WorldWideScience

Sample records for groundwater dynamics based

  1. Understanding High-Resolution Spatiotemporal Dynamics of Groundwater Recharge Using Process Based Hydrologic Modeling

    Science.gov (United States)

    Kang, G.; Qiu, H.; Li, S. G.; Lusch, D.; Phanikumar, M. S.

    2016-12-01

    Quantifying the natural rates of groundwater recharge and identifying the location and timing of major recharge events are essential for maintaining sustainable water yields and for understanding contaminant transport mechanisms in groundwater systems. Using Ottawa County, Michigan as a case study in sustainable water resources management, this research is part of a larger project that examines the issues of declining water tables and increasing chloride concentrations within the county. A process-based hydrologic model (PAWS) is used to mechanistically evaluate the integrated hydrologic response of both the surface and subsurface systems to further compute daily fluxes due to evapotranspiration, surface runoff, recharge and groundwater-stream interactions. Both rain gauge (NCDC) and NEXRAD precipitation data are used as input for the model. The model is built based on three major watersheds at 300m spatial resolution and daily temporal resolution, covering all of Ottawa County and is calibrated using streamflow data from USGS gauging stations. In addition, synoptic and time-series baseflow data collected using Acoustic Doppler Current Profilers and electromagnetic flow meters during the summer of 2015 are used to test the ability of the model to simulate baseflows and to quantify the uncertainty. The MODIS evapotranspiration product is used to evaluate model performance in simulating ET. The primary objectives of this study are to (1) understand the periods of high and low groundwater recharge in the county between the years 2009 and 2015; and (2) analyze the impacts of different types of land use, soil, elevation, and slope on groundwater recharge.

  2. Satellite-based estimation of watershed groundwater storage dynamics in a freeze-thaw area under intensive agricultural development

    Science.gov (United States)

    Ouyang, Wei; Liu, Bing; Wu, Yuyang

    2016-06-01

    Understanding the temporal-spatial characteristics of groundwater storage is critical for agricultural planning and management in the future, thereby causing more challenges in water resource management. However, the special hydrological features of the snow water equivalent, soil moisture, and total canopy water storage in the freeze-thawing agricultural area requires the innovative methods for the water resource analysis. The watershed land cover variation and the expanding pattern of the farmlands over a decade were identified using the TM-Landsat series data. Combined with the traditional measurements of the water resource, the monthly gravity field data from the Gravity Recovery And Climate Experiment (GRACE) was validated and applied. The water resources distribution based on the remotely sensed data demonstrated that the forest in the watershed center had a larger amount of water storage. The inter-annual and seasonal variability of total water storage (TWS) over the agricultural area was analyzed and the higher value appeared in the thawing period of April. The correlations of the TWS streamflow, soil moisture and snow water equivalent with precipitation were all identified. The precipitation was the dominant factor for the watershed TWS and the groundwater dynamics. Under the similar precipitation condition, the lower groundwater storage in recent years was the consequence of the expanding of farmland. The watershed averaged decrease rate of groundwater level from 2003 to 2012 was 1.06 mm/year, which was much lower than the rates in other agricultural areas. The freeze-thawing process with smelt snow and rainfall in summer had more time and chance to recharge the groundwater resource and provided the sustainable water resource. This study proved that the application of GRACE was an effective method for the temporal-spatial estimation of the TWS anomalies in the freeze-thawing agricultural area.

  3. DYNAMICS OF AGRICULTURAL GROUNDWATER EXTRACTION

    OpenAIRE

    Hellegers, Petra J.G.J.; Zilberman, David; van Ierland, Ekko C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

  4. DYNAMICS OF AGRICULTURAL GROUNDWATER EXTRACTION

    OpenAIRE

    Hellegers, Petra J.G.J.; Zilberman, David; van Ierland, Ekko C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

  5. Dynamics of Agricultural Groundwater Extraction

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Zilberman, D.; Ierland, van E.C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is

  6. Fostering assumption-based stress-test thinking in managing groundwater systems: learning to avoid failures due to basic dynamics

    Science.gov (United States)

    Guillaume, Joseph H. A.; El Sawah, Sondoss

    2014-06-01

    Sustainable groundwater resource management can only be achieved if planning processes address the basic dynamics of the groundwater system. Conceptual and distributed groundwater models do not necessarily translate into an understanding of how a plan might operate in reality. Prompted by Australian experiences, `iterative closed-question modelling' has been used to develop a process of iterative dialogue about management options, objectives and knowledge. Simple hypothetical models of basic system dynamics that satisfy agreed assumptions are used to stress-test the ability of a proposed management plan to achieve desired future conditions. Participants learn from models in which a plan succeeds and fails, updating their assumptions, expectations or plan. Their new understanding is tested against further hypothetical models. The models act as intellectual devices that confront users with new scenarios to discuss. This theoretical approach is illustrated using simple one and two-cell groundwater models that convey basic notions of capture and spatial impacts of pumping. Simple extensions can address uncertain climate, managed-aquifer recharge and alternate water sources. Having learnt to address the dynamics captured by these models, participants may be better placed to address local conditions and develop more effective arrangements to achieve management outcomes.

  7. Prediction of changes in groundwater dynamics caused by relocation of river embankments

    Directory of Open Access Journals (Sweden)

    U. Mohrlok

    2003-01-01

    Full Text Available Ecosystems in river valleys are affected mainly by the hydraulic conditions in wetlands including groundwater dynamics. The quantitative prediction of changes in groundwater dynamics caused by river embankment relocation requires numerical modelling using a physically-based approach. Groundwater recharge from the intermittently flooded river plains was determined by a leakage approach considering soil hydraulic properties. For the study area in the Elbe river valley north of Magdeburg, Germany, a calibrated groundwater flow model was established and the groundwater dynamics for the present situation as well as for the case of embankment relocation were simulated over a 14-year time period. Changes in groundwater depth derived from simulated groundwater levels occurred only during flood periods. By analysing the spatial distributions of changes in statistical parameters, those areas with significant impact on the ecosystems by embankment relocation can be determined. Keywords: groundwater dynamics,groundwater recharge, flood plains, soil hydraulic properties, numerical modelling, river embankment relocation

  8. Inexact Socio-Dynamic Modeling of Groundwater Contamination Management

    Science.gov (United States)

    Vesselinov, V. V.; Zhang, X.

    2015-12-01

    Groundwater contamination may alter the behaviors of the public such as adaptation to such a contamination event. On the other hand, social behaviors may affect groundwater contamination and associated risk levels such as through changing ingestion amount of groundwater due to the contamination. Decisions should consider not only the contamination itself, but also social attitudes on such contamination events. Such decisions are inherently associated with uncertainty, such as subjective judgement from decision makers and their implicit knowledge on selection of whether to supply water or reduce the amount of supplied water under the scenario of the contamination. A socio-dynamic model based on the theories of information-gap and fuzzy sets is being developed to address the social behaviors facing the groundwater contamination and applied to a synthetic problem designed based on typical groundwater remediation sites where the effects of social behaviors on decisions are investigated and analyzed. Different uncertainties including deep uncertainty and vague/ambiguous uncertainty are effectively and integrally addressed. The results can provide scientifically-defensible decision supports for groundwater management in face of the contamination.

  9. Applying GM(1,1) to Forecasting the Dynamic Variation of Groundwater in Chuang Ye Farm

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The area of well rice in the sanjiang Plain is incresing recently.At the same time,the groundwater resource has been wasted.Thus,the resource of groundwater is shortening.More and more area appears the phenomenon of "hanger pump" and "funnel".According to these problems the paper adopts Chuang Ye farm as the research base,through handle the data of groundwater,applying GM(1,1) to forecasting the dynamic variation of groundwater.The writer hopes to provide some references about using groundwater resource of the area in the future for readers.

  10. Quantification of Shallow Groundwater Nutrient Dynamics in Septic Areas

    Science.gov (United States)

    Ying Ouyang; Jia-En Zhang

    2012-01-01

    Of all groundwater pollution sources, septic systems are the second largest source of groundwater nitrate contamination in USA. This study investigated shallow groundwater (SGW) nutrient dynamics in septic areas at the northern part of the Lower St. Johns River Basin, Florida, USA. Thirty-five SGW-monitoring wells, located at nine different urban areas served by septic...

  11. Characterization of groundwater dynamics in landslides in varved clays

    NARCIS (Netherlands)

    Van der Spek, J.E.; Bogaard, T.A.; Bakker, M.

    2013-01-01

    Groundwater dynamics may play a significant role in landslides. A detailed model is developed of the groundwater dynamics in landslides in varved clays in the Trièves area in the French Alps. The varved clays consist of a sequence of alternating silt and clay layers, covered by a colluvium layer and

  12. Characterization of groundwater dynamics in landslides in varved clays

    NARCIS (Netherlands)

    Van der Spek, J.E.; Bogaard, T.A.; Bakker, M.

    2013-01-01

    Groundwater dynamics may play a significant role in landslides. A detailed model is developed of the groundwater dynamics in landslides in varved clays in the Trieves area in the French Alps. The varved clays consist of a sequence of alternating silt and clay layers, covered by a colluvium layer and

  13. Causality analysis of groundwater dynamics based on a Vector Autoregressive model in the semi-arid basin of Gundal (South India)

    Science.gov (United States)

    Mangiarotti, S.; Sekhar, M.; Berthon, L.; Javeed, Y.; Mazzega, P.

    2012-08-01

    Causal relationships existing between observed levels of groundwater in a semi-arid sub-basin of the Kabini River basin (Karnataka state, India) are investigated in this study. A Vector Auto Regressive model is used for this purpose. Its structure is built on an upstream/downstream interaction network based on observed hydro-physical properties. Exogenous climatic forcing is used as an input based on cumulated rainfall departure. Optimal models are obtained thanks to a trial approach and are used as a proxy of the dynamics to derive causal networks. It appears to be an interesting tool for analysing the causal relationships existing inside the basin. The causal network reveals 3 main regions: the Northeastern part of the Gundal basin is closely coupled to the outlet dynamics. The Northwestern part is mainly controlled by the climatic forcing and only marginally linked to the outlet dynamic. Finally, the upper part of the basin plays as a forcing rather than a coupling with the lower part of the basin allowing for a separate analysis of this local behaviour. The analysis also reveals differential time scales at work inside the basin when comparing upstream oriented with downstream oriented causalities. In the upper part of the basin, time delays are close to 2 months in the upward direction and lower than 1 month in the downward direction. These time scales are likely to be good indicators of the hydraulic response time of the basin which is a parameter usually difficult to estimate practically. This suggests that, at the sub-basin scale, intra-annual time scales would be more relevant scales for analysing or modelling tropical basin dynamics in hard rock (granitic and gneissic) aquifers ubiquitous in south India.

  14. Regional Groundwater Processes and Flow Dynamics from Age Tracer Data

    Science.gov (United States)

    Morgenstern, Uwe; Stewart, Mike K.; Matthews, Abby

    2016-04-01

    Age tracers are now used in New Zealand on regional scales for quantifying the impact and lag time of land use and climate change on the quantity and quality of available groundwater resources within the framework of the National Policy Statement for Freshwater Management 2014. Age tracers provide measurable information on the dynamics of groundwater systems and reaction rates (e.g. denitrification), essential for conceptualising the regional groundwater - surface water system and informing the development of land use and groundwater flow and transport models. In the Horizons Region of New Zealand, around 200 wells have tracer data available, including tritium, SF6, CFCs, 2H, 18O, Ar, N2, CH4 and radon. Well depths range from shallower wells in gravel aquifers in the Horowhenua and Tararua districts, and deeper wells in the aquifers between Palmerston North and Wanganui. Most of the groundwater samples around and north of the Manawatu River west of the Tararua ranges are extremely old (>100 years), even from relatively shallow wells, indicating that these groundwaters are relatively disconnected from fresh surface recharge. The groundwater wells in the Horowhenua tap into a considerably younger groundwater reservoir with groundwater mean residence time (MRT) of 10 - 40 years. Groundwater along the eastern side of the Tararua and Ruahine ranges is significantly younger, typically groundwater recharge rates, as deduced from groundwater depth and MRT, are extremely low in the central coastal area, consistent with confined groundwater systems, or with upwelling of old groundwater close to the coast. Very low vertical recharge rates along the Manawatu River west of the Manawatu Gorge indicate upwelling groundwater conditions in this area, implying groundwater discharge into the river is more likely here than loss of river water into the groundwater system. High recharge rates observed at several wells in the Horowhenua area and in the area east of the Tararua and

  15. Dynamic evaluation of groundwater resources in Zhangye Basin

    Institute of Scientific and Technical Information of China (English)

    LiNa Mi; HongLang Xiao; ZhengLiang Yin; ShengChun Xiao

    2016-01-01

    Groundwater resource is vital to the sustainable development of socio-economics in arid and semi-arid regions of Northwest China. An estimation of the groundwater resources variation in Zhangye Basin was made during 1985–2013 based on long-term groundwater observation data and geostatistical method. The results show that from 1985 to 2013, groundwater storage exhibited tremendous dissimilarity on temporal and spatial scale for the whole Zhangye Basin, especially before and after implementation of the water diversion policy. Trend of groundwater storage varied from quick to slow decline or increase. The accumulative groundwater storage decreased nearly 47.52×108 m3, and annual average depletion rate reached 1.64×108 m3/a. Among which, the accumulative groundwater storage of the river and well water mixed irrigation district decreased by 37.48×108 m3, accounting for about 78.87% of the total groundwater depletion of the Zhangye Basin. Accumulative depletion of groundwater storage varied in respective irrigation districts. Though groundwater resources depletion rate slowed down from 2005, the overall storage in the whole basin and re-spective districts during 1985–2013 was still in a severe deficit such that, the groundwater resource was in a rather negative balance, which could threaten the local aquifer. This is the joint effect of climate change and human activities, however human activities, such as water diversion policy and groundwater exploitation, became increasingly intense. Our research results could provide a reasonable estimation for the groundwater balance in Zhangye Basin, providing a scientific basis for water resources unified planning and, this method can provide a relatively reliable way of estimation for large scale groundwater resources.

  16. 华北平原地下水动态变化%Shallow groundwater dynamics in North China Plain

    Institute of Scientific and Technical Information of China (English)

    王仕琴; 宋献方; 王勤学; 肖国强; 刘昌明; 柳鉴容

    2009-01-01

    The groundwater level of 39 observation wells including 35 unconfined wells and 4 confined wells from 2004 to 2006 in North China Plain (NCP) was monitored using automatic groundwater monitoring data loggers KADEC-MIZU Ⅱ of Japan. The automatic groundwater sensors were installed for the corporation project between China and Japan. Combined with the monitoring results from 2004 to 2006 with the major factors affecting the dynamic patterns of groundwater, such as topography and landform, depth of groundwater level, exploitation or discharge extent, rivers and lakes, the dynamic regions of NCP groundwater were gotten. According to the dynamic features of groundwater in NCP, six dynamic patterns of ground-water level were identified, including discharge pattern in the piedmont plain, lateral re-charge-runoff-discharge pattern in the piedmont plain, recharge-discharge pattern in the central channel zone, precipitation infiltration-evaporation pattern in the shallow groundwater region of the central plain, lateral recharge-evaporation pattern in the recharge-affected area along the Yellow River and infiltration-discharge-evaporation pattern in the littoral plain. Based on this, the groundwater fluctuation features of various dynamic patterns were inter-preted and the influencing factors of different dynamic patterns were compared.

  17. Can we monitor groundwater head variation from space? Coupling ERS spaceborne microwave observations to groundwater dynamics

    NARCIS (Netherlands)

    Sutanudjaja, E. H.; de Jong, S. M.; van Geer, F. C.; Bierkens, M. F. P.

    2012-01-01

    The objective of this study is to investigate whether the time series of a remote sensing based soil moisture product, referred as the European Remote Sensing Soil Water Index (ERS SWI), correlates to in-situ observations of groundwater heads; and can thus be used for groundwater head prediction. As

  18. Optimal dynamic management of groundwater pollutant sources.

    Science.gov (United States)

    Gorelick, S.M.; Remson, I.

    1982-01-01

    The linear programing-superposition method is presented for managing multiple sources of groundwater pollution over time. The method uses any linear solute transport simulation model to generate a unit source-concentration response matrix that is incorporated into a management model. -from Authors

  19. How to use an educational sand-box model to enhance the knowledge groundwater dynamics

    Directory of Open Access Journals (Sweden)

    Nina Rman

    2013-12-01

    Full Text Available Forty-five adults, which do professionally not deal with geology or groundwaters, filled a voluntary questionnaire on groundwater dynamics in Slovenia. The survey pointed out that about a fifth to a quarter of them has a weak knowledge on this topic. Groundwater occurrence, production and pollution are quite well known, excluding a widely spread opinion on subsurface water veins and underground rivers and lakes (which are true only for karstic aquifers, but groundwater protection is much less known. It has turned out that the answers often base on the experience of the interviewee rather than on an understanding of a regional groundwater dynamics. Therefore, we believe that it is worth to start a systematic education on groundwaters not only for geologists but also for general public. The VO-KA company from Ljubljana has given an incentive for development of an educational sand-box model of the Ljubljansko polje aquifer, which will be used to spread knowledge on ground- and drinking water. The model of an inhomogeneous and anisotropic intergranular aquifer has predominately a two-dimensional water flow. It enables visualisation of natural features and anthropogenic on the quantity and quality state of the stored groundwater. It can be used to explain hydrogeological phenomena on various levels of knowledge, from simple visualisation to more complicated mathematical descriptions.

  20. Measuring and modeling spatio-temporal patterns of groundwater storage dynamics to better understand nonlinear streamflow response

    Science.gov (United States)

    Rinderer, Michael; van Meerveld, Ilja; McGlynn, Brian

    2017-04-01

    Information about the spatial and temporal variability in catchment scale groundwater storage is needed to identify runoff source area dynamics and better understand variability in streamflow. However, information on groundwater levels is typically only available at a limited number of monitoring sites and interpolation or upscaling is necessary to obtain information on catchment scale groundwater dynamics. Here we used data from 51 spatially distributed groundwater monitoring sites in a Swiss pre-alpine catchment and time series clustering to define six groundwater response clusters. Each of the clusters was distinct in terms of the groundwater rise and recession but also had distinctly different topographic site characteristics, which allowed us to assign a groundwater response cluster to all non-monitored locations. Each of them was then assigned the mean groundwater response of the monitored cluster members. A site was considered active (i.e., enabling lateral subsurface flow) when the groundwater levels rose above the groundwater response threshold which was defined based on the depth of the more transmissive soil layers (typically between 10 cm and 30 cm below the soil surface). This allowed us to create maps of the active areas across the catchment at 15 min time intervals. The mean fraction of agreement between modeled groundwater activation (based on the mean cluster member time series) and measured groundwater activation (based on the measured groundwater level time series at a monitoring site) was 0.91 (25th percentile: 0.88, median: 0.92, 75th percentile: 0.95). The fraction of agreement dropped by 10 to 15 % at the beginning of events but was never lower than 0.4. Connectivity between all active areas and the stream network was determined using a graph theory approach. During rainfall events, the simulated active and connected area extended mainly laterally and longitudinally along the channel network, which is in agreement with the variable source

  1. Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations.

    Science.gov (United States)

    Castellazzi, Pascal; Martel, Richard; Galloway, Devin L; Longuevergne, Laurent; Rivera, Alfonso

    2016-11-01

    In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km(2) ). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.

  2. Assessing groundwater depletion and dynamics using GRACE and InSAR: Potential and limitations

    Science.gov (United States)

    Castellazzi, Pascal; Martel, Richard; Galloway, Devin L.; Longuevergne, Laurent; Rivera, Alfonso

    2016-01-01

    In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km2). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.

  3. Groundwater Dynamics and Quality Assessment in an Agricultural Area

    Directory of Open Access Journals (Sweden)

    Stefano L. Russo

    2011-01-01

    Full Text Available Problem statement: The analysis of the relationships among the different hydrogeological Units and the assessment of groundwater quality are fundamental to adopt suitable territorial planning measures aimed to reduce the potential groundwater pollution especially in agricultural regions. In this study, the characteristics of groundwater dynamics and the assessment of its quality in the Cuneo Plain (NW Italy were examined. Approach: In order to define the geological setting an intense bibliographic analysis has been performed by the authors. This analysis was implemented by several correlated land controls and specific surveys that have permitted to analyze to certain reliability the Quaternary evolution of the entire plain sector and the current relationships among the different geological bodies that strongly affect the groundwater dynamics. Results: The Quaternary alluvial deposits overlap a Tertiary sedimentary succession through a series of erosional unconformity surfaces. These Quaternary deposits highlight a variable thickness ranging from 80-100 m in the foothills of the mountains up to a few meters in the more distal portion of the plain. In these deposits there are several unconfined aquifers which are not hydraulically interconnected due to the deep fluvial incisions that reach the underlying tertiary substrate. The Cuneo plain is intensively populated and lot of villages and farms characterize the landscape. In the overall area it is present an intensive agricultural and livestock activity predominantly represented by crops of wheat and corn and farms of cattle and pigs. All these activities represent point and diffuse groundwater pollution sources and require a considerable amount of groundwater which is withdrawn from the Quaternary aquifers by means of thousands of water wells. The groundwater quality is strongly influenced by the content of nitrates and manganese. The nitrates are linked to pollution due to agricultural activities

  4. 基于Modeflow下的地下水动态分析三维可视化研究与应用%Study and application of Modeflow based 3-D visualization for dynamic analysis on groundwater

    Institute of Scientific and Technical Information of China (English)

    马乐平

    2011-01-01

    In accordance with the data obtained from the calculation based on the software of the Visual Modeflow, the prediction time interval is determined for the initial flow field generated from the ground-water resources in irrigation district relied on the annual water inflow and the groundwater exploitation, and then the data such as the flow field, the buried depth, the dropping depth of groundwater, the groundwater level of observation well, etc. are generated through the calculation with the modeI. Combined with GIS regional analysis method, the visualized display and analysis are made on the simulated and predicted results with the 3 -D visualization technique based on the plotting of spatial grid; from which the occurrence environment, movement regularity and dynamic feature of the regional groundwater are visually displayed, furthermore, the data from the prediction and the monitoring from the conventional observation wells are verified along with the analysis made on the changing trend of the groundwater in the irrigation district concerned, so as to provide support for the decision-making on the management of the water resources.%基于地下水模拟软件Visual Modeflow计算得到的数据,依据年度来水量、地下水开采量对灌区地下水资源生成初始流场,设置预测时段,并经模型计算后生成预测年的流场、水位埋深、水位降深以及观测孔水位等数据文件,结合GIS区域分析方法,以空间网格划分为基础,采用三维可视化技术对模拟和预测结果进行可视化显示和分析,将区域地下水赋存环境、运动规律和动态特征直观展现,并对预测数据和常观井实际监测数据进行模型和结果验证,分析灌区地下水变化趋势,为水资源决策提供支持.

  5. 基于GIS的农业面源硝酸盐地下水污染动态风险评价%GIS-based Dynamic Risk Assessment for Groundwater Nitrate Pollution from Agricultural Diffuse Sources

    Institute of Scientific and Technical Information of China (English)

    杨悦所; Wang John L

    2007-01-01

    地下水中的硝酸盐污染具有全球性,这不仅是一个环境问题,也是一个经济和人类健康问题.DRASTIC方法可以进行地下水污染的脆弱性评价,但是却没有涵盖风险的概念,也忽视了污染物随地表水流运动的动态特性.因此,所得结果可能有碍于"欧洲水管理框架指南"在地下水水质管理中的执行.笔者基于DRASTIC方法开发了一个动态风险评价方法,并将其运用于英国北爱尔兰Upper Bann流域中的一个小流域.研究区地下水硝酸盐污染风险评价结果表明,此方法将有效地帮助决策者在流域范围内开展农业面源地下水污染预防措施."非常高风险"和"高风险"区分别占研究区面积的5.1%和10.5%.此结果可帮助当地政府针对流域内这些"非常高风险"和"高风险"区的特点制订地下水质保护政策.此方法同样适用于任何面源可溶性污染物的地下水污染动态风险评价.%Groundwater nitrate pollution,as a global problem,is not only an environmental issue but also an economic and human health problem.The DRASTIC method can provide groundwater vulnerability to pollution but does not contain risk concept and ignore hazard's dynamic nature of water movement.The obtained results may baffle the implementation of the EU Water Framework Directive in groundwater quality management field.We developed a dynamic risk assessment method based on DRASTIC and applied it in a watershed of the Upper Bann Catchments,Northern Ireland,for the purpose of groundwater nitrate pollution risk assessment.The framework will support decision makers efficiently and effectively carry out groundwater diffuse pollution prevention practices at watershed scale."Very high" and "high" ranked areas for groundwater nitrate pollution occupy 5.1%and 10.5%of the study area respectively.The results are helpful for local government's policies making by focusing on "very high" and "high" groundwater pollution risk zones in a watershed

  6. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  7. Characterization of groundwater dynamics in landslides in varved clays

    Directory of Open Access Journals (Sweden)

    J. E. van der Spek

    2013-01-01

    Full Text Available Groundwater dynamics may play a significant role in landslides. A detailed model is developed of the groundwater dynamics in landslides in varved clays in the Trièves area in the French Alps. The varved clays consist of a sequence of alternating silt and clay layers, covered by a colluvium layer and cut through by fissures. The hydraulic conductivity of the clay layers is negligible compared to the silt layers. It is conceptualized that fissures form a hydraulic connection between the colluvium and the varved clays. Groundwater recharge flows through the colluvium into the fissures where water is exchanged horizontally between the fissure and the silt layers of the varved clays. Groundwater flow in the colluvium is simulated with the Boussinesq equation while flow in the silt layers of the varved clays is simulated with the Richards' equation. Longitudinal outflow from the fissure is simulated with a linear-reservoir model. Scattered data of relatively short monitoring periods is available for several landslides in the region. A good similarity between observed and simulated heads is obtained, especially when considering the lack of important physical parameters such as the fissure width and the distance between the monitoring point and the fissure. A simulation for the period 1959–2004 showed some correlation between peaks in the simulated heads and the recorded occurrence of landslides while the bottom of the varved clays remained saturated during the entire simulation period.

  8. Teaching groundwater dynamics: connecting classroom to practical and field classes

    Science.gov (United States)

    Hakoun, V.; Mazzilli, N.; Pistre, S.; Jourde, H.

    2013-01-01

    Preparing future hydrogeologists to provide inputs in societal discussions in a changing world is a challenging task that induces a need for efficient teaching frameworks. The educational literature suggests that hydrogeology courses should consistently integrate classroom instruction with practical and field classes. However, most teaching examples still separate these three class components. This paper presents an introductory course to groundwater dynamics taught at the Université des Sciences de Montpellier, France. The adopted pedagogical scheme and the proposed activities are described in details. The key points of the proposed course are: (i) an educational scheme that iteratively links groundwater dynamics topics to the three class components, (ii) a course that is structured around a main thread (well testing) called in each class component, (iii) a pedagogical approach that promotes active learning strategies, in particular using original practical classes and field experiments. The experience indicates that the proposed scheme improves the learning process, as compared to a classical, teacher-centered approach.

  9. Teaching groundwater dynamics: connecting classroom to practical and field classes

    OpenAIRE

    Hakoun, V.; N. Mazzilli; Pistre, S.; H. Jourde

    2013-01-01

    Preparing future hydrogeologists to provide inputs in societal discussions in a changing world is a challenging task that induces a need for efficient teaching frameworks. The educational literature suggests that hydrogeology courses should consistently integrate classroom instruction with practical and field classes. However, most teaching examples still separate these three class components. This paper presents an introductory course to groundwater dynamics taught at the Université des Scie...

  10. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    Science.gov (United States)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2014-05-01

    Optimal management of conjunctive use of surface water and groundwater has been attempted with different algorithms in the literature. In this study, a hydro-economic modelling approach to optimize conjunctive use of scarce surface water and groundwater resources under uncertainty is presented. A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate and future costs for given surface water reservoir and groundwater aquifer end storages. The immediate cost is found by solving a simple linear allocation sub-problem, and the future costs are assessed by interpolation in the total cost matrix from the following time step. Total costs for all stages, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two-reservoir system the future cost function would have to be represented by a set of planes, and strict convexity in both the surface water and groundwater dimension cannot be maintained

  11. Vulnerability assessment of groundwater-dependent ecosystems based on integrated groundwater flow modell construction

    Science.gov (United States)

    Tóth, Ádám; Simon, Szilvia; Galsa, Attila; Havril, Timea; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2017-04-01

    Groundwater-dependent ecosystems (GDEs) are highly influenced by the amount of groundwater, seasonal variation of precipitation and consequent water table fluctuation and also the anthropogenic activities. They can be regarded as natural surface manifestations of the flowing groundwater. The preservation of environment and biodiversity of these GDEs is an important issue worldwide, however, the water management policy and action plan could not be constructed in absense of proper hydrogeological knowledge. The concept of gravity-driven regional groundwater flow could aid the understanding of flow pattern and interpretation of environmental processes and conditions. Unless the required well data are available, the geological-hydrogeological numerical model of the study area cannot be constructed based only on borehole information. In this case, spatially continuous geophysical data can support groundwater flow model building: systematically combined geophysical methods can provide model input. Integration of lithostratigraphic, electrostratigraphic and hydrostratigraphic information could aid groundwater flow model construction: hydrostratigraphic units and their hydraulic behaviour, boundaries and geometry can be obtained. Groundwater-related natural manifestations, such as GDEs, can be explained with the help of the revealed flow pattern and field mapping of features. Integrated groundwater flow model construction for assessing the vulnerability of GDEs was presented via the case study of the geologically complex area of Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, surface water-groundwater interaction, and revealing the potential effect of anthropogenic activity and climate change. In spite of its important and protected status, fluid flow model of the area, which could support water management and natural protection policy, had not been constructed previously. The 3D

  12. Applying a System Dynamics Approach for Modeling Groundwater Dynamics to Depletion under Different Economical and Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Hamid Balali

    2015-09-01

    Full Text Available In the recent decades, due to many different factors, including climate change effects towards be warming and lower precipitation, as well as some structural policies such as more intensive harvesting of groundwater and low price of irrigation water, the level of groundwater has decreased in most plains of Iran. The objective of this study is to model groundwater dynamics to depletion under different economic policies and climate change by using a system dynamics approach. For this purpose a dynamic hydro-economic model which simultaneously simulates the farmer’s economic behavior, groundwater aquifer dynamics, studied area climatology factors and government economical policies related to groundwater, is developed using STELLA 10.0.6. The vulnerability of groundwater balance is forecasted under three scenarios of climate including the Dry, Nor and Wet and also, different scenarios of irrigation water and energy pricing policies. Results show that implementation of some economic policies on irrigation water and energy pricing can significantly affect on groundwater exploitation and its volume balance. By increasing of irrigation water price along with energy price, exploitation of groundwater will improve, in so far as in scenarios S15 and S16, studied area’s aquifer groundwater balance is positive at the end of planning horizon, even in Dry condition of precipitation. Also, results indicate that climate change can affect groundwater recharge. It can generally be expected that increases in precipitation would produce greater aquifer recharge rates.

  13. Application of Time-Series Model to Predict Groundwater Dynamic in Sanjiang Plain,Northeast China

    Institute of Scientific and Technical Information of China (English)

    LUAN Zhaoqing; LIU Guihua; YAN Baixing

    2011-01-01

    To study the groundwater dynamic in the typical region of Sanjiang Plain,long-term groundwater level observation data in the Honghe State Farm were collected and analyzed in this paper.The seasonal and long-term groundwater dynamic was explored.From 1996 to 2008,groundwater level kept declining due to intensive exploitation of groundwater resources for rice irrigation.A decline of nearly 5 m was found for almost all the monitoring wells.A time-series method was established to model the groundwater dynamic.Modeled results by time-series model showed that the groundwater level in this region would keep declining according to the current exploitation intensity.A total dropdown of 1.07 m would occur from 2009 to 2012.Time-series model can be used to model and forecast the groundwater dynamic with high accuracy.Measures including control on groundwater exploitation amount and application of water saving irrigation technique should be taken to prevent the continuing declining of groundwater in the Sanjiang Plain.

  14. A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices.

    Science.gov (United States)

    Vadiati, M; Asghari-Moghaddam, A; Nakhaei, M; Adamowski, J; Akbarzadeh, A H

    2016-12-15

    Due to inherent uncertainties in measurement and analysis, groundwater quality assessment is a difficult task. Artificial intelligence techniques, specifically fuzzy inference systems, have proven useful in evaluating groundwater quality in uncertain and complex hydrogeological systems. In the present study, a Mamdani fuzzy-logic-based decision-making approach was developed to assess groundwater quality based on relevant indices. In an effort to develop a set of new hybrid fuzzy indices for groundwater quality assessment, a Mamdani fuzzy inference model was developed with widely-accepted groundwater quality indices: the Groundwater Quality Index (GQI), the Water Quality Index (WQI), and the Ground Water Quality Index (GWQI). In an effort to present generalized hybrid fuzzy indices a significant effort was made to employ well-known groundwater quality index acceptability ranges as fuzzy model output ranges rather than employing expert knowledge in the fuzzification of output parameters. The proposed approach was evaluated for its ability to assess the drinking water quality of 49 samples collected seasonally from groundwater resources in Iran's Sarab Plain during 2013-2014. Input membership functions were defined as "desirable", "acceptable" and "unacceptable" based on expert knowledge and the standard and permissible limits prescribed by the World Health Organization. Output data were categorized into multiple categories based on the GQI (5 categories), WQI (5 categories), and GWQI (3 categories). Given the potential of fuzzy models to minimize uncertainties, hybrid fuzzy-based indices produce significantly more accurate assessments of groundwater quality than traditional indices. The developed models' accuracy was assessed and a comparison of the performance indices demonstrated the Fuzzy Groundwater Quality Index model to be more accurate than both the Fuzzy Water Quality Index and Fuzzy Ground Water Quality Index models. This suggests that the new hybrid fuzzy

  15. Groundwater management based on monitoring of land subsidence and groundwater levels in the Kanto Groundwater Basin, Central Japan

    Science.gov (United States)

    Furuno, K.; Kagawa, A.; Kazaoka, O.; Kusuda, T.; Nirei, H.

    2015-11-01

    Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.

  16. 基于模糊神经算法的区域地下水盐分动态预测%Regional groundwater salinity dynamics forecasting based on neuro-fuzzy algorithm

    Institute of Scientific and Technical Information of China (English)

    余世鹏; 杨劲松; 刘广明; 姚荣江; 王相平

    2014-01-01

    为探讨前馈型人工神经网络BP-ANN(back propagation artificial neural network)和模糊神经NF (neuro-fuzzy)2种神经网络算法在区域地下水盐分动态预测中的应用过程与效果,首先通过经典统计分析确定区域地下水盐分动态的主要驱动因子以及可用的模型输入因子组合,采用“试错法”确定神经网络模型的最优结构,进而开展地下水盐分中长期动态的有效模拟预测。结果表明,在长江河口寅阳和大兴地区以降水动态为单输入的NF(5-gbellmf-160)和以降水与内河水盐分动态为双输入的NF(4-gaussmf-100)为最优预测模型。研究表明神经网络模型对地下水盐分动态的预测精度优于常规线性模型,其中,NF、BP-ANN、线性模型在寅阳测点的预测相关系数分别为0.565、0.445、0.261,在大兴测点的预测相关系数分别为0.886、0.784、0.543。与BP-ANN、线性模型相比,基于模糊神经算法的 NF 模型具有更好的误差纠错和仿真能力,在寅阳和大兴测点的预测误差分别降低了30%以上和50%以上。相关研究结果在区域水盐动态科学预警研究领域有较好地应用前景。%The study conducted a detailed analysis of the modeling processes and performances of 2 types of different neural network models including back propagation artificial neural network (BP-ANN) and neuro-fuzzy (NF), in the groundwater salinity dynamics forecasting. Firstly, the classical statistical analysis was used to determine the dominant driving factors of groundwater salinity dynamics and to reveal the available model inputs combinations. Then, the optimal neural network model structures were determined by the trial-and-error method and used to effectively forecast the mid-long term groundwater salinity dynamics. By our research, the idea of necessity in selecting the optimal NF model parameters of transfer functions, rule numbers and iteration steps was innovatively

  17. Topical Collection: Groundwater-based agriculture in the Mediterranean

    Science.gov (United States)

    Kuper, Marcel; Leduc, Christian; Massuel, Sylvain; Bouarfa, Sami

    2017-09-01

    This essay introduces a collection of articles that explore the future of groundwater-based agriculture in the Mediterranean from an interdisciplinary perspective, in a context of declining water tables due to intensive groundwater use. The imminent crisis that many groundwater economies face due to very rapid and intense global change may have severe irreversible social, economic and environmental consequences, but could also be the opportunity to make a clear break with current agricultural development models and move towards more sustainable agricultural practices. The Mediterranean region is, therefore, an interesting case for the future of intensive groundwater use, as innovative ideas and practices may emerge and inspire similar groundwater-based agricultural systems around the world.

  18. Shallow bedrock limits groundwater seepage-based headwater climate refugia

    Science.gov (United States)

    Briggs, Martin; Lane, John; Snyder, Craig D.; White, Eric A.; Johnson, Zachary; Nelms, David L.; Hitt, Nathaniel P.

    2017-01-01

    Groundwater/surface-water exchanges in streams are inexorably linked to adjacent aquifer dynamics. As surface-water temperatures continue to increase with climate warming, refugia created by groundwater connectivity is expected to enable cold water fish species to survive. The shallow alluvial aquifers that source groundwater seepage to headwater streams, however, may also be sensitive to seasonal and long-term air temperature dynamics. Depth to bedrock can directly influence shallow aquifer flow and thermal sensitivity, but is typically ill-defined along the stream corridor in steep mountain catchments. We employ rapid, cost-effective passive seismic measurements to evaluate the variable thickness of the shallow colluvial and alluvial aquifer sediments along a headwater stream supporting cold water-dependent brook trout (Salvelinus fontinalis) in Shenandoah National Park, VA, USA. Using a mean depth to bedrock of 2.6 m, numerical models predicted strong sensitivity of shallow aquifer temperature to the downward propagation of surface heat. The annual temperature dynamics (annual signal amplitude attenuation and phase shift) of potential seepage sourced from the shallow modeled aquifer were compared to several years of paired observed stream and air temperature records. Annual stream water temperature patterns were found to lag local air temperature by ∼8–19 d along the stream corridor, indicating that thermal exchange between the stream and shallow groundwater is spatially variable. Locations with greater annual signal phase lag were also associated with locally increased amplitude attenuation, further suggestion of year-round buffering of channel water temperature by groundwater seepage. Numerical models of shallow groundwater temperature that incorporate regional expected climate warming trends indicate that the summer cooling capacity of this groundwater seepage will be reduced over time, and lower-elevation stream sections may no longer serve as larger

  19. Data base dictionary for the Oak Ridge Reservation Hydrology and Geology Study Groundwater Data Base

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, B.K.

    1993-04-01

    The Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) Groundwater Data Base has been compiled to consolidate groundwater data from the three US Department of Energy facilities located on the Oak Ridge Reservation: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant. Each of these facilities maintains its own groundwater and well construction data bases. Data were extracted from the existing data bases, converted to a consistent format, and integrated into the ORRHAGS Groundwater Data Base structures. This data base dictionary describes the data contained in the ORRHAGS Groundwater Data Base and contains information on data base structure, conventions, contents, and use.

  20. Estimating groundwater dynamics at a Colorado River floodplain site using historical hydrological data and climate information

    Science.gov (United States)

    Chen, Jinsong; Hubbard, Susan S.; Williams, Kenneth H.; Ficklin, Darren L.

    2016-03-01

    Long-term prediction of groundwater dynamics is important for assessing water resources and their impacts on biogeochemical cycling. However, estimating future groundwater dynamics is challenging due to the wide range of spatiotemporal scales in hydrological processes and uncertainty in future climate conditions. In this study, we develop a Bayesian model to combine small-scale historical hydrological data with large-scale climate information to estimate groundwater dynamics at a floodplain site in Rifle, Colorado. Although we have only a few years of groundwater elevation measurements, we have 47 years of streamflow data from a gaging station approximately 43 km upstream and long-term climate prediction on the Upper Colorado River Basin. To estimate future daily groundwater dynamics, we first develop a time series model to downscale the monthly streamflow derived from climate information to daily streamflow, and then transform the daily streamflow to groundwater dynamics at the downstream floodplain site. We use Monte Carlo methods to estimate future groundwater dynamics at the site through sampling from the joint posterior probability distribution. The results suggest that although future groundwater levels are expected to be similar to the current levels, the timing of the high groundwater levels is predicted to occur about 1 month earlier. The developed framework is extendable to other sites to estimate future groundwater dynamics given disparate data sets and climate projections. Additionally, the obtained estimates are being used as input to a site-specific watershed reactive transport models to predict how climate-induced changes will influence future biogeochemical cycling relevant to a variety of ecosystem services.

  1. Groundwater flow dynamics in the complex aquifer system of Gidabo River Basin (Ethiopian Rift): a multi-proxy approach

    Science.gov (United States)

    Mechal, Abraham; Birk, Steffen; Dietzel, Martin; Leis, Albrecht; Winkler, Gerfried; Mogessie, Aberra; Kebede, Seifu

    2017-03-01

    Hydrochemical and isotope data in conjunction with hydraulic head and spring discharge observations were used to characterize the regional groundwater flow dynamics and the role of the tectonic setting in the Gidabo River Basin, Ethiopian Rift. Both groundwater levels and hydrochemical and isotopic data indicate groundwater flow from the major recharge area in the highland and escarpment into deep rift floor aquifers, suggesting a deep regional flow system can be distinguished from the shallow local aquifers. The δ18O and δ2H values of deep thermal (≥30 °C) groundwater are depleted relative to the shallow (floor. Based on the δ18O values, the thermal groundwater is found to be recharged in the highland around 2,600 m a.s.l. and on average mixed with a proportion of 30 % shallow groundwater. While most groundwater samples display diluted solutions, δ13C data of dissolved inorganic carbon reveal that locally the thermal groundwater near fault zones is loaded with mantle CO2, which enhances silicate weathering and leads to anomalously high total dissolved solids (2,000-2,320 mg/l) and fluoride concentrations (6-15 mg/l) exceeding the recommended guideline value. The faults are generally found to act as complex conduit leaky barrier systems favoring vertical mixing processes. Normal faults dipping to the west appear to facilitate movement of groundwater into deeper aquifers and towards the rift floor, whereas those dipping to the east tend to act as leaky barriers perpendicular to the fault but enable preferential flow parallel to the fault plane.

  2. Biogeochemical dynamics of pollutants in Insitu groundwater remediation systems

    Science.gov (United States)

    Kumar, N.; Millot, R.; Rose, J.; Négrel, P.; Battaglia-Brunnet, F.; Diels, L.

    2010-12-01

    Insitu (bio) remediation of groundwater contaminants has been area of potential research interest in last few decades as the nature of contaminant encountered has also changed drastically. This gives tough challenge to researchers in finding a common solution for all contaminants together in one plume. Redox processes play significant role in pollutant dynamics and mobility in such systems. Arsenic particularly in reduced environments can get transformed into its reduced form (As3+), which is apparently more mobile and highly toxic. Also parallel sulfate reduction can lead to sulfide production and formation of thioarsenic species. On the other hand heavy metals (Zn, Fe, and Cd) in similar conditions will favour more stable metal sulfide precipitation. In the present work, we tested Zero Valent Iron (ZVI) in handling such issues and found promising results. Although it has been well known for contaminants like arsenic and chlorinated compounds but not much explored for heavy metals. Its high available surface area supports precipitation and co -precipitation of contaminants and its highly oxidizing nature and water born hydrogen production helps in stimulation of microbial activities in sediment and groundwater. These sulfate and Iron reducing bacteria can further fix heavy metals as stable metal sulfides by using hydrogen as potential electron donor. In the present study flow through columns (biotic and control) were set up in laboratory to understand the behaviour of contaminants in subsurface environments, also the impact of microbiology on performance of ZVI was studied. These glass columns (30 x 4cm) with intermediate sampling points were monitored over constant temperature (20°C) and continuous groundwater (up)flow at ~1ml/hr throughout the experiment. Simulated groundwater was prepared in laboratory containing sulfate, metals (Zn,Cd) and arsenic (AsV). While chemical and microbial parameters were followed regularly over time, solid phase has been

  3. Potential negative effects of groundwater dynamics on dry season convection in the Amazon River basin

    Science.gov (United States)

    Lin, Yen-Heng; Lo, Min-Hui; Chou, Chia

    2016-02-01

    Adding a groundwater component to land surface models affects modeled precipitation. The additional water supply from the subsurface contributes to increased water vapor in the atmosphere, resulting in modifications of atmospheric convection. This study focuses on how groundwater dynamics affect atmospheric convection in the Amazon River basin (ARB) during July, typically the driest month. Coupled groundwater-land-atmosphere model simulations show that groundwater storage increases evapotranspiration rates (latent heat fluxes) and lowers surface temperatures, which increases the surface pressure gradient and thus, anomalous surface divergence. Therefore, the convection over the Southern Hemispheric ARB during the dry season becomes weaker when groundwater dynamics are included in the model. Additionally, the changes in atmospheric vertical water vapor advection are associated with decreases in precipitation that results from downwelling transport anomalies. The results of this study highlight the importance of subsurface hydrological processes in the Amazon climate system, with implications for precipitation changes during the dry season, observed in most current climate models.

  4. Temporal and spatial dynamical simulation of groundwater characteristics in Minqin Oasis

    Institute of Scientific and Technical Information of China (English)

    XIAO DuNing; LI XiaoYu; SONG DongMei; YANG GuoJing

    2007-01-01

    Application scope of geostatistics has been gradually extended from original geologic field to soil science and ecological field, etc. And its successful application results have been widely demonstrated. But little information is reported as to the direct use of geostatistical method to work out the distribution map of groundwater characteristics. In this paper the semivariogram of geostatistics, in combination with GIS, was used to quantitatively study the spatial variation characteristics of groundwater table depth and mineralization degree and their relation to the landuse changes. F test of the used spherical model reached a very significant level, and the theoretical model can well reflect the spatial structural characteristics of groundwater table depth and mineralization degree and achieve an ideal result. This shows that the application of the method in the dynamical simulation of groundwater is feasible. And this paper also provides useful reference for the application of geostatistics in the study of the dynamical variations of groundwater resources in the oasis.

  5. Potential Negative Effects of Groundwater Dynamics on Dry Season Convection in the Amazon River Basin

    Science.gov (United States)

    Lin, Y. H.; Lo, M. H.; Chou, C.

    2014-12-01

    Adding a groundwater component to land surface models affects modeled precipitation because the additional water supply from the subsurface contributes to increased water vapor in the atmosphere, resulting in modifications of atmospheric convection. This study focused on how groundwater dynamics affect atmospheric convection in the Amazon River Basin (ARB) during July, typically the driest month. Coupled groundwater-land-atmosphere model simulations show that groundwater storage increases evapotranspiration rates (latent heat fluxes) and lowers surface temperatures, which increases the surface pressure gradient and thus, anomalous surface divergence. Therefore, the convection over the Southern Hemispheric ARB during the dry season becomes weaker when groundwater dynamics are included in the model. In addition, the changes in atmospheric vertical water vapor advection are associated with decreases in precipitation resulting from downward transport anomalies. The results of this study highlight the importance of subsurface hydrological processes in the Amazon climate system, which have implications for precipitation changes during the dry season observed in most current climate models.

  6. Groundwater Quality Assessment Based on Geographical Information System and Groundwater Quality Index

    Directory of Open Access Journals (Sweden)

    Zahra Derakhshan

    2015-06-01

    Full Text Available Iran is located in an arid and semi-arid part of the world. Accordingly, the management of the water resources in the country is a priority. In this regard, determining the quality and pollution of surface water and groundwater is very important, especially in areas where groundwater resources are used for drinking. Groundwater quality index (GQI checks the components of the available water with various quality levels. To assess the quality of drinking groundwater of Yazd-Ardakan plain according to GQI in geographical information system (GIS environment, the electrical conductivity, sodium, calcium, magnesium, chlorine, pH, sodium adsorption ratio, bicarbonate, sulfate, potassium, water hardness, and all substances dissolved in the waters of 80 wells were determined. The samples were obtained from Yazd Regional Water Organization from 2005 to 2014. Using this data, the map components were plotted by Kriging geostatistical method. Then, the map of GQI was prepared after normalizing each map component, switching to a rating map, and extracting the weight of each component from the rating map. Based on the GQI index map, the index point which was 87 in 2005 has increased to 81 in 2014. These maps show a decline in groundwater quality from west to the east region. This decline in groundwater quality is due to the existence of Neogene Organizations in the east and geomorphologic unit of the bare epandage pediment in the west. The map removal and single-parameter sensitivity analysis showed that GQI index in Yazd-Ardakan plain is more sensitive to the components of electrical conductivity (EC, total dissolved solids (TDS, and total hardness (TH. Therefore, these components should be monitored more carefully and repeatedly.

  7. The effect of hydrogeological conditions on variability and dynamic of groundwater recharge in a carbonate aquifer at local scale

    Science.gov (United States)

    Dvory, Noam Zach; Livshitz, Yakov; Kuznetsov, Michael; Adar, Eilon; Yakirevich, Alexander

    2016-04-01

    Groundwater recharge in fractured karstic aquifers is particularly difficult to quantify due to the rock mass's heterogeneity and complexity that include preferential flow paths along karst conduits. The present study's major goals were to assess how the changes in lithology, as well as the fractured karst systems, influence the flow mechanism in the unsaturated zone, and to define the spatial variation of the groundwater recharge at local scale. The study area is located within the fractured carbonate Western Mountain aquifer (Yarkon-Taninim), west of the city of Jerusalem at the Ein Karem (EK) production well field. Field monitoring included groundwater level observations in nine locations in the study area during years 1990-2014. The measured groundwater level series were analyzed with the aid of one-dimensional, dual permeability numerical model of water flow in variably saturated fractured-porous media, which was calibrated and used to estimate groundwater recharge at nine locations. The recharge values exhibit significant spatial and temporal variation with mean and standard deviation values of 216 and 113 mm/year, respectively. Based on simulations, relationships were established between precipitation and groundwater recharge in each of the nine studied sites and compared with similar ones obtained in earlier regional studies. Simulations show that fast and slow flow paths conditions also influence annual cumulative groundwater recharge dynamic. In areas where fast flow paths exist, most of the groundwater recharge occurs during the rainy season (60-80% from the total recharge for the tested years), while in locations with slow flow path conditions the recharge rate stays relatively constant with a close to linear pattern and continues during summer.

  8. Groundwater discharge to wetlands driven by storm and flood events: Quantification using continuous Radon-222 and electrical conductivity measurements and dynamic mass-balance modelling

    Science.gov (United States)

    Gilfedder, B. S.; Frei, S.; Hofmann, H.; Cartwright, I.

    2015-09-01

    The dynamic response of groundwater discharge to external influences such as rainfall is an often neglected part of water and solute balances in wetlands. Here we develop a new field platform for long-term continuous 222Rn and electrical conductivity (EC) measurements at Sale Wetland, Australia to study the response of groundwater discharge to storm and flood events. The field measurements, combined with dynamic mass-balance modelling, demonstrate that the groundwater flux can increase from 3 to ∼20 mm d-1 following storms and up to 5 mm d-1 on the receding limb of floods. The groundwater pulses are likely produced by activation of local groundwater flow paths by water ponding on the surrounding flood plains. While 222Rn is a sensitive tracer for quantifying transient groundwater discharge, the mass-balance used to estimate fluxes is sensitive to parameterisation of gas exchange (k) with the atmosphere. Comparison of six equations for calculating k showed that, based on parameterisation of k alone, the groundwater flux estimate could vary by 58%. This work shows that neglecting transient processes will lead to errors in water and solute flux estimates based on infrequent point measurements. This could be particularly important for surface waters connected to contaminated or saline groundwater systems.

  9. Groundwater Modelling For Recharge Estimation Using Satellite Based Evapotranspiration

    Science.gov (United States)

    Soheili, Mahmoud; (Tom) Rientjes, T. H. M.; (Christiaan) van der Tol, C.

    2017-04-01

    Groundwater movement is influenced by several factors and processes in the hydrological cycle, from which, recharge is of high relevance. Since the amount of aquifer extractable water directly relates to the recharge amount, estimation of recharge is a perquisite of groundwater resources management. Recharge is highly affected by water loss mechanisms the major of which is actual evapotranspiration (ETa). It is, therefore, essential to have detailed assessment of ETa impact on groundwater recharge. The objective of this study was to evaluate how recharge was affected when satellite-based evapotranspiration was used instead of in-situ based ETa in the Salland area, the Netherlands. The Methodology for Interactive Planning for Water Management (MIPWA) model setup which includes a groundwater model for the northern part of the Netherlands was used for recharge estimation. The Surface Energy Balance Algorithm for Land (SEBAL) based actual evapotranspiration maps from Waterschap Groot Salland were also used. Comparison of SEBAL based ETa estimates with in-situ abased estimates in the Netherlands showed that these SEBAL estimates were not reliable. As such results could not serve for calibrating root zone parameters in the CAPSIM model. The annual cumulative ETa map produced by the model showed that the maximum amount of evapotranspiration occurs in mixed forest areas in the northeast and a portion of central parts. Estimates ranged from 579 mm to a minimum of 0 mm in the highest elevated areas with woody vegetation in the southeast of the region. Variations in mean seasonal hydraulic head and groundwater level for each layer showed that the hydraulic gradient follows elevation in the Salland area from southeast (maximum) to northwest (minimum) of the region which depicts the groundwater flow direction. The mean seasonal water balance in CAPSIM part was evaluated to represent recharge estimation in the first layer. The highest recharge estimated flux was for autumn

  10. Effect of Different Groundwater Levels on Seismic Dynamic Response and Failure Mode of Sandy Slope.

    Directory of Open Access Journals (Sweden)

    Shuai Huang

    Full Text Available Heavy seismic damage tends to occur in slopes when groundwater is present. The main objectives of this paper are to determine the dynamic response and failure mode of sandy slope subjected simultaneously to seismic forces and variable groundwater conditions. This paper applies the finite element method, which is a fast and efficient design tool in modern engineering analysis, to evaluate dynamic response of the slope subjected simultaneously to seismic forces and variable groundwater conditions. Shaking table test is conducted to analyze the failure mode and verify the accuracy of the finite element method results. The research results show that dynamic response values of the slope have different variation rules under near and far field earthquakes. And the damage location and pattern of the slope are different in varying groundwater conditions. The destruction starts at the top of the slope when the slope is in no groundwater, which shows that the slope appears obvious whipping effect under the earthquake. The destruction starts at the toe of the slope when the slope is in the high groundwater levels. Meanwhile, the top of the slope shows obvious seismic subsidence phenomenon after earthquake. Furthermore, the existence of the groundwater has a certain effect of damping.

  11. Effect of Different Groundwater Levels on Seismic Dynamic Response and Failure Mode of Sandy Slope

    Science.gov (United States)

    Huang, Shuai; Lv, Yuejun; Peng, Yanju; Zhang, Lifang; Xiu, Liwei

    2015-01-01

    Heavy seismic damage tends to occur in slopes when groundwater is present. The main objectives of this paper are to determine the dynamic response and failure mode of sandy slope subjected simultaneously to seismic forces and variable groundwater conditions. This paper applies the finite element method, which is a fast and efficient design tool in modern engineering analysis, to evaluate dynamic response of the slope subjected simultaneously to seismic forces and variable groundwater conditions. Shaking table test is conducted to analyze the failure mode and verify the accuracy of the finite element method results. The research results show that dynamic response values of the slope have different variation rules under near and far field earthquakes. And the damage location and pattern of the slope are different in varying groundwater conditions. The destruction starts at the top of the slope when the slope is in no groundwater, which shows that the slope appears obvious whipping effect under the earthquake. The destruction starts at the toe of the slope when the slope is in the high groundwater levels. Meanwhile, the top of the slope shows obvious seismic subsidence phenomenon after earthquake. Furthermore, the existence of the groundwater has a certain effect of damping. PMID:26560103

  12. Effect of Different Groundwater Levels on Seismic Dynamic Response and Failure Mode of Sandy Slope.

    Science.gov (United States)

    Huang, Shuai; Lv, Yuejun; Peng, Yanju; Zhang, Lifang; Xiu, Liwei

    2015-01-01

    Heavy seismic damage tends to occur in slopes when groundwater is present. The main objectives of this paper are to determine the dynamic response and failure mode of sandy slope subjected simultaneously to seismic forces and variable groundwater conditions. This paper applies the finite element method, which is a fast and efficient design tool in modern engineering analysis, to evaluate dynamic response of the slope subjected simultaneously to seismic forces and variable groundwater conditions. Shaking table test is conducted to analyze the failure mode and verify the accuracy of the finite element method results. The research results show that dynamic response values of the slope have different variation rules under near and far field earthquakes. And the damage location and pattern of the slope are different in varying groundwater conditions. The destruction starts at the top of the slope when the slope is in no groundwater, which shows that the slope appears obvious whipping effect under the earthquake. The destruction starts at the toe of the slope when the slope is in the high groundwater levels. Meanwhile, the top of the slope shows obvious seismic subsidence phenomenon after earthquake. Furthermore, the existence of the groundwater has a certain effect of damping.

  13. Study on the Estimation of Groundwater Withdrawals Based on Groundwater Flow Modeling and Its Application in the North China Plain

    Institute of Scientific and Technical Information of China (English)

    Jingli Shao; Yali Cui; Qichen Hao; Zhong Han; Tangpei Cheng

    2014-01-01

    The amount of water withdrawn by wells is one of the quantitative variables that can be applied to estimate groundwater resources and further evaluate the human influence on ground-water systems. The accuracy for the calculation of the amount of water withdrawal significantly in-fluences the regional groundwater resource evaluation and management. However, the decentralized groundwater pumping, inefficient management, measurement errors and uncertainties have resulted in considerable errors in the groundwater withdrawal estimation. In this study, to improve the esti-mation of the groundwater withdrawal, an innovative approach was proposed using an inversion method based on a regional groundwater flow numerical model, and this method was then applied in the North China Plain. The principle of the method was matching the simulated water levels with the observation ones by adjusting the amount of groundwater withdrawal. In addition, uncertainty analysis of hydraulic conductivity and specific yield for the estimation of the groundwater with-drawal was conducted. By using the proposed inversion method, the estimated annual average groundwater withdrawal was approximately 24.92×109 m3 in the North China Plain from 2002 to 2008. The inversion method also significantly improved the simulation results for both hydrograph and the flow field. Results of the uncertainty analysis showed that the hydraulic conductivity was more sensitive to the inversion results than the specific yield.

  14. Groundwater recharge dynamics in unsaturated fractured chalk: a case study

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicolaetta M.

    2016-04-01

    The heterogeneity of the unsaturated zone controls its hydraulic response to rainfall and the extent to which pollutants are delayed or attenuated before reaching groundwater. It plays therefore a very important role in the recharge of aquifers and the transfer of pollutants because of the presence of temporary storage zones and preferential flows. A better knowledge of the physical processes in the unsaturated zone would allow an improved assessment of the natural recharge in a heterogeneous aquifer and of its vulnerability to surface-applied pollution. The case study regards the role of the thick unsaturated zone of the Cretaceous chalk aquifer in Picardy (North of France) that controls the hydraulic response to rainfall. In the North Paris Basin, much of the recharge must pass through a regional chalk bed that is composed of a porous matrix with embedded fractures. Different types of conceptual models have been formulated to explain infiltration and recharge processes in the unsaturated fractured rock. The present study analyses the episodic recharge in fractured Chalk aquifer using the kinematic diffusion theory to predict water table fluctuation in response to rainfall. From an analysis of the data, there is the evidence of 1) a seasonal behavior characterized by a constant increase in the water level during the winter/spring period and a recession period, 2) a series of episodic behaviors during the summer/autumn. Kinematic diffusion models are useful for predict preferential fluxes and dynamic conditions. The presented approach conceptualizes the unsaturated flow as a combination of 1) diffusive flow refers to the idealized portion of the pore space of the medium within the flow rate is driven essentially by local gradient of potential; 2) preferential flow by which water moves across macroscopic distances through conduits of macropore length.

  15. Temporal and spatial dynamical simulation of groundwater characteristics in Minqin Oasis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Application scope of geostatistics has been gradually extended from original geologic field to soil science and ecological field, etc. and its successful application results have been widely demonstrated. But little information is reported as to the direct use of geostatistical method to work out the distribu- tion map of groundwater characteristics. In this paper the semivariogram of geostatistics, in combina- tion with GIS, was used to quantitatively study the spatial variation characteristics of groundwater table depth and mineralization degree and their relation to the landuse changes. F test of the used spherical model reached a very significant level, and the theoretical model can well reflect the spatial structural characteristics of groundwater table depth and mineralization degree and achieve an ideal result. This shows that the application of the method in the dynamical simulation of groundwater is feasible. And this paper also provides useful reference for the application of geostatistics in the study of the dy- namical variations of groundwater resources in the oasis.

  16. Groundwater dynamics in the complex aquifer system of Gidabo River Basin, southern Main Ethiopian Rift: Evidences from hydrochemistry and isotope hydrology

    Science.gov (United States)

    Degu, Abraham; Birk, Steffen; Dietzel, Martin; Winkler, Gerfried; Moggessie, Aberra

    2014-05-01

    Located in the tectonically active Main Ethiopian Rift system, the Gidabo River Basin in Ethiopia has a complex hydrogeological setting. The strong physiographic variation from highland to rift floor, variability in volcanic structures and disruption of lithologies by cross-cutting faults contribute for their complex nature of hydrogeology in the area. Until now, the groundwater dynamics and the impact of the tectonic setting on groundwater flow in this region are not well understood, though the local population heavily depends on groundwater as the major water supply. A combined approach based on hydrochemical and isotopic data was applied to investigate the regional flow dynamics of the groundwater and the impact of tectonic setting. Groundwater evolves from slightly mineralized Ca-Mg-HCO3 on the highland to highly mineralized Na-HCO3 dominating type in the deep rift floor aquifers. δ18O and δD composition of groundwater show a general progressive enrichment from the highland to the rift floor, except in thermal and deep rift floor aquifers. Relatively the thermal and deep rift floor aquifers are depleted and show similar signature to the groundwaters of highland, indicating groundwater inflow from the highland. Correspondingly, rising HCO3 and increasingly enriched signatures of δ 13C points to hydrochemical evolution of DIC and diffuse influx of mantle CO2 into the groundwater system. Thermal springs gushing out along some of the fault zones, specifically in the vicinity of Dilla town, display clear influence of mantle CO2 and are an indication of the role of the faults acting as a conduit for deep circulating thermal water to the surface. By considering the known geological structures of the rift, hydrochemical and isotopic data we propose a conceptual groundwater flow model by characterizing flow paths to the main rift axis. The connection between groundwater flow and the impact of faults make this model applicable to other active rift systems with similar

  17. A new method to dynamically simulate groundwater table in land surface model VIC

    Institute of Scientific and Technical Information of China (English)

    YANG Hongwei; XIE Zhenghui

    2003-01-01

    Soil moisture plays an important role in water and energy balance in land-atmospheric interaction, but is impacted directly by the groundwater table. Dynamic variation of the groundwater table can be described mathematically by a moving boundary problem. In this paper, the moving boundary problem is reduced to a fixed boundary problem through a coordinate transformation. A new model of groundwater table simulation is developed using the mass-lumped finite element method and is coupled with the land surface model of Variable Infiltration Capacity (VIC). The simulation results show that the new model not only can simulate the groundwater table dynamically, but also can evade the choice of water table depth scale in computation with a low computation cost.

  18. Dynamics of trace elements in shallow groundwater of an agricultural land in the northeast of Mexico

    Science.gov (United States)

    Mora, Abrahan; Mahlknecht, Jürgen; Hernández-Antonio, Arturo

    2017-04-01

    The citrus zone located in northeastern Mexico covers an area of 8000 km2 and produces 10% of the Mexican citrus production. The aquifer system of this zone constitutes the major source of water for drinking and irrigation purposes for local population and provides base flows to surface water supplied to the city of Monterrey ( 4.5 million inhabitants). Although the study area is near the recharge zones, several works have reported nitrate pollution in shallow groundwater of this agricultural area, mainly due to animal manure and human waste produced by infiltration of urban sewers and septic tanks. Thus, the goals of this work were to assess the dynamics of selected trace elements in this aquifer system and determine if the trace element content in groundwater poses a threat to the population living in the area. Thirty-nine shallow water wells were sampled in 2010. These water samples were filtered through 0,45 µm pore size membranes and preserved with nitric acid for storage. The concentrations of Cd, Cs, Cu, Mo, Pb, Rb, Si, Ti, U, Y, and Zn were measured by ICP-MS. Also, sulfate concentrations were measured by ion chromatography in unacidified samples. Principal Component Analysis (PCA) performed in the data set show five principal components (PC). PC1 includes elements derived from silicate weathering, such as Si and Ti. The relationship found between Mo and U with sulfates in PC2 indicates that both elements show a high mobility in groundwater. Indeed, the concentrations of sulfate, Mo and U are increased as groundwater moves eastward. PC3 includes the alkali trace elements (Rb and Cs), indicating that both elements could be derived from the same source of origin. PC4 represents the heavy trace elements (Cd and Pb) whereas PC5 includes divalent trace elements such as Zn and Cu. None of the water samples showed trace element concentrations higher than the guideline values for drinking water proposed by the World Health Organization, which indicates that the

  19. [Groundwater].

    Science.gov (United States)

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  20. Dynamics of Small-Scale Perched Aquifers in the Semi-Arid South-Western Region of Madagascar and Implications for the Sustainable Groundwater Exploitation

    Science.gov (United States)

    Englert, A.; Brinkmann, K.; Kobbe, S.; Buerkert, A.

    2016-12-01

    The south-western region of Madagascar is characterized by limited water resources throughout the year and recurrent droughts, which affect agricultural production and increase the risk of food insecurity. To deliver reliable estimates on the availability and dynamics of water resources, we studied the hydrogeology of several villages in the Mahafaly region. Detailed investigations were conducted for a selected village on a calcareous plateau to predict the local water resources under changing boundary conditions including enhanced water abstraction and changes in groundwater recharge. In 2014 a participatory monitoring network was established, which allowed groundwater level measurements in three wells twice a day. Additional hydrogeological investigations included pumping tests, automatic monitoring of meteorological data, daily groundwater abstraction appraisal and mapping of the spatial extent of the perched aquifer using satellite data. Analysis of the measured data unraveled the aquifer dynamic to be dominated by a groundwater level driven leakage process. The latter is superimposed by groundwater recharge in the rainy season and a daily groundwater abstraction. Based on these findings we developed a model for the aquifer, which allows to predict the duration of groundwater availability as a function of annual precipitation and daily water abstraction. The latter will be implemented in an agent-based land-use model, were groundwater abstraction is a function of population and livestock. The main objective is to model land use scenarios and global trends (climate, market trends and population development) through explicit imbedding of artificial and natural groundwater dynamics. The latter is expected to enable the evaluation of additional water abstraction for agricultural purposes without endangering water supply of the local population and their livestock.

  1. Microbial Community Dynamics of Lactate Enriched Hanford Groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, Jennifer J.; Drake, Meghan M.; Carroll, Susan L.; Yang, Zamin K.; Schadt, Christopher W.; Brown, Stephen D.; Podar, Mircea; Hazen, Terry C.; Arkin, Adam P.; Phelps, Tommy J.; Palumbo, Anthony V.; Faybishenko, Boris A.; Elias, Dwayne A.

    2010-05-01

    The Department of Energy site at Hanford, WA, has been historically impacted by U and Cr from the nuclear weapons industry. In an attempt to stimulate microbial remediation of these metals, in-situ lactate enrichment experiments are ongoing. In order to bridge the gap from the laboratory to the field, we inoculated triplicate anaerobic, continuous-flow glass reactors with groundwater collected from well Hanford 100-H in order to obtain a stable, enriched community while selecting for metal-reducing bacteria. Each reactor was fed from a single carboy containing defined media with 30 mM lactate at a rate of 0.223 ml/min under continuous nitrogen flow at 9 ml/min. Cell counts, organic acids, gDNA (for qPCR and pyrosequencing) and gases were sampled during the experiment. Cell counts remained low (less than 1x107 cells/ml) during the first two weeks of the experiment, but by day 20, had reached a density greater than 1x108 cells/ml. Metabolite analysis showed a decrease in the lactate concentrations over time. Pyruvate concentrations ranged from 20-40 uM the first week of the experiment then was undetectable after day 10. Likewise, formate appeared in the reactors during the first week with concentrations of 1.48-1.65 mM at day 7 then the concentrations decreased to 0.69-0.95 on day 10 and were undetectable on day 15. Acetate was present in low amounts on day 3 (0.15-0.33 mM) and steadily increased to 3.35-5.22 mM over time. Similarly, carbon dioxide was present in low concentrations early on and increased to 0.28-0.35 mM as the experiment progressed. We also were able to detect low amounts of methane (10-20 uM) during the first week of the experiment, but by day 10 the methane was undetectable. From these results and pyrosequencing analysis, we conclude that a shift in the microbial community dynamics occurred over time to eventually form a stable and enriched microbial community. Comprehensive investigations such as these allow for the examination of not only which

  2. Dynamics of rainwater lenses on upward seeping saline groundwater

    NARCIS (Netherlands)

    Eeman, Sara

    2017-01-01

    Fresh water is generally a limited resource in coastal areas which are often densely populated. In low-lying areas, groundwater is mostly saline and both agriculture and freshwater nature depend on a thin lens of rainwater that is formed by precipitation surplus on top of saline, upward seeping grou

  3. Isotope investigation on groundwater recharge and dynamics in shallow and deep alluvial aquifers of southwest Punjab.

    Science.gov (United States)

    Keesari, Tirumalesh; Sharma, Diana A; Rishi, Madhuri S; Pant, Diksha; Mohokar, Hemant V; Jaryal, Ajay Kumar; Sinha, U K

    2017-07-14

    Groundwater samples collected from the alluvial aquifers of southwest Punjab, both shallow and deep zones were measured for environmental tritium ((3)H) and stable isotopes ((2)H and (18)O) to evaluate the source of recharge and aquifer dynamics. The shallow groundwater shows wide variation in isotopic signature (δ(18)O: -11.3 to -5.0‰) reflecting multiple sources of recharge. The average isotopic signature of shallow groundwaters (δ(18)O: -6.73 ± 1.03‰) is similar to that of local precipitation (-6.98 ± 1.66‰) indicating local precipitation contributes to a large extent compared to other sources. Other sources have isotopically distinct signatures due to either high altitude recharge (canal sources) or evaporative enrichment (irrigation return flow). Deep groundwater shows relatively depleted isotopic signature (δ(18)O: -8.6‰) and doesn't show any evaporation effect as compared to shallow zone indicating recharge from precipitation occurring at relatively higher altitudes. Environmental tritium indicates that both shallow ((3)H: 5 - 10 T.U.) and deeper zone ((3)H: 1.5 - 2.5 T.U.) groundwaters are modern. In general the inter-aquifer connections seem to be unlikely except a few places. Environmental isotope data suggests that shallow groundwater is dynamic, local and prone to changes in land use patterns while deep zone water is derived from distant sources, less dynamic and not impacted by surface manifestations. A conceptual groundwater flow diagram is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Separation of base flow from streamflow using groundwater levels - illustrated for the Pang catchment (UK)

    NARCIS (Netherlands)

    Peters, E.; Lanen, van H.A.J.

    2005-01-01

    A new filter to separate base flow from streamflow has developed that uses observed groundwater levels. To relate the base flow to the observed groundwater levels, a non-linear relation was used. This relation is suitable for unconfined aquifers with deep groundwater levels that do not respond to

  5. Separation of base flow from streamflow using groundwater levels - illustrated for the Pang catchment (UK)

    NARCIS (Netherlands)

    Peters, E.; Lanen, van H.A.J.

    2005-01-01

    A new filter to separate base flow from streamflow has developed that uses observed groundwater levels. To relate the base flow to the observed groundwater levels, a non-linear relation was used. This relation is suitable for unconfined aquifers with deep groundwater levels that do not respond to in

  6. Dynamic Succession of Groundwater Sulfate-Reducing Communities during Prolonged Reduction of Uranium in a Contaminated Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [Univ. of Oklahoma, Norman, OK (United States); He, Zhili [Univ. of Oklahoma, Norman, OK (United States); Van Nostrand, Joy D. [Univ. of Oklahoma, Norman, OK (United States); Qin, Yujia [Univ. of Oklahoma, Norman, OK (United States); Deng, Ye [Univ. of Oklahoma, Norman, OK (United States); Chinese Academy of Sciences (CAS), Beijing (China); Wu, Liyou [Univ. of Oklahoma, Norman, OK (United States); Tu, Qichao [Univ. of Oklahoma, Norman, OK (United States); Zhejiang Univ., Hangzhou (China); Wang, Jianjun [Univ. of Oklahoma, Norman, OK (United States); Chinese Academy of Sciences (CAS), Nanjing (China); Schadt, Christopher W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); W. Fields, Matthew [Montana State Univ., Bozeman, MT (United States); Hazen, Terry C. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Arkin, Adam P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stahl, David A. [Univ. of Washington, Seattle, WA (United States); Zhou, Jizhong [Univ. of Oklahoma, Norman, OK (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsinghua Univ., Beijing (China)

    2017-03-16

    To further understand the diversity and dynamics of SRB in response to substrate amendment, we sequenced in this paper genes coding for the dissimilatory sulfite reductase (dsrA) in groundwater samples collected after an emulsified vegetable oil (EVO) amendment, which sustained U(VI)-reducing conditions for one year in a fast-flowing aquifer. EVO amendment significantly altered the composition of groundwater SRB communities. Sequences having no closely related-described species dominated (80%) the indigenous SRB communities in nonamended wells. After EVO amendment, Desulfococcus, Desulfobacterium, and Desulfovibrio, known for long-chain-fatty-acid, short-chain-fatty-acid and H2 oxidation and U(VI) reduction, became dominant accounting for 7 ± 2%, 21 ± 8%, and 55 ± 8% of the SRB communities, respectively. Succession of these SRB at different bioactivity stages based on redox substrates/products (acetate, SO4–2, U(VI), NO3, Fe(II), and Mn(II)) was observed. Desulfovibrio and Desulfococcus dominated SRB communities at 4–31 days, whereas Desulfobacterium became dominant at 80–140 days. By the end of the experiment (day 269), the abundance of these SRB decreased but the overall diversity of groundwater SRB was still higher than non-EVO controls. Up to 62% of the SRB community changes could be explained by groundwater geochemical variables, including those redox substrates/products. A significant (P < 0.001) correlation was observed between groundwater U(VI) concentrations and Desulfovibrio abundance. Finally, our results showed that the members of SRB and their dynamics were correlated significantly with slow EVO biodegradation, electron donor production and maintenance of U(VI)-reducing conditions in the aquifer.

  7. Analytic solutions for unconfined groundwater flow over a stepped base

    Science.gov (United States)

    Fitts, Charles R.; Strack, Otto D. L.

    1996-03-01

    Two new exact solutions are presented for uniform unconfined groundwater flow over a stepped base; one for a step down in the direction of flow, the other for a step up in the direction of flow. These are two-dimensional solutions of Laplace's equation in the vertical plane, and are derived using the hodograph method and conformal mappings on Riemann surfaces. The exact solutions are compared with approximate one-dimensional solutions which neglect the resistance to vertical flow. For small horizontal hydraulic gradients typical of regional groundwater flow, little error is introduced by neglecting the vertical resistance to flow. This conclusion may be extended to two-dimensional analytical models in the horizontal plane, which neglect the vertical resistance to flow and treat the aquifer base as a series of flat steps.

  8. Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene

    OpenAIRE

    Kshitij C. Jha; Zhuonan Liu; Hema Vijwani; Mallikarjuna Nadagouda; Mukhopadhyay, Sharmila M.; Mesfin Tsige

    2016-01-01

    Adsorption of chlorinated organic contaminants (COCs) on carbon nanotubes (CNTs) has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play in hybrid, membrane, and pure CNT based systems and presents results with the perspective of existing gaps in design strategies. First, current remediation approaches to trichloroethylene (TCE), th...

  9. Data base dictionary for the Oak Ridge Reservation Hydrology and Geology Study Groundwater Data Base. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, B.K.

    1993-04-01

    The Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) Groundwater Data Base has been compiled to consolidate groundwater data from the three US Department of Energy facilities located on the Oak Ridge Reservation: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant. Each of these facilities maintains its own groundwater and well construction data bases. Data were extracted from the existing data bases, converted to a consistent format, and integrated into the ORRHAGS Groundwater Data Base structures. This data base dictionary describes the data contained in the ORRHAGS Groundwater Data Base and contains information on data base structure, conventions, contents, and use.

  10. Limits to global groundwater consumption

    Science.gov (United States)

    de Graaf, I.; Van Beek, L. P.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2016-12-01

    Groundwater is the largest accessible freshwater resource worldwide and is of critical importance for irrigation, and so for global food security. For many regions of the world where groundwater abstraction exceeds groundwater recharge, persistent groundwater depletion occurs. A direct consequence of depletion is falling groundwater levels, reducing baseflows to rivers, harming ecosystems. Also, pumping costs increase, wells dry up and land subsidence can occur. Water demands are expected to increase further due to growing population, economic development and climate change, posing the urgent question how sustainable current water abstractions are worldwide and where and when these abstractions approach conceivable limits with all the associated problems. Here, we estimated past and future trends (1960-2050) in groundwater levels resulting from changes in abstractions and climate and predicted when limits of groundwater consumption are reached. We explored these limits by predicting where and when groundwater levels drop that low that groundwater becomes unattainable for abstractions and how river flows are affected. Water availabilities, abstractions, and lateral groundwater flows are simulated (5 arcmin. resolution) using a coupled version of the global hydrological model PCR-GLOBWB and a groundwater model based on MODFLOW. The groundwater model includes a parameterization of the worlds confined and unconfined aquifer systems, needed for a realistic simulation of groundwater head dynamics. Results show that, next to the existing regions experiencing groundwater depletion (like India, Pakistan, Central Valley) new regions will develop, e.g. Southern Europe, the Middle East, and Africa. Using a limit that reflects present-day feasibility of groundwater abstraction, we estimate that in 2050 groundwater becomes unattainable for 20% of the global population, mainly in the developing countries and pumping cost will increase significantly. Largest impacts are found

  11. Limits to Global Groundwater Consumption

    Science.gov (United States)

    Graaf, I. D.; Van Beek, R.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2015-12-01

    In regions with frequent water stress and large aquifer systems, groundwater is often used as an additional fresh water source. For many regions of the world groundwater abstraction exceeds groundwater recharge and persistent groundwater depletion occurs. The most direct effect of groundwater depletion is declining of water tables, leading to reduced groundwater discharge needed to sustain base-flow to e.g. rivers. Next to that, pumping costs increase, wells dry up and land subsidence occurs. These problems are expected to increase in the near future due to growing population and climate changes. This poses the urgent question of what the limits are of groundwater consumption worldwide. We simulate global water availability (5 arc-minute resolution, for 1960-2050) using the hydrological model PCR-GLOBWB (van Beek et al. 2011), coupled to a groundwater model based on MODFLOW (de Graaf et al. 2015), allowing for groundwater - surface water interactions. The groundwater model includes a parameterization of world's confined and unconfined aquifer systems needed for a realistic simulation of groundwater head dynamics. Water demands are included (from Wada et al. 2014). We study the limits to water consumption, focusing on locally attainable groundwater and groundwater levels critical to rivers to sustain low flows. We show an increasing trend (1960-2050) in groundwater head declines, due to increase in groundwater demand. Also, stream flow will decrease and low flow conditions will occur more frequent and will be longer in duration in the near future, especially for irrigated areas. Next to that, we provide a global overview of the years it takes until groundwater gets unattainable for e.g. a local farmer (100 m below land-surface used as a proxy), and estimate the increase in pumping cost for the near future. The results show where and when limits of groundwater consumption are reached globally.

  12. A GIS-based methodology to delineate potential areas for groundwater development: a case study from Kathmandu Valley, Nepal

    Science.gov (United States)

    Pandey, Vishnu P.; Shrestha, Sangam; Kazama, Futaba

    2013-06-01

    For an effective planning of activities aimed at recovering aquifer depletion and maintaining health of groundwater ecosystem, estimates of spatial distribution in groundwater storage volume would be useful. The estimated volume, if analyzed together with other hydrogeologic characteristics, may help delineate potential areas for groundwater development. This study proposes a GIS-based ARC model to delineate potential areas for groundwater development; where `A' stands for groundwater availability, `R' for groundwater release potential of soil matrix, and `C' for cost for groundwater development. The model is illustrated with a case of the Kathmandu Valley in Central Nepal, where active discussions are going on to develop and implement groundwater management strategies. The study results show that shallow aquifers have high groundwater storage potential (compared to the deep) and favorable areas for groundwater development are concentrated at some particular areas in shallow and deep aquifers. The distribution of groundwater storage and potential areas for groundwater development are then mapped using GIS.

  13. Quantifying the regional groundwater/surface water interaction based on 18O and Deuterium

    Science.gov (United States)

    Merz, Christoph; Lischeid, Gunnar; Nitzsche, Kai; Kayler, Zachary Eric

    2017-04-01

    Small, non-permanent ponds of glaciofluvial origin, called cattle holes, are widely spread in the younger Pleistocene landscapes of the northern hemisphere. New investigations show that much more of the kettle holes in NE Germany are more closely connected to the groundwater than expected. Thus kettle holes reflect a free groundwater surface at the interface between the aquifer and the topography. They are not isolated hydrological depressions and can be viewed as linked components of a hydrologic continuum. Therefore, these kettle holes have a high informative value regarding changing behavior of the regional groundwater system functioning as a suitable indicator for changes of a regionally connected hydrological system. The unsolved challenge of this approach is the complexity and high abundance of kettle holes which requires an elaborate hydrological monitoring of a large number of small lakes. Therefore, an alternative approach was used to record the dynamic behavior of the hydrological system. Measurements of the stable isotopes 18O and Deuterium enables the quantitative estimation of the individual water flux and evapotranspiration rates. An isotope-mass-balance model was used to quantify lake water balances during a one year sampling period. The approach after Skrzypek et al. 2015 based on the global relationship between the d18O and dD values of the precipitation - described by the Global Meteoric Water Line (GMWL) and the kinetic isotopic fractionation during evaporation which leads to a deviation from the GMWL indicated by a decrease of the slope of this relationship. Assuming that the lake is hydrostatically connected to the groundwater the applied isotope mass-balance model accounts for the quantification of the evapotranspiration rate considering the groundwater inflow compensating the evaporation loss. Due to the low effort of isotopic sampling, the isotopic monitoring of a large number of kettle holes is possible, even regarding a longer period of

  14. [Research of early-warning method for regional groundwater pollution based on risk management].

    Science.gov (United States)

    Bai, Li-Ping; Wang, Ye-Yao; Guo, Yong-Li; Zhou, You-Ya; Liu, Li; Yan, Zeng-Guang; Li, Fa-Sheng

    2014-08-01

    Groundwater is the main source of water supply in China, and China's overall situation of groundwater pollution is not optimistic at present. Groundwater pollution risk evaluation and early-warning are the effective measures to prevent groundwater pollution. At present, research of groundwater early-warning method at home and abroad is still at the exploratory stage, and the sophisticated technology has not been developed for reference. This paper briefly described the data and technological demand of the early-warning method in different scales, and the main factors influencing the early-warning results of groundwater pollution were classified as protection performance of geological medium, characteristics of pollution sources, groundwater dynamics and groundwater value. Then the main early-warning indexes of groundwater pollution were screened to establish the early-warning model of regional or watershed scale by the index overlay method. At last, the established early-warning model was used in Baotou plain, and the different early-warning grades were zoned by the model. The research results could provide scientific support for the local management department to protect the groundwater resources.

  15. Dynamic Attribution of Global Water Demand to Surface Water and Groundwater Resources: Effects of Abstractions and Return Flows on River Discharge

    Science.gov (United States)

    de Graaf, Inge; van Beek, Rens; Wada, Yoshi; Bierkens, Marc

    2013-04-01

    As human water demand is increasing worldwide, groundwater is abstracted at rates that exceed groundwater recharge in many areas, resulting in depletion of existing groundwater stocks. Most studies, that focus on human water consumption and water stress indicate a gap between water demand and availability. However, between studies very different assumptions are made on how water abstraction is divided between surface water, groundwater, and other resources. Moreover, simplified assumptions are used of the interactions between groundwater and surface water. Here, we simulate at the global scale, the dynamic attribution of total water demand to surface water and groundwater resources, based on actual water availability and accounting for return flows and surface water- groundwater interactions. The global hydrological model PCR-GLOBWB is used to simulate water storages, abstractions, and return flows for the model period 1960-2010, with a daily time step at 0.5° x 0.5° spatial resolution. Total water demand is defined as requirements for irrigation, industry, and domestic use. Water abstractions are variably taken from surface water and groundwater resources depending on availability of both resources. Return flows of non-consumed abstracted water contribute to a single source; those of irrigation recharging groundwater, those of industry and domestic use discharging to surface waters. Groundwater abstractions are taken from renewable groundwater, or when exceeding recharge from an alternative unlimited resource. This resource consists of non-renewable groundwater, or non-local water, the former being an estimate of groundwater depletion. Results show that worldwide the effect of water abstractions is evident, especially on the magnitude and frequency of low flows when the contribution of groundwater through baseflow is substantial. River regimes are minimally affected by abstractions in industrial regions because of the high return flows. In irrigated regions the

  16. The 3D simulation and optimized management model of groundwater systems based on ecoenvironmental water demand

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater's economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da'an in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.

  17. Dynamics of natural prokaryotes, viruses, and heterotrophic nanoflagellates in alpine karstic groundwater

    OpenAIRE

    Wilhartilz, I.C.; Krischner, A.K.T; C. P. D. Brussaard; Fisher, U.R.; Wieltschnig, C.; Stadler, H; Farnleitner, A.H.

    2013-01-01

    Abstract Seasonal dynamics of naturally occurring prokaryotes, viruses, and heterotrophic nanoflagellates in two hydro-geologically contrasting alpine karst springs were monitored over three annual cycles. To our knowledge, this study is the first to shed light on the occurrence and possible interrelationships between these three groups in karstic groundwater. Hydrological and microbiological standard indicators were recovered simultaneously in order to estimate surface influence, especially ...

  18. Velocity Potential in Engineering Hydraulics versus Force Potential in Groundwater Dynamics

    Science.gov (United States)

    Weyer, K.

    2013-12-01

    required to overcome the resistance to downward flow in penetrated rocks. As one of the consequences, the engineering hydraulics concept of buoyancy forces does not comply with physics. In general the vectorial forces within gravitationally-driven flow systems are ignored when using engineering hydraulics. Scheidegger (1974, p. 79) states, however, verbatim and unequivocally: 'It is thus a force potential and not a velocity potential which governs flow through porous media' (emphasis added). This presentation will outline the proper forces for groundwater flow and their calculations based on Hubbert's force potential and additional physical insights by Weyer (1978). REFERENCES Bear, J. 1972. Dynamics of Fluids in Porous Media. American Elsevier Publishing Company, Inc., New York, NY, USA. de Marsily, G. 1986. Quantitative Hydrogeology: Groundwater Hydrology for Engineers. Academic Press, San Diego, California, USA. Hubbert, M.K. 1940. The theory of groundwater motion. Journal of Geology 48(8): 785-944. Muskat, Morris, 1937. The flow of homogeneous fluids through porous media. McGraw-Hill Book Company Inc., New York, NY, USA Scheidegger. A.E., 1974. The physics of flow through permeable media. Third Edition. University of Toronto Press, Toronto, Ontario, Canada Weyer, K.U., 1978. Hydraulic forces in permeable media. Bulletin du B.R.G.M., Vol. 91, pp. 286-297, Orléans, France.

  19. GIS-based hydrogeological databases and groundwater modelling

    Science.gov (United States)

    Gogu, Radu Constantin; Carabin, Guy; Hallet, Vincent; Peters, Valerie; Dassargues, Alain

    2001-12-01

    Reliability and validity of groundwater analysis strongly depend on the availability of large volumes of high-quality data. Putting all data into a coherent and logical structure supported by a computing environment helps ensure validity and availability and provides a powerful tool for hydrogeological studies. A hydrogeological geographic information system (GIS) database that offers facilities for groundwater-vulnerability analysis and hydrogeological modelling has been designed in Belgium for the Walloon region. Data from five river basins, chosen for their contrasting hydrogeological characteristics, have been included in the database, and a set of applications that have been developed now allow further advances. Interest is growing in the potential for integrating GIS technology and groundwater simulation models. A "loose-coupling" tool was created between the spatial-database scheme and the groundwater numerical model interface GMS (Groundwater Modelling System). Following time and spatial queries, the hydrogeological data stored in the database can be easily used within different groundwater numerical models. Résumé. La validité et la reproductibilité de l'analyse d'un aquifère dépend étroitement de la disponibilité de grandes quantités de données de très bonne qualité. Le fait de mettre toutes les données dans une structure cohérente et logique soutenue par les logiciels nécessaires aide à assurer la validité et la disponibilité et fournit un outil puissant pour les études hydrogéologiques. Une base de données pour un système d'information géographique (SIG) hydrogéologique qui offre toutes les facilités pour l'analyse de la vulnérabilité des eaux souterraines et la modélisation hydrogéologique a été établi en Belgique pour la région Wallonne. Les données de cinq bassins de rivières, choisis pour leurs caractéristiques hydrogéologiques différentes, ont été introduites dans la base de données, et un ensemble d

  20. Estimating groundwater evapotranspiration from irrigated cropland incorporating root zone soil texture and moisture dynamics

    Science.gov (United States)

    Wang, Xingwang; Huo, Zailin; Feng, Shaoyuan; Guo, Ping; Guan, Huade

    2016-12-01

    Estimating evapotranspiration from groundwater (ETg) is of importance to understanding water cycle and agricultural water management. Traditional ETg estimation was developed for regional steady condition and is difficult to be used for cropland where ETg changes with crop growth and irrigation schemes. In the present study, a new method estimating daily ETg during the crop growing season was developed. In this model, the effects of crop growth stage, climate condition, groundwater depth and soil moisture are considered. The method was tested with controlled lysimeter experiments of winter wheat including five controlled water table depths and four soil profiles of different textures. The simulated ETg is in good agreement with the measured data for four soil profiles and different depths to groundwater table. Coefficient of determination (R2) and coefficient of efficiency (NSE) are mostly larger than 0.85 and 0.70, respectively. This result suggests that the new method incorporating both soil texture and moisture dynamics can be used to estimate average daily groundwater evapotranspiration in cropland and contribute to quantifying the field water cycle.

  1. Groundwater contamination from an inactive uranium mill tailings pile: 2. Application of a dynamic mixing model

    Science.gov (United States)

    Narasimhan, T. N.; White, A. F.; Tokunaga, T.

    1986-12-01

    At Riverton, Wyoming, low pH process waters from an abandoned uranium mill tailings pile have been infiltrating into and contaminating the shallow water table aquifer. The contamination process has been governed by transient infiltration rates, saturated-unsaturated flow, as well as transient chemical reactions between the many chemical species present in the mixing waters and the sediments. In the first part of this two-part series [White et al., 1984] we presented field data as well as an interpretation based on a static mixing model. As an upper bound, we estimated that 1.7% of the tailings water had mixed with the native groundwater. In the present work we present the results of numerical investigation of the dynamic mixing process. The model, DYNAMIX (DYNAmic MIXing), couples a chemical speciation algorithm, PHREEQE, with a modified form of the transport algorithm, TRUMP, specifically designed to handle the simultaneous migration of several chemical constituents. The overall problem of simulating the evolution and migration of the contaminant plume was divided into three sub problems that were solved in sequential stages. These were the infiltration problem, the reactive mixing problem, and the plume-migration problem. The results of the application agree reasonably with the detailed field data. The methodology developed in the present study demonstrates the feasibility of analyzing the evolution of natural hydrogeochemical systems through a coupled analysis of transient fluid flow as well as chemical reactions. It seems worthwhile to devote further effort toward improving the physicochemical capabilities of the model as well as to enhance its computational efficiency.

  2. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone: U TRANSPORT IN A GROUNDWATER-SURFACE WATER TRANSITION ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M. [Pacific Northwest National Laboratory, Richland Washington USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA; Murray, Chris [Pacific Northwest National Laboratory, Richland Washington USA; Hammond, Glenn [Sandia National Laboratories, Albuquerque New Mexico USA

    2016-03-01

    A tightly spaced well-field within a groundwater uranium (U) plume in the groundwater-surface water transition zone was monitored for a three year period for groundwater elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from mountain snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (Uaq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time series trends for Uaq and SpC were complex and displayed large temporal well-to well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common temporal behaviors resulting from the intrusion dynamics of river water and the location of source terms. Concentration hot spots were observed in groundwater that varied in location with increasing water table elevation. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While uranium time-series concentration trends varied significantly from year to year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of the river water intrusion event.

  3. [Physical process based risk assessment of groundwater pollution in the mining area].

    Science.gov (United States)

    Sun, Fa-Sheng; Cheng, Pin; Zhang, Bo

    2014-04-01

    Case studies of groundwater pollution risk assessment at home and abroad generally start from groundwater vulnerability, without considering the influence of characteristic pollutants on the consequences of pollution too much. Vulnerability is the natural sensitivity of the environment to pollutants. Risk assessment of groundwater pollution should reflect the movement and distribution of pollutants in groundwater. In order to improve the risk assessment theory and method of groundwater pollution, a physical process based risk assessment methodology for groundwater pollution was proposed in a mining area. According to the sensitivity of the economic and social conditions and the possible distribution of pollutants in the future, the spatial distribution of risk levels in aquifer was ranged before hand, and the pollutant source intensity corresponding to each risk level was deduced accordingly. By taking it as the criterion for the classification of groundwater pollution risk assessment, the groundwater pollution risk in the mining area was evaluated by simulating the migration of pollutants in the vadose zone and aquifer. The result show that the risk assessment method of groundwater pollution based on physical process can give the concentration distribution of pollutants and the risk level in the spatial and temporal. For single punctuate polluted area, it gives detailed risk characterization, which is better than the risk assessment method that based on aquifer intrinsic vulnerability index, and it is applicable to the risk assessment of existing polluted sites, optimizing the future sites and providing design parameters for the site construction.

  4. Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction

    Science.gov (United States)

    Tóth, Ádám; Havril, Tímea; Simon, Szilvia; Galsa, Attila; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2016-08-01

    Groundwater flow, driven, controlled and determined by topography, geology and climate, is responsible for several natural surface manifestations and affected by anthropogenic processes. Therefore, flowing groundwater can be regarded as an environmental agent. Numerical simulation of groundwater flow could reveal the flow pattern and explain the observed features. In complex geologic framework, where the geologic-hydrogeologic knowledge is limited, the groundwater flow model could not be constructed based solely on borehole data, but geophysical information could aid the model building. The integrated model construction was presented via the case study of the Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, such as wetlands, surface water-groundwater interaction, slope instability, and revealing the potential effect of anthropogenic activity and climate change. The hydrogeologic model was prepared on the basis of the compiled archive geophysical database and the results of recently performed geophysical measurements complemented with geologic-hydrogeologic data. Derivation of different electrostratigraphic units, revealing fracturing and detecting tectonic elements was achieved by systematically combined electromagnetic geophysical methods. The deduced information can be used as model input for groundwater flow simulation concerning hydrostratigraphy, geometry and boundary conditions. The results of numerical modelling were interpreted on the basis of gravity-driven regional groundwater flow concept and validated by field mapping of groundwater-related phenomena. The 3D model clarified the hydraulic behaviour of the formations, revealed the subsurface hydraulic connection between groundwater and wetlands and displayed the groundwater discharge pattern, as well. The position of wetlands, their vegetation type, discharge features and induced landslides were explained as

  5. Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene.

    Science.gov (United States)

    Jha, Kshitij C; Liu, Zhuonan; Vijwani, Hema; Nadagouda, Mallikarjuna; Mukhopadhyay, Sharmila M; Tsige, Mesfin

    2016-07-21

    Adsorption of chlorinated organic contaminants (COCs) on carbon nanotubes (CNTs) has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play in hybrid, membrane, and pure CNT based systems and presents results with the perspective of existing gaps in design strategies. First, current remediation approaches to trichloroethylene (TCE), the most ubiquitous of the COCs, is presented along with examination of forces contributing to adsorption of analogous contaminants at the molecular level. Second, we present results on TCE adsorption and remediation on pure and hybrid CNT systems with a stress on the specific nature of substrate and molecular architecture that would contribute to competitive adsorption. The delineation of intermolecular interactions that contribute to efficient remediation is needed for custom, scalable field design of purification systems for a wide range of contaminants.

  6. Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene

    Directory of Open Access Journals (Sweden)

    Kshitij C. Jha

    2016-07-01

    Full Text Available Adsorption of chlorinated organic contaminants (COCs on carbon nanotubes (CNTs has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play in hybrid, membrane, and pure CNT based systems and presents results with the perspective of existing gaps in design strategies. First, current remediation approaches to trichloroethylene (TCE, the most ubiquitous of the COCs, is presented along with examination of forces contributing to adsorption of analogous contaminants at the molecular level. Second, we present results on TCE adsorption and remediation on pure and hybrid CNT systems with a stress on the specific nature of substrate and molecular architecture that would contribute to competitive adsorption. The delineation of intermolecular interactions that contribute to efficient remediation is needed for custom, scalable field design of purification systems for a wide range of contaminants.

  7. Quantification of Seepage in Groundwater Dependent Wetlands

    DEFF Research Database (Denmark)

    Johansen, Ole; Beven, Keith; Jensen, Jacob Birk

    2017-01-01

    Restoration and management of groundwater dependent wetlands require tools for quantifying the groundwater seepage process. A method for determining point estimates of the groundwater seepage based on water level observations is tested. The study is based on field data from a Danish rich fen....... Therefore secondly a much simpler mass balance approach is used with lumped descriptions of the most important hydrological processes controlling water level and groundwater inflow to the system. The water level dynamics are here described and bracketed nicely and a dynamic description of the seepage rate...... the dynamic description of groundwater seepage can be very useful in future studies of the links between seepage, soil water chemistry and vegetation in groundwater dependent terrestrial ecosystems....

  8. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater.

    Science.gov (United States)

    Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie

    2015-07-22

    Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3-6 mmol/L in temperature range of 30-40 °C, 6-10 mmol/L in temperature range of 15-30 °C and 10-14 mmol/L in temperature range of 5-15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency.

  9. Modelling water flow and seasonal soil moisture dynamics in analluvial groundwater-fed wetland

    Directory of Open Access Journals (Sweden)

    I. Joris

    2003-01-01

    Full Text Available Complex interactions occur in riparian wetlands between groundwater, surface water and climatic conditions. Knowledge of the hydrology of these systems is necessary to understand their functioning and their value and models are a useful and probably essential tool to capture their hydrological complexity. In this study, a 2D-model describing saturated-unsaturated water flow is applied to a transect through a groundwater-fed riparian wetland located along the middle reach of the river Dijle. The transect has high levees close to the river and a depression further into the floodplain. Scaling factors are introduced to describe the variability of soil hydraulic properties along the transect. Preliminary model calculations for one year show a good agreement between model calculations and measurements and demonstrate the capability of the model to capture the internal groundwater dynamics. Seasonal variations in soil moisture are reproduced well by the model thus translating external hydrological boundary conditions to root zone conditions. The model proves to be a promising tool for assessing effects of changes in hydrological boundary conditions on vegetation type distribution and to gain more insight in the highly variable internal flow processes of riparian wetlands. Keywords: riparian wetland,eco-hydrology, upward seepage, floodplain hydrology

  10. Management of groundwater in farmed pond area using risk-based regulation.

    Science.gov (United States)

    Huang, Jun-Ying; Liao, Chiao-Miao; Lin, Kao-Hung; Lee, Cheng-Haw

    2014-09-01

    Blackfoot disease (BFD) had occurred seriously in the Yichu, Hsuehchia, Putai, and Peimen townships of Chia-Nan District of Taiwan in the early days. These four townships are the districts of fishpond cultivation domestically in Taiwan. Groundwater becomes the main water supply because of short income in surface water. The problems of over pumping in groundwater may not only result in land subsidence and seawater intrusion but also be harmful to the health of human giving rise to the bioaccumulation via food chain in groundwater with arsenic (As). This research uses sequential indicator simulation (SIS) to characterize the spatial arsenic distribution in groundwater in the four townships. Risk assessment is applied to explore the dilution ratio (DR) of groundwater utilization, which is defined as the ratio showing the volume of groundwater utilization compared to pond water, for fish farming in the range of target cancer risk (TR) especially on the magnitude of 10(-4)~10(-6). Our study results reveal that the 50th percentile of groundwater DRs served as a regulation standard can be used to perform fish farm groundwater management for a TR of 10(-6). For a TR of 5 × 10(-6), we suggest using the 75th percentile of DR for groundwater management. For a TR of 10(-5), we suggest using the 95th percentile of the DR standard for performing groundwater management in fish farm areas. For the TR of exceeding 5 × 10(-5), we do not suggest establishing groundwater management standards under these risk standards. Based on the research results, we suggest that establishing a TR at 10(-5) and using the 95th percentile of DR are best for groundwater management in fish farm areas.

  11. Regional groundwater characteristics and hydraulic conductivity based on geological units in Korean peninsula

    Science.gov (United States)

    Kim, Y.; Suk, H.

    2011-12-01

    In this study, about 2,000 deep observation wells, stream and/or river distribution, and river's density were analyzed to identify regional groundwater flow trend, based on the regional groundwater survey of four major river watersheds including Geum river, Han river, Youngsan-Seomjin river, and Nakdong river in Korea. Hydrogeologial data were collected to analyze regional groundwater flow characteristics according to geological units. Additionally, hydrological soil type data were collected to estimate direct runoff through SCS-CN method. Temperature and precipitation data were used to quantify infiltration rate. The temperature and precipitation data were also used to quantify evaporation by Thornthwaite method and to evaluate groundwater recharge, respectively. Understanding the regional groundwater characteristics requires the database of groundwater flow parameters, but most hydrogeological data include limited information such as groundwater level and well configuration. In this study, therefore, groundwater flow parameters such as hydraulic conductivities or transmissivities were estimated using observed groundwater level by inverse model, namely PEST (Non-linear Parameter ESTimation). Since groundwater modeling studies have some uncertainties in data collection, conceptualization, and model results, model calibration should be performed. The calibration may be manually performed by changing parameters step by step, or various parameters are simultaneously changed by automatic procedure using PEST program. In this study, both manual and automatic procedures were employed to calibrate and estimate hydraulic parameter distributions. In summary, regional groundwater survey data obtained from four major river watersheds and various data of hydrology, meteorology, geology, soil, and topography in Korea were used to estimate hydraulic conductivities using PEST program. Especially, in order to estimate hydraulic conductivity effectively, it is important to perform

  12. The Maryland Coastal Plain Aquifer Information System: A GIS-based tool for assessing groundwater resources

    Science.gov (United States)

    Andreasen, David C.; Nardi, Mark R.; Staley, Andrew W.; Achmad, Grufron; Grace, John W.

    2016-01-01

    Groundwater is the source of drinking water for ∼1.4 million people in the Coastal Plain Province of Maryland (USA). In addition, groundwater is essential for commercial, industrial, and agricultural uses. Approximately 0.757 × 109 L d–1 (200 million gallons/d) were withdrawn in 2010. As a result of decades of withdrawals from the coastal plain confined aquifers, groundwater levels have declined by as much as 70 m (230 ft) from estimated prepumping levels. Other issues posing challenges to long-term groundwater sustainability include degraded water quality from both man-made and natural sources, reduced stream base flow, land subsidence, and changing recharge patterns (drought) caused by climate change. In Maryland, groundwater supply is managed primarily by the Maryland Department of the Environment, which seeks to balance reasonable use of the resource with long-term sustainability. The chief goal of groundwater management in Maryland is to ensure safe and adequate supplies for all current and future users through the implementation of appropriate usage, planning, and conservation policies. To assist in that effort, the geographic information system (GIS)–based Maryland Coastal Plain Aquifer Information System was developed as a tool to help water managers access and visualize groundwater data for use in the evaluation of groundwater allocation and use permits. The system, contained within an ESRI ArcMap desktop environment, includes both interpreted and basic data for 16 aquifers and 14 confining units. Data map layers include aquifer and ­confining unit layer surfaces, aquifer extents, borehole information, hydraulic properties, time-series groundwater-level data, well records, and geophysical and lithologic logs. The aquifer and confining unit layer surfaces were generated specifically for the GIS system. The system also contains select groundwater-quality data and map layers that quantify groundwater and surface-water withdrawals. The aquifer

  13. Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling

    Science.gov (United States)

    Nourani, Vahid; Alami, Mohammad Taghi; Vousoughi, Farnaz Daneshvar

    2015-05-01

    Accurate and reliable groundwater level forecasting models can help ensure the sustainable use of a watershed's aquifers for urban and rural water supply. In this paper, a Self-Organizing-Map (SOM)-based clustering technique was used to identify spatially homogeneous clusters of groundwater level (GWL) data for a feed-forward neural network (FFNN) to model one and multi-step-ahead GWLs. The wavelet transform (WT) was also used to extract dynamic and multi-scale features of the non-stationary GWL, runoff and rainfall time series. The performance of the FFNN model was compared to the newly proposed combined WT-FFNN model and also the conventional linear forecasting method of ARIMAX (Auto Regressive Integrated Moving Average with exogenous input). GWL predictions were investigated under three different scenarios. The results indicated that the proposed FFNN model coupled with the SOM-based clustering method decreased the dimensionality of the input variables and consequently the complexity of the FFNN models. On the other hand, the application of the wavelet transform to GWL data increased the performance of the FFNN model up to 15.3% in average by revealing the dominant periods of the process.

  14. Risk Analysis on Groundwater Resources Carrying Capacity Based on Blind Number Theory

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji; YU Sujun

    2007-01-01

    Blind numbers of evaluation indices about groundwater resources carrying capacity are defined from the concomitancy of randomness, fuzziness, grey property and unascertainment of groundwater system.Based on fuzzy theory, a comprehensive evaluation model on groundwaterresources carrying capacity is constructed with blind information. Then arisk assessment model of surcharge about groundwater resources carryingcapacity is established on blind reliability theory. The probable value"*"'matrix of fuzzy membership degree about carrying capacity corresponding to each judgment level can be obtained with the aid of blind algorithm as well as the subjective reliability "×" matrix. And then a graph of"groundwater carrying capacity v.s. accumulative reliability" can be gained.Based on the graph, fuzzy membership degree of groundwater resourcescarrying capacity to each judgment level under different risk probabilitycan be got. Thus, a comparatively reasonable judgment to groundwaterresources carrying capacity might be obtained, with comprehensive analysis to the state of society, economy technology and ecology.

  15. NUMERICAL SIMULATION OF GROUNDWATER DYNAMICS FOR SONGHUAJIANG RIVER VALLEY IN CHINA

    Institute of Scientific and Technical Information of China (English)

    ADIL Elkrail; SHU Long-cang; HAO Zhen-chun

    2004-01-01

    The study area was designed and constructed, based on the simplification of a conceptual model, to develop a three-dimensional groundwater flow model for simulation of two-layers system. Finite difference groundwater flow model was constructed for the Central Songhuajiang River alluvial plain in Northeast China, with the coverage of 786.6km2.The grid networks with a spacing of 474.4m by 509.5m were used to cover the model area. The trial-and-error technique was used to calibrate the model. The sensitivity of the simulations to the model parameters was studied and the most sensitive parameters that controlling the residual heads distribution in the Songhuajiang River valley were defined.

  16. New insights into nitrate dynamics in a karst groundwater system gained from in situ high-frequency optical sensor measurements

    Science.gov (United States)

    Opsahl, S. P.; Musgrove, M.; Slattery, R. N.

    2017-03-01

    Understanding nitrate dynamics in groundwater systems as a function of climatic conditions, especially during contrasting patterns of drought and wet cycles, is limited by a lack of temporal and spatial data. Nitrate sensors have the capability for making accurate, high-frequency measurements of nitrate in situ, but have not yet been evaluated for long-term use in groundwater wells. We measured in situ nitrate continuously in two groundwater monitoring wells -one rural and one urban-located in the recharge zone of a productive karst aquifer in central Texas in order to resolve changes that occur over both short-term (hourly to daily) and long-term (monthly to yearly) periods. Nitrate concentrations, measured as nitrate-nitrogen in milligrams per liter (mg/L), during drought conditions showed little or no temporal change as groundwater levels declined. During aquifer recharge, extremely rapid changes in concentration occurred at both wells as documented by hourly data. At both sites, nitrate concentrations were affected by recharging surface water as evidenced by nitrate concentrations in groundwater recharge (0.8-1.3 mg/L) that were similar to previously reported values for regional recharging streams. Groundwater nitrate concentrations responded differently at urban and rural sites during groundwater recharge. Concentrations at the rural well (approximately 1.0 mg/L) increased as a result of higher nitrate concentrations in groundwater recharge relative to ambient nitrate concentrations in groundwater, whereas concentrations at the urban well (approximately 2.7 mg/L) decreased as a result of the dilution of higher ambient nitrate concentrations relative to those in groundwater recharge. Notably, nitrate concentrations decreased to as low as 0.8 mg/L at the urban site during recharge but postrecharge concentrations exceeded 3.0 mg/L. A return to higher nitrate concentrations postrecharge indicates mobilization of a localized source of elevated nitrate within the

  17. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park

    Science.gov (United States)

    Muñoz-Carpena, R.; Ritter, A.; Li, Y. C.

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO 3-, N-NH 4+, P-PO 43-, Total P, F -and Cl -) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO 3-, P-PO 43-and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH 4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F -and Cl - are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying

  18. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park.

    Science.gov (United States)

    Muñoz-Carpena, R; Ritter, A; Li, Y C

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO3-, N-NH4+, P-PO4(3-), Total P, F-and Cl-) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO3-, P-PO4(3-)and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F-and Cl- are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying land

  19. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xinguo

    2014-01-01

    costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate......, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two....... A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due...

  20. Using the Community Land Model to Assess Uncertainty in Basin Scale GRACE-Based Groundwater Estimates

    Science.gov (United States)

    Swenson, S. C.; Lawrence, D. M.

    2015-12-01

    One method for interpreting the variability in total water storage observed by GRACE is to partition the integrated GRACE measurement into its component storage reservoirs based on information provided by hydrological models. Such models, often designed to be used in couple Earth System models, simulate the stocks and fluxes of moisture through the land surface and subsurface. One application of this method attempts to isolate groundwater changes by removing modeled surface water, snow, and soil moisture changes from GRACE total water storage estimates. Human impacts on groundwater variability can be estimated by further removing model estimates of climate-driven groundwater changes. Errors in modeled water storage components directly affect the residual groundwater estimates. Here we examine the influence of model structure and process representation on soil moisture and groundwater uncertainty using the Community Land Model, with a particular focus on basins in the western U.S.

  1. Zonal management of multi-purposes groundwater utilization based on water quality and impact on the aquifer.

    Science.gov (United States)

    Liang, Ching-Ping; Jang, Cheng-Shin; Chen, Ching-Fang; Chen, Jui-Sheng

    2016-07-01

    Groundwater is widely used for drinking, irrigation, and aquaculture in the Pingtung Plain, Southwestern Taiwan. The overexploitation and poor quality of groundwater in some areas of the Pingtung Plain pose great challenges for the safe use and sustainable management of groundwater resources. Thus, establishing an effective management plan for multi-purpose groundwater utilization in the Pingtung Plain is imperative. Considerations of the quality of the groundwater and potential impact on the aquifer of groundwater exploitation are paramount to multi-purpose groundwater utilization management. This study proposes a zonal management plan for the multi-purpose use of groundwater in the Pingtung Plain. The zonal management plan is developed by considering the spatial variability of the groundwater quality and the impact on the aquifer, which is defined as the ratio of the actual groundwater extraction rate to transmissivity. A geostatistical Kriging approach is used to spatially delineate the safe zones based on the water quality standards applied in the three groundwater utilization sectors. Suitable zones for the impact on the aquifer are then spatially determined. The evaluation results showing the safe water quality zones for the three types of utilization demands and suitable zones for the impact on aquifer are integrated to create a zonal management map for multi-purpose groundwater utilization which can help government administrators to establish a water resource management strategy for safe and sustainable use of groundwater to meet multi-purpose groundwater utilization requirements in the Pingtung Plain.

  2. Mapping Model of Groundwater Catchment Area based on Geological Fault : Case Study in Semarang City

    Directory of Open Access Journals (Sweden)

    Qudus, N.

    2016-04-01

    Full Text Available Groundwater is a naturally renewable resource because groundwater is an integral part of hydrological cycle. However, in reality, there are many limiting factors which influence its usage, in both quality and quantity, the provision ability of groundwater will decrease if its availability is exceeded. The problems of ground water potential in both quantity and quality are always related to its constituents' characteristics or its geological element where the groundwater resides. This present study aims at determining the groundwater catchment area based on the geological condition of an area so that groundwater recharge can be accomplished. In addition, it is necessary for groundwater catchment area to comply with the geological condition. The geologically unfit area will only result in land movement or landslide if it is used as groundwater catchment area. The results of geo-electricity analysis which was conducted in Semarang city showed that there are 3 faults; Sukorejo fault, Tinjomoyo fault and Jangli fault which will be explained in detail in the paper. Those faults intersect the underground water stream in Semarang from south to north towards the Java Sea. The majority of underground water stream in Semarang flows from south to north. In contrary, the results of the analysis showed that there are some points that become local basins such as in the south area and southwest of Semarang where flow direction is on the opposite direction. In addition, the results of the analysis showed that some coastal areas in Semarang have experienced salt water intrusion.

  3. Exploring parameter effects on the economic outcomes of groundwater-based developments in remote, low-resource settings

    Science.gov (United States)

    Abramson, Adam; Adar, Eilon; Lazarovitch, Naftali

    2014-06-01

    Groundwater is often the most or only feasible safe drinking water source in remote, low-resource areas, yet the economics of its development have not been systematically outlined. We applied AWARE (Assessing Water Alternatives in Remote Economies), a recently developed Decision Support System, to investigate the costs and benefits of groundwater access and abstraction for non-networked, rural supplies. Synthetic profiles of community water services (n = 17,962), defined across 13 parameters' values and ranges relevant to remote areas, were applied to the decision framework, and the parameter effects on economic outcomes were investigated. Regressions and analysis of output distributions indicate that the most important factors determining the cost of water improvements include the technological approach, the water service target, hydrological parameters, and population density. New source construction is less cost-effective than the use or improvement of existing wells, but necessary for expanding access to isolated households. We also explored three financing approaches - willingness-to-pay, -borrow, and -work - and found that they significantly impact the prospects of achieving demand-driven cost recovery. The net benefit under willingness to work, in which water infrastructure is coupled to community irrigation and cash payments replaced by labor commitments, is impacted most strongly by groundwater yield and managerial factors. These findings suggest that the cost-benefit dynamics of groundwater-based water supply improvements vary considerably by many parameters, and that the relative strengths of different development strategies may be leveraged for achieving optimal outcomes.

  4. Sustainable groundwater management system based on the regional hydrological cycle in the warm humid country, Japan

    Science.gov (United States)

    Shimada, J.; Crest Kumamoto Groundwater Team

    2011-12-01

    water quality turns worse. Following above procedures, this project aims to establish the groundwater management system for sustainable utilization in the view point of water quantity and quality. At first, the evaluation of the local groundwater flow system by using 3D groundwater flow simulation including NO3-N contamination will be applied to the Kumamoto area, the most advanced groundwater utilization area in Japan. This model will be used to estimate the maximum amount of local groundwater pumping for sustainable utilization, to simulate the reduction of nitrate contamination, and to propose the reasonable groundwater management system based on the regional hydrological system. Then, these newly developed research techniques and methodologies will apply to the remote coral islands where stands on the edge of a precipice of groundwater quantity and quality caused by the nitrate contamination and sea level rising with global warming. Finally, this project will plan to propose the policy of sustainable groundwater utilization based on the regional hydrological cycle.

  5. Advances in Dynamic Transport of Organic Contaminants in Karst Groundwater Systems

    Science.gov (United States)

    Padilla, I. Y.; Vesper, D.; Alshawabkeh, A.; Hellweger, F.

    2011-12-01

    Karst groundwater systems develop in soluble rocks such as limestone, and are characterized by high permeability and well-developed conduit porosity. These systems provide important freshwater resources for human consumption and ecological integrity of streams, wetlands, and coastal zones. The same characteristics that make karst aquifers highly productive make them highly vulnerable to contamination. As a result, karst aquifers serve as an important route for contaminants exposure to humans and wildlife. Transport of organic contaminants in karst ground-water occurs in complex pathways influenced by the flow mechanism predominating in the aquifer: conduit-flow dominated systems tend to convey solutes rapidly through the system to a discharge point without much attenuation; diffuse-flow systems, on the other hand, can cause significant solute retardation and slow movement. These two mechanisms represent end members of a wide spectrum of conditions found in karst areas, and often a combination of conduit- and diffuse-flow mechanisms is encountered, where both flow mechanisms can control the fate and transport of contaminants. This is the case in the carbonate aquifers of northern Puerto Rico. This work addresses advances made on the characterization of fate and transport processes in karst ground-water systems characterized by variable conduit and/or diffusion dominated flow under high- and low-flow conditions. It involves laboratory-scale physical modeling and field-scale sampling and historical analysis of contaminant distribution. Statistical analysis of solute transport in Geo-Hydrobed physical models shows the heterogeneous character of transport dynamics in karstic units, and its variability under different flow regimes. Field-work analysis of chlorinated volatile organic compounds and phthalates indicates a large capacity of the karst systems to store and transmit contaminants. This work is part of the program "Puerto Rico Testsite for Exploring Contamination

  6. Detecting groundwater discharge dynamics from point to catchment scale in a lowland stream: combining hydraulic and tracer methods

    Directory of Open Access Journals (Sweden)

    J. B. Poulsen

    2014-12-01

    Full Text Available Detecting, quantifying, and understanding groundwater discharge to streams are crucial for the assessment of water, nutrient and contaminant exchange at the surface water–groundwater interface. In lowland agricultural catchments with significant groundwater discharge this is of particular importance because of the risk of excess leaching of nutrients to streams. Here we aim to combine hydraulic and tracer methods from point to catchment scale to assess the temporal and spatial variability of groundwater discharge in a lowland, groundwater gaining stream in Denmark. At the point scale groundwater fluxes to the stream were quantified based on Vertical streambed Temperature Profiles (VTP. At the reach scale (0.15–2 km the spatial distribution of zones of focused groundwater discharge was investigated by the use of Distributed Temperature Sensing (DTS. Groundwater discharge to the stream was quantified using differential gauging with an Acoustic Doppler Current Profiler (ADCP. At the catchment scale (26–114 km2 runoff sources during main rain events were investigated by hydrograph separations based on Electrical Conductivity (EC and stable isotopes 2H / 1H. Clear differences in runoff sources between catchments were detected, ranging from approximately 65% event water for the most responsive sub-catchment and less than 10% event water for the least responsive sub-catchment. This shows a large variability in groundwater discharge to the stream, despite the similar lowland characteristics of sub-catchments, indicating the usefulness of environmental tracers for obtaining information about integrated catchment functioning during events. There were also clear spatial patterns of focused groundwater discharge detected by the DTS and ADCP measurements at the reach scale suggesting high spatial variability, where a significant part of groundwater discharge was concentrated in few zones indicating the possibility of concentrated nutrient or pollutant

  7. Modeling Changing Morphology and Density Dependent Groundwater Flow in a Dynamic Environment: case study

    Science.gov (United States)

    Huizer, Sebastian; Bierkens, Marc; Oude Essink, Gualbert

    2015-04-01

    The prospect of sea level rise and increase in extreme weather conditions has led to a new focus on coastal defense in the Netherlands. As an innovative solution for coastal erosion a mega-nourishment named the Sand Motor (or Sand Engine) has been constructed at the Dutch coast. This body of sand will be distributed slowly along the coastline by wind, waves and currents; keeping the coastal defense structures in place and creating a unique, dynamic environment with changing morphology over time. The large size and position of the Sand Motor might lead to a substantial increase of fresh ground water resources. This creates an opportunity to combine coastal protection with an increase of fresh water resources in coastal regions. With a three dimensional, density dependent, groundwater model the effects of changing morphology over time and the potential increase in fresh water availability have been studied. The preliminary model calculations show that in a period of 20 years volume of fresh water gradually increases to ca. 12 Mm3. In the nearby dune area 7-8 Mm3 is abstracted yearly, therefore the first results are promising in increasing fresh groundwater resources. More model calculations will be performed to investigate the sensitivity of the change in the fresh, brackish and salt water distribution.

  8. Coupling WRF with LEAFHYDRO: introducing groundwater and a fully dynamic water table in regional climate simulations

    Science.gov (United States)

    Martínez de La Torre, A.; Rios Entenza, A.; Gestal Souto, L.; Miguez Macho, G.

    2010-09-01

    Here we present a soil-vegetation-hydrology model, LEAFHYDRO coupled with the WRF model. LEAFHYDRO includes a groundwater parameterization with a dynamic water table and river routing and it can be run at a finer resolution than the atmosphere within WRF. Offline multiyear simulations over the Iberian Peninsula at 2.5 km resolution with the LEAFHYDRO model with and without groundwater indicate that introducing the water table parameterization has a significant impact on soil moisture amounts, soil moisture persistence and evapotranspiration fluxes. This is particularly true over the semiarid flat plateaus of the Iberian interior, where the atmospheric source of precipitation is scarce and the water table is naturally shallow due to slow drainage and lateral flow convergence from the surrounding mountains. Climatic simulations with the coupled WRF-HYDRO system suggest that the memory induced in the soil by the water table significantly impact the simulated precipitation, especially in the spring, when the land-surface atmospheric coupling is strong and rainfall amounts have their annual peak inland Iberia.

  9. Modeling of groundwater draft based on satellite-derived crop acreage estimation over an arid region of northwest India

    Science.gov (United States)

    Bhadra, Bidyut Kumar; Kumar, Sanjay; Paliwal, Rakesh; Jeyaseelan, A. T.

    2016-11-01

    Over-exploitation of groundwater for agricultural crops puts stress on the sustainability of natural resources in the arid region of Rajasthan state, India. Hydrogeological study of groundwater levels of the study area during the pre-monsoon (May to June), post-monsoon (October to November) and post-irrigation (February to March) seasons of 2004-2005 to 2011-2012 shows a steady decline of groundwater levels at the rate of 1.28-1.68 m/year, mainly due to excessive groundwater draft for irrigation. Due to the low density of the groundwater observation-well network in the study area, assessment of groundwater draft, and thus groundwater resource management, becomes a difficult task. To overcome the situation, a linear groundwater draft model (LGDM) has been developed based on the empirical relationship between satellite-derived crop acreage and the observed groundwater draft for the year 2003-2004. The model has been validated for a decade, during three year-long intervals (2005-2006, 2008-2009 and 2011-2012) using groundwater draft, estimated through a discharge factor method. Further, the estimated draft was validated through observed pumping data from random sampled villages (2011-2012). The results suggest that the developed LGDM model provides a good alternative to the estimation of groundwater draft based on satellite-based crop area in the absence of groundwater observation wells in arid regions of northwest India.

  10. Simulation of large-scale soil water systems using groundwater data and satellite based soil moisture

    Science.gov (United States)

    Kreye, Phillip; Meon, Günter

    2016-04-01

    Complex concepts for the physically correct depiction of dominant processes in the hydrosphere are increasingly at the forefront of hydrological modelling. Many scientific issues in hydrological modelling demand for additional system variables besides a simulation of runoff only, such as groundwater recharge or soil moisture conditions. Models that include soil water simulations are either very simplified or require a high number of parameters. Against this backdrop there is a heightened demand of observations to be used to calibrate the model. A reasonable integration of groundwater data or remote sensing data in calibration procedures as well as the identifiability of physically plausible sets of parameters is subject to research in the field of hydrology. Since this data is often combined with conceptual models, the given interfaces are not suitable for such demands. Furthermore, the application of automated optimisation procedures is generally associated with conceptual models, whose (fast) computing times allow many iterations of the optimisation in an acceptable time frame. One of the main aims of this study is to reduce the discrepancy between scientific and practical applications in the field of hydrological modelling. Therefore, the soil model DYVESOM (DYnamic VEgetation SOil Model) was developed as one of the primary components of the hydrological modelling system PANTA RHEI. DYVESOMs structure provides the required interfaces for the calibrations made at runoff, satellite based soil moisture and groundwater level. The model considers spatial and temporal differentiated feedback of the development of the vegetation on the soil system. In addition, small scale heterogeneities of soil properties (subgrid-variability) are parameterized by variation of van Genuchten parameters depending on distribution functions. Different sets of parameters are operated simultaneously while interacting with each other. The developed soil model is innovative regarding concept

  11. Rainwater lens dynamics and mixing between infiltrating rainwater and upward saline groundwater seepage beneath a tile-drained agricultural field

    NARCIS (Netherlands)

    De Louw, Perry G.B.; Eeman, Sara; Oude Essink, Gualbert; Vermue, Esther; Post, Vincent E.A.

    2013-01-01

    Thin rainwater lenses (RW-lenses) near the land surface are often the only source of freshwater in agricultural areas with regionally-extensive brackish to saline groundwater. The seasonal and inter-annual dynamics of these lenses are poorly known. Here this knowledge gap is addressed by investigati

  12. Effects of road salts on groundwater and surface water dynamics of socium and chloride in an urban restored stream

    Science.gov (United States)

    Road salts are a growing environmental concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na+ and Cl− in Minebank Run (MBR), an urban stream in Maryland, USA. We observed an increasing salinity trend in this restored stream. Current basef...

  13. Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222

    Science.gov (United States)

    Dimova, N.T.; Burnett, W.C.

    2011-01-01

    In order to evaluate groundwater discharge into small lakes we constructed a model that is based on the budget of 222Rn (radon t1/2 5 3.8 d) as a tracer. The main assumptions in our model are that the lake's waters are wellmixed horizontally and vertically; the only significant 222Rn source is via groundwater discharge; and the only losses are due to decay and atmospheric evasion. In order to evaluate the groundwater-derived 222Rn flux, we monitored the 222Rn concentration in lake water over periods long enough (usually 1-3 d) to observe changes likely caused by variations in atmospheric exchange (primarily a function of wind speed and temperature). We then attempt to reproduce the observed record by accounting for decay and atmospheric losses and by estimating the total 222Rn input flux using an iterative approach. Our methodology was tested in two lakes in central Florida: one of which is thought to have significant groundwater inputs (Lake Haines) and another that is known not to have any groundwater inflows but requires daily groundwater augmentation from a deep aquifer (Round Lake). Model results were consistent with independent seepage meter data at both Lake Haines (positive seepage of ??? 1.6 ?? 104 m3 d-1 in Mar 2008) and at Round Lake (no net groundwater seepage). ?? 2011, by the American Society of Limnology and Oceanography, Inc.

  14. [Influence of human activities on groundwater environment based on coefficient variation method].

    Science.gov (United States)

    Zhao, Wei; Lin, Jian; Wang, Shu-Fang; Liu, Ji-Lai; Chen, Zhong-Rong; Kou, Wen-Jie

    2013-04-01

    Groundwater system in the plain area of Beijing can be divided into six subsystems. Due to the different hydrogeological conditions of the subsystems, the degrees to which human activities affect the subsystems are also diverse. In order to evaluate the influence of human activities on each subsystem, the first and second aquifer with relatively poor water quality were chosen to be the evaluating positions, based on the data of groundwater sampled in September, 2011. With respect to human activities affect index such as total hardness, TDS, sulfate and ammonium, variation coefficient methods were used to calculate the weight of each index. Then scores were obtained for each index with national standard as reference, and superposition calculations were used to gain comprehensive scores, finally the groundwater quality conditions were evaluated. Contrast analyses were used to evaluate the incidence of human activities with groundwater subsystems as evaluation unit and water quality partitions as evaluation factors. The results indicate that the influence of human activities on the first aquifer is greater than that of the second aquifer, the Yongding river groundwater subsystems and the Chaobai river groundwater subsystems are affected more than other groundwater subsystems.

  15. Applicability of ELISA-based Determination of Pesticides for Groundwater Quality Monitoring

    Science.gov (United States)

    Tsuchihara, Takeo; Yoshimoto, Shuhei; Ishida, Satoshi; Imaizumi, Masayuki

    The principals and procedures of ELISA (Enzyme-linked Immunosorbent Assay)-based determination of pesticides (Fenitrothion) in environmental samples were reviewed, and the applicability of the ELISA method for groundwater quality monitoring were validated through the experimental tracer tests in soil columns and the field test in Okinoerabu Island. The test results showed that the ELISA method could be useful not only for screening but also for quantitative analysis of pesticides. In the experimental tracer tests in soil columns, the retardation of pesticides leaching compared with conservative tracers were observed. In the field test, the contamination of the pesticide was detected in groundwater samples in Okinoerabu Island, even though the targeted pesticide was considered to be applied to the upland field 4 months ago. In order to investigate the transport and fate of pesticides in groundwater taking into account retardation from the field to groundwater table and the residue in groundwater, continuous observations of pesticides in groundwater are in a strong need, and the ELISA method is applicable to the long-term quality groundwater monitoring.

  16. Entropy-Based Approach to Remove Redundant Monitoring Wells from Regional-Scale Groundwater Network

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An entropy-based approach is applied to identify redundant wells in the network. In the process of this research, groundwater-monitoring network is considered as a communication system with a capability to transfer information, and monitoring wells are taken as information receivers. The concepts of entropy and mutual information are then applied to measure the information content of individual monitoring well and information relationship between monitoring well pairs. The efficiency of information transfer among monitoring wells is the basis to judge the redundancy in the network. And the capacity of the monitoring wells to provide information on groundwater is the point of evaluation to identify redundant monitoring wells. This approach is demonstrated using the data from a regional-scale groundwater network in Hebei plain, China. The result shows that the entropy-based method is recommendable in optimizing groundwater networks, especially for those within media of higher heterogeneities and anisotropies.

  17. A New Windows-based Program for Analyzing Groundwater Rebound in Abandoned Mines

    Science.gov (United States)

    Jae, L. S.; Choi, Y.; Yi, H.

    2014-12-01

    This study presents a new Windows-based program based on GRAM(Groundwater Rebound in Abandoned Mineworkings) model which can analyze the groundwater rebound in abandoned mines. The program consists of the graphic user interface and the simulation engine modules. Intel Parallel Studio XE 2013 and Visual Studio.NET 2010 were used to effectively implement the graphic user interface and the simulation engine modules. The standard formats of input and output files were designed by considering the characteristics of GRAM model. We carried out a case study to analyze groundwater rebound at the Dongwon coal mine, Korea. As a result, we could know that the developed program can provide useful information for predicting the groundwater rebound in abandoned mines.

  18. Using Nonlinear Dynamics for Environmental Management of the Vadose Zone and Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris

    2003-03-27

    The need to improve characterization and prediction methods for flow and transport in partially saturated and saturated heterogeneous soils and fractured rock has long been recognized. Such improvement would be specifically welcomed in the fields of environmental management, containment and remediation of contaminated sites. Until recently, flow and transport processes in heterogeneous soils and fractured rock (with oscillating irregularities) were assumed to be random and were analyzed using conventional stochastic and deterministic methods. In this presentation, I will present the results of laboratory and field investigations of flow and transport in unsaturated soils and fractured rock, applying the methods of nonlinear dynamics and deterministic chaos. I will discuss using these methods for the development of improved characterization and prediction methods as well as for the development of remediation technologies for contaminated soils and groundwater.

  19. Reactive transport modeling of biogeochemical dynamics in subterranean estuaries: Implications for submarine groundwater discharge of nutrients

    NARCIS (Netherlands)

    Spiteri, C.

    2007-01-01

    The quality of groundwater, in particular in coastal areas, is increasingly deteriorating due to the input of nutrients (NO3-, NH4+ and PO4) from septic systems and agricultural leaching. The discharge of groundwater to coastal waters, termed submarine groundwater discharge (SGD), is now recognized

  20. Evaluation of a Model-Based Groundwater Drought Indicator in the Conterminous U.S.

    Science.gov (United States)

    Li, Bailing; Rodell, Matthew

    2015-01-01

    Monitoring groundwater drought using land surface models is a valuable alternative given the current lack of systematic in situ measurements at continental and global scales and the low resolution of current remote sensing based groundwater data. However, uncertainties inherent to land surface models may impede drought detection, and thus should be assessed using independent data sources. In this study, we evaluated a groundwater drought index (GWI) derived from monthly groundwater storage output from the Catchment Land Surface Model (CLSM) using a GWI similarly derived from in situ groundwater observations. Groundwater observations were obtained from unconfined or semi-confined aquifers in eight regions of the central and northeastern U.S. Regional average GWI derived from CLSM exhibited strong correlation with that from observation wells, with correlation coefficients between 0.43 and 0.92. GWI from both in situ data and CLSM was generally better correlated with the Standard Precipitation Index (SPI) at 12 and 24 month timescales than at shorter timescales, but it varied depending on climate conditions. The correlation between CLSM derived GWI and SPI generally decreases with increasing depth to the water table, which in turn depends on both bedrock depth (a CLSM parameter) and mean annual precipitation. The persistence of CLSM derived GWI is spatially varied and again shows a strong influence of depth to groundwater. CLSM derived GWI generally persists longer than GWI derived from in situ data, due at least in part to the inability of coarse model inputs to capture high frequency meteorological variability at local scales. The study also showed that groundwater can have a significant impact on soil moisture persistence where the water table is shallow. Soil moisture persistence was estimated to be longer in the eastern U.S. than in the west, in contrast to previous findings that were based on models that did not represent groundwater. Assimilation of terrestrial

  1. Risk-based prioritization method for the classification of groundwater pesticide pollution from agricultural regions.

    Science.gov (United States)

    Yang, Yu; Lian, Xin-Ying; Jiang, Yong-Hai; Xi, Bei-Dou; He, Xiao-Song

    2017-06-03

    Agricultural regions are a significant source of groundwater pesticide pollution. To ensure that agricultural regions with a significantly high risk of groundwater pesticide contamination are properly managed, a risk-based ranking method related to groundwater pesticide contamination is needed. In the present paper, a risk-based prioritization method for the classification of groundwater pesticide pollution from agricultural regions was established. The method encompasses 3 phases, including indicator selection, characterization, and classification. In the risk ranking index system employed here, 17 indicators involving the physicochemical properties, environmental behavior characteristics, pesticide application methods, and inherent vulnerability of groundwater in the agricultural region were selected. The boundary of each indicator was determined using K-means cluster analysis based on a survey of a typical agricultural region and the physical and chemical properties of 300 typical pesticides. The total risk characterization was calculated by multiplying the risk value of each indicator, which could effectively avoid the subjectivity of index weight calculation and identify the main factors associated with the risk. The results indicated that the risk for groundwater pesticide contamination from agriculture in a region could be ranked into 4 classes from low to high risk. This method was applied to an agricultural region in Jiangsu Province, China, and it showed that this region had a relatively high risk for groundwater contamination from pesticides, and that the pesticide application method was the primary factor contributing to the relatively high risk. The risk ranking method was determined to be feasible, valid, and able to provide reference data related to the risk management of groundwater pesticide pollution from agricultural regions. Integr Environ Assess Manag 2017;00:000-000. © 2017 SETAC. © 2017 SETAC.

  2. Index-based groundwater vulnerability mapping models using hydrogeological settings: A critical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Prashant, E-mail: prashantkumar@csio.res.in [CSIR-Central Scientific Instruments Organisation, Chandigarh 160030 (India); Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030 (India); Bansod, Baban K.S.; Debnath, Sanjit K. [CSIR-Central Scientific Instruments Organisation, Chandigarh 160030 (India); Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030 (India); Thakur, Praveen Kumar [Indian Institute of Remote Sensing (ISRO), Dehradun 248001 (India); Ghanshyam, C. [CSIR-Central Scientific Instruments Organisation, Chandigarh 160030 (India); Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030 (India)

    2015-02-15

    Groundwater vulnerability maps are useful for decision making in land use planning and water resource management. This paper reviews the various groundwater vulnerability assessment models developed across the world. Each model has been evaluated in terms of its pros and cons and the environmental conditions of its application. The paper further discusses the validation techniques used for the generated vulnerability maps by various models. Implicit challenges associated with the development of the groundwater vulnerability assessment models have also been identified with scientific considerations to the parameter relations and their selections. - Highlights: • Various index-based groundwater vulnerability assessment models have been discussed. • A comparative analysis of the models and its applicability in different hydrogeological settings has been discussed. • Research problems of underlying vulnerability assessment models are also reported in this review paper.

  3. Risk-Based Prioritization Method for the Classification of Groundwater Pollution from Hazardous Waste Landfills.

    Science.gov (United States)

    Yang, Yu; Jiang, Yong-Hai; Lian, Xin-Ying; Xi, Bei-Dou; Ma, Zhi-Fei; Xu, Xiang-Jian; An, Da

    2016-12-01

    Hazardous waste landfill sites are a significant source of groundwater pollution. To ensure that these landfills with a significantly high risk of groundwater contamination are properly managed, a risk-based ranking method related to groundwater contamination is needed. In this research, a risk-based prioritization method for the classification of groundwater pollution from hazardous waste landfills was established. The method encompasses five phases, including risk pre-screening, indicator selection, characterization, classification and, lastly, validation. In the risk ranking index system employed here, 14 indicators involving hazardous waste landfills and migration in the vadose zone as well as aquifer were selected. The boundary of each indicator was determined by K-means cluster analysis and the weight of each indicator was calculated by principal component analysis. These methods were applied to 37 hazardous waste landfills in China. The result showed that the risk for groundwater contamination from hazardous waste landfills could be ranked into three classes from low to high risk. In all, 62.2 % of the hazardous waste landfill sites were classified in the low and medium risk classes. The process simulation method and standardized anomalies were used to validate the result of risk ranking; the results were consistent with the simulated results related to the characteristics of contamination. The risk ranking method was feasible, valid and can provide reference data related to risk management for groundwater contamination at hazardous waste landfill sites.

  4. Risk-Based Prioritization Method for the Classification of Groundwater Pollution from Hazardous Waste Landfills

    Science.gov (United States)

    Yang, Yu; Jiang, Yong-Hai; lian, Xin-Ying; Xi, Bei-Dou; Ma, Zhi-fei; Xu, Xiang-Jian; An, Da

    2016-12-01

    Hazardous waste landfill sites are a significant source of groundwater pollution. To ensure that these landfills with a significantly high risk of groundwater contamination are properly managed, a risk-based ranking method related to groundwater contamination is needed. In this research, a risk-based prioritization method for the classification of groundwater pollution from hazardous waste landfills was established. The method encompasses five phases, including risk pre-screening, indicator selection, characterization, classification and, lastly, validation. In the risk ranking index system employed here, 14 indicators involving hazardous waste landfills and migration in the vadose zone as well as aquifer were selected. The boundary of each indicator was determined by K-means cluster analysis and the weight of each indicator was calculated by principal component analysis. These methods were applied to 37 hazardous waste landfills in China. The result showed that the risk for groundwater contamination from hazardous waste landfills could be ranked into three classes from low to high risk. In all, 62.2 % of the hazardous waste landfill sites were classified in the low and medium risk classes. The process simulation method and standardized anomalies were used to validate the result of risk ranking; the results were consistent with the simulated results related to the characteristics of contamination. The risk ranking method was feasible, valid and can provide reference data related to risk management for groundwater contamination at hazardous waste landfill sites.

  5. Superfund record of decision (EPA Region 9): McClellan Air Force Base, Basewide Groundwater Operable Unit, Sacramento, CA, May 11, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Interim Record of Decision (ROD) presents the interim remedial action for the Groundwater Operable Unit (Groundwater OU) at the McClellan Air Force Base (McClellan AFB) Superfund site in Sacramento, California. The Groundwater OU addresses all of the VOC-contaminated groundwater at McClellan AFB. The Groundwater OU remedy is designed to prevent the spread of contamination that is already in the groundwater by containing groundwater with concentrations greater than maximum contaminant levels (MCLs). The remedy is also designed to remove to the maximum extent practicable the mass of contamination that lies in that volume of the groundwater.

  6. Groundwater ecosystem resilience to organic contaminations: microbial and geochemical dynamics throughout the 5-year life cycle of a surrogate ethanol blend fuel plume.

    Science.gov (United States)

    Ma, Jie; Nossa, Carlos W; Alvarez, Pedro J J

    2015-09-01

    The capacity of groundwater ecosystem to recover from contamination by organic chemicals is a vital concern for environmental scientists. A pilot-scale aquifer system was used to investigate the long-term dynamics of contaminants, groundwater geochemistry, and microbial community structure (by 16S rRNA gene pyrosequencing and quantitative real-time PCR) throughout the 5-year life cycle of a surrogate ethanol blend fuel plume (10% ethanol + 50 mg/L benzene + 50 mg/L toluene). Two-year continuous ethanol-blended release significantly changed the groundwater geochemistry (resulted in anaerobic, low pH, and organotrophic conditions) and increased bacterial and archaeal populations by 82- and 314-fold respectively. Various anaerobic heterotrophs (fermenters, acetogens, methanogens, and hydrocarbon degraders) were enriched. Two years after the release was shut off, all contaminants and their degradation byproducts disappeared and groundwater geochemistry completely restored to the pre-release states (aerobic, neutral pH, and oligotrophic). Bacterial and archaeal populations declined by 18- and 45-fold respectively (relative to the time of shut off). Microbial community structure reverted towards the pre-release states and alpha diversity indices rebounded, suggesting the resilience of microbial community to ethanol blend releases. We also found shifts from O2-sensitive methanogens (e.g., Methanobacterium) to methanogens that are not so sensitive to O2 (e.g., Methanosarcina and Methanocella), which is likely to contribute to the persistence of methanogens and methane generation following the source removal. Overall, the rapid disappearance of contaminants and their metabolites, rebound of geochemical footprints, and resilience of microbial community unequivocally document the natural capacity of groundwater ecosystem to attenuate and recover from a large volume of catastrophic spill of ethanol-based biofuel.

  7. Examining regional groundwater-surface water dynamics using an integrated hydrologic model of the San Joaquin River basin

    Science.gov (United States)

    Gilbert, James M.; Maxwell, Reed M.

    2017-02-01

    Widespread irrigated agriculture and a growing population depend on the complex hydrology of the San Joaquin River basin in California. The challenge of managing this complex hydrology hinges, in part, on understanding and quantifying how processes interact to support the groundwater and surface water systems. Here, we use the integrated hydrologic platform ParFlow-CLM to simulate hourly 1 km gridded hydrology over 1 year to study un-impacted groundwater-surface water dynamics in the basin. Comparisons of simulated results to observations show the model accurately captures important regional-scale partitioning of water among streamflow, evapotranspiration (ET), snow, and subsurface storage. Analysis of this simulated Central Valley groundwater system reveals the seasonal cycle of recharge and discharge as well as the role of the small but temporally constant portion of groundwater recharge that comes from the mountain block. Considering uncertainty in mountain block hydraulic conductivity, model results suggest this component accounts for 7-23 % of total Central Valley recharge. A simulated surface water budget guides a hydrograph decomposition that quantifies the temporally variable contribution of local runoff, valley rim inflows, storage, and groundwater to streamflow across the Central Valley. Power spectra of hydrograph components suggest interactions with groundwater across the valley act to increase longer-term correlation in San Joaquin River outflows. Finally, model results reveal hysteresis in the relationship between basin streamflow and groundwater contributions to flow. Using hourly model results, we interpret the hysteretic cycle to be a result of daily-scale fluctuations from precipitation and ET superimposed on seasonal and basin-scale recharge and discharge.

  8. A dynamically-coupled groundwater, land surface and regional climate model to predict seasonal watershed flow and groundwater response, FINAL LDRD REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R; Kollet, S; Chow, F; Granvold, P; Duan, Q

    2007-02-23

    This final report is organized in four sections. Section 1 is the project summary (below), Section 2 is a submitted manuscript that describes the offline, or spinup simulations in detail, Section 3 is also a submitted manuscript that describes the online, or fully-coupled simulations in detail and Section 3, which is report that describes work done via a subcontract with UC Berkeley. The goal of this project was to develop and apply a coupled regional climate, land-surface, groundwater flow model as a means to further understand important mass and energy couplings between regional climate, the land surface, and groundwater. The project involved coupling three distinct submodels that are traditionally used independently with abstracted and potentially oversimplified (inter-model) boundary conditions. This coupled model lead to (1) an improved understanding of the sensitivity and importance of coupled physical processes from the subsurface to the atmosphere; (2) a new tool for predicting hydrologic conditions (rainfall, temperature, snowfall, snowmelt, runoff, infiltration and groundwater flow) at the watershed scale over a range of timeframes; (3) a simulation of hydrologic response of a characteristic watershed that will provide insight into the certainty of hydrologic forecasting, dominance and sensitivity of groundwater dynamics on land-surface fluxes; and (4) a more realistic model representation of weather predictions, precipitation and temperature, at the regional scale. Regional climate models are typically used for the simulation of weather, precipitation and temperature behavior over 10-1000 km domains for weather or climate prediction purposes, and are typically driven by boundary conditions derived from global climate models (GCMs), observations or both. The land or ocean surface typically represents a bottom boundary condition of these models, where important mass (water) and energy fluxes are approximated. The viability and influence of these

  9. A dynamically-coupled groundwater, land surface and regional climate model to predict seasonal watershed flow and groundwater response, FINAL LDRD REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R; Kollet, S; Chow, F; Granvold, P; Duan, Q

    2007-02-23

    This final report is organized in four sections. Section 1 is the project summary (below), Section 2 is a submitted manuscript that describes the offline, or spinup simulations in detail, Section 3 is also a submitted manuscript that describes the online, or fully-coupled simulations in detail and Section 3, which is report that describes work done via a subcontract with UC Berkeley. The goal of this project was to develop and apply a coupled regional climate, land-surface, groundwater flow model as a means to further understand important mass and energy couplings between regional climate, the land surface, and groundwater. The project involved coupling three distinct submodels that are traditionally used independently with abstracted and potentially oversimplified (inter-model) boundary conditions. This coupled model lead to (1) an improved understanding of the sensitivity and importance of coupled physical processes from the subsurface to the atmosphere; (2) a new tool for predicting hydrologic conditions (rainfall, temperature, snowfall, snowmelt, runoff, infiltration and groundwater flow) at the watershed scale over a range of timeframes; (3) a simulation of hydrologic response of a characteristic watershed that will provide insight into the certainty of hydrologic forecasting, dominance and sensitivity of groundwater dynamics on land-surface fluxes; and (4) a more realistic model representation of weather predictions, precipitation and temperature, at the regional scale. Regional climate models are typically used for the simulation of weather, precipitation and temperature behavior over 10-1000 km domains for weather or climate prediction purposes, and are typically driven by boundary conditions derived from global climate models (GCMs), observations or both. The land or ocean surface typically represents a bottom boundary condition of these models, where important mass (water) and energy fluxes are approximated. The viability and influence of these

  10. Evaluating storm-scale groundwater recharge dynamics with coupled weather radar data and unsaturated zone modeling

    Science.gov (United States)

    Nasta, P.; Gates, J. B.; Lock, N.; Houston, A. L.

    2013-12-01

    Groundwater recharge rates through the unsaturated zone emerge from complex interactions within the soil-vegetation-atmosphere system that derive from nonlinear relationships amongst atmospheric boundary conditions, plant water use and soil hydraulic properties. While it is widely recognized that hydrologic models must capture soil water dynamics in order to provide reliable recharge estimates, information on episodic recharge generation remains uncommon, and links between storm-scale weather patterns and their influence on recharge is largely unexplored. In this study, the water balance of a heterogeneous one-dimensional soil domain (3 m deep) beneath a typical rainfed corn agro-ecosystem in eastern Nebraska was numerically simulated in HYDRUS-1D for 12 years (2001-2012) on hourly time steps in order to assess the relationships between weather events and episodic recharge generation. WSR-88D weather radar reflectivity data provided both rainfall forcing data (after estimating rain rates using the z/r ratio method) and a means of storm classification on a scale from convective to stratiform using storm boundary characteristics. Individual storm event importance to cumulative recharge generation was assessed through iterative scenario modeling (773 total simulations). Annual cumulative recharge had a mean value of 9.19 cm/yr (about 12 % of cumulative rainfall) with coefficient of variation of 73%. Simulated recharge generation events occurred only in late winter and spring, with a peak in May (about 35% of total annual recharge). Recharge generation is observed primarily in late spring and early summer because of the combination of high residual soil moisture following a winter replenishment period, heavy convective storms, and low to moderate potential evapotranspiration rates. During the growing season, high rates of root water uptake cause rapid soil water depletion, and the concurrent high potential evapotranspiration and low soil moisture prevented recharge

  11. Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium.

    Science.gov (United States)

    Klump, Stephan; Kipfer, Rolf; Cirpka, Olaf A; Harvey, Charles F; Brennwald, Matthias S; Ashfaque, Khandaker N; Badruzzaman, Abu Borhan M; Hug, Stephan J; Imboden, Dieter M

    2006-01-01

    The contamination of groundwater by geogenic arsenic is the cause of major health problems in south and southeast Asia. Various hypotheses proposing that As is mobilized by the reduction of iron (oxy)hydroxides are now under discussion. One important and controversial question concerns the possibility that As contamination might be related to the extraction of groundwater for irrigation purposes. If As were mobilized by the inflow of re-infiltrating irrigation water rich in labile organic carbon, As-contaminated groundwater would have been recharged after the introduction of groundwater irrigation 20-40 years ago. We used environmental tracer data and conceptual groundwater flow and transport modeling to study the effects of groundwater pumping and to assess the role of reinfiltrated irrigation water in the mobilization of As. Both the tracer data and the model results suggest that pumping induces convergent groundwater flow to the depth of extraction and causes shallow, young groundwater to mix with deep, old groundwater. The As concentrations are greatest at a depth of 30 m where these two groundwater bodies come into contact and mix. There, within the mixing zone, groundwater age significantly exceeds 30 years, indicating that recharge of most of the contaminated water occurred before groundwater irrigation became established in Bangladesh. Hence, at least at our study site, the results call into question the validity of the hypothesis that re-infiltrated irrigation water is the direct cause of As mobilization; however, the tracer data suggest that, at our site, hydraulic changes due to groundwater extraction for irrigation might be related to the mobilization of As.

  12. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  13. Implementing groundwater extraction in life cycle impact assessment: characterization factors based on plant species richness for The Netherlands.

    Science.gov (United States)

    van Zelm, Rosalie; Schipper, Aafke M; Rombouts, Michiel; Snepvangers, Judith; Huijbregts, Mark A J

    2011-01-15

    An operational method to evaluate the environmental impacts associated with groundwater use is currently lacking in life cycle assessment (LCA). This paper outlines a method to calculate characterization factors that address the effects of groundwater extraction on the species richness of terrestrial vegetation. Characterization factors (CF) were derived for The Netherlands and consist of a fate and an effect part. The fate factor equals the change in drawdown due to a change in groundwater extraction and expresses the amount of time required for groundwater replenishment. It was obtained with a grid-specific steady-state groundwater flow model. Effect factors were obtained from groundwater level response curves of potential plant species richness, which was constructed based on the soil moisture requirements of 625 plant species. Depending on the initial groundwater level, effect factors range up to 9.2% loss of species per 10 cm of groundwater level decrease. The total Dutch CF for groundwater extraction depended on the value choices taken and ranged from 0.09 to 0.61 m(2)·yr/m(3). For tap water production, we showed that groundwater extraction can be responsible for up to 32% of the total terrestrial ecosystem damage. With the proposed approach, effects of groundwater extraction on terrestrial ecosystems can be systematically included in LCA.

  14. Nitrate dynamics in the soil and unconfined aquifer in arid groundwater coupled ecosystems of the Monte desert, Argentina

    Science.gov (United States)

    Aranibar, J. N.; Villagra, P. E.; Gomez, M. L.; JobbáGy, E.; Quiroga, M.; Wuilloud, R. G.; Monasterio, R. P.; Guevara, A.

    2011-12-01

    In arid ecosystems, vegetation controls water and nitrate movement in the soil, reducing solute transport to aquifers. Here we analyzed nitrate distribution and transport throughout the soil profile and to the groundwater under different ecologic (vegetation type) and topographic (upland/lowland) situations across sand dune ecosystems with shallow water tables, subject to domestic grazing in the Monte desert. Based on vertical nitrate distributions in deep soil profiles we found that dune uplands (deep groundwater, low productivity) lost relatively more nitrogen than lowlands (shallow groundwater, high productivity), likely reinforcing productivity contrasts along these topographic positions. The traditional practice of nighttime animal concentration in corrals may affect nitrogen transport, with poorly vegetated interdunes at livestock posts showing higher subsoil nitrate concentrations than a well-vegetated nonsettled interdune. Vegetation left its imprint on the vertical distribution of nitrate, as suggested by the presence of a depletion zone that matched the depth of maximum root densities, followed by an underlying zone of accumulation. To explore how nitrogen exports to groundwater could affect water quality and nutrient supply to phreatophyte plants, we characterized groundwater flow patterns based on a potentiometric map and sediment characteristics, and measured groundwater electric conductivity, nitrate and arsenic concentration, and stable isotopes across 29 wells (5.8-12 m deep). Under the present land use and climate conditions, nitrate leaching does not seem to have an important and widespread effect on water quality. Nitrate concentration exceeded established limits for human consumption (45 mg L-1) in only one well, while arsenic concentration exceeded the established limits (10 μg L-1) in all but one well, reaching extreme values of 629 μg L-1. Yet, our analysis suggests that nitrate exports from corrals can reach the aquifer in localized areas

  15. Global Groundwater related Risk Indicators: quantifying groundwater stress and groundwater table decline (1990-2010) at global scale

    Science.gov (United States)

    Faneca Sanchez, Marta; Sutanudjaja, Edwin; Kuijper, Marijn; Bierkens, Marc

    2016-04-01

    Groundwater is an invisible but indispensable resource for the economic development of many countries. Due to the need for this resource, in many cases it is exploited under severe pressure and the exploitation can become not sustainable. The non-sustainable exploitation of water is a well-known problem on both regional and global scales. However, most currently-available assessments on water stress still mostly focus on surface water and on water balances. In this work, we presented two global maps of groundwater risk indicators: an updated version of the groundwater stress (Gleeson et al., 2011, DOI: 10.1038/nature11295) and an indicator on groundwater table decline for the period 1990-2010. To calculate both indicators, we used the updated PCR-GLOBWB model output at 5 arcmin resolution (about 10 km at the equator), that is extended with an offline coupling to a global groundwater MODFLOW model. PCR-GLOBWB simulates daily river discharge and groundwater recharge, as well as surface water and groundwater abstraction rates. The latter are estimated internally within the model based on the simulation of their availabilities and water demands for irrigation and other sectors. The daily output of PCR-GLOBWB would then be aggregated to the monthly resolution and used to force the MODFLOW groundwater model resolving spatio-temporal groundwater table dynamics, incorporating the simulated groundwater abstraction of PCR-GLOBWB. Using the PCR-GLOBWB and MODFLOW simulation results from the period 1990-2010, we then quantified groundwater stress and assessed the groundwater table decline. Results are presented on four different spatial scales: 5 arcmin pixel, drainage/sub-catchment unit, state level, and major aquifer unit. The maps clearly show where groundwater is under stress, where there is a trend in the drop of the groundwater table, the slope of the drop and the significance of it.

  16. Incorporating Groundwater Dynamics and Surface/Subsurface Runoff Mechanisms in Regional Climate Modeling over River Basins in China

    Institute of Scientific and Technical Information of China (English)

    QIN Peihua; XIE Zhenghui; YUAN Xing

    2013-01-01

    To improve the capability of numerical modeling of climate-groundwater interactions,a groundwater component and new surface/subsurface runoff schemes were incorporated into the regional climate model RegCM3,renamed RegCM3_Hydro.20-year simulations from both models were used to investigate the effects of groundwater dynamics and surface/subsurface runoff parameterizations on regional climate over seven river basins in China.A comparison of results shows that RegCM3_Hydro reduced the positive biases of annual and summer (June,July,August) precipitation over six river basins,while it slightly increased the bias over the Huaihe River Basin in eastern China.RegCM3_Hydro also reduced the cold bias of surface air temperature from RegCM3 across years,especially for the Haihe and the Huaihe river basins,with significant bias reductions of 0.80℃ and 0.88℃,respectively.The spatial distribution and seasonal variations of water table depth were also well captured.With the new surface and subsurface runoff schemes,RegCM3_Hydro increased annual surface runoff by 0.11-0.62 mm d-1 over the seven basins.Though previous studies found that incorporating a groundwater component tends to increase soil moisture due to the consideration of upward groundwater recharge,our present work shows that the modified runoff schemes cause less infiltration,which outweigh the recharge from groundwater and result in drier soil,and consequently cause less latent heat and more sensible heat over most of the basins.

  17. Hydro-environmental management of groundwater resources: A fuzzy-based multi-objective compromise approach

    Science.gov (United States)

    Alizadeh, Mohammad Reza; Nikoo, Mohammad Reza; Rakhshandehroo, Gholam Reza

    2017-08-01

    Sustainable management of water resources necessitates close attention to social, economic and environmental aspects such as water quality and quantity concerns and potential conflicts. This study presents a new fuzzy-based multi-objective compromise methodology to determine the socio-optimal and sustainable policies for hydro-environmental management of groundwater resources, which simultaneously considers the conflicts and negotiation of involved stakeholders, uncertainties in decision makers' preferences, existing uncertainties in the groundwater parameters and groundwater quality and quantity issues. The fuzzy multi-objective simulation-optimization model is developed based on qualitative and quantitative groundwater simulation model (MODFLOW and MT3D), multi-objective optimization model (NSGA-II), Monte Carlo analysis and Fuzzy Transformation Method (FTM). Best compromise solutions (best management policies) on trade-off curves are determined using four different Fuzzy Social Choice (FSC) methods. Finally, a unanimity fallback bargaining method is utilized to suggest the most preferred FSC method. Kavar-Maharloo aquifer system in Fars, Iran, as a typical multi-stakeholder multi-objective real-world problem is considered to verify the proposed methodology. Results showed an effective performance of the framework for determining the most sustainable allocation policy in groundwater resource management.

  18. Sustainable management of a coupled groundwater-agriculture hydrosystem using multi-criteria simulation based optimisation.

    Science.gov (United States)

    Grundmann, Jens; Schütze, Niels; Lennartz, Franz

    2013-01-01

    In this paper we present a new simulation-based integrated water management tool for sustainable water resources management in arid coastal environments. This tool delivers optimised groundwater withdrawal scenarios considering saltwater intrusion as a result of agricultural and municipal water abstraction. It also yields a substantially improved water use efficiency of irrigated agriculture. To allow for a robust and fast operation we unified process modelling with artificial intelligence tools and evolutionary optimisation techniques. The aquifer behaviour is represented using an artificial neural network (ANN) which emulates a numerical density-dependent groundwater flow model. The impact of agriculture is represented by stochastic crop water production functions (SCWPF). Simulation-based optimisation techniques together with the SCWPF and ANN deliver optimal groundwater abstraction and cropping patterns. To address contradicting objectives, e.g. profit-oriented agriculture vs. sustainable abstraction scenarios, we performed multi-objective optimisations using a multi-criteria optimisation algorithm.

  19. Comparing groundwater recharge and base flow in the Bukmoongol small-forested watershed, Korea

    Indian Academy of Sciences (India)

    E A Combalicer; S H Lee; S Ahn; D Y Kim; S Im

    2008-10-01

    Groundwater recharge and base flow using different investigated methods are simulated in the 15-ha Bukmoongol small-forested watershed located at the southern part of Korea.The WHAT system, PART,RORA,PULSE,BFI,and RAP software are used to estimate groundwater recharge or base flow and base flow index from the measured stream flow.Results show that about 15 –31 per cent of annual rainfall might be contributed for base flow.The watershed groundwater recharge proportions are computed to about 10 –21 per cent during the wet period and 23 –32 per cent for the remainder periods.Mean annual base flow indices vary from 0.25 to 0.76 estimated using different methods. However,the study found out that all methods were significantly correlated with each other.The similarity of various methods is expressed as a weighted relationship provided by the matrix product from the principal component analysis.Overall,the BFI and WHAT software appeared consistent in estimating recharge or base flow,and base flow index under Korea ’s conditions.The case study recommends the application of different models to other watersheds as well as in low-lying areas where most observation groundwater wells are located with available stream flow data.

  20. Groundwater Quality Assessment Based on Improved Water Quality Index in Pengyang County, Ningxia, Northwest China

    Directory of Open Access Journals (Sweden)

    Li Pei-Yue

    2010-01-01

    Full Text Available The aim of this work is to assess the groundwater quality in Pengyang County based on an improved water quality index. An information entropy method was introduced to assign weight to each parameter. For calculating WQI and assess the groundwater quality, total 74 groundwater samples were collected and all these samples subjected to comprehensive physicochemical analysis. Each of the groundwater samples was analyzed for 26 parameters and for computing WQI 14 parameters were chosen including chloride, sulphate, pH, chemical oxygen demand (COD, total dissolved solid (TDS, total hardness (TH, nitrate, ammonia nitrogen, fluoride, total iron (Tfe, arsenic, iodine, aluminum, nitrite, metasilicic acid and free carbon dioxide. At last a zoning map of different water quality was drawn. Information entropy weight makes WQI perfect and makes the assessment results more reasonable. The WQI for 74 samples ranges from 12.40 to 205.24 and over 90% of the samples are below 100. The excellent quality water area covers nearly 90% of the whole region. The high value of WQI has been found to be closely related with the high values of TDS, fluoride, sulphate, nitrite and TH. In the medium quality water area and poor quality water area, groundwater needs some degree of pretreated before consumption. From the groundwater conservation view of point, the groundwater still need protection and long term monitoring in case of future rapid industrial development. At the same time, preventive actions on the agricultural non point pollution sources in the plain area are also need to be in consideration.

  1. Water balance-based estimation of groundwater recharge in the Lake Chad Basin

    Science.gov (United States)

    Babamaaji, R. A.; Lee, J.

    2012-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought and shortage of water has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the change of land use and its characteristics must be a first step to find how such changes disturb the water cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and vertical recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires not only reliable forecasting of changes in the major climatic variables, but also accurate estimation of groundwater recharge. Spatial variations in the land use/land cover, soil texture, topographic slope, and meteorological conditions should be accounted for in the recharge estimation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal average spatial distribution of surface runoff, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB.

  2. Modeling Changing Morphology and Density Dependent Groundwater Flow in a Dynamic Environment: case study

    Science.gov (United States)

    Huizer, S.; Bierkens, M. F.; Oude Essink, G.

    2014-12-01

    In many coastal regions around the world climate change will lead to a sea level rise and an increase in extreme weather conditions. This prospect has resulted in a new focus on coastal protection in the Netherlands, resulting in the initiation of an innovative coastal defence project called the Sand Motor. In this project a large body of sand or so-called mega-nourishment has been constructed along the Dutch coast. This body of sand will be distributed slowly along the coastline by wind, waves and currents. Keeping the coastal defence structures in place and creating a unique, dynamic environment with changing morphology over time. Because of the large size of the body of sand (21.5 million m3) and the position at the coastline and near coastal dunes, the Sand Motor might cause a substantial increase of the fresh water availability by increasing the volume fresh water lens underneath the dunes. This creates an opportunity to combine coastal protection with an increase of fresh water resources in coastal regions. With a three dimensional, density dependent, groundwater model the effects of changing morphology over time and the potential increase in fresh water availability have been studied.

  3. The use of video imagery to analyse groundwater and shoreline dynamics on a dissipative beach

    NARCIS (Netherlands)

    Huisman, C.E.; Bryan, K.R.; Coco, G.; Ruessink, B.G.

    2011-01-01

    Groundwater seepage is known to influence beach erosion and accretion processes. However, field measurements of the variation of the groundwater seepage line (GWSL) and the vertical elevation difference between the GWSL and the shoreline are limited. We developed a methodology to extract the tempora

  4. Factors controlling the evolution of groundwater dynamics and chemistry in the Senegal River Delta

    Directory of Open Access Journals (Sweden)

    Abdoul Aziz Gning

    2017-04-01

    New hydrological insights for the region: Results show that groundwater far away from rivers and outside irrigated plots has evolved from marine water to brines under the influence of evapotranspiration. Near rivers, salinity of groundwater is lower than seawater and groundwater mineralization seems to evolve in the direction of softening through cationic exchanges related to permanent contact with fresh water. Despite large volumes of water used for rice cultivation, groundwater does not show any real softening trend in the cultivated parcels. Results show that the mechanisms that contribute to repel salt water from the sediments correspond to a lateral flush near permanent surface water streams and not to vertical drainage and dilution with rainfall or irrigation water. It is however difficult to estimate the time required to come back to more favorable conditions of groundwater salinity.

  5. Evaluation of Groundwater Storage changes at Konya Closed Basin, Turkey using GRACE-based and in-situ measurements

    Science.gov (United States)

    Kamil Yilmaz, Koray; Saber, Mohamed; Tugrul Yilmaz, Mustafa

    2016-04-01

    The Konya Closed Basin (KCB) located in Central Anatolia, Turkey, is the primary grain producer in Turkey. The lack of sufficient surface water resources and recently changing crop patterns have led to over-exploitation of groundwater resources and resulted in significant drop in groundwater levels. For this reason monitoring of the groundwater storage change in this region is critical to understand the potential of the current water resources and to devise effective water management strategies to avoid further depletion of the groundwater resources. Therefore, the main objective of this study is to examine and assess the utility of the Gravity Recovery and Climate Experiment (GRACE) and the Global Land Data Assimilation System (GLDAS) to monitor and investigate the groundwater storage changes in the Konya Closed Basin. Groundwater storage changes are derived using GRACE and GLDAS data and then are compared with the groundwater changes derived from the observed groundwater levels. The initial results of the comparison indicate an acceptable agreement between declining trends in GRACE-based and observed groundwater storage change during the study time period (2002 to 2015). Additionally, the results indicated that the study region exhibited remarkable drought conditions during 2007-2008 period. This study shows that the GRACE/GLDAS datasets can be used to monitor the equivalent groundwater storage changes which is crucial for long-term effective water management strategies.

  6. What is baseflow? Integrating hydrometric and hydrochemical methods to assess dynamic groundwater contributions to montane streams under low flows

    Science.gov (United States)

    Blumstock, Maria; Tetzlaff, Doerthe; Nuetzmann, Gunnar; Malcolm, Iain; Soulsby, Chris

    2014-05-01

    We monitored changing groundwater-surface water interactions through an unusual prolonged dry spell in the Scottish Highlands in summer 2013. The period between May and September saw a 20 year return period drought, these changing hydrometric conditions were monitored in an intensively instrumented 3.2km2 catchment. This montane catchment is underlain by granite and metasediments and has extensive cover of diverse drift deposits. The drought saw slight declines in soil moisture and groundwater levels in valley bottom wetlands but major, rapid declines on steeper upland slopes. This coincided with gradual declines in discharge, however the chemical composition of reducing stream flows showed marked temporal variation which differed spatially. Synoptic hydrogeochemical surveys were carried out on four occasions as flows declined. Each survey repeated sampling of 30 sites on the 3km long stream network as the catchment transitioned from wet to dry conditions. Samples were analysed for major anions, cations and water isotopes. Initial surveys just after the last winter rain showed relatively homogenous stream chemistry, dominated by drainage from acidic peat soils in valley bottom areas. Stream chemistry became increasingly enriched with weathering-derived solutes (e.g. alkalinity, Ca, Mg etc.) as flows declined and groundwater contributions to flow increases. Repeat surveys showed an evolving chemistry of groundwater contributions as discharge from smaller shallower stores sequentially depleted. However, these changes showed marked spatial variability reflecting geochemical differences in the bedrock geology and the distribution of drift deposits. Importantly, much more dynamism was observed than previously thought with diverse montane groundwater bodies contributing to flows differentially during the recession. In addition, strong topographic shading in this montane catchment results in spatially variable radiation inputs and evapotranspiration. This is reflected in

  7. Using Isomap to differentiate between anthropogenic and natural effects on groundwater dynamics in a complex geological setting

    Science.gov (United States)

    Boettcher, Steven; Merz, Christoph; Lischeid, Gunnar

    2015-04-01

    control the system. The method was applied on a data set of groundwater head and lake water level. Two factors explaining more than 95 percent of the observed spatial variations were identified: (1) the anthropogenic impact of a waterworks in the study area and (2) natural groundwater recharge dynamics of different degrees of dampening at the respective sites of observation. The spatial variation of the identified processes revealed previously unknown hydraulic connections between two aquifers and between surface water bodies and groundwater. The obtained information can be used to reduce model structure uncertainty and a more efficient process-based modeling of hydraulic system behavior. Thus, the approach provides essential information to evaluate and adapt strategies for an integrated water resources management in complex landscapes. Bloschl, G., Sivapalan, M., 1995. Scale Issues in Hydrological Modeling - a Review. Hydrological Processes, 9(3-4): 251-290. Tenenbaum, J.B., de Silva, V., Langford, J.C., 2000. A global geometric framework for nonlinear dimensionality reduction. Science, 290: 2319-2323. Wood, E.F., Sivapalan, M., Beven, K., Band, L., 1988. Effects of Spatial Variability and Scale with Implications to Hydrologic Modeling. Journal of Hydrology, 102(1-4): 29-47.

  8. Entropy based groundwater monitoring network design considering spatial distribution of annual recharge

    Science.gov (United States)

    Leach, James M.; Coulibaly, Paulin; Guo, Yiping

    2016-10-01

    This study explores the inclusion of a groundwater recharge based design objective and the impact it has on the design of optimum groundwater monitoring networks. The study was conducted in the Hamilton, Halton, and Credit Valley regions of Ontario, Canada, in which the existing Ontario Provincial Groundwater Monitoring Network was augmented with additional monitoring wells. The Dual Entropy-Multiobjective Optimization (DEMO) model was used in these analyses. The value of using this design objective is rooted in the information contained within the estimated recharge. Recharge requires knowledge of climate, geomorphology, and geology of the area, thus using this objective function can help account for these physical characteristics. Two sources of groundwater recharge data were examined and compared, the first was calculated using the Precipitation-Runoff Modeling System (PRMS), and the second was an aggregation of recharge found using both the PRMS and Hydrological Simulation Program-Fortran (HSP-F). The entropy functions are used to identify optimal trade-offs between the maximum information content and the minimum shared information between the monitoring wells. The recharge objective will help to quantify hydrological characteristics of the vadose zone, and thus provide more information to the optimization algorithm. Results show that by including recharge as a design objective, the spatial coverage of the monitoring network can be improved. The study also highlights the flexibility of DEMO and its ability to incorporate additional design objectives such as the groundwater recharge.

  9. Two-dimensional vertical moisture-pressure dynamics above groundwater waves: Sand flume experiments and modelling

    Science.gov (United States)

    Shoushtari, Seyed Mohammad Hossein Jazayeri; Cartwright, Nick; Perrochet, Pierre; Nielsen, Peter

    2017-01-01

    This paper presents a new laboratory dataset on the moisture-pressure relationship above a dispersive groundwater wave in a two-dimensional vertical unconfined sand flume aquifer driven by simple harmonic forcing. A total of five experiments were conducted in which all experimental parameters were kept constant except for the oscillation period, which ranged from 268 s to 2449 s between tests. Moisture content and suction head sensor pairings were co-located at two locations in the unsaturated zone both approximately 0.2 m above the mean watertable elevation and respectively 0.3 m and 0.75 m from the driving head boundary. For all oscillation periods except for the shortest (T = 268s), the formation of a hysteretic moisture-pressure scanning loop was observed. Consistent with the decay of the saturated zone groundwater wave, the size of the observed moisture-pressure scanning loops decayed with increasing distance landward and the decay rate is larger for the shorter oscillation periods. At the shortest period (T = 268s), the observed moisture-pressure relationship was observed to be non-hysteretic but with a capillary capacity that differs from that of the static equilibrium wetting and drying curves. This finding is consistent with observations from existing one-dimensional vertical sand column experiments. The relative damping of the moisture content with distance landward is higher than that for the suction head consistent with the fact that transmission of pressure through a porous medium occurs more readily than mass transfer. This is further supported by the fact that observed phase lags for the unsaturated zone variables (i.e. suction head and moisture content) relative to the driving head are greater than the saturated zone variables (i.e. piezometric head). Harmonic analysis of the data reveals no observable generation of higher harmonics in either moisture or pressure despite the strongly non-linear relationship between the two. In addition, a phase lag

  10. Hanford ground-water data base management guide and user's manual. [CIRMIS

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, P.J.; Argo, R.S.; Bradymire, S.L.; Newbill, C.A.

    1985-05-01

    This management guide and user's manual is a working document for the computerized Hanford Ground-water Data Base maintained by the Geosciences Research and Engineering Department at Pacific Northwest Laboratory for the Hanford Ground-Water Surveillance Program. The program is managed by the Occupational and Environmental Protection Department for the US Department of Energy. The data base is maintained to provide rapid access to data that are rountinely collected from ground-water monitoring wells at the Hanford site. The data include water levels, sample analyses, geologic descriptions and well construction information of over 3000 existing or destroyed wells. These data are used to monitor water quality and for the evaluation of ground-water flow and pollutant transport problems. The management guide gives instructions for maintenance of the data base on the Digital Equipment Corporation PDP 11/70 Computer using the CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) data base management software developed at Pacific Northwest Laboratory. Maintenance activities include inserting, modifying and deleting data, making back-up copies of the data base, and generating tables for annual monitoring reports. The user's guide includes instructions for running programs to retrieve the data in the form of listings of graphical plots. 3 refs.

  11. A dynamic knowledge base based search engine

    Institute of Scientific and Technical Information of China (English)

    WANG Hui-jin; HU Hua; LI Qing

    2005-01-01

    Search engines have greatly helped us to find thedesired information from the Intemet. Most search engines use keywords matching technique. This paper discusses a Dynamic Knowledge Base based Search Engine (DKBSE), which can expand the user's query using the keywords' concept or meaning. To do this, the DKBSE needs to construct and maintain the knowledge base dynamically via the system's searching results and the user's feedback information. The DKBSE expands the user's initial query using the knowledge base, and returns the searched information after the expanded query.

  12. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources

    DEFF Research Database (Denmark)

    Hybel, Anne-Marie; Godskesen, Berit; Rygaard, Martin

    2015-01-01

    the highest uncertainty, as it requires estimations of non-measurable environmental water requirements. Hence, the development of a methodology to obtain more site-specific and relevant estimations of environmental water requirements should be prioritized. Finally, the demarcation of the groundwater resource......Indicators of the impact on freshwater resources are becoming increasingly important in the evaluation of urban water systems. To reveal the importance of spatial resolution, we investigated how the choice of catchment scale influenced the freshwater impact assessment. Two different indicators were...... used in this study: the Withdrawal-To-Availability ratio (WTA) and the Water Stress Index (WSI). Results were calculated for three groundwater based Danish urban water supplies (Esbjerg, Aarhus, and Copenhagen). The assessment was carried out at three spatial levels: (1) the groundwater body level, (2...

  13. Study on shallow groundwater information extraction technology based on multi-spectral data and spatial data

    Institute of Scientific and Technical Information of China (English)

    YU DeHao; DENG ZhengDong; LONG Fan; GUAN HongJun; WANG DaQing; GOU YiZheng

    2009-01-01

    Aimed at solving the difficulties, such as low efficiency and limited exploration range encountered in finding groundwater with the traditional methods, a new method was presented by using remote sensing technology in this paper. Based on multi-spectral data (ETM data) and spatial data (SRTM data),a forecasting model was built to produce a probability rating map for finding shallow groundwater in the arid and semi-arid areas. According to investigations, a conclusion is drawn that the results of the model are satisfied, which have been testified by the later geophysical exploration and drilling. Thus,the model can serve as a guide for finding groundwater in the arid and semi-arid regions.

  14. Study on shallow groundwater information extraction technology based on multi-spectral data and spatial data

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Aimed at solving the difficulties,such as low efficiency and limited exploration range encountered in finding groundwater with the traditional methods,a new method was presented by using remote sensing technology in this paper.Based on multi-spectral data(ETM data) and spatial data(SRTM data),a forecasting model was built to produce a probability rating map for finding shallow groundwater in the arid and semi-arid areas.According to investigations,a conclusion is drawn that the results of the model are satisfied,which have been testified by the later geophysical exploration and drilling.Thus,the model can serve as a guide for finding groundwater in the arid and semi-arid regions.

  15. Coupling 3D groundwater modeling with CFC-based age dating to classify local groundwater circulation in an unconfined crystalline aquifer

    Science.gov (United States)

    Kolbe, Tamara; Marçais, Jean; Thomas, Zahra; Abbott, Benjamin W.; de Dreuzy, Jean-Raynald; Rousseau-Gueutin, Pauline; Aquilina, Luc; Labasque, Thierry; Pinay, Gilles

    2016-12-01

    Nitrogen pollution of freshwater and estuarine environments is one of the most urgent environmental crises. Shallow aquifers with predominantly local flow circulation are particularly vulnerable to agricultural contaminants. Water transit time and flow path are key controls on catchment nitrogen retention and removal capacity, but the relative importance of hydrogeological and topographical factors in determining these parameters is still uncertain. We used groundwater dating and numerical modeling techniques to assess transit time and flow path in an unconfined aquifer in Brittany, France. The 35.5 km2 study catchment has a crystalline basement underneath a ∼60 m thick weathered and fractured layer, and is separated into a distinct upland and lowland area by an 80 m-high butte. We used groundwater discharge and groundwater ages derived from chlorofluorocarbon (CFC) concentration to calibrate a free-surface flow model simulating groundwater flow circulation. We found that groundwater flow was highly local (mean travel distance = 350 m), substantially smaller than the typical distance between neighboring streams (∼1 km), while CFC-based ages were quite old (mean = 40 years). Sensitivity analysis revealed that groundwater travel distances were not sensitive to geological parameters (i.e. arrangement of geological layers and permeability profile) within the constraints of the CFC age data. However, circulation was sensitive to topography in the lowland area where the water table was near the land surface, and to recharge rate in the upland area where water input modulated the free surface of the aquifer. We quantified these differences with a local groundwater ratio (rGW-LOCAL), defined as the mean groundwater travel distance divided by the mean of the reference surface distances (the distance water would have to travel across the surface of the digital elevation model). Lowland, rGW-LOCAL was near 1, indicating primarily topographical controls. Upland, r

  16. Control of Groundwater Pollution from Animal Feeding Operations: A Farm-Level Dynamic Model for Policy Analysis

    Science.gov (United States)

    Wang, J.; Baerenklau, K.

    2012-12-01

    Consolidation in livestock production generates higher farm incomes due to economies of scale, but it also brings waste disposal problems. Over-application of animal waste on adjacent land produces adverse environmental and health effects, including groundwater nitrate pollution. The situation is particularly noticeable in California. In respond to this increasingly severe problem, EPA published a type of command-and-control regulation for concentrated animal feeding operations (CAFOs) in 2003. The key component of the regulation is its nutrient management plans (NMPs), which intend to limit the land application rates of animal waste. Although previous studies provide a full perspective on potential economic impacts for CAFOs to meet nutrient standards, their models are static and fail to reflect changes in management practices other than spreading manure on additional land and changing cropping patterns. We develop a dynamic environmental-economic modeling framework for representative CAFOs. The framework incorporates four models (i.e., animal model, crop model, hydrologic model, and economic model) that include various components such as herd management, manure handling system, crop rotation, water sources, irrigation system, waste disposal options, and pollutant emissions. We also include the dynamics of soil characteristics in the rootzone as well as the spatial heterogeneity of the irrigation system. The operator maximizes discounted total farm profit over multiple periods subject to environmental regulations. Decision rules from the dynamic optimization problem demonstrate best management practices for CAFOs to improve their economic and environmental performance. Results from policy simulations suggest that direct quantity restrictions of emission or incentive-based emission policies are much more cost-effective than the standard approach of limiting the amount of animal waste that may be applied to fields (as shown in the figure below); reason being

  17. Geostatistics-based groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA.

    Science.gov (United States)

    Bhat, Shirish; Motz, Louis H; Pathak, Chandra; Kuebler, Laura

    2015-01-01

    A geostatistical method was applied to optimize an existing groundwater-level monitoring network in the Upper Floridan aquifer for the South Florida Water Management District in the southeastern United States. Analyses were performed to determine suitable numbers and locations of monitoring wells that will provide equivalent or better quality groundwater-level data compared to an existing monitoring network. Ambient, unadjusted groundwater heads were expressed as salinity-adjusted heads based on the density of freshwater, well screen elevations, and temperature-dependent saline groundwater density. The optimization of the numbers and locations of monitoring wells is based on a pre-defined groundwater-level prediction error. The newly developed network combines an existing network with the addition of new wells that will result in a spatial distribution of groundwater monitoring wells that better defines the regional potentiometric surface of the Upper Floridan aquifer in the study area. The network yields groundwater-level predictions that differ significantly from those produced using the existing network. The newly designed network will reduce the mean prediction standard error by 43% compared to the existing network. The adoption of a hexagonal grid network for the South Florida Water Management District is recommended to achieve both a uniform level of information about groundwater levels and the minimum required accuracy. It is customary to install more monitoring wells for observing groundwater levels and groundwater quality as groundwater development progresses. However, budget constraints often force water managers to implement cost-effective monitoring networks. In this regard, this study provides guidelines to water managers concerned with groundwater planning and monitoring.

  18. Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater-surface water exchange

    Science.gov (United States)

    Steelman, Colby M.; Kennedy, Celia S.; Capes, Donovan C.; Parker, Beth L.

    2017-06-01

    Bedrock rivers occur where surface water flows along an exposed rock surface. Fractured sedimentary bedrock can exhibit variable groundwater residence times, anisotropic flow paths, and heterogeneity, along with diffusive exchange between fractures and rock matrix. These properties of the rock will affect thermal transients in the riverbed and groundwater-surface water exchange. In this study, surface electrical methods were used as a non-invasive technique to assess the scale and temporal variability of riverbed temperature and groundwater-surface water interaction beneath a sedimentary bedrock riverbed. Conditions were monitored at a semi-daily to semi-weekly interval over a full annual period that included a seasonal freeze-thaw cycle. Surface electromagnetic induction (EMI) and electrical resistivity tomography (ERT) methods captured conditions beneath the riverbed along a pool-riffle sequence of the Eramosa River in Canada. Geophysical datasets were accompanied by continuous measurements of aqueous specific conductance, temperature, and river stage. Time-lapse vertical temperature trolling within a lined borehole adjacent to the river revealed active groundwater flow zones along fracture networks within the upper 10 m of rock. EMI measurements collected during cooler high-flow and warmer low-flow periods identified a spatiotemporal riverbed response that was largely dependent upon riverbed morphology and seasonal groundwater temperature. Time-lapse ERT profiles across the pool and riffle sequence identified seasonal transients within the upper 2 and 3 m of rock, respectively, with spatial variations controlled by riverbed morphology (pool versus riffle) and dominant surficial rock properties (competent versus weathered rock rubble surface). While the pool and riffle both exhibited a dynamic resistivity through seasonal cooling and warming cycles, conditions beneath the pool were more variable, largely due to the formation of river ice during the winter season

  19. Alpine Groundwater - Pristine Aquifers Under Threat?

    Science.gov (United States)

    Schneider, P.; Lange, A.

    2014-12-01

    Glacier and permafrost retreat are prominent climate change indicators. However, the characteristics of climate and hydrology in mountain areas remain poorly understood relative to lowland areas. Specifically, not much is known about alpine groundwater, its recharge and water quality variations, as these remote reservoirs are rarely monitored. As global temperatures rise, glaciers and permafrost will continue to retreat forming new sediment deposits and changing infiltration conditions in high alpine terrain. Climate change impacts the hydro-chemical composition of alpine waters, accelerates weathering processes, and potentially triggers mobilization of pollutants. Accordingly, we monitored groundwater quantity and quality parameters of an alpine porous aquifer near the Tiefenbach glacier in the Gotthard Massif in Switzerland. The goal of this research was to assess quality and seasonal storage dynamics of groundwater above the timberline (2000 m). To translate hydrological science into an ecosystem service context, we focused on four attributes: Water quantity: observations of groundwater level fluctuations combined with analysis of contributing water sources based on stable isotope analysis to give a quantitative understanding of origin and amount of water, Water quality: groundwater level, groundwater temperature and electrical conductivity were used as proxies for sampling of hydro-chemical parameters with automated water samplers during primary groundwater recharge periods (snowmelt and rainfall events), Location: Alpine terrain above the timberline, especially recharge into/out of an alpine porous aquifer at a pro-glacial floodplain and Date of annual melt (albedo effect) and timing of flow (snow- and icemelt from May to September) and groundwater recharge during the growing season. The study found that the summer groundwater temperatures depend on the date of annual melt and are more sensitive to climate forcing than lowland groundwater temperatures

  20. Dynamic groundwater monitoring networks: a manageable method for reviewing sampling frequency.

    Science.gov (United States)

    Moreau-Fournier, Magali F; Daughney, Christopher J

    2012-12-01

    Optimization of a water quality network through a change in sampling frequency is the only way to increase cost-efficiency without any reduction in the robustness of the data. Existing techniques define optimal sampling frequency based on analysis of historical data from the monitoring network under investigation. Their application to a large network comprised of many sites and many monitored parameters is both technical and challenging. This paper presents a simple non-parametric method for reviewing sampling frequency that is consistent with highly censored environmental data and oriented towards reduction of sampling frequency as a cost-saving measure. Based on simple descriptive statistics, the method is applicable to large networks with long time series and many monitored parameters. The method also provides metrics for interpretation of newly collected data, which enables identification of sites for which a future change in sampling frequency may be necessary, ensuring that the monitoring network is both current and adaptive. Application of this method to the New Zealand National Groundwater Monitoring Programme indicates that reduction of sampling frequency at any site would result in a significant loss of information. This paper also discusses the potential for reducing analysis frequency as an alternative to reduction of sampling frequency.

  1. Controls on groundwater dynamics and root zone aeration of a coastal fluvial delta island, Wax Lake, Louisiana

    Science.gov (United States)

    O'Connor, M.; Hardison, A. K.; Moffett, K. B.

    2013-12-01

    Louisiana coastal wetlands are thought to function as buffers, filtering nutrient-rich terrestrial runoff as it travels to the Gulf of Mexico. While surface water filtration by these wetlands is a large and active area of research, flow through subsurface portions of the wetlands and possible nutrient cycling in the root zone has been largely overlooked. Specifically for Louisiana's coastal deltas, the physics and chemistry of island groundwater systems is unknown.To characterize these subsurface hydraulic dynamics at Pintail Island in the Wax Lake Delta, Louisiana, we collected sediment core samples and penetrometer measurements, monitored surface water and groundwater levels and chemistry, and analyzed meteorological, tidal, and river discharge data. As a first step, we focused on identifying wetland sediment properties and the relative influence of the major hydrologic controls, tides, delta outlet discharge, rainfall, and evapotranspiration, on water table dynamics. Pintail Island is a two-layer system with fine sediments and organic matter overlying sandy deltaic deposits. The sediment layer interface occurs approximately 60 cm below ground surface, around the mean surface water level. The vegetation root zone is concentrated in the surficial layer, although willow roots can extend into the deeper, higher-permeability sandy layer. Groundwater data from the upper portion of this sandy layer (~1m deep) is most strongly influenced by tides but also responds to long-term changes in discharge. While the tides are damped as they propagate into the island sediments, they also flood interior island lagoons, setting up groundwater gradients to potentially drive fluid and nutrient fluxes through the islands. Although the tidally oscillating water table causes significant temporal variation in root zone fluid potentials, evapotranspiration dynamics do not appear to strongly influence groundwater dynamics at depth, consistent with the shallow concentration of roots

  2. Coastal groundwater dynamics off Santa Barbara, California: combining geochemical tracers, electromagnetic seepmeters, and electrical resistivity

    Science.gov (United States)

    Swarzenski, Peter W.; Izbicki, John A.

    2009-01-01

    This paper presents repeat field measurements of 222Rn and 223,224,226,228Ra, electromagnetic seepage meter-derived advective fluxes, and multi-electrode, stationary and continuous marine resistivity surveys collected between November 2005 and April 2007 to study coastal groundwater dynamics within a marine beach in Santa Barbara, California. The study provides insight into magnitude and dynamics of submarine groundwater discharge (SGD) and associated nutrient loadings into near-shore coastal waters, where the predominant SGD drivers can be both spatially and temporally separated. Rn-222 and 223,224,226,228Ra were utilized to quantify the total and saline contribution, respectively, of SGD. The two short-lived 224,223Ra isotopes provided an estimate of apparent near-shore water mass age, as well as an estimate of the Ra-derived eddy diffusion coefficient, Kh (224Ra = 2.86 ?? 0.7 m2 s-1; 223Ra = 1.32 ?? 0.5 m2 s-1). Because 222Rn (t1/2 = 3.8 day) and 224Ra (t1/2 = 3.66 day) have comparable half-lives and production terms, they were used in concert to examine respective water column removal rates. Electromagnetic seepage meters recorded the physical, bi-directional exchange across the sediment/water interface, which ranged from -6.7 to 14.5 cm day-1, depending on the sampling period and position relative to the low tide line. Multi-day time-series 222Rn measurements in the near-shore water column yielded total (saline + fresh) SGD rates that ranged from 3.1 ?? 2.6 to 9.2 ?? 0.8 cm day-1, depending on the sampling season. Offshore 226Ra (t1/2 = 1600 year) and 222Rn gradients were used with the calculated Kh values to determine seabed flux estimates (dpm m-2 day-1), which were then converted into SGD rates (7.1 and 7.9 cm day-1, respectively). Lastly, SGD rates were used to calculate associated nutrient loads for the near-shore coastal waters off Santa Barbara. Depending on both the season and the SGD method utilized, the following SGD-derived nutrient inputs were

  3. The impact of biostimulation on the fate of sulfate and associated sulfur dynamics in groundwater

    Science.gov (United States)

    Miao, Ziheng; Carreón-Diazconti, Concepcion; Carroll, Kenneth C.; Brusseau, Mark L.

    2014-08-01

    The impact of electron-donor addition on sulfur dynamics for a groundwater system with low levels of metal contaminants was evaluated with a pilot-scale biostimulation test conducted at a former uranium mining site. Geochemical and stable-isotope data collected before, during, and after the test were analyzed to evaluate the sustainability of sulfate reducing conditions induced by the test, the fate of hydrogen sulfide, and the impact on aqueous geochemical conditions. The results of site characterization activities conducted prior to the test indicated the absence of measurable bacterial sulfate reduction. The injection of an electron donor (ethanol) induced bacterial sulfate reduction, as confirmed by an exponential decrease of sulfate concentration in concert with changes in oxidation-reduction potential, redox species, alkalinity, production of hydrogen sulfide, and fractionation of δ34S-sulfate. High, stoichiometrically-equivalent hydrogen sulfide concentrations were not observed until several months after the start of the test. It is hypothesized that hydrogen sulfide produced from sulfate reduction was initially sequestered in the form of iron sulfides until the exhaustion of readily reducible iron oxides within the sediment. The fractionation of δ34S for sulfate was atypical, wherein the enrichment declined in the latter half of the experiment. It was conjectured that mixing effects associated with the release of sulfate from sulfate minerals associated with the sediments, along with possible sulfide re-oxidation contributed to this behavior. The results of this study illustrate the biogeochemical complexity that is associated with in-situ biostimulation processes involving bacterial sulfate reduction.

  4. Groundwater dynamics and arsenic mobilisation in Bangladesh: a national-scale characterisation

    OpenAIRE

    Shamsudduha, M.

    2011-01-01

    Elevated arsenic (As) concentrations in groundwater-fed drinking water supplies in Bangladesh are a major public health problem but the hydrogeological conditions that give rise to the mobilisation and regional-scale distribution of As in shallow groundwater remain unknown. Published hypotheses developed from highly localised case studies are, to date, untested regionally and contradictory. My doctoral thesis makes a novel and substantial contribution to knowledge of the relationship between ...

  5. Risk-based prioritization methodology for the classification of groundwater pollution sources.

    Science.gov (United States)

    Pizzol, Lisa; Zabeo, Alex; Critto, Andrea; Giubilato, Elisa; Marcomini, Antonio

    2015-02-15

    Water management is one of the EU environmental priorities and it is one of the most serious challenges that today's major cities are facing. The main European regulation for the protection of water resources is represented by the Water Framework Directive (WFD) and the Groundwater Directive (2006/118/EC) which require the identification, risk-based ranking and management of sources of pollution and the identification of those contamination sources that threaten the achievement of groundwater's good quality status. The aim of this paper is to present a new risk-based prioritization methodology to support the determination of a management strategy for the achievement of the good quality status of groundwater. The proposed methodology encompasses the following steps: 1) hazard analysis, 2) pathway analysis, 3) receptor vulnerability analysis and 4) relative risk estimation. Moreover, by integrating GIS functionalities and Multi Criteria Decision Analysis (MCDA) techniques, it allows to: i) deal with several sources and multiple impacted receptors within the area of concern; ii) identify different receptors' vulnerability levels according to specific groundwater uses; iii) assess the risks posed by all contamination sources in the area; and iv) provide a risk-based ranking of the contamination sources that can threaten the achievement of the groundwater good quality status. The application of the proposed framework to a well-known industrialized area located in the surroundings of Milan (Italy) is illustrated in order to demonstrate the effectiveness of the proposed framework in supporting the identification of intervention priorities. Among the 32 sources analyzed in the case study, three sources received the highest relevance score, due to the medium-high relative risks estimated for Chromium (VI) and Perchloroethylene. The case study application showed that the developed methodology is flexible and easy to adapt to different contexts, thanks to the possibility to

  6. Fast estimation of lacustrine groundwater discharge volumes based on stable water isotopes

    Science.gov (United States)

    Lewandowski, Jörg; Gercken, Jasper; Premke, Katrin; Meinikmann, Karin

    2017-04-01

    Lake eutrophication is still a severe problem in many parts of the world, commonly due to anthropogenic sources of nutrients such as fertilizer, manure or sewage. Improved quantification of nutrient inputs to lakes is required to address this problem. One possible input path for nutrients is lacustrine groundwater discharge (LGD). However, LGD has often been disregarded in water and nutrient budgets of lakes although some studies reveal an extraordinary importance of LGD for phosphorus inputs. The aim of the present study is to identify lakes that receive large LGD volumes compared to other input paths. Such lakes are more prone to high groundwater-borne nutrient inputs than lakes with small LGD volumes. . The simple and fast approach used in the present study is based on the fact that evaporation of surface water causes an enrichment of heavier isotopes in lake and river water while precipitation and groundwater are lighter and have similar isotopic signatures. The isotopic signature of lake water depends on a) the isotopic signature of its inputs and b) the lakés residence time (the longer the more enriched with heavier isotopes). In the present study we used the citizen science project "Tatort Gewässer" to let people collect lake water samples all over Germany. Based on additional information we identified lakes without or with small (compared to the lake volume) aboveground inflows. Based on the isotopic signatures of these lakes and additional background information such as the mean depth we could identify lakes in which groundwater is an important component of the water balance. The results will be used as a basis of intense research on groundwater-driven lake eutrophication.

  7. Evapotranspiration Dynamics and Effects on Groundwater Recharge and Discharge at the Tuba City, Arizona, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-01

    The U.S. Department of Energy Office of Legacy Management is evaluating groundwater flow and contaminant transport at a former uranium mill site near Tuba City, Arizona. We estimated effects of temporal and spatial variability in evapotranspiration (ET) on recharge and discharge within a groundwater model domain (GMD) as part of this evaluation. We used remote sensing algorithms and precipitation (PPT) data to estimate ET and the ET/PPT ratios within the 3531 hectare GMD. For the period from 2000 to 2012, ET and PPT were nearly balanced (129 millimeters per year [mm yr-1] and 130 mm yr-1, respectively; ET/PPT = 0.99). However, seasonal and annual variability in ET and PPT were out of phase, and spatial variability in vegetation differentiated discharge and recharge areas within the GMD. Half of ET occurred during spring and early summer when PPT was low, and about 70% of PPT arriving in fall and winter was discharged as plant transpiration in the spring and summer period. Vegetation type and health had a significant effect on the site water balance. Plant cover and ET were significantly higher (1) during years of lighter compared to years of heavier grazing pressure, and (2) on rangeland protected from grazing compared to rangeland grazed by livestock. Heavy grazing increased groundwater recharge (PPT > ET over the 13-year period). Groundwater discharge (ET > PPT over the 13-year period) was highest in riparian phreatophyte communities but insignificant in desert phreatophyte communities impacted by heavy grazing. Grazing management in desert upland and phreatophyte communities may result in reduced groundwater recharge, increased groundwater discharge, and could be used to influence local groundwater flow.

  8. The impact of an underground cut-off wall on nutrient dynamics in groundwater in the lower Wang River watershed, China.

    Science.gov (United States)

    Kang, Pingping; Xu, Shiguo

    2017-03-01

    Underground cut-off walls in coastal regions are mainly used to prevent saltwater intrusion, but their impact on nutrient dynamics in groundwater is not clear. In this study, a combined analysis of multiple isotopes ([Formula: see text]) and nitrogen and phosphorus concentrations is used in order to assess the impact of the underground cut-off walls on the nutrient dynamics in groundwater in the lower Wang River watershed, China. Compared with the nitrogen and phosphorus concentrations in groundwater downstream of the underground cut-off walls, high [Formula: see text] and total dissolved nitrogen concentrations and similar concentration levels of [Formula: see text] and total dissolved phosphorus are found in groundwater upstream of the underground cut-off walls. The isotopic data indicated the probable occurrence of denitrification and nitrification processes in groundwater upstream, whereas the fingerprint of these processes was not shown in groundwater downstream. The management of fertilizer application is critical to control nitrogen concentrations in groundwater restricted by the underground cut-off walls.

  9. Estimates of sustainable agricultural water use in northern China based on the equilibrium of groundwater

    Science.gov (United States)

    Yali, Y.; Yu, C.

    2015-12-01

    The northern plain is the important food production region in China. However, due to the lack of surface water resources, it needs overmuch exploitation of groundwater to maintain water use in agriculture, which leads to serious environmental problems. Based on the assumption that the reserves of groundwater matches the statistics and keeps on stable, the author explores the reasonable agricultural water and its spatial distribution based on the principle of sustainable utilization of water resources. According to the priorities of water resources allocation (domestic water and ecological water>industrial water>agricultural water), it is proposed to reduce agricultural water use to balance the groundwater reserves on condition that the total water supply is constant. Method: Firstly, we calculate annual average of northern groundwater reserves changes from 2004 to 2010, which is regarded as the reduction of agricultural water; Then, we estimate the food production changes using variables of typical crop water requirements and unit yields assuming that the efficiency of water use keeps the same during the entire study period; Finally, we evaluate the usage of sustainable agricultural water. The results reveal that there is a significant reduction of groundwater reserves in Haihe river basin and Xinjiang oasis regions; And the annual loss of the corn and wheat production is about 1.86 billion kg and 700 million kg respectively due to the reduction of agricultural water; What's more, in order to ensure China's food security and sustainable agricultural water use, in addition to great efforts to develop water-saving agriculture, an important adjustment in the distribution of food production is in need. This study provided a basis to the availability of agricultural water and a new perspective was put forth for an estimation of agricultural water.

  10. Examples of Department of Energy Successes for Remediation of Contaminated Groundwater: Permeable Reactive Barrier and Dynamic Underground Stripping ASTD Projects

    Energy Technology Data Exchange (ETDEWEB)

    Purdy, C.; Gerdes, K.; Aljayoushi, J.; Kaback, D.; Ivory, T.

    2002-02-27

    Since 1998, the Department of Energy's (DOE) Office of Environmental Management has funded the Accelerated Site Technology Deployment (ASTD) Program to expedite deployment of alternative technologies that can save time and money for the environmental cleanup at DOE sites across the nation. The ASTD program has accelerated more than one hundred deployments of new technologies under 76 projects that focus on a broad spectrum of EM problems. More than 25 environmental restoration projects have been initiated to solve the following types of problems: characterization of the subsurface using chemical, radiological, geophysical, and statistical methods; treatment of groundwater contaminated with DNAPLs, metals, or radionuclides; and other projects such as landfill covers, purge water management systems, and treatment of explosives-contaminated soils. One of the major goals of the ASTD Program is to deploy a new technology or process at multiple DOE sites. ASTD projects are encouraged to identify subsequent deployments at other sites. Some of the projects that have successfully deployed technologies at multiple sites focusing on cleanup of contaminated groundwater include: Permeable Reactive Barriers (Monticello, Rocky Flats, and Kansas City), treating uranium and organics in groundwater; and Dynamic Underground Stripping (Portsmouth, and Savannah River), thermally treating DNAPL source zones. Each year more and more new technologies and approaches are being used at DOE sites due to the ASTD program. DOE sites are sharing their successes and communicating lessons learned so that the new technologies can replace the baseline or standard approaches at DOE sites, thus expediting cleanup and saving money.

  11. Effects of sea-level rise on barrier island groundwater system dynamics: ecohydrological implications

    Science.gov (United States)

    Masterson, John P.; Fienen, Michael N.; Thieler, E. Robert; Gesch, Dean B.; Gutierrez, Benjamin T.; Plant, Nathaniel G.

    2014-01-01

    We used a numerical model to investigate how a barrier island groundwater system responds to increases of up to 60 cm in sea level. We found that a sea-level rise of 20 cm leads to substantial changes in the depth of the water table and the extent and depth of saltwater intrusion, which are key determinants in the establishment, distribution and succession of vegetation assemblages and habitat suitability in barrier islands ecosystems. In our simulations, increases in water-table height in areas with a shallow depth to water (or thin vadose zone) resulted in extensive groundwater inundation of land surface and a thinning of the underlying freshwater lens. We demonstrated the interdependence of the groundwater response to island morphology by evaluating changes at three sites. This interdependence can have a profound effect on ecosystem composition in these fragile coastal landscapes under long-term changing climatic conditions.

  12. Effective groundwater modeling of the data-poor Nubian Aquifer System (Chad, Egypt, Libya, Sudan) - use of parsimony and 81Kr-based groundwater ages (Invited)

    Science.gov (United States)

    Voss, C. I.; Soliman, S. M.; Aggarwal, P. K.

    2013-12-01

    Important information for management of large aquifer systems can be obtained via a parsimonious approach to groundwater modeling, in part, employing isotope-interpreted groundwater ages. ';Parsimonious' modeling implies active avoidance of overly-complex representations when constructing models. This approach is essential for evaluation of aquifer systems that lack informative hydrogeologic databases. Even in the most remote aquifers, despite lack of typical data, groundwater ages can be interpreted from isotope samples at only a few downstream locations. These samples incorporate hydrogeologic information from the entire upstream groundwater flowpath; thus, interpreted ages are among the most-effective information sources for groundwater model development. This approach is applied to the world's largest non-renewable aquifer, the transboundary Nubian Aquifer System (NAS) of Chad, Egypt, Libya and Sudan. In the NAS countries, water availability is a critical problem and NAS can reliably serve as a water supply for an extended future period. However, there are national concerns about transboundary impacts of water use by neighbors. These concerns include excessive depletion of shared groundwater by individual countries and the spread of water-table drawdown across borders, where neighboring country near-border shallow wells and oases may dry. Development of a parsimonious groundwater flow model, based on limited available NAS hydrogeologic data and on 81Kr groundwater ages below oases in Egypt, is a key step in providing a technical basis for international discussion concerning management of this non-renewable water resource. Simply-structured model analyses, undertaken as part of an IAEA/UNDP/GEF project, show that although the main transboundary issue is indeed drawdown crossing national boundaries, given the large scale of NAS and its plausible ranges of aquifer parameter values, the magnitude of transboundary drawdown will likely be small and may not be a

  13. An improved conceptual understanding of snowmelt and groundwater dynamics in the semi-arid Andes

    Science.gov (United States)

    Sproles, Eric; Hevia, Andres; Soulsby, Chris; Tetzlaff, Doerthe

    2016-04-01

    The contribution of snowmelt to groundwater has long been recognized as an important component of the hydrological cycle in semi-arid northern central Chile (29°-32°S). Despite its importance as a water resource, this transition to groundwater remains poorly understood. Climatically, the High Cordillera in northern central Chile receives approximately 10 times as much annual precipitation as the valley bottoms, falling almost exclusively as snow above 3500 m during the winter months. Geologically, the High Cordillera is characterized by steep topography and a highly dissected landscape underlain by bedrock. Groundwater stores in the mountain headwaters are assumed to be constrained to the valley bottoms. The current working hypothesis of watershed processes in the High Cordillera describes fluxes of spring melt moving through the hillslope via local flowpaths to valley aquifers that recharge streams throughout the headwater reaches. Previous studies in the region indicate Pre-Cordilleran aquifers, located in lower elevation dry ephemeral valleys, are hydrologically disconnected from the High Cordillera. These watersheds have no seasonal snowpack, and recharge occurs primarily during infrequent rain events. These isolated Pre-Cordilleran aquifers serve as an important water resource for rural residents and infrastructure. We present stable isotope, geochemical, and groundwater level data from the wet El Niño winter of 2015 that suggests a topographically disconnected aquifer in the Pre-Cordillera received considerable recharge from High Cordillera snowmelt. These novel findings are indicative of deep groundwater flow paths between the Pre- and High Cordillera during the wet winter and spring of 2015, and improve the conceptual understanding of hydrological processes in the region. Additionally, these results will directly benefit groundwater management in the Pre-Cordillera and better inform modeling efforts in the High Cordillera. While this study is limited to

  14. GIS based site and structure selection model for groundwater recharge: a hydrogeomorphic approach.

    Science.gov (United States)

    Vijay, Ritesh; Sohony, R A

    2009-10-01

    The groundwater in India is facing a critical situation due to over exploitation, reduction in recharge potential by change in land use and land cover and improper planning and management. A groundwater development plan needs a large volume of multidisciplinary data from various sources. A geographic information system (GIS) based hydrogeomorphic approach can provide the appropriate platform for spatial analysis of diverse data sets for decision making in groundwater recharge. The paper presents development of GIS based model to provide more accuracy in identification and suitability analysis for finding out zones and locating suitable sites with suggested structures for artificial recharge. Satellite images were used to prepare the geomorphological and land use maps. For site selection, the items such as slope, surface infiltration, and order of drainage were generated and integrated in GIS using Weighted Index Overlay Analysis and Boolean logics. Similarly for identification of suitable structures, complex matrix was programmed based on local climatic, topographic, hydrogeologic and landuse conditions as per artificial recharge manual of Central Ground Water Board, India. The GIS based algorithm is implemented in a user-friendly way using arc macro language on Arc/Info platform.

  15. Groundwater protection in fractured media: a vulnerability-based approach for delineating protection zones in Switzerland

    Science.gov (United States)

    Pochon, Alain; Tripet, Jean-Pierre; Kozel, Ronald; Meylan, Benjamin; Sinreich, Michael; Zwahlen, François

    2008-11-01

    A vulnerability-based approach for delineating groundwater protection zones around springs in fractured media has been developed to implement Swiss water-protection regulations. It takes into consideration the diversity of hydrogeological conditions observed in fractured aquifers and provides individual solutions for each type of setting. A decision process allows for selecting one of three methods, depending on the spring vulnerability and the heterogeneity of the aquifer. At the first stage, an evaluation of spring vulnerability is required, which is essentially based on spring hydrographs and groundwater quality monitoring. In case of a low vulnerability of the spring, a simplified method using a fixed radius approach (“distance method”) is applied. For vulnerable springs, additional investigations must be completed during a second stage to better characterize the aquifer properties, especially in terms of heterogeneity. This second stage includes a detailed hydrogeological survey and tracer testing. If the aquifer is assessed as slightly heterogeneous, the delineation of protection zones is performed using a calculated radius approach based on tracer test results (“isochrone method”). If the heterogeneity is high, a groundwater vulnerability mapping method is applied (“DISCO method”), based on evaluating discontinuities, protective cover and runoff parameters. Each method is illustrated by a case study.

  16. Groundwater level and nitrate concentration trends on Mountain Home Air Force Base, southwestern Idaho

    Science.gov (United States)

    Williams, Marshall L.

    2014-01-01

    Mountain Home Air Force Base in southwestern Idaho draws most of its drinking water from the regional aquifer. The base is located within the State of Idaho's Mountain Home Groundwater Management Area and is adjacent to the State's Cinder Cone Butte Critical Groundwater Area. Both areas were established by the Idaho Department of Water Resources in the early 1980s because of declining water levels in the regional aquifer. The base also is listed by the Idaho Department of Environmental Quality as a nitrate priority area. The U.S. Geological Survey, in cooperation with the U.S. Air Force, began monitoring wells on the base in 1985, and currently monitors 25 wells for water levels and 17 wells for water quality, primarily nutrients. This report provides a summary of water-level and nitrate concentration data collected primarily between 2001 and 2013 and examines trends in those data. A Regional Kendall Test was run to combine results from all wells to determine an overall regional trend in water level. Groundwater levels declined at an average rate of about 1.08 feet per year. Nitrate concentration trends show that 3 wells (18 percent) are increasing in nitrate concentration trend, 3 wells (18 percent) show a decreasing nitrate concentration trend, and 11 wells (64 percent) show no nitrate concentration trend. Six wells (35 percent) currently exceed the U.S. Environmental Protection Agency's maximum contaminant limit of 10 milligrams per liter for nitrate (nitrite plus nitrate, measured as nitrogen).

  17. An attribute recognition model based on entropy weight for evaluating the quality of groundwater sources

    Institute of Scientific and Technical Information of China (English)

    CHEN Suo-zhong; WANG Xiao-jing; ZHAO Xiu-jun

    2008-01-01

    In our study, entropy weight coefficients, based on Shannon entropy, were determined for an attribute recognition model to model the quality of groundwater sources. The model follows the theory previously proposed by Chen Q S. In the model, firstly, the author establishes the attribute space matrix and determines the weight based on Shannon entropy theory; secondly, calculates attribute measure; thirdly, evaluates that with confidence criterion and score criterion; finally, an application example is given. The results show that the water quality of the groundwater sources for the city comes up to the grade II or III standard. There is no pollution that obviously exceeds the standard and the water can meet people's needs .The results from an evaluation of this model are in basic agreement with the observed situation and with a set pair analysis (SPA) model.

  18. Transport of reactive carriers and contaminants in groundwater systems : a dynamic competitive happening

    NARCIS (Netherlands)

    Weerd, van de H.

    2000-01-01

    Transport of contaminants constitutes a potential threat for public health and ecosystems. One of the potential pathways for contaminant transport in groundwater systems is transport adsorbed to carriers (colloidal particles, large molecules). Figure 1 shows a detail of a

  19. Stream-subsurface nutrient dynamics in a groundwater-fed stream

    Science.gov (United States)

    Rezanezhad, F.; Niederkorn, A.; Parsons, C. T.; Van Cappellen, P.

    2015-12-01

    The stream-riparian-aquifer interface plays a major role in the regional flow of nutrients and contaminants due to a strong physical-chemical gradient that promotes the transformation, retention, elimination or release of biogenic elements. To better understand the effect of the near-stream zones on stream biogeochemistry, we conducted a field study on a groundwater-fed stream located in the rare Charitable Research Reserve, Cambridge, Ontario, Canada. This study focused on monitoring the spatial and temporal distributions of nutrient elements within the riparian and hyporheic zones of the stream. Several piezometer nests and a series of passive (diffusion) water samplers, known as peepers, were installed along longitudinal and lateral transects centered on the stream to obtain data on the groundwater chemistry. Groundwater upwelling along the stream resulted in distinctly different groundwater types and associated nitrate concentrations between small distances in the riparian zone (water, concentrations of nutrients (NO3-, NH4+, SO42- and carbon) did not significantly change before the downstream outlet. Although reduction of nitrate and sulphate were found in the riparian zone of the stream, this did not significantly influence the chemistry of the adjacent stream water. Also, minimal retention in the hyporheic zones limited reduction of reactive compounds (NO3- and SO42-) within the stream channel. The results showed that the dissolved organic carbon (DOC) and residence time of water in the hyporheic zone and in surface water limited denitrification.

  20. Groundwater dynamics and water budget analysis at a wetland-dominated forested floodplain

    Science.gov (United States)

    Foster, S.; Callahan, T. J.; Senn, L.; Shelley, D.

    2013-12-01

    This study investigated the preliminary relationships between groundwater behavior, vegetation communities, and soil characteristics in a mature, protected forested floodplain at Congaree National Park, South Carolina. Time series analysis of groundwater level data were collected hourly at ten different piezometers from 2009 to 2013. Piezometers were screened 4-7 m deep in the surficial aquifer and arrayed from the floodplain bluff along a 3-km, valley-perpendicular transect to Cedar Creek, a local tributary of the Congaree River. Eight of the ten sites were in an unconfined portion of the floodplain aquifer, and the other two sites closer to Cedar Creek were locally confined due to a 1.5 - 3-m thick clay layer above the piezometer screen. Time series analysis, including depth below ground surface, response to storm events, and diurnal evapotranspiration (ET) signals was used to functionally group piezometer sites with similar characteristics. Lithologic logs collected during piezometer installation and forest community structure at each site were inspected to look for relationships to explain groundwater behavior. A separate analysis of ET signals helped assess potential feedbacks between vegetation and groundwater in this wetland-dominated setting. This project stemmed from hydrology class trips to Congaree National Park sponsored by the park's education and outreach program. Students learned field methods and data collection, management, and analysis techniques to reinforce hydrology concepts and principles.

  1. Transport of reactive carriers and contaminants in groundwater systems : a dynamic competitive happening

    NARCIS (Netherlands)

    Weerd, van de H.

    2000-01-01

    Transport of contaminants constitutes a potential threat for public health and ecosystems. One of the potential pathways for contaminant transport in groundwater systems is transport adsorbed to carriers (colloidal particles, large molecules). Figure 1 shows a detail of a grou

  2. Detection and quantification of localized groundwater inflow in small streams using ground-based infrared thermography

    Science.gov (United States)

    Schuetz, Tobias; Weiler, Markus

    2010-05-01

    Localized groundwater (GW) inflow into small streams can be a major source of runoff during low flow periods in headwater catchments. The localization and determination of the fraction of runoff corresponding to a certain area may give insights into aquifer type, flow processes, the composition of base-flow concerning the spatial distribution of catchment storage and water quality issues. Though GW temperature has a small amplitude during the year compared to surface water, a significant temperature difference between stream water and groundwater can be expected in summer and winter. As the technical development of infrared thermography is progressing (the spatial resolution of infrared camera systems is increasing and the measuring error is decreasing) we tested ground based infrared thermography as a non-invasive and remote applicable method to detect and quantify GW entries in small streams during baseflow periods (INFRATEC). In addition, water temperature and electric conductivity of the groundwater entering the stream and of the stream water up- and downstream of localized GW inflow were measured with temperature and EC sensors. Though the zones of complete mixing were identified, point measurements and surface radiation temperatures were taken from the same areas. Discharge measurements were conducted using the salt dilution method with continuous injection. End-member mixing calculations were done using the measured EC and water temperature data and compared to the results of mixing calculations of observed water surface radiation temperatures. The discharge observations were used to validate the fraction calculations. Calculated GW entries using thermogramms had comparable deviations from the measured runoff fractions to those from direct temperature and EC measurements. This leads to the conclusion that the use of ground-based infrared thermography for the detection and quantification of localized groundwater inflows into small streams is a valuable and

  3. Dynamic analysis of groundwater in drought-irrigation area of Zhaozhou County%肇州旱灌区地下水动态分析

    Institute of Scientific and Technical Information of China (English)

    高宇; 齐鹏; 戴长雷; 李芳花

    2016-01-01

    肇州县是黑龙江西部重要的旱田灌区,农业灌溉主要依赖于地下水,地下水动态分析是灌区地下水承载力评价的基础和前提。对26眼长期观测井及85眼统测井数据进行了时空动态分析。通过分析指出,肇州旱灌区地下水动态类型以人工开采型为主;以6眼典型监测井为例,在作为平水年的2012年,多数井6月地下水水位达到年内低值,11月地下水水位达到年内高值,次年规律相同,灌溉取水对地下水影响强烈;在1980—2012年,区内地下水水位呈整体下降趋势,平均降幅为0.18 m/a ,逐年增加的地下水开采量直接导致了的地下水水位下降;当前区域地下水水流向大致是东北至西南向。%Zhaozhou County is an important drought-irrigation area in the west of Heilongjiang . Agricultural irrigation depends on the groundwater .In order to evaluate and predict the groundwater resources in drought-irrigation area of Zhaozhou , the dynamic analysis of groundwater is needed .In this paper , Zhaozhou County as the research area, analyses the data of 26 long-term observation wells and 85 wells.In 2012, for the six typical wells, the value of groundwater level is lowest in June , groundwater level reached the highest value in November , and it has the same regular pattern in next year .The influence of irrigation water on the groundwater is strong .In Zhaozhou , the groundwater dynamic type is mainly the artificial exploitation type , and some areas are the radial flow type .From 1980 to 2012 , the groundwater level in Zhaozhou County was decreasing year by year .The range of groundwater change is 0.18 m/a.The decisive factor of the decline of the groundwater level is groundwater exploitation increasing year by year .The groundwater flow direction is roughly northeast to southwest .

  4. U.S. Geological Survey groundwater toolbox, a graphical and mapping interface for analysis of hydrologic data (version 1.0): user guide for estimation of base flow, runoff, and groundwater recharge from streamflow data

    Science.gov (United States)

    Barlow, Paul M.; Cunningham, William L.; Zhai, Tong; Gray, Mark

    2015-01-01

    This report is a user guide for the streamflow-hydrograph analysis methods provided with version 1.0 of the U.S. Geological Survey (USGS) Groundwater Toolbox computer program. These include six hydrograph-separation methods to determine the groundwater-discharge (base-flow) and surface-runoff components of streamflow—the Base-Flow Index (BFI; Standard and Modified), HYSEP (Fixed Interval, Sliding Interval, and Local Minimum), and PART methods—and the RORA recession-curve displacement method and associated RECESS program to estimate groundwater recharge from streamflow data. The Groundwater Toolbox is a customized interface built on the nonproprietary, open source MapWindow geographic information system software. The program provides graphing, mapping, and analysis capabilities in a Microsoft Windows computing environment. In addition to the four hydrograph-analysis methods, the Groundwater Toolbox allows for the retrieval of hydrologic time-series data (streamflow, groundwater levels, and precipitation) from the USGS National Water Information System, downloading of a suite of preprocessed geographic information system coverages and meteorological data from the National Oceanic and Atmospheric Administration National Climatic Data Center, and analysis of data with several preprocessing and postprocessing utilities. With its data retrieval and analysis tools, the Groundwater Toolbox provides methods to estimate many of the components of the water budget for a hydrologic basin, including precipitation; streamflow; base flow; runoff; groundwater recharge; and total, groundwater, and near-surface evapotranspiration.

  5. Modeling of vegetation dynamics in hydrological models for the assessment of the effects of climate change on evapotranspiration and groundwater recharge

    Directory of Open Access Journals (Sweden)

    M. Wegehenkel

    2009-08-01

    Full Text Available Vegetation affects water balance of the land surface by e.g. storage of precipitation water in the canopy and soil water extraction by transpiration. Therefore, it is essential to consider the role of vegetation in affecting water balance by taking into account the temporal dynamics of e.g. leaf area index, rooting depth and stomatal conductance in hydrological models. However until now, most conceptual hydrological models do not treat vegetation as a dynamic component. This paper presents an analysis of the effects of the application of two different complex vegetation models combined with a hydrological model on the model outputs evapotranspiration and groundwater recharge. Both model combinations were used for the assessment of the effects of climate change on water balance in a mesoscale catchment loctated in the Northeastern German Lowlands. One vegetation model assumes a static vegetation development independent from environmental conditions. The other vegetation model calculates dynamic development of vegetation based on photosynthesis, respiration, allocation, and phenology. The analysis of the results obtained from both model combinations indicated the importance of taking into account vegetation dynamics in hydrological models especially if such models are used for the assessment of the impacts of climate change on water balance components.

  6. Preliminary Prioritization of California Oil and Gas Fields for Regional Groundwater Monitoring Based on Intensity of Petroleum Resource Development and Proximity to Groundwater Resources

    Science.gov (United States)

    Davis, T. A.; Landon, M. K.; Bennett, G.

    2016-12-01

    The California State Water Resources Control Board is collaborating with the U.S. Geological Survey to implement a Regional Monitoring Program (RMP) to assess where and to what degree groundwater resources may be at risk of contamination from oil and gas development activities including stimulation, well integrity issues, produced water ponds, and underground injection. A key issue in the implementation of the RMP is that the state has 487 onshore oil fields covering 8,785 square kilometers but detailed characterization work can only be done in a few oil fields annually. The first step in the RMP is to prioritize fields using available data that indicate potential risk to groundwater from oil and gas development, including vertical proximity of groundwater and oil/gas resources, density of petroleum and water wells, and volume of water injected in oil fields. This study compiled data for these factors, computed summary metrics for each oil field, analyzed statewide distributions of summary metrics, used those distributions to define relative categories of potential risk for each factor, and combined these into an overall priority ranking. Aggregated results categorized 22% (107 fields) of the total number of onshore oil and gas fields in California as high priority, 23% as moderate priority, and 55% as low priority. On an area-weighted basis, 41% of the fields ranked high, 30% moderate, and 29% low, highlighting that larger fields tend to have higher potential risk because of greater intensity of development, sometimes coupled with closer proximity to groundwater. More than half of the fields ranked as high priority were located in the southern Central Valley or the Los Angeles Basin. The prioritization does not represent an assessment of groundwater risk from oil and gas development; rather, such assessments are planned to follow based on detailed analysis of data from the RMP near the oil fields selected for study in the future.

  7. Temporal dynamics of groundwater-surface water interaction under the effects of climate change: A case study in the Kiskatinaw River Watershed, Canada

    Science.gov (United States)

    Saha, Gopal Chandra; Li, Jianbing; Thring, Ronald W.; Hirshfield, Faye; Paul, Siddhartho Shekhar

    2017-08-01

    Groundwater-surface water (GW-SW) interaction plays a vital role in the functioning of riparian ecosystem, as well as sustainable water resources management. In this study, temporal dynamics of GW-SW interaction were investigated under climate change. A case study was chosen for a study area along the Kiskatinaw River in Mainstem sub-watershed of the Kiskatinaw River Watershed, British Columbia, Canada. A physically based and distributed GW-SW interaction model, Gridded Surface Subsurface Hydrologic Analysis (GSSHA), was used. Two different greenhouse gas (GHG) emission scenarios (i.e., A2: heterogeneous world with self-reliance and preservation of local identities, and B1: more integrated and environmental friendly world) of SRES (Special Report on Emissions Scenarios) from Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) were used for climate change study for 2020-2040. The simulation results showed that climate change influences significantly the temporal patterns of GW-SW interaction by generating variable temporal mean groundwater contributions to streamflow. Due to precipitation variability, these contributions varied monthly, seasonally, and annually. The mean annual groundwater contribution to streamflow during 2020-2040 under the A2 and B1 scenarios is expected to be 74.5% (σ = 2%) and 75.6% (σ = 3%), respectively. As compared to that during the base modeling period (2007-2011), the mean annual groundwater contribution to streamflow during 2020-2040 under the A2 and B1 scenarios is expected to decrease by 5.5% and 4.4%, respectively, due to the increased precipitation (on average 6.7% in the A2 and 4.8% in the B1 scenarios) and temperature (on average 0.83 °C in the A2 and 0.64 °C in the B1 scenarios). The results obtained from this study will provide useful information in the long-term seasonal and annual water extractions from the river for future water supply, as well as for evaluating the ecological conditions of the

  8. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources.

    Science.gov (United States)

    Hybel, A-M; Godskesen, B; Rygaard, M

    2015-09-01

    Indicators of the impact on freshwater resources are becoming increasingly important in the evaluation of urban water systems. To reveal the importance of spatial resolution, we investigated how the choice of catchment scale influenced the freshwater impact assessment. Two different indicators were used in this study: the Withdrawal-To-Availability ratio (WTA) and the Water Stress Index (WSI). Results were calculated for three groundwater based Danish urban water supplies (Esbjerg, Aarhus, and Copenhagen). The assessment was carried out at three spatial levels: (1) the groundwater body level, (2) the river basin level, and (3) the regional level. The assessments showed that Copenhagen's water supply had the highest impact on the freshwater resource per cubic meter of water abstracted, with a WSI of 1.75 at Level 1. The WSI values were 1.64 for Aarhus's and 0.81 for Esbjerg's water supply. Spatial resolution was identified as a major factor determining the outcome of the impact assessment. For the three case studies, WTA and WSI were 27%-583% higher at Level 1 than impacts calculated for the regional scale. The results highlight that freshwater impact assessments based on regional data, rather than sub-river basin data, may dramatically underestimate the actual impact on the water resource. Furthermore, this study discusses the strengths and shortcomings of the applied indicator approaches. A sensitivity analysis demonstrates that although WSI has the highest environmental relevance, it also has the highest uncertainty, as it requires estimations of non-measurable environmental water requirements. Hence, the development of a methodology to obtain more site-specific and relevant estimations of environmental water requirements should be prioritized. Finally, the demarcation of the groundwater resource in aquifers remains a challenge for establishing a consistent method for benchmarking freshwater impacts caused by groundwater abstraction.

  9. Physically-Based Assessment of Intrinsic Groundwater Resource Vulnerability in AN Urban Catchment

    Science.gov (United States)

    Graf, T.; Therrien, R.; Lemieux, J.; Molson, J. W.

    2013-12-01

    Several methods exist to assess intrinsic groundwater (re)source vulnerability for the purpose of sustainable groundwater management and protection. However, several methods are empirical and limited in their application to specific types of hydrogeological systems. Recent studies suggest that a physically-based approach could be better suited to provide a general, conceptual and operational basis for groundwater vulnerability assessment. A novel method for physically-based assessment of intrinsic aquifer vulnerability is currently under development and tested to explore the potential of an integrated modelling approach, combining groundwater travel time probability and future scenario modelling in conjunction with the fully integrated HydroGeoSphere model. To determine the intrinsic groundwater resource vulnerability, a fully coupled 2D surface water and 3D variably-saturated groundwater flow model in conjunction with a 3D geological model (GoCAD) has been developed for a case study of the Rivière Saint-Charles (Québec/Canada) regional scale, urban watershed. The model has been calibrated under transient flow conditions for the hydrogeological, variably-saturated subsurface system, coupled with the overland flow zone by taking into account monthly recharge variation and evapotranspiration. To better determine the intrinsic groundwater vulnerability, two independent approaches are considered and subsequently combined in a simple, holistic multi-criteria-decision analyse. Most data for the model comes from an extensive hydrogeological database for the watershed, whereas data gaps have been complemented via field tests and literature review. The subsurface is composed of nine hydrofacies, ranging from unconsolidated fluvioglacial sediments to low permeability bedrock. The overland flow zone is divided into five major zones (Urban, Rural, Forest, River and Lake) to simulate the differences in landuse, whereas the unsaturated zone is represented via the model

  10. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan, E-mail: lijuan@craes.org.cn [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Yang, Yang [College of Environment, Beijing Normal University, Beijing 100875 (China); Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Huan, Huan; Li, Mingxiao [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Xi, Beidou, E-mail: xibd413@yeah.net [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Lanzhou Jiaotong University, Lanzhou 730070 (China); Lv, Ningqing [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Wu, Yi [Guizhou Academy of Environmental Science and Designing, Guizhou 550000 (China); Xie, Yiwen, E-mail: qin3201@126.com [School of Chemical and Environmental Engineering, Dongguan University of Technology, Dongguan, 523808 (China); Li, Xiang; Yang, Jinjin [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China)

    2016-05-01

    index-based methodology to assess the groundwater pollution intensity (GPI). • GPI assessment includes PSH assessment and GIV assessment. • Measures to prevent and control groundwater pollution based on GPI assessment. • An index-based methodology for prevention and control technologies (PCT) screening. • PCT screening based on GPI assessment results and TOPSIS method.

  11. FINITE ELEMENT NUMERICAL SIMULATION OF LAND SUBSIDENCE AND GROUNDWATER EXPLOITATION BASED ON VISCO-ELASTIC PLASTIC BLOT'S CONSOLIDATION THEORY

    Institute of Scientific and Technical Information of China (English)

    LUO Zu-jiang; ZENG Feng

    2011-01-01

    The land subsidence due to groundwater exploitation has an obvious hysteretic nature with respect to the decrease of the under groundwater level,and the uneven settlement often causes ground fissures.To study these important features,a visco-elastic plastic constitutive relationship with consideration of the coupling of seepage and soil deformation is proposed,and a finite element model with variable coefficients based on the Biot's consolidation theory is built.With the groundwater exploitation and the land subsidence control in Cangzhou City,Hebei Province as an example,the variations of the under groundwater level and the development of the land subsidence due to the groundwater exploitation are simulated and ground fissures are predicted by the horizontaldisplacement calculation.The results show that the lag time between the land subsidence and the under groundwater level descent is about a month,and the simulated results of fissures agree well with the observed data.The model can well reveal the characterization of the interaction between the land subsidence and the groundwater exploitation.

  12. Rational allocation of water resources based on ecological groundwater levels:a case study in Jinghui Irrigation District in China

    Science.gov (United States)

    Li, H.; Zhou, W. B.; Dong, Q. G.; Liu, B. Y.; Ma, C.

    2016-08-01

    Aimed at the hydrogeological environmental problems caused by over-exploitation and unreasonable utilization of water resources in Jinghui Irrigation District, this paper discusses the ecological groundwater level of the study area and establishes a three-layer optimal allocation model of water resources based on the theory of large scale systems. Then, the genetic algorithm method was employed to optimize the model and obtain the optimal allocation of crop irrigation schedule and water resources under the condition of a 75% assurance rate. Finally, the numerical simulation model of the groundwater was applied to analyze the balance of the groundwater on the basis of the optimal allocation scheme. The results show that the upper limitation of the ecological groundwater in Jinghui Irrigation District ranged from 1.8m to 4.2m, while the lower limitation level ranged from 8m to 28m. By 2020, the condition of the groundwater imbalance that results from adopting the optimal allocation scheme will be much better than that caused by current water utilization scheme. With the exception of only a few areas, the groundwater level in most parts of Jinghui Irrigation District will not exceed the lower limitation of ecological groundwater level.

  13. Interactions between groundwater and surface water in a Virginia coastal plain watershed. 2. Acid-base chemistry

    Science.gov (United States)

    O'Brien, A. K.; Eshleman, K.N.; Pollard, J.S.

    1994-01-01

    At the Reedy Creek watershed sulphate concentrations were higher and alkalinity lower in the groundwater in the hillslope than in the stream. Sulphate concentrations and alkalinity observed in groundwater in the wetland were usually between those of the hillslope and stream. These data suggest that the wetland is a sink for sulphate and acidity; sulphate reduction may be an important mechanism for generating alkalinity in the wetland. The DOC concentrations were higher in the stream and wetland groundwater than in hillslope groundwater. No consistent spatial patterns in sulphate concentrations were observed in surface water chemistry under base flow conditions. Stream discharge was found to be positively correlated with base flow sulphate concentrations and inversely correlated with alkalinity. A sulphate mass balance indicated that approximately 30% of the estimated 24.9 kg SO42-/ha yr wet atmospheric input was exported from the watershed as sulphate in stream runoff in the water year 1990. -from Authors

  14. Building science-based groundwater tools and capacity in Armenia for the Ararat Basin

    Science.gov (United States)

    Carter, Janet M.; Valder, Joshua F.; Anderson, Mark T.; Meyer, Patrick; Eimers, Jo L.

    2016-05-18

    The U.S. Geological Survey (USGS) and U.S. Agency for International Development (USAID) began a study in 2016 to help build science-based groundwater tools and capacity for the Ararat Basin in Armenia. The growth of aquaculture and other uses in the Ararat Basin has been accompanied by increased withdrawals of groundwater, which has resulted in a reduction of artesian conditions (decreased springflow, well discharges, and water levels) including loss of flowing wells in many places (Armenia Branch of Mendez England and Associates, 2014; Yu and others, 2015). This study is in partnership with USAID/Armenia in the implementation of its Science, Technology, Innovation, and Partnerships (STIP) effort through the Advanced Science and Partnerships for Integrated Resource Development (ASPIRED) program and associated partners, including the Government of Armenia, Armenia’s Hydrogeological Monitoring Center, and the USAID Global Development Lab and its GeoCenter. Scientific tools will be developed through this study that groundwater-resource managers, such as those in the Ministry of Nature Protection, in Armenia can use to understand and predict the consequences of their resource management decisions.

  15. Estimating the Probability of Vegetation to Be Groundwater Dependent Based on the Evaluation of Tree Models

    Directory of Open Access Journals (Sweden)

    Isabel C. Pérez Hoyos

    2016-04-01

    Full Text Available Groundwater Dependent Ecosystems (GDEs are increasingly threatened by humans’ rising demand for water resources. Consequently, it is imperative to identify the location of GDEs to protect them. This paper develops a methodology to identify the probability of an ecosystem to be groundwater dependent. Probabilities are obtained by modeling the relationship between the known locations of GDEs and factors influencing groundwater dependence, namely water table depth and climatic aridity index. Probabilities are derived for the state of Nevada, USA, using modeled water table depth and aridity index values obtained from the Global Aridity database. The model selected results from the performance comparison of classification trees (CT and random forests (RF. Based on a threshold-independent accuracy measure, RF has a better ability to generate probability estimates. Considering a threshold that minimizes the misclassification rate for each model, RF also proves to be more accurate. Regarding training accuracy, performance measures such as accuracy, sensitivity, and specificity are higher for RF. For the test set, higher values of accuracy and kappa for CT highlight the fact that these measures are greatly affected by low prevalence. As shown for RF, the choice of the cutoff probability value has important consequences on model accuracy and the overall proportion of locations where GDEs are found.

  16. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina)

    Science.gov (United States)

    Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.

    2014-01-01

    Multiple techniques, including thermal infrared aerial remote sensing, geophysical and geological data, geochemical characterization and radium isotopes, were used to evaluate the role of groundwater as a source of dissolved nutrients, carbon, and trace gases to the Okatee River estuary, South Carolina. Thermal infrared aerial remote sensing surveys illustrated the presence of multiple submarine groundwater discharge sites in Okatee headwaters. Significant relationships were observed between groundwater geochemical constituents and 226Ra activity in groundwater with higher 226Ra activity correlated to higher concentrations of organics, dissolved inorganic carbon, nutrients, and trace gases to the Okatee system. A system-level radium mass balance confirmed a substantial submarine groundwater discharge contribution of these constituents to the Okatee River. Diffusive benthic flux measurements and potential denitrification rate assays tracked the fate of constituents in creek bank sediments. Diffusive benthic fluxes were substantially lower than calculated radium-based submarine groundwater discharge inputs, showing that advection of groundwater-derived nutrients dominated fluxes in the system. While a considerable potential for denitrification in tidal creek bank sediments was noted, in situ denitrification rates were nitrate-limited, making intertidal sediments an inefficient nitrogen sink in this system. Groundwater geochemical data indicated significant differences in groundwater chemical composition and radium activity ratios between the eastern and western sides of the river; these likely arose from the distinct hydrological regimes observed in each area. Groundwater from the western side of the Okatee headwaters was characterized by higher concentrations of dissolved organic and inorganic carbon, dissolved organic nitrogen, inorganic nutrients and reduced metabolites and trace gases, i.e. methane and nitrous oxide, than groundwater from the eastern side

  17. Interconnection of tectonic stresses in the Earth's crust and dynamics of the groundwater basin functioning

    Science.gov (United States)

    Koneshov, Vycheslav; Trifonova, Tatiana; Trifonov, Dmitriy; Arakelian, Sergey

    2016-04-01

    1. Possible influence of tectonic stresses on the occurrence of catastrophic floods by the mechanism of modification of the 3D-cracknet of the rock formations and the transit of the groundwater in this natural transport system in the conditions of functioning of the river catchment basin is discussed. Several floods (not freshets) took place in 2013-2014, which probably could be associated with corresponding seismic processes in the Earth's crust, are considered. 2. A river basin formation in the mountain slope can be considered as a self-organizing staged process of its evolution passing through several non-equilibrium but steady-state conditions. The controlling parameter is the process of the crack spreading out. Crack development up the slope but downward substance transit, stipulates a feedback within the unified 3D-river basin system. 3. We have briefly described and rendered the mechanism of the influence of seismic activity on the occurrence of concrete floods with the use of combined maps of groundwater resources and the boundaries of lithospheric plates on the territory and the revealed regularities in seismic waves propagation and interaction with groundwater. 4. In the practical aspect a proposed hypothesis can be useful during the definition of potentially dangerous areas for catastrophic water events taking into account the interference of the state of the underground hydrosphere and the tectonic structure of the rheological section of bowels of the earth on the concrete territories under some adjustable (seismic) conditions.

  18. Nonlinear dynamics based digital logic and circuits.

    Science.gov (United States)

    Kia, Behnam; Lindner, John F; Ditto, William L

    2015-01-01

    We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two.

  19. A Fuzzy Simulation-Based Optimization Approach for Groundwater Remediation Design at Contaminated Aquifers

    Directory of Open Access Journals (Sweden)

    A. L. Yang

    2012-01-01

    Full Text Available A fuzzy simulation-based optimization approach (FSOA is developed for identifying optimal design of a benzene-contaminated groundwater remediation system under uncertainty. FSOA integrates remediation processes (i.e., biodegradation and pump-and-treat, fuzzy simulation, and fuzzy-mean-value-based optimization technique into a general management framework. This approach offers the advantages of (1 considering an integrated remediation alternative, (2 handling simulation and optimization problems under uncertainty, and (3 providing a direct linkage between remediation strategies and remediation performance through proxy models. The results demonstrate that optimal remediation alternatives can be obtained to mitigate benzene concentration to satisfy environmental standards with a minimum system cost.

  20. Use of iron-based technologies in contaminated land and groundwater remediation: A review

    Energy Technology Data Exchange (ETDEWEB)

    Cundy, Andrew B. [School of Environment and Technology, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom)], E-mail: A.Cundy@brighton.ac.uk; Hopkinson, Laurence [School of Environment and Technology, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Whitby, Raymond L.D. [School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom)

    2008-08-01

    Reactions involving iron play a major role in the environmental cycling of a wide range of important organic, inorganic and radioactive contaminants. Consequently, a range of environmental clean-up technologies have been proposed or developed which utilise iron chemistry to remediate contaminated land and surface and subsurface waters, e.g. the use of injected zero zero-valent iron nanoparticles to remediate organic contaminant plumes; the generation of iron oxyhydroxide-based substrates for arsenic removal from contaminated waters; etc. This paper reviews some of the latest iron-based technologies in contaminated land and groundwater remediation, their current state of development, and their potential applications and limitations.

  1. Twenty years of global groundwater research: A Science Citation Index Expanded-based bibliometric survey (1993-2012)

    Science.gov (United States)

    Niu, Beibei; Loáiciga, Hugo A.; Wang, Zhen; Zhan, F. Benjamin; Hong, Song

    2014-11-01

    A bibliometric analysis was conducted to evaluate groundwater research from different perspectives in the period 1993-2012 based on the Science Citation Index-Expanded (SCIE) database. The bibliometric analysis summarizes output, categorical, geographical, and institutional patterns, as well as research hotspots in global groundwater studies. Groundwater research experienced notable growth in the past two decades. “Environmental sciences”, “water resources” and “multidisciplinary geosciences” were the three major subject categories. The Journal of Hydrology published the largest number of groundwater-related publications in the surveyed period. Major author clusters and research regions are located in the United States, Western Europe, Eastern and Southern Asia, and Eastern Australia. The United States was a leading contributor to global groundwater research with the largest number of independent and collaborative papers, its dominance affirmed by housing 12 of the top 20 most active institutions reporting groundwater-related research. The US Geological Survey, the Chinese Academy of Sciences, and the USDA Agricultural Research Service were the three institutions with the largest number of groundwater-related publications. A keywords analysis revealed that groundwater quality and contamination, effective research technologies, and treatment technologies for water-quality improvement were the main research areas in the study period. Several keywords such as “arsenic”, “climate change”, “fluoride”, “groundwater management”, “hydrogeochemistry”, “uncertainty”, “numerical modeling”, “seawater intrusion”, “adsorption”, “remote sensing”, “land use”, “USA”(as study site), and “water supply” received dramatically increased attention during the study period, possibly signaling future research trends.

  2. A method of groundwater quality assessment based on fuzzy network-CANFIS and geographic information system (GIS)

    Science.gov (United States)

    Gholami, V.; Khaleghi, M. R.; Sebghati, M.

    2016-12-01

    The process of water quality testing is money/time-consuming, quite important and difficult stage for routine measurements. Therefore, use of models has become commonplace in simulating water quality. In this study, the coactive neuro-fuzzy inference system (CANFIS) was used to simulate groundwater quality. Further, geographic information system (GIS) was used as the pre-processor and post-processor tool to demonstrate spatial variation of groundwater quality. All important factors were quantified and groundwater quality index (GWQI) was developed. The proposed model was trained and validated by taking a case study of Mazandaran Plain located in northern part of Iran. The factors affecting groundwater quality were the input variables for the simulation, whereas GWQI index was the output. The developed model was validated to simulate groundwater quality. Network validation was performed via comparison between the estimated and actual GWQI values. In GIS, the study area was separated to raster format in the pixel dimensions of 1 km and also by incorporation of input data layers of the Fuzzy Network-CANFIS model; the geo-referenced layers of the effective factors in groundwater quality were earned. Therefore, numeric values of each pixel with geographical coordinates were entered to the Fuzzy Network-CANFIS model and thus simulation of groundwater quality was accessed in the study area. Finally, the simulated GWQI indices using the Fuzzy Network-CANFIS model were entered into GIS, and hence groundwater quality map (raster layer) based on the results of the network simulation was earned. The study's results confirm the high efficiency of incorporation of neuro-fuzzy techniques and GIS. It is also worth noting that the general quality of the groundwater in the most studied plain is fairly low.

  3. Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in Subei Lake Basin, Ordos energy base, Northwestern China

    Directory of Open Access Journals (Sweden)

    F. Liu

    2014-05-01

    Full Text Available A hydrochemical and isotopic study was conducted in Subei Lake Basin, northwestern China, to identify the origin and geochemical evolution of groundwater. Water samples were collected, major ions and stable isotopes (δ18O, δ D were analyzed. In terms of hydrogeological conditions in study area, groundwater can be classified into three types: the Quaternary groundwater, the shallow Cretaceous groundwater, the deep Cretaceous groundwater. Piper diagram and correlation analysis were used to reveal the hydrochemical characteristics of water resources. The dominant water type of lake water was Na-Cl type, which was controlled by strong evaporation and recharge from overland flow and groundwater; the predominant hydrochemical types for groundwater were Ca-HCO3, Na-HCO3, and mixed Ca · Na · Mg-HCO3 types, the groundwater chemistry is mainly controlled by dissolution/precipitation of anhydrite, gypsum, halite and calcite. The dedolomitization and cation exchange are also important factors. Rock weathering is confirmed to play a leading role in the mechanisms responsible for the chemical compositions of groundwater. The stable isotopic values of oxygen and hydrogen in groundwater are close to the local meteoric water line, showing that groundwater is of meteoric origin. The deep Cretaceous groundwater is depleted in heavy isotopes, compared to shallow Cretaceous groundwater. The hydrogen and oxygen isotopes signatures in deep Cretaceous groundwater may show a paleorecharge effect that the deep Cretaceous groundwater was recharged during a geologic period when the climate was wetter and colder than today. Due to strong evaporation effect and dry climatic conditions, heavy isotopes are more enriched in lake water than groundwater. The hydrochemical and isotopic information of utmost importance has been provided to decision-makers by the present study so that a sustainable water resources management policy could be designed for the Ordos energy base.

  4. Groundwater dynamics in wetland soils control the production and transfer mechanisms of dissolved reactive phosphorus in an agricultural landscape

    Science.gov (United States)

    Dupas, Rémi; Gu, Sen; Gruau, Gérard; Gascuel-Odoux, Chantal

    2015-04-01

    Because of its high sorption affinity on soils solid phase, mitigation options to reduce diffuse P transfer usually focus on trapping particulate P forms delivered via surface flowpaths. Therefore, vegetated buffer zones placed between croplands and watercourses have been promoted worldwide, sometimes in wetland areas. To investigate the risk of such P trapping riparian wetlands (RWs) releasing dissolved P to rivers, we monitored molybdate reactive P (MRP) in the free soil solution of two RWs in an intensively farmed catchment. Two main mechanisms causing MRP release were identified in light of the geochemical and hydrological conditions in the RWs, controlled by groundwater dynamics. First, soil rewetting after the dry summer was associated with the presence of a pool of mobile P, limited in size. Its mobilization started under conditions of water saturation caused by groundwater uprise in RW organo-mineral soil horizons. Second, the establishment of anoxic conditions in the end of the winter caused reductive solubilization of Fe oxide-hydroxide, along with release of P. Comparison between sites revealed that the first MRP release occurred only in a RW with P enriched soils, whereas the second was recorded even in a RW with a low soil P status. Seasonal variations in MRP concentrations in the stream were synchronized with those in RW soils. Hence, enriched and/or periodically anoxic RWs can act as a key component of the P transfer continuum in agricultural landscapes by converting particulate P from croplands into MRP released to rivers.

  5. Assessment of village-wise groundwater draft for irrigation: a field-based study in hard-rock aquifers of central India

    Science.gov (United States)

    Ray, R. K.; Syed, T. H.; Saha, Dipankar; Sarkar, B. C.; Patre, A. K.

    2017-07-01

    Extracted groundwater, 90% of which is used for irrigated agriculture, is central to the socio-economic development of India. A lack of regulation or implementation of regulations, alongside unrecorded extraction, often leads to over exploitation of large-scale common-pool resources like groundwater. Inevitably, management of groundwater extraction (draft) for irrigation is critical for sustainability of aquifers and the society at large. However, existing assessments of groundwater draft, which are mostly available at large spatial scales, are inadequate for managing groundwater resources that are primarily exploited by stakeholders at much finer scales. This study presents an estimate, projection and analysis of fine-scale groundwater draft in the Seonath-Kharun interfluve of central India. Using field surveys of instantaneous discharge from irrigation wells and boreholes, annual groundwater draft for irrigation in this area is estimated to be 212 × 106 m3, most of which (89%) is withdrawn during non-monsoon season. However, the density of wells/boreholes, and consequent extraction of groundwater, is controlled by the existing hydrogeological conditions. Based on trends in the number of abstraction structures (1982-2011), groundwater draft for the year 2020 is projected to be approximately 307 × 106 m3; hence, groundwater draft for irrigation in the study area is predicted to increase by ˜44% within a span of 8 years. Central to the work presented here is the approach for estimation and prediction of groundwater draft at finer scales, which can be extended to critical groundwater zones of the country.

  6. Model-based evaluation of subsurface monitoring networks for improved efficiency and predictive certainty of regional groundwater models

    Science.gov (United States)

    Gosses, M. J.; Wöhling, Th.; Moore, C. R.; Dann, R.; Scott, D. M.; Close, M.

    2012-04-01

    Groundwater resources worldwide are increasingly under pressure. Demands from different local stakeholders add to the challenge of managing this resource. In response, groundwater models have become popular to make predictions about the impact of different management strategies and to estimate possible impacts of changes in climatic conditions. These models can assist to find optimal management strategies that comply with the various stakeholder needs. Observations of the states of the groundwater system are essential for the calibration and evaluation of groundwater flow models, particularly when they are used to guide the decision making process. On the other hand, installation and maintenance of observation networks are costly. Therefore it is important to design monitoring networks carefully and cost-efficiently. In this study, we analyse the Central Plains groundwater aquifer (~ 4000 km2) between the Rakaia and Waimakariri rivers on the Eastern side of the Southern Alps in New Zealand. The large sedimentary groundwater aquifer is fed by the two alpine rivers and by recharge from the land surface. The area is mainly under agricultural land use and large areas of the land are irrigated. The other major water use is the drinking water supply for the city of Christchurch. The local authority in the region, Environment Canterbury, maintains an extensive groundwater quantity and quality monitoring programme to monitor the effects of land use and discharges on groundwater quality, and the suitability of the groundwater for various uses, especially drinking-water supply. Current and projected irrigation water demand has raised concerns about possible impacts on groundwater-dependent lowland streams. We use predictive uncertainty analysis and the Central Plains steady-state groundwater flow model to evaluate the worth of pressure head observations in the existing groundwater well monitoring network. The data worth of particular observations is dependent on the problem

  7. Groundwater Dynamics as an Essential Factor in the Precipitation of the Pine Point MVT Lead-Zinc Deposits

    Science.gov (United States)

    Weyer, K. U.

    2014-12-01

    Hypotheses on the genesis of MVT lead zinc deposits place that genesis generally well into the geological past with elevated temperatures in the 100 °C range. In the case of the Pine Point lead zinc deposits, the time of genesis has been assumed to have happened from the Middle Devonian age to the Tertiary age. It is generally said that, based on isotope data, the ore forming fluid there must have been hydrothermal in a temperature range of 100 °C or more. The average homogenized temperature in fluid inclusions in dolomite in the Pine Point area has been reported to be 116 °C and the burial temperature at about 70 °C. In the course of a former joint industry/governmental research project on regional and local groundwater flow, water chemistry, and water isotopes, all available regional and local geological and mineral data for exploration bore holes were collected. The massive body of these data indicated that in the Pine Point region, the present groundwater flow systems and their respective chemistry would support the continuous formation of ore bodies from glacial times to the present day. This body of data provides strong indications that the interplay of today's groundwater flow systems, their chemistry, and the associated microbiological activity may currently be forming MVT ore bodies and mineral showings even at low non-hydrothermal temperatures in the range of 3 °C. Upon abandonment of Pine Point Mines this suspicion was supported by the occurrence of a 'black smoker' discharging from a flowing hole near one of the formerly mined ore bodies (Figure 1). At Pine Point, MVT ore bodies are positioned within karstic rocks at the intersection of two active and very substantial groundwater flow systems. In one of these systems, groundwater carries sulphate, while the other, upwelling one, also carries NaCl and metals. At the ore bodies, microbiological populations of sulfur-reducing bacteria are present and participate in forming conditions for ore

  8. Digging navigable waterways through lagoon tidal flats: which short and long-term impacts on groundwater dynamics and quality?

    Science.gov (United States)

    Teatini, Pietro; Isotton, Giovanni; Nardean, Stefano; Ferronato, Massimiliano; Tosi, Luigi; Da Lio, Cristina; Zaggia, Luca; Bellafiore, Debora; Zecchin, Massimo; Baradello, Luca; Corami, Fabiana; Libralato, Giovanni; Morabito, Elisa; Broglia, Riccardo; Zaghi, Stefano

    2017-04-01

    Coastal lagoons are highly valued ephemeral habitats that have experienced in many cases the pressure of human activities since the development of urbanisation and economic activities within or around their boundaries. One typical intervention is dredging of canals to increase the exchange of water with the sea or for navigation purposes. In order to divert the route of large cruise liners from the historic center of Venice, Italy, the Venice Port Authority has recently proposed a project for the dredging of a new 3-km long and 10-m deep navigation canal (called Marghera-Venice Canal, MVC, in the sequel) through the shallows of the Venice Lagoon. The MVC will connect the passenger terminal located in the southwestern part of the historic center to a main channel that reaches the industrial area on the western lagoon margin. Can the new MVC facilitate saltwater intrusion below the lagoon bottom? Can the release into the lagoon of the chemicals detected in the groundwater around the industrial site be favoured by the MVC excavation? Can the depression waves generated by the ship transit (known as ship-wakes) along the MVC affect the flow and contaminant exchange between the subsurface and surficial systems? A response to these questions has been provided by the use of uncoupled and coupled density-dependent groundwater flow and transport simulators. The hydrogeological modelling has been supported by an in-depth characterization of the Venice lagoon subsurface along the MVC. Geophysical surveys, laboratory analyses on groundwater and sediment samples, in-situ measurements through piezometers and pressure sensors, and the outcome of 3D hydrodynamic and computational fluid dynamic (CFD) models have been used to set-up and calibrate the subsurface multi-model approach. The modelling results can be summarized as follows: i) the MVC has a negligible effect in relation to the propagation of the tidal regime into the subsoil; ii) the depression caused by the ship transit

  9. Spatial Dynamic Optimization of Groundwater Use with Ecological Standards for Instream Flow

    Science.gov (United States)

    Brozovic, N.; Han, J.; Speir, C.

    2011-12-01

    Instream flow requirements for protected species in arid and semi-arid regions have created the need to reduce groundwater use adjacent to streams. We present an integrated hydrologic-economic model that optimizes agricultural groundwater use next to streams with flow standards. Policies to meet instream flow standards should aim to minimize the welfare losses to irrigated agriculture due to reduced pumping. Previous economic studies have proposed spatially targeted water allocations between groundwater irrigators and instream demands. However, these studies focused on meeting aggregate instream flow goals on a seasonal or yearly basis rather than meeting them on a continuous basis. Temporally aggregated goals ignore important intra-seasonal hydrologic effects and may not provide sufficient habitat quality for species of concern. We present an optimization model that solves for groundwater pumping allocations across space in a stream-aquifer system with instream flow goals that must be met on a daily basis. We combine an analytical model of stream depletion with a farm profit maximization model that includes cumulative crop yield damages from water stress. The objective is the minimization of agricultural losses from reduced groundwater use while minimum instream flow requirements for ecological needs are met on a daily basis. As a case study, we apply our model to the Scott River Basin in northern California. This is a region where stream depletion resulting from extensive irrigation has degraded habitat for Coho salmon, a species protected under the U.S. Endangered Species Act. Our results indicate the importance of considering the lag between the time at which pumping occurs and the time at which stream depletion related to that pumping occurs. In general, we find that wells located farther from the stream should be allocated more water in most hydrologic scenarios. However, we also find that the spatial and temporal distribution of optimal groundwater pumping

  10. Landscape structure, groundwater dynamics, and soil water content influence soil respiration across riparian-hillslope transitions in the Tenderfoot Creek Experimental Forest, Montana

    Science.gov (United States)

    Vincent J. Pacific; Brian L. McGlynn; Diego A. Riveros-Iregui; Daniel L. Welsch; Howard E. Epstein

    2011-01-01

    Variability in soil respiration at various spatial and temporal scales has been the focus of much research over the last decade aimed to improve our understanding and parameterization of physical and environmental controls on this flux. However, few studies have assessed the control of landscape position and groundwater table dynamics on the spatiotemporal variability...

  11. Groundwater dynamics in the Amazon basin from remotely sensed observations and hydrological models

    Science.gov (United States)

    Frappart, Frédéric; Papa, Fabrice; Tomasella, Javier; Ramillien, Guillaume; Güntner, Andreas; Emilio, Thaise; Schietti, Juliana; da Silva Carvalho, João

    2014-05-01

    Groundwater plays a key role in the terrestrial hydrological cycle and the water balance on the continents. It accounts for more than 30% (i.e., 8,000,000 km3 to 10,000,000 km3) of global fresh-water resources, and is also the major resource of water supply for 40% of the world's population and 50% of the world's food production. However, groundwater storage and its variations are still poorly known at global scale due to the limited extent of current monitoring networks. Most of the studies on geohydrology in the Amazon basin were carried out at local scale except a recent study that pointed out evidences on regional scale groundwater flows using a geothermal method. Gravimetry from space offers the unique opportunity to monitor water resources at basin to continental scales. The Gravity Recovery And Climate Experiment (GRACE) mission, launched in 2002, detects tiny changes in the Earth's gravity field which can be related to spatio-temporal variations of TWS at monthly or sub-monthly time-scales. Variations in groundwater storage (GW) can be separated from the TWS anomalies measured by GRACE using external information on the other hydrological reservoirs such as in situ observations, model outputs, or both. Very few studies have been undertaken yet in large river basins characterized by extensive wetlands and floodplains, due to the lack of reliable and timely information about the extent, spatial distribution, as well as the amount of water stored in wetlands and floods and their temporal variations. Using multi-satellite observations for surface water storage (SW) and hydrological outputs for soil moisture (SM), variations in GW were estimated in the Negro basin, the second largest tributary of the Amazon in terms of discharge. Here, the same approach was applied in the whole Amazon basin, allowing to estimate the contribution of each hydrological reservoir to TWS, to monitor its time variations, and to map the annual changes in the aquifers over 2003

  12. Paper-Based Microfluidic Device with a Gold Nanosensor to Detect Arsenic Contamination of Groundwater in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mosfera A. Chowdury

    2017-03-01

    Full Text Available In this paper, we present a microfluidic paper-based analytical device (μPAD with a gold nanosensor functionalized with α-lipoic acid and thioguanine (Au–TA–TG to detect whether the arsenic level of groundwater from hand tubewells in Bangladesh is above or below the World Health Organization (WHO guideline level of 10 μg/L. We analyzed the naturally occurring metals present in Bangladesh groundwater and assessed the interference with the gold nanosensor. A method was developed to prevent interference from alkaline metals found in Bangladesh groundwater (Ca, Mg, K and Na by increasing the pH level on the μPADs to 12.1. Most of the heavy metals present in the groundwater (Ni, Mn, Cd, Pb, and Fe II did not interfere with the μPAD arsenic tests; however, Fe III was found to interfere, which was also prevented by increasing the pH level on the μPADs to 12.1. The μPAD arsenic tests were tested with 24 groundwater samples collected from hand tubewells in three different districts in Bangladesh: Shirajganj, Manikganj, and Munshiganj, and the predictions for whether the arsenic levels were above or below the WHO guideline level agreed with the results obtained from laboratory testing. The μPAD arsenic test is the first paper-based test validated using Bangladesh groundwater samples and capable of detecting whether the arsenic level in groundwater is above or below the WHO guideline level of 10 μg/L, which is a step towards enabling the villagers who collect and consume the groundwater to test their own sources and make decisions about where to obtain the safest water.

  13. The use of δ15N and δ18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution.

    Science.gov (United States)

    Hosono, Takahiro; Tokunaga, Takahiro; Kagabu, Makoto; Nakata, Haruhiko; Orishikida, Takanori; Lin, In-Tian; Shimada, Jun

    2013-05-15

    During early 2000, a new analytical procedure for nitrate isotopic measurement, termed the "denitrifier method", was established. With the development of the nitrate isotope tracer method, much research has been reported detailing sources of groundwater nitrate and denitrification mechanisms. However, a shortcoming of these tracer studies has been indicated owing to some overlapping of isotope compositions among different source materials and denitrification trends. In order to reduce these uncertainties, we examined nitrate isotope ratios within a frame of "regional groundwater flow dynamics" to eliminate unnecessary uncertainties in elucidating nitrate sources and behaviors. A total of 361 samples were collected from the Kumamoto area: the circulated groundwater system with a scale of 10(3) km(2) in southern Japan. Subsequently, the nitrate pollution was examined within the above-mentioned framework. As a result, a reasonable identification of the sources and attenuation behaviors (both denitrification and dilution) of groundwater nitrate pollution was obtained over the study area. This study demonstrates that the use of nitrate isotope tracers efficiently improves with a comprehensive understanding of groundwater flow dynamics. The approach emphasized in this study is important and should be applicable in other areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Groundwater dynamic, temperature and salinity response to the tide in Patagonian marshes: Observations on a coastal wetland in San José Gulf, Argentina

    Science.gov (United States)

    Alvarez, María del Pilar; Carol, Eleonora; Hernández, Mario A.; Bouza, Pablo J.

    2015-10-01

    The processes regulating the relationship between tidal flows and shallow groundwater dynamics, temperature and salinity in a coastal wetland in an arid climate are analysed in a detailed field study carried out in the marsh located at Playa Fracasso (Argentina). The continuous records of groundwater level, temperature and electrical conductivity from a transect perpendicular to the coastline were studied during a period ranging from summer to winter, together with the information obtained in hydrogeomorphological field surveys and soil profiles. An assessment of the processes conditioning marsh hydrology was carried out contemplating seasonal (summer-winter) and periodical variations caused by tidal flows. The study showed that the dynamics of groundwater in relation to tidal flows depends almost exclusively on the infiltration of tidal water when the marsh is flooded during spring tides (syzygy), with an increase in the groundwater discharge level at the onset of syzygy. The differences in temperature between sea and continental water were very useful in defining the origin of the different contributions. Groundwater salinity is mainly associated with the leaching of the soil salts that enter with the sea water infiltrating during flood events. The presence of saline soils in the marsh is regulated by the evapotranspiration predominating in arid zones. The conceptual hydrological model suggested may help in the understanding of the hydrological processes in other similar marshes of Patagonia, as well as in coastal wetlands of arid zones worldwide.

  15. Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an agricultural headwater catchment

    Science.gov (United States)

    Stream riparian zones are often thought of as areas that provide natural remediation for groundwater contaminants, especially agricultural nitrogen (N). While denitrification and vegetative uptake tend to be efficient N removal processes in slow moving shallow groundwater, these mechanisms decrease ...

  16. Groundwater conceptualization and modeling using distributed SWAT-based recharge for the semi-arid agricultural Neishaboor plain, Iran

    Science.gov (United States)

    Izady, A.; Davary, K.; Alizadeh, A.; Ziaei, A. N.; Akhavan, S.; Alipoor, A.; Joodavi, A.; Brusseau, M. L.

    2015-02-01

    Increased irrigation in the Neishaboor watershed, Iran, during the last few decades has caused serious groundwater depletion, making the development of comprehensive mitigation strategies and tools increasingly important. In this study, SWAT and MODFLOW were employed to integratively simulate surface-water and groundwater flows. SWAT and MODFLOW were iteratively executed to compute spatial and temporal distributions of hydrologic components. The combined SWAT-MODFLOW model was calibrated (2000-2010) and validated (2010-2012) based on streamflow, wheat yield, groundwater extraction, and groundwater-level data. This multi-criteria calibration procedure provided greater confidence for the partitioning of water between soil storage, actual evapotranspiration, and aquifer recharge. The SWAT model provided satisfactory predictions of the hydrologic budget for the watershed outlet. It also provided good predictions of irrigated wheat yield and groundwater extraction. The 10-year mean annual recharge rate estimated using the combined model varied greatly, ranging from 0 to 960 mm, with an average of 176 mm. This result showed good agreement with the independently estimated annual recharge rate from an earlier study. The combined model provides a robust tool for the sustainable planning and management of water resources for areas with stressed aquifers where interaction between groundwater and surface water cannot be easily assessed.

  17. Groundwater dynamics under water-saving irrigation and implications for sustainable water management in an oasis: Tarim River basin of western China

    Science.gov (United States)

    Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M.

    2014-10-01

    Water is essential for life. Specifically in the oases of inland arid basins, water is a critically limited resource, essential for the development of the socio-economy and the sustainability of eco-environmental systems. Due to the unique hydrological regime present in arid oases, a moderate groundwater table is the goal of sustainable water management. A shallow water table induces serious secondary salinization and collapse of agriculture, while a deep water table causes deterioration of natural vegetation. From the hydrological perspective, the exchange flux between the unsaturated vadose zone and groundwater reservoir is a critical link to understanding regional water table dynamics. This flux is substantially influenced by anthropogenic activities. In the Tarim River basin of western China, where agriculture consumes over 90% of available water resources, the exchange flux between the unsaturated vadose zone and groundwater reservoir is influenced strongly by irrigation. Recently, mulched drip irrigation, a sophisticated water-saving irrigation method, was widely applied in the Tarim River basin, which greatly impacted the exchange flux and thus the regional groundwater dynamics. Capitalizing on recent progress in evaporation measurement techniques, we can now close the water balance and directly quantify the exchange flux at the field scale, thus gaining a better understanding of regional groundwater dynamics. In this study, comprehensive observations of water balance components in an irrigated cropland were implemented in 2012 and 2013 in a typical oasis within the Tarim River basin. The water balance analysis showed that the exchange flux and groundwater dynamics were significantly altered by the application of water-saving irrigation. The exchange flux at the groundwater table is mostly downward (310.5 mm year-1), especially during drip irrigation period and spring flush period, while the upward flux is trivial (16.1 mm year-1) due to the moderate

  18. Integrating indicator-based geostatistical estimation and aquifer vulnerability of nitrate-N for establishing groundwater protection zones

    Science.gov (United States)

    Jang, Cheng-Shin; Chen, Shih-Kai

    2015-04-01

    Groundwater nitrate-N contamination occurs frequently in agricultural regions, primarily resulting from surface agricultural activities. The focus of this study is to establish groundwater protection zones based on indicator-based geostatistical estimation and aquifer vulnerability of nitrate-N in the Choushui River alluvial fan in Taiwan. The groundwater protection zones are determined by univariate indicator kriging (IK) estimation, aquifer vulnerability assessment using logistic regression (LR), and integration of the IK estimation and aquifer vulnerability using simple IK with local prior means (sIKlpm). First, according to the statistical significance of source, transport, and attenuation factors dominating the occurrence of nitrate-N pollution, a LR model was adopted to evaluate aquifer vulnerability and to characterize occurrence probability of nitrate-N exceeding 0.5 mg/L. Moreover, the probabilities estimated using LR were regarded as local prior means. IK was then used to estimate the actual extent of nitrate-N pollution. The integration of the IK estimation and aquifer vulnerability was obtained using sIKlpm. Finally, groundwater protection zones were probabilistically determined using the three aforementioned methods, and the estimated accuracy of the delineated groundwater protection zones was gauged using a cross-validation procedure based on observed nitrate-N data. The results reveal that the integration of the IK estimation and aquifer vulnerability using sIKlpm is more robust than univariate IK estimation and aquifer vulnerability assessment using LR for establishing groundwater protection zones. Rigorous management practices for fertilizer use should be implemented in orchards situated in the determined groundwater protection zones.

  19. Sulfur-based autotrophic denitrification with eggshell for nitrate-contaminated synthetic groundwater treatment.

    Science.gov (United States)

    Xu, Yaxian; Chen, Nan; Feng, Chuanping; Hao, Chunbo; Peng, Tong

    2016-12-01

    Eggshell is considered to be a waste and a significant quantity of eggshell waste is generated from food processing, baking and hatching industries. In this study, the effect of different sulfur/eggshell (w/w) ratios and temperatures was investigated to evaluate the feasibility of the sulfur-based autotrophic denitrification with eggshell (SADE) process for nitrate removal. The results showed eggshell can maintain a neutral condition in a range of pH 7.05-7.74 in the SADE process, and remove 97% of nitrate in synthetic groundwater. Compared with oyster shell and limestone, eggshell was found to be a desirable alkaline material for sulfur-based autotrophic denitrification (SAD) with no nitrite accumulation and insignificant sulfate production. Denitrification reaction was found to follow the first-order kinetic models (R(2) > .9) having nitrate removal rate constants of 0.85 and 0.93 d(-1) for raw eggshell and boiled eggshell, respectively. Sulfur/eggshell ratio of 2:3 provided the best efficiency on nitrate removal. Nitrate was removed completely by the SADE process at a low temperature of 15°C. Eggshell could be used for the SAD process due to its good effect for nitrate removal from groundwater.

  20. A simulation-based fuzzy chance-constrained programming model for optimal groundwater remediation under uncertainty

    Science.gov (United States)

    He, L.; Huang, G. H.; Lu, H. W.

    2008-12-01

    In this study a simulation-based fuzzy chance-constrained programming (SFCCP) model is developed based on possibility theory. The model is solved through an indirect search approach which integrates fuzzy simulation, artificial neural network and simulated annealing techniques. This approach has the advantages of: (1) handling simulation and optimization problems under uncertainty associated with fuzzy parameters, (2) providing additional information (i.e. possibility of constraint satisfaction) indicating that how likely one can believe the decision results, (3) alleviating computational burdens in the optimization process, and (4) reducing the chances of being trapped in local optima. The model is applied to a petroleum-contaminated aquifer located in western Canada for supporting the optimal design of groundwater remediation systems. The model solutions provide optimal groundwater pumping rates for the 3, 5 and 10 years of pumping schemes. It is observed that the uncertainty significantly affects the remediation strategies. To mitigate such impacts, additional cost is required either for increased pumping rate or for reinforced site characterization.

  1. Groundwater discharge dynamics from point to catchment scale in a lowland stream: Combining hydraulic and tracer methods

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang; Sebok, Eva; Duque, Carlos

    2015-01-01

    nutrient or pollutant transport zones from nearby agricultural fields. VTP measurements confirmed high groundwater fluxes in discharge areas indicated by DTS and ADCP, and this coupling of ADCP, DTS and VTP proposes a novel field methodology to detect areas of concentrated groundwater discharge with higher......Detecting, quantifying and understanding groundwater discharge to streams are crucial for the assessment of water, nutrient and contaminant exchange at the groundwater–surface water interface. In lowland agricultural catchments with significant groundwater discharge this is of particular importance...... because of the risk of excess leaching of nutrients to streams. Here we aim to combine hydraulic and tracer methods from point-to-catchment scale to assess the temporal and spatial variability of groundwater discharge in a lowland, groundwater gaining stream in Denmark. At the point-scale, groundwater...

  2. Using genetic algorithm based simulated annealing penalty function to solve groundwater management model

    Institute of Scientific and Technical Information of China (English)

    吴剑锋; 朱学愚; 刘建立

    1999-01-01

    The genetic algorithm (GA) is a global and random search procedure based on the mechanics of natural selection and natural genetics. A new optimization method of the genetic algorithm-based simulated annealing penalty function (GASAPF) is presented to solve groundwater management model. Compared with the traditional gradient-based algorithms, the GA is straightforward and there is no need to calculate derivatives of the objective function. The GA is able to generate both convex and nonconvex points within the feasible region. It can be sure that the GA converges to the global or at least near-global optimal solution to handle the constraints by simulated annealing technique. Maximum pumping example results show that the GASAPF to solve optimization model is very efficient and robust.

  3. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools.

    Science.gov (United States)

    Iqbal, Naveed; Hossain, Faisal; Lee, Hyongki; Akhter, Gulraiz

    2017-03-01

    Reliable and frequent information on groundwater behavior and dynamics is very important for effective groundwater resource management at appropriate spatial scales. This information is rarely available in developing countries and thus poses a challenge for groundwater managers. The in situ data and groundwater modeling tools are limited in their ability to cover large domains. Remote sensing technology can now be used to continuously collect information on hydrological cycle in a cost-effective way. This study evaluates the effectiveness of a remote sensing integrated physical modeling approach for groundwater management in Indus Basin. The Gravity Recovery and Climate Experiment Satellite (GRACE)-based gravity anomalies from 2003 to 2010 were processed to generate monthly groundwater storage changes using the Variable Infiltration Capacity (VIC) hydrologic model. The groundwater storage is the key parameter of interest for groundwater resource management. The spatial and temporal patterns in groundwater storage (GWS) are useful for devising the appropriate groundwater management strategies. GRACE-estimated GWS information with large-scale coverage is valuable for basin-scale monitoring and decision making. This frequently available information is found useful for the identification of groundwater recharge areas, groundwater storage depletion, and pinpointing of the areas where groundwater sustainability is at risk. The GWS anomalies were found to favorably agree with groundwater model simulations from Visual MODFLOW and in situ data. Mostly, a moderate to severe GWS depletion is observed causing a vulnerable situation to the sustainability of this groundwater resource. For the sustainable groundwater management, the region needs to implement groundwater policies and adopt water conservation techniques.

  4. Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water–seawater interface in two Hawaiian groundwater systems

    Science.gov (United States)

    Dimova, Natasha T.; Swarzenski, Peter W.; Dulaiova, Henrieta; Glenn, Craig R.

    2012-01-01

    Multichannel electrical resistivity (ER) measurements were conducted at two contrasting coastal sites in Hawaii to obtain new information on the spatial scales and dynamics of the fresh water–seawater interface and rates of coastal groundwater exchange. At Kiholo Bay (located on the dry, Kona side of the Big Island) and at a site in Maunalua Bay (Oahu), there is an evidence for abundant submarine groundwater discharge (SGD). However, the hydrologic and geologic controls on coastal groundwater discharge are likely to be different at these two sites. While at Kiholo Bay SGD is predominantly through lava tubes, at the Maunalua Bay site exchange occurs mostly through nearshore submarine springs. In order to calculate SGD fluxes, it is important to understand the spatial and temporal scales of coastal groundwater exchange. From ER time series data, subsurface salinity distributions were calculated using site-specific formation factors. A salinity mass balance box model was then used to calculate rates of point source (i.e., spatially discreet) and total fresh water discharge. From these data, mean SGD rates were calculated for Kiholo Bay (∼9,200 m3/d) and for the Maunalua Bay site (∼5,900 m3/d). While such results are on the same order of magnitude to geochemical tracer-derived SGD rates, the ER SGD rates provide enhanced details of coastal groundwater exchange that can enable a more cohesive whole watershed perspective.

  5. Analysis of groundwater dynamics in the complex aquifer system of Kazan Trona, Turkey, using environmental tracers and noble gases

    Science.gov (United States)

    Arslan, Sebnem; Yazicigil, Hasan; Stute, Martin; Schlosser, Peter; Smethie, William M.

    2015-02-01

    The Eocene deposits of Kazan Basin in Turkey contain a rare trona mineral which is planned to be extracted by solution mining. The complex flow dynamics and mixing mechanisms as noted from previous hydraulic and hydrochemical data need to be augmented with environmental tracer and noble gas data to develop a conceptual model of the system for the assessment of the impacts of the mining and to develop sustainable groundwater management policies throughout the area. The tracers used include the stable isotopes of water (δ2H, δ18O), δ13C and 14C of dissolved inorganic carbon (DIC), tritium (3H), the chlorofluorocarbons CFC-11 and CFC-12, and the noble gases He and Ne. The system studied consists of three aquifers: shallow, middle, and deep. CFC data indicate modern recharge in the shallow system. The estimates of ages through 14C dating for the deeper aquifer system are up to 34,000 years. Helium concentrations cover a wide range of values from 5 × 10-8 to 1.5 × 10-5 cm3 STP/g. 3He/4He ratios vary from 0.09RA to 1.29RA (where RA is the atmospheric 3He/4He ratio of 1.384 × 10-6), the highest found in water from the shallow aquifer. Mantle-derived 3He is present in some of the samples indicating upward groundwater movement, possibly along a NE-SW-striking fault-like feature in the basin.

  6. Distance-based classification of keystroke dynamics

    Science.gov (United States)

    Tran Nguyen, Ngoc

    2016-07-01

    This paper uses the keystroke dynamics in user authentication. The relationship between the distance metrics and the data template, for the first time, was analyzed and new distance based algorithm for keystroke dynamics classification was proposed. The results of the experiments on the CMU keystroke dynamics benchmark dataset1 were evaluated with an equal error rate of 0.0614. The classifiers using the proposed distance metric outperform existing top performing keystroke dynamics classifiers which use traditional distance metrics.

  7. Simultaneous removal of nitrate and chromate in groundwater by a spiral fiber based biofilm reactor.

    Science.gov (United States)

    Zhai, Siyuan; Zhao, Yinxin; Ji, Min; Qi, Wenfang

    2017-05-01

    A spiral fiber based biofilm reactor was developed to remove nitrate and chromate simultaneously. The denitrification and Cr(VI) removal efficiency was evaluated with synthetic groundwater (NO3(-)-N=50mg/L) under different Cr(VI) concentrations (0-1.0mg/L), carbon nitrogen ratios (C/N) (0.8-1.2), hydraulic retention times (HRT) (2-16h) and initial pHs (4-10). Nitrate and Cr(VI) were completely removed without nitrite accumulation when the Cr(VI) concentration was lower than 0.4mg/L. As Cr(VI) up to 1.0mg/L, the system was obviously inhibited, but it recovered rapidly within 6days due to the strong adaption and domestication of microorganisms in the biofilm reactor. The results demonstrated that high removal efficiency of nitrate (≥99%) and Cr(VI) (≥95%) were achieved at lower C/N=0.9, HRT=8h, initial pH=7, and Cr(VI)=1.0mg/L. The technology proposed in present study can be alternative for simultaneous removal of co-contaminants in groundwater.

  8. Design and testing of a process-based groundwater vulnerability assessment (P-GWAVA) system for predicting concentrations of agrichemicals in groundwater across the United States

    Science.gov (United States)

    Barbash, Jack E; Voss, Frank D.

    2016-03-29

    Efforts to assess the likelihood of groundwater contamination from surface-derived compounds have spanned more than three decades. Relatively few of these assessments, however, have involved the use of process-based simulations of contaminant transport and fate in the subsurface, or compared the predictions from such models with measured data—especially over regional to national scales. To address this need, a process-based groundwater vulnerability assessment (P-GWAVA) system was constructed to use transport-and-fate simulations to predict the concentration of any surface-derived compound at a specified depth in the vadose zone anywhere in the conterminous United States. The system was then used to simulate the concentrations of selected agrichemicals in the vadose zone beneath agricultural areas in multiple locations across the conterminous United States. The simulated concentrations were compared with measured concentrations of the compounds detected in shallow groundwater (that is, groundwater drawn from within a depth of 6.3 ± 0.5 meters [mean ± 95 percent confidence interval] below the water table) in more than 1,400 locations across the United States. The results from these comparisons were used to select the simulation approaches that led to the closest agreement between the simulated and the measured concentrations.The P-GWAVA system uses computer simulations that account for a broader range of the hydrologic, physical, biological and chemical phenomena known to control the transport and fate of solutes in the subsurface than has been accounted for by any other vulnerability assessment over regional to national scales. Such phenomena include preferential transport and the influences of temperature, soil properties, and depth on the partitioning, transport, and transformation of pesticides in the subsurface. Published methods and detailed soil property data are used to estimate a wide range of model input parameters for each site, including surface

  9. Accelerating groundwater flow simulation in MODFLOW using JASMIN-based parallel computing.

    Science.gov (United States)

    Cheng, Tangpei; Mo, Zeyao; Shao, Jingli

    2014-01-01

    To accelerate the groundwater flow simulation process, this paper reports our work on developing an efficient parallel simulator through rebuilding the well-known software MODFLOW on JASMIN (J Adaptive Structured Meshes applications Infrastructure). The rebuilding process is achieved by designing patch-based data structure and parallel algorithms as well as adding slight modifications to the compute flow and subroutines in MODFLOW. Both the memory requirements and computing efforts are distributed among all processors; and to reduce communication cost, data transfers are batched and conveniently handled by adding ghost nodes to each patch. To further improve performance, constant-head/inactive cells are tagged and neglected during the linear solving process and an efficient load balancing strategy is presented. The accuracy and efficiency are demonstrated through modeling three scenarios: The first application is a field flow problem located at Yanming Lake in China to help design reasonable quantity of groundwater exploitation. Desirable numerical accuracy and significant performance enhancement are obtained. Typically, the tagged program with load balancing strategy running on 40 cores is six times faster than the fastest MICCG-based MODFLOW program. The second test is simulating flow in a highly heterogeneous aquifer. The AMG-based JASMIN program running on 40 cores is nine times faster than the GMG-based MODFLOW program. The third test is a simplified transient flow problem with the order of tens of millions of cells to examine the scalability. Compared to 32 cores, parallel efficiency of 77 and 68% are obtained on 512 and 1024 cores, respectively, which indicates impressive scalability.

  10. Understanding similarity of groundwater systems with empirical copulas

    Science.gov (United States)

    Haaf, Ezra; Kumar, Rohini; Samaniego, Luis; Barthel, Roland

    2016-04-01

    Within the classification framework for groundwater systems that aims for identifying similarity of hydrogeological systems and transferring information from a well-observed to an ungauged system (Haaf and Barthel, 2015; Haaf and Barthel, 2016), we propose a copula-based method for describing groundwater-systems similarity. Copulas are an emerging method in hydrological sciences that make it possible to model the dependence structure of two groundwater level time series, independently of the effects of their marginal distributions. This study is based on Samaniego et al. (2010), which described an approach calculating dissimilarity measures from bivariate empirical copula densities of streamflow time series. Subsequently, streamflow is predicted in ungauged basins by transferring properties from similar catchments. The proposed approach is innovative because copula-based similarity has not yet been applied to groundwater systems. Here we estimate the pairwise dependence structure of 600 wells in Southern Germany using 10 years of weekly groundwater level observations. Based on these empirical copulas, dissimilarity measures are estimated, such as the copula's lower- and upper corner cumulated probability, copula-based Spearman's rank correlation - as proposed by Samaniego et al. (2010). For the characterization of groundwater systems, copula-based metrics are compared with dissimilarities obtained from precipitation signals corresponding to the presumed area of influence of each groundwater well. This promising approach provides a new tool for advancing similarity-based classification of groundwater system dynamics. Haaf, E., Barthel, R., 2015. Methods for assessing hydrogeological similarity and for classification of groundwater systems on the regional scale, EGU General Assembly 2015, Vienna, Austria. Haaf, E., Barthel, R., 2016. An approach for classification of hydrogeological systems at the regional scale based on groundwater hydrographs EGU General Assembly

  11. Rapid, cost-effective estimation of groundwater age based on hydrochemistry

    Science.gov (United States)

    Beyer, M.; Morgenstern, U.; Jackson, B. M.; Daughney, C.

    2013-12-01

    In order to manage and protect groundwater resources, the complex and diverse recharge, mixing and flow processes occurring in groundwater systems need to be better understood. Groundwater age information can give valuable information on groundwater flow, recharge sources, and aquifer volumes. However current groundwater dating techniques, for example tracers such as tritium or CFCs, or hydrological models, have limitations and method specific application ranges and uncertainties. Due to this, ambiguous age interpretation is a problem. New technique(s) are essential to overcome limitations and complement existing methods. The aim of this study is to advance the use of hydrochemistry for groundwater dating. To date, hydrochemistry has only been applied sparsely to support groundwater age determination, despite its wide availability from national groundwater monitoring programs. This is due to the lack of any established distinct relationships between hydrochemistry and groundwater age. Establishing these is complex, since hydrochemistry is influenced by complex interrelationships of aquifer specific processes. Therefore underlying processes, such as mineral weathering and redox reactions, and diverse reactions, such as quartz dissolution, are not directly interpretable from hydrochemistry data. Additionally reaction kinetics (of e.g. quartz dissolution) are often aquifer specific, and field data are sparse; furthermore data gained in laboratory environments are difficult to relate back to field situations as comparative studies have found lab and field measurements can differ by orders of magnitude. We wish to establish relationships between hydrochemistry and groundwater age, to allow hydrochemical data to better inform groundwater dating through two separate approaches. Firstly relationships between groundwater age (determined by state of the art dating techniques) and single hydrochemistry parameters, such as silica concentration, can be established in a given

  12. Removal of Selenium and Nitrate in Groundwater Using Organic Carbon-Based Reactive Mixtures

    Science.gov (United States)

    An, Hyeonsil; Jeen, Sung-Wook

    2016-04-01

    Treatment of selenium and nitrate in groundwater was evaluated through column experiments. Four columns consisting of reactive mixtures, either organic carbon-limestone (OC-LS) or organic carbon-zero valent iron (OC-ZVI), were used to determine the removal efficiency of selenium with different concentrations of nitrate. The source waters were collected from a mine site in Korea or were prepared artificially based on the mine drainage water or deionized water, followed by spiking of elevated concentrations of Se (40 mg/L) and nitrate (100 or 10 mg/L as NO3-N). The results for the aqueous chemistry showed that selenium and nitrate were effectively removed both in the mine drainage water and deionized water-based artificial input solution. However, the removal of selenium was delayed when selenium and nitrate coexisted in the OC-LS columns. The removal of selenium was not significant when the influent nitrate concentration was 100 mg/L as NO3-N, while most of nitrate was gradually removed within the columns. In contrast, 94% of selenium was removed when the influent nitrate concentration was reduced to 10 mg/L as NO3-N. In the OC-ZVI column, selenium and nitrate was removed almost simultaneously and completely even with the high nitrate concentration; however, a high concentration of ammonia was produced as a by-product of abiotic reaction between ZVI and nitrate. The elemental analysis for the solid samples after the termination of the experiments showed that selenium was accumulated in the reactive materials where removal of aqueous-phase selenium mostly occurred. The X-ray absorption near-edge structure (XANES) study indicated that selenium existed in the forms of SeS2 and Se(0) in the OC-LS column, while selenium was present in the forms of FeSe, SeS2 and absorbed Se(IV) in the OC-ZVI column. This study shows that OC-based reactive mixtures have an ability to remove selenium and nitrate in groundwater. However, the removal of selenium was influenced by the high

  13. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2011-01-01

    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of

  14. Dynamic Pattern Based Image Steganography

    OpenAIRE

    Thiyagarajan, P.; G. Aghila; Venkatesan, V. Prasanna

    2012-01-01

    Steganography is the art of hiding secret information in media such as image, audio and video. The purpose of steganography is to conceal the existence of the secret information in any given medium. This work aims at strengthening the security in steganography algorithm by generating dynamic pattern in selection of indicator sequence. In addition to this dynamicity is also encompassed in number of bits embedded in data channel. This technique has been implemented and the results have been com...

  15. Highway deicing salt dynamic runoff to surface water and subsequent infiltration to groundwater during severe UK winters.

    Science.gov (United States)

    Rivett, Michael O; Cuthbert, Mark O; Gamble, Richard; Connon, Lucy E; Pearson, Andrew; Shepley, Martin G; Davis, John

    2016-09-15

    Dynamic impact to the water environment of deicing salt application at a major highway (motorway) interchange in the UK is quantitatively evaluated for two recent severe UK winters. The contaminant transport pathway studied allowed controls on dynamic highway runoff and storm-sewer discharge to a receiving stream and its subsequent leakage to an underlying sandstone aquifer, including possible contribution to long-term chloride increases in supply wells, to be evaluated. Logged stream electrical-conductivity (EC) to estimate chloride concentrations, stream flow, climate and motorway salt application data were used to assess salt fate. Stream loading was responsive to salt applications and climate variability influencing salt release. Chloride (via EC) was predicted to exceed the stream Environmental Quality Standard (250mg/l) for 33% and 18% of the two winters. Maximum stream concentrations (3500mg/l, 15% sea water salinity) were ascribed to salt-induced melting and drainage of highway snowfall without dilution from, still frozen, catchment water. Salt persistance on the highway under dry-cold conditions was inferred from stream observations of delayed salt removal. Streambed and stream-loss data demonstrated chloride infiltration could occur to the underlying aquifer with mild and severe winter stream leakage estimated to account for 21 to 54% respectively of the 70t of increased chloride (over baseline) annually abstracted by supply wells. Deicing salt infiltration lateral to the highway alongside other urban/natural sources were inferred to contribute the shortfall. Challenges in quantifying chloride mass/fluxes (flow gauge accuracy at high flows, salt loading from other roads, weaker chloride-EC correlation at low concentrations), may be largely overcome by modest investment in enhanced data acquisition or minor approach modification. The increased understanding of deicing salt dynamic loading to the water environment obtained is relevant to improved

  16. Optimisation of groundwater level monitoring networks using geostatistical modelling based on the Spartan family variogram and a genetic algorithm method

    Science.gov (United States)

    Parasyris, Antonios E.; Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2016-04-01

    Groundwater level monitoring networks provide essential information for water resources management, especially in areas with significant groundwater exploitation for agricultural and domestic use. Given the high maintenance costs of these networks, development of tools, which can be used by regulators for efficient network design is essential. In this work, a monitoring network optimisation tool is presented. The network optimisation tool couples geostatistical modelling based on the Spartan family variogram with a genetic algorithm method and is applied to Mires basin in Crete, Greece, an area of high socioeconomic and agricultural interest, which suffers from groundwater overexploitation leading to a dramatic decrease of groundwater levels. The purpose of the optimisation tool is to determine which wells to exclude from the monitoring network because they add little or no beneficial information to groundwater level mapping of the area. Unlike previous relevant investigations, the network optimisation tool presented here uses Ordinary Kriging with the recently-established non-differentiable Spartan variogram for groundwater level mapping, which, based on a previous geostatistical study in the area leads to optimal groundwater level mapping. Seventy boreholes operate in the area for groundwater abstraction and water level monitoring. The Spartan variogram gives overall the most accurate groundwater level estimates followed closely by the power-law model. The geostatistical model is coupled to an integer genetic algorithm method programmed in MATLAB 2015a. The algorithm is used to find the set of wells whose removal leads to the minimum error between the original water level mapping using all the available wells in the network and the groundwater level mapping using the reduced well network (error is defined as the 2-norm of the difference between the original mapping matrix with 70 wells and the mapping matrix of the reduced well network). The solution to the

  17. DRASTIC-based vulnerability evaluation for groundwater environment in Kunming City

    Institute of Scientific and Technical Information of China (English)

    Changming WANG; Jianping CHEN; Pulin LI; Hao ZHANG; Lijian YANG

    2006-01-01

    Groundwater pollution has serious influences on programming and development for a city. So it has a special importance to assess reasonably the vulnerability to pollution for urban groundwater. DRASTIC is an effective method for groundwater vulnerability assessment, which has been adapted in USA and Europe countries. In this paper, DRASTIC method is applied in vulnerability assessment of shallow groundwater environment in Kunming. A total of 1 339 units are divided in this area and the grade of each unit for seven indexes is determined. Then vulnerability zones are divided in the area by DRASTIC value, which has an important meaning to city programming.

  18. Primary production dynamics in a pristine groundwater influenced coastal lagoon of the Yucatan Peninsula

    Science.gov (United States)

    Medina-Gómez, Israel; Herrera-Silveira, Jorge A.

    2006-06-01

    Dzilam lagoon is a shallow (0.6 m mean depth) ecosystem with 9.4 km 2 surface area, located in the north coast of the Yucatan Peninsula, and connected to the Gulf of Mexico through a permanent inlet. Freshwater input is possible through numerous sinkholes distributed throughout the lagoon, which also represent a continuous source of nitrate and silicate. The low anthropogenic influence has maintained a pristine condition in Dzilam lagoon, manifested in a spatial heterogeneity of water quality and primary production strongly related to the environmental fluctuations. To determine the annual variability of primary production and identify the factors controlling it, 12 monthly samplings were undertaken at six stations, from September 1998 to August 1999. Thus, physical-chemical parameters, inorganic nutrients concentrations, chlorophyll- a, phytoplankton production and seagrass biomass were measured. The water residence time in Dzilam lagoon is higher during dry season due to the significant evaporation rate, and shorter in rainy season because of increase in precipitation and volume of groundwater discharge. The multivariate analysis results suggest that the salinity gradient, changes in aquatic vegetation biomass, and the remineralized nutrients in sediments constitute key processes depicting the water quality and net primary production in Dzilam lagoon. Furthermore, the biogeochemical benthic processes, combined with a longer stay of phytoplankton cells within the lagoon, enhanced primary production in the water column during dry season, as opposite as rainy period, when the inferior water residence time yielded lower production values. The seagrasses ( Halodule wrightii and Ruppia maritima) showed the highest biomass (110.5 g dw/m 2/d) in dry season, while the lowest recordings were observed during cold fronts, with a salient belowground contribution (rhizomes and roots). Seagrasses and phytoplankton participation to the total primary production in Dzilam lagoon

  19. DS796 California Groundwater Units

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The California Groundwater Units dataset classifies and delineates the State into one of three groundwater based polygon units: (1) those areas defined as alluvial...

  20. A method to improve the stability and accuracy of ANN- and SVM-based time series models for long-term groundwater level predictions

    Science.gov (United States)

    Yoon, Heesung; Hyun, Yunjung; Ha, Kyoochul; Lee, Kang-Kun; Kim, Gyoo-Bum

    2016-05-01

    The prediction of long-term groundwater level fluctuations is necessary to effectively manage groundwater resources and to assess the effects of changes in rainfall patterns on groundwater resources. In the present study, a weighted error function approach was utilised to improve the performance of artificial neural network (ANN)- and support vector machine (SVM)-based recursive prediction models for the long-term prediction of groundwater levels in response to rainfall. The developed time series models were applied to groundwater level data from 5 groundwater-monitoring stations in South Korea. The results demonstrated that the weighted error function approach can improve the stability and accuracy of recursive prediction models, especially for ANN models. The comparison of the model performance showed that the recursive prediction performance of the SVM was superior to the performance of the ANN in this case study.

  1. 河北平原农田耗水与地下水动态及粮食生产相互关系分析%Correlation among farmland water consumption, grain yield and groundwater dynamics in the Hebei Plain

    Institute of Scientific and Technical Information of China (English)

    袁再健; 许元则; 谢栌乐

    2014-01-01

    农田耗水是河北平原地下水资源消耗的主体,农田耗水与地下水动态、粮食生产互制机理研究可为农业节水提供重要依据。基于1981-2010年河北省经济统计年鉴、地下水开采量与地下水位、常规气象等数据,分析了河北平原近30年来农田耗水、粮食产量、降水量、地下水等动态变化特征,揭示了它们之间的相互响应关系。结果表明,近30年来,河北平原农田耗水总量约722.4 km3,生产粮食约5.9×108t,开采地下水约440 km3(其中约330 km3用于农田灌溉),地下水位共下降约11.5 m;河北平原农田耗水与粮食产量总体呈逐年上升趋势,尽管2000年以来地下水开采量有所减少,但地下水位一直持续下降;农田耗水与地下水开采量、地下水埋深、粮食产量相互之间关系密切,每生产1 t粮食所消耗的水资源约1224.4 m3(包括地下水597.1 m3),而地下水开采量每增加1 km3,河北平原地下水位实际下沉约0.03 m;农田耗水、地下水埋深均与年降雨量无明显相关性,由于降水入渗、灌溉渗漏不足以弥补开采的地下水,超采是引起河北平原地下水位持续下降的直接原因。因此,进一步发展节水农业、提高灌溉效率是促进河北平原农业可持续发展的必然选择。%Farmland water consumption accounts for most of the groundwater consumption in the Hebei Plain. Research on the interaction mechanism of farmland water consumption, groundwater dynamics and grain production could provide critical evidence for water-saving agriculture. Based on Hebei Province economic statistical data, groundwater exploitation data, groundwater level data and conventional meteorological data for 1981-2010, this paper analyzed the changes in farmland water consumption, grain production, precipitation and groundwater level in the Hebei Plain in the recent 30 years. Their correlation was also discussed. The results showed that in the past 30 years

  2. Hydrogeology and simulation of ground-water flow at Arnold Air Force Base, Coffee and Franklin counties, Tennessee

    Science.gov (United States)

    Haugh, C.J.; Mahoney, E.N.

    1994-01-01

    The U.S. Air Force at Arnold Air Force Base (AAFB), in Coffee and Franklin Counties, Tennessee, is investigating ground-water contamination in selected areas of the base. This report documents the results of a comprehensive investigation of the regional hydrogeology of the AAFB area. Three aquifers within the Highland Rim aquifer system, the shallow aquifer, the Manchester aquifer, and the Fort Payne aquifer, have been identified in the study area. Of these, the Manchester aquifer is the primary source of water for domestic use. Drilling and water- quality data indicate that the Chattanooga Shale is an effective confining unit, isolating the Highland Rim aquifer system from the deeper, upper Central Basin aquifer system. A regional ground-water divide, approximately coinciding with the Duck River-Elk River drainage divide, underlies AAFB and runs from southwest to northeast. The general direction of most ground-water flow is to the north- west or to the northwest or to the southeast from the divide towards tributary streams that drain the area. Recharge estimates range from 4 to 11 inches per year. Digital computer modeling was used to simulate and provide a better understanding of the ground-water flow system. The model indicates that most of the ground-water flow occurs in the shallow and Manchester aquifers. The model was most sensitive to increases in hydraulic conductivity and changes in recharge rates. Particle-tracking analysis from selected sites of ground-water contamination indicates a potential for contami- nants to be transported beyond the boundary of AAFB.

  3. Dynamics of natural prokaryotes, viruses and heterotrophic nanoflagellates in alpine karstic groundwater

    NARCIS (Netherlands)

    Wilhartilz, I.C.; Krischner, A.K.T; Brussaard, C.P.D.; Fisher, U.R.; Wieltschnig, C.; Stadler, H.; Farnleitner, A.H.

    2013-01-01

    Seasonal dynamics of naturally occurring prokaryotes, viruses, and heterotrophic nanoflagellates in two hydro-geologically contrasting alpine karst springs were monitored over three annual cycles. To our knowledge, this study is the first to shed light on the occurrence and possible

  4. Dynamics of natural prokaryotes, viruses and heterotrophic nanoflagellates in alpine karstic groundwater

    NARCIS (Netherlands)

    I.C. Wilhartilz; A.K.T Krischner; C.P.D. Brussaard; U.R. Fisher; C. Wieltschnig; H. Stadler; A.H. Farnleitner

    2013-01-01

    Seasonal dynamics of naturally occurring prokaryotes, viruses, and heterotrophic nanoflagellates in two hydro-geologically contrasting alpine karst springs were monitored over three annual cycles. To our knowledge, this study is the first to shed light on the occurrence and possible interrelationshi

  5. A comparison of recharge rates in aquifers of the United States based on groundwater-age data

    Science.gov (United States)

    McMahon, P.B.; Plummer, L.N.; Böhlke, J.K.; Shapiro, S.D.; Hinkle, S.R.

    2011-01-01

    An overview is presented of existing groundwater-age data and their implications for assessing rates and timescales of recharge in selected unconfined aquifer systems of the United States. Apparent age distributions in aquifers determined from chlorofluorocarbon, sulfur hexafluoride, tritium/helium-3, and radiocarbon measurements from 565 wells in 45 networks were used to calculate groundwater recharge rates. Timescales of recharge were defined by 1,873 distributed tritium measurements and 102 radiocarbon measurements from 27 well networks. Recharge rates ranged from tracers of young groundwater exhibited a significant inverse correlation with mean annual air temperature and a significant positive correlation with mean annual precipitation. Comparison of recharge derived from groundwater ages with recharge derived from stream base-flow evaluation showed similar overall patterns but substantial local differences. Results from this compilation demonstrate that age-based recharge estimates can provide useful insights into spatial and temporal variability in recharge at a national scale and factors controlling that variability. Local age-based recharge estimates provide empirical data and process information that are needed for testing and improving more spatially complete model-based methods.

  6. Semi-Passive Oxidation-Based Approaches for Control of Large, Dilute Groundwater Plumes of Chlorinated Ethylenes

    Science.gov (United States)

    2014-04-01

    Based Approaches for Control of Large, Dilute Groundwater Plumes of Chlorinated Ethylenes 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Numerous studies have reported that chemical oxidation of chlorinated ethylenes in aqueous solution is rapid (e.g. Yan and Schwartz, 1998; Huang et al

  7. Assessment Of A Groundwater Flow Model Of The Bangkok Basin, Thailand, Using Carbon-14-Based Ages And Paleohydrology

    Science.gov (United States)

    Sanford, Ward E.; Buapeng, Somkid

    1996-04-01

    A study was undertaken to understand the groundwater flow conditions in the Bangkok Basin, Thailand, by comparing 14C-based and simulated groundwater ages. 14C measurements were made on about 50 water samples taken from wells throughout the basin. Simulated ages were obtained using 1) backward-pathline tracking based on the well locations, and 2) results from a three-dimensional groundwater flow model. Comparisons of ages at these locations reveal a large difference between 14C-based ages and ages predicted by the steady-state groundwater flow model. Mainly, 14C and 13C analyses indicate that groundwater in the Bangkok area is about 20,000 years old, whereas steady-state flow and transport simulations imply that groundwater in the Bangkok area is 50,000-100,000 years old. One potential reason for the discrepancy between simulated and 14C-based ages is the assumption in the model of steady-state flow. Groundwater velocities were probably greater in the region before about 10,000 years ago, during the last glacial maximum, because of the lower position of sea level and the absence of the surficial Bangkok Clay. Paleoflow conditions were estimated and then incorporated into a second set of simulations. The new assumption was that current steady-state flow conditions existed for the last 8,000 years but were preceded by steady-state conditions representative of flow during the last glacial maximum. This "transient" paleohydrologic simulation yielded a mean simulated age that more closely agrees with the mean 14C-based age, especially if the 14C-based age corrected for diffusion into clay layers. Although the uncertainties in both the simulated and 14C-based ages are nontrivial, the magnitude of the improved match in the mean age using a paleohydrologic simulation instead of a steady-state simulation suggests that flow conditions in the basin have changed significantly over the last 10,000-20,000 years. Given that the valid age range of 14C-dating methods and the timing

  8. Mecoprop (MCPP) removal in full-scale rapid sand filters at a groundwater-based waterworks

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard, Mathilde J., E-mail: mjhe@env.dtu.dk; Arvin, Erik; Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    2014-11-15

    Contamination by the herbicide mecoprop (MCPP) was detected in groundwater abstraction wells at Kerteminde Waterworks in concentrations up to 0.08 μg/L. MCPP was removed to below detection limit in a simple treatment line where anaerobic groundwater was aerated and subsequently filtered by primary and secondary rapid sand filters. Water quality parameters were measured throughout the waterworks, and they behaved as designed for. MCPP was removed in secondary rapid sand filters — removal was the greatest in the sand filters in the filter line with the highest contact time (63 min). In these secondary sand filters, MCPP concentration decreased from 0.037 μg/L to below the detection limit of 0.01 μg/L. MCPP was removed continuously at different filter depths (0.80 m). Additionally, biodegradation, mineralisation and adsorption were investigated in the laboratory in order to elucidate removal mechanisms in the full-scale system. Therefore, microcosms were set up with filter sand, water and {sup 14}C-labelled MCPP at an initial concentration of 0.2 μg/L. After 24 h, 79–86% of the initial concentration of MCPP was removed. Sorption removed 11–15%, while the remaining part was removed by microbial processes, leading to a complete mineralisation of 13–18%. Microbial removal in the filter sand was similar at different depths of the rapid sand filter, while the amount of MCPP which adsorbed to the filter sand after 48 h decreased with depth from 21% of the initial MCPP in the top layer to 7% in the bottom layer. It was concluded that MCPP was removed in secondary rapid sand filters at Kerteminde Waterworks, to which both adsorption and microbial degradation contributed. - Highlights: • A full-scale groundwater based waterworks was able to remove MCPP. • In the secondary rapid sand filters, MCPP decreased from 0.037 μg/L to < 0.010 μg/L. • The filter sand removed MCPP both by sorption and by microbial degradation. • Microbial removal was unchanged while

  9. Groundwater Dynamics under Water Saving Irrigation and Implications for Sustainable Water Management in an Oasis: Tarim River Basin of Western China

    Science.gov (United States)

    Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M.

    2014-02-01

    Water is essential for life. Specifically in the oases of inland arid basins, water is a critically limited resource, essential for the development of socio-economy and sustainability of eco-environmental systems. Due to the unique hydrological regime present in arid oases, a moderate groundwater table is the goal of sustainable water management. A shallow water table induces serious secondary salinization and collapse of agriculture, while a deep water table causes deterioration of natural vegetation. From the hydrological perspective, the exchange flux between unsaturated vadose zone and groundwater reservoir is a critical link to understand regional water table dynamics. This flux is substantially influenced by anthropogenic activities. In Tarim River Basin of western China, where agriculture consumes over 90% of available water resources, the exchange flux is influenced strongly by irrigation. Recently, mulched drip irrigation, a very advanced water-saving irrigation method, has been widely applied in the Tarim River Basin, which greatly impacted the exchange flux and thus the regional groundwater dynamics. Capitalizing on recent progress in evaporation measurement techniques, we can now close the water balance and directly quantify the exchange flux at the field scale, thus gain a better understanding of regional groundwater dynamics. In this study, comprehensive observations of water balance components in an irrigated cropland were implemented in 2011 and 2012 in a typical oasis within Tarim River Basin. The water balance analysis showed that the exchange flux and groundwater dynamics were significantly altered by the application of water-saving irrigation. The exchange flux is mostly downward (310.5 mm yr-1), especially during drip irrigation period and spring flush period, while the upward flux is trivial (-16.1 mm yr-1) due to the moderate groundwater table depth (annual average depth 2.9 m). Traditional secondary salinization caused by intense phreatic

  10. Geochemistry of groundwater in front of a warm-based glacier in Southeast Greenland

    DEFF Research Database (Denmark)

    Kristiansen, Søren Munch; Yde, Jacob Clement; Bárcena, Teresa G

    2013-01-01

    shows that isotopic fractionation occurs in both groundwater and glacier meltwater, but fractionation due to evaporation from near-surface soil moisture prior to infiltration has the most significant effect. This study shows that groundwater in Low Arctic Greenland is likely to possess a combined...

  11. The Evaluation of Groundwater Resources Value of Beijing Based on Emergy Theory

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2015-01-01

    for industry (GWCRI 4.52%, groundwater contribution rate for agriculture (GWCRA 3.24%, and groundwater contribution rate for residential life (GWCRL 0.71%. The conclusions will provide important basis for the government’s scientific decision to improve the level of comprehensive management of water resource.

  12. Adsorptive removal of heavy metals from groundwater by iron oxide based adsorbents

    NARCIS (Netherlands)

    Uwamariya, V.

    2013-01-01

    In general groundwater is preferred as a source of drinking water because of its convenient availability and its constant and good quality. However this source is vulnerable to contamination by several substances. Substances that can pollute groundwater are divided into substances that occur natural

  13. Bioremediation Of Groundwater Contaminated Wtih Gasoline Hydrocarbons And Oxygenates Using A Membrane-Based Reactor

    Science.gov (United States)

    The objective of this study was to operate a novel, field-scale, aerobic bioreactor and assess its performance in the ex situ treatment of groundwater contaminated with gasoline from a leaking underground storage tank in Pascoag, RI. The groundwater contained elevated concentrat...

  14. Adsorptive removal of heavy metals from groundwater by iron oxide based adsorbents

    NARCIS (Netherlands)

    Uwamariya, V.

    2013-01-01

    In general groundwater is preferred as a source of drinking water because of its convenient availability and its constant and good quality. However this source is vulnerable to contamination by several substances. Substances that can pollute groundwater are divided into substances that occur

  15. A data fusion-based methodology for optimal redesign of groundwater monitoring networks

    Science.gov (United States)

    Hosseini, Marjan; Kerachian, Reza

    2017-09-01

    In this paper, a new data fusion-based methodology is presented for spatio-temporal (S-T) redesigning of Groundwater Level Monitoring Networks (GLMNs). The kriged maps of three different criteria (i.e. marginal entropy of water table levels, estimation error variances of mean values of water table levels, and estimation values of long-term changes in water level) are combined for determining monitoring sub-areas of high and low priorities in order to consider different spatial patterns for each sub-area. The best spatial sampling scheme is selected by applying a new method, in which a regular hexagonal gridding pattern and the Thiessen polygon approach are respectively utilized in sub-areas of high and low monitoring priorities. An Artificial Neural Network (ANN) and a S-T kriging models are used to simulate water level fluctuations. To improve the accuracy of the predictions, results of the ANN and S-T kriging models are combined using a data fusion technique. The concept of Value of Information (VOI) is utilized to determine two stations with maximum information values in both sub-areas with high and low monitoring priorities. The observed groundwater level data of these two stations are considered for the power of trend detection, estimating periodic fluctuations and mean values of the stationary components, which are used for determining non-uniform sampling frequencies for sub-areas. The proposed methodology is applied to the Dehgolan plain in northwestern Iran. The results show that a new sampling configuration with 35 and 7 monitoring stations and sampling intervals of 20 and 32 days, respectively in sub-areas with high and low monitoring priorities, leads to a more efficient monitoring network than the existing one containing 52 monitoring stations and monthly temporal sampling.

  16. Dynamic Vulnerability of Karst Systems: a Concept to understand qualitative and quantitative Aspects of Karst springs due to Changes in Groundwater Recharge

    Science.gov (United States)

    Huggenberger, P.; Butscher, C.; Epting, J.; Auckenthaler, A.

    2015-12-01

    Karst groundwater resources represent valuable water resources, which may be affected by different types of pollution and changes of groundwater recharge by climate change. In many parts of Europe, it has been predicted that record-breaking heat waves, such as the one experienced in 2003 and 2015, will become more frequent. At the same time, even as summers become drier, the incidence of severe precipitation events could increase. What is the influence such changes to the quantitative and qualitative aspects of Karst groundwater systems? A factor to be considered in conjunction with groundwater quality is the vulnerability of the resource, which is defined as the sensitivity of a groundwater system to pollution. Intrinsic vulnerability refers to the sensitivity to pollution when considering only natural, geogenic conditions without the effects of human activities such as contaminant release. Intrinsic vulnerability depends on the recharge conditions, which are dependent on the surface and subsurface structure and on precipitation and evaporation patterns. The latter are highly time dependent. Therefore, our groundwater vulnerability concept also includes dynamic aspects of the system, the variations of spatial and temporal components. We present results of combined monitoring and modelling experiments of several types of Karst systems in the Tabular and the Folded Jura of NW Switzerland. The recharge, conduit flow, diffuse flow(RCD) rainfall-discharge model "RCD-seasonal" was used to simulate the discharge and substance concentration of several spring. This lumped parameter model include: the recharge system (soil and epikarst system), the conduit flow system, and the diffuse flow system. The numerically derived Dynamic Vulnerability Index (DVI) can indicate qualitative changes of spring water with sufficient accuracy to be used for drinking water management. In addition, the results obtained from the test sites indicate a decrease in short-lived contaminants in

  17. Numerical simulation of groundwater flow at Puget Sound Naval Shipyard, Naval Base Kitsap, Bremerton, Washington

    Science.gov (United States)

    Jones, Joseph L.; Johnson, Kenneth H.; Frans, Lonna M.

    2016-08-18

    Information about groundwater-flow paths and locations where groundwater discharges at and near Puget Sound Naval Shipyard is necessary for understanding the potential migration of subsurface contaminants by groundwater at the shipyard. The design of some remediation alternatives would be aided by knowledge of whether groundwater flowing at specific locations beneath the shipyard will eventually discharge directly to Sinclair Inlet of Puget Sound, or if it will discharge to the drainage system of one of the six dry docks located in the shipyard. A 1997 numerical (finite difference) groundwater-flow model of the shipyard and surrounding area was constructed to help evaluate the potential for groundwater discharge to Puget Sound. That steady-state, multilayer numerical model with homogeneous hydraulic characteristics indicated that groundwater flowing beneath nearly all of the shipyard discharges to the dry-dock drainage systems, and only shallow groundwater flowing beneath the western end of the shipyard discharges directly to Sinclair Inlet.Updated information from a 2016 regional groundwater-flow model constructed for the greater Kitsap Peninsula was used to update the 1997 groundwater model of the Puget Sound Naval Shipyard. That information included a new interpretation of the hydrogeologic units underlying the area, as well as improved recharge estimates. Other updates to the 1997 model included finer discretization of the finite-difference model grid into more layers, rows, and columns, all with reduced dimensions. This updated Puget Sound Naval Shipyard model was calibrated to 2001–2005 measured water levels, and hydraulic characteristics of the model layers representing different hydrogeologic units were estimated with the aid of state-of-the-art parameter optimization techniques.The flow directions and discharge locations predicted by this updated model generally match the 1997 model despite refinements and other changes. In the updated model, most

  18. Underground structures increasing the intrinsic vulnerability of urban groundwater: Sensitivity analysis and development of an empirical law based on a groundwater age modelling approach

    Science.gov (United States)

    Attard, Guillaume; Rossier, Yvan; Eisenlohr, Laurent

    2017-09-01

    In a previous paper published in Journal of Hydrology, it was shown that underground structures are responsible for a mixing process between shallow and deep groundwater that can favour the spreading of urban contamination. In this paper, the impact of underground structures on the intrinsic vulnerability of urban aquifers was investigated. A sensitivity analysis was performed using a 2D deterministic modelling approach based on the reservoir theory generalized to hydrodispersive systems to better understand this mixing phenomenon and the mixing affected zone (MAZ) caused by underground structures. It was shown that the maximal extent of the MAZ caused by an underground structure is reached approximately 20 years after construction. Consequently, underground structures represent a long-term threat for deep aquifer reservoirs. Regarding the construction process, draining operations have a major impact and favour large-scale mixing between shallow and deep groundwater. Consequently, dewatering should be reduced and enclosed as much as possible. The role played by underground structures' dimensions was assessed. The obstruction of the first aquifer layer caused by construction has the greatest influence on the MAZ. The cumulative impact of several underground structures was assessed. It was shown that the total MAZ area increases linearly with underground structures' density. The role played by materials' properties and hydraulic gradient were assessed. Hydraulic conductivity, anisotropy and porosity have the strongest influence on the development of MAZ. Finally, an empirical law was derived to estimate the MAZ caused by an underground structure in a bi-layered aquifer under unconfined conditions. This empirical law, based on the results of the sensitivity analysis developed in this paper, allows for the estimation of MAZ dimensions under known material properties and underground structure dimensions. This empirical law can help urban planners assess the area of

  19. An immune based dynamic intrusion detection model

    Institute of Scientific and Technical Information of China (English)

    LI Tao

    2005-01-01

    With the dynamic description method for self and antigen, and the concept of dynamic immune tolerance for lymphocytes in network-security domain presented in this paper, a new immune based dynamic intrusion detection model (Idid) is proposed. In Idid, the dynamic models and the corresponding recursive equations of the lifecycle of mature lymphocytes, and the immune memory are built. Therefore, the problem of the dynamic description of self and nonself in computer immune systems is solved, and the defect of the low efficiency of mature lymphocyte generating in traditional computer immune systems is overcome. Simulations of this model are performed, and the comparison experiment results show that the proposed dynamic intrusion detection model has a better adaptability than the traditional methods.

  20. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach

    Science.gov (United States)

    Wu, Bin; Zheng, Yi; Wu, Xin; Tian, Yong; Han, Feng; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    Integrated surface water-groundwater modeling can provide a comprehensive and coherent understanding on basin-scale water cycle, but its high computational cost has impeded its application in real-world management. This study developed a new surrogate-based approach, SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), to incorporate the integrated modeling into water management optimization. Its applicability and advantages were evaluated and validated through an optimization research on the conjunctive use of surface water (SW) and groundwater (GW) for irrigation in a semiarid region in northwest China. GSFLOW, an integrated SW-GW model developed by USGS, was employed. The study results show that, due to the strong and complicated SW-GW interactions, basin-scale water saving could be achieved by spatially optimizing the ratios of groundwater use in different irrigation districts. The water-saving potential essentially stems from the reduction of nonbeneficial evapotranspiration from the aqueduct system and shallow groundwater, and its magnitude largely depends on both water management schemes and hydrological conditions. Important implications for water resources management in general include: first, environmental flow regulation needs to take into account interannual variation of hydrological conditions, as well as spatial complexity of SW-GW interactions; and second, to resolve water use conflicts between upper stream and lower stream, a system approach is highly desired to reflect ecological, economic, and social concerns in water management decisions. Overall, this study highlights that surrogate-based approaches like SOIM represent a promising solution to filling the gap between complex environmental modeling and real-world management decision-making.

  1. Isotopic evidence for a link between agricultural irrigation and high arsenic concentrations in groundwater

    Science.gov (United States)

    Li, M.; Wang, Y.; Shock, E.

    2011-12-01

    An isotope-based survey was carried out in the Datong Basin, northern China to investigate the hydrogeology of groundwater with high arsenic concentrations. Oxygen isotope (δ18O), hydrogen isotope (δD) and radioactive hydrogen isotope (3H) measurements were conducted with the aim of characterizing the groundwater origins and flow dynamics in this arsenic-contaminated groundwater system. Groundwater dating results from 3H measurements show that groundwaters from 20m ~ 70m have a wide range of ages (10a~ 191a), indicating diverse groundwater sources. In contrast, deeper groundwaters (70m ~90m) display a narrower age range (35a ~ 47a). In addition, the shallow-aquifer (70m) possess relatively narrower isotopic ranges and mostly lighter isotopic ratios, from -12.8% to -8.88% and -97.6% to -71.7%, respectively. Comparison with the local meteoric water line shows that groundwater δ18O and δD values plot with a shallower slope, consistent with the arid-semiarid climate of the Datong Basin, as well as a meteoric origin of the groundwater, and points to precipitation as the dominant source of recharge to the deeper aquifers in the study area. Groundwaters with high arsenic concentrations (100μg/L ~ 309μg/L) mainly occur in aquifers at depths between 20m and 70m, while shallower (70m) groundwaters carry relatively lower arsenic concentrations (Science of the Total Environment 407(12): 3823-3835.

  2. Performance of in-situ soil and groundwater treatment systems at McClellan Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, T.E. [BDM Federal, McClellan AFB, CA (United States); Mook, P.H. Jr.; Wong, K.B. [Sm-ALC/EMR, McClellan AFB, CA (United States)

    1997-12-31

    McClellan Air Force Base (AFB), located near Sacramento, California, is one of the Strategic Environmental Research and Development Program`s National Environmental Technology Test Sites. The US Air Force has evaluated, as part of the on-going environmental clean-up of McClellan AFB, several innovative and conventional in situ soil and groundwater technologies for the treatment of volatile organic compounds. This paper presents an overview and comparison of the performance and cost of three innovative technologies tested at McClellan AFB. Conventional groundwater extraction systems are effective but costly. Operation and maintenance (O and M) costs for treatment systems are increasingly becoming a major component of the environmental clean-up budget. The performance, limitations, costs, and lessons learned from the implementation of conventional soil vapor and groundwater extraction systems are compared with those of two innovative dual phase extraction systems. Both the Xerox 2-Phase{trademark} Extraction system and a standard dual phase extraction system are more effective than their conventional counterparts, but only over a discrete range of soil permeabilities. Discussions on McClellan AFB`s experiences with cometabolic bioremediation of groundwater and thermally enhanced soil vapor extraction systems are also included.

  3. Component Based Dynamic Reconfigurable Test System

    Institute of Scientific and Technical Information of China (English)

    LAI Hong; HE Lingsong; ZHANG Dengpan

    2006-01-01

    In this paper, a novel component based framework of test system is presented for the new requirements of dynamic changes of test functions and reconfiguration of test resources. The complexity of dynamic reconfiguration arises from the scale, redirection, extensibility and interconnection of components in test system. The paper is started by discussing the component assembly based framework which provide the open platform to the deploy of components and then the script interpreter model is introduced to dynamically create the components and build the test system by analyzing XML based information of test system. A pipeline model is presented to provide the data channels and behavior reflection among the components. Finally, a dynamic reconfigurable test system is implemented on the basis of COM and applied in the remote test and control system of CNC machine.

  4. Modeling falling groundwater tables in major cities of the world

    Science.gov (United States)

    Sutanudjaja, Edwin; Erkens, Gilles

    2016-04-01

    Groundwater use and its over-consumption are one of the major drivers in the hydrology of many major cities in the world, particularly in delta regions. Yet, a global assessment to identify cities with declining groundwater table problems has not been done yet. In this study we used the global hydrological model PCR-GLOBWB (10 km resolution, for 1960-2010). Using this model, we globally calculated groundwater recharge and river discharge/surface water levels, as well as global water demand and abstraction from ground- and surface water resources. The output of PCR-GLOBWB model was then used to force a groundwater MODFLOW-based model simulating spatio-temporal groundwater head dynamics, including groundwater head declines in all major cities - mainly in delta regions - due to escalation in abstraction of groundwater to meet increasing water demand. Using these coupled models, we managed to identify a number of critical cities having groundwater table falling rates above 50 cm/year (average in 2000-2010), such as Barcelona, Houston, Los Angeles, Mexico City, New York, Rome and many large cities in China, Libya, India and Pakistan, as well as in Middle East and Central Asia regions. However, our simulation results overestimate the depletion rates in San Jose, Tokyo, Venice, and other cities where groundwater usages have been aggressively managed and replaced by importing surface water from other places. Moreover, our simulation might underestimate the declining groundwater head trends in some familiar cases, such as Bangkok (12 cm/year), Ho Chi Minh City (34 cm/year), and Jakarta (26 cm/year). The underestimation was due to an over-optimistic model assumption in allocating surface water for satisfying urban water needs. In reality, many big cities, although they are located in wet regions and have abundant surface water availability, still strongly rely on groundwater sources due to inadequate facilities to treat and distribute surface water resources.

  5. The application of a dynamic OpenMI coupling between a regional climate model and a distributed surface water-groundwater model

    DEFF Research Database (Denmark)

    Butts, Michael; Drews, Martin; Larsen, Morten Andreas Dahl

    2014-01-01

    To support climate adaptation measures for water resources, we have developed and evaluated a dynamic coupling between a comprehensive distributed hydrological modelling system, MIKE SHE, and a regional climate modelling system, HIRHAM. The coupled model enables two-way interaction between......-dominated catchment, the Skjern River, Denmark. The 2500 km2 catchment model is embedded in a meso-scale (4000 km x 2800 km) climate modelling domain. By using the ERA Interim reanalysis as boundary conditions the coupling performance is evaluated against measurements of both climatic and hydrological variables...... the atmosphere and the groundwater via the soil and land surface and can represent the lateral movement of water in both the surface and subsurface and their interactions as well as human interventions. The coupled model is applied to one-way and two-way coupled simulations for a managed groundwater...

  6. Estimation of In-Situ Groundwater Conditions Based on Geochemical Equilibrium Simulations

    Directory of Open Access Journals (Sweden)

    Toshiyuki Hokari

    2014-03-01

    Full Text Available This paper presents a means of estimating in-situ groundwater pH and oxidation-redox potential (ORP, two very important parameters for species migration analysis in safety assessments for radioactive waste disposal or carbon dioxide sequestration. The method was applied to a pumping test in a deep borehole drilled in a tertiary formation in Japan for validation. The following application examples are presented: when applied to several other pumping tests at the same site, it could estimate distributions of the in-situ groundwater pH and ORP; applied to multiple points selected in the groundwater database of Japan, it could help estimate the in-situ redox reaction governing the groundwater conditions in some areas.

  7. Short-term microbial dynamics in a drinking water plant treating groundwater with occasional high microbial loads.

    Science.gov (United States)

    Besmer, Michael D; Hammes, Frederik

    2016-12-15

    Short-term fluctuations in bacterial concentrations in drinking water systems, occurring on time scales of hours-to-weeks, are essentially unexplored due to a lack of microbial monitoring tools that allow high frequency measurements. Here, we applied fully automated online flow cytometry to measure the total cell concentrations (TCC) in both raw water (karstic groundwater) and treated water (flocculation - ultrafiltration (UF) - ozonation - granular active carbon (GAC) filtration) during a period of 70 days at high temporal resolution (n > 4000 for both water types). We detected and characterized in considerable detail aperiodic fluctuations in the raw water following regional precipitation, with TCC increasing up to 50-fold from a dry weather baseline of approximately 120 cells μl(-1) to an event peak of > 5000 cells μl(-1). Moreover, we observed the buffering of the treatment plant against these fluctuations, but in addition we recorded a completely unexpected periodic fluctuation of TCC in the treated water after GAC filtration. We concluded that the latter was the result of fluctuating water abstraction from the treatment plant reservoir by two connected water utilities, which resulted in variations in water throughput in the plant. This in turn influenced bacterial detachment and dilution in the GAC filter. This study provides strong evidence of multiple different microbial dynamics occurring in a drinking water treatment system. Given numerous possible sources of natural and operational fluctuations in raw water and drinking water treatment plants, such microbial fluctuations should be expected in many systems. The high-frequency monitoring approach presented herein can improve the understanding and eventual mitigation of such fluctuations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Quantifying phosphorus levels in soils, plants, surface water, and shallow groundwater associated with bahiagrass-based pastures.

    Science.gov (United States)

    Sigua, Gilbert C; Hubbard, Robert K; Coleman, Samuel W

    2010-01-01

    Recent assessments of water quality status have identified eutrophication as one of the major causes of water quality 'impairment' not only in the USA but also around the world. In most cases, eutrophication has accelerated by increased inputs of phosphorus due to intensification of crop and animal production systems since the early 1990 s. Despite substantial measurements using both laboratory and field techniques, little is known about the spatial and temporal variability of phosphorus dynamics across landscapes, especially in agricultural landscapes with cow-calf operations. Critical to determining environmental balance and accountability is an understanding of phosphorus excreted by animals, phosphorus removal by plants, acceptable losses of phosphorus within the manure management and crop production systems into soil and waters, and export of phosphorus off-farm. Further research effort on optimizing forage-based cow-calf operations to improve pasture sustainability and protect water quality is therefore warranted. We hypothesized that properly managed cow-calf operations in subtropical agroecosystem would not be major contributors to excess loads of phosphorus in surface and ground water. To verify our hypothesis, we examined the comparative concentrations of total phosphorus among soils, forage, surface water, and groundwater beneath bahiagrass-based pastures with cow-calf operations in central Florida, USA. Soil samples were collected at 0-20; 20-40, 40-60, and 60-100 cm across the landscape (top slope, middle slope, and bottom slope) of 8 ha pasture in the fall and spring of 2004 to 2006. Forage availability and phosphorus uptake of bahiagrass were also measured from the top slope, middle slope, and bottom slope. Bi-weekly (2004-2006) groundwater and surface water samples were taken from wells located at top slope, middle slope, and bottom slope, and from the runoff/seepage area. Concentrations of phosphorus in soils, forage, surface water, and shallow

  9. Unconfined Groundwater Quality based on the Settlement Unit in Surakarta City

    Directory of Open Access Journals (Sweden)

    Munawar Cholil

    2004-01-01

    Full Text Available The quality of groundwater of unonfined aquifer with growing population density is endangered by population. This may cause serious problem as greatest portion of the population utility groundwater of unconfined aquifer as their drinking water. This research is aim at studying the difference in quality of groundwater of unonfined aquifer in Surakarta Munipicality by settlement units, and studying the impact settlement factors and groundwater depth on the quality of groundwater of unonfined aquifer. The research was executed by a survey methhod, taking 44 units of groundwater of unonfined aquifer samples at stratified proportional random from 44 villages. The samples were analyzed at the laboratory of Local Drinking Water Company (PDAM of Surakarta. Data were analyzed using by stiff diagram, variance analysis, and multiple regression. The research reveals that there is very little differences in the quality of free groundwater in Surakarta, as it is shown by same chemical properties. Several chemical properties were found very high in concentration, but the rest were simultaniously low. On the basis of minimum quality of drinking water coli content have exeeded the allowed limit for drinking water. Among the settlement units observed, there were no significant differences in the physical, chemical (except pH, bacteriological factors. This means that differences among various depth of water. Electrical onductivity (EC, Na, Mg, H2CO3, H2SO4, and NH3 were found different among various depth of water table. Major chemical conentration were significant with geology formation. Population density, built up areas, size of settlement, building density, and the condition of drainage simultaniously affect the quality of free ground water. No differences among settlement units was observed the most important fators determining the free groundwater quality was population density.

  10. Dynamic Analysis the Groundwater of Daban Mountain Tunnel and Valuation the Function of the Tunnel%大坂山隧道地下水动态分析及对隧道作用评估

    Institute of Scientific and Technical Information of China (English)

    邓友生; 何平; 周成林; 刘洪金; 李永福; 马忠英; 刘国玉

    2004-01-01

    Base on the groundwater yield, water temperature and hydrochemistry change of the groundwater, we can analyze that the summer water content is obviously greater than winter water content where the in and-out wall rock of the Daban Mountain tunnel. The groundwater supply has the extensity and the seasonality. The groundwater content of the middle tunnel wall rock changes relatively steady, mainly supply through horizontal direction. And the total groundwater content is relatively little and steady in winter. The water pressure of the wall rock cranny is little. It has the fluent drainage system to dredge groundwater, which cannot constitute a threat to the tunnel lining. And the cold-proof sluice hole can normally work to drain water.

  11. Treatment of Perchlorate-Contaminated Groundwater Using Highly-Selective, Regenerable Anion-Exchange Resins at Edwards Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    Gu, B.

    2003-05-30

    Selective ion exchange is one of the most effective treatment technologies for removing low levels of perchlorate (ClO{sub 4}{sup -}) from contaminated water because of its high efficiency without adverse impacts on the water quality caused by adding or removing any chemicals or nutrients. This report summarizes both the laboratory and a field pilot-scale studies to determine the ability and efficiency of the bifunctional synthetic resins to remove ClO{sub 4}{sup -} from the contaminated groundwater at the Edwards Air Force Base in California. Regeneration of the resins after groundwater treatment was also evaluated using the FeCl{sub 3}-HCl regeneration technique recently developed at Oak Ridge National Laboratory. On the basis of this study, the bifunctional resin, D-3696 was found to be highly selective toward ClO{sub 4}{sup -} and performed much better than one of the best commercial nitrate-selective resins (Purolite A-520E) and more than an order of magnitude better than the Purolite A-500 resin (with a relatively low selectivity). At an influent concentration of {approx} 450 {micro}g/L ClO{sub 4}{sup -} in groundwater, the bifunctional resin bed treated {approx} 40,000 empty bed volumes of groundwater before a significant breakthrough of ClO{sub 4}{sup -} occurred. The presence of relatively high concentrations of chloride and sulfate in site groundwater did not appear to affect the ability of the bifunctional resin to remove ClO{sub 4}{sup -}. However, the presence of high iron or iron oxyhydroxides and/or biomass in groundwater caused a significant fouling of the resin beds and greatly influenced the effectiveness in regenerating the resins sorbed with ClO{sub 4}{sup -}. Under such circumstances, a prefilter ({approx} 0.5-1 {micro}m) was found to be necessary to remove these particulates and to reduce the risk of fouling of the resin beds. Without significant fouling, the resin bed could be effectively regenerated by the FeCl{sub 3} displacement technique

  12. Field-based detection and monitoring of uranium in contaminated groundwater using two immunosensors

    Energy Technology Data Exchange (ETDEWEB)

    Melton, S.J.; Yu, H.; Williams, K.H.; Morris, S.A.; Long, P.E.; Blake, D.A.

    2009-05-01

    Field-based monitoring of environmental contaminants has long been a need for environmental scientists. Described herein are two kinetic exclusion-based immunosensors, a field portable sensor (FPS) and an inline senor, that were deployed at the Integrated Field Research Challenge Site of the U.S. Department of Energy in Rifle, CO. Both sensors utilized a monoclonal antibody that binds to a U(VI)-dicarboxyphenanthroline complex (DCP) in a kinetic exclusion immunoassay format. These sensors were able to monitor changes of uranium in groundwater samples from {approx} 1 {micro}M to below the regulated drinking water limit of 126 nM (30 ppb). The FPS is a battery-operated sensor platform that can determine the uranium level in a single sample in 5-10 min, if the instrument has been previously calibrated with standards. The average minimum detection level (MDL) in this assay was 0.33 nM (79 ppt), and the MDL in the sample (based on a 1:200?1:400 dilution) was 66?132 nM (15.7?31.4 ppb). The inline sensor, while requiring a grounded power source, has the ability to autonomously analyze multiple samples in a single experiment. The average MDL in this assay was 0.12 nM (29 ppt), and the MDL in the samples (based on 1:200 or 1:400 dilutions) was 24?48 nM (5.7?11.4 ppb). Both sensor platforms showed an acceptable level of agreement (r{sup 2} = 0.94 and 0.76, for the inline and FPS, respectively) with conventional methods for uranium quantification.

  13. A Feasibility Analysis of Land-Based SINS/GNSS Gravimetry for Groundwater Resource Detection in Taiwan

    Directory of Open Access Journals (Sweden)

    Kai-Wei Chiang

    2015-09-01

    Full Text Available The integration of the Strapdown Inertial Navigation System and Global Navigation Satellite System (SINS/GNSS has been implemented for land-based gravimetry and has been proven to perform well in estimating gravity. Based on the mGal-level gravimetry results, this research aims to construct and develop a land-based SINS/GNSS gravimetry device containing a navigation-grade Inertial Measurement Unit. This research also presents a feasibility analysis for groundwater resource detection. A preliminary comparison of the kinematic velocities and accelerations using multi-combination of GNSS data including Global Positioning System, Global Navigation Satellite System, and BeiDou Navigation Satellite System, indicates that three-system observations performed better than two-system data in the computation. A comparison of gravity derived from SINS/GNSS and measured using a relative gravimeter also shows that both agree reasonably well with a mean difference of 2.30 mGal. The mean difference between repeat measurements of gravity disturbance using SINS/GNSS is 2.46 mGal with a standard deviation of 1.32 mGal. The gravity variation because of the groundwater at Pingtung Plain, Taiwan could reach 2.72 mGal. Hence, the developed land-based SINS/GNSS gravimetry can sufficiently and effectively detect groundwater resources.

  14. A Feasibility Analysis of Land-Based SINS/GNSS Gravimetry for Groundwater Resource Detection in Taiwan.

    Science.gov (United States)

    Chiang, Kai-Wei; Lin, Cheng-An; Kuo, Chung-Yen

    2015-09-29

    The integration of the Strapdown Inertial Navigation System and Global Navigation Satellite System (SINS/GNSS) has been implemented for land-based gravimetry and has been proven to perform well in estimating gravity. Based on the mGal-level gravimetry results, this research aims to construct and develop a land-based SINS/GNSS gravimetry device containing a navigation-grade Inertial Measurement Unit. This research also presents a feasibility analysis for groundwater resource detection. A preliminary comparison of the kinematic velocities and accelerations using multi-combination of GNSS data including Global Positioning System, Global Navigation Satellite System, and BeiDou Navigation Satellite System, indicates that three-system observations performed better than two-system data in the computation. A comparison of gravity derived from SINS/GNSS and measured using a relative gravimeter also shows that both agree reasonably well with a mean difference of 2.30 mGal. The mean difference between repeat measurements of gravity disturbance using SINS/GNSS is 2.46 mGal with a standard deviation of 1.32 mGal. The gravity variation because of the groundwater at Pingtung Plain, Taiwan could reach 2.72 mGal. Hence, the developed land-based SINS/GNSS gravimetry can sufficiently and effectively detect groundwater resources.

  15. Hydrologic response to multimodel climate output using a physically based model of groundwater/surface water interactions

    Science.gov (United States)

    Sulis, M.; Paniconi, C.; Marrocu, M.; Huard, D.; Chaumont, D.

    2012-12-01

    General circulation models (GCMs) are the primary instruments for obtaining projections of future global climate change. Outputs from GCMs, aided by dynamical and/or statistical downscaling techniques, have long been used to simulate changes in regional climate systems over wide spatiotemporal scales. Numerous studies have acknowledged the disagreements between the various GCMs and between the different downscaling methods designed to compensate for the mismatch between climate model output and the spatial scale at which hydrological models are applied. Very little is known, however, about the importance of these differences once they have been input or assimilated by a nonlinear hydrological model. This issue is investigated here at the catchment scale using a process-based model of integrated surface and subsurface hydrologic response driven by outputs from 12 members of a multimodel climate ensemble. The data set consists of daily values of precipitation and min/max temperatures obtained by combining four regional climate models and five GCMs. The regional scenarios were downscaled using a quantile scaling bias-correction technique. The hydrologic response was simulated for the 690 km2des Anglais catchment in southwestern Quebec, Canada. The results show that different hydrological components (river discharge, aquifer recharge, and soil moisture storage) respond differently to precipitation and temperature anomalies in the multimodel climate output, with greater variability for annual discharge compared to recharge and soil moisture storage. We also find that runoff generation and extreme event-driven peak hydrograph flows are highly sensitive to any uncertainty in climate data. Finally, the results show the significant impact of changing sequences of rainy days on groundwater recharge fluxes and the influence of longer dry spells in modifying soil moisture spatial variability.

  16. Workflow-Based Dynamic Enterprise Modeling

    Institute of Scientific and Technical Information of China (English)

    黄双喜; 范玉顺; 罗海滨; 林慧萍

    2002-01-01

    Traditional systems for enterprise modeling and business process control are often static and cannot adapt to the changing environment. This paper presents a workflow-based method to dynamically execute the enterprise model. This method gives an explicit representation of the business process logic and the relationships between the elements involved in the process. An execution-oriented integrated enterprise modeling system is proposed in combination with other enterprise views. The enterprise model can be established and executed dynamically in the actual environment due to the dynamic properties of the workflow model.

  17. Characterization of Groundwater Quality Based on Regional Geologic Setting in the Piedmont and Blue Ridge Physiographic Provinces, North Carolina

    Science.gov (United States)

    Harden, Stephen L.; Chapman, Melinda J.; Harned, Douglas A.

    2009-01-01

    exceedances, with groundwater from 61 of the 69 sampled wells having activities higher than the U.S. Environmental Protection Agency's proposed maximum contaminant level of 300 picocuries per liter. Overall, the Milton and the Raleigh and Charlotte geozones had the greatest number, eight each, of water-quality properties or constituents that exceeded applicable drinking-water criteria in at least one well. The Eastern Blue Ridge and Felsic intrusive geozones each had seven properties or constituents that exceeded criteria, and the Carolina slate geozone had six. Based on limited data, initial results of statistical comparison tests identified statistically significant differences in concentrations of some groundwater constituents among the geozones. Statistically significant differences in median values of specific conductance and median concentrations of calcium, potassium, sodium, bicarbonate, chloride, silica, ammonia, aluminum, antimony, cadmium, and uranium were identified between one or more geozone pairs. Overall, the groundwater constituents appear to be influenced most significantly by the Inner Piedmont, Carolina slate, and Felsic intrusive geozones. The study data indicate that grouping and evaluating analytical data on the basis of regional geozone setting can be useful for characterizing water-quality conditions in bedrock aquifers of the Piedmont and Blue Ridge Provinces of North Carolina.

  18. Radio lighting based on dynamic chaos generators

    CERN Document Server

    Dmitriev, Alexander; Gerasimov, Mark; Itskov, Vadim

    2016-01-01

    A problem of lighting objects and surfaces with artificial sources of noncoherent microwave radiation with the aim to observe them using radiometric equipment is considered. Transmitters based on dynamic chaos generators are used as sources of noncoherent wideband microwave radiation. An experimental sample of such a device, i.e., a radio lighting lamp based on a chaos microgenerator and its performance are presented.

  19. Time prediction of an onset of shallow landslides based on the monitoring of the groundwater level and the surface displacement at different locations on a sandy model slope

    Science.gov (United States)

    Sasahara, Katsuo

    2016-04-01

    Location of monitoring of the deformation and the groundwater level in a slope is important for time-prediction of an onset of shallow landslides based on the monitoring. The analysis of the monitored data of the surface displacement and the groundwater level at different locations in sandy model slope under artificial rainfall was conducted in this study. The monitored data showed that the surface displacement increased with the increase of the groundwater level significantly. Then the analysis of the monitored data revealed that the relation between the surface displacement and the groundwater level can be modified as hyperbolic curve. The surface displacement grew larger and maximum groundwater level was smaller at farther location from the toe of the slope. Time-prediction of an onset of a landslide based on the monitored data at different location on the slope was proposed as following procedures. (1) To make a regression equation for the relation between the surface displacement and the groundwater level based on the monitored data at any time before the failure, (2) To make a regression equation for the relation between the time and the groundwater level based on the same data with (1), and (3) To incorporate the equation for the relation between the time and the groundwater level into that between the surface displacement and the groundwater level to derive the time - the surface displacement relation. (4) To derive the time - the inverse of the surface displacement velocity from the equation for the time - the surface displacement relation. The equation for the time - the surface displacement and the equation for the time - the inverse of the surface displacement velocity could simulate the actual phenomena of the slope well based on the monitored data at any location on the model slope.

  20. A multi-tracer approach to delineate groundwater dynamics in the Rio Actopan Basin, Veracruz State, Mexico

    Science.gov (United States)

    Pérez Quezadas, Juan; Heilweil, Victor M.; Cortés Silva, Alejandra; Araguas, Luis; Salas Ortega, María del Rocío

    2016-07-01

    Geochemistry and environmental tracers were used to understand groundwater resources, recharge processes, and potential sources of contamination in the Rio Actopan Basin, Veracruz State, Mexico. Total dissolved solids are lower in wells and springs located in the basin uplands compared with those closer to the coast, likely associated with rock/water interaction. Geochemical results also indicate some saltwater intrusion near the coast and increased nitrate near urban centers. Stable isotopes show that precipitation is the source of recharge to the groundwater system. Interestingly, some high-elevation springs are more isotopically enriched than average annual precipitation at higher elevations, indicating preferential recharge during the drier but cooler winter months when evapotranspiration is reduced. In contrast, groundwater below 1,200 m elevation is more isotopically depleted than average precipitation, indicating recharge occurring at much higher elevation than the sampling site. Relatively cool recharge temperatures, derived from noble gas measurements at four sites (11-20 °C), also suggest higher elevation recharge. Environmental tracers indicate that groundwater residence time in the basin ranges from 12,000 years to modern. While this large range shows varying groundwater flowpaths and travel times, ages using different tracer methods (14C, 3H/3He, CFCs) were generally consistent. Comparing multiple tracers such as CFC-12 with CFC-113 indicates piston-flow to some discharge points, yet binary mixing of young and older groundwater at other points. In summary, groundwater within the Rio Actopan Basin watershed is relatively young (Holocene) and the majority of recharge occurs in the basin uplands and moves towards the coast.

  1. A multi-tracer approach to delineate groundwater dynamics in the Rio Actopan Basin, Veracruz State, Mexico

    Science.gov (United States)

    Pérez Quezadas, Juan; Heilweil, Victor M.; Cortés Silva, Alejandra; Araguas, Luis; Salas Ortega, María del Rocío

    2016-12-01

    Geochemistry and environmental tracers were used to understand groundwater resources, recharge processes, and potential sources of contamination in the Rio Actopan Basin, Veracruz State, Mexico. Total dissolved solids are lower in wells and springs located in the basin uplands compared with those closer to the coast, likely associated with rock/water interaction. Geochemical results also indicate some saltwater intrusion near the coast and increased nitrate near urban centers. Stable isotopes show that precipitation is the source of recharge to the groundwater system. Interestingly, some high-elevation springs are more isotopically enriched than average annual precipitation at higher elevations, indicating preferential recharge during the drier but cooler winter months when evapotranspiration is reduced. In contrast, groundwater below 1,200 m elevation is more isotopically depleted than average precipitation, indicating recharge occurring at much higher elevation than the sampling site. Relatively cool recharge temperatures, derived from noble gas measurements at four sites (11-20 °C), also suggest higher elevation recharge. Environmental tracers indicate that groundwater residence time in the basin ranges from 12,000 years to modern. While this large range shows varying groundwater flowpaths and travel times, ages using different tracer methods (14C, 3H/3He, CFCs) were generally consistent. Comparing multiple tracers such as CFC-12 with CFC-113 indicates piston-flow to some discharge points, yet binary mixing of young and older groundwater at other points. In summary, groundwater within the Rio Actopan Basin watershed is relatively young (Holocene) and the majority of recharge occurs in the basin uplands and moves towards the coast.

  2. Transpiration and Groundwater Uptake Dynamics of Pinus Brutia on a Fractured Mediterranean Mountain Slope during Two Hydrologically Contrasting Years

    Science.gov (United States)

    Eliades, Marinos; Bruggeman, Adriana; Lubczynski, Maciek; Christou, Andreas; Camera, Corrado; Djuma, Hakan

    2017-04-01

    Semi-arid environments tend to have extreme temporal variability in rainfall, resulting in extended periods with little to no precipitation. The mountainous topography is characterized by steep slopes, often leading to shallow soil layers with limited water storage capacity. Tree species survive in these environments by developing various adaptation mechanisms to access water. The main objective of this study is to examine the differences of two hydrologically contrasting years on the transpiration and groundwater uptake dynamics of Pinus brutia trees. We selected four trees for sap flow monitoring in an 8966-m2 fenced area of Pinus brutia forest. The site is located at 620 m elevation, on the northern foothills of the Troodos mountains in Cyprus. The slope of the site ranges between 0 and 82%. The average daily minimum temperature is 5 0C in January and the average daily maximum temperature is 35 oC in August. The mean annual rainfall is 425 mm. Monitoring started on 1 January 2015 and is ongoing. We measured soil depth in a 1-m grid around each of the selected trees for monitoring. We processed soil depths in ArcGIS software (ESRI) to create a soil depth map. We used a Total Station and a differential GPS for the creation of a high resolution DEM of the area covering the selected trees. We installed seventeen soil moisture sensors at 12-cm depth and two at 30-cm depth, where the soil was deeper than 24 cm. We randomly installed 28 metric manual rain gauges under the trees' canopy to measure throughfall. For stemflow we installed a plastic tube around each tree trunk and connected it to a manual rain gauge. We used sap flow heat ratio method (HRM) instruments to determine sap flow rates of the Pinus brutia. Hourly meteorological conditions were observed by an automatic meteorological station. Here we present the results of the January to October periods, in order to have comparable results for the two contrasting years. During the wet year of 2015, we measured 439

  3. Percentage of Hypothetical Well Pumpage Causing Depletions to Simulated Base Flow, Evapotranspiration, and Groundwater Storage in the Elkhorn and Loup River Basins, 2006 through 2055

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data release includes a polygon shapefile of grid cells attributed with values representing the simulated base-flow, evapotranspiration, and groundwater-storage...

  4. Numerical groundwater-flow modeling to evaluate potential effects of pumping and recharge: implications for sustainable groundwater management in the Mahanadi delta region, India

    Science.gov (United States)

    Sahoo, Sasmita; Jha, Madan K.

    2017-07-01

    Process-based groundwater models are useful to understand complex aquifer systems and make predictions about their response to hydrological changes. A conceptual model for evaluating responses to environmental changes is presented, considering the hydrogeologic framework, flow processes, aquifer hydraulic properties, boundary conditions, and sources and sinks of the groundwater system. Based on this conceptual model, a quasi-three-dimensional transient groundwater flow model was designed using MODFLOW to simulate the groundwater system of Mahanadi River delta, eastern India. The model was constructed in the context of an upper unconfined aquifer and lower confined aquifer, separated by an aquitard. Hydraulic heads of 13 shallow wells and 11 deep wells were used to calibrate transient groundwater conditions during 1997-2006, followed by validation (2007-2011). The aquifer and aquitard hydraulic properties were obtained by pumping tests and were calibrated along with the rainfall recharge. The statistical and graphical performance indicators suggested a reasonably good simulation of groundwater flow over the study area. Sensitivity analysis revealed that groundwater level is most sensitive to the hydraulic conductivities of both the aquifers, followed by vertical hydraulic conductivity of the confining layer. The calibrated model was then employed to explore groundwater-flow dynamics in response to changes in pumping and recharge conditions. The simulation results indicate that pumping has a substantial effect on the confined aquifer flow regime as compared to the unconfined aquifer. The results and insights from this study have important implications for other regional groundwater modeling studies, especially in multi-layered aquifer systems.

  5. Groundwater Capture Zones

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Source water protection areas are delineated for each groundwater-based public water supply system using available geologic and hydrogeologic information to...

  6. Groundwater level and specific conductance monitoring at Marine Corps Base, Camp Lejeune, Onslow County, North Carolina, 2007-2008

    Science.gov (United States)

    McSwain, Kristen Bukowski

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Marine Corps Base, Camp Lejeune, monitored water-resources conditions in the surficial, Castle Hayne, Peedee, and Black Creek aquifers in Onslow County, North Carolina, from November 2007 through September 2008. To comply with North Carolina Central Coastal Plain Capacity Use Area regulations, large-volume water suppliers in Onslow County must reduce their dependency on the Black Creek aquifer as a water-supply source and have, instead, proposed using the Castle Hayne aquifer as an alternative water-supply source. The Marine Corps Base, Camp Lejeune, uses water obtained from the unregulated surficial and Castle Hayne aquifers for drinking-water supply. Water-level data were collected and field measurements of physical properties were made at 19 wells at 8 locations spanning the Marine Corps Base, Camp Lejeune. These wells were instrumented with near real-time monitoring equipment to collect hourly measurements of water level. Additionally, specific conductance and water temperature were measured hourly in 16 of the 19 wells. Graphs are presented relating altitude of groundwater level to water temperature and specific conductance measurements collected during the study, and the relative vertical gradients between aquifers are discussed. The period-of-record normal (25th to 75th percentile) monthly mean groundwater levels at two well clusters were compared to median monthly mean groundwater levels at these same well clusters for 2008 to determine groundwater-resources conditions. In 2008, water levels were below normal in the 3 wells at one of the well clusters and were normal in 4 wells at the other cluster.

  7. Assessment of spatial structure of groundwater quality variables based on the entropy theory

    Directory of Open Access Journals (Sweden)

    Y. Mogheir

    2003-01-01

    Full Text Available Fundamental to the spatial sampling design of a groundwater quality monitoring network is the spatial structure of groundwater quality variables. The entropy theory presents an alternative approach to describe this variability. A case study is presented which used groundwater quality observations (13 years; 1987-2000 from groundwater domestic wells in the Gaza Strip, Palestine. The analyses of the spatial structure used the following variables: Electrical Conductivity (EC, Total Dissolved Solids (TDS, Calcium (Ca, Magnesium (Mg, Sodium (Na, Potassium (K, Chloride (Cl, Nitrate (NO3, Sulphate (SO4, alkalinity and hardness. For all these variables the spatial structure is described by means of Transinformation as a function of distance between wells (Transinformation Model and correlation also as a function of distance (Correlation Model. The parameters of the Transinformation Model analysed were: (1 the initial value of the Transinformation; (2 the rate of information decay; (3 the minimum constant value; and (4 the distance at which the Transinformation Model reaches its minimum value. Exponential decay curves were fitted to both models. The Transinformation Model was found to be superior to the Correlation Model in representing the spatial variability (structure. The parameters of the Transinformation Model were different for some variables and similar for others. That leads to a reduction of the variables to be monitored and consequently reduces the cost of monitoring. Keywords: transinformation, correlation, spatial structure, municipal wells, groundwater monitoring, entropy

  8. Lessons Learned from Australia: A science-based policy approach to manage California's Groundwater Dependent Ecosystems

    Science.gov (United States)

    Rohde, M. M.; Froend, R.; Howard, J.

    2016-12-01

    New requirements under California's Sustainable Groundwater Management Act of 2014 (SGMA) requires local Groundwater Sustainability Agencies to identify Groundwater Dependent Ecosystems (GDEs) and consider the interests of environmental beneficial uses and users of groundwater when developing their Groundwater Sustainability Plans. Most local water agencies will be identifying and considering GDEs for the first time under SGMA, and will find this challenging due to a lack of in-house biological and ecologic expertise. Uncertainty around what management triggers and thresholds are needed to prevent harm to GDEs is not only endemic to California, but also worldwide due to a lack of science at the intersection of hydrology and ecology. Australia has, however, has done an exceptional job at reducing uncertainty when selecting management triggers and thresholds for GDEs in their water management plans. This has been achieved by integrating risk assessment into an adaptive management framework that uses monitoring programs to inform management strategies. This "learn by doing" approach has helped close knowledge gaps needed to manage GDEs in response to Australia's national sustainable water management legislation. The two main objectives of this paper are to: 1) synthesize Australia's adaptive management approach of GDEs in state water plans, and 2) highlight opportunities for knowledge transfer from Australia into the California context.

  9. Assessment of Groundwater Potential Based on Multicriteria Decision Making Model and Decision Tree Algorithms

    Directory of Open Access Journals (Sweden)

    Huajie Duan

    2016-01-01

    Full Text Available Groundwater plays an important role in global climate change and satisfying human needs. In the study, RS (remote sensing and GIS (geographic information system were utilized to generate five thematic layers, lithology, lineament density, topology, slope, and river density considered as factors influencing the groundwater potential. Then, the multicriteria decision model (MCDM was integrated with C5.0 and CART, respectively, to generate the decision tree with 80 surveyed tube wells divided into four classes on the basis of the yield. To test the precision of the decision tree algorithms, the 10-fold cross validation and kappa coefficient were adopted and the average kappa coefficient for C5.0 and CART was 90.45% and 85.09%, respectively. After applying the decision tree to the whole study area, four classes of groundwater potential zones were demarcated. According to the classification result, the four grades of groundwater potential zones, “very good,” “good,” “moderate,” and “poor,” occupy 4.61%, 8.58%, 26.59%, and 60.23%, respectively, with C5.0 algorithm, while occupying the percentages of 4.68%, 10.09%, 26.10%, and 59.13%, respectively, with CART algorithm. Therefore, we can draw the conclusion that C5.0 algorithm is more appropriate than CART for the groundwater potential zone prediction.

  10. Dynamical variations in groundwater chemistry influenced by intermittent water delivery at the lower reaches of the Tarim River

    Institute of Scientific and Technical Information of China (English)

    CHENYongjin; CHENYaning; LIUJiazhen; LIWeihong; IJun; XUChangchun

    2005-01-01

    The water of Bosten Lake was released to lower reaches of the Tarim River for 5 times from 2000 to 2002. The changes of total dissolved solid (TDS) and the major ions (SO42-, Cl-, Na-,Ca2+, Mg2- and HCO3- ) were analyzed during this period. It was found out that TDS and the concentrations of the major ions initially and quickly increased and then decreased, but finally increased again. These changes were different at different distances from the river, which indicated that the groundwater changes relied on the distance from the river. In addition, the salt in groundwater was only diluted but not removed by the water. It was suggested that ecological measures should be sought to really promote the quality of the groundwater at the lower reaches of the Tarim River.

  11. Using groundwater age to understand sources and dynamics of nutrient contamination through the catchment into Lake Rotorua, New Zealand

    Science.gov (United States)

    Morgenstern, U.; Daughney, C. J.; Leonard, G.; Gordon, D.; Donath, F. M.; Reeves, R.

    2014-08-01

    The water quality of Lake Rotorua has declined continuously over the past 50 yr despite mitigation efforts over recent decades. Delayed response of the groundwater discharges to historic land-use intensification 50 yr ago was the reason suggested by early tritium measurements, which indicated large transit times through the groundwater system. We use the isotopic and chemistry signature of the groundwater for detailed understanding of the origin, fate, flow pathways, lag times, and future loads of contaminants. A unique set of high-quality tritium data over more than four decades, encompassing the time when the tritium spike from nuclear weapons testing moved through the groundwater system, allows us to determine detailed age distribution parameters of the water discharging into Lake Rotorua. The Rotorua volcanic groundwater system is complicated due to the highly complex geology that has evolved through volcanic activity. Vertical and steeply-inclined geological contacts preclude a simple flow model. The extent of the Lake Rotorua groundwater catchment is difficult to establish due to the deep water table in large areas, combined with inhomogeneous groundwater flow patterns. Hierarchical cluster analysis of the water chemistry parameters provided evidence of the recharge source of the large springs near the lake shore, with discharge from the Mamaku ignimbrite through lake sediment layers. Groundwater chemistry and age data show clearly the source of nutrients that cause lake eutrophication, nitrate from agricultural activities and phosphate from geologic sources. With a naturally high phosphate load reaching the lake continuously via all streams, the only effective way to limit algae blooms and improve lake water quality in such environments is by limiting the nitrate load. The groundwater in the Rotorua catchment, once it has passed through the soil zone, shows no further decrease in dissolved oxygen, indicating absence of electron donors in the aquifer that

  12. Nitrate Loads and Concentrations in Surface-Water Base Flow and Shallow Groundwater for Selected Basins in the United States, Water Years 1990-2006

    Science.gov (United States)

    Spahr, Norman E.; Dubrovsky, Neil M.; Gronberg, JoAnn M.; Franke, O. Lehn; Wolock, David M.

    2010-01-01

    Hydrograph separation was used to determine the base-flow component of streamflow for 148 sites sampled as part of the National Water-Quality Assessment program. Sites in the Southwest and the Northwest tend to have base-flow index values greater than 0.5. Sites in the Midwest and the eastern portion of the Southern Plains generally have values less than 0.5. Base-flow index values for sites in the Southeast and Northeast are mixed with values less than and greater than 0.5. Hypothesized flow paths based on relative scaling of soil and bedrock permeability explain some of the differences found in base-flow index. Sites in areas with impermeable soils and bedrock (areas where overland flow may be the primary hydrologic flow path) tend to have lower base-flow index values than sites in areas with either permeable bedrock or permeable soils (areas where deep groundwater flow paths or shallow groundwater flow paths may occur). The percentage of nitrate load contributed by base flow was determined using total flow and base flow nitrate load models. These regression-based models were calibrated using available nitrate samples and total streamflow or base-flow nitrate samples and the base-flow component of total streamflow. Many streams in the country have a large proportion of nitrate load contributed by base flow: 40 percent of sites have more than 50 percent of the total nitrate load contributed by base flow. Sites in the Midwest and eastern portion of the Southern Plains generally have less than 50 percent of the total nitrate load contributed by base flow. Sites in the Northern Plains and Northwest have nitrate load ratios that generally are greater than 50 percent. Nitrate load ratios for sites in the Southeast and Northeast are mixed with values less than and greater than 50 percent. Significantly lower contributions of nitrate from base flow were found at sites in areas with impermeable soils and impermeable bedrock. These areas could be most responsive to

  13. 陕西省乾县地下水位动态变化特征分析%Groundwater Table Dynamics in Qianxian County of Shaanxi Province

    Institute of Scientific and Technical Information of China (English)

    俱战省; 刘文兆; 郑粉莉; 刘俊民

    2012-01-01

    依据渭北高塬与关中平原过渡地带的陕西省乾县近16 a地下水位埋深监测资料,结合研究区数字高程模型(DEM)反映的地貌和水系分布状况,选取7口地下水位监测井,对乾县城区、羊毛湾灌区和宝鸡峡灌区地下水位年际和年内动态变化特征进行了分析。结果表明,乾县城区近10 a地下水位以0.31 m/a的速度上升;羊毛湾灌区和宝鸡峡灌区近16 a地下水位均呈下降趋势,并且前者下降幅度大于后者;降水量偏多使得水库水位高于其附近地下水位,距离水库近的地区,地下水位受水库补给和降雨入渗补给双重作用迅速上升;距离水库远的地方,地下水位主要受降雨入渗补给,地下水位上升具有滞后性。灌区地下水位具有在2月和10月左右达到高水位,7月降至低水位的特征。实施节水和井渠结合灌溉是保证乾县地下水资源可持续利用的有效途径。%Inter-annual and seasonal characteristics of groundwater table fluctuations in the urban area of Qianxian County,Yangmaowan irrigation area,and Baojixia irrigation area were analyzed based on the groundwater table data collected from seven monitoring wells between 1992 and 2007,along with DEM which reflects the topography and drainage system distribution of the study area.The study area is located in the transition zone from the North Weihe to Guangzhong region.The results indicate that the groundwater table in the urban area of Qianxian County rose at a rate of 0.31 m/a during the study period.However,the groundwater tables in Yangmaowan and Baojiaxia irrigation areas were declining in the past sixteen years;the groundwater table of Yangmaowan irrigation area declined faster than that of Baojiaxia irrigation area.In wet years,the groundwater tables of the wells that is close to reservoirs rose quickly due to the combined effects of both reservoir recharge and rainfall infiltration.On the contrary,the groundwater tables of the

  14. Dynamic Analysis of Multilayers Based MEMS Resonators

    Directory of Open Access Journals (Sweden)

    Hassen M. Ouakad

    2017-01-01

    Full Text Available The dynamic behavior of a microelectromechanical system (MEMS parallel and electrically coupled double-layers (microbeams based resonator is investigated. Two numerical methods were used to solve the dynamical problem: the reduced-order modeling (ROM and the perturbation method. The ROM was derived using the so-called Galerkin expansion with considering the linear undamped mode shapes of straight beam as the basis functions. The perturbation method was generated using the method of multiple scales by direct attack of the equations of motion. Dynamic analyses, assuming the above two numerical methods were performed, and a comparison of the results showed good agreement. Finally, a parametric study was performed using the perturbation on different parameters and the results revealed different interesting features, which hopefully can be useful for some MEMS based applications.

  15. Application of a GIS-/remote sensing-based approach for predicting groundwater potential zones using a multi-criteria data mining methodology.

    Science.gov (United States)

    Mogaji, Kehinde Anthony; Lim, Hwee San

    2017-07-01

    This study integrates the application of Dempster-Shafer-driven evidential belief function (DS-EBF) methodology with remote sensing and geographic information system techniques to analyze surface and subsurface data sets for the spatial prediction of groundwater potential in Perak Province, Malaysia. The study used additional data obtained from the records of the groundwater yield rate of approximately 28 bore well locations. The processed surface and subsurface data produced sets of groundwater potential conditioning factors (GPCFs) from which multiple surface hydrologic and subsurface hydrogeologic parameter thematic maps were generated. The bore well location inventories were partitioned randomly into a ratio of 70% (19 wells) for model training to 30% (9 wells) for model testing. Application results of the DS-EBF relationship model algorithms of the surface- and subsurface-based GPCF thematic maps and the bore well locations produced two groundwater potential prediction (GPP) maps based on surface hydrologic and subsurface hydrogeologic characteristics which established that more than 60% of the study area falling within the moderate-high groundwater potential zones and less than 35% falling within the low potential zones. The estimated uncertainty values within the range of 0 to 17% for the predicted potential zones were quantified using the uncertainty algorithm of the model. The validation results of the GPP maps using relative operating characteristic curve method yielded 80 and 68% success rates and 89 and 53% prediction rates for the subsurface hydrogeologic factor (SUHF)- and surface hydrologic factor (SHF)-based GPP maps, respectively. The study results revealed that the SUHF-based GPP map accurately delineated groundwater potential zones better than the SHF-based GPP map. However, significant information on the low degree of uncertainty of the predicted potential zones established the suitability of the two GPP maps for future development of

  16. Haptics-based dynamic implicit solid modeling.

    Science.gov (United States)

    Hua, Jing; Qin, Hong

    2004-01-01

    This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback.

  17. Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, northwest China.

    Science.gov (United States)

    Xiao, Yong; Gu, Xiaomin; Yin, Shiyang; Shao, Jingli; Cui, Yali; Zhang, Qiulan; Niu, Yong

    2016-01-01

    Based on the geo-statistical theory and ArcGIS geo-statistical module, datas of 30 groundwater level observation wells were used to estimate the decline of groundwater level in Beijing piedmont. Seven different interpolation methods (inverse distance weighted interpolation, global polynomial interpolation, local polynomial interpolation, tension spline interpolation, ordinary Kriging interpolation, simple Kriging interpolation and universal Kriging interpolation) were used for interpolating groundwater level between 2001 and 2013. Cross-validation, absolute error and coefficient of determination (R(2)) was applied to evaluate the accuracy of different methods. The result shows that simple Kriging method gave the best fit. The analysis of spatial and temporal variability suggest that the nugget effects from 2001 to 2013 were increasing, which means the spatial correlation weakened gradually under the influence of human activities. The spatial variability in the middle areas of the alluvial-proluvial fan is relatively higher than area in top and bottom. Since the changes of the land use, groundwater level also has a temporal variation, the average decline rate of groundwater level between 2007 and 2013 increases compared with 2001-2006. Urban development and population growth cause over-exploitation of residential and industrial areas. The decline rate of the groundwater level in residential, industrial and river areas is relatively high, while the decreasing of farmland area and development of water-saving irrigation reduce the quantity of water using by agriculture and decline rate of groundwater level in agricultural area is not significant.

  18. Large-Scale Groundwater Flow with Free Water Surface Based on Data from SKB's Site Investigation in the Forsmark Area

    Energy Technology Data Exchange (ETDEWEB)

    Woerman, Anders; Sjoegren, Bjoern; Marklund, Lars [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)

    2004-12-01

    This report describes a data-base that covers entire Sweden with regard to various geographical parameters with implications to simulation of groundwater circulation on a regional and continental scale. The data-base include topography, stream network properties, and-use and water chemistry for limited areas. Furthermore, the report describes a computational (finite difference) code that solves the continuum equation for laminar, stationary and isotropic groundwater flow. The formulation accounts for a free groundwater surface except where the groundwater recharge into the stream network and lake bottoms. The theoretical background of the model is provided and the codes are described. The report also contain a simple user manual in a Matlab environment and provides and example calculation for the Forsmark area, Uppland, Sweden.

  19. A GIS-based assessment of groundwater suitability for irrigation purposes in flat areas of the wet Pampa plain, Argentina.

    Science.gov (United States)

    Romanelli, Asunción; Lima, María Lourdes; Quiroz Londoño, Orlando Mauricio; Martínez, Daniel Emilio; Massone, Héctor Enrique

    2012-09-01

    The Pampa in Argentina is a large plain with a quite obvious dependence on agriculture, water availability and its quality. It is a sensitive environment due to weather changes and slope variations. Supplementary irrigation is a useful practice for compensating the production in the zone. However, potential negative impacts of this type of irrigation in salinization and sodification of soils are evident. Most conventional methodologies for assessing water irrigation quality have difficulties in their application in the region because they do not adjust to the defined assumptions for them. Consequently, a new GIS-based methodology integrating multiparametric data was proposed for evaluating and delineating groundwater suitability zones for irrigation purposes in flat areas. Hydrogeological surveys including water level measurements, groundwater samples for chemical analysis and electrical conductivity (EC) measurements were performed. The combination of EC, sodium adsorption ratio, residual sodium carbonate, slopes and hydraulic gradient parameters generated an irrigation water index (IWI). With the integration of the IWI 1 to 3 classes (categories of suitable waters for irrigation) and the aquifer thickness the restricted irrigation water index (RIWI) was obtained. The IWI's index application showed that 61.3 % of the area has "Very high" to "Moderate" potential for irrigation, while the 31.4 % of it has unsuitable waters. Approximately, 46 % of the tested area has high suitability for irrigation and moderate groundwater availability. This proposed methodology has advantages over traditional methods because it allows for better discrimination in homogeneous areas.

  20. Identifying outliers of non-Gaussian groundwater state data based on ensemble estimation for long-term trends

    Science.gov (United States)

    Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kueyoung; Choung, Sungwook; Chung, Il Moon

    2017-05-01

    A hydrogeological dataset often includes substantial deviations that need to be inspected. In the present study, three outlier identification methods - the three sigma rule (3σ), inter quantile range (IQR), and median absolute deviation (MAD) - that take advantage of the ensemble regression method are proposed by considering non-Gaussian characteristics of groundwater data. For validation purposes, the performance of the methods is compared using simulated and actual groundwater data with a few hypothetical conditions. In the validations using simulated data, all of the proposed methods reasonably identify outliers at a 5% outlier level; whereas, only the IQR method performs well for identifying outliers at a 30% outlier level. When applying the methods to real groundwater data, the outlier identification performance of the IQR method is found to be superior to the other two methods. However, the IQR method shows limitation by identifying excessive false outliers, which may be overcome by its joint application with other methods (for example, the 3σ rule and MAD methods). The proposed methods can be also applied as potential tools for the detection of future anomalies by model training based on currently available data.

  1. Combining ground-based and airborne EM through Artificial Neural Networks for modelling glacial till under saline groundwater conditions

    Directory of Open Access Journals (Sweden)

    J. L. Gunnink

    2012-08-01

    Full Text Available Airborne electromagnetic (AEM methods supply data over large areas in a cost-effective way. We used Artificial Neural Networks (ANN to classify the geophysical signal into a meaningful geological parameter. By using examples of known relations between ground-based geophysical data (in this case electrical conductivity, EC, from electrical cone penetration tests and geological parameters (presence of glacial till, we extracted learning rules that could be applied to map the presence of a glacial till using the EC profiles from the airborne EM data. The saline groundwater in the area was obscuring the EC signal from the till but by using ANN we were able to extract subtle and often non-linear, relations in EC that were representative of the presence of the till. The ANN results were interpreted as the probability of having till and showed a good agreement with drilling data. The glacial till is acting as a layer that inhibits groundwater flow, due to its high clay-content, and is therefore an important layer in hydrogeological modelling and for predicting the effects of climate change on groundwater quantity and quality.

  2. Combining ground-based and airborne EM through Artificial Neural Networks for modelling hydrogeological units under saline groundwater conditions

    Directory of Open Access Journals (Sweden)

    J. L. Gunnink

    2012-03-01

    Full Text Available Airborne Electro Magnetic (EM methods supply data over large areas in a cost-effective way. We used Artificial Neural Networks (ANN to classify the geophysical signal into a meaningful geological parameter. By using examples of known relations between ground-based geophysical data (in this case electrical conductivity, EC, from Electrical Cone Penetration Tests and geological parameters (presence of glacial till, we extracted learning rules that could be applied to map the presence of a glacial till using the EC profiles from the airborne EM data. The saline groundwater in the area was obscuring the EC signal from the till but by using ANN we were able to extract subtle and often non-linear, relations in EC that were representative for the presence of the till. The ANN results were interpreted as the probability of having till and showed a good agreement with drilling data. The glacial till is acting as a layer that inhibits groundwater flow, due to its high clay-content, and is therefore an important layer in hydrogeological modelling and for predicting the effects of climate change on groundwater quantity and quality.

  3. Network environmental analysis based ecological risk assessment of a naphthalene-contaminated groundwater ecosystem under varying remedial schemes

    Science.gov (United States)

    Wang, Zheng; He, Li; Lu, Hongwei; Ren, Lixia; Xu, Zongda

    2016-12-01

    Many of the existing ecological risk studies for groundwater ecosystems paid little attention to either small-scale regions (e.g., an industrial contamination site) or ignored anthropogenic activities (e.g., site remediation). This study presented a network environmental analysis based ecological risk assessment (ERA) framework to a naphthalene-contaminated groundwater remediation site. In the ERA, four components (vegetation, herbivore, soil micro-organism and carnivore) were selected, which are directly or indirectly exposed to the contaminated groundwater ecosystem. By incorporating both direct and indirect ecosystem interactions, the risk conditions of the whole ecosystem and its components were quantified and illustrated in the case study. Results indicate that despite there being no input risks for herbivores and carnivores, the respective integral risks increase to 0.0492 and 0.0410. For soil micro-organisms, 58.8% of the integral risk comes from the input risk, while the other 41.2% of the integral risk comes from the direct risk. Therefore, the risk flow within the components is a non-negligible risk origination for soil micro-organisms. However, the integral risk for vegetation was similar to the input risk, indicating no direct risk. The integral risk at the 5-year point after remediation was the highest for the four components. This risk then decreased at the 10-year point, and then again increased. Results from the sensitivity analysis also suggest that the proposed framework is robust enough to avoid disturbance by parameter uncertainty.

  4. Dynamics in groundwater and surface water quality : from field-scale processes to catchment-scale monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.C.|info:eu-repo/dai/nl/304838403

    2010-01-01

    Clean water is essential for our existence on earth. In areas with intensive agricultural land use, such as The Netherlands, groundwater and surface water resources are threatened. The leaching of agrochemicals from agricultural fields leads to contamination of drinking water resources and toxic

  5. Dynamics in groundwater and surface water quality : from field-scale processes to catchment-scale monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.C.

    2010-01-01

    Clean water is essential for our existence on earth. In areas with intensive agricultural land use, such as The Netherlands, groundwater and surface water resources are threatened. The leaching of agrochemicals from agricultural fields leads to contamination of drinking water resources and toxic alg

  6. Modeling biogeochemical processes in subterranean estuaries : Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients

    NARCIS (Netherlands)

    Spiteri, C.; Slomp, C.P.; Tuncay, K.; Meile, C.

    2008-01-01

    A two-dimensional density-dependent reactive transport model, which couples groundwater flow and biogeochemical reactions, is used to investigate the fate of nutrients (NO3 −, NH4 +, and PO4) in idealized subterranean estuaries representing four end-members of oxic/anoxic aquifer and seawater redox

  7. Stochastic goal programming based groundwater remediation management under human-health-risk uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; He, Li, E-mail: li.he@ncepu.edu.cn; Lu, Hongwei; Fan, Xing

    2014-08-30

    Highlights: • We propose an integrated optimal groundwater remediation design approach. • The approach can address stochasticity in carcinogenic risks. • Goal programming is used to make the system approaching to ideal operation and remediation effects. • The uncertainty in slope factor is evaluated under different confidence levels. • Optimal strategies are obtained to support remediation design under uncertainty. - Abstract: An optimal design approach for groundwater remediation is developed through incorporating numerical simulation, health risk assessment, uncertainty analysis and nonlinear optimization within a general framework. Stochastic analysis and goal programming are introduced into the framework to handle uncertainties in real-world groundwater remediation systems. Carcinogenic risks associated with remediation actions are further evaluated at four confidence levels. The differences between ideal and predicted constraints are minimized by goal programming. The approach is then applied to a contaminated site in western Canada for creating a set of optimal remediation strategies. Results from the case study indicate that factors including environmental standards, health risks and technical requirements mutually affected and restricted themselves. Stochastic uncertainty existed in the entire process of remediation optimization, which should to be taken into consideration in groundwater remediation design.

  8. Surface water, groundwater and unified 3D-crack network as a triple coupling dynamic system for a river watershed functioning - manifestation in catastrophic floods

    Science.gov (United States)

    Trifonova, Tatiana; Tulenev, Nikita; Trifonov, Dmitriy; Arakelian, Sergei

    2014-05-01

    stimulating a trigger mechanism for releasing of groundwater; (ii) the crackness/fracturing structure as a characteristic property for all rocks, being dissecting by totality of cracks/fissures and along which (in the case when a good development crack becomes a fault) a vertical and/or lateral movement (of both groundwater and surface water mass) occurs as a result of excessive strain; (iii) areas of formation and modification in time of groundwater transit system, and especially the modalities for it exit on surface by different factors including tectonic processes under adjustable conditions for both localization of earthquake epicenters/volcanos activity areas and occurring floods in respect of propagating of seismic waves and dislocation of border for lithospheric plates/magma objects in the river basin region; (iv) the way of distribution over surface for water flows/fronts in the further, which can be described by nonlinear hydrodynamic approach, e.g. by different classes of solutions for Korteweg-de Vries equation, associated with observable natural phenomena. 4. Monitoring in dynamics of state of hydrostatic/hydrodynamic pressures in underground aquifers (e.g. by artesian wells in comparison with two databases: before and after the events) is an important factor in assessing of acceptable risk for the events. Combining it with monitoring of seismic activity should allow to make a more detailed forecasting and zoning of potentially dangerous areas for such natural disasters.

  9. GIS based Hydrogeological Vulnerability Mapping of Groundwater Resources in Jerash Area-Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Hammouri, N [Department of Earth and Environmental Sciences, Faculty of Natural Resources and Environment, Hashemite University, Zarqa (Jordan); El-Naqa, A [Department of Water Management and Environment, Faculty of Natural Resources and Environment, Hashemite University, Zarqa (Jordan)

    2008-04-15

    This paper presents groundwater vulnerability mapping for Jerash area, north Jordan generated using EPIK and DRASTIC models. These models have been implemented using GIS to delineate groundwater protection zones and to suggest a protection plan to improve groundwater quality of the major springs and wells. Most of the groundwater resources in the study area are polluted and bacteria and nitrate levels are high. Different sources of groundwater pollution have been identified. Domestic wastewater is considered as a major source of pollution. Urban runoff, fertilizers from agricultural return flows and solid waste disposal appear to be secondary sources. The most relevant vulnerability class of EPIK map is very high which accounts for about 41 % of the total area. While in the DRASTIC vulnerability map, areas with high vulnerability were only about 23 % of the total area. There is a good correlation between vulnerability maps obtained from both models with microbiological and chemical pollution evidences. There is also a good agreement between the areas classified as highly vulnerable and those that have high levels of pollution. [Spanish] El estudio de vulnerabilidad de aguas subterraneas en la region de Yerash, Jordania fue obtenido mediante las metodologias de EPIK y DRASTIC. Se uso GIS para mapear las zonas protegidas y para sugerir un plan de proteccion para mejorar la calidad del agua subterranea en los principales manantiales y pozos. Los niveles de contaminacion bacteriana y de nitratos son elevados. El efluente domestico es la fuente mas importante de contaminacion; vienen en segundo lugar la precipitacion en zonas urbanas, los fertilizantes agricolas y los desechos solidos. En el mapa de EPIK, la vulnerabilidad extrema abarca hasta 41% del area total; en cambio, en el mapa de DRASTIC las areas de alta vulnerabilidad ocupan solo un 23% del area. La correlacion de los datos de contaminacion microbiana y quimica con ambos mapas der vulnerabilidad es buena

  10. Tracing atmospheric nitrate in groundwater using triple oxygen isotopes: evaluation based on bottled drinking water

    Directory of Open Access Journals (Sweden)

    F. Nakagawa

    2013-06-01

    Full Text Available The stable isotopic compositions of nitrate dissolved in 49 brands of bottled drinking water collected worldwide were measured, to trace the fate of atmospheric nitrate (NO3− atm that had been deposited into subaerial ecosystems, using the 17O anomalies (Δ17O of nitrate as tracers. The use of bottled water enables collection of groundwater recharged at natural, background watersheds. The nitrate in groundwater had small Δ17O values ranging from −0.2‰ to +4.5‰ n = 49. The average Δ17O value and average mixing ratio of atmospheric nitrate to total nitrate in the groundwater samples were estimated to be 0.8‰ and 3.1%, respectively. These findings indicated that the majority of atmospheric nitrate had undergone biological processing before being exported from the surface ecosystem to the groundwater. Moreover, the concentrations of atmospheric nitrate were estimated to range from less than 0.1 μmol L−1 to 8.5 μmol L−1 with higher NO3−atm concentrations being obtained for those recharged in rocky, arid or elevated areas with little vegetation and lower NO3−atm concentrations being obtained for those recharged in forested areas with high levels of vegetation. Additionally, many of the NO3−atm-depleted samples were characterized by elevated δ15N values of more than +10‰. Uptake by plants and/or microbes in forested soils subsequent to deposition and the progress of denitrification within groundwater likely plays a significant role in the removal of NO3−atm.

  11. Tracing atmospheric nitrate in groundwater using triple oxygen isotopes: evaluation based on bottled drinking water

    Science.gov (United States)

    Nakagawa, F.; Suzuki, A.; Daita, S.; Ohyama, T.; Komatsu, D. D.; Tsunogai, U.

    2013-06-01

    The stable isotopic compositions of nitrate dissolved in 49 brands of bottled drinking water collected worldwide were measured, to trace the fate of atmospheric nitrate (NO3- atm) that had been deposited into subaerial ecosystems, using the 17O anomalies (Δ17O) of nitrate as tracers. The use of bottled water enables collection of groundwater recharged at natural, background watersheds. The nitrate in groundwater had small Δ17O values ranging from -0.2‰ to +4.5‰ n = 49). The average Δ17O value and average mixing ratio of atmospheric nitrate to total nitrate in the groundwater samples were estimated to be 0.8‰ and 3.1%, respectively. These findings indicated that the majority of atmospheric nitrate had undergone biological processing before being exported from the surface ecosystem to the groundwater. Moreover, the concentrations of atmospheric nitrate were estimated to range from less than 0.1 μmol L-1 to 8.5 μmol L-1 with higher NO3-atm concentrations being obtained for those recharged in rocky, arid or elevated areas with little vegetation and lower NO3-atm concentrations being obtained for those recharged in forested areas with high levels of vegetation. Additionally, many of the NO3-atm-depleted samples were characterized by elevated δ15N values of more than +10‰. Uptake by plants and/or microbes in forested soils subsequent to deposition and the progress of denitrification within groundwater likely plays a significant role in the removal of NO3-atm.

  12. Data-Driven Techniques for Regional Groundwater Level Forecasts

    Science.gov (United States)

    Chang, F. J.; Chang, L. C.; Tsai, F. H.; Shen, H. Y.

    2015-12-01

    Data-Driven Techniques for Regional Groundwater Level Forecasts Fi-John Changa, Li-Chiu Changb, Fong He Tsaia, Hung-Yu Shenba Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC. b Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City 25137, Taiwan, ROC..Correspondence to: Fi-John Chang (email: changfj@ntu.edu.tw)The alluvial fan of the Zhuoshui River in Taiwan is a good natural recharge area of groundwater. However, the over extraction of groundwater occurs in the coastland results in serious land subsidence. Groundwater systems are heterogeneous with diverse temporal-spatial patterns, and it is very difficult to quantify their complex processes. Data-driven methods can effectively capture the spatial-temporal characteristics of input-output patterns at different scales for accurately imitating dynamic complex systems with less computational requirements. In this study, we implement various data-driven methods to suitably predict the regional groundwater level variations for making countermeasures in response to the land subsidence issue in the study area. We first establish the relationship between regional rainfall, streamflow as well as groundwater levels and then construct intelligent groundwater level prediction models for the basin based on the long-term (2000-2013) regional monthly data sets collected from the Zhuoshui River basin. We analyze the interaction between hydrological factors and groundwater level variations; apply the self-organizing map (SOM) to obtain the clustering results of the spatial-temporal groundwater level variations; and then apply the recurrent configuration of nonlinear autoregressive with exogenous inputs (R-NARX) to predicting the monthly groundwater levels. As a consequence, a regional intelligent groundwater level prediction model can be constructed based on the adaptive results of the SOM. Results demonstrate that the development

  13. Dynamic reliability of digital-based transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Brissaud, Florent, E-mail: florent.brissaud.2007@utt.f [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France) and Universite de Technologie de Troyes - UTT, Institut Charles Delaunay - ICD and UMR CNRS 6279 STMR, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France); Smidts, Carol [Ohio State University (OSU), Nuclear Engineering Program, Department of Mechanical Engineering, Scott Laboratory, 201 W 19th Ave, Columbus OH 43210 (United States); Barros, Anne; Berenguer, Christophe [Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and UMR CNRS 6279 STMR, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)

    2011-07-15

    Dynamic reliability explicitly handles the interactions between the stochastic behaviour of system components and the deterministic behaviour of process variables. While dynamic reliability provides a more efficient and realistic way to perform probabilistic risk assessment than 'static' approaches, its industrial level applications are still limited. Factors contributing to this situation are the inherent complexity of the theory and the lack of a generic platform. More recently the increased use of digital-based systems has also introduced additional modelling challenges related to specific interactions between system components. Typical examples are the 'intelligent transmitters' which are able to exchange information, and to perform internal data processing and advanced functionalities. To make a contribution to solving these challenges, the mathematical framework of dynamic reliability is extended to handle the data and information which are processed and exchanged between systems components. Stochastic deviations that may affect system properties are also introduced to enhance the modelling of failures. A formalized Petri net approach is then presented to perform the corresponding reliability analyses using numerical methods. Following this formalism, a versatile model for the dynamic reliability modelling of digital-based transmitters is proposed. Finally the framework's flexibility and effectiveness is demonstrated on a substantial case study involving a simplified model of a nuclear fast reactor.

  14. Keystroke Dynamics-Based Credential Hardening Systems

    Science.gov (United States)

    Bartlow, Nick; Cukic, Bojan

    abstract Keystroke dynamics are becoming a well-known method for strengthening username- and password-based credential sets. The familiarity and ease of use of these traditional authentication schemes combined with the increased trustworthiness associated with biometrics makes them prime candidates for application in many web-based scenarios. Our keystroke dynamics system uses Breiman’s random forests algorithm to classify keystroke input sequences as genuine or imposter. The system is capable of operating at various points on a traditional ROC curve depending on application-specific security needs. As a username/password authentication scheme, our approach decreases the system penetration rate associated with compromised passwords up to 99.15%. Beyond presenting results demonstrating the credential hardening effect of our scheme, we look into the notion that a user’s familiarity to components of a credential set can non-trivially impact error rates.

  15. Hydrogen-based tubular catalytic membrane for removing nitrate from groundwater.

    Science.gov (United States)

    Chen, Y X; Zhang, Y; Liu, H Y; Sharma, K R; Chen, G H

    2004-02-01

    A porous tubular ceramic membrane coated with palladium-cupper (Pd-Cu) catalyst on its surface was prepared and evaluated for catalytic reduction of nitrate from groundwater. Nitrate reduction activity and selectivity with the catalytic membrane were compared with Pd-Cu/Al2O3 catalyst particles. The catalytic membrane reactor exhibited a better selectivity by enabling an effective control of hydrogen gas, thus minimizing ammonium production. No leaching of palladium and copper into aqueous phase was observed, thereby indicating a high chemical stability of the metallic ions on the carrier support. This was also evidenced by the X-ray photoelectron spectroscopy (XPS) profiles of fresh and used catalysts, which showed no significant difference in surface compositions. Due to its higher selectivity in nitrate reduction and better flexibility in terms of operating conditions, the tubular catalytic ceramic membrane could be useful in removing nitrate from groundwater.

  16. Mecoprop (MCPP) removal in full-scale rapid sand filters at a groundwater-based waterworks

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Arvin, Erik; Corfitzen, Charlotte B.;

    2014-01-01

    Contamination by the herbicide mecoprop (MCPP) was detected in groundwater abstraction wells at Kerteminde Waterworks in concentrations up to 0.08μg/L. MCPP was removed to below detection limit in a simple treatment line where anaerobic groundwater was aerated and subsequently filtered by primary...... filters, MCPP concentration decreased from 0.037μg/L to below the detection limit of 0.01μg/L. MCPP was removed continuously at different filter depths (0.80m).Additionally, biodegradation, mineralisation and adsorption were investigated in the laboratory in order to elucidate removal mechanisms.......It was concluded that MCPP was removed in secondary rapid sand filters at Kerteminde Waterworks, to which both adsorption and microbial degradation contributed....

  17. Water Quality Assessment of Groundwater Resources in Nagpur Region (India Based on WQI

    Directory of Open Access Journals (Sweden)

    P. N. Rajankar

    2009-01-01

    Full Text Available Water quality index (WQI has been calculated for different groundwater sources i.e. dug wells, bore wells and tube wells at Khaperkheda region, Maharashtra (India. Twenty two different sites were selected in post monsoon, winter and summer season. And water quality index was calculated using water quality index calculator given by National Sanitation Foundation (NSF information system. The calculated WQI showed fair water quality rating in post monsoon season which then changed to medium in summer and winter seasons for dug wells, but the bore wells and hand pumps showed medium water quality rating in all seasons where the quality was slightly differs in summer and winter season than post monsoon season, so the reasons to import water quality change and measures to be taken up in terms of groundwater quality management are required.

  18. SLAM - Based Approach to Dynamic Ship Positioning

    Directory of Open Access Journals (Sweden)

    Krzysztof Wrobel

    2014-03-01

    Full Text Available Dynamically positioned vessels, used by offshore industry, use not only satellite navigation but also different positioning systems, often referred to as reference' systems. Most of them use multiple technical devices located outside the vessel which creates some problems with their accessibility and performance. In this paper, a basic concept of reference system independent from any external device is presented, basing on hydroacoustics and Simultaneous Localization and Mapping (SLAM method. Theoretical analysis of its operability is also performed.

  19. A GIS-based approach to prevent contamination of groundwater at regional scale

    Science.gov (United States)

    Balderacchi, M.; Vischetti, C.; di Guardo, A.; Trevisan, M.

    2009-04-01

    first part the study focused of a definition of an indicator of groundwater contamination. The probably to exceed the groundwater quality endpoint has been chosen and it has been developed according a probabilistic approach and following a lognormal distribution of the data. After that the effect of crop rotation on pesticide leaching has been evaluated by a stepwise procedure. The tier 1 was the worst case in which the whole region is considered cropped with maize, therefore the pesticide application is every year on the crop with the highest application rate, whereas the tier 2 was a first refinement of the previous tier, the pesticide application was still every year but only in to the areas with the presence of authorised crop fore the assessed pesticide and with a crop LUA (land under agriculture) ratio higher than 10%. In the passage from tier 1 to tier 2 a contemporaneous reduction of simulated surface and pesticide leaching occurred because a relationship exists between agriculture and pesticide use. The step 3 considered a pesticide timing based on typical crop rotations. Te application followed label doses and was every time an authorised crop was found in the rotation. The passage to step 3 allowed a further percolation reduction. Step 3 blind simulations have been plotted as maps and matched with the results of the regional environment agency monitoring plan. A good correspondence between prediction and observation has got. Nevertheless herbicide "A" was detected in a larger area than assumed to be cropped with maize. However, in the past this compound was authorized for application to crops other than maize and was also used extensively in non-agricultural applications. Herbicide "B" was also detected in two wells located in areas not considered vulnerable. In the first well, water was sampled three times and the compound was detected once, in the other water was sampled once and the compound was detected. In this case point contamination, could be the

  20. Pareto-based efficient stochastic simulation-optimization for robust and reliable groundwater management

    Science.gov (United States)

    Sreekanth, J.; Moore, Catherine; Wolf, Leif

    2016-02-01

    Simulation-optimization methods are used to develop optimal solutions for a variety of groundwater management problems. The true optimality of these solutions is often dependent on the reliability of the simulation model. Therefore, where model predictions are uncertain due to parameter uncertainty, this should be accounted for within the optimization formulation to ensure that solutions are robust and reliable. In this study, we present a stochastic multi-objective formulation of the otherwise single objective groundwater optimization problem by considering minimization of prediction uncertainty as an additional objective. The proposed method is illustrated by applying to an injection bore field design problem. The primary objective of optimization is maximization of the total volume of water injected into a confined aquifer, subject to the constraints that the resulting increases in hydraulic head in a set of control bores are below specified target levels. Both bore locations and injection rates were considered as optimization variables. Prediction uncertainty is estimated using stacks of uncertain parameters and is explicitly minimized to produce robust and reliable solutions. Reliability analysis using post-optimization Monte Carlo analysis proved that while a stochastic single objective optimization failed to provide reliable solutions with a stack size of 50, the proposed method resulted in many robust solutions with high reliability close to 1.0. Results of the comparison indicate potential gains in efficiency of the stochastic multi-objective formulation to identify robust and reliable groundwater management strategies.

  1. Hydrogeochemical evolution of confined groundwater in northeastern Osaka Basin, Japan: estimation of confined groundwater flux based on a cation exchange mass balance method

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Masaru [Department of Geosystem Sciences, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550 (Japan)]. E-mail: yamanaka@chs.nihon-u.ac.jp; Nakano, Takanori [Research Institute for Humanity and Nature, Kamigyo-ku, Kyoto 602-0878 (Japan); Tase, Norio [Institute of Geoscience, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan)

    2005-02-01

    A confined aquifer system has developed in argillaceous marine and freshwater sediments of Pliocene-Holocene age in the northeastern Osaka Basin (NEOB) in central Japan. The shallow groundwater (<100 m) in the system is recharged in a northern hilly to mountainous area with dominantly Ca-HCO{sub 3} type water, which changes as it flows toward the SW to Mg-HCO{sub 3} type and then to Na-HCO{sub 3} type water. Comparison of the chemical and Sr isotopic compositions of the groundwater with those of the bulk and exchangeable components of the underground sediments indicates that elements leached from the sediments contribute negligibly to the NEOB aquifer system. Moreover, model calculations show that contributions of paleo-seawater in the deep horizon and of river water at the surface are not major factors of chemical change of the groundwater. Instead, the zonal pattern of the HCO{sub 3}-dominant groundwater is caused by the loss of Ca{sup 2+} from the water as it is exchanged for Mg{sup 2+} in clays, followed by loss of Mg + Ca as they are exchanged for Na + K in clays between the Ca-HCO{sub 3} type recharge water and the exchangeable cations in the clay layers, which were initially enriched in Na{sup +}. Part of this process was reproduced in a chromatographic experiment in which Na type water with high {sup 87}Sr/{sup 86}Sr was obtained from Mg type water with low {sup 87}Sr/{sup 86}Sr by passing it through marine clay packed in a column. The flux of recharge water into the confined aquifer system according to this chromatographic model is estimated to be 0.99 mm/day, which is compatible with the average recharge flux to unconfined groundwater in Japan (1 mm/day)

  2. Gait Recognition based on Dynamic Texture descriptors

    Directory of Open Access Journals (Sweden)

    B. Abdolahi

    2013-09-01

    Full Text Available The human movement analysis is an attractive topic in biometric research. Recent studies indicate that people have considerable ability to recognize others by their natural walking. Therefore, gait recognition has obtained great interest in biometric systems. The common biometrics is usually time-consuming, limited and collaborative. These drawbacks pose major challenges to the recognition process. Gait analysis is inconspicuous, needs no contact, is difficult to hide and can be evaluated at distance. This paper presents a bag of word method for gait recognition based on dynamic textures. Dynamic textures combine appearance and motion information. Since human walking has statistical variations in both spatial and temporal space, it can be described with dynamic texture features. To obtain these features, we extract spatiotemporal interest points and describe them by a dynamic texture descriptor. Afterwards, the hierarchical K-means as a clustering algorithm is applied to obtain the visual dictionary of video-words. As a result, human walking is represented as a histogram of video-words occurrences. The performance of our method is evaluated on two dataset: the KTH and IXMAS multiview datasets.

  3. Tracing atmospheric nitrate in groundwater using triple oxygen isotopes: evaluation based on bottled drinking water

    Directory of Open Access Journals (Sweden)

    U. Tsunogai

    2012-11-01

    Full Text Available The stable isotopic compositions of nitrate dissolved in 49 types of bottled drinking water collected worldwide were determined, to trace the fate of atmospheric nitrate (NO3atm that had been deposited into subaerial ecosystems, using the 17O anomalies (Δ17O of nitrate as tracers. The use of bottled water enables collection of groundwater recharged at natural, background watersheds. The nitrate in groundwater had small Δ17O values ranging from −0.2‰ to +4.5‰ (n = 49. The average Δ17O value and average mixing ratio of atmospheric nitrate to total nitrate in the groundwater samples were estimated to be 0.8‰ and 3.1%, respectively. These findings indicated that the majority of atmospheric nitrate had undergone biological processing before being exported from the surface ecosystem to the groundwater. Moreover, the concentrations of atmospheric nitrate were estimated to range from less than 0.1 μmol l−1 to 8.5 μmol l−1, with higher NO3atm concentrations being obtained for those recharged in rocky, arid or elevated areas with little vegetation and lower NO3atm concentrations being obtained for those recharged in forested areas with high levels of vegetation. Additionally, many of the NO3atm-depleted samples were characterized by elevated δ15N values of more than +10‰. Uptake by plants and/or microbes in forested soils subsequent to deposition and the progress of denitrification within groundwater likely plays a significant role in the removal of NO3atm.

  4. SPECIFIC SOLUTIONS GROUNDWATER FLOW EQUATION

    OpenAIRE

    Syahruddin, Muhammad Hamzah

    2014-01-01

    Geophysic publication Groundwater flow under surface, its usually slow moving, so that in laminer flow condition can find analisys using the Darcy???s law. The combination between Darcy law and continuity equation can find differential Laplace equation as general equation groundwater flow in sub surface. Based on Differential Laplace Equation is the equation that can be used to describe hydraulic head and velocity flow distribution in porous media as groundwater. In the modeling Laplace e...

  5. Application of optimisation techniques in groundwater quantity and quality management

    Indian Academy of Sciences (India)

    Amlan Das; Bithin Datta

    2001-08-01

    This paper presents the state-of-the-art on application of optimisation techniques in groundwater quality and quantity management. In order to solve optimisation-based groundwater management models, researchers have used various mathematical programming techniques such as linear programming (LP), nonlinear programming (NLP), mixed-integer programming (MIP), optimal control theory-based mathematical programming, differential dynamic programming (DDP), stochastic programming (SP), combinatorial optimisation (CO), and multiple objective programming for multipurpose management. Studies reported in the literature on the application of these methods are reviewed in this paper.

  6. Regression Method for Estimating Long-Term Mean Annual Ground-Water Recharge Rates from Base Flow in Pennsylvania

    Science.gov (United States)

    Risser, Dennis W.; Thompson, Ronald E.; Stuckey, Marla H.

    2008-01-01

    A method was developed for making estimates of long-term, mean annual ground-water recharge from streamflow data at 80 streamflow-gaging stations in Pennsylvania. The method relates mean annual base-flow yield derived from the streamflow data (as a proxy for recharge) to the climatic, geologic, hydrologic, and physiographic characteristics of the basins (basin characteristics) by use of a regression equation. Base-flow yield is the base flow of a stream divided by the drainage area of the basin, expressed in inches of water basinwide. Mean annual base-flow yield was computed for the period of available streamflow record at continuous streamflow-gaging stations by use of the computer program PART, which separates base flow from direct runoff on the streamflow hydrograph. Base flow provides a reasonable estimate of recharge for basins where streamflow is mostly unaffected by upstream regulation, diversion, or mining. Twenty-eight basin characteristics were included in the exploratory regression analysis as possible predictors of base-flow yield. Basin characteristics found to be statistically significant predictors of mean annual base-flow yield during 1971-2000 at the 95-percent confidence level were (1) mean annual precipitation, (2) average maximum daily temperature, (3) percentage of sand in the soil, (4) percentage of carbonate bedrock in the basin, and (5) stream channel slope. The equation for predicting recharge was developed using ordinary least-squares regression. The standard error of prediction for the equation on log-transformed data was 9.7 percent, and the coefficient of determination was 0.80. The equation can be used to predict long-term, mean annual recharge rates for ungaged basins, providing that the explanatory basin characteristics can be determined and that the underlying assumption is accepted that base-flow yield derived from PART is a reasonable estimate of ground-water recharge rates. For example, application of the equation for 370

  7. Comparison of function approximation, heuristic, and derivative-based methods for automatic calibration of computationally expensive groundwater bioremediation models

    Science.gov (United States)

    Mugunthan, Pradeep; Shoemaker, Christine A.; Regis, Rommel G.

    2005-11-01

    The performance of function approximation (FA) methods is compared to heuristic and derivative-based nonlinear optimization methods for automatic calibration of biokinetic parameters of a groundwater bioremediation model of chlorinated ethenes on a hypothetical and a real field case. For the hypothetical case, on the basis of 10 trials on two different objective functions, the FA methods had the lowest mean and smaller deviation of the objective function among all algorithms for a combined Nash-Sutcliffe objective and among all but the derivative-based algorithm for a total squared error objective. The best algorithms in the hypothetical case were applied to calibrate eight parameters to data obtained from a site in California. In three trials the FA methods outperformed heuristic and derivative-based methods for both objective functions. This study indicates that function approximation methods could be a more efficient alternative to heuristic and derivative-based methods for automatic calibration of computationally expensive bioremediation models.

  8. Quantifying shallow and deep groundwater inputs to rivers with groundwater dating in hydrological observatories.

    Science.gov (United States)

    Aquilina, Luc; Marçais, Jean; Gauvain, Alexandre; Kolbe, Tamara; de Dreuzy, Jean-Raynald; Labasque, Thierry; Abbott, Benjamin W.; Vergnaud, Virginie; Chatton, Eliot; Thomas, Zahra; Ruiz, Laurent; Bour, Olivier; Pinay, Gilles

    2017-04-01

    river from the groundwater age deduced from a deterministic model of the aquifer (Kolbe et al., 2016). The relationship between silica concentration determined with anthropogenic gases and observed silica concentration was strong (R2= 0.54-0.92), indicating that silica was a reliable geochemical chronometer, though it systematically underestimated anthropogenic gas age estimates. The difference could be accounted for by the very young water contribution : approximately 20 - 40% of overall discharge. Both approaches indicated that very young water is particularly important during winter and that deep groundwater contributes at least a third of the river discharge throughout the year. This last result has implications for river nitrate dynamics and understanding the potential limits of catchment management interventions which only reduce nitrate dynamics in shallow groundwater on decadal timescales. Aquilina L. et al., 2012 - Nitrate dynamics in agricultural catchments deduced from groundwater dating and long-term nitrate monitoring in surface- and groundwaters. Sci of the total Environment 435, 167-178. Kolbe et al., 2016 - Coupling 3D groundwater modeling with CFC-based age dating to classify local groundwater circulation in an unconfined crystalline aquifer. J. of Hydrology DOI: 10.1016/j.jhydrol.2016.05.020

  9. Cluster-based control of nonlinear dynamics

    CERN Document Server

    Kaiser, Eurika; Spohn, Andreas; Cattafesta, Louis N; Morzynski, Marek

    2016-01-01

    The ability to manipulate and control fluid flows is of great importance in many scientific and engineering applications. Here, a cluster-based control framework is proposed to determine optimal control laws with respect to a cost function for unsteady flows. The proposed methodology frames high-dimensional, nonlinear dynamics into low-dimensional, probabilistic, linear dynamics which considerably simplifies the optimal control problem while preserving nonlinear actuation mechanisms. The data-driven approach builds upon a state space discretization using a clustering algorithm which groups kinematically similar flow states into a low number of clusters. The temporal evolution of the probability distribution on this set of clusters is then described by a Markov model. The Markov model can be used as predictor for the ergodic probability distribution for a particular control law. This probability distribution approximates the long-term behavior of the original system on which basis the optimal control law is de...

  10. Groundwater and stream threshold values for targeted and differentiated output based regulation of nutrient loadings to ecosystems

    Science.gov (United States)

    Hinsby, Klaus; Refsgaard, Jens Christian

    2015-04-01

    even field scale based on estimated acceptable nutrient loadings to transitional and coastal waters (or any other protected aquatic ecosystem in the river basin) according to the requirements of the EU Water Framework and Groundwater directives, and use these to monitor and plan sustainable water and land use management, e.g. by differentiated practices in farming and land use within sub-catchments. Specifically, we suggest that monitoring of the nitrogen outputs from catchments, sub-catchment and even delineated specific fields with new cost-effective monitoring systems in combination with coupled soil-groundwater-surface water models has a large potential for the development of efficient differentiated measures controlling nutrient loadings to aquatic ecosystems. Here we present initial considerations and suggestions for the development of new governance concepts targeted at differentiated output based regulations using threshold values for N in groundwater and streams derived from acceptable loadings to a small Danish estuary.

  11. Geoelectrical parameter-based multivariate regression borehole yield model for predicting aquifer yield in managing groundwater resource sustainability

    Directory of Open Access Journals (Sweden)

    Kehinde Anthony Mogaji

    2016-07-01

    Full Text Available This study developed a GIS-based multivariate regression (MVR yield rate prediction model of groundwater resource sustainability in the hard-rock geology terrain of southwestern Nigeria. This model can economically manage the aquifer yield rate potential predictions that are often overlooked in groundwater resources development. The proposed model relates the borehole yield rate inventory of the area to geoelectrically derived parameters. Three sets of borehole yield rate conditioning geoelectrically derived parameters—aquifer unit resistivity (ρ, aquifer unit thickness (D and coefficient of anisotropy (λ—were determined from the acquired and interpreted geophysical data. The extracted borehole yield rate values and the geoelectrically derived parameter values were regressed to develop the MVR relationship model by applying linear regression and GIS techniques. The sensitivity analysis results of the MVR model evaluated at P ⩽ 0.05 for the predictors ρ, D and λ provided values of 2.68 × 10−05, 2 × 10−02 and 2.09 × 10−06, respectively. The accuracy and predictive power tests conducted on the MVR model using the Theil inequality coefficient measurement approach, coupled with the sensitivity analysis results, confirmed the model yield rate estimation and prediction capability. The MVR borehole yield prediction model estimates were processed in a GIS environment to model an aquifer yield potential prediction map of the area. The information on the prediction map can serve as a scientific basis for predicting aquifer yield potential rates relevant in groundwater resources sustainability management. The developed MVR borehole yield rate prediction mode provides a good alternative to other methods used for this purpose.

  12. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment.

    Science.gov (United States)

    Li, Juan; Yang, Yang; Huan, Huan; Li, Mingxiao; Xi, Beidou; Lv, Ningqing; Wu, Yi; Xie, Yiwen; Li, Xiang; Yang, Jinjin

    2016-05-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China. Copyright © 2015

  13. Groundwater similarity across a watershed derived from time-warped and flow-corrected time series

    Science.gov (United States)

    Rinderer, M.; McGlynn, B. L.; van Meerveld, H. J.

    2017-05-01

    Information about catchment-scale groundwater dynamics is necessary to understand how catchments store and release water and why water quantity and quality varies in streams. However, groundwater level monitoring is often restricted to a limited number of sites. Knowledge of the factors that determine similarity between monitoring sites can be used to predict catchment-scale groundwater storage and connectivity of different runoff source areas. We used distance-based and correlation-based similarity measures to quantify the spatial and temporal differences in shallow groundwater similarity for 51 monitoring sites in a Swiss prealpine catchment. The 41 months long time series were preprocessed using Dynamic Time-Warping and a Flow-corrected Time Transformation to account for small timing differences and bias toward low-flow periods. The mean distance-based groundwater similarity was correlated to topographic indices, such as upslope contributing area, topographic wetness index, and local slope. Correlation-based similarity was less related to landscape position but instead revealed differences between seasons. Analysis of variance and partial Mantel tests showed that landscape position, represented by the topographic wetness index, explained 52% of the variability in mean distance-based groundwater similarity, while spatial distance, represented by the Euclidean distance, explained only 5%. The variability in distance-based similarity and correlation-based similarity between groundwater and streamflow time series was significantly larger for midslope locations than for other landscape positions. This suggests that groundwater dynamics at these midslope sites, which are important to understand runoff source areas and hydrological connectivity at the catchment scale, are most difficult to predict.

  14. Hydrogeochemistry of groundwaters in and below the base of thick permafrost at Lupin, Nunavut, Canada

    Science.gov (United States)

    Stotler, Randy L.; Frape, Shaun K.; Ruskeeniemi, Timo; Ahonen, Lasse; Onstott, Tullis C.; Hobbs, Monique Y.

    2009-06-01

    SummaryShield fluids are commonly understood to evolve through water-rock interaction. However, fluids may also concentrate during ice formation. Very little is currently known about groundwater conditions beneath thick permafrost in crystalline environments. This paper evaluates three possible Shield fluid evolution pathways at a crystalline Shield location currently under 500+ meters of permafrost, including surfical cryogenic concentration of seawater, in situ cryogenic concentration and water-rock interaction. A primary goal of this study was to further scientific understanding of permafrost and its role in influencing deep flow system evolution, fluid movement and chemical evolution of waters in crystalline rocks. Precipitation, surface, permafrost and subpermafrost water samples were collected, as well as dissolved and free gas samples, fracture fillings and matrix fluid samples to characterize the site. Investigations of groundwater conditions beneath thick permafrost provides valuable information which can be applied to safety assessment of deep, underground nuclear waste repositories, effects of long-term mining in permafrost areas and understanding analogues to potential life-bearing zones on Mars. The study was conducted in the Lupin gold mine in Nunavut, Canada, located within the zone of continuous permafrost. Through-taliks beneath large lakes in the area provided potential hydraulic connections through the permafrost. Na-Cl and Na-Cl-SO 4 type permafrost waters were contaminated by mining activities, affecting the chloride and nitrate concentrations. High nitrate concentrations (423-2630 mg L -1) were attributed to remnants of blasting. High sulfate concentrations in the permafrost (578-5000 mg L -1) were attributed to naturally occurring and mining enhanced sulfide oxidation. Mine dewatering created an artificial hydraulic gradient, resulting in methane hydrate dissociation at depth. Less contaminated basal waters had medium sulfate concentrations

  15. Assessing the vulnerability of groundwater to pollution in Ireland based on the COST-620 Pan-European approach.

    Science.gov (United States)

    Pavlis, Michail; Cummins, Enda

    2014-01-15

    The aim of the analysis was to assess the intrinsic and specific vulnerability of groundwater to pollution from pesticides in Ireland at the national scale. A methodology to incorporate the effect of groundwater recharge in vulnerability assessment is described which can be particularly useful for the evaluation of dilution of groundwater pollutants. A sensitivity analysis using Monte-Carlo simulation revealed that the most important parameters of the model were subsoil (ρ = 0.79) and topsoil (ρ = 0.72), which is in agreement with the current knowledge of the parameters that have a significant effect on groundwater vulnerability in Ireland. The intrinsic vulnerability assessment was verified using total organic carbon (TOC) concentration in groundwater, a novel approach for the validation of groundwater vulnerability methods at regional scales. A statistical analysis showed that TOC concentration was significantly different (p groundwater vulnerability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Developing empirical monthly groundwater recharge equations based on modeling and remote sensing data - Modeling future groundwater recharge to predict potential climate change impacts

    Science.gov (United States)

    Gemitzi, Alexandra; Ajami, Hoori; Richnow, Hans-Hermann

    2017-03-01

    Groundwater recharge is one of main components of the water budget that is difficult to quantify due to complexity of recharge processes and limited observations. In the present work a simple regression equation for monthly groundwater recharge estimation is developed by relating simulated recharge from a calibrated Soil and Water Assessment tool (SWAT) model to effective precipitation. Monthly groundwater recharge and actual evapotranspiration (AET) were computed by applying a calibrated (SWAT) model for a ten year period (2005-2015) in Vosvozis river basin in NE Greece. SWAT actual evapotranspiration (AET) results were compared to remotely sensed AET values from the MODerate Resolution Imaging Spectroradiometer (MODIS), indicating the integrity of the modeling process. Water isotopes of 2H and 18O, originally presented herein, were used to infer recharge resources in the basin and provided additional evidence of the applicability of the developed formula. Results showed that the developed recharge estimation method can be effectively applied using MODIS evapotranspiration data, without having to adhere to numerical modeling which is many times constrained by the lack of available data especially in poorly gauged basins. Future trends of groundwater recharge up to 2100 using an ensemble of five downscaled climate change projections indicated that annual recharge will increase up to the middle of the present century and gradually decrease thereafter. However, the predicted magnitude is highly variable depending on the Global Climate Model (GCM) used. While winter recharge will likely increase in the future, summer recharge is expected to decrease as a result of temperature rise in the future.

  17. Groundwater types in Southeast Srem

    Directory of Open Access Journals (Sweden)

    Gregorić Enike

    2009-01-01

    Full Text Available The region of Southeast Srem is rich in ground waters, which is of great significance to agricultural production. The objective of this paper was to designate the zones of different groundwater types from the aspect of recharge, based on the analysis of groundwater regimes in the study area. A very complex groundwater regime in Southeast Srem, which depends on a great number of natural and some anthropogenic factors, makes it difficult to designate clearly the zones of the three main types of groundwater regime. Still, the boundaries of the zones of groundwater regime types were defined based on the results of correlation analysis of the basic factors affecting the groundwater regime. Zone I includes the climatic type of groundwater. Its fluctuation corresponds to the vertical factors of water balance (precipitation and evaporation and it is not affected by the river water level. This zone extends North and East of the line Putinci, Golubinci, Stara Pazova, Batajnica, Dobanovci, mainly in the area of the loess plateau. Within the zone, groundwater is at a relatively great depth. Only exceptionally, in the valleys, it appears almost on the surface. Zone II includes the climatic-hydrological groundwater type, which is the transition between the climatic type and the hydrological type. The fluctuation of groundwater regime is affected both by the effect of vertical balance factors, and by the effect of watercourses. Climatic-hydrological groundwater type covers the central and the lowest part of the study area and the South part of the middle terrace. Zone III is classified as the hydrological groundwater type and it covers the riparian areas along the Sava and the Danube. The aquifer is hydraulically connected with the river Sava.

  18. Temporal variation of transit time of rainfall-runoff water and groundwater flow dynamics inferred by noble gasses concentration (SF6, CFCs) in a forested small catchment (Fukushima, Japan)

    Science.gov (United States)

    Sakakibara, Koichi; Tsujimura, Maki; Onda, Yuichi; Iwagami, Sho; Konuma, Ryohei; Sato, Yutaro

    2016-04-01

    Time variant transit time of water in catchments can fundamentally describe catchment function, controlling rainfall-runoff generation, groundwater flow pathway and water storage. Though rainstorm event has been recognized as active phase on catchment hydrology, accurate and precise time variance of water transit time and related water dynamics during rainstorm have not been well clarified yet. Here, in order to reveal temporal variation of mean transit time of groundwater and related hydrological processes in a forested small catchment during rainstorm event, periodic and intensive field observations (15 - 17th July 2015, rainfall of 100.8 mm in total) were conducted in Yamakiya district (Fukushima, Japan) from September 2014 to December 2015. Discharge volume, groundwater table and precipitation amount were measured in 10 minutes interval. Water samples were taken from groundwater, discharge water, soil water and precipitation for determination of stable isotopic compositions (δ18O, δ2H), inorganic solutes concentration and dissolved noble gasses concentration (CFC11, CFC12, CFC113, SF6) in water. Storm hydrograph and groundwater table clearly responded to rainfall event especially with more than 30 mm per day throughout monitoring period. According to SF6 concentration in water, the mean transit time of discharge water (perennial spring) showed 3 - 6.5 years in the no-rainfall period (steady state), but fluctuated from zero to 12.5 years in the rainstorm event with totally 100.8 mm (unsteady state). The mean transit time of discharge water dramatically altered from zero to 12.5 years from before to after the tentative hydrograph peak in the rising limb, indicating new water components were dominant before tentative hydrograph peak, whereas deep groundwater component with longer residence time contributed much to discharge after the tentative hydrograph peak. On the other hand, mean residence time of groundwater (water in 5 m well) ranged from 0.5 to 11.5 years

  19. The effect of the depth and groundwater on the formation of sinkholes or ground subsidence associated with abandoned room and pillar lignite mines under static and dynamic conditions

    Science.gov (United States)

    Aydan, Ö.; Ito, T.

    2015-11-01

    It is well known that some sinkholes or subsidence take place from time to time in the areas where abandoned room and pillar type mines exist. The author has been involved with the stability of abandoned mines beneath urbanized residential areas in Tokai region and there is a great concern about the stability of these abandoned mines during large earthquakes as well as in the long term. The 2003 Miyagi Hokubu and 2011 Great East Japan earthquakes caused great damage to abandoned mines and resulted in many collapses. The author presents the effect of the depth and groundwater on the formation of sinkholes or ground subsidence associated with abandoned room and pillar lignite mines under static and dynamic conditions and discusses the implications on the areas above abandoned lignite mines in this paper.

  20. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater

    Science.gov (United States)

    Han, L. F; Plummer, Niel

    2016-01-01

    Numerous methods have been proposed to estimate the pre-nuclear-detonation 14C content of dissolved inorganic carbon (DIC) recharged to groundwater that has been corrected/adjusted for geochemical processes in the absence of radioactive decay (14C0) - a quantity that is essential for estimation of radiocarbon age of DIC in groundwater. The models/approaches most commonly used are grouped as follows: (1) single-sample-based models, (2) a statistical approach based on the observed (curved) relationship between 14C and δ13C data for the aquifer, and (3) the geochemical mass-balance approach that constructs adjustment models accounting for all the geochemical reactions known to occur along a groundwater flow path. This review discusses first the geochemical processes behind each of the single-sample-based models, followed by discussions of the statistical approach and the geochemical mass-balance approach. Finally, the applications, advantages and limitations of the three groups of models/approaches are discussed.The single-sample-based models constitute the prevailing use of 14C data in hydrogeology and hydrological studies. This is in part because the models are applied to an individual water sample to estimate the 14C age, therefore the measurement data are easily available. These models have been shown to provide realistic radiocarbon ages in many studies. However, they usually are limited to simple carbonate aquifers and selection of model may have significant effects on 14C0 often resulting in a wide range of estimates of 14C ages.Of the single-sample-based models, four are recommended for the estimation of 14C0 of DIC in groundwater: Pearson's model, (Ingerson and Pearson, 1964; Pearson and White, 1967), Han & Plummer's model (Han and Plummer, 2013), the IAEA model (Gonfiantini, 1972; Salem et al., 1980), and Oeschger's model (Geyh, 2000). These four models include all processes considered in single-sample-based models, and can be used in different ranges of

  1. Evaluation of Groundwater Pollution Nitrogen Fertilizer Using Expert System

    OpenAIRE

    Ta-oun, Mongkon; Daud, Mohamed; Bardaie, Mohd Zohadie

    2017-01-01

    An expert system was used to correlate the availability of nitrogen fertilizer with the vulnerability of groundwater to pollution in Peninsula Malaysia to identify potential groundwater quality problems. The expert system could predict the groundwater pollution potential under several conditions of agricultural activities and exiting environments. Four categories of groundwater pollution potential were identified base on an N-fertilizer groundwater pollution potential index. A groundwater pol...

  2. Dynamics-based centrality for directed networks

    Science.gov (United States)

    Masuda, Naoki; Kori, Hiroshi

    2010-11-01

    Determining the relative importance of nodes in directed networks is important in, for example, ranking websites, publications, and sports teams, and for understanding signal flows in systems biology. A prevailing centrality measure in this respect is the PageRank. In this work, we focus on another class of centrality derived from the Laplacian of the network. We extend the Laplacian-based centrality, which has mainly been applied to strongly connected networks, to the case of general directed networks such that we can quantitatively compare arbitrary nodes. Toward this end, we adopt the idea used in the PageRank to introduce global connectivity between all the pairs of nodes with a certain strength. Numerical simulations are carried out on some networks. We also offer interpretations of the Laplacian-based centrality for general directed networks in terms of various dynamical and structural properties of networks. Importantly, the Laplacian-based centrality defined as the stationary density of the continuous-time random walk with random jumps is shown to be equivalent to the absorption probability of the random walk with sinks at each node but without random jumps. Similarly, the proposed centrality represents the importance of nodes in dynamics on the original network supplied with sinks but not with random jumps.

  3. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  4. Multiple Factor Analysis and k-Means Clustering-Based Classification of the DOE Groundwater Contaminant Database

    Science.gov (United States)

    Faybishenko, B.; Hazen, T. C.

    2009-12-01

    A proper classification of the plume characteristics is critical for selecting the most suitable characterization, monitoring, and remediation technologies. To perform a statistical analysis of the different groundwater plume characteristics, we used the DOE Groundwater Database, including 221 groundwater plumes located at 60 DOE sites. To classify the plume characteristics, we used a multiple factor analysis (MFA), including a principal component analysis (PCA) of quantitative plume characteristics and a multiple correspondence analysis (MCA) of qualitative plume characteristics. The input parameters used for the statistical analysis are: the presence of eight types of contaminant groups—chlorinated hydrocarbons, fuels, explosives, sulfates, nitrates, metals, tritium, and radioisotopes; a number and associations of contaminant groups; a contamination severity index (based on the association of contaminant groups and complexity of remediation); contaminant mass and plume volumes; groundwater depth and velocities; and climatic conditions. The input variables are also partitioned into the active and supplementary plume characteristics. Statistical results include the evaluation of the correlation matrix between the groups of variables and individual plume characteristics. From the results of the MFA, the first four factors can be used to describe the variability of the basic plume characteristics. The contaminant severity index and the number of contaminant groups provide a major contribution to the 1st factor; the types of contaminant groups and carbon tetrachloride concentrations provide the major contribution to the 2nd factor. The contribution of the supplementary data (climate and plume depth and velocity) is insignificant. The presence of radioactive contaminants is mostly related to the 1st factor; the presence of sulfates, and to a lesser degree the presence of nitrates and metals, is related to the 2nd factor. The strongest relationship is, as expected

  5. Dynamic Digital Channelizer Based on Spectrum Sensing.

    Science.gov (United States)

    Hu, Junpeng; Zuo, Zhen; Huang, Zhiping; Dong, Zhi

    2015-01-01

    The ability to efficiently channelize a received signal with dynamic sub-channel bandwidths is a key requirement of software defined radio (SDR) systems. The digital channelizer, which is used to split the received signal into a number of sub-channels, plays an important role in SDR systems. In this paper, a design of dynamic digital channelizer is presented. The proposed method is novel in that it employs a cosine modulated filter bank (CMFB) to divide the received signal into multiple frequency sub-bands and a spectrum sensing technique, which is mostly used in cognitive radio, is introduced to detect the presence of signal of each sub-band. The method of spectrum sensing is carried out based on the eigenvalues of covariance matrix of received signal. The ratio of maximum-minimum eigenvalue of each sub-band is vulnerable to noise fluctuation. This paper suggests an optimized method to calculate the ratio of maximum-minimum eigenvalue. The simulation results imply that the design of digital channelizer can effectively separate the received signal with dynamically changeable sub-channel signals.

  6. Dynamic Loadability of Cable Based Transmission Grids

    DEFF Research Database (Denmark)

    Olsen, Rasmus Schmidt

    This thesis is the product of three years research within the field of dynamic loadability of cable based transmission grids. The report contains a summary of the three year PhD project which has been conducted in a collaboration between the Danish Transmission System Operator (TSO), Energinet...... supervised 2 master projects, as well as 5 special courses at DTU. Furthermore I created and taught a cable course, with approximately 25 students, throughout 13 weeks during the spring of 2011. The PhD project has until now contributed with 3 journal papers and 4 conference papers. Selected papers can...

  7. Temporal Dynamics of In-Field Bioreactor Populations Reflect the Groundwater System and Respond Predictably to Perturbation.

    Science.gov (United States)

    King, Andrew J; Preheim, Sarah P; Bailey, Kathryn L; Robeson, Michael S; Roy Chowdhury, Taniya; Crable, Bryan R; Hurt, Richard A; Mehlhorn, Tonia; Lowe, Kenneth A; Phelps, Tommy J; Palumbo, Anthony V; Brandt, Craig C; Brown, Steven D; Podar, Mircea; Zhang, Ping; Lancaster, W Andrew; Poole, Farris; Watson, David B; W Fields, Matthew; Chandonia, John-Marc; Alm, Eric J; Zhou, Jizhong; Adams, Michael W W; Hazen, Terry C; Arkin, Adam P; Elias, Dwayne A

    2017-02-10

    Temporal variability complicates testing the influences of environmental variability on microbial community structure and thus function. An in-field bioreactor system was developed to assess oxic versus anoxic manipulations on in situ groundwater communities. Each sample was sequenced (16S SSU rRNA genes, average 10,000 reads), and biogeochemical parameters are monitored by quantifying 53 metals, 12 organic acids, 14 anions, and 3 sugars. Changes in dissolved oxygen (DO), pH, and other variables were similar across bioreactors. Sequencing revealed a complex community that fluctuated in-step with the groundwater community and responded to DO. This also directly influenced the pH, and so the biotic impacts of DO and pH shifts are correlated. A null model demonstrated that bioreactor communities were driven in part not only by experimental conditions but also by stochastic variability and did not accurately capture alterations in diversity during perturbations. We identified two groups of abundant OTUs important to this system; one was abundant in high DO and pH and contained heterotrophs and oxidizers of iron, nitrite, and ammonium, whereas the other was abundant in low DO with the capability to reduce nitrate. In-field bioreactors are a powerful tool for capturing natural microbial community responses to alterations in geochemical factors beyond the bulk phase.

  8. Tools based on multivariate statistical analysis for classification of soil and groundwater in Apulian agricultural sites.

    Science.gov (United States)

    Ielpo, Pierina; Leardi, Riccardo; Pappagallo, Giuseppe; Uricchio, Vito Felice

    2017-06-01

    In this paper, the results obtained from multivariate statistical techniques such as PCA (Principal component analysis) and LDA (Linear discriminant analysis) applied to a wide soil data set are presented. The results have been compared with those obtained on a groundwater data set, whose samples were collected together with soil ones, within the project "Improvement of the Regional Agro-meteorological Monitoring Network (2004-2007)". LDA, applied to soil data, has allowed to distinguish the geographical origin of the sample from either one of the two macroaeras: Bari and Foggia provinces vs Brindisi, Lecce e Taranto provinces, with a percentage of correct prediction in cross validation of 87%. In the case of the groundwater data set, the best classification was obtained when the samples were grouped into three macroareas: Foggia province, Bari province and Brindisi, Lecce and Taranto provinces, by reaching a percentage of correct predictions in cross validation of 84%. The obtained information can be very useful in supporting soil and water resource management, such as the reduction of water consumption and the reduction of energy and chemical (nutrients and pesticides) inputs in agriculture.

  9. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2012-01-01

    Groundwater is a vital resource and also a dynamic component of the water cycle. Unconfined aquifer storage is less responsive to short term weather conditions than the near surface terrestrial water storage (TWS) components (soil moisture, surface water, and snow). However, save for the permanently frozen regions, it typically exhibits a larger range of variability over multi-annual periods than the other components. Groundwater is poorly monitored at the global scale, but terrestrial water storage (TWS) change data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are a reasonable proxy for unconfined groundwater at climatic scales.

  10. Natural Oxidant Demand Variability, Potential Controls, and Implications for in Situ, Oxidation-Based Remediation of Contaminated Groundwater

    Science.gov (United States)

    Dettmer, A.; Cruz, S.; Dungan, B.; Holguin, F. O.; Ulery, A. L.; Hunter, B.; Carroll, K. C.

    2014-12-01

    Naturally occurring reduced species associated with subsurface materials can impose a significant natural oxidant demand (NOD), which is the bulk consumption of oxidants by soil water, minerals, and organic matter. Although injection of oxidants has been used for chemical transformation of organic contaminants, NOD represents a challenge for the in-situ delivery of oxidants as a remediation alternative. Co-injection of complexation agents with oxidants has been proposed to facilitate the delivery of oxidants for in situ chemical oxidation remediation of contaminated groundwater. This study investigates variability of NOD for different oxidants and sediments. The effect of the addition of various complexation agents, including EDTA, tween 80, hydroxypropyl-beta-cyclodextrin (HPCD), humic acid, and four generations of poly(amidoamine) (PAMAM) dendrimers, on the NOD was also examined. NOD was measured for a clay loam (collected from Air Force Plant 44 in Tucson, AZ). Varying amounts of biosolids were mixed with subsamples of the clay loam to create three additional reference soils in order to study the effect of organic matter and other soil characteristics on the NOD. Bench-scale laboratory experiments were conducted to determine the NOD for various oxidants, using the four soils, and replicated with and without various delivery agents. Measured NOD showed variability for each soil and oxidant composition. Additionally, significant differences were observed in NOD with the addition of delivery agents. The results support the elucidation of potential controls over NOD and have implications for in situ, oxidation-based remediation of contaminated groundwater.

  11. Reduced Resolution Groundwater Modeling in the Rio Grande for Real Time Scenario Evaluation

    Science.gov (United States)

    Roach, J. D.; Tidwell, V. C.

    2006-12-01

    As the finite, and often over-allocated water resources of the western United States are challenged by growing demands, computer based simulations can provide a powerful tool for evaluating potential water use scenarios in support of hydrologic decision making and water policy analysis. To represent the complexities of water resource management, a model should capture the salient behaviors and interactions between, the groundwater, surface water, and human behavioral systems, while to effectively connect science to the decision process, the model should run quickly enough to allow real time evaluation of a wide range of scenarios by stakeholders and decision makers themselves. As these potentially mutually exclusive objectives are pursued, the tradeoffs between resolution, run time, and the degree of coupling between modeled systems must be considered. In the Upper Rio Grande in New Mexico, three MODFLOW based, distributed groundwater models of the Espanola, Albuquerque, and Socorro groundwater basins have been used to calibrate a spatially simplified representation of the groundwater system in the region. The groundwater model is dynamically coupled to surface water and human behavioral systems as part of an integrated system dynamics based model which runs quickly enough to support rapid basin scale water policy scenario evaluation. This presentation will focus on development of the simplified groundwater model, and the performance tradeoffs and gains associated with spatial aggregation and dynamic coupling to the surface water system.

  12. Dynamic graph cut based segmentation of mammogram.

    Science.gov (United States)

    Angayarkanni, S Pitchumani; Kamal, Nadira Banu; Thangaiya, Ranjit Jeba

    2015-01-01

    This work presents the dynamic graph cut based Otsu's method to segment the masses in mammogram images. Major concern that threatens human life is cancer. Breast cancer is the most common type of disease among women in India and abroad. Breast cancer increases the mortality rate in India especially in women since it is considered to be the second largest form of disease which leads to death. Mammography is the best method for diagnosing early stage of cancer. The computer aided diagnosis lacks accuracy and it is time consuming. The main approach which makes the detection of cancerous masses accurate is segmentation process. This paper is a presentation of the dynamic graph cut based approach for effective segmentation of region of interest (ROI). The sensitivity, the specificity, the positive prediction value and the negative prediction value of the proposed algorithm are determined and compared with the existing algorithms. Both qualitative and quantitative methods are used to detect the accuracy of the proposed system. The sensitivity, the specificity, the positive prediction value and the negative prediction value of the proposed algorithm accounts to 98.88, 98.89, 93 and 97.5% which rates very high when compared to the existing algorithms.

  13. Dynamic Responses of Mobile Offshore Base Connectors

    Institute of Scientific and Technical Information of China (English)

    余澜; 李润培; 舒志

    2003-01-01

    A Mobile Offshore Base (MOB) is a multi-purpose logistics base, which can be stationed in coastal or international waters. In the conceptual design of the MOB, attention should be paid to the dynamic responses of the inter-module connectors because tremendous loads occur in the connectors. In this paper, a study on dynamic responses of the MOB connectors is carried out by use of the Rigid Module Flexible Connector (RMFC) model which assumes that the module stiffness is significantly larger than that of the connector. In the analysis, the connector is modeled as a linear spring, which restricts relative translations but allows for relative rotations of modules. The 3-D source distribution method is adopted to determine the hydrodynamic forces of the modules, and the hydrodynamic interaction between modules is taken into account. The module motions and connector loads for 12 connector stiffness cases in regular and irregular waves are calculated with the multi-rigid-body motion equations. And the calculated results are compared with those from relative references. It is shown that the results obtained by different methods are in good agreement.

  14. Surrogate Model Application to the Identification of Optimal Groundwater Exploitation Scheme Based on Regression Kriging Method—A Case Study of Western Jilin Province

    Directory of Open Access Journals (Sweden)

    Yongkai An

    2015-07-01

    Full Text Available This paper introduces a surrogate model to identify an optimal exploitation scheme, while the western Jilin province was selected as the study area. A numerical simulation model of groundwater flow was established first, and four exploitation wells were set in the Tongyu county and Qian Gorlos county respectively so as to supply water to Daan county. Second, the Latin Hypercube Sampling (LHS method was used to collect data in the feasible region for input variables. A surrogate model of the numerical simulation model of groundwater flow was developed using the regression kriging method. An optimization model was established to search an optimal groundwater exploitation scheme using the minimum average drawdown of groundwater table and the minimum cost of groundwater exploitation as multi-objective functions. Finally, the surrogate model was invoked by the optimization model in the process of solving the optimization problem. Results show that the relative error and root mean square error of the groundwater table drawdown between the simulation model and the surrogate model for 10 validation samples are both lower than 5%, which is a high approximation accuracy. The contrast between the surrogate-based simulation optimization model and the conventional simulation optimization model for solving the same optimization problem, shows the former only needs 5.5 hours, and the latter needs 25 days. The above results indicate that the surrogate model developed in this study could not only considerably reduce the computational burden of the simulation optimization process, but also maintain high computational accuracy. This can thus provide an effective method for identifying an optimal groundwater exploitation scheme quickly and accurately.

  15. Surrogate Model Application to the Identification of Optimal Groundwater Exploitation Scheme Based on Regression Kriging Method—A Case Study of Western Jilin Province

    Science.gov (United States)

    An, Yongkai; Lu, Wenxi; Cheng, Weiguo

    2015-01-01

    This paper introduces a surrogate model to identify an optimal exploitation scheme, while the western Jilin province was selected as the study area. A numerical simulation model of groundwater flow was established first, and four exploitation wells were set in the Tongyu county and Qian Gorlos county respectively so as to supply water to Daan county. Second, the Latin Hypercube Sampling (LHS) method was used to collect data in the feasible region for input variables. A surrogate model of the numerical simulation model of groundwater flow was developed using the regression kriging method. An optimization model was established to search an optimal groundwater exploitation scheme using the minimum average drawdown of groundwater table and the minimum cost of groundwater exploitation as multi-objective functions. Finally, the surrogate model was invoked by the optimization model in the process of solving the optimization problem. Results show that the relative error and root mean square error of the groundwater table drawdown between the simulation model and the surrogate model for 10 validation samples are both lower than 5%, which is a high approximation accuracy. The contrast between the surrogate-based simulation optimization model and the conventional simulation optimization model for solving the same optimization problem, shows the former only needs 5.5 hours, and the latter needs 25 days. The above results indicate that the surrogate model developed in this study could not only considerably reduce the computational burden of the simulation optimization process, but also maintain high computational accuracy. This can thus provide an effective method for identifying an optimal groundwater exploitation scheme quickly and accurately. PMID:26264008

  16. Groundwater and geothermal: urban district heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Mounts, R.; Frazier, A.; Wood, E.; Pyles, O.

    1982-01-01

    This report describes how several cities use groundwater and geothermal energy in district heating systems. It begins with groundwater, introducing the basic technology and techniques of development, and describing two case studies of cities with groundwater-based district heating systems. The second half of the report consists of three case studies of cities with district heating systems using higher temperature geothermal resources.

  17. Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS

    Directory of Open Access Journals (Sweden)

    Nevenka Djurovic

    2015-01-01

    Full Text Available Water table forecasting plays an important role in the management of groundwater resources in agricultural regions where there are drainage systems in river valleys. The results presented in this paper pertain to an area along the left bank of the Danube River, in the Province of Vojvodina, which is the northern part of Serbia. Two soft computing techniques were used in this research: an adaptive neurofuzzy inference system (ANFIS and an artificial neural network (ANN model for one-month water table forecasts at several wells located at different distances from the river. The results suggest that both these techniques represent useful tools for modeling hydrological processes in agriculture, with similar computing and memory capabilities, such that they constitute an exceptionally good numerical framework for generating high-quality models.

  18. Models and statistical analysis of organic micropollutants in groundwater-based drinking water resources

    DEFF Research Database (Denmark)

    Malaguerra, Flavio

    are also employed to identify large-scale contamination processes by examining observations of contamination in drinking water wells in Zealand, Denmark. Results show that persistent compounds in surface water can leach into nearby pumping wells even if an impermeable clay layer overlies the well screen....... Thus aquitards may not provide adequate protection against contamination by micropollutants in surface water, as generally thought. Results also show that the fermentation of organic compounds and the sulphate concentration in groundwater govern the success of sequential reductive dechlorination......The access to safe drinking water is essential for the well being of the population. The spread of micropollutant contamination jeopardise many freshwater reservoirs, and is a serious threat for human health, especially because of its long-term effects. To asses the threat of contamination, models...

  19. Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS

    Science.gov (United States)

    Domazet, Milka; Stricevic, Ruzica; Pocuca, Vesna; Spalevic, Velibor; Pivic, Radmila; Gregoric, Enika; Domazet, Uros

    2015-01-01

    Water table forecasting plays an important role in the management of groundwater resources in agricultural regions where there are drainage systems in river valleys. The results presented in this paper pertain to an area along the left bank of the Danube River, in the Province of Vojvodina, which is the northern part of Serbia. Two soft computing techniques were used in this research: an adaptive neurofuzzy inference system (ANFIS) and an artificial neural network (ANN) model for one-month water table forecasts at several wells located at different distances from the river. The results suggest that both these techniques represent useful tools for modeling hydrological processes in agriculture, with similar computing and memory capabilities, such that they constitute an exceptionally good numerical framework for generating high-quality models. PMID:26759830

  20. AWRA-G: A continental scale groundwater component linked to a land surface water balance model

    Science.gov (United States)

    Joehnk, Klaus; Crosbie, Russell; Peeters, Luk; Doble, Rebecca

    2013-04-01

    The Australian Water Resources Assessment (AWRA) system is a combination of models, data sources and analysis techniques that together will describe the water balance of Australia's landscapes, rivers and groundwater systems. It is a grid based water balance model that has lumped representation of the water balance of the soil, groundwater and surface water stores for each cell. The purpose of AWRA is to operationally provide up to date, credible, comprehensive, and accurate information about the history, present state and future trajectory of the water balance across Australia with sufficient spatial and temporal detail and enable water resources management for undertaking annual water resource assessments and national water accounts. AWRA is developed to link three major components: a landscape water balance model (AWRA-L), a river routing model (AWRA-R), and a groundwater component model (AWRA-G). These three component models combined are expected to be able to model the fluxes and stores of water throughout the landscape. The groundwater component (AWRA-G) addresses an improved representation of groundwater in the AWRA system to describe basic aquifer dynamics and groundwater-surface water processes. While most continental scale land surface models do not have the capacity to allow water to flow between cells and thus ignore this element of the water balance, AWRA-G does account for lateral flows. In general, AWRA-G provides estimates of groundwater fluxes that are not incorporated into either AWRA-L and its modifications to in-cell soil and groundwater processes, or AWRA-R. The processes integrated into AWRA-G thus are lateral groundwater flow between cells in regional and intermediate groundwater flow systems, groundwater discharge to the ocean, groundwater extraction and infiltration, river losses to groundwater, recharge from overbank flooding, and interactions between deep confined systems and surficial groundwater systems. Basis of AWRA-G is a good

  1. Scenarios of groundwater chemical evolution in a region of the Canadian Shield based on multivariate statistical analysis

    Directory of Open Access Journals (Sweden)

    Ombeline Ghesquière

    2015-09-01

    New hydrological insights for the region: Four sample clusters were identified. Cluster 1 is composed of low-salinity Ca-HCO3 groundwater corresponding to recently infiltrated water in surface granular aquifers in recharge areas. Cluster 4 Na-(HCO3-Cl groundwater is more saline and corresponds to more evolved groundwater probably from confined bedrock aquifers. Cluster 2 and Cluster 3 (Ca-Na-HCO3 and Ca-HCO3 groundwater, respectively, correspond to mixed or intermediate water between Cluster 1 and Cluster 4 from possibly interconnected granular and bedrock aquifers. This study identifies groundwater recharge, water–rock interactions, ion exchange, solute diffusion from marine clay aquitards, saltwater intrusion and also hydraulic connections between the Canadian Shield and the granular deposits, as the main processes affecting the hydrogeochemical evolution of groundwater in the CHCN region.

  2. Evaluation of nitrate source in groundwater of southern part of North China Plain based on multi-isotope

    Institute of Scientific and Technical Information of China (English)

    方晶晶; 周爱国; 马传明; 刘存富; 蔡鹤生; 甘义群; 刘运德

    2015-01-01

    Nitrate pollution in groundwater is a serious water quality problem that increases the risk of developing various cancers. Groundwater is the most important water resource and supports a population of 5 million in Anyang area of the southern part of the North China Plain. Determining the source of nitrate pollution is the challenge in hydrology area due to the complex processes of migration and transformation. A new method is presented to determine the source of nitrogen pollution by combining the composition characteristics of stable carbon isotope in dissolved organic carbon in groundwater. The source of groundwater nitrate is dominated by agricultural fertilizers, as well as manure and wastewater. Mineralization, nitrification and mixing processes occur in the groundwater recharge area, whereas the confined groundwater area is dominated by denitrification processes.

  3. Water Quality Assessment of Groundwater Resources in Qaleeh Shahin Plain Based on Cd and HEI

    Directory of Open Access Journals (Sweden)

    Yari A.R.

    2016-09-01

    Full Text Available Abstract Aims: The chemical elements in water resources, especially groundwater, can affect the water consumption purposes. The aim of this study was to evaluate the status of the overall pollution level of ground water of Qaleeh Shahin plain with respect to heavy metals by Cd and HEI methods. Instrument & Methods: This cross-sectional semi-experimental study was conducted in Sarpol-e Zahab township in Kermanshah Province, west of Iran. For this purpose, 20 groundwater wells were chosen randomly. The samples were filtered (0.45μm, stored in polyethylene bottles and were acidified at a pH lower than 2 by adding concentrated HNO3 in order to avoid metal adsorption onto the inner bottle walls. Element concentrations were determined using ICP-OES. The correlation between the metals in the different seasons, between the indices values and concentration of metals and between different indices values was assessed by Pearson’s correlation coefficient. Findings: There were no significant correlations between the concentrations of the elements in 2 seasons except between As and Cd in winter (r=0.544; p<0.05. Only the concentration of Pb had significant correlations with Cd (r=0.937; p=0.0001 and HEI (r=0.997; p=0.0001 values in winter and with Cd (r=0.997; p=0.0001 and HEI (r=0.810; p=0.0001 values in summer, which indicated Pb as the main contributory pollutant. The correlation between Cd and HEI was significant in winter (r=0.943; p=0.0001 and was significant in summer (r=0.818; p=0.0001. Conclusion: The water resources of Qaleeh Shahin plain, Kermanshah Province, Iran, are not polluted by heavy metals and are suitable for drinking.

  4. 渭干河灌区地下水埋深与矿化度时空分布动态%Spatial and Temporal Dynamic Distribution of Groundwater Depth and Mineralization in Weigan River Irrigation District

    Institute of Scientific and Technical Information of China (English)

    吐尔逊·艾山; 塔西甫拉提·特依拜; 买买提·阿扎提; 买买提依明·买买提

    2011-01-01

    以新疆渭干河灌区为例,利用渭干河灌区38眼监测井的1997~2007年期间地下水埋深和地下水矿化度数据,对渭干河灌区地下水位及地下水矿化度的年际变化、季节变化动态及空间分布特征及其变化原因进行初步的分析。结果表明:11 a期间,研究区春季地下水位最高,研究区地下水位从灌区上部往下部或边缘有明显的上升特征。地下水矿化度的整体趋势为灌区上游的矿化度值较低,灌区下游和边缘地区的矿化度较高。灌区年均地下水位和地下水矿化度总体上有下降趋势。%Taking Xinjiang Weigan River irrigation district as an example,38 observation wells’ data from 1997 to 2007 of groundwater depth and groundwater mineralization were used in the paper to analyze annual change of groundwater depth and the groundwater mineralization of Weigan River irrigation district,and their seasonal dynamics and spatial distribution.The results showed that in the 11 years period,the highest groundwater level appeared in spring.The groundwater level rose significantly from the top of irrigation district to the periphery of the oasis.The overall trend of groundwater mineralization is that groundwater mineralization is relatively low in the upper reaches of the irrigation district,and relatively high in the lower edge and downstream of the irrigation district.The annual groundwater depth and groundwater mineralization generally decreased in the irrigation district.

  5. groundwater contribution to crop water requirement groundwater ...

    African Journals Online (AJOL)

    eobe

    Keywords: Groundwater, water table, capillary rise, soil type, waterleaf, ... GROUNDWATER CONTRIBUTION TO WATERLEAF (TALINUM TRIANGULARE) IN OXISOLS, I. J. ... Nutritionally, ... information to facilitate increased crop production,.

  6. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    Science.gov (United States)

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  7. [Dynamic bimaxillary osteotomy: the new occlusal base].

    Science.gov (United States)

    Audion, M; Darmon, Y

    1989-01-01

    The authors present an ortho-surgical method which unites occlusion and aesthetic without compromise and without stopping orthodontic work during the immediate post-operative period. The occlusal preparation permits us a global and simultaneous mobilisation of the two maxillars which are ostesynthezed in posterior skeletal disclosing. This disposition allows a lingual replacement and gives more facility to an eventual immediate post-operative occlusal replacement. The stiff osteosynthesis with immovable plates realize a therapeutic dissociation between the skeletal stage and the basal alveolo-dental stage. The "proprioceptive amnesia" and the "muscular sideration" permit a proprioceptive reorganisation and a new neuro-muscular fonctionnement elaborated from a new occlusal base. The free movements of the T.M.J. facilitate these acquisitions and allow a perspective supervision of the occlusion in a dynamic perspective.

  8. Behavior-based dual dynamic agent architecture

    Institute of Scientific and Technical Information of China (English)

    仵博; 吴敏; 曹卫华

    2003-01-01

    The objective of the architecture is to make agent promptly and adaptively accomplish tasks in the real-time and dynamic environment. The architecture is composed of elementary level behavior layer and high level be-havior layer. In the elementary level behavior layer, the reactive architecture is introduced to make agent promptlyreact to events; in the high level behavior layer, the deliberation architecture is used to enhance the intelligence ofthe agent. A confidence degree concept is proposed to combine the two layers of the architecture. An agent decisionmaking process is also presented, which is based on the architecture. The results of experiment in RoboSoccer simu-lation team show that the proposed architecture and the decision process are successful.

  9. Optic Fiber-Based Dynamic Pressure Sensor

    Institute of Scientific and Technical Information of China (English)

    Jiu-Lin Gan; Hai-Wen Cai; Jian-Xin Geng; Zheng-Qing Pan; Rong-Hui Qu; Zu-Jie Fang

    2008-01-01

    Weigh-in-Motion(WIM) technique is the process of measuring the dynamic tire forces of a moving vehicle and estimating the corresponding tire loads of the static vehicle. Compared with the static weigh station, WIM station is an efficient and cost effective choice that will minimize unneccessary stops and delay for truckers. The way to turn birefringence of single-mode fiber into a prime quality for a powerful and reliable sensor is shown. Preliminary results for the development of a weigh-in-motion (WIM) technique based on sagnac-loop sensor are presented. After a brief description of the sensor and its principle of operation, the theoretical model is developed. Then, a full characterization made in static conditions is presented.

  10. Indexer Based Dynamic Web Services Discovery

    CERN Document Server

    Bashir, Saba; Javed, M Younus; Khan, Aihab; Khiyal, Malik Sikandar Hayat

    2010-01-01

    Recent advancement in web services plays an important role in business to business and business to consumer interaction. Discovery mechanism is not only used to find a suitable service but also provides collaboration between service providers and consumers by using standard protocols. A static web service discovery mechanism is not only time consuming but requires continuous human interaction. This paper proposed an efficient dynamic web services discovery mechanism that can locate relevant and updated web services from service registries and repositories with timestamp based on indexing value and categorization for faster and efficient discovery of service. The proposed prototype focuses on quality of service issues and introduces concept of local cache, categorization of services, indexing mechanism, CSP (Constraint Satisfaction Problem) solver, aging and usage of translator. Performance of proposed framework is evaluated by implementing the algorithm and correctness of our method is shown. The results of p...

  11. User Authentication Based On Keystroke Dynamics

    Directory of Open Access Journals (Sweden)

    J.R Nisha

    2014-03-01

    Full Text Available The most common way to enforce access control is user authentication based on username and password. This form of access control has many flaws which make it vulnerable to hacking. Biometric authentication such as the keystroke dynamics is used in which the keyboard is used in order to identify users. Then the classifier is tailored to each user to find out whether the given user is genuine or not. The contribution of this approach is twofold: first it reduces the possibility of over fitting second it allows scalability to a high volume of users. Here, measured mean, median values, and standard deviation of keystroke features such as latency, dwell time, digraph and their combination are used. The algorithms used for feature subset selection are Particle Swarm Optimization (PSO, Genetic Algorithm (GA, Ant Colony Optimization (ACO and the proposed Renovated Artificial Bee Colony Optimization (RABCO algorithm. Back Propagation Neural Network (BPNN is used for classification.

  12. Source Code Generator Based on Dynamic Frames

    Directory of Open Access Journals (Sweden)

    Danijel Radošević

    2011-06-01

    Full Text Available Normal 0 21 false false false HR X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Obična tablica"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} This paper presents the model of source code generator based on dynamic frames. The model is named as the SCT model because if its three basic components: Specification (S, which describes the application characteristics, Configuration (C, which describes the rules for building applications, and Templates (T, which refer to application building blocks. The process of code generation dynamically creates XML frames containing all building elements (S, C ant T until final code is produced. This approach is compared to existing XVCL frames based model for source code generating. The SCT model is described by both XML syntax and the appropriate graphical elements. The SCT model is aimed to build complete applications, not just skeletons. The main advantages of the presented model are its textual and graphic description, a fully configurable generator, and the reduced overhead of the generated source code. The presented SCT model is shown on development of web application example in order to demonstrate its features and justify our design choices.

  13. Modelling wetland-groundwater interactions in the boreal Kälväsvaara esker, Northern Finland

    Science.gov (United States)

    Jaros, Anna; Rossi, Pekka; Ronkanen, Anna-Kaisa; Kløve, Bjørn

    2016-04-01

    Many types of boreal peatland ecosystems such as alkaline fens, aapa mires and Fennoscandia spring fens rely on the presence of groundwater. In these ecosystems groundwater creates unique conditions for flora and fauna by providing water, nutrients and constant water temperature enriching local biodiversity. The groundwater-peatland interactions and their dynamics are not, however, in many cases fully understood and their measurement and quantification is difficult due to highly heterogeneous structure of peatlands and large spatial extend of these ecosystems. Understanding of these interactions and their changes due to anthropogenic impact on groundwater resources would benefit the protection of the groundwater dependent peatlands. The groundwater-peatland interactions were investigated using the fully-integrated physically-based groundwater-surface water code HydroGeoSphere in a case study of the Kälväsvaara esker aquifer, Northern Finland. The Kälväsvaara is a geologically complex esker and it is surrounded by vast aapa mire system including alkaline and springs fens. In addition, numerous small springs occur in the discharge zone of the esker. In order to quantify groundwater-peatland interactions a simple steady-state model was built and results were evaluated using expected trends and field measurements. The employed model reproduced relatively well spatially distributed hydrological variables such as soil water content, water depths and groundwater-surface water exchange fluxes within the wetland and esker areas. The wetlands emerged in simulations as a result of geological and topographical conditions. They could be identified by high saturation levels at ground surface and by presence of shallow ponded water over some areas. The model outputs exhibited also strong surface water-groundwater interactions in some parts of the aapa system. These areas were noted to be regions of substantial diffusive groundwater discharge by the earlier studies. In

  14. Adsorption and biodegradation of three selected endocrine disrupting chemicals in river-based artificial groundwater recharge with reclaimed municipal wastewater.

    Science.gov (United States)

    Ma, Weifang; Nie, Chao; Chen, Bin; Cheng, Xiang; Lun, Xiaoxiu; Zeng, Fangang

    2015-05-01

    Endocrine disrupting chemical (EDC) pollution in river-based artificial groundwater recharge using reclaimed municipal wastewater poses a potential threat to groundwater-based drinking water supplies in Beijing, China. Lab-scale leaching column experiments simulating recharge were conducted to study the adsorption, biodegradation, and transport characteristics of three selected EDCs: 17β-estradiol (E2), 17α-ethinylestradiol (EE2) and bisphenol A (BPA). The three recharge columns were operated under the conditions of continual sterilization recharge (CSR), continual recharge (CR), and wetting and drying alternative recharge (WDAR). The results showed that the attenuation effect of the EDCs was in the order of WDAR>CR>CSR system and E2>EE2>BPA, which followed first-order kinetics. The EDC attenuation rate constants were 0.0783, 0.0505, and 0.0479 m(-1) for E2, EE2 and BPA in the CR system, respectively. The removal rates of E2, EE2, and BPA in the CR system were 98%, 96% and 92%, which mainly depended on biodegradation and were affected by water temperature. In the CR system, the concentrations of BPA, EE2, and E2 in soil were 4, 6 and 10 times higher than in the WDAR system, respectively. According to the DGGE fingerprints, the bacterial community in the bottom layer was more diverse than in the upper layer, which was related to the EDC concentrations in the water-soil system. The dominant group was found to be proteobacteria, including Betaproteobacteria and Alphaproteobacteria, suggesting that these microbes might play an important role in EDC degradation. Copyright © 2015. Published by Elsevier B.V.

  15. Using FOSM-Based Data Worth Analyses to Design Geophysical Surveys to Reduce Uncertainty in a Regional Groundwater Model Update

    Science.gov (United States)

    Smith, B. D.; White, J.; Kress, W. H.; Clark, B. R.; Barlow, J.

    2016-12-01

    Hydrogeophysical surveys have become an integral part of understanding hydrogeological frameworks used in groundwater models. Regional models cover a large area where water well data is, at best, scattered and irregular. Since budgets are finite, priorities must be assigned to select optimal areas for geophysical surveys. For airborne electromagnetic (AEM) geophysical surveys, optimization of mapping depth and line spacing needs to take in account the objectives of the groundwater models. The approach discussed here uses a first-order, second-moment (FOSM) uncertainty analyses which assumes an approximate linear relation between model parameters and observations. This assumption allows FOSM analyses to be applied to estimate the value of increased parameter knowledge to reduce forecast uncertainty. FOSM is used to facilitate optimization of yet-to-be-completed geophysical surveying to reduce model forecast uncertainty. The main objective of geophysical surveying is assumed to estimate values and spatial variation in hydrologic parameters (i.e. hydraulic conductivity) as well as map lower permeability layers that influence the spatial distribution of recharge flux. The proposed data worth analysis was applied to Mississippi Embayment Regional Aquifer Study (MERAS) which is being updated. The objective of MERAS is to assess the ground-water availability (status and trends) of the Mississippi embayment aquifer system. The study area covers portions of eight states including Alabama, Arkansas, Illinois, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee. The active model grid covers approximately 70,000 square miles, and incorporates some 6,000 miles of major rivers and over 100,000 water wells. In the FOSM analysis, a dense network of pilot points was used to capture uncertainty in hydraulic conductivity and recharge. To simulate the effect of AEM flight lines, the prior uncertainty for hydraulic conductivity and recharge pilots along potential flight lines was

  16. Evaluation model coupling exploitable groundwater resources and land subsidence control in regional loose sediments

    Science.gov (United States)

    Luo, Z. J.; Zhao, S. J.; Jin, WZ; Ma, Q. S.; Wu, X. H.

    2016-08-01

    The loose sediments in the Yangtze River Delta, the North China Plain, the plain of Northern Jiangsu and other districts in China are of great thickness, complex in structure and abundant in groundwater. Groundwater overexploitation easily results in geological disasters of land subsidence. Aiming at the issues, assessment models coupling exploitable groundwater resources and land subsidence control in regional loose sediments were brought up in this paper. The two models were: (1) a three dimensional groundwater seepage model with land subsidence based on the one dimensional Terzaghi consolidation theory; (2) a three dimensional full coupling model on groundwater seepage and land subsidence based on the Biot consolidation theory to simulate and calculate. It can be used to simulate and calculate the problems in real situations. Thus, the groundwater seepage and land subsidence were coupled together in the model to evaluate the amount of exploitable groundwater under the specific requirements of land subsidence control. The full coupling model, which considers the non-linear characteristics of soil mass and the dynamic changes of soil permeability with stress state based on the Biot consolidation theory, is more coincident with the variation characteristics of the hydraulic and mechanical properties of soil mass during the pumping process, making the evaluation results more scientific and reasonable.

  17. Airborne and ground-based transient electromagnetic mapping of groundwater salinity in the Machile–Zambezi Basin, southwestern Zambia

    DEFF Research Database (Denmark)

    Chongo, Mkhuzo; Vest Christiansen, Anders; Tembo, Alice;

    2015-01-01

    is an efficient tool for mapping groundwater quality variations and has been used extensively to explore the Kalahari sediments, e.g., in Botswana and Namibia. Recently, airborne and groundbased mapping of groundwater salinity was conducted in the Machile–Zambezi Basin, southwestern Zambia, using the versatile...

  18. A network-based dynamical ranking system

    CERN Document Server

    Motegi, Shun

    2012-01-01

    Ranking players or teams in sports is of practical interests. From the viewpoint of networks, a ranking system is equivalent a centrality measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over time. However, the score (i.e., strength) of a player, for example, depends on time. Defeating a renowned player in the peak performance is intuitively more rewarding than defeating the same player in other periods. To account for this factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men's tennis data. Our ranking system, also interpreted as a centrality measure for directed temporal networks, has two parameters. One parameter represents the exponential decay rate of the past score, and the other parameter controls the effect of indirect wins on the score. We derive a set of linear online update equ...

  19. GEO STATISTICAL MODELLING FOR GROUNDWATER POLLUTION IN SALEM, TAMILNADU- A GIS BASED APPROACH

    Directory of Open Access Journals (Sweden)

    S. Prabaharan,

    2011-02-01

    Full Text Available Water is one of the essential natural resources for the existence and development of life on the earth. The demand for water has increased over the years, and has led to a water scarcity. Ground waters are themajor resources to meet out the entire requirements. Pollution of air, water and land has an effect on the quality of the ground waters. The chemical characteristics of groundwater in Salem taluk of Salem district have been studied using Geostatistical modeling to evaluate the suitability of water for irrigation and domestic uses. The 32 water samples from PWD wells taken during the years 1999 to 2009 for post monsson and pre monsoon were tested for various chemical parameters like pH and TDS .The Geostatistical analyst of ArcGIS was used to generate voronoi maps like mean, mode, standard deviation, cluster & simple to study the spatial pattern of contamination movement for the years 1999 to 2009. Trend analysis was performed to identify trends in the input dataset. The concentrations of physical and chemical constituents in the water samples were compared with the World Health Organization (WHO standard to know the suitability of water for drinking.

  20. Groundwater flow into underground openings in fractured crystalline rocks: an interpretation based on long channels

    Science.gov (United States)

    Black, John H.; Woodman, Nicholas D.; Barker, John A.

    2016-12-01

    Rethinking an old tracer experiment in fractured crystalline rock suggests a concept of groundwater flow in sparse networks of long channels that is supported by results from an innovative lattice network model. The model, HyperConv, can vary the mean length of `strings' of connected bonds, and the gaps between them, using two independent probability functions. It is found that networks of long channels are able to percolate at lower values of (bond) density than networks of short channels. A general relationship between mean channel length, mean gap length and probability of percolation has been developed which incorporates the well-established result for `classical' lattice network models as a special case. Using parameters appropriate to a 4-m diameter drift located 360 m below surface at Stripa Mine Underground Research Laboratory in Sweden, HyperConv is able to reproduce values of apparent positive skin, as observed in the so-called Macropermeability Experiment, but only when mean channel length exceeds 10 m. This implies that such channel systems must cross many fracture intersections without bifurcating. A general relationship in terms of flow dimension is suggested. Some initial investigations using HyperConv show that the commonly observed feature, `compartmentalization', only occurs when channel density is just above the percolation threshold. Such compartments have been observed at Kamaishi Experimental Mine (Japan) implying a sparse flow network. It is suggested that compartments and skin are observable in the field, indicate sparse channel systems, and could form part of site characterization for deep nuclear waste repositories.

  1. Risk mitigation by waste-based permeable reactive barriers for groundwater pollution control at e-waste recycling sites.

    Science.gov (United States)

    Beiyuan, Jingzi; Tsang, Daniel C W; Yip, Alex C K; Zhang, Weihua; Ok, Yong Sik; Li, Xiang-Dong

    2017-02-01

    Permeable reactive barriers (PRBs) have proved to be a promising passive treatment to control groundwater contamination and associated human health risks. This study explored the potential use of low-cost adsorbents as PRBs media and assessed their longevity and risk mitigation against leaching of acidic rainfall through an e-waste recycling site, of which Cu, Zn, and Pb were the major contaminants. Batch adsorption experiments suggested a higher adsorption capacity of inorganic industrial by-products [acid mine drainage sludge (AMDS) and coal fly ash (CFA)] and carbonaceous recycled products [food waste compost (FWC) and wood-derived biochar] compared to natural inorganic minerals (limestone and apatite). Continuous leaching tests of sand columns with 10 wt% low-cost adsorbents were then conducted to mimic the field situation of acidic rainfall infiltration through e-waste-contaminated soils (collected from Qingyuan, China) by using synthetic precipitation leaching procedure (SPLP) solution. In general, Zn leached out first, followed by Cu, and finally delayed breakthrough of Pb. In the worst-case scenario (e.g., at initial concentrations equal to 50-fold of average SPLP result), the columns with limestone, apatite, AMDS, or biochar were effective for a relatively short period of about 20-40 pore volumes of leaching, after which Cu breakthrough caused non-cancer risk concern and later-stage Pb leaching considerably increased both non-cancer and lifetime cancer risk associated with portable use of contaminated water. In contrast, the columns with CFA or FWC successfully mitigated overall risks to an acceptable level for a prolonged period of 100-200 pore volumes. Therefore, with proper selection of low-cost adsorbents (or their mixture), waste-based PRBs is a technically feasible and economically viable solution to mitigate human health risk due to contaminated groundwater at e-waste recycling sites.

  2. Quantifying renewable groundwater stress with GRACE

    Science.gov (United States)

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min‐Hui; Reager, John T.; Voss, Katalyn; Swenson, Sean; Rodell, Matthew

    2015-01-01

    Abstract Groundwater is an increasingly important water supply source globally. Understanding the amount of groundwater used versus the volume available is crucial to evaluate future water availability. We present a groundwater stress assessment to quantify the relationship between groundwater use and availability in the world's 37 largest aquifer systems. We quantify stress according to a ratio of groundwater use to availability, which we call the Renewable Groundwater Stress ratio. The impact of quantifying groundwater use based on nationally reported groundwater withdrawal statistics is compared to a novel approach to quantify use based on remote sensing observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. Four characteristic stress regimes are defined: Overstressed, Variable Stress, Human‐dominated Stress, and Unstressed. The regimes are a function of the sign of use (positive or negative) and the sign of groundwater availability, defined as mean annual recharge. The ability to mitigate and adapt to stressed conditions, where use exceeds sustainable water availability, is a function of economic capacity and land use patterns. Therefore, we qualitatively explore the relationship between stress and anthropogenic biomes. We find that estimates of groundwater stress based on withdrawal statistics are unable to capture the range of characteristic stress regimes, especially in regions dominated by sparsely populated biome types with limited cropland. GRACE‐based estimates of use and stress can holistically quantify the impact of groundwater use on stress, resulting in both greater magnitudes of stress and more variability of stress between regions. PMID:26900185

  3. Groundwater Management Policies for Maintaining Stream Flow Given Variable Climatic Conditions

    Science.gov (United States)

    Pohll, G.; Carroll, R. W.; Brozovic, N.

    2012-12-01

    scale. Second, targeted reductions in pumping are modeled in which reductions in pumping may vary between stakeholders to account for spatial variability in expected system dynamics. Third, dynamic targeted reductions that are allowed to vary annually are modeled, allowing policy responsiveness to both variable climate and nonlinearity of system dynamics. Optimization is done to maximize the volume of stream discharge increased per area of lost crop production for given rates of reduced groundwater pumping. We explore the extent to which increased complexity in policy - which is administratively costly to implement - improves cost-effectiveness relative to simpler policies. Moreover, we consider how nonlinear feedback in system response to reduced groundwater pumping may favor certain kinds of policies over others based on mandated regulatory objectives and climatic shifts.

  4. Health Risk Assessment for Uranium in Groundwater - An Integrated Case Study Based on Hydrogeological Characterization and Dose Calculation

    Science.gov (United States)

    Franklin, M. R.; Veiga, L. H.; Py, D. A., Jr.; Fernandes, H. M.

    2010-12-01

    The uranium mining and milling facilities of Caetité (URA) is the only active uranium production center in Brazil. Operations take place at a very sensitive semi-arid region in the country where water resources are very scarce. Therefore, any contamination of the existing water bodies may trigger critical consequences to local communities because their sustainability is closely related to the availability of the groundwater resources. Due to the existence of several uranium anomalies in the region, groundwater can present radionuclide concentrations above the world average. The radiological risk associated to the ingestion of these waters have been questioned by members of the local communities, NGO’s and even regulatory bodies that suspected that the observed levels of radionuclide concentrations (specially Unat) could be related to the uranium mining and milling operations. Regardless the origin of these concentrations the fear that undesired health effects were taking place (e.g. increase in cancer incidence) remain despite the fact that no evidence - based on epidemiological studies - is available. This paper intends to present the connections between the local hydrogeology and the radiological characterization of groundwater in the neighboring areas of the uranium production center to understand the implications to the human health risk due to the ingestion of groundwater. The risk assessment was performed, taking into account the radiological and the toxicological risks. Samples from 12 wells have been collected and determinations of Unat, Thnat, 226Ra, 228Ra and 210Pb were performed. The radiation-related risks were estimated for adults and children by the calculation of the annual effective doses. The potential non-carcinogenic effects due to the ingestion of uranium were evaluated by the estimation of the hazard index (HI). Monte Carlo simulations were used to calculate the uncertainty associated with these estimates, i.e. the 95% confidence interval

  5. Using noble-gas and stable-isotope data to determine groundwater origin and flow regimes: Application to the Ceneri Base Tunnel (Switzerland)

    Science.gov (United States)

    Tomonaga, Yama; Marzocchi, Roberto; Pera, Sebastian; Pfeifer, Hans-Rudolf; Kipfer, Rolf; Decrouy, Laurent; Vennemann, Torsten

    2017-02-01

    Tunnel drilling provides a unique opportunity to sample and study deep groundwaters that are otherwise difficult to access. Understanding deep groundwater flow is of primary importance in assessing the possible impacts of tunnelling on hydrogeological systems. During this study, water was sampled for noble-gas analysis from tunnel inflows in the AlpTransit Ceneri Base Tunnel (Canton Ticino, southern Switzerland), which passes through an area mainly characterized by metamorphic rocks (gneiss). Furthermore, water was sampled from springs located in the same geological environment. Based on the measurement of noble-gas concentrations and isotope ratios, tritium concentrations, the stable isotope composition of hydrogen (δ2H) and oxygen (δ18O), and the concentrations of major ions in the water, a conceptual hydrogeological model was established for this case study that allowed the most probable origin of the groundwaters sampled at different locations to be determined. The measured abundances of 3He, 4He, and 20Ne allow the geochemical characterization of old groundwaters strongly enriched in terrigenic helium of crustal origin and the identification of mixing with water that circulates preferentially through cataclastic structures. Noble-gas concentrations and isotope ratios as well as tritium are useful proxies for the characterization of faults that may be critical for tunnel drilling because of their active hydrogeological role and their influence on the mechanics of the rocks.

  6. Geographical Information System based assessment of spatiotemporal characteristics of groundwater quality of upland sub-watersheds of Meenachil River, parts of Western Ghats, Kottayam District, Kerala, India

    Science.gov (United States)

    Vijith, H.; Satheesh, R.

    2007-09-01

    Hydrogeochemistry of groundwater in upland sub-watersheds of Meenachil river, parts of Western Ghats, Kottayam, Kerala, India was used to assess the quality of groundwater for determining its suitability for drinking and agricultural purposes. The study area is dominated by rocks of Archaean age, and Charnonckite is dominated over other rocks. Rubber plantation dominated over other types of the vegetation in the area. Though the study area receives heavy rainfall, it frequently faces water scarcity as well as water quality problems. Hence, a Geographical Information System (GIS) based assessment of spatiotemporal behaviour of groundwater quality has been carried out in the region. Twenty-eight water samples were collected from different wells and analysed for major chemical constituents both in monsoon and post-monsoon seasons to determine the quality variation. Physical and chemical parameters of groundwater such as pH, dissolved oxygen (DO), total hardness (TH), chloride (Cl), nitrate (NO3) and phosphate (PO4) were determined. A surface map was prepared in the ArcGIS 8.3 (spatial analyst module) to assess the quality in terms of spatial variation, and it showed that the high and low regions of water quality varied spatially during the study period. The influence of lithology over the quality of groundwater is negligible in this region because majority of the area comes under single lithology, i.e. charnockite, and it was found that the extensive use of fertilizers and pesticides in the rubber, tea and other agricultural practices influenced the groundwater quality of the region. According to the overall assessment of the basin, all the parameters analysed are below the desirable limits of WHO and Indian standards for drinking water. Hence, considering the pH, the groundwater in the study area is not suitable for drinking but can be used for irrigation, industrial and domestic purposes. The spatial analysis of groundwater quality patterns of the study area shows

  7. Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin

    Directory of Open Access Journals (Sweden)

    E. H. Sutanudjaja

    2011-09-01

    Full Text Available The current generation of large-scale hydrological models does not include a groundwater flow component. Large-scale groundwater models, involving aquifers and basins of multiple countries, are still rare mainly due to a lack of hydro-geological data which are usually only available in developed countries. In this study, we propose a novel approach to construct large-scale groundwater models by using global datasets that are readily available. As the test-bed, we use the combined Rhine-Meuse basin that contains groundwater head data used to verify the model output. We start by building a distributed land surface model (30 arc-second resolution to estimate groundwater recharge and river discharge. Subsequently, a MODFLOW transient groundwater model is built and forced by the recharge and surface water levels calculated by the land surface model. Results are promising despite the fact that we still use an offline procedure to couple the land surface and MODFLOW groundwater models (i.e. the simulations of both models are separately performed. The simulated river discharges compare well to the observations. Moreover, based on our sensitivity analysis, in which we run several groundwater model scenarios with various hydro-geological parameter settings, we observe that the model can reasonably well reproduce the observed groundwater head time series. However, we note that there are still some limitations in the current approach, specifically because the offline-coupling technique simplifies the dynamic feedbacks between surface water levels and groundwater heads, and between soil moisture states and groundwater heads. Also the current sensitivity analysis ignores the uncertainty of the land surface model output. Despite these limitations, we argue that the results of the current model show a promise for large-scale groundwater modeling practices, including for data-poor environments and at the global scale.

  8. Development of a Carbon Isotope-Based Tracer of Groundwater Fluxes into Estuaries and the Coastal Ocean.

    Science.gov (United States)

    McCorkle, D. C.; Gramling, C. M.; Mulligan, A. E.; Woods, T. L.

    2001-05-01

    We will show how the carbon isotopic composition of dissolved inorganic carbon (DIC) - in particular, its radiocarbon content (Δ 14C) - can be used to quantify the contribution of confined groundwater flow to the total land-sea freshwater flux. The key observation underlying this approach is that groundwater in confined aquifers typically has a much lower radiocarbon content than surface fresh water (rivers and streams, and the water table groundwater that feeds them). We illustrate this method using chemical and isotopic data from Pages Creek and Futch Creek, two small estuaries on the Intracoastal Waterway near Wilmington, NC. Isotopic analyses of groundwater in coastal NC, of springs in Pages Creek and Futch Creek, and of the known DIC sources to these tidal creeks (sea water, stream water, and CO2 from salt marsh decomposition processes), show that confined aquifers are the only significant low-Δ 14C DIC source to these estuaries. Salinity data constrain the total freshwater fraction (surface water + artesian groundwater) of each estuarine sample, and the radiocarbon data are then used to estimate the fractional groundwater contribution to the Pages Creek and Futch Creek freshwater budgets. We will also present preliminary carbon isotopic results from a unique set of salty "groundwater" samples from shallow seafloor wells from the South Carolina continental shelf. These data suggest that sub-bottom recirculation of seawater may impart a low-Δ 14C signal to shelf waters in this region.

  9. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xiangang [Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Zhou Qixing, E-mail: huxiangang@mail.nankai.edu.c [Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Luo Yi [Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China)

    2010-09-15

    The residue of antibiotics is becoming an intractable environmental problem in many organic vegetable bases. However, their residual levels and distribution are still obscure. This work systematically analyzed the occurrence and migration of typical veterinary antibiotics in organic vegetable bases, northern China. The results showed that there was no obvious geographical difference in antibiotic distribution between soil and manure. A simple migration model can be easy and quick to predict the accumulation of antibiotics in soil. Antibiotics were mainly taken up through water transport and passive absorption in vegetables. The distribution of antibiotics in a plant was in the sequence leaf > stem > root, and performed biological accumulation. The residues of antibiotics in all samples in winter were significantly higher than those in summer. Overall, this work can lay the foundation for understanding ecological risk of antibiotics and their potential adverse effects on human health by food chain. - The residues of typical veterinary antibiotics from manure were detected and migrated in soil, vegetables and groundwater of organic vegetable bases.

  10. Reconstruction of groundwater depletion using a global scale groundwater model

    Science.gov (United States)

    de Graaf, Inge; van Beek, Rens; Sutanudjaja, Edwin; Wada, Yoshi; Bierkens, Marc

    2015-04-01

    Groundwater forms an integral part of the global hydrological cycle and is the world's largest accessible source of fresh water to satisfy human water needs. It buffers variable recharge rates over time, thereby effectively sustaining river flows in times of drought as well as evaporation in areas with shallow water tables. Moreover, although lateral groundwater flows are often slow, they cross topographic and administrative boundaries at appreciable rates. Despite the importance of groundwater, most global scale hydrological models do not consider surface water-groundwater interactions or include a lateral groundwater flow component. The main reason of this omission is the lack of consistent global-scale hydrogeological information needed to arrive at a more realistic representation of the groundwater system, i.e. including information on aquifer depths and the presence of confining layers. The latter holds vital information on the accessibility and quality of the global groundwater resource. In this study we developed a high resolution (5 arc-minutes) global scale transient groundwater model comprising confined and unconfined aquifers. This model is based on MODFLOW (McDonald and Harbaugh, 1988) and coupled with the land-surface model PCR GLOBWB (van Beek et al., 2011) via recharge and surface water levels. Aquifers properties were based on newly derived estimates of aquifer depths (de Graaf et al., 2014b) and thickness of confining layers from an integration of lithological and topographical information. They were further parameterized using available global datasets on lithology (Hartmann and Moosdorf, 2011) and permeability (Gleeson et al., 2014). In a sensitivity analysis the model was run with various hydrogeological parameter settings, under natural recharge only. Scenarios of past groundwater abstractions and corresponding recharge (Wada et al., 2012, de Graaf et al. 2014a) were evaluated. The resulting estimates of groundwater depletion are lower than

  11. Groundwater Waters

    Directory of Open Access Journals (Sweden)

    Ramón Llamas

    1999-10-01

    Full Text Available The groundwaters released through springs constituted a basic element for the survival and progressive development of human beings. Man came to learn how to take better advantage of these waters by digging wells, irrigation channels, and galleries. Nevertheless, these activities do not require cooperation nor the collective agreement of relatively large groups of people, as in the case of creating the necessary structures to take advantage of the resources of surfacewaters. The construction and operation of these structures was a powerful factor in the birth of an urban or civil society – the designated water civilizations. The difference between people taking advantage of groundwater, quasi-individually, and those of surface water, where people work in a group, has continued to the present day. Whereas earlier, this difference did not bring about any special problems, the technological advances of this century, especially theturbine pump, have led to a spectacular increase in the use of roundwater. This advance has significantly contributed to reducing hunger in the world and has provided potable water in developing countries. However, the almost generalized lack of planning and control in the exploitation of these groundwaters reflects that they are little or badly understood by the managers of water policy in almost every country. As such, problems have occurred which have often become exaggerated, giving rise to water-myths. These problems, though, should be addressed if the aim is the sustainable usage of surface water as well as groundwater. To counter any misconceptions and to seek solutions to the problems, distinct plans of action can be highlighted: educating the public; fomenting a system of participative management and decisive support for the communities of users of subterranean waters; integrating a sufficient number of experts in hydrology in the various water management organizations;and assuring transparency of the data on

  12. Computation of groundwater resources and recharge in Chithar River Basin, South India.

    Science.gov (United States)

    Subramani, T; Babu, Savithri; Elango, L

    2013-01-01

    Groundwater recharge and available groundwater resources in Chithar River basin, Tamil Nadu, India spread over an area of 1,722 km(2) have been estimated by considering various hydrological, geological, and hydrogeological parameters, such as rainfall infiltration, drainage, geomorphic units, land use, rock types, depth of weathered and fractured zones, nature of soil, water level fluctuation, saturated thickness of aquifer, and groundwater abstraction. The digital ground elevation models indicate that the regional slope of the basin is towards east. The Proterozoic (Post-Archaean) basement of the study area consists of quartzite, calc-granulite, crystalline limestone, charnockite, and biotite gneiss with or without garnet. Three major soil types were identified namely, black cotton, deep red, and red sandy soils. The rainfall intensity gradually decreases from west to east. Groundwater occurs under water table conditions in the weathered zone and fluctuates between 0 and 25 m. The water table gains maximum during January after northeast monsoon and attains low during October. Groundwater abstraction for domestic/stock and irrigational needs in Chithar River basin has been estimated as 148.84 MCM (million m(3)). Groundwater recharge due to monsoon rainfall infiltration has been estimated as 170.05 MCM based on the water level rise during monsoon period. It is also estimated as 173.9 MCM using rainfall infiltration factor. An amount of 53.8 MCM of water is contributed to groundwater from surface water bodies. Recharge of groundwater due to return flow from irrigation has been computed as 147.6 MCM. The static groundwater reserve in Chithar River basin is estimated as 466.66 MCM and the dynamic reserve is about 187.7 MCM. In the present scenario, the aquifer is under safe condition for extraction of groundwater for domestic and irrigation purposes. If the existing water bodies are maintained properly, the extraction rate can be increased in future about 10% to 15%.

  13. Mercury speciation and transport via submarine groundwater discharge at a southern California coastal lagoon system

    Science.gov (United States)

    Ganguli, P.M.; Conaway, C.H.; Swarzenski, P.W.; Izbicki, J.A.; Flegal, A.R.

    2012-01-01

    We measured total mercury (Hg T) and monomethylmercury (MMHg) concentrations in coastal groundwater and seawater over a range of tidal conditions near Malibu Lagoon, California, and used 222Rn-derived estimates of submarine groundwater discharge (SGD) to assess the flux of mercury species to nearshore seawater. We infer a groundwater-seawater mixing scenario based on salinity and temperature trends and suggest that increased groundwater discharge to the ocean during low tide transported mercury offshore. Unfiltered Hg T (U-Hg T) concentrations in groundwater (2.2-5.9 pM) and seawater (3.3-5.2 pM) decreased during a falling tide, with groundwater U-Hg T concentrations typically lower than seawater concentrations. Despite the low Hg T in groundwater, bioaccumulative MMHg was produced in onshore sediment as evidenced by elevated MMHg concentrations in groundwater (0.2-1 pM) relative to seawater (???0.1 pM) throughout most of the tidal cycle. During low tide, groundwater appeared to transport MMHg to the coast, resulting in a 5-fold increase in seawater MMHg (from 0.1 to 0.5 pM). Similarly, filtered Hg T (F-Hg T) concentrations in seawater increased approximately 7-fold during low tide (from 0.5 to 3.6 pM). These elevated seawater F-Hg T concentrations exceeded those in filtered and unfiltered groundwater during low tide, but were similar to seawater U-Hg T concentrations, suggesting that enhanced SGD altered mercury partitioning and/or solubilization dynamics in coastal waters. Finally, we estimate that the SGD Hg T and MMHg fluxes to seawater were 0.41 and 0.15 nmol m -2 d -1, respectively - comparable in magnitude to atmospheric and benthic fluxes in similar environments. ?? 2012 American Chemical Society.

  14. Prediction of monthly regional groundwater levels through hybrid soft-computing techniques

    Science.gov (United States)

    Chang, Fi-John; Chang, Li-Chiu; Huang, Chien-Wei; Kao, I.-Feng

    2016-10-01

    Groundwater systems are intrinsically heterogeneous with dynamic temporal-spatial patterns, which cause great difficulty in quantifying their complex processes, while reliable predictions of regional groundwater levels are commonly needed for managing water resources to ensure proper service of water demands within a region. In this study, we proposed a novel and flexible soft-computing technique that could effectively extract the complex high-dimensional input-output patterns of basin-wide groundwater-aquifer systems in an adaptive manner. The soft-computing models combined the Self Organized Map (SOM) and the Nonlinear Autoregressive with Exogenous Inputs (NARX) network for predicting monthly regional groundwater levels based on hydrologic forcing data. The SOM could effectively classify the temporal-spatial patterns of regional groundwater levels, the NARX could accurately predict the mean of regional groundwater levels for adjusting the selected SOM, the Kriging was used to interpolate the predictions of the adjusted SOM into finer grids of locations, and consequently the prediction of a monthly regional groundwater level map could be obtained. The Zhuoshui River basin in Taiwan was the study case, and its monthly data sets collected from 203 groundwater stations, 32 rainfall stations and 6 flow stations during 2000 and 2013 were used for modelling purpose. The results demonstrated that the hybrid SOM-NARX model could reliably and suitably predict monthly basin-wide groundwater levels with high correlations (R2 > 0.9 in both training and testing cases). The proposed methodology presents a milestone in modelling regional environmental issues and offers an insightful and promising way to predict monthly basin-wide groundwater levels, which is beneficial to authorities for sustainable water resources management.

  15. Injectable silica-permanganate gel as a slow-release MnO4(-) source for groundwater remediation: rheological properties and release dynamics.

    Science.gov (United States)

    Yang, S; Oostrom, M; Truex, M J; Li, G; Zhong, L

    2016-02-01

    Injectable slow-release permanganate gels (ISRPGs), formed by mixing aqueous KMnO4 solution with fumed silica powders, may have potential applications in remediating chlorinated solvent plumes in groundwater. A series of batch, column, and two-dimensional (2-D) flow cell experiments has been completed to characterize the ISRPG and study the release of permanganate (MnO4(-)) under a variety of conditions. The experiments have provided information on ISRPG rheology, MnO4(-) release dynamics and distribution in porous media, and trichloroethene (TCE) destruction by the ISRPG-released oxidant. The gel possesses shear thinning characteristics, resulting in a relatively low viscosity during mixing, and facilitating subsurface injection and distribution. Batch tests clearly showed that MnO4(-) diffused out from the ISRPG into water. During this process, the gel did not dissolve or disperse into water, but rather maintained its initial shape. Column experiments demonstrated that MnO4(-) release from the ISRPG lasted considerably longer than that from an aqueous solution. In addition, due to the longer release duration, TCE destruction by ISRPG-released MnO4(-) was considerably more effective than that when MnO4(-) was delivered using aqueous solution injection. In the 2-D flow cell experiments, it was demonstrated that ISRPGs released a long-lasting, low-concentration MnO4(-) plume potentially sufficient for sustainable remediation in aquifers.

  16. Colloid formation in groundwater: effect of phosphate, manganese, silicate and dissolved organic matter on the dynamic heterogeneous oxidation of ferrous iron

    NARCIS (Netherlands)

    Wolthoorn, A.; Temminghoff, E.J.M.; Weng, L.P.; Riemsdijk, van W.H.

    2004-01-01

    Subsurface aeration is the in situ oxidation of Fe from groundwater that is used to make drinking water potable. When subsurface aeration is applied to an anaerobic groundwater system with pH > 7, Fe(II) is oxidised heterogeneously. The heterogeneous oxidation of Fe(II) can result in the in situ

  17. [Construction of groundwater contamination prevention mapping system].

    Science.gov (United States)

    Wang, Jun-Jie; He, Jiang-Tao; Lu, Yan; Liu, Li-Ya; Zhang, Xiao-Liang

    2012-09-01

    Groundwater contamination prevention mapping is an important component of groundwater contamination geological survey and assessment work, which could provide the basis for making and implementing groundwater contamination prevention planning. A groundwater contamination prevention mapping system was constructed in view of the synthetic consideration on nature perspective derived from groundwater contamination sources and aquifer itself, social-economic perspective, policy perspective derived from outside. During the system construction process, analytic hierarchy process and relevant overlaying principles were used to couple groundwater contamination risk assessment, groundwater value as well as wellhead protection area zoning. Data processing and visualization of mapping results were achieved in the GIS environment. The research on groundwater contamination prevention mapping in Beijing Plain indicated that the final groundwater prevention map was in accordance with the actual conditions and well reflected the priorities of groundwater prevention, which could play a guidance role in designing and implementing further practical prevention and supervision measures. Besides, because of the dynamical properties of the system components, it was suggested to analyze the update frequency of the mapping.

  18. Sequence Alignment with Dynamic Divisor Generation for Keystroke Dynamics Based User Authentication

    OpenAIRE

    Jiacang Ho; Dae-Ki Kang

    2015-01-01

    Keystroke dynamics based authentication is one of the prevention mechanisms used to protect one’s account from criminals’ illegal access. In this authentication mechanism, keystroke dynamics are used to capture patterns in a user typing behavior. Sequence alignment is shown to be one of effective algorithms for keystroke dynamics based authentication, by comparing the sequences of keystroke data to detect imposter’s anomalous sequences. In previous research, static divisor has been used for s...

  19. Comparison of Analytic Hierarchy Process, Catastrophe and Entropy techniques for evaluating groundwater prospect of hard-rock aquifer systems

    Science.gov (United States)

    Jenifer, M. Annie; Jha, Madan K.

    2017-05-01

    Groundwater is a treasured underground resource, which plays a central role in sustainable water management. However, it being hidden and dynamic in nature, its sustainable development and management calls for precise quantification of this precious resource at an appropriate scale. This study demonstrates the efficacy of three GIS-based multi-criteria decision analysis (MCDA) techniques, viz., Analytic Hierarchy Process (AHP), Catastrophe and Entropy in evaluating groundwater potential through a case study in hard-rock aquifer systems. Using satellite imagery and relevant field data, eight thematic layers (rainfall, land slope, drainage density, soil, lineament density, geology, proximity to surface water bodies and elevation) of the factors having significant influence on groundwater occurrence were prepared. These thematic layers and their features were assigned suitable weights based on the conceptual frameworks of AHP, Catastrophe and Entropy techniques and then they were integrated in the GIS environment to generate an integrated raster layer depicting groundwater potential index of the study area. The three groundwater prospect maps thus yielded by these MCDA techniques were verified using a novel approach (concept of 'Dynamic Groundwater Potential'). The validation results revealed that the groundwater potential predicted by the AHP technique has a pronounced accuracy of 87% compared to the Catastrophe (46% accuracy) and Entropy techniques (51% accuracy). It is concluded that the AHP technique is the most reliable for the assessment of groundwater resources followed by the Entropy method. The developed groundwater potential maps can serve as a scientific guideline for the cost-effective siting of wells and the effective planning of groundwater development at a catchment or basin scale.

  20. Application of a fully integrated surface-subsurface physically based flow model for evaluating groundwater recharge from a flash flood event

    Science.gov (United States)

    Pino, Cristian; Herrera, Paulo; Therrien, René

    2017-04-01

    In many arid regions around the world groundwater recharge occurs during flash floods. This transient spatially and temporally concentrated flood-recharge process takes place through the variably saturated zone between surface and usually the deep groundwater table. These flood events are characterized by rapid and extreme changes in surface flow depth and velocity and soil moisture conditions. Infiltration rates change over time controlled by the hydraulic gradients and the unsaturated hydraulic conductivity at the surface-subsurface interface. Today is a challenge to assess the spatial and temporal distribution of groundwater recharge from flash flood events under real field conditions at different scales in arid areas. We apply an integrated surface-subsurface variably saturated physically-based flow model at the watershed scale to assess the recharge process during and after a flash flood event registered in an arid fluvial valley in Northern Chile. We are able to reproduce reasonably well observed groundwater levels and surface flow discharges during and after the flood with a calibrated model. We also investigate the magnitude and spatio-temporal distribution of recharge and the response of the system to variations of different surface and subsurface parameters, initial soil moisture content and groundwater table depths and surface flow conditions. We demonstrate how an integrated physically based model allows the exploration of different spatial and temporal system states, and that the analysis of the results of the simulations help us to improve our understanding of the recharge processes in similar type of systems that are common to many arid areas around the world.

  1. Modeling of groundwater potential of the sub-basin of Siriri river, Sergipe state, Brazil, based on Geographic Information System and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Washington Franca Rocha

    2011-08-01

    Full Text Available The use of Geographic Information System (GIS and Remote Sensing for modeling groundwater potential give support for the analysis and decision-making processes about water resource management in watersheds. The objective of this work consisted in modeling the groundwater water potential of Siriri river sub-basin, Sergipe state, based on its natural environment (soil, land use, slope, drainage density, lineament density, rainfall and geology using Remote Sensing and Geographic Information System as an integration environment. The groundwater potential map was done using digital image processing procedures of ENVI 4.4 software and map algebra of ArcGIS 9.3®. The Analytical Hierarchy Method was used for modeling the weights definition of the different criteria (maps. Loads and weights of the different classes were assigned to each map according to their influence on the overall objective of the work. The integration of these maps in a GIS environment and the AHP technique application allowed the development of the groundwater potential map in five classes: very low, low, moderate, high, very high. The average flow rates of wells confirm the potential of aquifers Sapucari, Barriers and Maruim since they are the most exploited in this sub-basin, with average flows of 78,113 L/h, 19,332 L/h and 12,085 L/h, respectively.

  2. Theory of Dynamic Diagnosis Based on Integrated Maintenance Information

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the concept of an integrated maintenance information system and related information environment, this paper discusses the process of troubleshooting in modern maintenance in detail, and gives a model of dynamic diagnosis of faults, in which a reasoning program is designed through taking advantage of information fusion and time analysis. In the end, the authors present the logic process of dynamic diagnosis through a typical example, and proposes a dynamic diagnostic system based on information fusion.

  3. Estimates of tracer-based piston-flow ages of groundwater from selected sites-National Water-Quality Assessment Program, 1992-2005

    Science.gov (United States)

    Hinkle, Stephen R.; Shapiro, Stephanie D.; Plummer, L. Niel; Busenberg, Eurybiades; Widman, Peggy K.; Casile, Gerolamo C.; Wayland, Julian E.

    2011-01-01

    This report documents selected age data interpreted from measured concentrations of environmental tracers in groundwater from 1,399 National Water-Quality Assessment (NAWQA) Program groundwater sites across the United States. The tracers of interest were chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), and tritium/helium-3 (3H/3He). Tracer data compiled for this analysis primarily were from wells representing two types of NAWQA groundwater studies - Land-Use Studies (shallow wells, usually monitoring wells, in recharge areas under dominant land-use settings) and Major-Aquifer Studies (wells, usually domestic supply wells, in principal aquifers and representing the shallow, used resource). Reference wells (wells representing groundwater minimally impacted by anthropogenic activities) associated with Land-Use Studies also were included. Tracer samples were collected between 1992 and 2005, although two networks sampled from 2006 to 2007 were included because of network-specific needs. Tracer data from other NAWQA Program components (Flow System Studies, which are assessments of processes and trends along groundwater flow paths, and various topical studies) were not compiled herein. Tracer data from NAWQA Land-Use Studies and Major-Aquifer Studies that previously had been interpreted and published are compiled herein (as piston-flow ages), but have not been reinterpreted. Tracer data that previously had not been interpreted and published are evaluated using documented methods and compiled with aqueous concentrations, equivalent atmospheric concentrations (for CFCs and SF6), estimates of tracer-based piston-flow ages, and selected ancillary data, such as redox indicators, well construction, and major dissolved gases (N2, O2, Ar, CH4, and CO2). Tracer-based piston-flow ages documented in this report are simplistic representations of the tracer data. Tracer-based piston-flow ages are a convenient means of conceptualizing groundwater age. However, the piston

  4. 安徽淮北平原地下水动态变化研究%Study on the Groundwater Dynamic of the Huaibei Alluvial Plain in Anhui Province

    Institute of Scientific and Technical Information of China (English)

    胡巍巍; 王式成; 王根绪; 邓伟

    2009-01-01

    论文对安徽淮北地区69个地下水位站的1980-2006年平均地下水埋深资料进行分析,得出淮北地区多年平均地下水埋深2.33 m,1980-1990年各地下水年均埋深较浅、变幅较小,1990年以后地下水埋深变幅加大,且埋深有明显的加深趋势.研究认为淮北平原地下水动态虽然受降水量、蒸发量和人类活动等多种因素影响,但近些年来地下水的动态变化主要是人类活动影响的结果.这些人类活动包括地下水资源开发利用、土地利用、水利工程、农业节水灌溉措施等.其中过度开发利用地下水是导致安徽淮北平原地下水埋深下降、地下水资源减少的主要原因.适度开发利用地下水有利于淮北地区地下水的循环更新,但过度的开发利用,已造成平原北部开始出现严重的环境地质问题,应限制开采.%Huaibei alluvial plain lies in the middle reach of the Huaihe River basin and the main part of the plain is in Anhui Province. In this region, human activities are intense and water pollution is still serious, so people have to use much groundwater. This article analyzed the annual mean groundwater burying depth from 1980 to 2006 from 69 water table stations on Huaibei alluvial plain, Anhui Province. The authors concluded that multi-annual mean groundwater burying depth is 2.33 m in this region. The annual mean groundwater burying depth was shallow and changed little during the 1980s, but it changed greatly and was apparently deeper after 1990. Although groundwater dynamic is affected by precipitation, evaporation and human activities, the change was the result of human activities in recent years in Huaibei alluvial plain. These activities include groundwater exploitation, land use, hydraulic engineering and agriculture water-saving irrigation measure, and groundwater overexploitation was the main reason for water table decline and groundwater resource decrease. Moderate use of groundwater is

  5. Assessment of Halon-1301 as a groundwater age tracer

    OpenAIRE

    M. Beyer; R. van der Raaij; U. Morgenstern; Jackson, B.(Department of Physics, University of Pennsylvania, Philadelphia, PA, United States)

    2015-01-01

    Groundwater dating is an important tool to assess groundwater resources in regards to their dynamics, i.e. direction and timescale of groundwater flow and recharge, contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However, ambiguous age interpretations are often faced, due to a limited set of available tracers and their individual restricted applicat...

  6. Assessment of Halon-1301 as a groundwater age tracer

    OpenAIRE

    M. Beyer; R. van der Raaij; U. Morgenstern; Jackson, B.(Department of Physics, University of Pennsylvania, Philadelphia, PA, United States)

    2015-01-01

    Groundwater dating is an important tool to assess groundwater resources in regards to their dynamics, i.e. direction and time scale of groundwater flow and recharge, to assess contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However, ambiguous age interpretations are often faced, due to a limited set of available tracers and their in...

  7. GROUNDWATER RECHARGE AND CHEMICAL ...

    Science.gov (United States)

    The existing knowledge base regarding the presence and significance of chemicals foreign to the subsurface environment is large and growing -the papers in this volume serving as recent testament. But complex questions with few answers surround the unknowns regarding the potential for environmental or human health effects from trace levels of xenobiotics in groundwater, especially groundwater augmented with treated wastewater. Public acceptance for direct or indirect groundwater recharge using treated municipal wastewater ( especially sewage) spans the spectrum from unquestioned embrace to outright rejection. In this article, I detour around the issues most commonly discussed for groundwater recharge and instead focus on some of the less-recognized issues- those that emanate from the mysteries created at the many literal and virtual interfaces involved with the subsurface world. My major objective is to catalyze discussion that advances our understanding of the barriers to public acceptance of wastewater reuse -with its ultimate culmination in direct reuse for drinking. I pose what could be a key question as to whether much of the public's frustration or ambivalence in its decision making process for accepting or rejecting water reuse (for various purposes including personal use) emanates from fundamental inaccuracies, misrepresentation, or oversimplification of what water 'is' and how it functions in the environment -just what exactly is the 'water cyc

  8. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast

    Science.gov (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.

    1998-01-01

    Existing data on base-flow and groundwater nitrate loads were compiled and analyzed to assess the significance of groundwater discharge as a source of the nitrate load to nontidal streams of the Chesapeake Bay watershed. These estimates were then related to hydrogeomorphic settings based on lithology and physiographic province to provide insight on the areal distribution of ground-water discharge. Base-flow nitrate load accounted for 26 to about 100 percent of total-flow nitrate load, with a median value of 56 percent, and it accounted for 17 to 80 percent of total-flow total-nitrogen load, with a median value of 48 percent. Hydrograph separations were conducted on continuous streamflow records from 276 gaging stations within the watershed. The values for base flow thus calculated were considered an estimate of ground-water discharge. The ratio of base flow to total flow provided an estimate of the relative importance of ground-water discharge within a basin. Base-flow nitrate loads, total-flow nitrate loads, and total-flow total-nitrogen loads were previously computed from water-quality and discharge measurements by use of a regression model. Base-flow nitrate loads were available from 78 stations, total-flow nitrate loads were available from 86 stations, and total-flow total-nitrogen loads were available for 48 stations. The percentage of base-flow nitrate load to total-flow nitrate load could be computed for 57 stations, whereas the percentage of base-flow nitrate load to totalflow total-nitrogen load could be computed for 36 stations. These loads were divided by the basin area to obtain yields, which were used to compare the nitrate discharge from basins of different sizes. The results indicate that ground-water discharge is a significant source of water and nitrate to the total streamflow and nitrate load. Base flow accounted for 16 to 92 percent of total streamflow at the 276 sampling sites, with a median value of 54 percent. It is estimated that of the 50

  9. Groundwater subsidies and penalties to corn yield

    Science.gov (United States)

    Zipper, S. C.; Booth, E.; Loheide, S. P.

    2013-12-01

    Proper water management is critical to closing yield gaps (observed yield below potential yield) as global populations continue to expand. However, the impacts of shallow groundwater on crop production and surface processes are poorly understood. The presence of groundwater within or just below the root zone has the potential to cause (via oxygen stress in poorly drained soils) or eliminate (via water supply in dry regions) yield gaps. The additional water use by a plant in the presence of shallow groundwater, compared to free drainage conditions, is called the groundwater subsidy; the depth at which the groundwater subsidy is greatest is the optimal depth to groundwater (DTGW). In wet years or under very shallow water table conditions, the groundwater subsidy is likely to be negative due to increased oxygen stress, and can be thought of as a groundwater penalty. Understanding the spatial dynamics of groundwater subsidies/penalties and how they interact with weather is critical to making sustainable agricultural and land-use decisions under a range of potential climates. Here, we examine patterns of groundwater subsidies and penalties in two commercial cornfields in the Yahara River Watershed, an urbanizing agricultural watershed in south-central Wisconsin. Water table levels are generally rising in the region due to a long-term trend of increasing precipitation over the last several decades. Biophysical indicators tracked throughout both the 2012 and 2013 growing seasons show a strong response to variable groundwater levels on a field scale. Sections of the field with optimal DTGW exhibit consistently higher stomatal conductance rates, taller canopies and higher leaf area index, higher ET rates, and higher pollination success rates. Patterns in these biophysical lines of evidence allow us to pinpoint specific periods within the growing season that plants were experiencing either oxygen or water stress. Most importantly, groundwater subsidies and penalties are

  10. Dynamic summarization of bibliographic-based data

    Directory of Open Access Journals (Sweden)

    Hurdle John F

    2011-02-01

    Full Text Available Abstract Background Traditional information retrieval techniques typically return excessive output when directed at large bibliographic databases. Natural Language Processing applications strive to extract salient content from the excessive data. Semantic MEDLINE, a National Library of Medicine (NLM natural language processing application, highlights relevant information in PubMed data. However, Semantic MEDLINE implements manually coded schemas, accommodating few information needs. Currently, there are only five such schemas, while many more would be needed to realistically accommodate all potential users. The aim of this project was to develop and evaluate a statistical algorithm that automatically identifies relevant bibliographic data; the new algorithm could be incorporated into a dynamic schema to accommodate various information needs in Semantic MEDLINE, and eliminate the need for multiple schemas. Methods We developed a flexible algorithm named Combo that combines three statistical metrics, the Kullback-Leibler Divergence (KLD, Riloff's RlogF metric (RlogF, and a new metric called PredScal, to automatically identify salient data in bibliographic text. We downloaded citations from a PubMed search query addressing the genetic etiology of bladder cancer. The citations were processed with SemRep, an NLM rule-based application that produces semantic predications. SemRep output was processed by Combo, in addition to the standard Semantic MEDLINE genetics schema and independently by the two individual KLD and RlogF metrics. We evaluated each summarization method using an existing reference standard within the task-based context of genetic database curation. Results Combo asserted 74 genetic entities implicated in bladder cancer development, whereas the traditional schema asserted 10 genetic entities; the KLD and RlogF metrics individually asserted 77 and 69 genetic entities, respectively. Combo achieved 61% recall and 81% precision, with an F

  11. Towards a tracer-based conceptualization of meltwater dynamics and streamflow response in a glacierized catchment

    Science.gov (United States)

    Penna, Daniele; Engel, Michael; Bertoldi, Giacomo; Comiti, Francesco

    2017-01-01

    Multiple water sources and the physiographic heterogeneity of glacierized catchments hamper a complete conceptualization of runoff response to meltwater dynamics. In this study, we used environmental tracers (stable isotopes of water and electrical conductivity) to obtain new insight into the hydrology of glacierized catchments, using the Saldur River catchment, Italian Alps, as a pilot site. We analysed the controls on the spatial and temporal patterns of the tracer signature in the main stream, its selected tributaries, shallow groundwater, snowmelt and glacier melt over a 3-year period. We found that stream water electrical conductivity and isotopic composition showed consistent patterns in snowmelt-dominated periods, whereas the streamflow contribution of glacier melt altered the correlations between the two tracers. By applying two- and three-component mixing models, we quantified the seasonally variable proportion of groundwater, snowmelt and glacier melt at different locations along the stream. We provided four model scenarios based on different tracer signatures of the end-members; the highest contributions of snowmelt to streamflow occurred in late spring-early summer and ranged between 70 and 79 %, according to different scenarios, whereas the largest inputs by glacier melt were observed in mid-summer, and ranged between 57 and 69 %. In addition to the identification of the main sources of uncertainty, we demonstrated how a careful sampling design is critical in order to avoid underestimation of the meltwater component in streamflow. The results of this study supported the development of a conceptual model of streamflow response to meltwater dynamics in the Saldur catchment, which is likely valid for other glacierized catchments worldwide.

  12. Groundwater and security

    NARCIS (Netherlands)

    Conti, K.I.; Kukurić, N.; Gupta, J.; Pahl-Wostl, C.; Bhaduri, A.; Gupta, J.

    2016-01-01

    Humans abstract two hundred times more groundwater than oil, annually. Ironically, the role of groundwater in water management and supply is underappreciated, partially due to its invisibility. By conducting a literature survey and investigating groundwater information databases, this chapter answer

  13. Model-based assessment of the potential of seasonal aquifer thermal energy storage and recovery as a groundwater ecosystem service for the Brussels-Capital Region

    Science.gov (United States)

    Anibas, Christian; Huysmans, Marijke

    2015-04-01

    Urban areas are characterized by their concentrated demand of energy, applying a high pressure on urban ecosystems including atmosphere, soils and groundwater. In the light of global warming, urbanization and an evolving energy system, it is important to know how urbanized areas can contribute to their own energy demands. One option is to use the possibilities aquifers offer as an ecosystem service (BONTE et al., 2011). If used effectively an improvement in air and groundwater quality is achieved. Additionally, the more efficient distribution of the used energy may also lead to a decrease in primary energy consumption (ZUURBIER, 2013). Therefore, investigations of the potential of seasonal aquifer thermal energy storage and recovery (ATES) for the Brussels-Capital Region, Belgium is being conducted. The potential of ATES systems are of special interest for energy demands in high density urban areas because of such infrastructure as office buildings, schools, hospitals and shopping malls. In an open water circuit ATES systems consist of two or more groundwater wells, where in seasonal cycles one subtracts and the other recharges water to the aquifer. Heat pumps use the heat capacity of water for heating or cooling a building. An important limitation of the methodology is the quality of the groundwater used (i.e. precipitation of Fe- or Mn-oxides can decrease the yield). However, ATES systems on the other hand can also improve groundwater quality and groundwater ecosystems. The current knowledge of the potential for ATES systems in the Brussels-Capital Region is based on geological assessments from VITO (2007). The Brussels-Capital Region is divided into a western and eastern section with respect to geology. While the western part has less favorable conditions for ATES, the eastern is composed of the Brussels Sand formation, which is a 20-40 m thick aquifer layer that has the highest potential for ATES systems in the region. By applying groundwater flow and heat

  14. Analysis of groundwater mining in two carbonate aquifers in Sierra de Estepa (SE Spain) based on hydrodynamic and hydrochemical data

    Science.gov (United States)

    Martos-Rosillo, Sergio; Rodríguez-Rodríguez, Miguel; Moral, Francisco; Cruz-Sanjulián, José Javier; Rubio, Juan Carlos

    2009-11-01

    The carbonate aquifers of Lora and Mingo form part of the hydrogeological unit of Sierra de Estepa (SE Spain). By means of time series analysis and a 1D numerical groundwater model, groundwater exploitation was quantified and the mean annual recharge in both systems was estimated (2001-2004). During this period, the Lora and Mingo aquifers received an average groundwater recharge of 0.29 × 106 m3/year and 0.14 × 106 m3/year, respectively, whereas an average of 0.34 × 106 m3/year and 0.21 × 106 m3/year, respectively, was extracted. These conditions led to a conspicuous lowering of the water table in both systems. In addition, the analysis of the evolution of the main hydrogeochemical parameters of the groundwater showed that the increased pumping rates produced an increase in total dissolved solids, and chloride and sodium ions in both aquifers. In the case of the Lora aquifer, the only ion that presented decreased levels was nitrate. The results show that groundwater pumping in both aquifers should not exceed the mean annual recharge of 0.29 × 106 m3/year and 0.14 × 106 m3/year in the Lora and Mingo aquifers, respectively. Nevertheless, it would be advisable to reduce pumping rates to below these values in order to restore piezometric levels and improve groundwater quality for different uses in the future.

  15. SIMULATION OF GROUNDWATER DEPTH BASED ON BNU-SWAT MODEL%基于BNU-SWAT模型的地下水埋深模拟

    Institute of Scientific and Technical Information of China (English)

    李娇; 孙文超; 鱼京善; 杨岩

    2012-01-01

    Groundwater depth was simulated for Tongzhou District of Beijing by using BNU-SWAT.Data obtained were in good agreement with actual tendency of groundwater depth in the area.Based on this model,under two precipitation scenarios,i.e.normal(P=50%) and dry(P=75%) years in 2020,the future groundwater depth was simulated with several scenarios of land uses and reclaimed water irrigation patterns for Tongzhou District.The result showed that a reasonable cropping pattern adjustment,e.g.a transformation of agricultural land of wheat,corn,etc.to orchard and economic woodland,could effectively reduce the amount of groundwater used for irrigation.In addition,by making use of reclaimed water from Tongzhou District and surrounding areas for agricultural irrigation,not only the groundwater exploitation could be reduced,but also the groundwater could be recharged effectively as well.Combination of above two measures has great importance for groundwater resources conservation in Tongzhou District.%基于BNU-SWAT模型对通州区地下水埋深变化进行了模拟,模拟结果较好地反映了通州区地下水埋深的实际变化趋势.在此基础上,设置了2020年平水年(P=50%)和枯水年(P=75%)2种情景,改变作物种植结构和再生水灌溉模式,模拟了北京市通州区未来地下水位变化趋势.结果表明:种植结构的合理调整,如小麦、玉米等农业用地向林果等经济林地的转变,可以有效减少农业地下水开采量;同时,利用通州区内及周边污水处理厂的再生水进行农业灌溉,不仅减少地下水的开采量,还可以有效补给地下水.以上2种方法的结合对通州区地下水资源保护具有重要的意义.

  16. Thermal management of an urban groundwater body

    Directory of Open Access Journals (Sweden)

    J. Epting

    2012-06-01

    Full Text Available This study presents a management concept for the sustainable thermal use of an urban groundwater body. The concept is designed to be applied for shallow thermal groundwater use and is based on (1 a characterization of the present thermal state of the investigated urban groundwater body; (2 the definition of development goals for specific aquifer regions, including future aquifer use and urbanization; and (3 an evaluation of the thermal use potential for these regions.

    The investigations conducted in the city of Basel (Switzerland focus on thermal processes down-gradient of thermal groundwater use, effects of heated buildings in the aquifer as well as the thermal influence of river-groundwater interaction. Investigation methods include: (1 short- and long-term data analysis; (2 high-resolution multilevel groundwater temperature monitoring; as well as (3 3-D numerical groundwater flow and heat-transport modeling and scenario development. The combination of these methods allows quantifying the thermal influence on the investigated urban groundwater body, including the influences of thermal groundwater use and additional heat from urbanization. Subsequently, management strategies for minimizing further groundwater temperature increase, targeting "potential natural" groundwater temperatures for specific aquifer regions and exploiting the thermal use potential are discussed.

  17. Recharge Area on the Slopes of Volcano Based on Geological Setting, Content of Deuterium and Oxygen Isotopes of Groundwater Chemistry: Case Study on the Slopes of Salak Mountain, West Java

    Directory of Open Access Journals (Sweden)

    Hendarmawan

    2011-09-01

    Full Text Available Indonesian is huge areas that have the highest precipitation in the world, therefore water deficit of groundwater is often happened at anywhere. This study was related to determination of recharge area with approached by combining geological setting, stable isotopes and chemical content of groundwater. Case study was carried out at surrounding the Cicurug area, Sukabumi Prefecture, West Java Province. The area is the slopes of Salak Mountain that have elevation of 400 until 1,200 m mean sea level (msl. While, much groundwater supplies industry activities on elevation 450-500 m msl. Based on data and result analysis of the studies, the recharge areas was not around peak of mountain or near, but water infiltrated on elevation of 700-800 m msl for groundwater exploited by industries. Therefore, the accurate determination of recharge area becomes a key for the groundwater sustainability.

  18. ANALYTICAL SOLUTION OF GROUNDWATER FLUCTUATIONS IN ESTUARINE AQUIFER

    Institute of Scientific and Technical Information of China (English)

    CHEN Jing; ZHOU Zhi-fang; JIA Suo-bao

    2005-01-01

    As a basic factor in the environment of estuary, tidal effects in the coastal aquifer have recently attracted much attention because tidal dynamic also greatly influences the solute transport in the coastal aquifer. Previous studies on tidal dynamic of coastal aquifers have focused on the inland propagation of oceanic tides in the cross-shore direction, a configuration that is essentially one-dimensional. Two-dimensional analytical solutions for groundwater level fluctuation in recent papers are localized in presenting the effect of both oceanic tides and estuarine tides in quadrantal aquifer. A two-dimensional model of groundwater fluctuations in estuarine zone in proposed in this paper. Using complex transform, the two-dimensional flow equation subject to periodic boundary condition is changed into time-independent elliptic problem. Based on Green function method, an analytical solution for groundwater fluctuations in fan-shaped aquifer is derived. The response to of groundwater tidal loading in an estuary and ocean is discussed. The result show that its more extensive application than recent studies.

  19. Aggregation effects on tritium-based mean transit times and young water fractions in spatially heterogeneous catchments and groundwater systems

    Directory of Open Access Journals (Sweden)

    M. K. Stewart

    2017-09-01

    Full Text Available Kirchner (2016a demonstrated that aggregation errors due to spatial heterogeneity, represented by two homogeneous subcatchments, could cause severe underestimation of the mean transit times (MTTs of water travelling through catchments when simple lumped parameter models were applied to interpret seasonal tracer cycle data. Here we examine the effects of such errors on the MTTs and young water fractions estimated using tritium concentrations in two-part hydrological systems. We find that MTTs derived from tritium concentrations in streamflow are just as susceptible to aggregation bias as those from seasonal tracer cycles. Likewise, groundwater wells or springs fed by two or more water sources with different MTTs will also have aggregation bias. However, the transit times over which the biases are manifested are different because the two methods are applicable over different time ranges, up to 5 years for seasonal tracer cycles and up to 200 years for tritium concentrations. Our virtual experiments with two water components show that the aggregation errors are larger when the MTT differences between the components are larger and the amounts of the components are each close to 50 % of the mixture. We also find that young water fractions derived from tritium (based on a young water threshold of 18 years are almost immune to aggregation errors as were those derived from seasonal tracer cycles with a threshold of about 2 months.

  20. Dynamic Gesture Recognition Based on Depth Information

    Directory of Open Access Journals (Sweden)

    GU, D.

    2015-08-01

    Full Text Available Human machine interaction by body language is becoming popular recently. With the help of 3D camera, video stream with depth information provides more detailed data to describe a movement. This paper proposed an algorithm to recognize dynamic gestures. Data preparation is needed first to eliminate some distractions. Then the start and the end of a possible meaningful gesture should be made clear. Finally, Dynamic Time Warping (DTW is employed to calculate the similarity between a sample stream and the template. The test results show that the algorithm works well

  1. Dynamic Terrain Visualization Based on ROAM and OGRE

    Institute of Scientific and Technical Information of China (English)

    FU Hui; WANG Quanmin

    2009-01-01

    Terrain Visualization is an important part of visualization systems of battlefield,and the visualization of dynamic terrain is also important for dynamic battle environment.In this paper,special attention has been paid on real-time optimally adapting meshes (ROAM) algorithm,which is a candidate for dynamic terrain,and its mesh representation,mesh continuity algorithm and error metrics are discussed.The DEXTER-ROAM algorithm is discussed and analyzed.By revising the mesh representation of ROAM,a dynamic ROAM algorithm based on partial-regular grid is established.By introducing transition region,mesh discontinuity of dynamic partial-regular grid is resolved.Error metric blocks are removed for computation complexity and culling blocks are introduced to accelerate view frustum culling.The algorithm is implemented in a 3D rendering engine called OGRE.In the end,an example of dynamic crater is given to examine the dynamic ROAM algorithm.

  2. Neural network based dynamic controllers for industrial robots.

    Science.gov (United States)

    Oh, S Y; Shin, W C; Kim, H G

    1995-09-01

    The industrial robot's dynamic performance is frequently measured by positioning accuracy at high speeds and a good dynamic controller is essential that can accurately compute robot dynamics at a servo rate high enough to ensure system stability. A real-time dynamic controller for an industrial robot is developed here using neural networks. First, an efficient time-selectable hidden layer architecture has been developed based on system dynamics localized in time, which lends itself to real-time learning and control along with enhanced mapping accuracy. Second, the neural network architecture has also been specially tuned to accommodate servo dynamics. This not only facilitates the system design through reduced sensing requirements for the controller but also enhances the control performance over the control architecture neglecting servo dynamics. Experimental results demonstrate the controller's excellent learning and control performances compared with a conventional controller and thus has good potential for practical use in industrial robots.

  3. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping

    Science.gov (United States)

    Naghibi, Seyed Amir; Moghaddam, Davood Davoodi; Kalantar, Bahareh; Pradhan, Biswajeet; Kisi, Ozgur

    2017-05-01

    In recent years, application of ensemble models has been increased tremendously in various types of natural hazard assessment such as landslides and floods. However, application of this kind of robust models in groundwater potential mapping is relatively new. This study applied four data mining algorithms including AdaBoost, Bagging, generalized additive model (GAM), and Naive Bayes (NB) models to map groundwater potential. Then, a novel frequency ratio data mining ensemble model (FREM) was introduced and evaluated. For this purpose, eleven groundwater conditioning factors (GCFs), including altitude, slope aspect, slope angle, plan curvature, stream power index (SPI), river density, distance from rivers, topographic wetness index (TWI), land use, normalized difference vegetation index (NDVI), and lithology were mapped. About 281 well locations with high potential were selected. Wells were randomly partitioned into two classes for training the models (70% or 197) and validating them (30% or 84). AdaBoost, Bagging, GAM, and NB algorithms were employed to get groundwater potential maps (GPMs). The GPMs were categorized into potential classes using natural break method of classification scheme. In the next stage, frequency ratio (FR) value was calculated for the output of the four aforementioned models and were summed, and finally a GPM was produced using FREM. For validating the models, area under receiver operating characteristics (ROC) curve was calculated. The ROC curve for prediction dataset was 94.8, 93.5, 92.6, 92.0, and 84.4% for FREM, Bagging, AdaBoost, GAM, and NB models, respectively. The results indicated that FREM had the best performance among all the models. The better performance of the FREM model could be related to reduction of over fitting and possible errors. Other models such as AdaBoost, Bagging, GAM, and NB also produced acceptable performance in groundwater modelling. The GPMs produced in the current study may facilitate groundwater exploitation

  4. Arresting Strategy Based on Dynamic Criminal Networks Changing over Time

    Directory of Open Access Journals (Sweden)

    Junqing Yuan

    2013-01-01

    Full Text Available We investigate a sequence of dynamic criminal networks on a time series based on the dynamic network analysis (DNA. According to the change of networks’ structure, networks’ variation trend is analyzed to forecast its future structure. Finally, an optimal arresting time and priority list are designed based on our analysis. Better results can be expected than that based on social network analysis (SNA.

  5. Contain contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mutch, R.D. Jr.; Caputi, J.R. [Eckenfelder, Inc., Mahwah, NJ (United States); Ash, R.E. IV [Eckenfelder Inc., Nashville, TN (United States)

    1997-05-01

    Despite recent progress in innovative treatment technologies, many problems with contaminated groundwater still require the use of barrier walls, typically in combination with extraction and treatment systems. New technologies for subsurface barrier walls, mostly based on geomembranes, advancements in self-hardening slurries and permeation grouts with materials such as colloidal silica gel and montan wax emulsions, are being developed at an unprecedented pace. The paper discusses deep soil mixing, jet grouting, slurry trenches, and permeation grouting.

  6. Identification of groundwater parameters using an adaptative multiscale method.

    Science.gov (United States)

    Majdalani, Samer; Ackerer, Philippe

    2011-01-01

    The identification of groundwater parameters in heterogeneous systems is a major challenge in groundwater modeling. Flexible parameterization methods are needed to assess the complexity of the spatial distributions of these parameters in real aquifers. In this article, we introduce an adaptative parameterization to identify the distribution of hydraulic conductivity within the large-scale (4400 km(2) ) Upper Rhine aquifer. The method is based on adaptative multiscale triangulation (AMT) coupled with an inverse problem procedure that identifies the parameters' distributions by reducing the error between measured and simulated heads. The AMT method has the advantage of combining both zonation and interpolation approaches. The AMT method uses area-based interpolation rather than an interpolation based on stochastic features. The method is applied to a standard 2D groundwater model that takes into account the interactions between the aquifer and surface water bodies, groundwater recharge, and pumping wells. The simulation period covers 204 months, from January 1986 to December 2002. Recordings at 109 piezometers are used for model calibration. The simulated heads are globally quite accurate and reproduce the main dynamics of the system. The local hydraulic conductivities resulting from the AMT method agree qualitatively with existing local experimental observations across the Rhine aquifer.

  7. Efficient Quantum Private Communication Based on Dynamic Control Code Sequence

    Science.gov (United States)

    Cao, Zheng-Wen; Feng, Xiao-Yi; Peng, Jin-Ye; Zeng, Gui-Hua; Qi, Jin

    2016-12-01

    Based on chaos and quantum properties, we propose a quantum private communication scheme with dynamic control code sequence. The initial sequence is obtained via chaotic systems, and the control code sequence is derived by grouping, XOR and extracting. A shift cycle algorithm is designed to enable the dynamic change of control code sequence. Analysis shows that transmission efficiency could reach 100 % with high dynamics and security.

  8. CADLIVE optimizer: web-based parameter estimation for dynamic models

    Directory of Open Access Journals (Sweden)

    Inoue Kentaro

    2012-08-01

    Full Text Available Abstract Computer simulation has been an important technique to capture the dynamics of biochemical networks. In most networks, however, few kinetic parameters have been measured in vivo because of experimental complexity. We develop a kinetic parameter estimation system, named the CADLIVE Optimizer, which comprises genetic algorithms-based solvers with a graphical user interface. This optimizer is integrated into the CADLIVE Dynamic Simulator to attain efficient simulation for dynamic models.

  9. Efficient Quantum Private Communication Based on Dynamic Control Code Sequence

    Science.gov (United States)

    Cao, Zheng-Wen; Feng, Xiao-Yi; Peng, Jin-Ye; Zeng, Gui-Hua; Qi, Jin

    2017-04-01

    Based on chaos and quantum properties, we propose a quantum private communication scheme with dynamic control code sequence. The initial sequence is obtained via chaotic systems, and the control code sequence is derived by grouping, XOR and extracting. A shift cycle algorithm is designed to enable the dynamic change of control code sequence. Analysis shows that transmission efficiency could reach 100 % with high dynamics and security.

  10. Rational Allocation of Surface and Groundwater Resources in Well-canal Combined Irrigation Area Based on Support Vector Machines%基于支持向量机的井渠结合灌区地表水地下水合理配置

    Institute of Scientific and Technical Information of China (English)

    刘菁扬; 粟晓玲

    2015-01-01

    地表水和地下水的合理配置是井渠结合灌区实现水资源优化,合理调控地下水位的重要途径。以陕西省泾惠渠地下水位变化的主要影响因素为输入变量,以当年平均地下水位为输出变量,建立了基于支持向量机的地下水位动态模拟模型,模拟不同水文年不同渠首引水量和地下水开采量等17种组合情景的地下水位及其变幅,并以多年采补平衡为地表水地下水合理配置的目标。结果表明,丰、平、枯不同水文年的井渠用水比分别为0.3~0.4、0.2~0.3、0.44~0.55时,可实现灌区地下水多年采补平衡。%The rational allocation of surface water and groundwater is an important way for well-canal combined irrigation area to a‐chieve the optimized and reasonable regulation of groundwater level .A dynamic simulation model of groundwater level based on sup‐port vector machine was established with input variables ,the main factors of groundwater level changes ,and output variables ,aver‐age groundwater level changes in irrigation areas of that year .The groundwater level under 17 kinds combinations of hydrology sce‐narios and water use were forecast by using the model which was tested and aimed to reach the rational allocation between surface water and groundwater ,and keep the balance between extraction and supplement .The results showed that when the ratio of well and canal irrigation water utilization was 0 .3~0 .4 ,0 .2~0 .3 ,0 .44~0 .55 in the wet year ,mean year and dry year ,respectively ,the balance between groundwater recharge and discharge would be kept during many years .

  11. A New Application of Dynamic Data Driven System in the Talbot-Ogden Model for Groundwater Infiltration

    KAUST Repository

    Yu, Han

    2012-06-02

    The TalbotOgden model is a mass conservative method to simulate flow of a wetting liquid in variably-saturated porous media. The principal feature of this model is the discretization of the moisture content domain into bins. This paper gives an analysis of the relationship between the number of bins and the computed flux. Under the circumstances of discrete bins and discontinuous wetting fronts, we show that fluxes increase with the number of bins. We then apply this analysis to the continuous case and get an upper bound of the difference of infiltration rates when the number of bins tends to infinity. We also extend this model by creating a two dimensional moisture content domain so that there exists a probability distribution of the moisture content for different soil systems. With these theoretical and experimental results and using a Dynamic Data Driven Application System (DDDAS), sensors can be put in soils to detect the infiltration fluxes, which are important to compute the proper number of bins for a specific soil system and predict fluxes. Using this feedback control loop, the extended TalbotOgden model can be made more efficient for estimating infiltration into soils.

  12. Groundwater contamination by organic bases derived from coal-tar wastes

    Science.gov (United States)

    Pereira, W.E.; Rostad, C.E.; Garbarino, J.R.; Hult, M.F.

    1983-01-01

    A fluid sample from a shallow aquifer contaminated by coal-tar wastes was analyzed for organic bases. The sample consisted of a mixture of aqueous and oily-tar phases. The phases were separated by centrifugation and filtration. Organic bases were isolated from each phase by pH adjustment and solvent extraction. Organic bases in the oily-tar phase were further purified by neutral-alumina, micro-column adsorption chromatography. Separation and identification of the organic bases in each phase were achieved by using capillary gas chromatography-mass spectrometry-computer (GC-MS-COM) and probe distillation-high resolution mass spectrometry (PD-HRMS) techniques. Organic bases present in the aqueous phase included primary aromatic amines (such as aniline, alkylated anilines, and naphthylamines) as well as azaarenes (such as alkylated pyridines, quinolines, acridine, and benzoquinolines). The oily-tar phase contained acridine, benzacridines, dibenzacridines, and numerous other azaarenes, the elemental compositions of which were determined by PD-HRMS. Azaarenes in the oily-tar phase, varying in size from 6 to 12 rings, are reported for the first time. The origin and environmental significance of these compounds are discussed. ?? 1983.

  13. Ground-water contamination by organic bases derived from coal-tar wastes

    Science.gov (United States)

    Pereira, Wilfred E.; Rostad, Colleen E.; Garbarino, John R.; Hult, Marc F.

    1983-01-01

    A fluid sample from a shallow aquifer contaminated by coal-tar wastes was analyzed for organic bases. The sample consisted of a mixture of aqueous and oily-tar phases. The phases were separated by centrifugation and filtration. Organic bases were isolated from each phase by pH adjustment and solvent extraction. Organic bases in the oily-tar phase were further purified by neutral-alumina, micro-column adsorption chromatography. Separation and identification of the organic bases in each phase were achieved by using capillary gas chromatography-mass spectrometry-computer (GC-MS-COM) and probe distillation-high resolution mass spectrometry (PD-HRMS) techniques. Organic bases present in the aqueous phase included primary aromatic amines (such as aniline, alkylated anilines, and naphthylamines) as well as azaarenes (such as alkylated pyridines, quinolines, acridine, and benzoquinolines). The oily-tar phase contained acridine, benzacridines, dibenzacridines, and numerous other azaarenes, the elemental compositions of which were determined by PD-HRMS. Azaarenes in the oily-tar phase, varying in size from 6 to 12 rings, are reported for the first time. The origin and environmental significance of these compounds are discussed.

  14. System identification based approach to dynamic weighing revisited

    Science.gov (United States)

    Niedźwiecki, Maciej; Meller, Michał; Pietrzak, Przemysław

    2016-12-01

    Dynamic weighing, i.e., weighing of objects in motion, without stopping them on the weighing platform, allows one to increase the rate of operation of automatic weighing systems, used in industrial production processes, without compromising their accuracy. Since the classical identification-based approach to dynamic weighing, based on the second-order mass-spring-damper model of the weighing system, does not yield satisfactory results when applied to conveyor belt type checkweighers, several extensions of this technique are examined. Experiments confirm that when appropriately modified the identification-based approach becomes a reliable tool for dynamic mass measurement in checkweighers.

  15. A dynamic usage based perspective on L2 writing

    NARCIS (Netherlands)

    Verspoor, M.H.; Schmid, M.S.; Xu, X.

    2012-01-01

    The goal of this study was to explore the contribution that a dynamic usage based (DUB) perspective can bring to the establishment of objective measures to assess L2 learners' written texts and at the same time to gain insight into the dynamic process of language development. Four hundred and thirty

  16. Agent-based Multimodal Interface for Dynamically Autonomous Mobile Robots

    Science.gov (United States)

    2003-01-01

    Agent-based Multimodal Interface for Dynamically Autonomous Mobile Robots Donald Sofge, Magdalena Bugajska, William Adams, Dennis...computing paradigm for integrated distributed artificial intelligence systems on autonomous mobile robots (Figure 1). Figure 1 – CoABS Grid...Architecture for Dynamically Autonomous Mobile Robots The remainder of the paper is organized as follows. Section 2 describes our integrated AI

  17. The dynamics of a usage-based approach

    NARCIS (Netherlands)

    Verspoor, Marjolijn; Daems, Jocelyn; Zenner, Eline; Heylen, Kris; Speelman, Dirk; Cuyckens, Hubert

    2015-01-01

    This contribution seeks to connect usage based linguistics with dynamic systems theory, in particular as applied by Edelman (1989) and Thelen and Smith (1994). Edelman’s dynamic biological system starts off with a few simple sub-systems (perception, action, value), all of which interacting with each

  18. Eradication of Ebola Based on Dynamic Programming

    Science.gov (United States)

    Zhu, Jia-Ming; Wang, Lu; Liu, Jia-Bao

    2016-01-01

    This paper mainly studies the eradication of the Ebola virus, proposing a scientific system, including three modules for the eradication of Ebola virus. Firstly, we build a basic model combined with nonlinear incidence rate and maximum treatment capacity. Secondly, we use the dynamic programming method and the Dijkstra Algorithm to set up M-S (storage) and several delivery locations in West Africa. Finally, we apply the previous results to calculate the total cost, production cost, storage cost, and shortage cost. PMID:27313655

  19. Assessment of well vulnerability for groundwater source protection based on a solute transport model: a case study from Jilin City, northeast China

    Science.gov (United States)

    Huan, Huan; Wang, Jinsheng; Lai, Desheng; Teng, Yanguo; Zhai, Yuanzheng

    2015-05-01

    Well vulnerability assessment is essential for groundwater source protection. A quantitative approach to assess well vulnerability in a well capture zone is presented, based on forward solute transport modeling. This method was applied to three groundwater source areas (Jiuzhan, Hadawan and Songyuanhada) in Jilin City, northeast China. The ratio of the maximum contaminant concentration at the well to the released concentration at the contamination source ( c max/ c 0) was determined as the well vulnerability indicator. The results indicated that well vulnerability was higher close to the pumping well. The well vulnerability in each groundwater source area was low. Compared with the other two source areas, the cone of depression at Jiuzhan resulted in higher spatial variability of c max/ c 0 and lower minimum c max/ c 0 by three orders of magnitude. Furthermore, a sensitivity analysis indicated that the denitrification rate in the aquifer was the most sensitive with respect to well vulnerability. A process to derive a NO3-N concentration at the pumping well is presented, based on determining the maximum nitrate loading limit to satisfy China's drinking-water quality standards. Finally, the advantages, disadvantages and prospects for improving the precision of this well vulnerability assessment approach are discussed.

  20. Studies on Resource Management of Sanjiang Plain Groundwater with the Analytical Finite Method Based on Square Grid

    Institute of Scientific and Technical Information of China (English)

    REN Yongtai; DENG Hualing; XU Dan

    2006-01-01

    This article established groundwater flows differential equation mathematical model of Sanjiang Plain on the hydrology theory foundation, and used the analysis finite element method to liner change the differential equation into the large-scale system of linear equations. It took linear equations as a part of constraint conditions of the optimized model, carried on the groundwater flow status equation and the optimized model the coupling, and carries on the solution with the Lingo software. The results indicated that this local shallow layer groundwater resources were rich and have the big development potential. But recent years water resources disposition was unreasonable and ground water mining quantity was oversized, these caused the region water flux to assume the drop tendency.

  1. Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence

    Science.gov (United States)

    Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman

    2016-12-01

    Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.

  2. Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence

    Science.gov (United States)

    Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman

    2017-05-01

    Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.

  3. Area Logistics System Based on System Dynamics Model

    Institute of Scientific and Technical Information of China (English)

    GUI Shouping; ZHU Qiang; LU Lifang

    2005-01-01

    At present, there are few effective ways to analyze area logistics systems. This paper uses system dynamics to analyze the area logistics system and establishes a system dynamics model for the area logistics system based on the characteristics of the area logistics system and system dynamics. Numerical simulations with the system dynamic model were used to analyze a logistic system. Analysis of the Guangzhou economy shows that the model can reflect the actual state of the system objectively and can be used to make policy and harmonize environment.

  4. A Dynamic Travel Time Estimation Model Based on Connected Vehicles

    Directory of Open Access Journals (Sweden)

    Daxin Tian

    2015-01-01

    Full Text Available With advances in connected vehicle technology, dynamic vehicle route guidance models gradually become indispensable equipment for drivers. Traditional route guidance models are designed to direct a vehicle along the shortest path from the origin to the destination without considering the dynamic traffic information. In this paper a dynamic travel time estimation model is presented which can collect and distribute traffic data based on the connected vehicles. To estimate the real-time travel time more accurately, a road link dynamic dividing algorithm is proposed. The efficiency of the model is confirmed by simulations, and the experiment results prove the effectiveness of the travel time estimation method.

  5. PIE: A Dynamic Failure-Based Technique

    Science.gov (United States)

    Voas, Jeffrey M.

    1990-01-01

    This paper presents a dynamic technique for statistically estimating three program characteristics that affect a program's computational behavior: (1) the probability that a particular section of a program is executed, (2) the probability that the particular section affects the data state, and (3) the probability that a data state produced by that section has an effect on program output. These three characteristics can be used to predict whether faults are likely to be uncovered by software testing. Index Terms: Software testing, data state, fault, failure, testability. 1 Introduction

  6. Analysis of Dynamic Modeling Method Based on Boundary Element

    Directory of Open Access Journals (Sweden)

    Xu-Sheng Gan

    2013-07-01

    Full Text Available The aim of this study was to study an improved dynamic modeling method based on a Boundary Element Method (BEM. The dynamic model was composed of the elements such as the beam element, plate element, joint element, lumped mass and spring element by the BEM. An improved dynamic model of a machine structure was establishe