuous sampling on variables presenting spatial continuity and highly skewed frequency distributions. Anywhere in the aquifer, ordinary kriging provides estimates of the variable sampled and a standard error of the estimate. In this article, the average Kriging standard deviation was used as a criterion for the determination of network density,and the GIS-based approach was analysized. A case study of groundwater level network simulation in the Chaiwopu Basin, Xinjiang Uygur Autonomous Region, China, was presented. In the case study, the initial phreatic water observation wells were 18, a comparison of the three variogram parameters of the three defferent variogram models shows that the Gaussian model is the best. Finally, a network with 55 wells was constructed.

  12. The Present Situation and Countermeasures of Groundwater Contamination in Japan

    OpenAIRE

    Shindo, Shizuo; Tang, Changyuan

    1997-01-01

    [ABSTRACT] Since 1982, thousands of groundwater pollution cases have been found in Japan. In order to improve the groundwater quality, Japan has developed strategies for protection of groundwater. In this paper, authors try to explain the present of groundwater use, groundwater pollution and remediation methods in Japan. From the results shown in this paper, it can be found that groundwater pollution problem has become very serious in Japan. Even many efforts have been made to improve the sit...

  13. Evaluation of Groundwater Pollution Nitrogen Fertilizer Using Expert System

    OpenAIRE

    Ta-oun, Mongkon; Daud, Mohamed; Bardaie, Mohd Zohadie

    2017-01-01

    An expert system was used to correlate the availability of nitrogen fertilizer with the vulnerability of groundwater to pollution in Peninsula Malaysia to identify potential groundwater quality problems. The expert system could predict the groundwater pollution potential under several conditions of agricultural activities and exiting environments. Four categories of groundwater pollution potential were identified base on an N-fertilizer groundwater pollution potential index. A groundwater pol...

  14. Groundwater Quality Deterioration due to Municipal Solid Waste Dumping Practices

    Science.gov (United States)

    Parameswari, Kaliyaperumal; Karunakaran, Krishnasamy

    2011-07-01

    Groundwater is the major source of drinking water in both urban and rural India. The demand for water has increased over the years and this has led to water scarcity. The scarcity situation, especially in urban areas, is aggravated by the problem of water pollution or contamination by solid waste dumping. In many urban centers in India, the quality of groundwater is getting severely affected because of the widespread pollution, due to the discharge of untreated waste water in water bodies and leachate from the unscientific disposal of solid wastes. It is necessary to realize the importance of groundwater and preserve its quality through careful monitoring and remediation. This study focuses on the magnitude of groundwater pollution due to improper solid waste dumping practices prevailing in the southern part of the Chennai Metropolitan Area. The Perungudi dumpsite, a solid waste dumping site in the periphery of Chennai city, India, has been chosen for this study. The chemical characteristic of solid waste and leachate has been studied, and the groundwater samples from various locations around the dumpsite were collected and analyzed. Samples were analyzed for pH, electrical conductivity, total dissolved solids, chlorides, sulfate, calcium, magnesium, total hardness, sodium, potassium, BOD, and COD. Heavy metals such as lead, iron, and zinc have been analyzed. The study reveals that most of the groundwater samples do not conform to drinking water quality standards. The study also indicates that groundwater remediation techniques and proper groundwater quality monitoring on a regular basis are of utmost importance in the study area. A few in-situ groundwater remediation technologies have been suggested to improve the present water quality.

  15. Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater.

    Science.gov (United States)

    Zhou, Ai-xia; Zhang, Yu-ling; Dong, Tian-zi; Lin, Xue-yu; Su, Xiao-si

    2015-07-01

    The effects of seasonal groundwater level fluctuations on the contamination characteristics of total petroleum hydrocarbons (TPH) in soils, groundwater, and the microbial community were investigated at a typical petrochemical site in northern China. The measurements of groundwater and soil at different depths showed that significant TPH residue was present in the soil in this study area, especially in the vicinity of the pollution source, where TPH concentrations were up to 2600 mg kg(-1). The TPH concentration in the groundwater fluctuated seasonally, and the maximum variation was 0.8 mg L(-1). The highest TPH concentrations were detected in the silty clay layer and lied in the groundwater level fluctuation zones. The groundwater could reach previously contaminated areas in the soil, leading to higher groundwater TPH concentrations as TPH leaches into the groundwater. The coincident variation of the electron acceptors and TPH concentration with groundwater-table fluctuations affected the microbial communities in groundwater. The microbial community structure was significantly different between the wet and dry seasons. The canonical correspondence analysis (CCA) results showed that in the wet season, TPH, NO3(-), Fe(2+), TMn, S(2-), and HCO3(-) were the major factors correlating the microbial community. A significant increase in abundance of operational taxonomic unit J1 (97% similar to Dechloromonas aromatica sp.) was also observed in wet season conditions, indicating an intense denitrifying activity in the wet season environment. In the dry season, due to weak groundwater level fluctuations and low temperature of groundwater, the microbial activity was weak. But iron and sulfate-reducing were also detected in dry season at this site. As a whole, groundwater-table fluctuations would affect the distribution, transport, and biodegradation of the contaminants. These results may be valuable for the control and remediation of soil and groundwater pollution at this site

  16. Global Climate Responses to Anthropogenic Groundwater Exploitation

    Science.gov (United States)

    Zeng, Y.; Xie, Z.

    2015-12-01

    In this study, a groundwater exploitation scheme is incorporated into the earth system model, Community Earth System Model 1.2.0 (CESM1.2.0), which is called CESM1.2_GW, and the climatic responses to anthropogenic groundwater withdrawal are then investigated on global scale. The scheme models anthropogenic groundwater exploitation and consumption, which are then divided into agricultural irrigation, industrial use and domestic use. A group of 41-year ensemble groundwater exploitation simulations with six different initial conditions, and a group of ensemble control simulations without exploitation are conducted using the developed model CESM1.2_GW with water supplies and demands estimated. The results reveal that the groundwater exploitation and water consumption cause drying effects on soil moisture in deep layers and wetting effects in upper layers, along with a rapidly declining groundwater table in Central US, Haihe River Basin in China and Northern India and Pakistan where groundwater extraction are most severe in the world. The atmosphere also responds to anthropogenic groundwater exploitation. Cooling effects on lower troposphere appear in large areas of North China Plain and of Northern India and Pakistan. Increased precipitation occurs in Haihe River Basin due to increased evapotranspiration from irrigation. Decreased precipitation occurs in Northern India because water vapor here is taken away by monsoon anomalies induced by anthropogenic alteration of groundwater. The local reducing effects of anthropogenic groundwater exploitation on total terrestrial water storage evinces that water resource is unsustainable with the current high exploitation rate. Therefore, a balance between slow groundwater withdrawal and rapid human economic development must be achieved to maintain a sustainable water resource, especially in over-exploitation regions such as Central US, Northern China, India and Pakistan.

  17. Isotope heterogeneity of Pre-Holocene groundwater in Iceland

    DEFF Research Database (Denmark)

    Sveinbjörnsdóttir, Á.E.; Arnorsson, S.; Heinemeier, Jan

    2007-01-01

    In recent years, it has been shown that groundwater with a Pre-Holocene component is more common in the Icelandic bedrock than previously thought. Some of the Pre-Holocene water samples are more depleted in delta H-2 and delta O-18 than any mean annual precipitation in Iceland today due to the cold......-Holocene component in the groundwater. The deuterium excess value may also help to identify water from a different climate regime, if no oxygen shift has occurred. The relative abundance of a Pre-Holocene water component of the Icelandic groundwater has led to the understanding that combined interpretation of water...

  18. Considering groundwater use to improve the assessment of groundwater pumping for irrigation in North Africa

    Science.gov (United States)

    Massuel, Sylvain; Amichi, Farida; Ameur, Fatah; Calvez, Roger; Jenhaoui, Zakia; Bouarfa, Sami; Kuper, Marcel; Habaieb, Hamadi; Hartani, Tarik; Hammani, Ali

    2017-04-01

    Groundwater resources in semi-arid areas and especially in the Mediterranean face a growing demand for irrigated agriculture and, to a lesser extent, for domestic uses. Consequently, groundwater reserves are affected and water-table drops are widely observed. This leads to strong constraints on groundwater access for farmers, while managers worry about the future evolution of the water resources. A common problem for building proper groundwater management plans is the difficulty in assessing individual groundwater withdrawals at regional scale. Predicting future trends of these groundwater withdrawals is even more challenging. The basic question is how to assess the water budget variables and their evolution when they are deeply linked to human activities, themselves driven by countless factors (access to natural resources, public policies, market, etc.). This study provides some possible answers by focusing on the assessment of groundwater withdrawals for irrigated agriculture at three sites in North Africa (Morocco, Tunisia and Algeria). Efforts were made to understand the different features that influence irrigation practices, and an adaptive user-oriented methodology was used to monitor groundwater withdrawals. For each site, different key factors affecting the regional groundwater abstraction and its past evolution were identified by involving farmers' knowledge. Factors such as farmer access to land and groundwater or development of public infrastructures (electrical distribution network) are crucial to decode the results of well inventories and assess the regional groundwater abstraction and its future trend. This leads one to look with caution at the number of wells cited in the literature, which could be oversimplified.

  19. Considering groundwater use to improve the assessment of groundwater pumping for irrigation in North Africa

    Science.gov (United States)

    Massuel, Sylvain; Amichi, Farida; Ameur, Fatah; Calvez, Roger; Jenhaoui, Zakia; Bouarfa, Sami; Kuper, Marcel; Habaieb, Hamadi; Hartani, Tarik; Hammani, Ali

    2017-09-01

    Groundwater resources in semi-arid areas and especially in the Mediterranean face a growing demand for irrigated agriculture and, to a lesser extent, for domestic uses. Consequently, groundwater reserves are affected and water-table drops are widely observed. This leads to strong constraints on groundwater access for farmers, while managers worry about the future evolution of the water resources. A common problem for building proper groundwater management plans is the difficulty in assessing individual groundwater withdrawals at regional scale. Predicting future trends of these groundwater withdrawals is even more challenging. The basic question is how to assess the water budget variables and their evolution when they are deeply linked to human activities, themselves driven by countless factors (access to natural resources, public policies, market, etc.). This study provides some possible answers by focusing on the assessment of groundwater withdrawals for irrigated agriculture at three sites in North Africa (Morocco, Tunisia and Algeria). Efforts were made to understand the different features that influence irrigation practices, and an adaptive user-oriented methodology was used to monitor groundwater withdrawals. For each site, different key factors affecting the regional groundwater abstraction and its past evolution were identified by involving farmers' knowledge. Factors such as farmer access to land and groundwater or development of public infrastructures (electrical distribution network) are crucial to decode the results of well inventories and assess the regional groundwater abstraction and its future trend. This leads one to look with caution at the number of wells cited in the literature, which could be oversimplified.

  20. Research on flow characteristics of deep groundwater by environmental isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Jun; Miyaoka, Kunihide [Tsukuba Univ., Ibaraki (Japan); Sakurai, Hideyuki; Senoo, Muneaki; Kumata, Masahiro; Mukai, Masayuki; Watanabe, Kazuo; Ouchi, Misao

    1996-01-01

    In this research, as the technique for grasping the behavior of groundwater in deep rock bed which is important as the factor of disturbing the natural barrier in the formation disposal of high level radioactive waste, the method of utilizing the environmental isotopes contained in groundwater as natural tracer was taken up, and by setting up the concrete field of investigation, through the forecast of flow by the two or three dimensional groundwater flow analysis using a computer, the planning and execution of water sampling, the analysis of various environmental isotopes, the interpretation based on those results of measurement and so on, the effectiveness of the investigation technique used was verified, and the real state of the behavior of deep groundwater in the district being studied was clarified. In this research, Imaichi alluvial fan located in northern Kanto plain was taken as the object. In fiscal year 1996, three-dimensional steady state groundwater flow simulation was carried out based on the data related to shallow groundwater and surface water systems, and the places where active groundwater flow is expected were selected, and boring will be carried out there. The analysis model and the results are reported. (K.I.)

  1. [Groundwater organic pollution source identification technology system research and application].

    Science.gov (United States)

    Wang, Xiao-Hong; Wei, Jia-Hua; Cheng, Zhi-Neng; Liu, Pei-Bin; Ji, Yi-Qun; Zhang, Gan

    2013-02-01

    Groundwater organic pollutions are found in large amount of locations, and the pollutions are widely spread once onset; which is hard to identify and control. The key process to control and govern groundwater pollution is how to control the sources of pollution and reduce the danger to groundwater. This paper introduced typical contaminated sites as an example; then carried out the source identification studies and established groundwater organic pollution source identification system, finally applied the system to the identification of typical contaminated sites. First, grasp the basis of the contaminated sites of geological and hydrogeological conditions; determine the contaminated sites characteristics of pollutants as carbon tetrachloride, from the large numbers of groundwater analysis and test data; then find the solute transport model of contaminated sites and compound-specific isotope techniques. At last, through groundwater solute transport model and compound-specific isotope technology, determine the distribution of the typical site of organic sources of pollution and pollution status; invest identified potential sources of pollution and sample the soil to analysis. It turns out that the results of two identified historical pollution sources and pollutant concentration distribution are reliable. The results provided the basis for treatment of groundwater pollution.

  2. Regulating groundwater use in developing countries

    DEFF Research Database (Denmark)

    Hansen, Lars Gårn; Jensen, Frank; Amundsen, Eirik S

    2014-01-01

    Worldwide groundwater is a common-pool resource that is potentially subject to the tragedy of the commons if water extraction is not adequately regulated. In developing countries the regulatory infrastructure is often too weak to allow detailed monitoring of individual groundwater extraction. For...

  3. Groundwater use on southern Idaho dairies

    Science.gov (United States)

    Dairy production has expanded in irrigated areas of the western and southwestern US, potentially competing for limited water supplies. Groundwater withdrawal was measured for two years on six dairy farms with 660 to 6400 milk cows in southern Idaho. Groundwater withdrawal was calculated on an equiva...

  4. Applied groundwater modeling, 2nd Edition

    Science.gov (United States)

    Anderson, Mary P.; Woessner, William W.; Hunt, Randall J.

    2015-01-01

    This second edition is extensively revised throughout with expanded discussion of modeling fundamentals and coverage of advances in model calibration and uncertainty analysis that are revolutionizing the science of groundwater modeling. The text is intended for undergraduate and graduate level courses in applied groundwater modeling and as a comprehensive reference for environmental consultants and scientists/engineers in industry and governmental agencies.

  5. Propagation of drought through groundwater systems

    NARCIS (Netherlands)

    Peters, E.

    2003-01-01

    Index words: drought, groundwater, simulation, synthetic data, extreme events

    The transformation of droughts as a result of the propagation through groundwater systems is examined by comparing droughts in time

  6. Propagation of drought through groundwater systems

    NARCIS (Netherlands)

    Peters, E.

    2003-01-01

    Index words: drought, groundwater, simulation, synthetic data, extreme events

    The transformation of droughts as a result of the propagation through groundwater systems is examined by comparing droughts in time se

  7. Groundwater contamination and pollution in micronesia

    Science.gov (United States)

    Detay, M.; Alessandrello, E.; Come, P.; Groom, I.

    1989-12-01

    This paper is an overview of groundwater contamination and pollution in th e main islands of the Federated States of Micronesia, the Republic of the Marshall Islands and the Republic of Belau (Palau). A strategy for the comprehensive protection of groundwater resources in the Trust Territory of the Pacific Islands is proposed.

  8. Groundwater links between Kenyan Rift Valley lakes

    OpenAIRE

    Becht, Robert; Mwango, Fred; Muno, Fred Amstrong

    2006-01-01

    The series of lakes in the bottom of the Kenyan Rift valley are fed by rivers and springs. Based on the water balance, the relative positions determining the regional groundwater flow systems and the analysis of natural isotopes it can be shown that groundwater flows from lake Naivasha to lake Magadi, Elementeita, Nakuru and Bogoria.

  9. STRATEGIC ISSUES GROUNDWATER EXTRACTION MANAGEMENT IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Ekaterina I. Golovina

    2017-05-01

    Full Text Available Water is a key component of our environment; it is a renewable, limited and vulnerable natural resource, which provides economic, social, and environmental well-being of the population. The most promising source of drinking water supply is groundwater usage. Drinking and industrial groundwater is one of the most important components of the groundwater mineral resource base in the Russian Federation. Modern system of groundwater extraction management and state regulation is currently imperfect and has definite disadvantages, among them - lack of control over natural resources by the state, an old system of tax rates for the use of groundwater, commercialization stage of licensing, the budget deficit, which is passed on other spheres of the national economy. This article provides general information about the state of groundwater production and supply in Russia, negative trends of groundwater usage, some actions for the improvement in the system of groundwater’s fund management are suggested. The most important amendments of the law “About mineral resources” are overviewed, effects of these changes are revealed and recommendations for future groundwater extraction regulation are given.

  10. Groundwater Pollution from Underground Coal Gasification

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In situ coal gasification poses a potential environmental risk to groundwater pollution although it depends mainly on local hydrogeological conditions.In our investigation, the possible processes of groundwater pollution originating from underground coal gasification (UCG) were analyzed.Typical pollutants were identified and pollution control measures are proposed.Groundwater pollution is caused by the diffusion and penetration of contaminants generated by underground gasification processes towards surrounding strata and the possible leaching of underground residue by natural groundwater flow after gasification.Typical organic pollutants include phenols, benzene, minor components such as PAHs and heterocyclics.Inorganic pollutants involve cations and anions.The natural groundwater flow after gasification through the seam is attributable to the migration of contaminants, which can be predicted by mathematical modeling.The extent and concentration of the groundwater pollution plume depend primarily on groundwater flow velocity, the degree of dispersion and the adsorption and reactions of the various contaminants.The adsorption function of coal and surrounding strata make a big contribution to the decrease of the contaminants over time and with the distance from the burn cavity.Possible pollution control measures regarding UCG include identifying a permanently, unsuitable zone, setting a hydraulic barrier and pumping contaminated water out for surface disposal.Mitigation measures during gasification processes and groundwater remediation after gasification are also proposed.

  11. 583 GROUNDWATER QUALITY ASSESSMENT AND MONITORING ...

    African Journals Online (AJOL)

    Osondu

    2012-10-30

    Oct 30, 2012 ... monitor and assess groundwater quality. Key words: ... improved yield/production and discharge of waste from ... Thus, the groundwater quality monitoring and .... D/Line. 28.51. 6.76. 49.42. 65.6. 23. ND. 60.24. 1.58. 10.361.

  12. Trend Analyses of Nitrate in Danish Groundwater

    DEFF Research Database (Denmark)

    Hansen, B.; Thorling, L.; Dalgaard, Tommy;

    2012-01-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribut......This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis...... of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first...... two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded...

  13. Improving fresh groundwater supply - problems and solutions

    NARCIS (Netherlands)

    Oude Essink, Gualbert

    2001-01-01

    Many coastal regions in the world experience an intensive salt water intrusion in aquifers due to natural and anthropogenic causes. The salinisation of these groundwater systems can lead to a severe deterioration of the quality of existing fresh groundwater resources. In this paper, the

  14. Procedures for ground-water investigations

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  15. Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-12-01

    This document is a compendium of water quality and hydrologic characterization data obtained through December 2005 from the network of groundwater monitoring wells and surface water sampling stations (including springs and building sumps) at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee that have been sampled since January 2003. The primary objectives of this document, hereafter referenced as the Y-12 Groundwater Protection Program (GWPP) Compendium, are to: (1) Serve as a single-source reference for monitoring data that meet the requirements of the Y-12 GWPP, as defined in the Y-12 GWPP Management Plan (BWXT Y-12 L.L.C. [BWXT] 2004); (2) Maintain a detailed analysis and evaluation of the monitoring data for each applicable well, spring, and surface water sampling station, with a focus on results for the primary inorganic, organic, and radiological contaminants in groundwater and surface water at Y-12; and (3) Ensure retention of ''institutional knowledge'' obtained over the long-term (>20-year) history of groundwater and surface water monitoring at Y-12 and the related sources of groundwater and surface water contamination. To achieve these goals, the Y-12 GWPP Compendium brings together salient hydrologic, geologic, geochemical, water-quality, and environmental compliance information that is otherwise disseminated throughout numerous technical documents and reports prepared in support of completed and ongoing environmental contamination assessment, remediation, and monitoring activities performed at Y-12. The following subsections provide background information regarding the overall scope and format of the Y-12 GWPP Compendium and the planned approach for distribution and revision (i.e., administration) of this ''living'' document.

  16. Y-12 Groundwater Protection Program Extent Of The Primary Groundwater Contaminants At The Y-12 National Security Complex

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-01

    This report presents data summary tables and maps used to define and illustrate the approximate lateral extent of groundwater contamination at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. The data tables and maps address the primary (i.e., most widespread and mobile) organic, inorganic, and radiological contaminants in the groundwater. The sampling locations, calculated contaminant concentrations, plume boundary values, and paired map format used to define, quantify, delineate, and illustrate the approximate extent of the primary organic, inorganic, and radiological contaminants in groundwater at Y-12 are described.

  17. Effects Of Leaky Sewers On Groundwater Quality

    Science.gov (United States)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Oswald, S. E.; Schirmer, M.

    2007-12-01

    The impact of urban areas on groundwater quality has become an emerging research field in hydrogeology. Urban subsurface infrastructures like sewer networks are often leaky, so untreated wastewater may enter the urban aquifer. The transport of wastewater into the groundwater is still not well understood under field conditions. In the research platform WASSER Leipzig (Water And Sewershed Study of Environmental Risk in Leipzig- Germany) the effects of leaky sewers on the groundwater quality are investigated. The research is focused on the occurrence and transport of so-called "xenobiotics" such as pharmaceuticals and personal care product additives. Xenobiotics may pose a threat on human health, but can also be considered a marker for an urban impact on water resources. A new test site was established in Leipzig to quantify mass fluxes of xenobiotics into the groundwater from a leaky sewer. Corresponding to the leaks which were detected by closed circuit television inspections, monitoring wells were installed up- and downstream of the sewer. Concentrations of eight xenobiotics (technical-nonylphenol, bisphenol-a, caffeine, galaxolide, tonalide, carbamazepine, phenazone, ethinylestradiol) obtained from first sampling programmes were found to be highly heterogeneous, but a relation between the position of the sampling points and the sewer could not be clearly identified. However, concentrations of sodium, chloride, potassium and nitrate increased significantly downstream of the sewer which may be due to wastewater exfiltration, since no other source is known on the water flowpath from the upstream to the downstream wells. Because of the highly heterogeneous spatial distribution of xenobiotics at the test site, a monitoring concept was developed comprising both high-resolution sampling and an integral approach to obtain representative average concentrations. Direct-push techniques were used to gain insight into the fine-scale spatial distribution of the target compounds

  18. Global-scale modeling of groundwater recharge

    Science.gov (United States)

    Döll, P.; Fiedler, K.

    2008-05-01

    Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the-art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3

  19. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the first quarter of 1990. It includes the analytical data, field data, well activity data, and the other documentation for this program and provides a record of the program's activities and rationale and an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of the analytical data and other data, maintenance of the databases containing groundwater monitoring data and related data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  20. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  1. Statistical assessment of groundwater resources in Washim district (India).

    Science.gov (United States)

    Rajankar, P N; Tambekar, D H; Ramteke, D S; Wate, S R

    2011-01-01

    Groundwater quality of Washim district of Maharashtra (India) was assessed using quality parameters and water quality index (WQI). In this study, the WQI was analyzed by using pH, turbidity, temperature, nitrates, total phosphates, dissolved oxygen, biochemical oxygen demand, total solids, total coliforms and faecal coliforms, respectively for residential and commercial uses. All the parameters were analyzed both in pre-monsoon and post-monsoon seasons to assess the groundwater quality and seasonal variations. The parameters like turbidity, solids and coliforms showed the seasonal variations. The WQI varied from 72 to 88 in pre-monsoon season and 64 to 88 in post-monsoon season. The results indicate that all groundwater samples in the study area have good water quality in pre-monsoon season but in post-monsoon season 9 percent samples indicated the change in water quality from good to medium, which reveals seasonal variation and groundwater quality deterioration.

  2. Assimilating ambiguous observations to jointly estimate groundwater recharge and conductivity

    Science.gov (United States)

    Erdal, Daniel; Cirpka, Olaf A.

    2016-04-01

    In coupled modelling of catchments, the groundwater compartment can be an important water storage as well as having influence on both rivers and evapotranspirational fluxes. It is therefore important to parameterize the groundwater model as correctly as possible. Primarily important to regional groundwater flow is the spatially variable hydraulic conductivity. However, also the groundwater recharge, in a coupled system coming from the unsaturated zone but in a stand-alone groundwater model a boundary condition, is also of high importance. As with all subsurface systems, groundwater properties are difficult to observe in reality and their estimation is an ongoing topic in groundwater research and practice. Commonly, we have to rely on time series of groundwater head observations as base for any parameter estimation. Heads, however, have the drawback that they can be ambiguous and may not uniquely define the inverse problem, especially if both recharge and conductivity are seen as unknown. In the presented work we use a 2D virtual groundwater test case to investigate how the prior knowledge of recharge and conductivity influence their respective and joint estimation as spatially variable fields using head data. Using the Ensemble Kalman filter, it is shown that the joint estimation is possible if the prior knowledge is good enough. If the prior is erroneous the a-priori sampled fields cannot be corrected by the data. However, it is also shown that if the prior knowledge is directly wrong the estimated recharge field can resemble the true conductivity field, resulting in a model that meets the observations but has very poor predictive power. The study exemplifies the importance of prior knowledge in the joint estimation of parameters from ambiguous measurements.

  3. Organic Carbon Fluxes in a Stressed Groundwater System

    Science.gov (United States)

    Baker, A.; Graham, P. W.; Grbich, N.; Chinu, K.; Yu, D.

    2013-12-01

    Dissolved Organic Carbon (DOC) flux in groundwater is poorly understood: influenced by recharge, extraction and surface processes. We reviewed existing datasets for DOC concentration and flux in Australian groundwater systems. In a temperate, semi-arid, Australian research site we measured variations in DOC content during a series of high intensity extraction and recovery events in the surrounding aquifer and abstracted groundwater. Groundwater was abstracted from a fractured basalt / metasediment aquifer overlain by residual soils and flanked by a Quaternary alluvial channel. Groundwater systems included the fractured rock system interconnected with the alluvial aquifer through a leaky aquitard and a perched aquifer held at the soil bedrock interface. Prior to and throughout the test, groundwater samples were collected from wells within the fractured rock, alluvial aquifer and soil bedrock interface and analysed for DOC. Initial DOC concentrations in the upper aquifer were ~2 mg/L, following pumping concentrations increased 36 mg/L (ave) peaking at 72 mg/L. In the lower aquifer initial TOC concentrations were ~1.6 mg/L, during pumping levels increased to 3.98 mg/L (ave) peaking at 14.32 mg/L. Results indicate the fractured rock aquifers ability to recharge was exceeded during intense pumping periods and a larger component of water was drawn from the upper aquifer. This increased the volume of water being drawn through the soil profile and increased DOC content in abstracted groundwater. Hydrological setting, well construction and pumping regime are likely to affect the concentration of DOC within abstracted groundwater. Further attention to abstracted groundwater as a component in terrestrial DOC fluxes is warranted.

  4. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services

    2005-07-01

    The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR §264.90 through §264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] §6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

  5. Patterns in groundwater chemistry resulting from groundwater flow

    Science.gov (United States)

    Stuyfzand, Pieter J.

    Groundwater flow influences hydrochemical patterns because flow reduces mixing by diffusion, carries the chemical imprints of biological and anthropogenic changes in the recharge area, and leaches the aquifer system. Global patterns are mainly dictated by differences in the flux of meteoric water passing through the subsoil. Within individual hydrosomes (water bodies with a specific origin), the following prograde evolution lines (facies sequence) normally develop in the direction of groundwater flow: from strong to no fluctuations in water quality, from polluted to unpolluted, from acidic to basic, from oxic to anoxic-methanogenic, from no to significant base exchange, and from fresh to brackish. This is demonstrated for fresh coastal-dune groundwater in the Netherlands. In this hydrosome, the leaching of calcium carbonate as much as 15m and of adsorbed marine cations (Na+, K+, and Mg2+) as much as 2500m in the flow direction is shown to correspond with about 5000yr of flushing since the beach barrier with dunes developed. Recharge focus areas in the dunes are evidenced by groundwater displaying a lower prograde quality evolution than the surrounding dune groundwater. Artificially recharged Rhine River water in the dunes provides distinct hydrochemical patterns, which display groundwater flow, mixing, and groundwater ages. Résumé Les écoulements souterrains influencent les différents types hydrochimiques, parce que l'écoulement réduit le mélange par diffusion, porte les marques chimiques de changements biologiques et anthropiques dans la zone d'alimentation et lessive le système aquifère. Ces types dans leur ensemble sont surtout déterminés par des différences dans le flux d'eau météorique traversant le sous-sol. Dans les "hydrosomes" (masses d'eau d'origine déterminée), les lignes marquant une évolution prograde (séquence de faciès) se développent normalement dans la direction de l'écoulement souterrain : depuis des fluctuations fortes de la

  6. Geomorphic aspects of groundwater flow

    Science.gov (United States)

    LaFleur, Robert G.

    The many roles that groundwater plays in landscape evolution are becoming more widely appreciated. In this overview, three major categories of groundwater processes and resulting landforms are considered: (1) Dissolution creates various karst geometries, mainly in carbonate rocks, in response to conditions of recharge, geologic setting, lithology, and groundwater circulation. Denudation and cave formation rates can be estimated from kinetic and hydraulic parameters. (2) Groundwater weathering generates regoliths of residual alteration products at weathering fronts, and subsequent exhumation exposes corestones, flared slopes, balanced rocks, domed inselbergs, and etchplains of regional importance. Groundwater relocation of dissolved salts creates duricrusts of various compositions, which become landforms. (3) Soil and rock erosion by groundwater processes include piping, seepage erosion, and sapping, important agents in slope retreat and headward gully migration. Thresholds and limits are important in many chemical and mechanical groundwater actions. A quantitative, morphometric approach to groundwater landforms and processes is exemplified by selected studies in carbonate and clastic terrains of ancient and recent origins. Résumé Les rôles variés joués par les eaux souterraines dans l'évolution des paysages deviennent nettement mieux connus. La revue faite ici prend en considération trois grandes catégories de processus liés aux eaux souterraines et les formes associées: (1) La dissolution crée des formes karstiques variées, surtout dans les roches carbonatées, en fonction des conditions d'alimentation, du cadre géologique, de la lithologie et de la circulation des eaux souterraines. Les taux d'érosion et de formation des grottes peuvent être estimés à partir de paramètres cinétiques et hydrauliques. (2) L'érosion par les eaux souterraines donne naissance à des régolites, résidus d'altération sur des fronts d'altération, et l'exhumation r

  7. A Multi-Methodology for improving Adelaide's Groundwater Management

    Science.gov (United States)

    Batelaan, Okke; Banks, Eddie; Batlle-Aguilar, Jordi; Breciani, Etienne; Cook, Peter; Cranswick, Roger; Smith, Stan; Turnadge, Chris; Partington, Daniel; Post, Vincent; Pool Ramirez, Maria; Werner, Adrian; Xie, Yueqing; Yang, Yuting

    2015-04-01

    Groundwater is a strategic and vital resource in South Australia playing a crucial role in sustaining a healthy environment, as well as supporting industries and economic development. In the Adelaide metropolitan region ten different aquifer units have been identified, extending to more than 500 m below sea level. Although salinity within most of these aquifers is variable, water suitable for commercial, irrigation and/or potable use is predominantly found in the deeper Tertiary aquifers. Groundwater currently contributes only 9000 ML/yr of Adelaide's total water consumption of 216,000 ML, while in the Northern Adelaide Plains 17000 ML/yr is used. However, major industries, market gardeners, golf courses, and local councils are highly dependent on this resource. Despite recent rapid expansion in managed aquifer recharge, and the potential for increased extraction of groundwater, particularly for the commercial and irrigation supplies, little is known about the sources and ages of Adelaide's groundwater. The aim of this study is therefore to provide a robust conceptualisation of Adelaide's groundwater system. The study focuses on three important knowledge gaps: 1. Does groundwater flow from the Adelaide Hills into the sedimentary aquifers on the plains? 2. What is the potential for encroachment of seawater if groundwater extraction increases? 3. How isolated are the different aquifers, or does water leak from one to the other? A multi-tool approach has been used to improve the conceptual understanding of groundwater flow processes; including the installation of new groundwater monitoring wells from the hills to the coast, an extensive groundwater sampling campaign of new and existing groundwater wells for chemistry and environmental tracers analysis, and development of a regional scale numerical model rigorously tested under different scenario conditions. The model allows quantification of otherwise hardly quantifiable quantities such as flow across fault zones and

  8. Strontium isotope geochemistry of alluvial groundwater: a tracer for groundwater resources characterisation

    Directory of Open Access Journals (Sweden)

    P. Négrel

    2004-01-01

    Full Text Available This study presents strontium isotope and major ion data of shallow groundwater and river water from the Ile du Chambon catchment, located on the Allier river in the Massif Central (France. There are large variations in the major-element contents in the surface- and groundwater. Plotting of Na vs. Cl contents and Ca, Mg, NO3, K, SO4, HCO3, Sr concentrations reflect water–rock interaction (carbonate dissolution for Ca, Mg, HCO3 and Sr because the bedrock contains marly limestones, agricultural input (farming and fertilising and sewage effluents (for NO3, K, SO4, although some water samples are unpolluted. Sr contents and isotope ratios (87Sr/86Sr vary from 0.70892 to 0.71180 along the hydrological cycle in the groundwater agree with previous work on groundwater in alluvial aquifers in the Loire catchment. The data plot along three directions in a 87Sr/86Sr v. 1/Sr diagram as a result of mixing, involving at least three geochemical signatures–Allier river water, and two distinct signatures that might be related to different water-rock interactions in the catchment. Mixing proportions are calculated and discussed. The alluvial aquifer of the Ile du Chambon catchment is considered, within the Sr isotope systematic, in a larger scheme that includes several alluvial aquifers of the Loire Allier catchment. Keywords: : Loire river, major and trace elements, Sr isotopic ratio, alluvial aquifer, hydrology

  9. Determination of aluminium in groundwater samples by GF-AAS, ICP-AES, ICP-MS and modelling of inorganic aluminium complexes.

    Science.gov (United States)

    Frankowski, Marcin; Zioła-Frankowska, Anetta; Kurzyca, Iwona; Novotný, Karel; Vaculovič, Tomas; Kanický, Viktor; Siepak, Marcin; Siepak, Jerzy

    2011-11-01

    The paper presents the results of aluminium determinations in ground water samples of the Miocene aquifer from the area of the city of Poznań (Poland). The determined aluminium content amounted from aluminium determinations were performed using three analytical techniques: graphite furnace atomic absorption spectrometry (GF-AAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The results of aluminium determinations in groundwater samples for particular analytical techniques were compared. The results were used to identify the ascent of ground water from the Mesozoic aquifer to the Miocene aquifer in the area of the fault graben. Using the Mineql+ program, the modelling of the occurrence of aluminium and the following aluminium complexes: hydroxy, with fluorides and sulphates was performed. The paper presents the results of aluminium determinations in ground water using different analytical techniques as well as the chemical modelling in the Mineql+ program, which was performed for the first time and which enabled the identification of aluminium complexes in the investigated samples. The study confirms the occurrence of aluminium hydroxy complexes and aluminium fluoride complexes in the analysed groundwater samples. Despite the dominance of sulphates and organic matter in the sample, major participation of the complexes with these ligands was not stated based on the modelling.

  10. Interim Sanitary Landfill Groundwater Monitoring Report. 1997 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Interim Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled semiannually to comply with the South Carolina Department of Health and Environmental Control Modified Municipal Solid Waste Permit 025500-1120 (formerly dWP-087A) and as part of the SRS Groundwater Monitoring Program.

  11. Global sampling to assess the value of diverse observations in conditioning a real-world groundwater flow and transport model

    Science.gov (United States)

    Delsman, Joost R.; Winters, Pieter; Vandenbohede, Alexander; Oude Essink, Gualbert H. P.; Lebbe, Luc

    2016-03-01

    The use of additional types of observational data has often been suggested to alleviate the ill-posedness inherent to parameter estimation of groundwater models and constrain model uncertainty. Disinformation in observational data caused by errors in either the observations or the chosen model structure may, however, confound the value of adding observational data in model conditioning. This paper uses the global generalized likelihood uncertainty estimation methodology to investigate the value of different observational data types (heads, fluxes, salinity, and temperature) in conditioning a groundwater flow and transport model of an extensively monitored field site in the Netherlands. We compared model conditioning using the real observations to a synthetic model experiment, to demonstrate the possible influence of disinformation in observational data in model conditioning. Results showed that the value of different conditioning targets was less evident when conditioning to real measurements than in a measurement error-only synthetic model experiment. While in the synthetic experiment, all conditioning targets clearly improved model outcomes, minor improvements or even worsening of model outcomes was observed for the real measurements. This result was caused by errors in both the model structure and the observations, resulting in disinformation in the observational data. The observed impact of disinformation in the observational data reiterates the necessity of thorough data validation and the need for accounting for both model structural and observational errors in model conditioning. It further suggests caution when translating results of synthetic modeling examples to real-world applications. Still, applying diverse conditioning data types was found to be essential to constrain uncertainty, especially in the transport of solutes in the model.

  12. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    Science.gov (United States)

    Arnold, Terri L.; DeSimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, Marylynn; Kingsbury, James A.; Belitz, Kenneth

    2016-06-20

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  13. Hydrochemical Characteristics and the Suitability of Groundwater in the Coastal Region of Tangshan, China

    Institute of Scientific and Technical Information of China (English)

    Fengshan Ma; Aihua Wei; Qinghai Deng; Haijun Zhao

    2014-01-01

    Through collecting groundwater samples from the coastal region of Tangshan, China, the hydrochemical processes that affect the chemical composition of groundwater and the quality of resources were analyzed. Chemical constituents, factor analysis, and a graphic method were em-ployed in this research. The results show that human activities obviously affect fresh groundwater. The deep groundwater distributed in the southern part of the region is severely affected by saliniza-tion, and the shallow groundwater in the north is also beginning to show the same deterioration. The chemical concentrations of the deep groundwater depend largely upon the water-rock interaction, the mixing of saline water and the ion exchange processes. With the exception of sample C-33, all the groundwater samples in the study area are suitable for drinking. Tests show that roughly half of the deep groundwater samples have at least one water quality index indicating that it is chemically doubtful or unsuitable for irrigation. Therefore, it is concluded that deep groundwater is becoming an unacceptable resource to irrigate areas located near the coastline because the groundwater quality in the study area is exhibiting signs of degradation. This study’s findings contribute to a better under-standing of groundwater resources in order to support regional management and protection.

  14. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    Science.gov (United States)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-09-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Stable water isotopes (δ2H, δ18O) were used to trace hydrological processes and tritium (3H) to evaluate the relative contribution of modern water in samples. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal groundwater, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3-type. It originates as recharge at "La Primavera" caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal groundwater is characterized by high salinity, temperature, Cl, Na and HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed-HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural return flow. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Twenty-seven groundwater samples contain at least a small fraction of modern water. The application of a multivariate mixing model allowed the mixing proportions of hydrothermal fluids, polluted waters and cold groundwater in sampled water to be evaluated. This study will help local water authorities to identify and dimension groundwater contamination, and act accordingly. It may be broadly applicable to

  15. Tracing and quantifying groundwater inflow into lakes using radon-222

    Directory of Open Access Journals (Sweden)

    T. Kluge

    2007-06-01

    Full Text Available Due to its high activities in groundwater, the radionuclide 222Rn is a sensitive natural tracer to detect and quantify groundwater inflow into lakes, provided the comparatively low activities in the lakes can be measured accurately. Here we present a simple method for radon measurements in the low-level range down to 3 Bq m−3, appropriate for groundwater-influenced lakes, together with a concept to derive inflow rates from the radon budget in lakes. The analytical method is based on a commercially available radon detector and combines the advantages of established procedures with regard to efficient sampling and sensitive analysis. Large volume (12 l water samples are taken in the field and analyzed in the laboratory by equilibration with a closed air loop and alpha spectrometry of radon in the gas phase. After successful laboratory tests, the method has been applied to a small dredging lake without surface in- or outflow in order to estimate the groundwater contribution to the hydrological budget. The inflow rate calculated from a 222Rn balance for the lake is around 530 m3 per day, which is comparable to the results of previous studies. In addition to the inflow rate, the vertical and horizontal radon distribution in the lake provides information on the spatial distribution of groundwater inflow to the lake. The simple measurement and sampling technique encourages further use of radon to examine groundwater-lake interaction.

  16. Data Validation Package November 2015 Groundwater and Surface Water Sampling at the Old and New Rifle, Colorado, Processing Sites February 2016

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Richard [USDOE Office of Legacy Management, Washington, DC (United States); Lemke, Peter [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-02-01

    Water samples were collected from 36 locations at New Rifle and Old Rifle, Colorado, Processing Sites. Duplicate samples were collected from New Rifle locations 0659 and 0855, and Old Rifle location 0304. One equipment blank was collected after decontamination of non-dedicated equipment used to collect one surface water sample. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). New Rifle Site Samples were collected at the New Rifle site from 16 monitoring wells and 7 surface locations in compliance with the December 2008 Groundwater Compliance Action Plan [GCAP] for the New Rifle, Colorado, Processing Site (LMS/RFN/S01920), with one exception: New Rifle location 0635 could not be sampled because it was inaccessible; a fence installed by the Colorado Department of Transportation prevents access to this location. DOE is currently negotiating access with the Colorado Department of Transportation. Analytes measured at the New Rifle site included contaminants of concern (COCs) (arsenic, molybdenum, nitrate + nitrite as nitrogen, selenium, uranium, and vanadium) ammonia as nitrogen, major cations, and major anions. Field measurements of total alkalinity, oxidation- reduction potential, pH, specific conductance, turbidity, and temperature were made at each location, and the water level was measured at each sampled well. A proposed alternate concentration limit (ACL) for vanadium of 50 milligrams per liter (mg/L), specific to the compliance (POC) wells (RFN-0217, -0659, -0664, and -0669) is included in the New Rifle GCAP. Vanadium concentrations in the POC wells were below the proposed ACL as shown in the time-concentration graphs in the Data Presentation section (Attachment 2). Time-concentration graphs from all other locations sampled are also included in Attachment 2. Sampling location RFN-0195 was misidentified for the June/August 2014

  17. Groundwater-abstraction induced land subsidence and groundwater regulation in the North China Plain

    Science.gov (United States)

    Guo, H.; Wang, L.; Cheng, G.; Zhang, Z.

    2015-11-01

    Land subsidence can be induced when various factors such as geological, and hydrogeological conditions and intensive groundwater abstraction combine. The development and utilization of groundwater in the North China Plain (NCP) bring great benefits, and at the same time have led to a series of environmental and geological problems accompanying groundwater-level declines and land subsidence. Subsidence occurs commonly in the NCP and analyses show that multi-layer aquifer systems with deep confined aquifers and thick compressible clay layers are the key geological and hydrogeological conditions responsible for its development in this region. Groundwater overdraft results in aquifer-system compaction, resulting in subsidence. A calibrated, transient groundwater-flow numerical model of the Beijing plain portion of the NCP was developed using MODFLOW. According to available water supply and demand in Beijing plain, several groundwater regulation scenarios were designed. These different regulation scenarios were simulated with the groundwater model, and assessed using a multi-criteria fuzzy pattern recognition model. This approach is proven to be very useful for scientific analysis of sustainable development and utilization of groundwater resources. The evaluation results show that sustainable development of groundwater resources may be achieved in Beijing plain when various measures such as control of groundwater abstraction and increase of artificial recharge combine favourably.

  18. Characterization of redox conditions in groundwater contaminant plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bjerg, Poul Løgstrup; Banwarth, Steven A.

    2000-01-01

    Evaluation of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behaviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few...... dubious, if not erroneous. Several other approaches have been used in addressing redox conditions in pollution plumes: redox-sensitive compounds in groundwater samples, hydrogen concentrations in groundwater, concentrations of volatile fatty acids in groundwater, sediment characteristics and microbial...... cases have been reported. No standardised or generally accepted approach exists. Slow electrode kinetics and the common lack of internal equilibrium of redox processes in pollution plumes make, with a few exceptions, direct electrochemical measurement and rigorous interpretation of redox potentials...

  19. GROUNDWATER MONITORING: Statistical Methods for Testing Special Background Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Charissa J.

    2004-04-28

    This chapter illustrates application of a powerful intra-well testing method referred as the combined Shewhart-CUSUM control chart approach, which can detect abrupt and gradual changes in groundwater parameter concentrations. This method is broadly applicable to groundwater monitoring situations where there is no clearly defined upgradient well or wells, where spatial variability exists in parameter concentrations, or when groundwater flow rate is extremely slow. Procedures for determining the minimum time needed to acquire independent groundwater samples and useful transformations for obtaining normally distributed data are also provided. The control chart method will be insensitive to detect real changes if a preexisting trend is observed in the background data set. A method and a case study describing how a trend observed in a background data set can be removed using a transformation suggested by Gibbons (1994) are presented to illustrate treatment of a preexisting trend.

  20. Isotope heterogeneity of Pre-Holocene groundwater in Iceland

    DEFF Research Database (Denmark)

    Sveinbjörnsdóttir, Á.E.; Arnorsson, S.; Heinemeier, Jan

    2007-01-01

    In recent years, it has been shown that groundwater with a Pre-Holocene component is more common in the Icelandic bedrock than previously thought. Some of the Pre-Holocene water samples are more depleted in delta H-2 and delta O-18 than any mean annual precipitation in Iceland today due to the cold......-Holocene component in the groundwater. The deuterium excess value may also help to identify water from a different climate regime, if no oxygen shift has occurred. The relative abundance of a Pre-Holocene water component of the Icelandic groundwater has led to the understanding that combined interpretation of water......-isotopes, water chemistry and hydrogeology is essential to delineate flow direction and trace the origin of thermal and non-thermal groundwaters....

  1. Use of major ions to evaluate the hydrogeochemistry of groundwater influenced by reclamation and seawater intrusion, West Nile Delta, Egypt.

    Science.gov (United States)

    Salem, Zenhom El-Said; Osman, Osman M

    2017-02-01

    The aim of this research is to evaluate the groundwater geochemistry in western Nile Delta area as an example of an aquifer influenced by reclamation and seawater intrusion. To conduct this study, 63 groundwater samples and one surface water sample from El Nubaria Canal were collected. To estimate the origin of dissolved ions and the geochemical processes influencing this groundwater, integration between land use change, pedological, hydrogeological, hydrogeochemical, and statistical approaches was considered. Results suggest that the groundwater flow regime changed from northeast and southwest directions around El Nubaria canal before 1966 to northern and northeastern directions due to newly constructed channel network. Soil salinity and mineral contents, seepage from irrigation canal, and seawater intrusion are the main factors controlling the groundwater chemistry. Statistically, the groundwater samples were classified into eight groups, one to four for the deep groundwater and five to eight for the shallow groundwater. The deep groundwater is characterized by two groups of chemicals (SO4-HCO3-Mg-Ca-K and Cl-Na), while the shallow groundwater groups of chemicals are Na-Cl-SO4 and K-HCO3-Ca-Mg. Both shallow groundwater and deep groundwater are mostly saturated with respect to carbonate minerals and undersaturated with respect to chloride minerals. Sulfate minerals are above the saturation limit in the shallow groundwater, but in the deep samples, these minerals are under the saturation limit. Ion exchange, carbonate production, mineral precipitation, and seawater intrusion are the geochemical processes governing the groundwater chemistry in the study area.

  2. Groundwater quality in western New York, 2011

    Science.gov (United States)

    Reddy, James E.

    2013-01-01

    Water samples collected from 16 production wells and 15 private residential wells in western New York from July through November 2011 were analyzed to characterize the groundwater quality. Fifteen of the wells were finished in sand and gravel aquifers, and 16 were finished in bedrock aquifers. Six of the 31 wells were sampled in a previous western New York study, which was conducted in 2006. Water samples from the 2011 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although at 30 of the 31 wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: pH (two samples), sodium (eight samples), sulfate (three samples), total dissolved solids (nine samples), aluminum (two samples), arsenic (one sample), iron (ten samples), manganese (twelve samples), radon-222 (sixteen samples), benzene (one sample), and total coliform bacteria (nine samples). Existing drinking-water standards for color, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides analyzed exceeded existing drinking-water standards.

  3. Hydrochemical characteristics of groundwater for domestic and irrigation purposes in Madhuranthakam, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    K. Brindha

    2011-12-01

    Full Text Available Hydrochemical study was carried out in Madhuranthakam located near Chennai in Tamil Nadu, India with an objective of understanding the suitability of local groundwater quality for domestic and irrigation purposes. Twenty groundwater samples were collected in February 2002 and analysed for physical and chemical parameters. Groundwater in this area was found to be within the desirable Bureau of Indian Standards and World Health Organisation limits for drinking water. Ca-HCO3 was the dominant groundwater type. Groundwater in this area was assessed for irrigation purposes on the basis of sodium percentage (Na%, magnesium hazard (MH, residual sodium carbonate (RSC, sodium absorption ratio (SAR, permeability index (PI and United States Department of Agriculture (USDA classification. Most of the groundwater samples were suitable for irrigation, except in a few locations (15% based on MH. Overall the groundwater quality was suitable for drinking and domestic purposes and permissible for irrigation activities.

  4. Groundwater in geologic processes, 2nd edition

    Science.gov (United States)

    Ingebritsen, Steven E.; Sanford, Ward E.; Neuzil, Christopher E.

    2006-01-01

    Interest in the role of Groundwater in Geologic Processes has increased steadily over the past few decades. Hydrogeologists and geologists are now actively exploring the role of groundwater and other subsurface fluids in such fundamental geologic processes as crustal heat transfer, ore deposition, hydrocarbon migration, earthquakes, tectonic deformation, diagenesis, and metamorphism.Groundwater in Geologic Processes is the first comprehensive treatment of this body of inquiry. Chapters 1 to 4 develop the basic theories of groundwater motion, hydromechanics, solute transport, and heat transport. Chapter 5 applies these theories to regional groundwater flow systems in a generic sense, and Chapters 6 to 13 focus on particular geologic processes and environments. Relative to the first edition of Groundwater in Geologic Processes , this second edition includes a much more comprehensive treatment of hydromechanics (the coupling of groundwater flow and deformation). It also includes new chapters on "compaction and diagenesis," "metamorphism," and "subsea hydrogeology." Finally, it takes advantage of the substantial body of published research that has appeared since the first edition in 1998. The systematic presentation of theory and application, and the problem sets that conclude each chapter, make this book ideal for undergraduate- and graduate-level geology courses (assuming that the students have some background in calculus and introductory chemistry). It also serves as an invaluable reference for researchers and other professionals in the field

  5. Ecosystem services in sustainable groundwater management.

    Science.gov (United States)

    Tuinstra, Jaap; van Wensem, Joke

    2014-07-01

    The ecosystem services concept seems to get foothold in environmental policy and management in Europe and, for instance, The Netherlands. With respect to groundwater management there is a challenge to incorporate this concept in such a way that it contributes to the sustainability of decisions. Groundwater is of vital importance to societies, which is reflected in the presented overview of groundwater related ecosystem services. Classifications of these services vary depending on the purpose of the listing (valuation, protection, mapping et cetera). Though the scientific basis is developing, the knowledge-availability still can be a critical factor in decision making based upon ecosystem services. The examples in this article illustrate that awareness of the value of groundwater can result in balanced decisions with respect to the use of ecosystem services. The ecosystem services concept contributes to this awareness and enhances the visibility of the groundwater functions in the decision making process. The success of the ecosystem services concept and its contribution to sustainable groundwater management will, however, largely depend on other aspects than the concept itself. Local and actual circumstances, policy ambitions and knowledge availability will play an important role. Solutions can be considered more sustainable when more of the key elements for sustainable groundwater management, as defined in this article, are fully used and the presented guidelines for long term use of ecosystem services are respected.

  6. Groundwater conditions in Utah, spring of 2013

    Science.gov (United States)

    Burden, Carole B.; Birken, Adam S.; Derrick, V. Noah; Fisher, Martel J.; Holt, Christopher M.; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.

    2013-01-01

    This is the fiftieth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2012. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water. usgs.gov/publications/GW2013.pdf. Groundwater conditions in Utah for calendar year 2011 are reported in Burden and others (2012) and available online at http://ut.water.usgs.gov/ publications/GW2012.pdf

  7. From submarine to lacustrine groundwater discharge

    Science.gov (United States)

    Lewandowski, Jörg; Meinikmann, Karin; Pöschke, Franziska; Nützmann, Gunnar; Rosenberry, Donald O.

    2017-01-01

    Submarine groundwater discharge (SGD) and its role in marine nutrient cycling are well known since the last decade. The freshwater equivalent, lacustrine groundwater discharge (LGD), is often still disregarded, although first reports of LGD are more than 50 years old. We identify nine different reasons why groundwater has long been disregarded in both freshwater and marine environments such as invisibility of groundwater discharge, the size of the interface and its difficult accessibility. Although there are some fundamental differences in the hydrology of SGD and LGD, caused primarily by seawater recirculation that occurs only in cases of SGD, there are also a lot of similarities such as a focusing of discharge to near-shore areas. Nutrient concentrations in groundwater near the groundwater–surface water interface might be anthropogenically enriched. Due to spatial heterogeneity of aquifer characteristics and biogeochemical processes, the quantification of groundwater-borne nutrient loads is challenging. Both nitrogen and phosphorus might be mobile in near-shore aquifers and in a lot of case studies large groundwater-borne nutrient loads have been reported.

  8. Hydroeconomic modeling of sustainable groundwater management

    Science.gov (United States)

    MacEwan, Duncan; Cayar, Mesut; Taghavi, Ali; Mitchell, David; Hatchett, Steve; Howitt, Richard

    2017-03-01

    In 2014, California passed legislation requiring the sustainable management of critically overdrafted groundwater basins, located primarily in the Central Valley agricultural region. Hydroeconomic modeling of the agricultural economy, groundwater, and surface water systems is critically important to simulate potential transition paths to sustainable management of the basins. The requirement for sustainable groundwater use by 2040 is mandated for many overdrafted groundwater basins that are decoupled from environmental and river flow effects. We argue that, for such cases, a modeling approach that integrates a biophysical response function from a hydrologic model into an economic model of groundwater use is preferable to embedding an economic response function in a complex hydrologic model as is more commonly done. Using this preferred approach, we develop a dynamic hydroeconomic model for the Kings and Tulare Lake subbasins of California and evaluate three groundwater management institutions—open access, perfect foresight, and managed pumping. We quantify the costs and benefits of sustainable groundwater management, including energy pumping savings, drought reserve values, and avoided capital costs. Our analysis finds that, for basins that are severely depleted, losses in crop net revenue are offset by the benefits of energy savings, drought reserve value, and avoided capital costs. This finding provides an empirical counterexample to the Gisser and Sanchez Effect.

  9. The shadow price of fossil groundwater

    Science.gov (United States)

    Bierkens, Marc F. P.; Reinhard, Stijn; de Bruijn, Jens A.; Wada, Yoshihide

    2017-04-01

    The expansion of irrigated agriculture into areas with limited precipitation and surface water during the growing season has greatly increased the use of fossil groundwater (Wada et al., 2012). As a result, the depletion rate of fossil groundwater resources has shown an increasing rate during the last decades (Wada et al, 2010; Konikow, 2011; Wada et al., 2012; De Graaf et al. 2015; Ritchy et al., 2015). Although water pricing has been used extensively to stimulate efficient application of water to create maximum value (e.g. Medellín-Azuara et al., 2012; Rinaudo et al., 2012; Dinar et al., 2015), it does not preclude the use of non-renewable water resources. Here, we use a global hydrological model and historical crop production and price data to assess the shadow price of non-renewable or fossil groundwater applied to major crops in countries that use large quantities of fossil groundwater. Our results show that shadow prices for many crops are very low, indicating economically inefficient or even wasteful use of fossil groundwater resources. Using India as an example, we show that small changes in the crop mix could lead to large reductions in fossil groundwater use or alternatively, create additional financial means to invest in water saving technologies. Our study thus provides a hydro-economic basis to further the sustainable use of finite groundwater resources.

  10. Review: Regional land subsidence accompanying groundwater extraction

    Science.gov (United States)

    Galloway, Devin L.; Burbey, Thomas J.

    2011-01-01

    The extraction of groundwater can generate land subsidence by causing the compaction of susceptible aquifer systems, typically unconsolidated alluvial or basin-fill aquifer systems comprising aquifers and aquitards. Various ground-based and remotely sensed methods are used to measure and map subsidence. Many areas of subsidence caused by groundwater pumping have been identified and monitored, and corrective measures to slow or halt subsidence have been devised. Two principal means are used to mitigate subsidence caused by groundwater withdrawal—reduction of groundwater withdrawal, and artificial recharge. Analysis and simulation of aquifer-system compaction follow from the basic relations between head, stress, compressibility, and groundwater flow and are addressed primarily using two approaches—one based on conventional groundwater flow theory and one based on linear poroelasticity theory. Research and development to improve the assessment and analysis of aquifer-system compaction, the accompanying subsidence and potential ground ruptures are needed in the topic areas of the hydromechanical behavior of aquitards, the role of horizontal deformation, the application of differential synthetic aperture radar interferometry, and the regional-scale simulation of coupled groundwater flow and aquifer-system deformation to support resource management and hazard mitigation measures.

  11. Apparatus and method for time-integrated, active sampling of contaminants in fluids demonstrated by monitoring of hexavalent chromium in groundwater.

    Science.gov (United States)

    Roll, Isaac B; Driver, Erin M; Halden, Rolf U

    2016-06-15

    Annual U.S. expenditures of $2B for site characterization invite the development of new technologies to improve data quality while reducing costs and minimizing uncertainty in groundwater monitoring. This work presents a new instrument for time-integrated sampling of environmental fluids using in situ solid-phase extraction (SPE). The In Situ Sampler (IS2) is an automated submersible device capable of extracting dissolved contaminants from water (100s-1000smL) over extended periods (hours to weeks), retaining the analytes, and rejecting the processed fluid. A field demonstration of the IS2 revealed 28-day average concentration of hexavalent chromium in a shallow aquifer affected by tidal stresses via sampling of groundwater as both liquid and sorbed composite samples, each obtained in triplicate. In situ SPE exhibited 75±6% recovery and an 8-fold improvement in reporting limit. Relative to use of conventional methods (100%), beneficial characteristics of the device and method included minimal hazardous material generation (2%), transportation cost (10%), and associated carbon footprint (2%). The IS2 is compatible with commercial SPE resins and standard extraction methods, and has been certified for more general use (i.e., inorganics and organics) by the Environmental Security Technology Certification Program (ESTCP) of the U.S. Department of Defense.

  12. 40 CFR 257.22 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... operator. When physical obstacles preclude installation of ground-water monitoring wells at the relevant... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water......

  13. Groundwater Quality Protection in Oakland County: A Sourcebook for Teachers.

    Science.gov (United States)

    East Michigan Environmental Action Council, Troy.

    This sourcebook consists of background information and activities related to groundwater protection. The first section focuses on the characteristics of groundwater, the water cycle, stormwater runoff, and uses of groundwater. The second section addresses household hazardous materials--both from a safety standpoint and a groundwater standpoint.…

  14. Groundwater Quality Protection in Oakland County: A Sourcebook for Teachers.

    Science.gov (United States)

    East Michigan Environmental Action Council, Troy.

    This sourcebook consists of background information and activities related to groundwater protection. The first section focuses on the characteristics of groundwater, the water cycle, stormwater runoff, and uses of groundwater. The second section addresses household hazardous materials--both from a safety standpoint and a groundwater standpoint.…

  15. Hydrogeochemical Characteristics of Fluorine in Shallow Groundwater of Tongshan Area

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lai; FENG Qi-yan; LI Hou-yao

    2005-01-01

    Tongshan area,a part of the floodplain of the abandoned Huanghe River, is one of the popular endemic fluorosis areas in East China. One of the reasons is high concentration of fluorine in shallow groundwater. Test results of 36 groundwater samples show that fluorine concentration in shallow groundwater is 0.18-6.7 mg/L and 50 % of the samples exceed the Chinese drinking water quality standard. There exists a significant negative correlation in content between Ca2+ and F-. The correlations between fluorine concentration and other cations (for example Na+, K+, Mg2+) are not significant. The content of dissolved fluorine from the flooding sediments of the Huanghe River that varying from 5.6 mg/kg to 15.2 mg/kg plays an important role in forming the high fluorine groundwater. Usually, the dissolved fluorine content in silt is much higher than that in silty clay and clay. According to the geological investigation fluorine content in deep groundwater (over 60 m) is less than 1.0 mg/L and suitable for drinking, so it is an effective measure to prevent endemic fluorosis by extracting deep groundwater in disease areas.

  16. Groundwater ages from the freshwater zone of the Edwards aquifer, Uvalde County, Texas—Insights into groundwater flow and recharge

    Science.gov (United States)

    Hunt, Andrew G.; Landis, Gary P.; Faith, Jason R.

    2016-02-23

    Tritium–helium-3 groundwater ages of the Edwards aquifer in south-central Texas were determined as part of a long-term study of groundwater flow and recharge in the Edwards and Trinity aquifers. These ages help to define groundwater residence times and to provide constraints for calibration of groundwater flow models. A suite of 17 samples from public and private supply wells within Uvalde County were collected for active and noble gases, and for tritium–helium-3 analyses from the confined and unconfined parts of the Edwards aquifer. Samples were collected from monitoring wells at discrete depths in open boreholes as well as from integrated pumped well-head samples. The data indicate a fairly uniform groundwater flow system within an otherwise structurally complex geologic environment comprised of regionally and locally faulted rock units, igneous intrusions, and karst features within carbonate rocks. Apparent ages show moderate, downward average, linear velocities in the Uvalde area with increasing age to the east along a regional groundwater flow path. Though the apparent age data show a fairly consistent distribution across the study area, many apparent ages indicate mixing of both modern (less than 60 years) and premodern (greater than 60 years) waters. This mixing is most evident along the “bad water” line, an arbitrary delineation of 1,000 milligrams per liter dissolved solids that separates the freshwater zone of the Edwards aquifer from the downdip saline water zone. Mixing of modern and premodern waters also is indicated within the unconfined zone of the aquifer by high excess helium concentrations in young waters. Excess helium anomalies in the unconfined aquifer are consistent with possible subsurface discharge of premodern groundwater from the underlying Trinity aquifer into the younger groundwater of the Edwards aquifer.

  17. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  18. Delineating groundwater/surface water interaction in a karst watershed: Lower Flint River Basin, southwestern Georgia, USA

    Directory of Open Access Journals (Sweden)

    Kathleen Rugel

    2016-03-01

    New hydrological insights for the region: Prior water resource studies in the LFRB were based on regional modeling that neglected local heterogeneities in groundwater/surface water connectivity. Our results demonstrated groundwater inputs were concentrated around five of fifty sampled reaches, evidenced by increases in multiple groundwater indicators at these sites. These five reaches contributed up to 42% of the groundwater detected along the entire 50-km sampling section, with ∼24% entering through one groundwater-dominated tributary, Chickasawhatchee Creek. Intermittent flows occurred in two of these upstream reaches during extreme drought and heavy groundwater pumping, suggesting reach-scale behaviors should be considered in resource management and policy.

  19. Groundwater Data Package for Hanford Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, Paul D.; Bergeron, Marcel P.; Williams, Mark D.; Freedman, Vicky L.

    2006-01-31

    This report presents data and interpreted information that supports the groundwater module of the System Assessment Capability (SAC) used in Hanford Assessments. The objective of the groundwater module is to predict movement of radioactive and chemical contaminants through the aquifer to the Columbia River or other potential discharge locations. This data package is being revised as part of the deliverables under the Characterization of Systems Project (#49139) aimed at providing documentation for assessments being conducted under the Hanford Assessments Project (#47042). Both of these projects are components of the Groundwater Remediation and Closure Assessments Projects, managed by the Management and Integration Project (#47043).

  20. Burn site groundwater interim measures work plan.

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Jonathan L. (North Wind, Inc., Idaho Falls, ID); Hall, Kevin A. (North Wind, Inc., Idaho Falls, ID)

    2005-05-01

    This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

  1. Survey of chemical constituents of Tehran's groundwater.

    Science.gov (United States)

    Shariatpanahi, M; Anderson, A C

    1987-12-01

    One hundred and forty wells throughout the City of Tehran and its environs were sampled to determine the chemical quality of the groundwater. Total alkalinity, pH, conductivity, total dissolved solids, hardness and detergent concentrations were determined as well as levels of bicarbonate, calcium, magnesium, sulphate, chloride, sodium, potassium, fluoride, iodide and nitrate. Generally, chemical pollution of the water supplies was low. There were, however, regional elevations in nitrate, chloride and fluoride. Elevated fluoride levels were primarily in the northern regions of the city while high nitrates and chlorides were found primariiy in industrial areas. The health implications of chemical constituents in drinking water are discussed.

  2. Study of groundwater mixing using CFC data

    Institute of Scientific and Technical Information of China (English)

    韩良丰; 庞忠和

    2001-01-01

    CFCs (Chlorofluorocarbons) are sensitive tools in the study of groundwater mixing. Based on results of CFC concentrations, the extent of mixing can be identified by three methods: 1. discrepancy between apparent ages determined by individual CFC compounds; 2. inconsistency between CFC concentration ratios and their respective apparent ages; and 3. correlation between the concentrations of two CFC compounds for a group of samples. The principle of determination of mixing ratios and apparent CFC water age in the case of a two component mixing of CFC-containing water with CFC-free water is described.

  3. Groundwater-quality data in seven GAMA study units: results from initial sampling, 2004-2005, and resampling, 2007-2008, of wells: California GAMA Program Priority Basin Project

    Science.gov (United States)

    Kent, Robert; Belitz, Kenneth; Fram, Miranda S.

    2014-01-01

    The Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The GAMA-PBP began sampling, primarily public supply wells in May 2004. By the end of February 2006, seven (of what would eventually be 35) study units had been sampled over a wide area of the State. Selected wells in these first seven study units were resampled for water quality from August 2007 to November 2008 as part of an assessment of temporal trends in water quality by the GAMA-PBP. The initial sampling was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within the seven study units. In the 7 study units, 462 wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study area. Wells selected this way are referred to as grid wells or status wells. Approximately 3 years after the initial sampling, 55 of these previously sampled status wells (approximately 10 percent in each study unit) were randomly selected for resampling. The seven resampled study units, the total number of status wells sampled for each study unit, and the number of these wells resampled for trends are as follows, in chronological order of sampling: San Diego Drainages (53 status wells, 7 trend wells), North San Francisco Bay (84, 10), Northern San Joaquin Basin (51, 5), Southern Sacramento Valley (67, 7), San Fernando–San Gabriel (35, 6), Monterey Bay and Salinas Valley Basins (91, 11), and Southeast San Joaquin Valley (83, 9). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], pesticides, and pesticide degradates), constituents of special interest (perchlorate, N

  4. Assessment of agricultural groundwater users in Iran: a cultural environmental bias

    Science.gov (United States)

    Salehi, Saeid; Chizari, Mohammad; Sadighi, Hassan; Bijani, Masoud

    2017-08-01

    Many environmental problems are rooted in human behavior. This study aimed to explore the causal effect of cultural environmental bias on `sustainable behavior' among agricultural groundwater users in Fars province, Iran, according to Klockner's comprehensive model. A survey-based research project was conducted to gathering data on the paradigm of environmental psychology. The sample included agricultural groundwater users (n = 296) who were selected at random within a structured sampling regime involving study areas that represent three (higher, medium and lower) bounds of the agricultural-groundwater-vulnerability spectrum. Results showed that the "environment as ductile (EnAD)" variable was a strong determinant of sustainable behavior as it related to groundwater use, and that EnAE had the highest causal effect on the behavior of agricultural groundwater users. The adjusted model explained 41% variance of "groundwater sustainable behavior". Based on the results, the groundwater sustainable behaviors of agricultural groundwater users were found to be affected by personal and subjective norm variables and that they are influenced by casual effects of the "environment as ductile (EnAD)" variable. The conclusions reflect the Fars agricultural groundwater users' attitude or worldview on groundwater as an unrecoverable resource; thus, it is necessary that scientific disciplines like hydrogeology and psycho-sociology be considered together in a comprehensive approach for every groundwater study.

  5. Natural radioactivity of groundwater in Serbia

    Directory of Open Access Journals (Sweden)

    Ćuk Marina

    2013-01-01

    Full Text Available Activity concentrations of radionuclides 40K, 228Ra, 226Ra, 238U and Th232 and gross alpha and beta activities were analyzed in more than 100 samples of groundwater in Serbia. The highest gross alpha activity was recorded at 1.33 Bq/L (average 0.12 Bq/L, while the highest beta activity was 5.43 Bq/L (average 0.68 Bq/L. The potassium isotope 40K exhibited the highest active concentration (2.6 Bq/L and was the largest contributor to the gross natural beta activity. Among the analyzed samples, 28 were found to have elevated beta activity concentrations, of which five samples also measured elevated alpha activity. All the groundwater samples that exhibited elevated radioactivity were of the HCO3-Na type and were genetically associated with granitic rocks. Their TDS levels and CO2 gas concentrations were also elevated. [Projekat Ministarstva nauke Republike Srbije, br. 43004

  6. Summary of inorganic compositional data for groundwater, soil-water, and surface-water samples collected at the Headgate Draw subsurface drip irrigation site, Johnson County, Wyoming

    Science.gov (United States)

    Geboy, Nicholas J.; Engle, Mark A.; Schroeder, Karl T.; Zupancic, John W.

    2011-01-01

    As part of a 5-year project on the impact of subsurface drip irrigation (SDI) application of coalbed-methane (CBM) produced waters, water samples were collected from the Headgate Draw SDI site in the Powder River Basin, Wyoming, USA. This research is part of a larger study to understand short- and long-term impacts on both soil and water quality from the beneficial use of CBM waters to grow forage crops through use of SDI. This document provides a summary of the context, sampling methodology, and quality assurance and quality control documentation of samples collected prior to and over the first year of SDI operation at the site (May 2008-October 2009). This report contains an associated database containing inorganic compositional data, water-quality criteria parameters, and calculated geochemical parameters for samples of groundwater, soil water, surface water, treated CBM waters, and as-received CBM waters collected at the Headgate Draw SDI site.

  7. Summary of Inorganic Compositional Data for Groundwater, Soil-Water, and Surface-Water Samples at the Headgate Draw Subsurface Drip Irrigation Site

    Energy Technology Data Exchange (ETDEWEB)

    Geboy, Nicholas J.; Engle, Mark A.; Schroeder, Karl T.; Zupanic, John W.

    2007-01-01

    As part of a 5-year project on the impact of subsurface drip irrigation (SDI) application of coalbed-methane (CBM) produced waters, water samples were collected from the Headgate Draw SDI site in the Powder River Basin, Wyoming, USA. This research is part of a larger study to understand short- and long-term impacts on both soil and water quality from the beneficial use of CBM waters to grow forage crops through use of SDI. This document provides a summary of the context, sampling methodology, and quality assurance and quality control documentation of samples collected prior to and over the first year of SDI operation at the site (May 2008-October 2009). This report contains an associated database containing inorganic compositional data, water-quality criteria parameters, and calculated geochemical parameters for samples of groundwater, soil water, surface water, treated CBM waters, and as-received CBM waters collected at the Headgate Draw SDI site.

  8. Groundwater level monitoring sampling and analysis plan for the environmental monitoring plan at waste area grouping 6, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document is the Groundwater Level Monitoring Sampling and Analysis Plan (SAP) for Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory (ORNL). Note that this document is referred to as a SAP even though no sampling and analysis will be conducted. The term SAP is used for consistency. The procedures described herein are part of the Environmental Monitoring Plan (EMP) for WAG 6, which also includes monitoring tasks for seeps and springs, groundwater quality, surface water, and meteorological parameters. Separate SAPs are being issued concurrently to describe each of these monitoring programs. This SAP has been written for the use of the field personnel responsible for implementation of the EMP, with the intent that the field personnel will be able to take these documents to the field and quickly find the appropriate steps required to complete a specific task. In many cases, Field Operations Procedures (FOPs) will define the steps required for an activity. The FOPs for the EMP are referenced and briefly described in the relevant sections of the SAPs, and are contained within the FOP Manual. Both these documents (the SAP and the FOP Manual) will be available to personnel in the field.

  9. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework

    Science.gov (United States)

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min‐Hui; Swenson, Sean; Rodell, Matthew

    2015-01-01

    Abstract Groundwater is a finite resource under continuous external pressures. Current unsustainable groundwater use threatens the resilience of aquifer systems and their ability to provide a long‐term water source. Groundwater storage is considered to be a factor of groundwater resilience, although the extent to which resilience can be maintained has yet to be explored in depth. In this study, we assess the limit of groundwater resilience in the world's largest groundwater systems with remote sensing observations. The Total Groundwater Stress (TGS) ratio, defined as the ratio of total storage to the groundwater depletion rate, is used to explore the timescales to depletion in the world's largest aquifer systems and associated groundwater buffer capacity. We find that the current state of knowledge of large‐scale groundwater storage has uncertainty ranges across orders of magnitude that severely limit the characterization of resilience in the study aquifers. Additionally, we show that groundwater availability, traditionally defined as recharge and redefined in this study as total storage, can alter the systems that are considered to be stressed versus unstressed. We find that remote sensing observations from NASA's Gravity Recovery and Climate Experiment can assist in providing such information at the scale of a whole aquifer. For example, we demonstrate that a groundwater depletion rate in the Northwest Sahara Aquifer System of 2.69 ± 0.8 km3/yr would result in the aquifer being depleted to 90% of its total storage in as few as 50 years given an initial storage estimate of 70 km3. PMID:26900184

  10. Are Agricultural Measures for Groundwater Protection Beneficial When Compared to Purification of Polluted Groundwater?

    OpenAIRE

    Hasler, Berit; Lundhede, Thomas

    2005-01-01

    The groundwater resource, the drinking water areas and the surface water quality can be protected by measures, e.g. by reductions of pesticide and nutrient applications, conversion of arable land to grasslands or forests etc. The objective of the paper is to estimate the benefits of groundwater protection by the valuation method choice experiments. This method allows for separate estimation and comparison of the different attributes connected to groundwater protection i.e. the effects on drin...

  11. Groundwater surface water interaction study using natural isotopes tracer

    Science.gov (United States)

    Yoon, Yoon Yeol; Kim, Yong Chul; Cho, Soo Young; Lee, Kil Yong

    2015-04-01

    Tritium and stable isotopes are a component of the water molecule, they are the most conservative tracer for groundwater study. And also, radon is natural radioactive nuclide and well dissolved in groundwater. Therefore, these isotopes are used natural tracer for the study of surface water and groundwater interaction of water curtain greenhouse area. The study area used groundwater as a water curtain for warming tool of greenhouse during the winter, and is associated with issues of groundwater shortage while being subject to groundwater-river water interaction. During the winter time, these interactions were studied by using Rn-222, stable isotopes and H-3. These interaction was monitored in multi depth well and linear direction well of groundwater flow. And dam effect was also compared. Samples were collected monthly from October 2013 to April 2014. Radon and tritium were analyzed using Quantulus low background liquid scintillation counter and stable isotopes were analyzed using an IRIS (Isotope Ratio Infrared Spectroscopy ; L2120-i, Picarro). During the winter time, radon concentration was varied from 0.07 Bq/L to 8.9 Bq/L and different interaction was showed between dam. Surface water intrusion was severe at February and restored April when greenhouse warming was ended. The stable isotope results showed different trend with depth and ranged from -9.16 ‰ to -7.24 ‰ for δ 18O value, while the δD value was ranged from -57.86 ‰ to -50.98 ‰. The groundwater age as dated by H-3 was ranged 0.23 Bq/L - 0.59 Bq/L with an average value of 0.37 Bq/L.

  12. Estimating groundwater velocity using apparent resistivity tomography: A sandbox experiment

    Science.gov (United States)

    Chen, J. L.; Chen, C. H.; Kuo, C. L.; Fen, C. S.; Wu, C. C.

    2016-08-01

    The electrical resistivity tomography (ERT) technique can estimate groundwater velocity to within 5% of the pre-set groundwater velocity. The apparent conductivity obtained by the ERT technique is linearly related to the groundwater conductivity, as described by Archie's law. Gaussian-like profiles of the tracer concentration were demonstrated with the ERT technique, and the estimated dispersion coefficient was between 0.0015 and 0.0051 cm2/sec. In terms of monitoring changes in groundwater conductivity, the ERT technique has two major advantages over monitoring wells: (1) it measures a larger area and provides more representative results; and, (2) it does not withdraw groundwater samples, and therefore does not affect the groundwater flow. The objective of this research is to measure groundwater velocity with the ERT technique using only one well. The experiments in this research were divided into two parts. The first part evaluated the accuracy and repeatability of the ERT technique using a dipole-dipole array, and the second part estimated the groundwater velocity in a sandbox using the ERT technique. The length, width, and height of the sandbox, which was made of acrylic, were 1.5, 5, and 1.0 m, respectively. The ERT sandbox was sequentially filled with 5-cm layers of the silica sand to a total height of 70 cm. A total of 32 electrodes spaced every 5-cm were installed in the center of the sandbox. Three monitoring wells were installed along the line of the electrodes. Both no-flow and constant flow (NaCl solution with electrical conductivity and concentration of 5,000 μs/cm and 2.456 g/L, respectively) tracer experiments were conducted.

  13. Hanford Site groundwater monitoring for fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

  14. Hydrochemical characterization of groundwater in the Akyem area, Ghana

    Science.gov (United States)

    Banoeng-Yakubo, B.; Yidana, S.M.; Anku, Y.; Akabzaa, T.; Asiedu, D.

    2008-01-01

    The Akyem area is a small farming community located in southeastern Ghana. Groundwater samples from wells in the area were analyzed for concentrations of the major ions, silica, electrical conductivity and pH. The objective was to determine the main controls on the hydrochemistry of ground-water. Mass balance modeling was used together with multivariate R-mode hierarchical cluster analysis to determine the significant sources of variation in the hydrochemistry. Two water types exist in this area. The first is influenced most by the weathering of silicate minerals from the underlying geology, and is thus rich in silica, sodium, calcium, bicarbonate, and magnesium ions. The second is water that has been influenced by the effects of fertilizers and other anthropogenic activities in the area. Mineral speciation and silicate mineral stability diagrams suggest that montmorillonite, probably derived from the incongruent dissolution of feldspars and micas, is the most stable silicate phase in the groundwaters. The apparent incongruent weathering of silicate minerals in the groundwater system has led to the enrichment of sodium, calcium, magnesium and bicarbonate ions as well as silica, leading to the supersaturation of calcite, aragonite, dolomite and quartz. Stability in the montmorillonite field suggests restricted flow conditions and a long groundwater residence time, leading to greater exposure of the rock to weathering. Cation exchange processes appear to play minor roles in the hydrochemistry of groundwater.

  15. Review: Optimization methods for groundwater modeling and management

    Science.gov (United States)

    Yeh, William W.-G.

    2015-09-01

    Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.

  16. Nitrate pollution of groundwater; all right…, but nothing else?

    Science.gov (United States)

    Menció, Anna; Mas-Pla, Josep; Otero, Neus; Regàs, Oriol; Boy-Roura, Mercè; Puig, Roger; Bach, Joan; Domènech, Cristina; Zamorano, Manel; Brusi, David; Folch, Albert

    2016-01-01

    Contamination from agricultural sources and, in particular, nitrate pollution, is one of the main concerns in groundwater management. However, this type of pollution entails the entrance of other substances into the aquifer, as well as it may promote other processes. In this study, we deal with hydrochemical and isotopic analysis of groundwater samples from four distinct zones in Catalonia (NE Spain), which include 5 different aquifer types, to investigate the influence of fertilization on the overall hydrochemical composition of groundwater. Results indicate that intense fertilizer application, causing high nitrate pollution in aquifers, also homogenize the contents of the major dissolved ions (i.e.; Cl(-), SO4(2-), Ca(2+), Na(+), K(+), and Mg(2+)). Thus, when groundwater in igneous and sedimentary aquifers is compared, significant differences are observed under natural conditions for Cl(-), Na(+) and Ca(2+) (with p-values ranging from groundwater hydrochemistry (with R(2) values of 0.490, 0.609 and 0.470, for SO4(2-), Ca(2+) and Cl(-), respectively). Nevertheless, the increasing concentration of specific ions is not only attributed to agricultural pollution, but to their enhancing effect upon the biogeochemical processes that control water-rock interactions. Such results raise awareness that these processes should be evaluated in advance in order to assess an adequate groundwater resources management. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Interpolations of groundwater table elevation in dissected uplands.

    Science.gov (United States)

    Chung, Jae-won; Rogers, J David

    2012-01-01

    The variable elevation of the groundwater table in the St. Louis area was estimated using multiple linear regression (MLR), ordinary kriging, and cokriging as part of a regional program seeking to assess liquefaction potential. Surface water features were used to determine the minimum water table for MLR and supplement the principal variables for ordinary kriging and cokriging. By evaluating the known depth to the water and the minimum water table elevation, the MLR analysis approximates the groundwater elevation for a contiguous hydrologic system. Ordinary kriging and cokriging estimate values in unsampled areas by calculating the spatial relationships between the unsampled and sampled locations. In this study, ordinary kriging did not incorporate topographic variations as an independent variable, while cokriging included topography as a supporting covariable. Cross validation suggests that cokriging provides a more reliable estimate at known data points with less uncertainty than the other methods. Profiles extending through the dissected uplands terrain suggest that: (1) the groundwater table generated by MLR mimics the ground surface and elicits a exaggerated interpolation of groundwater elevation; (2) the groundwater table estimated by ordinary kriging tends to ignore local topography and exhibits oversmoothing of the actual undulations in the water table; and (3) cokriging appears to give the realistic water surface, which rises and falls in proportion to the overlying topography. The authors concluded that cokriging provided the most realistic estimate of the groundwater surface, which is the key variable in assessing soil liquefaction potential in unconsolidated sediments.

  18. Numerical simulations of groundwater flow at New Jersey Shallow Shelf

    Science.gov (United States)

    Fehr, Annick; Patterson, Fabian; Lofi, Johanna; Reiche, Sönke

    2016-04-01

    During IODP Expedition 313, three boreholes were drilled in the so-called New Jersey transect. Hydrochemical studies revealed the groundwater situation as more complex than expected, characterized by several sharp boundaries between fresh and saline groundwater. Two conflicting hypotheses regarding the nature of these freshwater reservoirs are currently debated. One hypothesis is that these reservoirs are connected with onshore aquifers and continuously recharged by seaward-flowing groundwater. The second hypothesis is that fresh groundwater was emplaced during the last glacial period. In addition to the petrophysical properties measured during IODP 313 expedition, Nuclear Magnetic Resonance (NMR) measurements were performed on samples from boreholes M0027, M0028 and M0029 in order to deduce porosities and permeabilities. These results are compared with data from alternative laboratory measurements and with petrophysical properties inferred from downhole logging data. We incorporate these results into a 2D numerical model that reflects the shelf architecture as known from drillings and seismic data to perform submarine groundwater flow simulations. In order to account for uncertainties related to the spatial distribution of physical properties, such as porosity and permeability, systematic variation of input parameters was performed during simulation runs. The target is to test the two conflicting hypotheses of fresh groundwater emplacements offshore New Jersey and to improve the understanding of fluid flow processes at marine passive margins.

  19. Hydrogeochemical quality and suitability studies of groundwater in northern Bangladesh.

    Science.gov (United States)

    Islam, M J; Hakim, M A; Hanafi, M M; Juraimi, Abdul Shukor; Aktar, Sharmin; Siddiqa, Aysha; Rahman, A K M Shajedur; Islam, M Atikul; Halim, M A

    2014-07-01

    Agriculture, rapid urbanization and geochemical processes have direct or indirect effects on the chemical composition of groundwater and aquifer geochemistry. Hydro-chemical investigations, which are significant for assessment of water quality, were carried out to study the sources of dissolved ions in groundwater of Dinajpur district, northern Bangladesh. The groundwater samplish were analyzed for physico-chemical properties like pH, electrical conductance, hardness, alkalinity, total dissolved solids and Ca2+, Mg2+, Na+, K+, CO3(2-), HCO3(-), SO4(2-) and Cl- ions, respectively. Based on the analyses, certain parameters like sodium adsorption ratio, soluble sodium percentage, potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio were also calculated. The results showed that the groundwater of study area was fresh, slightly acidic (pH 5.3-6.4) and low in TDS (35-275 mg I(-1)). Ground water of the study area was found suitable for irrigation, drinking and domestic purposes, since most of the parameters analyzed were within the WHO recommended values for drinking water. High concentration of NO3- and Cl- was reported in areas with extensive agriculture and rapid urbanization. Ion-exchange, weathering, oxidation and dissolution of minerals were major geochemical processes governing the groundwater evolution in study area. Gibb's diagram showed that all the samples fell in the rock dominance field. Based on evaluation, it is clear that groundwater quality of the study area was suitable for both domestic and irrigation purposes.

  20. Groundwater head controls nitrate export from an agricultural lowland catchment

    Science.gov (United States)

    Musolff, Andreas; Schmidt, Christian; Rode, Michael; Lischeid, Gunnar; Weise, Stephan M.; Fleckenstein, Jan H.

    2016-10-01

    Solute concentration variability is of fundamental importance for the chemical and ecological state of streams. It is often closely related to discharge variability and can be characterized in terms of a solute export regime. Previous studies, especially in lowland catchments, report that nitrate is often exported with an accretion pattern of increasing concentrations with increasing discharge. Several modeling approaches exist to predict the export regime of solutes from the spatial relationship of discharge generating zones with solute availability in the catchment. For a small agriculturally managed lowland catchment in central Germany, we show that this relationship is controlled by the depth to groundwater table and its temporal dynamics. Principal component analysis of groundwater level time series from wells distributed throughout the catchment allowed derivation of a representative groundwater level time series that explained most of the discharge variability. Groundwater sampling revealed consistently decreasing nitrate concentrations with an increasing thickness of the unsaturated zone. The relationships of depth to groundwater table to discharge and to nitrate concentration were parameterized and integrated to successfully model catchment discharge and nitrate export on the basis of groundwater level variations alone. This study shows that intensive and uniform agricultural land use likely results in a clear and consistent concentration-depth relationship of nitrate, which can be utilized in simple approaches to predict stream nitrate export dynamics at the catchment scale.

  1. Chemical analyses of ground-water samples from the Rio Grande Valley in the vicinity of Albuquerque, New Mexico, October 1993 through January 1994

    Science.gov (United States)

    Wilkins, D.W.; Schlottmann, J.L.; Ferree, D.M.

    1996-01-01

    A study was conducted to investigate general ground-water- quality conditions and contaminant locations in the Rio Grande Valley in the vicinity of Albuquerque, New Mexico. Water samples from 36 observation wells in 12 well nests were analyzed. The well nests are located along three roads near the Rio Grande--two well nests near Paseo del Norte, five well nests near Monta?o Road, and five well nests near Rio Bravo Boulevard. The water samples were collected from October 19, 1993, through January 18, 1994. Water-quality types by major-ion composition were calcium bicarbonate (found in most samples), sodium sulfate, calcium sulfate, and calcium sulfate chloride. Nutrients were detected in all but one sample. Ammonia was detected in 34 samples, nitrite in 4 samples, and nitrate in 17 samples. Orthophosphate was detected in 31 samples. Organic carbon was detected in all samples collected. The trace elements arsenic and barium were detected in all samples and zinc in 31 samples. Fourteen samples contained detectable copper. Cadmium was detected in one sample, chromium in two samples, lead in four samples, and selenium in two samples. Mercury and silver were not detected.

  2. Dissolved Organic Carbon 14C in Southern Nevada Groundwater and Implications for Groundwater Travel Times

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Ronald L. [Nevada University, Reno, NV (United States). Desert Research Institute; Fereday, Wyall [Nevada University, Reno, NV (United States). Desert Research Institute; Thomas, James M [Nevada University, Reno, NV (United States). Desert Research Institute

    2016-08-01

    Dissolved inorganic carbon (DIC) carbon-14 (14C) ages must be corrected for complex chemical and physical reactions and processes that change the amount of 14C in groundwater as it flows from recharge to downgradient areas. Because of these reactions, DIC 14C can produce unrealistically old ages and long groundwater travel times that may, or may not, agree with travel times estimated by other methods. Dissolved organic carbon (DOC) 14C ages are often younger than DIC 14C ages because there are few chemical reactions or physical processes that change the amount of DOC 14C in groundwater. However, there are several issues that create uncertainty in DOC 14C groundwater ages including limited knowledge of the initial (A0) DOC 14C in groundwater recharge and potential changes in DOC composition as water moves through an aquifer. This study examines these issues by quantifying A0 DOC 14C in recharge areas of southern Nevada groundwater flow systems and by evaluating changes in DOC composition as water flows from recharge areas to downgradient areas. The effect of these processes on DOC 14C groundwater ages is evaluated and DOC and DIC 14C ages are then compared along several southern Nevada groundwater flow paths. Twenty-seven groundwater samples were collected from springs and wells in southern Nevada in upgradient, midgradient, and downgradient locations. DOC 14C for upgradient samples ranged from 96 to 120 percent modern carbon (pmc) with an average of 106 pmc, verifying modern DOC 14C ages in recharge areas, which decreases uncertainty in DOC 14C A0 values, groundwater ages, and travel times. The HPLC spectra of groundwater along a flow path in the Spring Mountains show the same general pattern indicating that the DOC compound composition does not change along this flow path

  3. Simulation of Groundwater Flow, Denpasar-Tabanan Groundwater Basin, Bali Province

    Directory of Open Access Journals (Sweden)

    Heryadi Tirtomihardjo

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i3.123Due to the complex structure of the aquifer systems and its hydrogeological units related with the space in which groundwater occurs, groundwater flows were calculated in three-dimensional method (3D Calculation. The geometrical descritization and iteration procedures were based on an integrated finite difference method. In this paper, all figures and graphs represent the results of the calibrated model. Hence, the model results were simulated by using the actual input data which were calibrated during the simulation runs. Groundwater flow simulation of the model area of the Denpasar-Tabanan Groundwater Basin (Denpasar-Tabanan GB comprises steady state run, transient runs using groundwater abstraction in the period of 1989 (Qabs-1989 and period of 2009 (Qabs-2009, and prognosis run as well. Simulation results show, in general, the differences of calculated groundwater heads and observed groundwater heads at steady and transient states (Qabs-1989 and Qabs-2009 are relatively small. So, the groundwater heads situation simulated by the prognosis run (scenario Qabs-2012 are considerably valid and can properly be used for controlling the plan of groundwater utilization in Denpasar-Tabanan GB.

  4. Pesticides in Wyoming Groundwater, 2008-10

    Science.gov (United States)

    Eddy-Miller, Cheryl A.; Bartos, Timothy T.; Taylor, Michelle L.

    2013-01-01

    Groundwater samples were collected from 296 wells during 1995-2006 as part of a baseline study of pesticides in Wyoming groundwater. In 2009, a previous report summarized the results of the baseline sampling and the statistical evaluation of the occurrence of pesticides in relation to selected natural and anthropogenic (human-related) characteristics. During 2008-10, the U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture, resampled a subset (52) of the 296 wells sampled during 1995-2006 baseline study in order to compare detected compounds and respective concentrations between the two sampling periods and to evaluate the detections of new compounds. The 52 wells were distributed similarly to sites used in the 1995-2006 baseline study with respect to geographic area and land use within the geographic area of interest. Because of the use of different types of reporting levels and variability in reporting-level values during both the 1995-2006 baseline study and the 2008-10 resampling study, analytical results received from the laboratory were recensored. Two levels of recensoring were used to compare pesticides—a compound-specific assessment level (CSAL) that differed by compound and a common assessment level (CAL) of 0.07 microgram per liter. The recensoring techniques and values used for both studies, with the exception of the pesticide 2,4-D methyl ester, were the same. Twenty-eight different pesticides were detected in samples from the 52 wells during the 2008-10 resampling study. Pesticide concentrations were compared with several U.S. Environmental Protection Agency drinking-water standards or health advisories for finished (treated) water established under the Safe Drinking Water Act. All detected pesticides were measured at concentrations smaller than U.S. Environmental Protection Agency drinking-water standards or health advisories where applicable (many pesticides did not have standards or advisories). One or more pesticides

  5. Simulation of groundwater flow and interaction of groundwater and surface water on the Lac du Flambeau Reservation, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Fienen, Michael N.; Hunt, Randall J.

    2014-01-01

    The Lac du Flambeau Band of Lake Superior Chippewa and Indian Health Service are interested in improving the understanding of groundwater flow and groundwater/surface-water interaction on the Lac du Flambeau Reservation (Reservation) in southwest Vilas County and southeast Iron County, Wisconsin, with particular interest in an understanding of the potential for contamination of groundwater supply wells and the fate of wastewater that is infiltrated from treatment lagoons on the Reservation. This report describes the construction, calibration, and application of a regional groundwater flow model used to simulate the shallow groundwater flow system of the Reservation and water-quality results for groundwater and surface-water samples collected near a system of waste-water-treatment lagoons. Groundwater flows through a permeable glacial aquifer that ranges in thickness from 60 to more than 200 feet (ft). Seepage and drainage lakes are common in the area and influence groundwater flow patterns on the Reservation. A two-dimensional, steady-state analytic element groundwater flow model was constructed using the program GFLOW. The model was calibrated by matching target water levels and stream base flows through the use of the parameter-estimation program, PEST. Simulated results illustrate that groundwater flow within most of the Reservation is toward the Bear River and the chain of lakes that feed the Bear River. Results of analyses of groundwater and surface-water samples collected downgradient from the wastewater infiltration lagoons show elevated levels of ammonia and dissolved phosphorus. In addition, wastewater indicator chemicals detected in three downgradient wells and a small downgradient stream indicate that infiltrated wastewater is moving southwest of the lagoons toward Moss Lake. Potential effects of extended wet and dry periods (within historical ranges) were evaluated by adjusting precipitation and groundwater recharge in the model and comparing the

  6. Groundwater Governance in the United States: Common Priorities and Challenges.

    Science.gov (United States)

    Megdal, Sharon B; Gerlak, Andrea K; Varady, Robert G; Huang, Ling-Yee

    2015-01-01

    Groundwater is a critical component of the water supply for agriculture, urban areas, industry, and ecosystems, but managing it is a challenge because groundwater is difficult to map, quantify, and evaluate. Until recently, study and assessment of governance of this water resource has been largely neglected. A survey was developed to query state agency officials about the extent and scope of groundwater use, groundwater laws and regulations, and groundwater tools and strategies. Survey responses revealed key findings: states' legal frameworks for groundwater differ widely in recognizing the hydrologic connection between surface water and groundwater, the needs of groundwater-dependent ecosystems, and the protection of groundwater quality; states reported a range in capacity to enforce groundwater responsibilities; and states have also experienced substantial changes in groundwater governance in the past few decades. Overall, groundwater governance across the United States is fragmented. States nevertheless identified three common priorities for groundwater governance: water quality and contamination, conflicts between users, and declining groundwater levels. This survey represents an initial step in a broader, continuing effort to characterize groundwater governance practices in the United States.

  7. Final report : results of aquifer pumping and groundwater sampling at Everest, Kansas, in January-March 2006.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2006-09-30

    On September 8-9, 2005, representatives of the Kansas Department of Health and Environment (KDHE), the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA), and Argonne National Laboratory met at the KDHE's offices in Topeka to review the status of the CCC/USDA's environmental activities in Kansas. As a result of this meeting, the KDHE recommended several additional activities to augment the CCC/USDA's investigations at Everest, Kansas, and assist in the selection of remedial approaches to be evaluated as part of a Corrective Action Study (CAS) for this site. The requested actions included the following: (1) Construction of several additional interpretive cross sections illustrating the hydrogeologic setting along the apparent main plume migration pathway to the north-northwest of the former CCC/USDA facility, as well as in the vicinity of the Nigh property. (2) Installation of additional permanent monitoring wells, to better constrain the apparent western, northern, and northwestern margins of the existing groundwater plume. (3) Development of technical recommendations for a phased pumping study of the Everest aquifer unit in the area near and to the north of the Nigh property.

  8. Groundwater Quality Assessment in Jazan Region, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Adel M. Alhababy

    2015-04-01

    Full Text Available Jazan province is an arid area, located at the southwestern part of Saudi Arabia along the Red Sea coast. Groundwater is the only resource of drinking water in this area; thus, its suitability for drinking and domestic uses is of public and scientific concern. In this study, groundwater samples were collected from 23 sites in Jazan area during fall 2014; measurements and analysis of water quality parameters including pH, total dissolved solids TDS, turbidity, hardness, alkalinity, ammonia, nitrite, nitrate, sulfate, calcium, magnesium, chloride, iron and fluoride were carried out with references to WHO and Gulf Standardization Organization GSO. TDS values exceeded the permissible limit of 600 mg/l in 30.4% of samples, total hardness values exceeded the permissible limits of 300 mg/l in 34.8% of samples, and nitrate concentration exceeded the permissible limit of 50 mg/l in only one sample. However, the concentrations of investigated parameters in the groundwater samples were within the permissible limits of WHO. Our results showed that the water quality of groundwater in Jazan area is acceptable and could be used safely for drinking and domestic purposes. However, a special attention should be paid to the concentration of TDS and nitrate in groundwater in future studies.

  9. South-East Iowa Groundwater Vulnerability Regions

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions on this map represent areas with similar hydro- geologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  10. Potential Health Effects from Groundwater Pollution.

    Science.gov (United States)

    Goyer, Robert A.

    1985-01-01

    Discusses the growing awareness of potential toxicological effects of synthetic organic chemicals contaminating groundwater. Problems concerning pesticides, chlorination, epidemiologic studies, cancer, nephrotoxicity, and considerations of risk are addressed. Additional research in this area is advocated. (DH)

  11. Hydrogeochemical and isotopic characterization of the groundwater ...

    African Journals Online (AJOL)

    POSTE7

    : ... is also affected by the relief, while the southward shift of the isohyets .... Solids (TDS) were calculated by adding the main ionic species ... (Davis and De Wiest, 1966; Freeze and Cherry, 1979). ... depression point of groundwater discharge.

  12. Groundwater pollution: are we monitoring appropriate parameters?

    CSIR Research Space (South Africa)

    Tredoux, G

    2004-01-01

    Full Text Available . In the literature, divergent approaches have identified various sets of pollutants and pollution indicators. This paper discusses international and local trends in groundwater monitoring for baseline studies and on-going pollution detection monitoring for a variety...

  13. North-West Iowa Groundwater Vulnerability Regions

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions on this map represent areas with similar hydro-geologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  14. North-East Iowa Groundwater Vulnerability Regions

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions on this map represent areas with similar hydro-geologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  15. Effect of Groundwater Abstraction on Fen Ecosystems

    DEFF Research Database (Denmark)

    Johansen, Ole; Pedersen, Morten Lauge; Jensen, Jacob Birk

    2011-01-01

    Quantifying the effects of groundwater abstraction on fen ecosystems located in discharge areas can be complicated. The water level in fens is close to the terrain surface most of the year and it is controlled by a relatively constant groundwater exfiltration. It is difficult to measure...... the exfiltration fluxes and thus water level data is typically used to evaluate if the ecosystem is affected. The paper presents collected data and analysis from a case study, where the hydrological effect of groundwater abstraction on rich fens and springs in a Danish river valley has been studied. The natural...... within a distance of 1.5 km to a planned well field. In the river valley the interaction between groundwater and surface water is strongly affected by low permeable sediments. These sediments reduce the direct discharge to the river and have a large impact on the functioning and presence of the rich fen...

  16. Isolation of haloorganic groundwater humic substances

    DEFF Research Database (Denmark)

    Krog, M.; Grøn, C.

    1995-01-01

    Humic substances were isolated from groundwater according to a revised method designed to avoid organohalogen artefacts. The prepared humic substances exhibited lower halogen contents than humic substances isolated according to the conventionally used method. Excessive oxidation or hydrolysis...

  17. Science, society, and the coastal groundwater squeeze

    Science.gov (United States)

    Michael, Holly A.; Post, Vincent E. A.; Wilson, Alicia M.; Werner, Adrian D.

    2017-04-01

    Coastal zones encompass the complex interface between land and sea. Understanding how water and solutes move within and across this interface is essential for managing resources for society. The increasingly dense human occupation of coastal zones disrupts natural groundwater flow patterns and degrades freshwater resources by both overuse and pollution. This pressure results in a "coastal groundwater squeeze," where the thin veneers of potable freshwater are threatened by contaminant sources at the land surface and saline groundwater at depth. Scientific advances in the field of coastal hydrogeology have enabled responsible management of water resources and protection of important ecosystems. To address the problems of the future, we must continue to make scientific advances, and groundwater hydrology needs to be firmly embedded in integrated coastal zone management. This will require interdisciplinary scientific collaboration, open communication between scientists and the public, and strong partnerships with policymakers.

  18. South-West Iowa Groundwater Vulnerability Regions

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions on this map represent areas with similar hydro- geologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  19. Assessment of Physicochemical Characteristics of Groundwater ...

    African Journals Online (AJOL)

    Assessment of Physicochemical Characteristics of Groundwater Quality used for Drinking ... Key Words: Water Quality, Water Quality Index, EIA, Health, Diseases, Firozabad City. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  20. Analysing Groundwater Using the 13C Isotope

    Science.gov (United States)

    Awad, Sadek

    The stable isotope of the carbon atom (13C) give information about the type of the mineralisation of the groundwater existing during the water seepage and about the recharge conditions of the groundwater. The concentration of the CO2(aq.) dissolved during the infiltration of the water through the soil's layers has an effect on the mineralisation of this water. The type of the photosynthesis's cycle (C-3 or C-4 carbon cycle) can have a very important role to determine the conditions (closed or open system) of the mineralisation of groundwater. The isotope 13C of the dissolved CO2 in water give us a certain information about the origin and the area of pollution of water. The proportion of the biogenic carbon and its percentage in the mineralisation of groundwater is determined by using the isotope 13C.

  1. Arsenic Speciation in Groundwater: Role of Thioanions

    Science.gov (United States)

    The behavior of arsenic in groundwater environments is fundamentally linked to its speciation. Understanding arsenic speciation is important because chemical speciation impacts reactivity, bioavailability, toxicity, and transport and fate processes. In aerobic environments arsen...

  2. Hydro geophysical Investigation for Groundwater Development at ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Keywords: basement complex, electrical sounding, groundwater, exploration, aquifers. Fresh water is a .... underscores the reliability of the analysis tool for this type of work. Latitude .... Jatau, B.S., Patrick N.O., Baba A., Fadele S.I. (Jan.

  3. Building groundwater modeling capacity in Mongolia

    Science.gov (United States)

    Valder, Joshua F.; Carter, Janet M.; Anderson, Mark T.; Davis, Kyle W.; Haynes, Michelle A.; Dorjsuren Dechinlhundev,

    2016-06-16

    Ulaanbaatar, the capital city of Mongolia (fig. 1), is dependent on groundwater for its municipal and industrial water supply. The population of Mongolia is about 3 million people, with about one-half the population residing in or near Ulaanbaatar (World Population Review, 2016). Groundwater is drawn from a network of shallow wells in an alluvial aquifer along the Tuul River. Evidence indicates that current water use may not be sustainable from existing water sources, especially when factoring the projected water demand from a rapidly growing urban population (Ministry of Environment and Green Development, 2013). In response, the Government of Mongolia Ministry of Environment, Green Development, and Tourism (MEGDT) and the Freshwater Institute, Mongolia, requested technical assistance on groundwater modeling through the U.S. Army Corps of Engineers (USACE) to the U.S. Geological Survey (USGS). Scientists from the USGS and USACE provided two workshops in 2015 to Mongolian hydrology experts on basic principles of groundwater modeling using the USGS groundwater modeling program MODFLOW-2005 (Harbaugh, 2005). The purpose of the workshops was to bring together representatives from the Government of Mongolia, local universities, technical experts, and other key stakeholders to build in-country capacity in hydrogeology and groundwater modeling.A preliminary steady-state groundwater-flow model was developed as part of the workshops to demonstrate groundwater modeling techniques to simulate groundwater conditions in alluvial deposits along the Tuul River in the vicinity of Ulaanbaatar. ModelMuse (Winston, 2009) was used as the graphical user interface for MODFLOW for training purposes during the workshops. Basic and advanced groundwater modeling concepts included in the workshops were groundwater principles; estimating hydraulic properties; developing model grids, data sets, and MODFLOW input files; and viewing and evaluating MODFLOW output files. A key to success was

  4. Application of vector autoregressive model for rainfall and groundwater level analysis

    Science.gov (United States)

    Keng, Chai Yoke; Shan, Fam Pei; Shimizu, Kunio; Imoto, Tomoaki; Lateh, Habibah; Peng, Koay Swee

    2017-08-01

    Groundwater is a crucial water supply for industrial, agricultural and residential use, hence it is important to understand groundwater system. Groundwater is a dynamic natural resource and can be recharged. The amount of recharge depends on the rate and duration of rainfall, as rainfall comprises an important component of the water cycle and is the prime source of groundwater recharge. This study applies Vector Autoregressive (VAR) model in the analysis of rainfall and groundwater level. The study area that is focused in the study is along the East-West Highway, Gerik-Jeli, Malaysia. The VAR model with optimum lag length 8, VAR(8) is selected to model the rainfall and groundwater level in the study area. Result of Granger causality test shows significant influence of rainfall to groundwater level. Impulse Response Function reveals that changes in rainfall significantly affect changes in groundwater level after some time lags. Moreover, Variance Decomposition reported that rainfall contributed to the forecast of the groundwater level. The VAR(8) model is validated by comparing the actual value with the in-sample forecasted value and the result is satisfied with all forecasted groundwater level values lies inside the confidence interval which indicate that the model is reliable. Furthermore, the closeness of both actual and forecasted groundwater level time series plots implies the high degree of accurateness of the estimated model.

  5. The isotope altitude effect reflected in groundwater: a case study from Slovenia.

    Science.gov (United States)

    Mezga, Kim; Urbanc, Janko; Cerar, Sonja

    2014-01-01

    This paper presents the stable isotope data of oxygen (δ(18)O) and hydrogen (δ(2)H) in groundwater from 83 sampling locations in Slovenia and their interpretation. The isotopic composition of water was monitored over 3 years (2009-2011), and each location was sampled twice. New findings on the isotopic composition of sampled groundwater are presented, and the data are also compared to past studies regarding the isotopic composition of precipitation, surface water, and groundwater in Slovenia. This study comprises: (1) the general characteristics of the isotopic composition of oxygen and hydrogen in groundwater in Slovenia, (2) the spatial distribution of oxygen isotope composition (δ(18)O) and d-excess in groundwater, (3) the groundwater isotope altitude effect, (4) the correlation between groundwater d-excess and the recharge area altitude of the sampling location, (5) the relation between hydrogen and oxygen isotopes in groundwater in comparison to the global precipitation isotope data, (6) the groundwater isotope effect of distance from the sea, and (7) the estimated relation between the mean temperature of recharge area and δ(18)O in groundwater.

  6. Groundwater level monitoring sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This Sampling and Analysis Plan addresses groundwater level monitoring activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Groundwater level monitoring will be conducted at 129 sites within the WAG. All of the sites will be manually monitored on a semiannual basis. Forty-five of the 128 wells, plus one site in White Oak Lake, will also be equipped with automatic water level monitoring equipment. The 46 sites are divided into three groups. One group will be equipped for continuous monitoring of water level, conductivity, and temperature. The other two groups will be equipped for continuous monitoring of water level only. The equipment will be rotated between the two groups. The data collected from the water level monitoring will be used to support determination of the contaminant flux at WAG 6.

  7. Selective sorption of technetium from groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    The purpose of this project is to develop an anion exchange resin that will selectively remove the radionuclide technetium, in the form of the pertechnetate anion TcO{sub 4}{sup -}, from groundwater, leaving behind other interfering anions. A resin bed of this material will be used either as part of a coupled treatment-recirculation system for the in situ remediation of groundwater contaminated with technetium or in a once-through treatment scheme.

  8. Groundwater hydrogeochemical characteristics in rehabilitated coalmine spoils

    Science.gov (United States)

    Gomo, M.; Masemola, E.

    2016-04-01

    The investigation aims to identify and describe hydrogeochemical processes controlling the evolution of groundwater chemistry in rehabilitated coalmine spoils and their overall influence on groundwater quality at a study area located in the Karoo basin of South Africa. A good understanding of the processes that controls the evolution of the mine water quality is vital for the planning, application and management of post-mining remedial actions. The study utilises scatter plots, statistical analysis, PHREEQC hydrogeochemical modelling, stoichiometric reaction ratios analysis, and the expanded Durov diagram as complimentary tools to interpret the groundwater chemistry data collected from monitoring boreholes from 1995 to 2014. Measured pH ranging between 6-8 and arithmetic mean of 7.32 shows that the groundwater system is characterised by circumneutral hydrogeochemical conditions period. Comparison of measured groundwater ion concentrations to theoretical reaction stoichiometry identifies Dolomite-Acid Mine Drainage (AMD) neutralisation as the main hydrogeochemical process controlling the evolution of the groundwater chemistry. Hydrogeochemical modelling shows that, the groundwater has temporal variations of calcite and dolomite saturation indices characterised by alternating cycles of over-saturation and under-saturation that is driven by the release of sulphate, calcium and magnesium ions from the carbonate-AMD neutralization process. Arithmetic mean concentrations of sulphate, calcium and magnesium are in the order of 762 mg/L, 141 mg/L and 108 mg/L. Calcium and magnesium ions contribute to very hard groundwater quality conditions. Classification based on total dissolved solids (TDS), shows the circumneutral water is of poor to unacceptable quality for drinking purposes. Despite its ability to prevent AMD formation and leaching of metals, the dolomite-AMD neutralisation process can still lead to problems of elevated TDS and hardness which mines should be aware of

  9. Intercomparison of Rn-222 determination from groundwater

    DEFF Research Database (Denmark)

    Vesterbacka, P.; Pettersson, H.; Hanste, U.-M.;

    2010-01-01

    An intercomparison exercise on Rn-222 determination in groundwater was organized between eight Nordic laboratories. The individual laboratory results were in most cases within 20% of the median value and within reported uncertainties. Considering the particular difficulties in preparing, transpor......An intercomparison exercise on Rn-222 determination in groundwater was organized between eight Nordic laboratories. The individual laboratory results were in most cases within 20% of the median value and within reported uncertainties. Considering the particular difficulties in preparing...

  10. Evolution of Unsteady Groundwater Flow Systems

    Science.gov (United States)

    Liang, Xing; Jin, Menggui; Niu, Hong

    2016-04-01

    Natural groundwater flow is usually transient, especially in long time scale. A theoretical approach on unsteady groundwater flow systems was adopted to highlight some of the knowledge gaps in the evolution of groundwater flow systems. The specific consideration was focused on evolution of groundwater flow systems from unsteady to steady under natural and mining conditions. Two analytical solutions were developed, using segregation variable method to calculate the hydraulic head under steady and unsteady flow conditions. The impact of anisotropy ratio, hydraulic conductivity (K) and specific yield (μs) on the flow patterns were analyzed. The results showed that the area of the equal velocity region increased and the penetrating depth of the flow system decreased while the anisotropy ratio (ɛ = °Kx-/Kz--) increased. Stagnant zones were found in the flow field where the directions of streamlines were opposite. These stagnant zones moved up when the horizontal hydraulic conductivity increased. The results of the study on transient flow indicated a positive impact on hydraulic head with an increase of hydraulic conductivity, while a negative effect on hydraulic head was observed when the specific yield was enhanced. An unsteady numerical model of groundwater flow systems with annual periodic recharge was developed using MODFLOW. It was observed that the transient groundwater flow patterns were different from that developed in the steady flow under the same recharge intensity. The water table fluctuated when the recharge intensity altered. The monitoring of hydraulic head and concentration migration revealed that the unsteady recharge affected the shallow local flow system more than the deep regional flow system. The groundwater flow systems fluctuated with the action of one or more pumping wells. The comparison of steady and unsteady groundwater flow observation indicated that the unsteady flow patterns cannot be simulated by the steady model when the condition

  11. Arsenic geochemistry of groundwater in Southeast Asia.

    Science.gov (United States)

    Kim, Kyoung-Woong; Chanpiwat, Penradee; Hanh, Hoang Thi; Phan, Kongkea; Sthiannopkao, Suthipong

    2011-12-01

    The occurrence of high concentrations of arsenic in the groundwater of the Southeast Asia region has received much attention in the past decade. This study presents an overview of the arsenic contamination problems in Vietnam, Cambodia, Lao People's Democratic Republic and Thailand. Most groundwater used as a source of drinking water in rural areas has been found to be contaminated with arsenic exceeding the WHO drinking water guideline of 10 μg·L(-1). With the exception of Thailand, groundwater was found to be contaminated with naturally occurring arsenic in the region. Interestingly, high arsenic concentrations (> 10 μg·L(-1)) were generally found in the floodplain areas located along the Mekong River. The source of elevated arsenic concentrations in groundwater is thought to be the release of arsenic from river sediments under highly reducing conditions. In Thailand, arsenic has never been found naturally in groundwater, but originates from tin mining activities. More than 10 million residents in Southeast Asia are estimated to be at risk from consuming arsenic-contaminated groundwater. In Southeast Asia, groundwater has been found to be a significant source of daily inorganic arsenic intake in humans. A positive correlation between groundwater arsenic concentration and arsenic concentration in human hair has been observed in Cambodia and Vietnam. A substantial knowledge gap exists between the epidemiology of arsenicosis and its impact on human health. More collaborative studies particularly on the scope of public health and its epidemiology are needed to conduct to fulfill the knowledge gaps of As as well as to enhance the operational responses to As issue in Southeast Asian countries.

  12. Groundwater sustainability in Asian Mega city

    Science.gov (United States)

    Taniguchi, M.

    2009-12-01

    Population increased in many Asian coastal cities, and increased demand of groundwater as water resources caused many subsurface environments. Subsurface environmental problems such as land subsidence due to excessive pumping, groundwater contamination and subsurface thermal anomaly, have occurred repeatedly in Asian mega cities with a time lag depending on the development stage of urbanization. This study focus on four subjects; urban, water, heat, and material in subsurface environment, and intensive field observations and data collections had been made in the basins including Tokyo, Osaka, Bangkok, Jakarta, Manila, Seoul, and Taipei. The new methods for evaluating the changes in groundwater storage by gravimeter measurements in situ and Satellite GRACE, and residence time evaluation by 85Kr and CFCs, have been developed in this study. The combined effects of heat island and global warming from subsurface temperature in Asian mega cities evaluated the magnitude and timing of the urbanization which were preserved in subsurface thermal environment. The effects of law/institution on change in reliable water resources between groundwater and surface water, have been also investigated. The groundwater is “private water”, on the other hand, the surface water is “public water”. Regulation of groundwater pumping due to serious land subsidence did not work without alternative water resources, and the price of water is another major factor for the change in reliable water resources between groundwater and surface water. Land use/cover changes at three ages (1940’s, 1970’s and 2000’s) have been analyzed based on GIS with 0.5 km grid at seven targeted cities. The development of integrated indicators based on GIS for understanding the relationship between human activities and subsurface environment have been made in this study. Finally, we address the sustainable use of groundwater and subsurface environments for better future development and human well-being.

  13. Groundwater hydrology” is redundant

    Science.gov (United States)

    While in the Netherlands a few months ago, I mentioned “groundwater hydrology” to a very well-educated, very literary, and non-hydrologic old friend. She shuddered and told me in no uncertain words that this was a horrible term, completely redundant like a round circle, or as the linguists call it, a pleonasm. This is, of course, because hydrology already means water science (from the Greek words udor, or hydor for water, and logos for science), so that groundwater hydrology really stands for groundwater water science, and surface water hydrology for surface water science.These are pleonasms of the first kind and insults to any language purist, which all of us should strive to be! So I propose that henceforth groundwater hydrology be called subterranean hydrology. Other possibilities would be subsurface hydrology, but this sounds too shallow, or underground hydrology, which, however, could give the impression of some clandestine activity. Besides, subterranean hydrology would be in keeping with the words for groundwater in Latin-based languages (eau souterrain in French, acqua sotierranea in Italian, and aguas subterraneas in Spanish). Also, subterranean hydrology includes the vadose zone, which, of course, groundwater hydrology as such does not. Surface water hydrology would simply be called surface hydrology, and anything above that atmospheric hydrology.

  14. Groundwater depletion embedded in international food trade

    Science.gov (United States)

    Dalin, Carole; Wada, Yoshihide; Kastner, Thomas; Puma, Michael J.

    2017-03-01

    Recent hydrological modelling and Earth observations have located and quantified alarming rates of groundwater depletion worldwide. This depletion is primarily due to water withdrawals for irrigation, but its connection with the main driver of irrigation, global food consumption, has not yet been explored. Here we show that approximately eleven per cent of non-renewable groundwater use for irrigation is embedded in international food trade, of which two-thirds are exported by Pakistan, the USA and India alone. Our quantification of groundwater depletion embedded in the world’s food trade is based on a combination of global, crop-specific estimates of non-renewable groundwater abstraction and international food trade data. A vast majority of the world’s population lives in countries sourcing nearly all their staple crop imports from partners who deplete groundwater to produce these crops, highlighting risks for global food and water security. Some countries, such as the USA, Mexico, Iran and China, are particularly exposed to these risks because they both produce and import food irrigated from rapidly depleting aquifers. Our results could help to improve the sustainability of global food production and groundwater resource management by identifying priority regions and agricultural products at risk as well as the end consumers of these products.

  15. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-01-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  16. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Bradford, Scott A.; Harvey, Ronald W.

    2016-12-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  17. Groundwater management institutions to protect riparian habitat

    Science.gov (United States)

    Orr, Patricia; Colby, Bonnie

    2004-12-01

    Groundwater pumping affects riparian habitat when it causes the water table to drop beyond the reach of riparian plants. Riparian habitat provides services that are not directly traded in markets, as is the case with many environmental amenities. There is no direct market where one may buy or sell the mix of services provided by a riparian corridor. The objective of this article is to review groundwater management mechanisms and assess their strengths and weaknesses for preserving the ecological integrity of riparian areas threatened by groundwater pumping. Policy instruments available to those concerned with the effects of groundwater pumping on riparian areas fall into three broad categories: (1) command and control (CAC), (2) incentive-based economic instruments, and (3) cooperative/suasive strategies. The case of the San Pedro River illustrates multiple and overlapping strategies applied in an ongoing attempt to reverse accumulating damage to a riparian ecosystem. Policy makers in the United States can choose among a broad menu of policy options to protect riparian habitat from groundwater pumping. They can capitalize on the clarity of command-and-control strategies, the flexibility and less obtrusive nature of incentive-based economic strategies, and the benefits that collaborative efforts can bring in the form of mutual consideration. While collaborative problem solving and market-based instruments are important policy tools, experience indicates that a well-formulated regulatory structure to limit regional groundwater pumping is an essential component of an effective riparian protection strategy.

  18. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-06-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  19. Semivolatile organic (GC-MS) and inorganic analyses of groundwater samples during the hydrous pyrolysis/oxidation (HPO) field test in Visalia, CA, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Chiarappa, M; Knauss, K G; Kumamoto, G; Leif, R N; Newmark, R L

    1998-02-05

    Hydrous pyrolysis/oxidation (HPO) is a novel, in situ, thermal-remediation technology that uses hot, oxygenated groundwater to completely oxidize a wide range of organic pollutants. A field demonstration of HPO was performed during the summer of 1997 at the Southern California Edison Pole Yard in Visalia, California, a site contaminated with creosote. The goal of the field experiment was to confirm the success of HPO under field remediation conditions. The groundwater was heated by steam injections, and oxygen was added by co-injection of compressed air. The progress of the HPO remediation process was evaluated by monitoring groundwater from multiple wells for dissolved oxygen, dissolved inorganic carbon, and dissolved organic contaminant levels. Analyses of groundwater chemistry allowed us to measure the concentrations of creosote components and to identify oxygenated intermediates produced by the HPO treatment. Dissolved organic carbon levels increased in response to steam injections because of the enhanced dissolution and mobilization of the creosote into the heated groundwater. Elevated concentrations of phenols and benzoic acid were measured in wells affected by the steam injections. Concentrations of other oxygenated compounds (i.e., fluorenone, anthrone, and 9,10-anthracenedione) increased in response to the steam injections. The production of these partially oxidized compounds is consistent with the aqueous-phase HPO reactions of creosote. Additional changes in the groundwater in response to steam injection were also consistent with the groundwater HPO chemistry. A drop in dissolved oxygen was observed in the aquifer targeted for the steam injections, and isotope shifts in the dissolved inorganic pool reflected the input of oxidized carbon derived from the creosote carbon.

  20. Quarterly report of RCRA groundwater monitoring data for period April 1, 1993 through June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jungers, D.K.

    1993-10-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control (QC) oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between May 24 and August 20, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from samples collected during the April through June quarter but also data from earlier sampling events that were not previously reported.

  1. Isotope hydrology of deep groundwater in Syria: renewable and non-renewable groundwater and paleoclimate impact

    Science.gov (United States)

    Al-Charideh, A.; Kattaa, B.

    2016-02-01

    The Regional Deep Cretaceous Aquifer (RDCA) is the principal groundwater resource in Syria. Isotope and hydrochemical data have been used to evaluate the geographic zones in terms of renewable and non-renewable groundwater and the inter-relation between current and past recharge. The chemical and isotopic character of groundwater together with radiometric 14C data reflect the existence of three different groundwater groups: (1) renewable groundwater, in RDCA outcropping areas, in western Syria along the Coastal and Anti-Lebanon mountains. The mean δ18O value (-7.2 ‰) is similar to modern precipitation with higher 14C values (up to 60-80 pmc), implying younger groundwater (recent recharge); (2) semi-renewable groundwater, which is located in the unconfined section of the RDCA and parallel to the first zone. The mean δ18O value (-7.0 ‰) is also similar to modern precipitation with a 14C range of 15-45 pmc; (3) non-renewable groundwater found in most of the Syrian interior, where the RDCA becomes confined. A considerable depletion in δ18O (-8.0 ‰) relative to the modern rainfall and low values of 14C (<15 pmc) suggest that the large masses of deep groundwater are non-renewable and related to an older recharge period. The wide scatter of all data points around the two meteoric lines in the δ18O-δ2H diagram indicates considerable variation in recharge conditions. There is limited renewable groundwater in the mountain area, and most of the stored deep groundwater in the RDCA is non-renewable, with corrected 14C ages varying between 10 and 35 Kyr BP.

  2. Regional distribution of microbes in groundwater from Haestholmen, Kivetty, Olkiluoto and Romuvaara, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Haveman, S.A.; Nilsson, E.L.; Pedersen, K. [Goeteborg University (Sweden)

    2000-06-01

    Groundwater was sampled with the PAVE groundwater sampling system from eight boreholes at Haestholmen, Kivetty, Olkiluoto and Romuvaara, Finland, in 1998 and 1999, for investigation of microbial populations. The groundwater samples had a wide range of salinity and chemistry and contained 104-105 cells per ml, which is typical for subsurface groundwater. In preparing culture media, two approaches were used and compared. Natural, groundwater-based media were prepared from groundwater from the same section of each borehole tested, and synthetic media were prepared based on groundwater chemistry data. No significant difference was observed between the two types of media for brackish and saline groundwater. The groundwater to a depth of 750 m contained mainly sulphate-reducing bacteria (SRB), ironreducing bacteria (IRB) and heterotrophic acetogenic (HA) bacteria. Autotrophic acetogenic (AA) bacteria and methanogenic archaea were found in some samples. Iron-reducing and HA bacteria predominated in brackish groundwater from Haestholmen, with SRB present in smaller numbers. A different microbial population was found in deep saline groundwater from Haestholmen and Olkiluoto that consists of a large proportion of a saline or brine end member. No SRB or AA bacteria were cultured; instead, the microbial population consisted of HA bacteria and either IRB or methanogens. In Olkiluoto, SRB predominated in the brackish and saline groundwater at depths to about 500 m, while methanogens were found in deeper saline groundwater. Stable isotope data (C-13) indicated that the methanogens are part of an autotrophic population consuming dissolved inorganic carbon (DIC) and hydrogen and producing methane and organic carbon. This deep ecosystem may be independent of surface life processes. A high-level radioactive waste (HLW) repository at 500 m depth in the Fennoscandian Shield will be inhabited by SRB, IRB and acetogens. Methanogens may also be present. These anaerobic micro

  3. Analytical results, database management and quality assurance for analysis of soil and groundwater samples collected by cone penetrometer from the F and H Area seepage basins

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, D.R.; Johnson, W.H.; Serkiz, S.M.

    1994-10-01

    The Quantification of Soil Source Terms and Determination of the Geochemistry Controlling Distribution Coefficients (K{sub d} values) of Contaminants at the F- and H-Area Seepage Basins (FHSB) study was designed to generate site-specific contaminant transport factors for contaminated groundwater downgradient of the Basins. The experimental approach employed in this study was to collect soil and its associated porewater from contaminated areas downgradient of the FHSB. Samples were collected over a wide range of geochemical conditions (e.g., pH, conductivity, and contaminant concentration) and were used to describe the partitioning of contaminants between the aqueous phase and soil surfaces at the site. The partitioning behavior may be used to develop site-specific transport factors. This report summarizes the analytical procedures and results for both soil and porewater samples collected as part of this study and the database management of these data.

  4. Hydrogeological modeling for improving groundwater monitoring network and strategies

    Science.gov (United States)

    Thakur, Jay Krishna

    2016-09-01

    The research aimed to investigate a new approach for spatiotemporal groundwater monitoring network optimization using hydrogeological modeling to improve monitoring strategies. Unmonitored concentrations were incorporated at different potential monitoring locations into the groundwater monitoring optimization method. The proposed method was applied in the contaminated megasite, Bitterfeld/Wolfen, Germany. Based on an existing 3-D geological model, 3-D groundwater flow was obtained from flow velocity simulation using initial and boundary conditions. The 3-D groundwater transport model was used to simulate transport of α-HCH with an initial ideal concentration of 100 mg/L injected at various hydrogeological layers in the model. Particle tracking for contaminant and groundwater flow velocity realizations were made. The spatial optimization result suggested that 30 out of 462 wells in the Quaternary aquifer (6.49 %) and 14 out of 357 wells in the Tertiary aquifer (3.92 %) were redundant. With a gradual increase in the width of the particle track path line, from 0 to 100 m, the number of redundant wells remarkably increased, in both aquifers. The results of temporal optimization showed different sampling frequencies for monitoring wells. The groundwater and contaminant flow direction resulting from particle tracks obtained from hydrogeological modeling was verified by the variogram modeling through α-HCH data from 2003 to 2009. Groundwater monitoring strategies can be substantially improved by removing the existing spatio-temporal redundancy as well as incorporating unmonitored network along with sampling at recommended interval of time. However, the use of this model-based method is only recommended in the areas along with site-specific experts' knowledge.

  5. Investigation of Pb, Cd, Cu and Mg Concentrations in Groundwater Resources of Razan Plain

    OpenAIRE

    S. Sobhan Ardakani; M. Maanijou; Asadi, H.

    2015-01-01

    Introduction & Objective: Iran is located in the dry and semi dry regions, thus almost 90% of the required fresh water is exploited from groundwater resources. Due to the increasing pol-lution of water resources, the purpose of this study was evaluation of Pb, Cd, Cu and Mg concentrations in groundwater resources of Razan Plain and preparing the zoning map using GIS. Materials & Methods: Groundwater samples were collected from 20 selected stations during two seasons in 2012. The samples were ...

  6. Summary of New Los Alamos National Laboratory Groundwater Data Loaded in July 2012

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Steven M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-07

    This report provides information concerning groundwater monitoring data obtained by the Los Alamos National Laboratory under its interim monitoring plan and contains results for chemical constituents that meet seven screening criteria laid out in the Compliance Order on Consent. Tables are included in the report to organize the findings from the samples. The report covers groundwater samples taken from wells or springs that provide surveillance of the groundwater zones indicated in the table.

  7. Megacity pumping and preferential flow threaten groundwater quality

    Science.gov (United States)

    Khan, Mahfuzur R.; Koneshloo, Mohammad; Knappett, Peter S. K.; Ahmed, Kazi M.; Bostick, Benjamin C.; Mailloux, Brian J.; Mozumder, Rajib H.; Zahid, Anwar; Harvey, Charles F.; van Geen, Alexander; Michael, Holly A.

    2016-09-01

    Many of the world's megacities depend on groundwater from geologically complex aquifers that are over-exploited and threatened by contamination. Here, using the example of Dhaka, Bangladesh, we illustrate how interactions between aquifer heterogeneity and groundwater exploitation jeopardize groundwater resources regionally. Groundwater pumping in Dhaka has caused large-scale drawdown that extends into outlying areas where arsenic-contaminated shallow groundwater is pervasive and has potential to migrate downward. We evaluate the vulnerability of deep, low-arsenic groundwater with groundwater models that incorporate geostatistical simulations of aquifer heterogeneity. Simulations show that preferential flow through stratigraphy typical of fluvio-deltaic aquifers could contaminate deep (>150 m) groundwater within a decade, nearly a century faster than predicted through homogeneous models calibrated to the same data. The most critical fast flowpaths cannot be predicted by simplified models or identified by standard measurements. Such complex vulnerability beyond city limits could become a limiting factor for megacity groundwater supplies in aquifers worldwide.

  8. Public health risk assessment of groundwater contamination in Batman, Turkey.

    Science.gov (United States)

    Nalbantcilar, M Tahir; Pinarkara, Sukru Yavuz

    2016-08-01

    In this study, a comprehensive analysis of groundwater was performed to assess contamination and phenol content in Batman, Turkey, particularly in residential areas near agriculture, livestock and oil industry facilities. From these areas, where potentially contaminated groundwater used for drinking and irrigation threatens public health, 30 groundwater samples were collected and analyzed for heavy metal concentrations (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Na, Ni, NO3, P, Pb, phenol, S, Sb, Se, SO4, Sr, U, and Zn). Compared with the standards of the Environmental Protection Agency, Al, Fe, and Mn concentrations in groundwater exceeded secondary drinking water regulations, NO3 concentrations were high for maximum contaminant levels, and As, Pb, and U concentrations exceeded maximum contaminant level goals in all samples. Ni, Sb, and Se concentrations also exceeded limits set by the Turkish Standards Institution. Nearly all samples revealed concentrations of Se, Sb, Hg, and phenol due to nearby petroleum refineries, oil storage plants, and agricultural and livestock areas. The results obtained from this study indicate that the groundwater in Batman contains elements in concentrations that approach or exceed limits and thus threatens public health with increased blood cholesterol, decreased blood sugar, and circulatory problems.

  9. Status and understanding of groundwater quality in the North San Francisco Bay groundwater basins, 2004

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth; Landon, Matthew K.; Farrar, Christopher

    2010-01-01

    Groundwater quality in the approximately 1,000-square-mile (2,590-square-kilometer) North San Francisco Bay study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in northern California in Marin, Napa, and Sonoma Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA North San Francisco Bay study was designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems. The assessment is based on water-quality and ancillary data collected by the USGS from 89 wells in 2004 and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter referred to as primary aquifers) were defined by the depth interval of the wells listed in the CDPH database for the North San Francisco Bay study unit. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifers of the North San Francisco Bay study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or

  10. Determination of eight fluoroquinolones in groundwater samples with ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction prior to high-performance liquid chromatography and fluorescence detection.

    Science.gov (United States)

    Vázquez, M M Parrilla; Vázquez, P Parrilla; Galera, M Martínez; García, M D Gil

    2012-10-20

    An ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction (US-IL-DLLME) procedure was developed for the extraction of eight fluoroquinolones (marbofloxacin, norfloxacin, ciprofloxacin, lomefloxacin, danofloxacin, enrofloxacin, oxolinic acid and nalidixic acid) in groundwater, using high-performance liquid chromatography with fluorescence detection (HPLC-FD). The ultrasound-assisted process was applied to accelerate the formation of the fine cloudy solution using a small volume of disperser solvent (0.4 mL of methanol), which increased the extraction efficiency and reduced the equilibrium time. For the DLLME procedure, the IL 1-octyl-3-methylimidazolium hexafluorophosphate ([C(8)MIM] [PF(6)]) and methanol (MeOH) were used as extraction and disperser solvent, respectively. By comparing [C(8)MIM] [PF(6)] with 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM] [PF(6)]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)MIM] [PF(6)]) as extraction solvents, it was observed that when using [C(8)MIM] [PF(6)] the cloudy solution was formed more readily than when using [C(6)MIM] [PF(6)] or [C(4)MIM] [PF(6)]. The factors affecting the extraction efficiency, such as the type and volume of ionic liquid, type and volume of disperser solvent, cooling in ice-water, sonication time, centrifuging time, sample pH and ionic strength, were optimised. A slight increase in the recoveries of fluoroquinolones was observed when an ice-water bath extraction step was included in the analytical procedure (85-107%) compared to those obtained without this step (83-96%). Under the optimum conditions, linearity of the method was observed over the range 10-300 ng L(-1) with correlation coefficient >0.9981. The proposed method has been found to have excellent sensitivity with limit of detection between 0.8 and 13 ng L(-1) and precision with relative standard deviation values between 4.8 and 9.4% (RSD, n=5). Good enrichment factors (122-205) and recoveries (85

  11. A groundwater quality index map for Namibia

    Science.gov (United States)

    Bergmann, Thomas; Schulz, Oliver; Wanke, Heike; Püttmann, Wilhelm

    2016-04-01

    Groundwater quality and contamination is a huge concern for the population of Namibia, especially for those living in remote areas. There, most farmers use their own wells to supply themselves and their animals with drinking water. In many cases, except for a few studies that were done in some areas, the only groundwater quality measurements that took place were taken at the time the well was drilled. These data were collected and are available through the national GROWAS-Database. Information on measurements determining the amount of contaminants such as fluoride, TDS, other major ions and nitrate for several thousand wells are provided there. The aim of this study was I) to check the database for its reliability by comparing it to results from different studies and statistical analysis, II) to analyze the database on groundwater quality using different methods (statistical-, pattern- and correlation analysis) and III) to embed our own field work that took place within a selected Namibian region into that analysis. In order to get a better understanding of the groundwater problems in different areas of Namibia, a groundwater quality index map based on GROWAS was created using GIS processing techniques. This map uses several indicators for groundwater quality in relation to selected guidelines and combines them into an index, thus enabling the assessment of groundwater quality with regard to more than one pollutant. The goal of the groundwater quality map is to help identify where the overall groundwater quality is problematic and to communicate these problems. Additionally, suggestions for an enhancement of the database and for new field surveys will be given. The field work was focusing on three farms within an area known for its problematic nitrate concentration in groundwater. There, 23 wells were probed. In order to identify the sources of the contamination, isotopic measurements were executed for three of these wells with high nitrate concentrations

  12. Evaluation of groundwater potential using geospatial techniques

    Science.gov (United States)

    Hussein, Abdul-Aziz; Govindu, Vanum; Nigusse, Amare Gebre Medhin

    2017-09-01

    The issue of unsustainable groundwater utilization is becoming increasingly an evident problem and the key concern for many developing countries. One of the problems is the absence of updated spatial information on the quantity and distribution of groundwater resource. Like the other developing countries, groundwater evaluation in Ethiopia has been usually conducted using field survey which is not feasible in terms of time and resource. This study was conducted in Northern Ethiopia, Wollo Zone, in Gerardo River Catchment district to spatially delineate the groundwater potential areas using geospatial and MCDA tools. To do so, eight major biophysical and environmental factors like geomorphology, lithology, slope, rainfall, land use land cover (LULC), soil, lineament density and drainage density were considered. The sources of these data were satellite image, digital elevation model (DEM), existing thematic maps and metrological station data. Landsat image was used in ERDAS Imagine to drive the LULC of the area, while the geomorphology, soil, and lithology of the area were identified and classified through field survey and digitized from existing maps using the ArcGIS software. The slope, lineament and drainage density of the area were derived from DEM using spatial analysis tools. The rainfall surface map was generated using the thissen polygon interpolation. Finally, after all these thematic maps were organized, weighted value determination for each factor and its field value was computed using IDRSI software. At last, all the factors were integrated together and computed the model using the weighted overlay so that potential groundwater areas were mapped. The findings depicted that the most potential groundwater areas are found in the central and eastern parts of the study area, while the northern and western parts of the Gerado River Catchment have poor potential of groundwater availability. This is mainly due to the cumulative effect of steep topographic and

  13. Evaluation of groundwater potential using geospatial techniques

    Science.gov (United States)

    Hussein, Abdul-Aziz; Govindu, Vanum; Nigusse, Amare Gebre Medhin

    2016-06-01

    The issue of unsustainable groundwater utilization is becoming increasingly an evident problem and the key concern for many developing countries. One of the problems is the absence of updated spatial information on the quantity and distribution of groundwater resource. Like the other developing countries, groundwater evaluation in Ethiopia has been usually conducted using field survey which is not feasible in terms of time and resource. This study was conducted in Northern Ethiopia, Wollo Zone, in Gerardo River Catchment district to spatially delineate the groundwater potential areas using geospatial and MCDA tools. To do so, eight major biophysical and environmental factors like geomorphology, lithology, slope, rainfall, land use land cover (LULC), soil, lineament density and drainage density were considered. The sources of these data were satellite image, digital elevation model (DEM), existing thematic maps and metrological station data. Landsat image was used in ERDAS Imagine to drive the LULC of the area, while the geomorphology, soil, and lithology of the area were identified and classified through field survey and digitized from existing maps using the ArcGIS software. The slope, lineament and drainage density of the area were derived from DEM using spatial analysis tools. The rainfall surface map was generated using the thissen polygon interpolation. Finally, after all these thematic maps were organized, weighted value determination for each factor and its field value was computed using IDRSI software. At last, all the factors were integrated together and computed the model using the weighted overlay so that potential groundwater areas were mapped. The findings depicted that the most potential groundwater areas are found in the central and eastern parts of the study area, while the northern and western parts of the Gerado River Catchment have poor potential of groundwater availability. This is mainly due to the cumulative effect of steep topographic and

  14. Geochemical and isotopic characteristics of groundwater from Velenje Basin, Slovenia

    Science.gov (United States)

    Kanduč, Tjaša; Grassa, Fausto; Mori, Nataša; Verbovšek, Timotej

    2016-04-01

    The Velenje Basin in Slovenia is one of the largest actively mined coal basins in central Europe, producing around 4 million tons of lignite per year. Large amounts of groundwater are extracted from aquifers to facilitate underground mining of coal, and coal seam gas outbursts are a serious mine safety concern. This study analyses the geochemical and isotopic composition of groundwater to provide a general understanding of hydrogeological and geochemical processes in groundwater. Thirty-eight groundwater samples were taken from dewatering objects in the mine and at the surface in years 2014-2015. Groundwater in the Triassic aquifer is dominated by hydrogen carbonate, calcium, magnesium and isotopic composition of dissolved inorganic carbon in the range from -19.3 to -2.8‰ indicating degradation of soil organic matter and dissolution of carbonate minerals. In contrast, groundwater in the Pliocene aquifers is enriched in magnesium, sodium, calcium, potassium, and silicon, and has high alkalinity, with isotopic composition of dissolved inorganic carbon in the range of -14.4 to +4.6‰ . Based on isotopic composition of dissolved inorganic carbon values in all aquifers (Pliocene and Triassic), influencing processes are the dissolution of carbonate minerals and dissolution of organic matter, and additionally methanogenesis in the Pliocene aquifers. Based on the Principal Component Analysis (PCA) we can conclude that following different types of groundwater in Velenje Basin could be distinguished based on geochemical and isotopic data: Triassic aquifers with higher pH and lower conductivity and chloride, Pliocene, Pliocene 1 and Pliocene 2 aquifers with lower pH and higher conductivity and chloride contents, and Pliocene 3 and Pliocene 2, 3 aquifers with the highest pH and lowest conductivity and chloride contents. Major dissolved gas component in groundwater are carbon dioxide, nitrogen and methane. Concentrations of dissolved gases dewatering Triassic strata are low

  15. The Extent of Denitrification in Long Island Groundwater using MIMS

    Science.gov (United States)

    Young, C.; Hanson, G. N.; Kroeger, K. D.

    2009-12-01

    Long Island drinking water is provided by a sole source aquifer with nitrate levels in some North Shore communities approaching or exceeding the drinking water standard of 10 mgL-1. Previous workers, using mass balance approaches, suggested that the primary source of nitrogen is sewage effluent and observed a 50% deficit of nitrate in Long Island’s groundwater system. We analyzed dissolved N2/Ar ratios in groundwater from wells to determine if groundwater denitrification is the cause of the nitrogen deficit at two locations where septic tanks are used for sewage treatment and the effluent leaches to the groundwater; a suburban community on the north shore of Long Island (Northport, NY) and parkland on a barrier island at the south shore of Long Island (Watch Hill, Fire Island National Seashore). In Northport we found 0 to 20 % of the nitrate in groundwater denitrified with excess N-NO3- concentrations ranging from 0 to 1.5 mgL-1. These samples had concentrations high in dissolved oxygen (DO), 6 to 11 mgL-1, and low in dissolved organic carbon (DOC), 0.4 to 2.8 mgL-1. At Watch Hill nitrogen is primarily retained as ammonium or dissolved organic nitrogen. Where nitrate is formed, we found up to 99% denitrification. Excess N-NO3- ranged from 0 to 8 mgL-1 with concentrations low in DO, 0.3 to 3.4 mgL-1, and high in DOC, 5.3 to 18.4 mgL-1. The vadose zone in the Northport area has an average thickness of 10-100 feet whereas at Watch Hill it is 1 - 2 feet thick. We hypothesize that the vadose zone thickness affects the extent of denitrification by controlling the amount of DOC and DO that reaches the groundwater. A thick vadose zone allows for more extensive interaction of infiltrating sewage effluent with atmospheric oxygen in the vadose zone which oxidizes DOC. In Northport groundwater has high DO, low DOC and essentially no denitrification leaving 2 to 11 mgL-1 N-NO3- remaining. At the Watch Hill site a thin vadose zone below the sewage leach field provides

  16. Can we monitor groundwater head variation from space? Coupling ERS spaceborne microwave observations to groundwater dynamics

    NARCIS (Netherlands)

    Sutanudjaja, E. H.; de Jong, S. M.; van Geer, F. C.; Bierkens, M. F. P.

    2012-01-01

    The objective of this study is to investigate whether the time series of a remote sensing based soil moisture product, referred as the European Remote Sensing Soil Water Index (ERS SWI), correlates to in-situ observations of groundwater heads; and can thus be used for groundwater head prediction. As

  17. Reliability of travel times to groundwater abstraction wells: Application of the Netherlands Groundwater Model - LGM

    NARCIS (Netherlands)

    Kovar K; Leijnse A; Uffink G; Pastoors MJH; Mulschlegel JHC; Zaadnoordijk WJ; LDL; IMD; TNO/NITG; Haskoning

    2005-01-01

    A modelling approach was developed, incorporated in the finite-element method based program LGMLUC, making it possible to determine the reliability of travel times of groundwater flowing to groundwater abstraction sites. The reliability is seen here as a band (zone) around the expected travel-time i

  18. Iowa ground-water quality

    Science.gov (United States)

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The population served by ground-water supplies in Iowa (fig. L4) is estimated to be about 2,392,000, or 82 percent of the total population (U.S. Geological Survey, 1985, p. 211). The population of Iowa is distributed fairly uniformly throughout the State (fig. IB), with 59 percent residing in rural areas or towns of less than 10,000 (U.S. Bureau of the Census, 1982). Surficial aquifers, the Jordan aquifer, and aquifers that form the uppermost bedrock aquifer in a particular area are most commonly used for drinking-water supplies and usually provide ample amounts of good quality water. However, naturally occurring properties or substances such as hardness, dissolved solids, and radioactivity limit the use of water for drinking purposes in some areas of each of the five principal aquifers (fig. 2/4). Median concentrations of nitrate in all aquifers and radium-226 in all aquifers except the Jordan are within the primary drinking-water standards established by the U.S. Environmental Protection Agency (1986a). Median concentrations for dissolved solids in the surficial, Dakota, and Jordan aquifers exceed secondary drinking-water standards established by the U.S. Environmental Protection Agency (1986b).

  19. Groundwater quality in central New York, 2012

    Science.gov (United States)

    Reddy, James E.

    2014-01-01

    Water samples were collected from 14 production wells and 15 private wells in central New York from August through December 2012 in a study conducted by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation. The samples were analyzed to characterize the groundwater quality in unconsolidated and bedrock aquifers in this area. Fifteen of the wells are finished in sand-and-gravel aquifers, and 14 are finished in bedrock aquifers. Six of the 29 wells were sampled in a previous central New York study, which was conducted in 2007. Water samples from the 2012 study were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds, dissolved gases (argon, carbon dioxide, methane, nitrogen, oxygen), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that the groundwater generally is of acceptable quality, although for all of the wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: color (2 samples), pH (7 samples), sodium (9 samples), chloride (2 samples), fluoride (2 samples), sulfate (2 samples), dissolved solids (8 samples), aluminum (4 samples), arsenic (1 sample), iron (9 samples), manganese (13 samples), radon-222 (13 samples), total coliform bacteria (6 samples), and heterotrophic bacteria (2 samples). Drinking-water standards for nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, and

  20. Groundwater availability of the Mississippi embayment

    Science.gov (United States)

    Clark, Brian R.; Hart, Rheannon M.; Gurdak, Jason J.

    2011-01-01

    Groundwater is an important resource for agricultural and municipal uses in the Mississippi embayment. Arkansas ranks first in the Nation for rice and third for cotton production, with both crops dependent on groundwater as a major source of irrigation requirements. Multiple municipalities rely on the groundwater resources to provide water for industrial and public use, which includes the city of Memphis, Tennessee. The demand for the groundwater resource has resulted in groundwater availability issues in the Mississippi embayment including: (1) declining groundwater levels of 50 feet or more in the Mississippi River Valley alluvial aquifer in parts of eastern Arkansas from agricultural pumping, (2) declining groundwater levels of over 360 feet over the last 90 years in the confined middle Claiborne aquifer in southern Arkansas and northern Louisiana from municipal pumping, and (3) litigation between the State of Mississippi and a Memphis water utility over water rights in the middle Claiborne aquifer. To provide information to stakeholders addressing the groundwater-availability issues, the U.S. Geological Survey Groundwater Resources Program supported a detailed assessment of groundwater availability through the Mississippi Embayment Regional Aquifer Study (MERAS). This assessment included (1) an evaluation of how these resources have changed over time through the use of groundwater budgets, (2) development of a numerical modeling tool to assess system responses to stresses from future human uses and climate trends, and (3) application of statistical tools to evaluate the importance of individual observations within a groundwater-monitoring network. An estimated 12 million acre-feet per year (11 billion gallons per day) of groundwater was pumped in 2005 from aquifers in the Mississippi embayment. Irrigation constitutes the largest groundwater use, accounting for approximately 10 million acre-feet per year (9 billion gallons per day) in 2000 from the Mississippi

  1. Vulnerability assessment of groundwater-dependent ecosystems based on integrated groundwater flow modell construction

    Science.gov (United States)

    Tóth, Ádám; Simon, Szilvia; Galsa, Attila; Havril, Timea; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2017-04-01

    Groundwater-dependent ecosystems (GDEs) are highly influenced by the amount of groundwater, seasonal variation of precipitation and consequent water table fluctuation and also the anthropogenic activities. They can be regarded as natural surface manifestations of the flowing groundwater. The preservation of environment and biodiversity of these GDEs is an important issue worldwide, however, the water management policy and action plan could not be constructed in absense of proper hydrogeological knowledge. The concept of gravity-driven regional groundwater flow could aid the understanding of flow pattern and interpretation of environmental processes and conditions. Unless the required well data are available, the geological-hydrogeological numerical model of the study area cannot be constructed based only on borehole information. In this case, spatially continuous geophysical data can support groundwater flow model building: systematically combined geophysical methods can provide model input. Integration of lithostratigraphic, electrostratigraphic and hydrostratigraphic information could aid groundwater flow model construction: hydrostratigraphic units and their hydraulic behaviour, boundaries and geometry can be obtained. Groundwater-related natural manifestations, such as GDEs, can be explained with the help of the revealed flow pattern and field mapping of features. Integrated groundwater flow model construction for assessing the vulnerability of GDEs was presented via the case study of the geologically complex area of Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, surface water-groundwater interaction, and revealing the potential effect of anthropogenic activity and climate change. In spite of its important and protected status, fluid flow model of the area, which could support water management and natural protection policy, had not been constructed previously. The 3D

  2. Concentration comparison of selected constituents between groundwater samples collected within the Missouri River alluvial aquifer using purge and pump and grab-sampling methods, near the city of Independence, Missouri, 2013

    Science.gov (United States)

    Krempa, Heather M.

    2015-10-29

    The U.S. Geological Survey, in cooperation with the City of Independence, Missouri, Water Department, has historically collected water-quality samples using the purge and pump method (hereafter referred to as pump method) to identify potential contamination in groundwater supply wells within the Independence well field. If grab sample results are comparable to the pump method, grab samplers may reduce time, labor, and overall cost. This study was designed to compare constituent concentrations between samples collected within the Independence well field using the pump method and the grab method.

  3. SR-Site - sulphide content in the groundwater at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Tullborg, E-L (Terralogica (Sweden)); Smellie, J (Conterra (Sweden)); Nilsson, A-Ch (Geosigma (Sweden)); Gimeno, M J; Auque, LF (Univ. of Zaragoza (Spain)); Bruchert, V (Stockholms Universitet (Sweden)); Molinero, J (Amphos21 (Spain))

    2010-12-15

    Sulphide concentrations in groundwater play a key role in the long-term reliability of the metal canisters containing the radioactive waste within a disposal facility for nuclear waste. This is because sulphide in the groundwaters circulating in the vicinity of the deposition tunnels can react with copper in the canisters causing corrosion and therefore reducing their expected lifetime; in a worst case scenario erosion of the bentonite buffer material will expose the canister more rapidly to the fracture groundwater.Sulphide in the groundwater is predominantly microbially produced and thereby controlled by the content of oxidised sulphur sources, organics (carbon sources), reductants (mainly Fe(II), DOC, H{sub 2} and CH{sub 4}), and also flow and mixing of different groundwater types. In addition, achieved saturation in respect to amorphous Fe-monosulphide will control the possible maximum values and will also limit the Fe2+ and S2- values in the groundwater. The aim of this report is to assess realistic, representative and reliable sulphide groundwater concentrations at present conditions in Forsmark and also to evaluate possible changes during different climatic conditions covering the repository operation period (some tens to hundreds of years), post closure conditions (some thousand of years) and the proceeding temperate period (some tens of thousands of years) which may be extended due to enhanced greenhouse effects etc. It is expected that this period will be followed by the onset of the next glaciation during which periglacial (permafrost), glacial and postglacial conditions may succeed each other. To achieve these aims, an evaluation is performed of all the sulphide-related data reported from the Forsmark site investigations /Laaksoharju et al. 2008/ and later monitoring campaigns, all of which are stored in the Sicada database. This evaluation shows that values from the Complete Chemical Characterisation (CCC) sampling are usually lower than those measured

  4. Estimating Groundwater Quality Changes Using Remotely Sensed Groundwater Storage and Multivariate Regression

    Science.gov (United States)

    Gibbons, A.; Thomas, B. F.; Famiglietti, J. S.

    2014-12-01

    Global groundwater dependence is likely to increase with continued population growth and climate-driven freshwater redistribution. Recent groundwater quantity studies have estimated large-scale aquifer depletion rates using monthly water storage variations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission. These innovative approaches currently fail to evaluate groundwater quality, integral to assess the availability of potable groundwater resources. We present multivariate relationships to predict total dissolved solid (TDS) concentrations as a function of GRACE-derived variations in water table depth, dominant land use, and other physical parameters in two important aquifer systems in the United States: the High Plains aquifer and the Central Valley aquifer. Model evaluations were performed using goodness of fit procedures and cross validation to identify general model forms. Results of this work demonstrate the potential to characterize global groundwater potability using remote sensing.

  5. Groundwater management based on monitoring of land subsidence and groundwater levels in the Kanto Groundwater Basin, Central Japan

    Science.gov (United States)

    Furuno, K.; Kagawa, A.; Kazaoka, O.; Kusuda, T.; Nirei, H.

    2015-11-01

    Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.

  6. Artificial sweeteners as potential tracers in groundwater in urban environments

    Science.gov (United States)

    Van Stempvoort, Dale R.; Roy, James W.; Brown, Susan J.; Bickerton, Greg

    2011-04-01

    SummaryThere is little information available on the prevalence of artificial sweeteners in groundwater, though these compounds may prove to be useful tracers of human wastewater, especially in urban settings with complex hydrology. In this study, the artificial sweetener acesulfame was detected in groundwater at all eight urban sites investigated (from five different urban areas in Canada), often at high concentrations (i.e., μg/L-scale). In a municipal wastewater plume at Jasper, Alberta, acesulfame was strongly correlated with chloride and was positively correlated with other wastewater-related contaminants indicating that this sweetener has potential to be a good tracer of young wastewater (artificial sweeteners were detected in urban groundwater: saccharin at six of the sites, sucralose at three sites, and cyclamate at five of seven sites where it was analyzed. The occurrence of sucralose may have been affected by its detection limit, which was much higher than for the other sweeteners. These results, and those of a parallel study, are the first reported detections of saccharin and cyclamate in groundwater, and suggest that these sweeteners may be more common than previously anticipated. In general, fewer samples from each site contained these other three sweeteners compared to acesulfame. At Barrie, Ontario, adjacent to an old landfill, the concentration of saccharin was higher than acesulfame in many samples. These results suggest that analyses of multiple sweeteners, rather than just acesulfame, may provide useful information on contaminant sources and groundwater conditions in urban settings. Further work is needed to address this potential use.

  7. Impacts of Groundwater Pumping on Regional and Global Water Resources

    Science.gov (United States)

    Wada, Yoshihide

    2016-01-01

    Except frozen water in ice and glaciers (68%), groundwater is the world's largest distributed store of freshwater (30%), and has strategic importance to global food and water security. In this chapter, the most recent advances assessing human impact on regional and global groundwater resources are reviewed. This chapter critically evaluates the recently advanced modeling approaches quantifying the effect of groundwater pumping in regional and global groundwater resources and the evidence of feedback to the Earth system including sea-level rise associated with groundwater use. At last, critical challenges and opportunities are identified in the use of groundwater to adapt to growing food demand and uncertain climate.

  8. Groundwater Systems and Resources in the Ordos Basin, China

    Institute of Scientific and Technical Information of China (English)

    HOU Guangcai; LIANG Yongping; SU Xiaosi; ZHAO Zhenghong; TAO Zhengping; YIN Lihe; YANG Yuncheng; WANG Xiaoyong

    2008-01-01

    The Ordos Basin is.a large-scalesedimentary basin in northwestern China. The hydrostratigraphic units from bottom to top are pre-Cambrian metamorphic rocks, Lower Paleozoic carbonate rocks, Upper Paleozoic to Mesozoic clastic rocks and Cenozoic deposits. The total thickness is up to 6000 m. Three groundwater systems are present in the Ordos Basin, based on the geological settings, I.e. The karst groundwater system, the Cretaceous dastic groundwater system and the Quaternary groundwater system. This paper describes systematically the groundwater flow patterns of each system and overall assessment of groundwater resources.

  9. Groundwater Level Status Report for 2005 Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    S.P. Allen; R.J. Koch

    2006-05-15

    The status of groundwater level monitoring at Los Alamos National Laboratory (LANL) in 2005 is provided in this report. The Groundwater Level Monitoring Project was instituted in 2005 to provide a framework for the collection and processing of quality controlled groundwater level data. This report summarizes groundwater level data for 137 monitoring wells, including 41 regional aquifer wells, 22 intermediate wells, and 74 alluvial wells. Pressure transducers were installed in 118 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well.

  10. Windows of Opportunity for Groundwater Management

    Science.gov (United States)

    Foster, T.; Brozovic, N.; Butler, A. P.

    2015-12-01

    To date, there has been little attention focused on how the value and effectiveness of groundwater management is influenced by the timing of regulatory intervention relative to aquifer depletion. To address this question, we develop an integrated framework that couples an agro-economic model of farmers' field-level irrigation decision-making with a model of a groundwater abstraction borehole. Unlike existing models that only consider the impact of aquifer depletion on groundwater extraction costs, our model also captures the dynamic changes in well productivity and how these in turn affect crop yields and farmer incomes. We use our model to analyze how the value of imposing groundwater quotas is affected by the prior level of depletion before regulations are introduced. Our results demonstrate that there is a range of aquifer conditions within which regulating groundwater use will deliver long-term economic benefits for farmers. In this range, restricting abstraction rates slows the rate of change in well yields and, as a result, increases agricultural production over the simulated planning horizon. Contrastingly, when current saturated thickness is outside this range, regulating groundwater use will provide negligible social benefits and will impose large negative impacts on farm-level profits. We suggest that there are 'windows of opportunity' for managing aquifer depletion that are a function of local hydrology as well as economic characteristics. Regulation that is too early will harm the rural economy needlessly, while regulation that is too late will be unable to prevent aquifer exhaustion. The insights from our model can be a valuable tool to help inform policy decisions about when, and at what level, regulations should be implemented in order to maximize the benefits obtained from limited groundwater resources.

  11. Groundwater conditions in Utah, spring of 2012

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Holt, Christopher M.; Fisher, Martel J.; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.

    2012-01-01

    This is the forty-ninth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2011. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http:// www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs. gov/publications/GW2012.pdf. Groundwater conditions in Utah for calendar year 2010 are reported in Burden and others (2011) and available online at http://ut.water.usgs.gov/ publications/GW2011.pdf.

  12. Groundwater conditions in Utah, spring of 2011

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Marston, Thomas M.; Fisher, Martel J.; Balling, Ted J.; Downhour, Paul; Guzman, Manuel; Eacret, Robert J.; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2011-01-01

    This is the forty-eighth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2010. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http:// www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs. gov/publications/GW2011.pdf. Groundwater conditions in Utah for calendar year 2009 are reported in Burden and others (2010) and available online at http://ut.water.usgs.gov/ publications/GW2010.pdf.

  13. Groundwater conditions in Utah, spring of 2014

    Science.gov (United States)

    Burden, Carole B.; Birken, Adam S.; Gerner, Steven J.; Carricaburu, John P.; Derrick, V. Noah; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2014-01-01

    This is the fifty-first in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2013. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water. usgs.gov/publications/GW2014.pdf. Groundwater conditions in Utah for calendar year 2012 are reported in Burden and others (2013) and are available online at http://ut.water.usgs. gov/publications/GW2013.pdf

  14. Groundwater conditions in Utah, spring of 2010

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Cederberg, Jay R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Enright, Michael; Eacret, Robert J.; Guzman, Manuel; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2010-01-01

    This is the forty-seventh in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2009. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www. waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/ publications/GW2010.pdf. Groundwater conditions in Utah for calendar year 2008 are reported in Burden and others (2009) and available online at http://ut.water.usgs.gov/publications/ GW2009.pdf.

  15. Groundwater conditions in Utah, spring of 2016

    Science.gov (United States)

    Burden, Carole B.; Birken, Adam S.; Carricaburu, John P.; Jones, Katherine K.; Derrick, V. Noah; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Freel, Andrew D.; Christiansen, Howard K.; Fisher, Martel J.

    2016-01-01

    This is the fifty-third in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to new wells constructed for withdrawal of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2015. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2016.pdf. Groundwater conditions in Utah for calendar year 2014 are reported in Burden and others (2015) and are available online at http://ut.water.usgs.gov/publications/GW2015.pdf

  16. Groundwater conditions in Utah, spring of 2015

    Science.gov (United States)

    Burden, Carole B.; Birken, Adam S.; Carricaburu, John P.; Fisher, Martel J.; Derrick, V. Noah; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.

    2015-01-01

    This is the fifty-second in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to new wells constructed for withdrawal of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2014. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2015.pdf. Groundwater conditions in Utah for calendar year 2013 are reported in Burden and others (2014) and are available online at http://ut.water.usgs.gov/publications/GW2014.pdf.

  17. Groundwater recharge from point to catchment scale

    Science.gov (United States)

    Leterme, Bertrand; Di Ciacca, Antoine; Laloy, Eric; Jacques, Diederik

    2016-04-01

    Accurate estimation of groundwater recharge is a challenging task as only a few devices (if any) can measure it directly. In this study, we discuss how groundwater recharge can be calculated at different temporal and spatial scales in the Kleine Nete catchment (Belgium). A small monitoring network is being installed, that is aimed to monitor the changes in dominant processes and to address data availability as one goes from the point to the catchment scale. At the point scale, groundwater recharge is estimated using inversion of soil moisture and/or water potential data and stable isotope concentrations (Koeniger et al. 2015). At the plot scale, it is proposed to monitor the discharge of a small drainage ditch in order to calculate the field groundwater recharge. Electrical conductivity measurements are necessary to separate shallow from deeper groundwater contribution to the ditch discharge (see Di Ciacca et al. poster in session HS8.3.4). At this scale, two or three-dimensional process-based vadose zone models will be used to model subsurface flow. At the catchment scale though, using a mechanistic, process-based model to estimate groundwater recharge is debatable (because of, e.g., the presence of numerous drainage ditches, mixed land use pixels, etc.). We therefore investigate to which extent various types of surrogate models can be used to make the necessary upscaling from the plot scale to the scale of the whole Kleine Nete catchment. Ref. Koeniger P, Gaj M, Beyer M, Himmelsbach T (2015) Review on soil water isotope based groundwater recharge estimations. Hydrological Processes, DOI: 10.1002/hyp.10775

  18. Hydrogeochemical assessment of groundwater in Kashmir Valley, India

    Science.gov (United States)

    Jeelani, G. H.; Shah, Rouf Ahmad; Hussain, Aadil

    2014-06-01

    Groundwater samples ( n = 163) were collected across Kashmir Valley in 2010 to assess the hydrogeochemistry of the groundwater in shallow and deep aquifers and its suitability for domestic, agriculture, horticulture, and livestock purposes. The groundwater is generally alkaline in nature. The electrical conductivity (EC) which is an index to represent the total concentration of soluble salts in water was used to measure the salinity hazard to crops as it reflects the TDS in groundwater ranging from 97 to 1385 μS/cm, except one well in Sopore. The average concentration of major ions was higher in shallow aquifers than in deeper aquifers. In general, Ca2+ is the dominant cation and HCO the dominant anion. Ca-HCO3, Mg-HCO3, Ca-Mg-HCO3, Na-HCO3 were the dominant hydrogeochemical facies. High concentration of HCO3 and pH less than 8.8 clearly indicated that intense chemical weathering processes have taken place in the study area. The groundwater flow pattern in the area follows the local surface topography which not only modifies the hydrogeochemical facies but also controls their distribution. The groundwater in valley flows into four directions, i.e., SW-NE, NE-W, SE-NW and SE-NE directions. The results suggest that carbonate dissolution is the dominant source of major ions followed by silicate weathering and ion-exchange processes. The concentrations of all the major ions determined in the present study are within the permissible limits of WHO and BIS standards. The results of Total Hardness, SAR, Na%, Kelly Index, USDA classification, Magnesium absorption ratio, residual sodium carbonate, and PI suggested that groundwater is good for drinking, livestock, and irrigation purposes.

  19. Hydrogeochemical assessment of groundwater in Kashmir Valley, India

    Indian Academy of Sciences (India)

    G H Jeelani; Rouf Ahmad Shah; Aadil Hussain

    2014-07-01

    Groundwater samples ( = 163) were collected across Kashmir Valley in 2010 to assess the hydrogeochemistry of the groundwater in shallow and deep aquifers and its suitability for domestic, agriculture, horticulture, and livestock purposes. The groundwater is generally alkaline in nature. The electrical conductivity (EC) which is an index to represent the total concentration of soluble salts in water was used to measure the salinity hazard to crops as it reflects the TDS in groundwater ranging from 97 to 1385 S/cm, except one well in Sopore. The average concentration of major ions was higher in shallow aquifers than in deeper aquifers. In general, Ca2+ is the dominant cation and HCO$^{−}_{3}$ the dominant anion. Ca–HCO3, Mg–HCO3, Ca–Mg–HCO3, Na–HCO3 were the dominant hydrogeochemical facies. High concentration of HCO3 and pH less than 8.8 clearly indicated that intense chemical weathering processes have taken place in the study area. The groundwater flow pattern in the area follows the local surface topography which not only modifies the hydrogeochemical facies but also controls their distribution. The groundwater in valley flows into four directions, i.e., SW–NE, NE–W, SE–NW and SE–NE directions. The results suggest that carbonate dissolution is the dominant source of major ions followed by silicate weathering and ion-exchange processes. The concentrations of all the major ions determined in the present study are within the permissible limits ofWHO and BIS standards. The results of Total Hardness, SAR, Na%, Kelly Index, USDA classification, Magnesium absorption ratio, residual sodium carbonate, and PI suggested that groundwater is good for drinking, livestock, and irrigation purposes.

  20. Spatio-temporal variability of groundwater storage in India

    Science.gov (United States)

    Bhanja, Soumendra N.; Rodell, Matthew; Li, Bailing; Saha, Dipankar; Mukherjee, Abhijit

    2017-01-01

    Groundwater level measurements from 3907 monitoring wells, distributed within 22 major river basins of India, are assessed to characterize their spatial and temporal variability. Groundwater storage (GWS) anomalies (relative to the long-term mean) exhibit strong seasonality, with annual maxima observed during the monsoon season and minima during pre-monsoon season. Spatial variability of GWS anomalies increases with the extent of measurements, following the power law relationship, i.e., log-(spatial variability) is linearly dependent on log-(spatial extent). In addition, the impact of well spacing on spatial variability and the power law relationship is investigated. We found that the mean GWS anomaly sampled at a 0.25 degree grid scale closes to unweighted average over all wells. The absolute error corresponding to each basin grows with increasing scale, i.e., from 0.25 degree to 1 degree. It was observed that small changes in extent could create very large changes in spatial variability at large grid scales. Spatial variability of GWS anomaly has been found to vary with climatic conditions. To our knowledge, this is the first study of the effects of well spacing on groundwater spatial variability. The results may be useful for interpreting large scale groundwater variations from unevenly spaced or sparse groundwater well observations or for siting and prioritizing wells in a network for groundwater management. The output of this study could be used to maintain a cost effective groundwater monitoring network in the study region and the approach can also be used in other parts of the globe.

  1. Survey of groundwater chemical pollution in the Borazjan plain

    Directory of Open Access Journals (Sweden)

    Jaber Mozafarizadeh

    2014-11-01

    Full Text Available Background: Nitrate due to its high water solubility, poor absorption and having stable composition in the water, has been studied as the best index to indicate groundwater contamination. Borazjan, located in the north of Bushehr province, is one of fertile plains which nitrate contamination of groundwater has occurred in the most parts of it. Detecting the source of pollution and the most vulnerable areas were the aims of this study. Material and Methods: In this study, hydrochemical quality, especially in terms of nitrate, sulfate, chloride sodium, spatial and temporal variations and the origin of them in the groundwater of Borazjan plain, are studied. Groundwater samples from 12 wells were collected in April and August 2012 and assessed to determine the parameters of hydrochemistry and pollution. Results: Based on these results, severe nitrate contamination of groundwater, especially in the southern part of the plain, by agricultural activities, cesspool wells, domestic sewage and livestock and poultry wastewater the influence of the effluent from the aviculture, were occurred. Also, the quality of groundwater resources showed that concentration of Cl- , Na+, SO42- , and NO3- are more than standard limit and only in some areas of plain, concentration of ions such as NO3- and Na+ is less than the standard limit. Conclusion: According to the results of this study, using chemical fertilizers in terms of time period and amount of consumption should be properly managed. Furthermore, domestic wastewater, livestock and poultry wastewater should be controlled and the monitoring system for measuring the exact quantity and quality of groundwater resources must be completed.

  2. Annual Report of Groundwater Monitoring at Centralia, Kansas, in 2012

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-06-01

    Periodic sampling is performed at Centralia, Kansas, on behalf of the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) by Argonne National Laboratory. The sampling is currently (2009-2012) conducted in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE 2009). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater sitewide (Argonne 2003, 2004, 2005a), as well as the response to the interim measure (IM) pilot test that is in progress (Argonne 2007b). This report provides a summary of the findings for groundwater inspection in Centralia.

  3. Groundwater quality characterization around Jawaharnagar open dumpsite, Telangana State

    Science.gov (United States)

    Unnisa, Syeda Azeem; Zainab Bi, Shaik

    2017-03-01

    In the present work groundwater samples were collected from ten different data points in and around Jawaharnagar municipal dumpsite, Telangana State Hyderabad city from May 2015 to May 2016 on monthly basis for groundwater quality characterization. Pearson's correlation coefficient (r) value was determined using correlation matrix to identify the highly correlated and interrelated water quality standards issued by Bureau of Indian Standard (IS-10500:2012). It is found that most of the groundwater samples are above acceptable limits and are not potable. The chemical analysis results revealed that pH range from 7.2 to 7.8, TA 222 to 427 mg/l, TDS 512 to 854 mg/l, TH 420 to 584 mg/l, Calcium 115 to 140 mg/l, Magnesium 55 to 115 mg/l, Chlorides 202 to 290 mg/l, Sulphates 170 to 250 mg/l, Nitrates 6.5 to 11.3 mg/l, and Fluoride 0.9 to 1.7 mg/l. All samples showed higher range of physicochemical parameters except nitrate content which was lower than permissible limit. Highly positive correlation was observed between pH-TH (r = 0.5063), TA-Cl- (r = 0.5896), TDS-SO4 - (r = 0.5125), Mg2+-NO3 - (r = 0.5543) and Cl--F- (r = 0.7786). The groundwater samples in and around Jawaharnagar municipal dumpsite implies that groundwater samples were contaminated by municipal leachate migration from open dumpsite. The results revealed that the systematic calculations of correlation coefficient between water parameters and regression analysis provide qualitative and rapid monitoring of groundwater quality.

  4. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico

    Directory of Open Access Journals (Sweden)

    A. Hernández-Antonio

    2015-02-01

    Full Text Available Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla Valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal water, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3 type. It originates as recharge at Primavera caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal water is characterized by high salinity, temperature, Cl, Na, HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural practices. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Tritium method elucidated that practically all of the sampled groundwater contains at least a small fraction of modern water. The multivariate mixing model M3 indicates that the proportion of hydrothermal fluids in sampled well water is between 13 (local groundwater and 87% (hydrothermal water, and the proportion of polluted water in wells ranges from 0 to 63%. This study may help local water authorities to identify and quantify groundwater contamination and act accordingly.

  5. Subsurface aeration of anaerobic groundwater : iron colloid formation and the nitrification process

    NARCIS (Netherlands)

    Wolthoorn, A.

    2003-01-01

    Keywords: Iron, anaerobic groundwater, groundwater purification, heterogeneous oxidation, iron colloid formation, electron microscopy, nitrification In anaerobic groundwater iron and ammonium can be found in relatively high concentrations. These substances need to be removed when groundwater is used

  6. Intermittent Elevated Radium Concentrations in Coastal Plain Groundwater of South Carolina, U.S.A.

    Energy Technology Data Exchange (ETDEWEB)

    Denham, Miles; Millings, Margaret; Noonkester, Jay

    2005-09-22

    To learn the cause of intermittent radium concentrations in groundwater of Coastal Plain aquifers, 31 groundwater wells in South Carolina, U.S.A. were sampled for radium and other geochemical parameters. Sediments cored from near the well screens were also sampled to examine any relationship between sediment properties and radium concentration in the groundwater. Elevated radium concentrations only occurred in groundwater with low electrical conductivity and pH values below 6.3. The adsorption edge for radium on hematite--a major surface active mineral in these aquifers--is at a pH value of about 6. Near this value, small changes in pH can result in significant adsorption or desorption of radium. In groundwater with initially low alkalinity, small intermittent decreases in partial pressure of carbon dioxide in groundwater cause decreases in pH and desorption of radium. The result is intermittent elevated radium concentrations.

  7. Properties of Sealing Materials in Groundwater Wells

    DEFF Research Database (Denmark)

    Köser, Claus

    on the maximum swelling pressure; i) the bulk density of the sample, and ii) whether the sample is sorted or unsorted. CT scans (Computed Tomography) have been used to evaluate certain properties of bentonite seals in a limited volume. In this context, a set of algorithms to convert CT numbers (HU unit......) into densities for clay/water systems has been developed. This method has successfully been used to evaluate e.g., macroporosity, homogenization of the bentonite seal during the hydration of water, hydraulic conductivity and the creation of channels in the bentonite seals. Based on the results obtained...... in this Ph.D. thesis, a number of recommendations has been offered; i) a change regarding the production of pellets and ii) how sealing material must be treated in the actual construction of groundwater wells....

  8. Microbial Community of High Arsenic Groundwater in Agricultural Irrigation Area of Hetao Plain, Inner Mongolia.

    Science.gov (United States)

    Wang, Yanhong; Li, Ping; Jiang, Zhou; Sinkkonen, Aki; Wang, Shi; Tu, Jin; Wei, Dazhun; Dong, Hailiang; Wang, Yanxin

    2016-01-01

    Microbial communities can play important role in arsenic release in groundwater aquifers. To investigate the microbial communities in high arsenic groundwater aquifers in agricultural irrigation area, 17 groundwater samples with different arsenic concentrations were collected along the agricultural drainage channels of Hangjinhouqi County, Inner Mongolia and examined by illumina MiSeq sequencing approach targeting the V4 region of the 16S rRNA genes. Both principal component analysis and hierarchical clustering results indicated that these samples were divided into two groups (high and low arsenic groups) according to the variation of geochemical characteristics. Arsenic concentrations showed strongly positive correlations with [Formula: see text] and total organic carbon (TOC). Sequencing results revealed that a total of 329-2823 operational taxonomic units (OTUs) were observed at the 97% OTU level. Microbial richness and diversity of high arsenic groundwater samples along the drainage channels were lower than those of low arsenic groundwater samples but higher than those of high arsenic groundwaters from strongly reducing areas. The microbial community structure in groundwater along the drainage channels was different from those in strongly reducing arsenic-rich aquifers of Hetao Plain and other high arsenic groundwater aquifers including Bangladesh, West Bengal, and Vietnam. Acinetobacter and Pseudomonas dominated with high percentages in both high and low arsenic groundwaters. Alishewanella, Psychrobacter, Methylotenera, and Crenothrix showed relatively high abundances in high arsenic groundwater, while Rheinheimera and the unidentified OP3 were predominant populations in low arsenic groundwater. Archaeal populations displayed a low occurrence and mainly dominated by methanogens such as Methanocorpusculum and Methanospirillum. Microbial community compositions were different between high and low arsenic groundwater samples based on the results of principal

  9. Microbial Community of High Arsenic Groundwater in Agricultural Irrigation Area of Hetao Plain, Inner Mongolia

    Science.gov (United States)

    Wang, Yanhong; Li, Ping; Jiang, Zhou; Sinkkonen, Aki; Wang, Shi; Tu, Jin; Wei, Dazhun; Dong, Hailiang; Wang, Yanxin

    2016-01-01

    Microbial communities can play important role in arsenic release in groundwater aquifers. To investigate the microbial communities in high arsenic groundwater aquifers in agricultural irrigation area, 17 groundwater samples with different arsenic concentrations were collected along the agricultural drainage channels of Hangjinhouqi County, Inner Mongolia and examined by illumina MiSeq sequencing approach targeting the V4 region of the 16S rRNA genes. Both principal component analysis and hierarchical clustering results indicated that these samples were divided into two groups (high and low arsenic groups) according to the variation of geochemical characteristics. Arsenic concentrations showed strongly positive correlations with NH4+ and total organic carbon (TOC). Sequencing results revealed that a total of 329–2823 operational taxonomic units (OTUs) were observed at the 97% OTU level. Microbial richness and diversity of high arsenic groundwater samples along the drainage channels were lower than those of low arsenic groundwater samples but higher than those of high arsenic groundwaters from strongly reducing areas. The microbial community structure in groundwater along the drainage channels was different from those in strongly reducing arsenic-rich aquifers of Hetao Plain and other high arsenic groundwater aquifers including Bangladesh, West Bengal, and Vietnam. Acinetobacter and Pseudomonas dominated with high percentages in both high and low arsenic groundwaters. Alishewanella, Psychrobacter, Methylotenera, and Crenothrix showed relatively high abundances in high arsenic groundwater, while Rheinheimera and the unidentified OP3 were predominant populations in low arsenic groundwater. Archaeal populations displayed a low occurrence and mainly dominated by methanogens such as Methanocorpusculum and Methanospirillum. Microbial community compositions were different between high and low arsenic groundwater samples based on the results of principal coordinate

  10. Nitrate levels and the age of groundwater from the Upper Devonian sandstone aquifer in Fife, Scotland.

    Science.gov (United States)

    McNeill, G W; Anderson, J; Elliot, T

    2003-03-01

    The tritium concentrations in 13 groundwater samples from boreholes throughout the Upper Devonian sandstone aquifer of Fife have been measured. Due to atmospheric variations in tritium concentrations over the last century, this radioactive tracer can be used as a groundwater age indicator. In this study, the groundwater tritium concentrations have allowed for the area to be divided into three zones, and the variable chemistry of the groundwater samples, including the problem of recent elevated nitrate levels in the Fife Aquifer, has been interpreted in terms of their relative ages.

  11. Changes of Groundwater Quality in the Sorrounding Pollution Sources Due to Earthquake Dissaster

    Directory of Open Access Journals (Sweden)

    Sudarmadji Sudarmadji

    2016-05-01

    Full Text Available Groundwater is the main domestic water supply of the population of the Yogyakarta Special Region, both in the urban and as well as in the rural area due to its quantity and quality advantages. The rapid population growth has caused an increase of groundwater demand, consequently it is facing some problems to the sustainability of groundwater supply. Lowering of groundwater level has been observed in some places, as well as the degradation of groundwater quality. Earthquake which stroke Yogyakarta on 27 May 2006, damaged buildings and other infrastructures in the area, including roads and bridges. It might also damage the underground structures such as septic tanks, and pipes underneath the earth surface. It might cause cracking of the geologic structures. Furthermore, the damage of underneath infrastructures might create groundwater quality changes in the area. Some complains of local community on lowering and increasing groundwater level and groundwater quality changes were noted. Field observation and investigation were conducted, including collection of groundwater samples close to (the pollution sources. Laboratory analyses indicated that some parameters increased to exceed the drinking water quality standards. The high content of Coli form bacteria possibly was caused by contamination of nearby septic tanks or other pollution sources to the observed groundwater in the dug well.

  12. Evaluation of deep groundwater development for arsenic mitigation in western Bangladesh.

    Science.gov (United States)

    Shibasaki, Naoaki; Lei, Peifeng; Kamata, Akira

    2007-10-01

    Groundwater contamination by arsenic frequently occurs in western Bangladesh. Integrated hydrogeological studies were carried out by the Japan International Cooperation Agency (JICA) in the Jessore, Jhenaidah and Chuadanga districts to assess the possibility of supplying safe drinking water from deep aquifers. The subsurface geology of up to 300 m in depth was classified into 5 formations (viz. A to E formations in descending order). Thick clay facies are found in C formation in the Jessore district, however, clay facies are absent in the Jhenaidah and Chuadanga districts. The clay layer separates deep aquifers from shallow aquifers, and controls vertical groundwater flow. The results of core sample analysis showed that high arsenic contents of more than 30 ppm were found not only from shallow clay but also even from deep clay below 200 m. However, the arsenic concentrations in groundwater were generally below 0.05 mg/L in the deep aquifers. The simulation study using a vertical 2-D groundwater model indicates that deep groundwater will not be contaminated by arsenic in shallow groundwater when the piezometric heads of the deep aquifers are higher than the shallow aquifers. However, the simulation results indicate that overexploitation of the deep aquifers will cause arsenic contamination in deep aquifers due to the downward movement of contaminated shallow groundwater when no sorption takes place in the sediments. These results suggest that groundwater management and control of groundwater pumpage in deep aquifers are crucial for sustainable supply of arsenic safe deep groundwater in western Bangladesh.

  13. Using boreholes as windows into groundwater ecosystems.

    Directory of Open Access Journals (Sweden)

    James P R Sorensen

    Full Text Available Groundwater ecosystems remain poorly understood yet may provide ecosystem services, make a unique contribution to biodiversity and contain useful bio-indicators of water quality. Little is known about ecosystem variability, the distribution of invertebrates within aquifers, or how representative boreholes are of aquifers. We addressed these issues using borehole imaging and single borehole dilution tests to identify three potential aquifer habitats (fractures, fissures or conduits intercepted by two Chalk boreholes at different depths beneath the surface (34 to 98 m. These habitats were characterised by sampling the invertebrates, microbiology and hydrochemistry using a packer system to isolate them. Samples were taken with progressively increasing pumped volume to assess differences between borehole and aquifer communities. The study provides a new conceptual framework to infer the origin of water, invertebrates and microbes sampled from boreholes. It demonstrates that pumping 5 m(3 at 0.4-1.8 l/sec was sufficient to entrain invertebrates from five to tens of metres into the aquifer during these packer tests. Invertebrates and bacteria were more abundant in the boreholes than in the aquifer, with associated water chemistry variations indicating that boreholes act as sites of enhanced biogeochemical cycling. There was some variability in invertebrate abundance and bacterial community structure between habitats, indicating ecological heterogeneity within the aquifer. However, invertebrates were captured in all aquifer samples, and bacterial abundance, major ion chemistry and dissolved oxygen remained similar. Therefore the study demonstrates that in the Chalk, ecosystems comprising bacteria and invertebrates extend from around the water table to 70 m below it. Hydrogeological techniques provide excellent scope for tackling outstanding questions in groundwater ecology, provided an appropriate conceptual hydrogeological understanding is applied.

  14. Earthquakes trigger the loss of groundwater biodiversity

    Science.gov (United States)

    Galassi, Diana M. P.; Lombardo, Paola; Fiasca, Barbara; di Cioccio, Alessia; di Lorenzo, Tiziana; Petitta, Marco; di Carlo, Piero

    2014-09-01

    Earthquakes are among the most destructive natural events. The 6 April 2009, 6.3-Mw earthquake in L'Aquila (Italy) markedly altered the karstic Gran Sasso Aquifer (GSA) hydrogeology and geochemistry. The GSA groundwater invertebrate community is mainly comprised of small-bodied, colourless, blind microcrustaceans. We compared abiotic and biotic data from two pre-earthquake and one post-earthquake complete but non-contiguous hydrological years to investigate the effects of the 2009 earthquake on the dominant copepod component of the obligate groundwater fauna. Our results suggest that the massive earthquake-induced aquifer strain biotriggered a flushing of groundwater fauna, with a dramatic decrease in subterranean species abundance. Population turnover rates appeared to have crashed, no longer replenishing the long-standing communities from aquifer fractures, and the aquifer became almost totally deprived of animal life. Groundwater communities are notorious for their low resilience. Therefore, any major disturbance that negatively impacts survival or reproduction may lead to local extinction of species, most of them being the only survivors of phylogenetic lineages extinct at the Earth surface. Given the ecological key role played by the subterranean fauna as decomposers of organic matter and ``ecosystem engineers'', we urge more detailed, long-term studies on the effect of major disturbances to groundwater ecosystems.

  15. Earthquakes trigger the loss of groundwater biodiversity.

    Science.gov (United States)

    Galassi, Diana M P; Lombardo, Paola; Fiasca, Barbara; Di Cioccio, Alessia; Di Lorenzo, Tiziana; Petitta, Marco; Di Carlo, Piero

    2014-09-03

    Earthquakes are among the most destructive natural events. The 6 April 2009, 6.3-Mw earthquake in L'Aquila (Italy) markedly altered the karstic Gran Sasso Aquifer (GSA) hydrogeology and geochemistry. The GSA groundwater invertebrate community is mainly comprised of small-bodied, colourless, blind microcrustaceans. We compared abiotic and biotic data from two pre-earthquake and one post-earthquake complete but non-contiguous hydrological years to investigate the effects of the 2009 earthquake on the dominant copepod component of the obligate groundwater fauna. Our results suggest that the massive earthquake-induced aquifer strain biotriggered a flushing of groundwater fauna, with a dramatic decrease in subterranean species abundance. Population turnover rates appeared to have crashed, no longer replenishing the long-standing communities from aquifer fractures, and the aquifer became almost totally deprived of animal life. Groundwater communities are notorious for their low resilience. Therefore, any major disturbance that negatively impacts survival or reproduction may lead to local extinction of species, most of them being the only survivors of phylogenetic lineages extinct at the Earth surface. Given the ecological key role played by the subterranean fauna as decomposers of organic matter and "ecosystem engineers", we urge more detailed, long-term studies on the effect of major disturbances to groundwater ecosystems.

  16. Groundwater sustainability assessment in coastal aquifers

    Indian Academy of Sciences (India)

    U A Lathashri; A Mahesha

    2016-08-01

    The present work investigates the response of shallow, coastal unconfined aquifers to anticipated overdraft conditions and climate change effect using numerical simulation. The groundwater flow model MODFLOW and variable density groundwater model SEAWAT are used for this investigation. The transmissivity and specific yield estimated from the existing database range from 10 to 810 m^2/day and 0.08% to 10.92% respectively. After successful calibration with Nash–Sutcliffe efficiency greater than 0.80, the values of horizontal hydraulic conductivity and specific yield of the unconfined aquifer were set in the range 1.85–61.90 m/day and 0.006–0.24 respectively. After validating the model, it is applied for forecasting the aquifer’s response to anticipated future scenarios of groundwater draft, recharge rate and sea level rise. The findings of the study illustrate that saltwater intrusion is intensified in the area adjoining the tidal rivers, rather than that due to the sea alone. Of all the scenarios simulated, the immense negative impact on groundwater quality emerges due to overdraft conditions and reduced recharge with the areal extent of seawater intrusion exceeding about 67% (TDS>1 kg/m^3). The study also arrivesat the conclusion that, regional sea level rise of 1 mm/year has no impact on the groundwater dynamics of the aquifer.

  17. Earthquakes trigger the loss of groundwater biodiversity

    Science.gov (United States)

    Galassi, Diana M. P.; Lombardo, Paola; Fiasca, Barbara; Di Cioccio, Alessia; Di Lorenzo, Tiziana; Petitta, Marco; Di Carlo, Piero

    2014-01-01

    Earthquakes are among the most destructive natural events. The 6 April 2009, 6.3-Mw earthquake in L'Aquila (Italy) markedly altered the karstic Gran Sasso Aquifer (GSA) hydrogeology and geochemistry. The GSA groundwater invertebrate community is mainly comprised of small-bodied, colourless, blind microcrustaceans. We compared abiotic and biotic data from two pre-earthquake and one post-earthquake complete but non-contiguous hydrological years to investigate the effects of the 2009 earthquake on the dominant copepod component of the obligate groundwater fauna. Our results suggest that the massive earthquake-induced aquifer strain biotriggered a flushing of groundwater fauna, with a dramatic decrease in subterranean species abundance. Population turnover rates appeared to have crashed, no longer replenishing the long-standing communities from aquifer fractures, and the aquifer became almost totally deprived of animal life. Groundwater communities are notorious for their low resilience. Therefore, any major disturbance that negatively impacts survival or reproduction may lead to local extinction of species, most of them being the only survivors of phylogenetic lineages extinct at the Earth surface. Given the ecological key role played by the subterranean fauna as decomposers of organic matter and “ecosystem engineers”, we urge more detailed, long-term studies on the effect of major disturbances to groundwater ecosystems. PMID:25182013

  18. Quantification of groundwater recharge in urban environments.

    Science.gov (United States)

    Tubau, Isabel; Vázquez-Suñé, Enric; Carrera, Jesús; Valhondo, Cristina; Criollo, Rotman

    2017-08-15

    Groundwater management in urban areas requires a detailed knowledge of the hydrogeological system as well as the adequate tools for predicting the amount of groundwater and water quality evolution. In that context, a key difference between urban and natural areas lies in recharge evaluation. A large number of studies have been published since the 1990s that evaluate recharge in urban areas, with no specific methodology. Most of these methods show that there are generally higher rates of recharge in urban settings than in natural settings. Methods such as mixing ratios or groundwater modeling can be used to better estimate the relative importance of different sources of recharge and may prove to be a good tool for total recharge evaluation. However, accurate evaluation of this input is difficult. The objective is to present a methodology to help overcome those difficulties, and which will allow us to quantify the variability in space and time of the recharge into aquifers in urban areas. Recharge calculations have been initially performed by defining and applying some analytical equations, and validation has been assessed based on groundwater flow and solute transport modeling. This methodology is applicable to complex systems by considering temporal variability of all water sources. This allows managers of urban groundwater to evaluate the relative contribution of different recharge sources at a city scale by considering quantity and quality factors. The methodology is applied to the assessment of recharge sources in the Barcelona city aquifers. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Global change and the groundwater management challenge

    Science.gov (United States)

    Gorelick, Steven M.; Zheng, Chunmiao

    2015-05-01

    With rivers in critical regions already exploited to capacity throughout the world and groundwater overdraft as well as large-scale contamination occurring in many areas, we have entered an era in which multiple simultaneous stresses will drive water management. Increasingly, groundwater resources are taking a more prominent role in providing freshwater supplies. We discuss the competing fresh groundwater needs for human consumption, food production, energy, and the environment, as well as physical hazards, and conflicts due to transboundary overexploitation. During the past 50 years, groundwater management modeling has focused on combining simulation with optimization methods to inspect important problems ranging from contaminant remediation to agricultural irrigation management. The compound challenges now faced by water planners require a new generation of aquifer management models that address the broad impacts of global change on aquifer storage and depletion trajectory management, land subsidence, groundwater-dependent ecosystems, seawater intrusion, anthropogenic and geogenic contamination, supply vulnerability, and long-term sustainability. The scope of research efforts is only beginning to address complex interactions using multiagent system models that are not readily formulated as optimization problems and that consider a suite of human behavioral responses.

  20. Evaluating groundwater flow using passive electrical measurements

    Science.gov (United States)

    Voytek, E.; Revil, A.; Singha, K.

    2016-12-01

    Accurate quantification of groundwater flow patterns, both in magnitude and direction, is a necessary component of evaluating any hydrologic system. Groundwater flow patterns are often determined using a dense network of wells or piezometers, which can be limited due to logistical or regulatory constraints. The self-potential (SP) method, a passive geophysical technique that relies on currents generated by water movement through porous materials, is a re-emerging alternative or addition to traditional piezometer networks. Naturally generated currents can be measured as voltage differences at the ground surface using only two electrodes, or a more complex electrode array. While the association between SP measurements and groundwater flow was observed as early as 1890s, the method has seen resurgence in hydrology since the governing equations were refined in the 1980s. The method can be used to analyze hydrologic processes at various temporal and spatial scales. Here we present the results of multiple SP surveys collected a multiple scales (1 to 10s of meters). Here single SP grid surveys are used to evaluate flow patterns through artic hillslopes at a discrete point in time. Additionally, a coupled groundwater and electrical model is used to analyze multiple SP data sets to evaluate seasonal changes in groundwater flow through an alpine meadow.

  1. Radiogenic and Stable Isotope and Hydrogeochemical Investigation of Groundwater, Pajarito Plateau and Surrounding Areas, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Longmire, Michael Dale, Dale Counce, Andrew Manning, Toti Larson, Kim Granzow, Robert Gray, and Brent Newman

    2007-07-15

    From October 2004 through February 2006, Los Alamos National Laboratory, the New Mexico Environment Department-Department of Energy Oversight Bureau, and the United States Geological Survey conducted a hydrochemical investigation. The purpose of the investigation was to evaluate groundwater flow paths and determine groundwater ages using tritium/helium-3 and carbon-14 along with aqueous inorganic chemistry. Knowledge of groundwater age and flow paths provides a technical basis for selecting wells and springs for monitoring. Groundwater dating is also relevant to groundwater resource management, including aquifer sustainability, especially during periods of long-term drought. At Los Alamos, New Mexico, groundwater is either modern (post-1943), submodern (pre-1943), or mixed (containing both pre- and post-1943 components). The regional aquifer primarily consists of submodern groundwater. Mixed-age groundwater results from initial infiltration of surface water, followed by mixing with perched alluvial and intermediate-depth groundwater and the regional aquifer. No groundwater investigation is complete without using tritium/helium-3 and carbon-14 dating methods to quantify amounts of modern, mixed, and/or submodern components present in samples. Computer models of groundwater flow and transport at Los Alamos should be calibrated to groundwater ages for perched intermediate zones and the regional aquifer determined from this investigation. Results of this study clearly demonstrate the occurrence of multiple flow paths and groundwater ages occurring within the Sierra de los Valles, beneath the Pajarito Plateau, and at the White Rock Canyon springs. Localized groundwater recharge occurs within several canyons dissecting the Pajarito Plateau. Perched intermediate-depth groundwater and the regional aquifer beneath Pueblo Canyon, Los Alamos Canyon, Sandia Canyon, Mortandad Canyon, Pajarito Canyon, and Canon de Valle contain a modern component. This modern component consists

  2. Groundwater Quality in Central New York, 2007

    Science.gov (United States)

    Eckhardt, David A.V.; Reddy, J.E.; Shaw, Stephen B.

    2009-01-01

    Water samples were collected from 7 production wells and 28 private residential wells in central New York from August through December 2007 and analyzed to characterize the chemical quality of groundwater. Seventeen wells are screened in sand and gravel aquifers, and 18 are finished in bedrock aquifers. The wells were selected to represent areas of greatest groundwater use and to provide a geographical sampling from the 5,799-square-mile study area. Samples were analyzed for 6 physical properties and 216 constituents, including nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, phenolic compounds, organic carbon, and 4 types of bacteria. Results indicate that groundwater used for drinking supply is generally of acceptable quality, although concentrations of some constituents or bacteria exceeded at least one drinking-water standard at several wells. The cations detected in the highest concentrations were calcium, magnesium, and sodium; anions detected in the highest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrients were nitrate and ammonia, but no nutrients exceeded Maximum Contaminant Levels (MCLs). The trace elements barium, boron, lithium, and strontium were detected in every sample; the trace elements present in the highest concentrations were barium, boron, iron, lithium, manganese, and strontium. Fifteen pesticides, including seven pesticide degradates, were detected in water from 17 of the 35 wells, but none of the concentrations exceeded State or Federal MCLs. Sixteen volatile organic compounds were detected in water from 15 of the 35 wells. Nine analytes and three types of bacteria were detected in concentrations that exceeded Federal and State drinking-water standards, which typically are identical. One sample had a water color that exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) and the New York State MCL of 10 color

  3. Veterinary Antibiotics in Young Dutch Groundwater under Intensive Livestock Farming

    Science.gov (United States)

    Vliet, M. V.; Kivits, T.; Broers, H. P.; Beeltje, H.; Griffioen, J.

    2016-12-01

    Dutch groundwater is heavily affected by nutrient loads from agricultural origin. The use of antibiotics is also widespread in Dutch farming practice, 200.000 kg active substance over 1.839.000 ha of agricultural land. National measures were established to reduce the applications. Spreading of manure over farmlands is assumed to be the main pathway for the leaching of antibiotics to groundwater, but actual numbers are lacking. We studied the occurrence of veterinary antibiotics in groundwater in two areas with intensive livestock farming, sampling existing multi-level wells that were previously age dated using tritium-helium. Wells were selected based on the following criteria: the uppermost screen is situated just below the average groundwater level, which is not deeper than 3 meters, the well is in an agricultural field where rainwater infiltrates avoiding areas adjacent to ditches or streams, the groundwater quality is known for several years and the age of the extracted water is known to be young (veterinary practice.

  4. Microbially induced corrosion of carbon steel in deep groundwater environment

    Directory of Open Access Journals (Sweden)

    Pauliina eRajala

    2015-07-01

    Full Text Available The metallic low and intermediate level radioactive waste generally consists of carbon steel and stainless steels. The corrosion rate of carbon steel in deep groundwater is typically low, unless the water is very acidic or microbial activity in the environment is high. Therefore, the assessment of microbially induced corrosion of carbon steel in deep bedrock environment has become important for evaluating the safety of disposal of radioactive waste. Here we studied the corrosion inducing ability of indigenous microbial community from a deep bedrock aquifer. Carbon steel coupons were exposed to anoxic groundwater from repository site 100 m depth (Olkiluoto, Finland for periods of three and eight months. The experiments were conducted at both in situ temperature and room temperature to investigate the response of microbial population to elevated temperature. Our results demonstrate that microorganisms from the deep bedrock aquifer benefit from carbon steel introduced to the nutrient poor anoxic deep groundwater environment. In the groundwater incubated with carbon steel the planktonic microbial community was more diverse and 100-fold more abundant compared to the environment without carbon steel. The betaproteobacteria were the most dominant bacterial class in all samples where carbon steel was present, whereas in groundwater incubated without carbon steel the microbial community had clearly less diversity. Microorganisms induced pitting corrosion and were found to cluster inside the corrosion pits. Temperature had an effect on the species composition of microbial community and also affected the corrosion deposits layer formed on the surface of carbon steel.

  5. Groundwater geochemistry of a municipal landfill in Araras, SP

    Directory of Open Access Journals (Sweden)

    Carlos Frederico de Castro Alves 1

    2014-03-01

    Full Text Available A contaminated area associated with a residential unlined landfill, located in Araras, was investigated. The aim of this work was to develop a hydrogeological and geochemical conceptual model in order to identify the redox zones related to the landfill and to explain the main processes resulting from the impact of leachates on the local groundwaters and soil. The work consisted of a surface geological mapping, geophysical survey with electric tomography, logging of subsoil boreholes, an installation of monitoring wells and soil, gas, leachate and groundwater samples analyses. The results show that the Araras landfill is in the methanogenic phase and promotes alterations in local groundwater quality. The main parameters of environmental interest identified in the leachate were total dissolved solids, biochemical oxygen demand, ammonium, methane, Na, Cl, Fe, Mn, Ba, B, Co and Cd. According to criteria specifically developed for this landfill, the following redox zones were identified in the groundwater: (i aerobic, located upgradient from the landfill; (ii methanogenic, downgradient from the landfill; (iii iron and/or manganese reduction, located between the methanogenic zone and the Araras river. Bypassing the iron and/or manganese redox zone, the existence of a denitrification zone was inferred. Besides the redox reactions in these zones, other processes that mitigate the impact of leachate into groundwater were also discovered: dilution, degradation by the action of surface microorganisms, dispersion, ionic exchange, formation of organic and inorganic complexes, dissolution and precipitation.

  6. Assessment of Hydrochemistry for Use as Groundwater Age Proxy

    Science.gov (United States)

    Beyer, Monique; Daughney, Chris; Jackson, Bethanna; Morgenstern, Uwe

    2015-04-01

    Groundwater dating can aid groundwater management by providing information on groundwater flow, mixing and residence-, storage- and exposure-time of groundwater in the subsurface. Groundwater age can be inferred from environmental tracers, such as tritium, SF6 and CFCs (CFC-12, -11 and -113). These tracers often need to be applied complementarily, since they have a restricted application range and ambiguous age interpretations can be obtained. Some tracers, such as the CFCs, will become of limited use in near future, due their fading out atmospheric concentration. As a consequence of these limitations, there is a need for additional, complementary tracers to ensure groundwater dating in future. Hydrochemistry parameters, such as the concentrations and ratios of major ions, appear to be promising candidates. Hydro-chemistry data at various spatial and temporal scales are widely available through local, regional and national groundwater monitoring programmes. Promising relationships between hydrochemistry parameters and groundwater residence time or aquifer depth have been found in near piston flow environments. However, most groundwater samples contain proportions of different aged water, due to mixing of water emerging from different flow lines during sampling or discharge, which complicates the establishment of hydrochemistry-time relationships in these environments. In this study, we establish a framework to infer hydrochemistry - (residence) time relationships in non-piston flow environments by using age information inferred from environmental tracer data and lumped parameter models (LPMs). The approach involves the generation of major element concentrations by 'classic' Monte Carlo simulation and subsequent comparison of simulated and observed element concentrations by means of an objective function to establish hydrochemistry-time relationships. The framework also allows for assessment of the hydrochemistry-time relationships with regards to their potential to

  7. Geochemical evolution of lacustrine brines from variable-scale groundwater circulation

    Science.gov (United States)

    Donovan, Joseph J.; Rose, Arthur W.

    1994-02-01

    Evaporative groundwater-fed lakes in the glaciated North American Great Plains vary widely in chemistry. A contributing cause is chemical variability of source groundwater intercepted by specific lakes, caused in part by differing depths of groundwater circulation. Aqueous chemical characteristics of 61 lakes and 160 groundwater samples were compared for an area where such lakes are common in eastern Montana-western North Dakota. Results indicate that groundwater chemistry varies according to depth in a similar fashion within different aquifers. Lake water evaporation from initial groundwater solutions typical of three depths was geochemically modeled using PHRQPITZ, based on a Pitzer treatment of activities and equilibria. Results show that chemistry of most lake waters in the study area may correspond to that predicted from evaporation of shallow- and intermediate-depth groundwater, but not of deep groundwater as postulated in some previous investigations. Lakes in shallow surface depressions receive water primarily from shallow (local) groundwater flow; lakes located in deep or broad topographic depressions may additionally receive groundwater from deeper circulation. In the field area studied, relative dominance of anions (sulfate vs. carbonate) in brines is a signature for inferred depth of source. Also diagnostic is the suite of brine salts formed (NaSO 4Mg salts for shallow flow; these plus NaCO 3 salts for intermediate depth flow). Such source signatures will vary from area to area according to depth variations in groundwater chemistry and in stratigraphy. Chemical evolution of lake water is a two-stage process, with a groundwater path (influenced by residence time, depth of circulation, aquifer mineralogy, and related factors) and a surface path (influenced by evaporation rates, lake-aquifer hydraulics, and lake geochemical reactions). Groundwater flow patterns may affect the former set of factors, thereby indirectly controlling lake water

  8. Installation-Restoration Program Stage 3. McClellan AFB, California. Remedial investigation/feasibility study ground-water sampling and analysis program, January through March 1989 data summary. Final report, January-March 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-19

    This Data Summary presents the results of ground-water sampling activities conducted on and in the vicinity of McClellan Air Force Base from the sampling period of January through March, 1989. Concentrations of purgeable halocarbons and aromatic compounds detected in 336 wells 26 monitoring wells are located on base in Area A, B, C, D, and adjacent on-base areas and off-base in the Northwest and Southwest areas. There was no detected increase in the areal extent of contaminated ground-water, nor was there any increase in the depth that contaminated ground-water was detected. The Area D extraction system is effectively operating to change hydraulic gradients, so groundwater in Area D flows toward the extraction wells. Contaminant concentrations have decreased in Area D deep zone monitoring wells. Samples from three middle-zone monitoring wells located in Area D also show decreases in contaminant concentration during this sampling period. Decreasing contaminant concentrations have stabilized in shallow zone monitoring wells located off-base, west of Area D.

  9. Influence of long-term sewage irrigation on the distribution of organochlorine pesticides in soil-groundwater systems.

    Science.gov (United States)

    Zhang, Caixiang; Liao, Xiaoping; Li, Jiale; Xu, Liang; Liu, Ming; Du, Bin; Wang, Yanxin

    2013-07-01

    Serious shortage of water resources is one of the major factors restricting the sustainable development of cropland and pasture land in northern and northwestern China. Although the reuse of wastewater for agricultural irrigation becomes a well established practice in these regions, many contaminants have been also introduced into the soil-groundwater systems such as persistent organochlorine pesticides (OCPs). To study the influence of long-term sewage irrigation on the distribution of OCPs in soil-groundwater systems, the groundwater flow field was investigated and 31 topsoil samples, 9 boreholes, 11 sewage effluents and 34 groundwater samples were collected in Xiaodian, Taiyuan city, one of the largest sewage irrigation districts, China. During sampling, three representative types of regions were considered including effluent-irrigated area, groundwater-irrigated area served as the control field and no-irrigated area as reference "background". The results showed over-exploitation of groundwater had changed the flow field of groundwater and wherever in soil or in groundwater, the concentration of OCPs in effluent-irrigation area presented the highest value, which indicated that the sewage irrigation had a strong influence on the distribution of OCPs in soil-groundwater systems. Principal component analysis for OCPs content in groundwater showed that the major influence factors on the occurrence and distribution of OCPs in groundwater systems attribute to the flow field of groundwater and to the current pesticide use.

  10. Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China.

    Science.gov (United States)

    Li, Ping; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Zhou; Jiang, Dawei; Wang, Shang; Jiang, Hongchen; Wang, Yanxin; Dong, Hailiang

    2015-01-01

    A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater) and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes) in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12-267 operational taxonomic units (OTUs). Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO4(2-), SO4(2-)/total sulfur ratio, and Fe(2+) were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia.

  11. Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China.

    Directory of Open Access Journals (Sweden)

    Ping Li

    Full Text Available A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12-267 operational taxonomic units (OTUs. Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO4(2-, SO4(2-/total sulfur ratio, and Fe(2+ were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia.

  12. Groundwater Level Prediction using M5 Model Trees

    Science.gov (United States)

    Nalarajan, Nitha Ayinippully; Mohandas, C.

    2015-01-01

    Groundwater is an important resource, readily available and having high economic value and social benefit. Recently, it had been considered a dependable source of uncontaminated water. During the past two decades, increased rate of extraction and other greedy human actions have resulted in the groundwater crisis, both qualitatively and quantitatively. Under prevailing circumstances, the availability of predicted groundwater levels increase the importance of this valuable resource, as an aid in the planning of groundwater resources. For this purpose, data-driven prediction models are widely used in the present day world. M5 model tree (MT) is a popular soft computing method emerging as a promising method for numeric prediction, producing understandable models. The present study discusses the groundwater level predictions using MT employing only the historical groundwater levels from a groundwater monitoring well. The results showed that MT can be successively used for forecasting groundwater levels.

  13. Vulnerability to diffuse pollution of European soils and groundwater

    NARCIS (Netherlands)

    Meinardi CR; Beusen AHW; Bollen MJS; Klepper O; LBG; CWM

    1994-01-01

    From the Atlantic Ocean to the Ural Mountains, European soils and groundwater are threatened by diffuse pollution derived from various chemicals used in modern agriculture and by increased atmospheric deposition of pollutants. The investigated vulnerability of soils (including groundwater) to

  14. Groundwater Quality Monitoring at Logan Cave National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the current project was to continue establishing a long term groundwater quality monitoring program at Logan Cave that would allow groundwater threats...

  15. Groundwater depletion in the United States (1900-2008)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A natural consequence of groundwater withdrawals is the removal of water from subsurface storage, but the overall rates and magnitude of groundwater depletion in the...

  16. Groundwater Data Package for the 2004 Composite Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, Paul D.

    2004-08-11

    This report presents data and information that supports the groundwater module. The conceptual model of groundwater flow and transport at the Hanford Site is described and specific information applied in the numerical implementation module is provided.

  17. evaluation of models for assessing groundwater vulnerability to ...

    African Journals Online (AJOL)

    DR. AMINU

    Key words: Groundwater, Vulnerability, Pollution, Nigeria. INTRODUCTION ... natural groundwater vulnerability: net recharge, soil properties, unsaturated zone ... such as dispersion, oxidation, natural attenuation, sorption etc. A low depth to ...

  18. Multi-Objective Groundwater Quantity Management. A Stochastic Approach

    NARCIS (Netherlands)

    Ndambuki, J.M.

    2001-01-01

    The question of managing groundwater resources is one of implementing institutions that regulate the use of the resource so as to harvest maximum benefits without imparting undesirable consequences on the system. Traditionally, regional groundwater management problems have been solved deterministica

  19. Influence of Anthropogenic Contamination on Fluoride Concentration in Groundwater

    Directory of Open Access Journals (Sweden)

    SUDHAKAR M. RAO

    2012-06-01

    Full Text Available Groundwater Contamination is a serious concern in India. Major geogenic contaminants include fluoride, arsenic and iron, while common anthropogenic contaminants include nitrate, metals, organic and microbial contamination. Besides, known point and diffuse sources, groundwater contamination from infiltration of pit toilet leachate is an emerging concern. The study area of this paper is Kolar district in Karnataka that is hot spot of fluoride contamination. The absence of fluoride contamination in Mulbagal town and the alterations in groundwater chemistry from infiltration of pit toilet leachate motivated the author to examine the possible linkages between anthropogenic contamination and fluoride concentration in groundwater of Mulbagal town. Analysis of the groundwater chemistry revealed that the groundwater in Mulbagal town is under saturated with respect to calcite that suppresses the disolution of fluorite and the fluoride concentration in the groundwater. The slightly acidic pH of the groundwater is considered responsible to facilitate calcite dissolution under saturation.

  20. Coastal groundwater table estimation by an elevation fluctuation neural model

    Institute of Scientific and Technical Information of China (English)

    HE Bin; WANG Yi

    2007-01-01

    Restrictions of groundwater management are often derived from the insufficient or missing groundwater database. A suitable and complete groundwater database will allow sound engineering plans for sustainable water usage, including the drilling of wells, rates of water withdrawal, and eventually artificial recharge of the aquifer. The spatial-temporal variations of groundwater monitoring data are fluently influenced by the presence of manual factors, monitor equipment malfunctioning, natural phenomena, etc. Thus, it is necessary for researchers to check and infill the groundwater database before running the numerical groundwater model. In this paper, an artificial neural network (ANN)-based model is formulated using the hydrological and meteorological data to infill the inadequate data in the groundwater database. Prediction results present that ANN method could be a desirable choice for estimating the missing groundwater data.

  1. A groundwater-planning toolkit for the main Karoo basin:

    African Journals Online (AJOL)

    This paper provides an overview of groundwater-planning tools that were ... concept used in surface-water resource assessments and dam or reservoir design were adapted and applied to groundwater. ..... treatment facilities and bulk storage.

  2. Factors controlling groundwater salinization and hydrogeochemical processes in coastal aquifers from southern Spain.

    Science.gov (United States)

    Argamasilla, M; Barberá, J A; Andreo, B

    2017-02-15

    In detrital coastal aquifers, seawater and surface water may interact with groundwater in multiple ways. Understanding the interference of water fluxes in this type of environment is essential to effectively manage the groundwater resources in water-stressed regions, such as the Mediterranean coastal fringe. In this research, the characterization of the main hydrogeochemical processes and the interaction between surface water and groundwater in the Marbella-Estepona coastal aquifers (southern Spain) have been carried out by means of the combined use of different hydrogeochemical indicators along with isotope data. The results show that the diversity of source lithologies (peridotite, carbonate and/or metapelitic) substantially conditions the groundwater geochemistry. The analysis of ionic deltas made it possible a preliminary screening of the geochemical reactions that occur in the Marbella-Estepona aquifers, while the Discriminant Analysis allowed for a consistent classification of sampled groundwater types. The dissolution of calcite and dolomite determines the chemical composition of the groundwater from the eastern sector that are more conditioned by the rainwater infiltration. The dissolution of magnesium-bearing minerals (predominantly forming peridotite rocks) is observed in groundwater samples from the western and central sectors, whose chemical composition showed a greater influence of surface water. The spatial analysis of rCl(-)/Br(-) in groundwater has permitted to corroborate that saline intrusion is negligible, hardly affecting to its original water quality. The irregularly distributed recharge by precipitation (seasonal effect) and the atmospheric circulation of cloud fronts (coastal/continental effect) explains why most of groundwater sampled is isotopically impoverished with respect to the rainfall signature. The isotope approach also suggests the hydraulic relationship between surface water and groundwater in the study site. A deeper knowledge of

  3. Mapping groundwater renewability using age data in the Baiyang alluvial fan, NW China

    Science.gov (United States)

    Huang, Tianming; Pang, Zhonghe; Li, Jie; Xiang, Yong; Zhao, Zhijiang

    2017-05-01<