WorldWideScience

Sample records for groundwater domestic wells

  1. Hydraulic evaluation of the groundwater conditions at Finnsjoen. The effects on dilution in a domestic well

    International Nuclear Information System (INIS)

    Axelsson, C.L.; Bystroem, J.; Eriksson, Aa.; Holmen, J.; Haitjema, H.M.

    1991-09-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is presently performing a safety analysis study, SKB 91, for a final repository for spent nuclear fuel. The study is carried out for a generic repository located to the Finnsjoen area, which is one of SKBs oldest study-areas. An important part of the safety analysis is the dose calculations. Radionuclides can be transported to the biosphere via the sea, a lake, and via extraction of groundwater from drilled or dug wells. Thus, an important scenario to study is the dilution of radionuclides in a domestic well drilled in the future close to the repository. The present study is discussing; * Localization, drilling and construction of wells. * Specific capacities and chloride content of the rock mass and wells found in the Finnsjoe are. * Risk areas for future drilled wells. * Dilution in future wells drilled in fracture zones or in the hard rock in the vicinity of the repository. The evaluations show that a well pumping 6 m 3 /day, located in a fracture zone or in the rock mass, has no influence on the local groundwater flow system except for the very vicinity of the well. Consequently, a well may be drilled in the hard rock without any risk of pumping groundwater that has passed the repository. Wells may also be located anywhere in fracture zones, except for in the very discharge area, without any risk of getting groundwater affected by the repository. Modelling indicate that a well drilled in the discharge area for contaminated groundwater, may collect all groundwater from the repository. However, this is based on assumptions of homogeneous continuous fracture zones with a high hydraulic conductivity compared to the rock mass, which will give rise to a concentrated discharge area. (44 refs., 31 figs., 6 tabs.) (au)

  2. Geogenic As and Mo groundwater contamination caused by an abundance of domestic supply wells

    International Nuclear Information System (INIS)

    Pichler, Thomas; Renshaw, Carl E.; Sültenfuß, Jürgen

    2017-01-01

    Lacking a connection to a municipal water supply, each household in the municipality of Lithia, approximately 30 km southeast of Tampa, Florida (USA), is responsible for its own supply of drinking water, causing a high-density of private domestic supply wells (DSW) in this area. There, a multilayered aquifer system exists, which can be subdivided into three distinct hydro stratigraphic units, which are, from the top down: the Surficial Aquifer System (SAS), the Intermediate Aquifer System (IAS), and the Upper Floridan Aquifer System (UFA). Despite the relatively small area, the geochemical and hydrogeological setting in Lithia is complex, consisting of: i) extensive cyclical pumping in a municipal well field to the west, ii) large seasonal changes in hydraulic head, ii) multiple aquifers with different hydraulic heads, and iv) a large density of domestic supply wells (DSW). Within the zone of highest As concentrations, there are approximately 100 wells in an area of 2.5 km × 1.5 km. Most of these wells have large open screened intervals, often open to all three aquifers, allowing the downward flow of oxygenated and upward flow of anoxic groundwater. A survey of groundwater quality found that As and Mo concentrations in the DSW were up to 371 μg/L and 4740 μg/L, respectively. To obtain information about the individual aquifers, 5 well clusters with 4 monitoring intervals (approximately 50 m, 65 m, 80 m and 95 m below surface) and 8 push core wells (approximately 9 m below surface) were installed and sampled. In those wells, As and Mo were only elevated in a permeable layer within the IAS at a depth of 50 m. Values were up to 195 μg/L for As and up to 5050 μg/L for Mo. Using the tritium-helium ("3H–"3He) method, the ages of those samples high in As and Mo were determined to be 40, 30 and 30 years, respectively, while all other samples had ages older than 50 years. This indicated that mixing between young and old groundwater could be responsible

  3. Groundwater quality for 75 domestic wells in Lycoming County, Pennsylvania, 2014

    Science.gov (United States)

    Gross, Eliza L.; Cravotta, Charles A.

    2017-03-06

    Groundwater is a major source of drinking water in Lycoming County and adjacent counties in north-central and northeastern Pennsylvania, which are largely forested and rural and are currently undergoing development for hydrocarbon gases. Water-quality data are needed for assessing the natural characteristics of the groundwater resource and the potential effects from energy and mineral extraction, timber harvesting, agriculture, sewage and septic systems, and other human influences.This report, prepared in cooperation with Lycoming County, presents analytical data for groundwater samples from 75 domestic wells sampled throughout Lycoming County in June, July, and August 2014. The samples were collected using existing pumps and plumbing prior to any treatment and analyzed for physical and chemical characteristics, including nutrients, major ions, metals and trace elements, volatile organic compounds, gross-alpha particle and gross beta-particle activity, uranium, and dissolved gases, including methane and radon-222.Results indicate groundwater quality generally met most drinking-water standards, but that some samples exceeded primary or secondary maximum contaminant levels (MCLs) for arsenic, iron, manganese, total dissolved solids (TDS), chloride, pH, bacteria, or radon-222. Arsenic concentrations were higher than the MCL of 10 micrograms per liter (µg/L) in 9 of the 75 (12 percent) well-water samples, with concentrations as high as 23.6 μg/L; arsenic concentrations were higher than the health advisory level (HAL) of 2 μg/L in 23 samples (31 percent). Total iron concentrations exceeded the secondary maximum contaminant level (SMCL) of 300 μg/L in 20 of the 75 samples. Total manganese concentrations exceeded the SMCL of 50 μg/L in 20 samples and the HAL of 300 μg/L in 2 of those samples. Three samples had chloride concentrations that exceeded the SMCL of 250 milligrams per liter (mg/L); two of those samples exceeded the SMCL of 500 mg/L for TDS. The pH ranged

  4. Influences on domestic well water testing behavior in a Central Maine area with frequent groundwater arsenic occurrence.

    Science.gov (United States)

    Flanagan, Sara V; Marvinney, Robert G; Zheng, Yan

    2015-02-01

    In 2001 the Environmental Protection Agency (EPA) adopted a new standard for arsenic (As) in drinking water of 10 μg/L, replacing the old standard of 50 μg/L. However, for the 12% of the U.S. population relying on unregulated domestic well water, including half of the population of Maine, it is solely the well owner's responsibility to test and treat the water. A mailed household survey was implemented in January 2013 in 13 towns of Central Maine with the goal of understanding the population's testing and treatment practices and the key behavior influencing factors in an area with high well-water dependency and frequent natural groundwater As. The response rate was 58.3%; 525 of 900 likely-delivered surveys to randomly selected addresses were completed. Although 78% of the households reported that their well has been tested, half of it was more than 5 years ago. Among the 58.7% who believe they have tested for As, most do not remember the results. Better educated, higher income homeowners who more recently purchased their homes are most likely to have included As when last testing. While households agree that water and As-related health risks can be severe, they feel low personal vulnerability and there are low testing norms overall. Significant predictors of including As when last testing include: having knowledge that years of exposure increases As-related health risks (risk knowledge), knowing who to contact to test well water (action knowledge), believing that regular testing does not take too much time (instrumental attitude), and having neighbors who regularly test their water (descriptive norm). Homeowners in As-affected communities have the tendency to underestimate their As risks compared to their neighbors. The reasons for this optimistic bias require further study, but low testing behaviors in this area may be due to the influence of a combination of norm, ability, and attitude factors and barriers. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Deciphering groundwater quality for irrigation and domestic

    Indian Academy of Sciences (India)

    Groundwater quality; irrigation and domestic suitability; ionic balance, Suri I and II ... is important for groundwater planning and management in the study area. ... total hardness (TH), Piper's trilinear diagram and water quality index study.

  6. Dry groundwater wells in the western United States

    Science.gov (United States)

    Perrone, D.; Jasechko, S.

    2017-10-01

    Declining groundwater levels are common in parts of the western US, but their impact on the ability of wells to pump groundwater is not known. Here we collate groundwater well records for the western United States and present the recorded locations, depths, and purposes of more than two million groundwater wells constructed between 1950 and 2015. We then use the well records to estimate the percentage of wells that were dry during the years 2013-2015. During the two year period, dry wells were concentrated in rural areas with high agricultural productivity, such as parts of the California Central Valley and the High Plains. Our results support anecdotal evidence that wells used for domestic purposes are more susceptible to drying than wells used for agricultural purposes throughout California’s Central Valley because the former tend to be shallower. However, this is not the case in all regions. Our findings suggest that declining groundwater levels are threatening drinking water reliability and agricultural productivity, and consequently, have key implications for both domestic and agricultural water security. Ongoing reductions to groundwater storage are drying groundwater wells in the western US, and this manifestation of water scarcity warrants innovative groundwater management transcending status quos.

  7. Domestic wells have high probability of pumping septic tank leachate

    Science.gov (United States)

    Bremer, J. E.; Harter, T.

    2012-08-01

    Onsite wastewater treatment systems are common in rural and semi-rural areas around the world; in the US, about 25-30% of households are served by a septic (onsite) wastewater treatment system, and many property owners also operate their own domestic well nearby. Site-specific conditions and local groundwater flow are often ignored when installing septic systems and wells. In areas with small lots (thus high spatial septic system densities), shallow domestic wells are prone to contamination by septic system leachate. Mass balance approaches have been used to determine a maximum septic system density that would prevent contamination of groundwater resources. In this study, a source area model based on detailed groundwater flow and transport modeling is applied for a stochastic analysis of domestic well contamination by septic leachate. Specifically, we determine the probability that a source area overlaps with a septic system drainfield as a function of aquifer properties, septic system density and drainfield size. We show that high spatial septic system density poses a high probability of pumping septic system leachate. The hydraulic conductivity of the aquifer has a strong influence on the intersection probability. We find that mass balance calculations applied on a regional scale underestimate the contamination risk of individual drinking water wells by septic systems. This is particularly relevant for contaminants released at high concentrations, for substances that experience limited attenuation, and those that are harmful even at low concentrations (e.g., pathogens).

  8. Domestic wells have high probability of pumping septic tank leachate

    Directory of Open Access Journals (Sweden)

    J. E. Bremer

    2012-08-01

    Full Text Available Onsite wastewater treatment systems are common in rural and semi-rural areas around the world; in the US, about 25–30% of households are served by a septic (onsite wastewater treatment system, and many property owners also operate their own domestic well nearby. Site-specific conditions and local groundwater flow are often ignored when installing septic systems and wells. In areas with small lots (thus high spatial septic system densities, shallow domestic wells are prone to contamination by septic system leachate. Mass balance approaches have been used to determine a maximum septic system density that would prevent contamination of groundwater resources. In this study, a source area model based on detailed groundwater flow and transport modeling is applied for a stochastic analysis of domestic well contamination by septic leachate. Specifically, we determine the probability that a source area overlaps with a septic system drainfield as a function of aquifer properties, septic system density and drainfield size. We show that high spatial septic system density poses a high probability of pumping septic system leachate. The hydraulic conductivity of the aquifer has a strong influence on the intersection probability. We find that mass balance calculations applied on a regional scale underestimate the contamination risk of individual drinking water wells by septic systems. This is particularly relevant for contaminants released at high concentrations, for substances that experience limited attenuation, and those that are harmful even at low concentrations (e.g., pathogens.

  9. Groundwater quality in the Indian Wells Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  10. Groundwater sampling with well-points

    International Nuclear Information System (INIS)

    Laubacher, R.C.; Bailey, W.M.

    1992-01-01

    This paper reports that BP Oil Company and Engineering-Science (ES) conducted a groundwater investigation at a BP Oil Distribution facility in the coastal plain of south central Alabama. The predominant lithologies include unconsolidated Quaternary-aged gravels, sands, silts and clay. Wellpoints were used to determine the vertical and horizontal extent of volatile hydrocarbons in the water table aquifer. To determine the vertical extent of contaminant migration, the hollow-stem augers were advanced approximately 10 feet into the aquifer near a suspected source. The drill stem and bit were removed very slowly to prevent sand heaving. The well-point was again driven ahead of the augers and four volumes (18 liters) of groundwater were purged. A sample was collected and the headspace vapor was analyzed as before. Groundwater from a total of seven borings was analyzed using these techniques. Permanent monitoring wells were installed at four boring locations which had volatile concentrations less than 1 part per million. Later groundwater sampling and laboratory analysis confirmed the wells had been installed near or beyond both the horizontal and vertical plume boundaries

  11. Groundwater monitoring for deep-well injection

    International Nuclear Information System (INIS)

    Chia, Y.; Chiu, J.

    1994-01-01

    A groundwater monitoring system for detecting waste migration would not only enhance confidence in the long-term containment of injected waste, but would also provide early warnings of contamination for prompt responses to protect underground sources of drinking water (USDWs). Field experiences in Florida have demonstrated monitoring water quality and fluid pressure changes in overlying formations is useful in detecting the upward migration of injected waste. Analytical and numerical solutions indicate changes in these two monitoring parameters can vary on the basis of hydrogeologic characteristics, operation conditions, and the distances from the injection well to the monitoring wells and to the preferential hydrologic conduits. To detect waste migration through defects around the wellbore or the leaky containment interval, groundwater monitoring wells should be placed as close as possible to an injection well. In the vertical direction, a monitoring well completed in a permeable interbed within the containment interval is expected to have the highest potential for detecting upward migration. Another acceptable horizon for groundwater monitoring is the lower portion of the buffer brine aquifer immediately above the containment interval. Monitoring wells in USDWs may be needed when waste has been detected in deeper formations or when leakage out of well casings poses a concern. A monitoring well open to the injection interval is of little value in alleviating the concerns of long-term upward migration. Moreover, the installation of the well could create additional preferential pathways. Complications in groundwater monitoring may arise at existing injection sites, especially with prior releases. It is also important to recognize that monitoring in the vicinity of the wellbore may not be effective for detecting waste migration through unidentified unplugged wells or undetected transmissive fractures

  12. Properties of Sealing Materials in Groundwater Wells

    DEFF Research Database (Denmark)

    Köser, Claus

    pellets as sealing material in groundwater wells. The way and the pattern, in which bentonite pellets are deposited, have been shown to have an effect on the swelling pressure of the bentonite seal. During the transport phase of pellets from the terrain to a given sedimentation depth, a sorting process......) into densities for clay/water systems has been developed. This method has successfully been used to evaluate e.g., macroporosity, homogenization of the bentonite seal during the hydration of water, hydraulic conductivity and the creation of channels in the bentonite seals. Based on the results obtained...

  13. Groundwater well services site safety and health plan

    International Nuclear Information System (INIS)

    Tuttle, B.G.

    1996-08-01

    This Site Specific Health and Safety Plan covers well servicing in support of the Environmental Restoration Contractor Groundwater Project. Well servicing is an important part of environmental restoration activities supporting several pump and treat facilities and assisting in evaluation and servicing of various groundwater wells throughout the Hanford Site. Remediation of contaminated groundwater is a major part of the ERC project. Well services tasks help enhance groundwater extraction/injection as well as maintain groundwater wells for sampling and other hydrologic testing and information gathering

  14. Groundwater levels for selected wells in Upper Kittitas County, Washington

    Science.gov (United States)

    Fasser, E.T.; Julich, R.J.

    2011-01-01

    Groundwater levels for selected wells in Upper Kittitas County, Washington, are presented on an interactive, web-based map to document the spatial distribution of groundwater levels in the study area measured during spring 2011. Groundwater-level data and well information were collected by the U.S. Geological Survey using standard techniques and are stored in the U.S. Geological Survey National Water Information System, Groundwater Site-Inventory database.

  15. Anisotropic analysis for seismic sensitivity of groundwater monitoring wells

    Science.gov (United States)

    Pan, Y.; Hsu, K.

    2011-12-01

    Taiwan is located at the boundaries of Eurasian Plate and the Philippine Sea Plate. The movement of plate causes crustal uplift and lateral deformation to lead frequent earthquakes in the vicinity of Taiwan. The change of groundwater level trigged by earthquake has been observed and studied in Taiwan for many years. The change of groundwater may appear in oscillation and step changes. The former is caused by seismic waves. The latter is caused by the volumetric strain and reflects the strain status. Since the setting of groundwater monitoring well is easier and cheaper than the setting of strain gauge, the groundwater measurement may be used as a indication of stress. This research proposes the concept of seismic sensitivity of groundwater monitoring well and apply to DonHer station in Taiwan. Geostatistical method is used to analysis the anisotropy of seismic sensitivity. GIS is used to map the sensitive area of the existing groundwater monitoring well.

  16. Hydrochemical characteristics of groundwater for domestic and irrigation purposes in Madhuranthakam, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    K. Brindha

    2011-12-01

    Full Text Available Hydrochemical study was carried out in Madhuranthakam located near Chennai in Tamil Nadu, India with an objective of understanding the suitability of local groundwater quality for domestic and irrigation purposes. Twenty groundwater samples were collected in February 2002 and analysed for physical and chemical parameters. Groundwater in this area was found to be within the desirable Bureau of Indian Standards and World Health Organisation limits for drinking water. Ca-HCO3 was the dominant groundwater type. Groundwater in this area was assessed for irrigation purposes on the basis of sodium percentage (Na%, magnesium hazard (MH, residual sodium carbonate (RSC, sodium absorption ratio (SAR, permeability index (PI and United States Department of Agriculture (USDA classification. Most of the groundwater samples were suitable for irrigation, except in a few locations (15% based on MH. Overall the groundwater quality was suitable for drinking and domestic purposes and permissible for irrigation activities.

  17. Effect of Domestic Waste Leachates on Quality Parameters of Groundwater

    Directory of Open Access Journals (Sweden)

    John Jiya MUSA

    2014-02-01

    Full Text Available Water is an elixir of life. Percolating groundwater provides a medium through which wastes particularly organics can undergo degradation into simpler substances through biochemical reactions involving dissolution, hydrolysis, oxidation and reduction processes. Ground water samples in and around dumpsite and landfills located in Kubuwa were studied to assess the effect of wastewater leachates on groundwater resources in the particular area. Groundwater samples were collected from 5 different bore-wells in and around relative distances from dumpsites. EC values ranged between 30 and 138 µS/cm, TDS ranged between 95 mg/L and 120 mg/L, SS ranged between 10 and 23 mg/L while that of the evening ranged between 11 and 15 mg/L, nitrate values ranged between 0.18 to 0.80 mg/L for the early morning samples while the late evening samples which ranged between 0.25 and 0.43 mg/L, while concentration of Sulphate in the morning water sample ranged between 168 and 213 mg/L while that of the evening ranged between 20 and 45 mg/L. The government of the Federal Republic of Nigeria should create landfills and dumpsites far away from residential homes and better still recycling plants should be put in place to recycle the various forms of waste products from homes.

  18. The buffer value of groundwater when well yield is limited

    Science.gov (United States)

    Foster, T.; Brozović, N.; Speir, C.

    2017-04-01

    A large proportion of the total value of groundwater in conjunctive use systems is associated with the ability to smooth out shortfalls in surface water supply during droughts. Previous research has argued that aquifer depletion in these regions will impact farmers negatively by reducing the available stock of groundwater to buffer production in future periods, and also by increasing the costs of groundwater extraction. However, existing studies have not considered how depletion may impact the productivity of groundwater stocks in conjunctive use systems through reductions in well yields. In this work, we develop a hydro-economic modeling framework to quantify the effects of changes in well yields on the buffer value of groundwater, and apply this model to an illustrative case study of tomato production in California's Central Valley. Our findings demonstrate that farmers with low well yields are forced to forgo significant production and profits because instantaneous groundwater supply is insufficient to buffer surface water shortfalls in drought years. Negative economic impacts of low well yields are an increasing function of surface water variability, and are also greatest for farmers operating less efficient irrigation systems. These results indicate that impacts of well yield reductions on the productivity of groundwater are an important economic impact of aquifer depletion, and that failure to consider this feedback may lead to significant errors in estimates of the value of groundwater management in conjunctive use systems.

  19. CY2003 RCRA GROUNDWATER MONITORING WELL SUMMARY REPORT

    International Nuclear Information System (INIS)

    MARTINEZ, C.R.

    2003-01-01

    This report describes the calendar year (CY) 2003 field activities associated with the installation of two new groundwater monitoring wells in the A-AX Waste Management Area (WMA) and four groundwater monitoring wells in WMA C in the 200 East Area of the Hanford Nuclear Reservation. All six wells were installed by Fluor Hanford Inc. (FH) for CH2M Hill Hanford Group, Inc. (CHG) in support of Draft Hanford Facility Agreement and Consent Order (Tri-Party Agreement) M-24-00 milestones and ''Resource Conservation and Recovery Act of 1976'' (RCRA) groundwater monitoring requirements. Drilling data for the six wells are summarized in Table 1

  20. groundwater quality and its suitability for domestic and agricultural

    African Journals Online (AJOL)

    PROF EKWUEME

    Hydrogeochemical analysis of groundwater samples collected from parts of the Wilberforce Island in Bayelsa State,. Southern Nigeria has ... chemical composition of groundwater or anthropogenic factors that ...... of pipelines in the Niger Delta.

  1. Deciphering groundwater quality for irrigation and domestic purposes

    Indian Academy of Sciences (India)

    for groundwater planning and management in the study area. It is not only the .... hydrochemical methods to assess the suitability of groundwater in .... levels and aid in the production of energy and pro- tein. ...... Alkali Soils; Agric Handbook 60.

  2. Evaluation of groundwater quality and its suitability for drinking, domestic, and agricultural uses in the Banana Plain (Mbanga, Njombe, Penja) of the Cameroon Volcanic Line.

    Science.gov (United States)

    Ako, Andrew Ako; Shimada, Jun; Hosono, Takahiro; Ichiyanagi, Kimpei; Nkeng, George Elambo; Fantong, Wilson Yetoh; Eyong, Gloria Eneke Takem; Roger, Ntankouo Njila

    2011-12-01

    Groundwater quality of the Banana Plain (Mbanga, Njombe, Penja-Cameroon) was assessed for its suitability for drinking, domestic, and agricultural uses. A total of 67 groundwater samples were collected from open wells, springs, and boreholes. Samples were analyzed for physicochemical properties, major ions, and dissolved silica. In 95% of groundwater samples, calcium is the dominant cation, while sodium dominates in 5% of the samples. Eighty percent of the samples have HCO(3) as major anion, and in 20%, NO(3) is the major anion. Main water types in the study area are CaHCO(3), CaMgHCO(3), CaNaHCO(3), and CaNaNO(3)ClHCO(3). CO(2)-driven weathering of silicate minerals followed by cation exchange seemingly controls largely the concentrations of major ions in the groundwaters of this area. Nitrate, sulfate, and chloride concentrations strongly express the impact of anthropogenic activities (agriculture and domestic activities) on groundwater quality. Sixty-four percent of the waters have nitrate concentrations higher than the drinking water limit. Also limiting groundwater use for potable and domestic purposes are contents of Ca(2+), Mg(2+) and HCO(3) (-) and total hardness (TH) that exceed World Health Organization (WHO) standards. Irrigational suitability of groundwaters in the study area was also evaluated, and results show that all the samples are fit for irrigation. Groundwater quality in the Banana Plain is impeded by natural geology and anthropogenic activities, and proper groundwater management strategies are necessary to protect sustainably this valuable resource.

  3. "Know Your Well" A Groundwater Quality Project to Inform Students and Well-Owners

    Science.gov (United States)

    Olson, C.; Snow, D.; Samal, A.; Ray, C.; Kreifels, M.

    2017-12-01

    Over 15 million U.S. households rely on private, household wells for drinking water, and these sources are not protected under the Safe Drinking Water Act. Data on private well water quality is slowly being collected and evaluated from a number of different agencies, sources and projects. A new project is designed both for training high school students and to help assess the quality of water from rural domestic wells in Nebraska. This "crowd sourced" program engaging high school agricultural education programs, FFA chapters, and science classes with students sampling and testing water sampling from rural domestic wells from 12 districts across the state. Students and teachers from selected school were trained through multiple school visits, both in the classroom and in the field. Classroom visits were used to introduce topics such as water quality and groundwater, and testing methods for specific analytes. During the field visit, students were exposed to field techniques, the importance of accuracy in data collection, and what factors might influence the water in sampled wells. High school students learn to sample and test water independently. Leadership and initiative is developed through the program, and many experience the enlightenment that comes with citizen science. A customized mobile app was developed for ease of data entry and visualization, and data uploaded to a secure website where information was stored and compared to laboratory tests of the same measurements. General water quality parameters, including pH, electrical conductivity, major anions are tested in the field and laboratory, as well as environmental contaminants such as arsenic, uranium, pesticides, bacteria. Test kits provided to each class were used by the students to measure selected parameters, and then duplicate water samples were analyzed at a university laboratory. Five high schools are involved in the project during its first year. Nitrate, bacteria and pesticides represent major

  4. Land application of domestic wastewater in Florida--statewide assessment of impact on ground-water quality

    Science.gov (United States)

    Franks, Bernard J.

    1981-01-01

    In Florida domestic waste water is being applied to the land for disposal and reuse. State and Federal regulations favor land-application methods over other advanced waste water treatment practices. Despite the increasing use of this alternative technology, little is known about localized effects on groundwater quality. This report documents the extent of land-application practices in Florida and summarizes case study information on some of the more adequately monitored site throughout the State. More than 2,500 sites in Florida are permitted by the Department of Environmental Regulation for applying domestic waste water to the land. The majority (more than 1,700 sites), classified as infiltration ponds, are concentrated in central and southern Florida. More than 560 sites classified as drainfields, and more than 250 sites classified as irrigation sites, are located primarily in central Florida. An estimated 150 million gallons per day of domestic waste water, after required secondary treatment, are applied to Florida soils. Despite the large numbers of sites and the considerable volume of waste water utilized, little is known about potential impact on groundwater quality. At the few sites where observation wells have been drilled and local groundwater quality monitored, no significant deterioration of water quality has been detected. (USGS)

  5. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Schaider, Laurel A., E-mail: schaider@silentspring.org; Ackerman, Janet M.; Rudel, Ruthann A.

    2016-03-15

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1 mg/L NO{sub 3}-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. - Highlights: • We tested 20 domestic drinking water wells for 117 organic wastewater compounds. • PFASs, pharmaceuticals, and an artificial sweetener were most frequently detected. • Nitrate, boron, and well depth were all correlated with PFASs and pharmaceuticals. • Acesulfame

  6. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer

    International Nuclear Information System (INIS)

    Schaider, Laurel A.; Ackerman, Janet M.; Rudel, Ruthann A.

    2016-01-01

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1 mg/L NO_3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. - Highlights: • We tested 20 domestic drinking water wells for 117 organic wastewater compounds. • PFASs, pharmaceuticals, and an artificial sweetener were most frequently detected. • Nitrate, boron, and well depth were all correlated with PFASs and pharmaceuticals. • Acesulfame (artificial

  7. groundwater quality assessment of wells in ifewara, osun state

    African Journals Online (AJOL)

    influences as a result of factors such as overpopulation and activities (including agriculture, indiscriminate refuse disposal and use of septic tanks, soak away and latrines) which are capable of producing run-offs and leachate which could infiltrate into and pollute groundwater formation. Many households depend on wells ...

  8. Workshop on methods for siting groundwater monitoring wells: Proceedings

    International Nuclear Information System (INIS)

    Jacobson, E.

    1992-02-01

    The primary purpose of this workshop was to identify methods for the optimum siting of groundwater monitoring wells to minimize the number required that will provide statistically and physically representative samples. In addition, the workshop served to identify information and data gaps, stimulated discussion and provided an opportunity for exchange of ideas between regulators and scientists interested in siting groundwater monitoring wells. These proceedings should serve these objectives and provide a source of relevant information which may be used to evaluate the current state of development of methods for siting groundwater monitoring wells and the additional research needs. The proceedings contain the agenda and list of attendees in the first section. The abstract and viewgraphs for each presentation are given in the second section. For several presentations, abstracts and viewgraphs were not received. After the presentations, four working groups were organized and met for approximately a day. The working group leaders then gave a verbal summary of their sessions. This material was transcribed and is included in the next section of these proceedings. The appendices contain forms describing various methods discussed in the working groups

  9. Groundwater quality assessment for domestic and agriculture purposes in Puducherry region

    Science.gov (United States)

    Sridharan, M.; Senthil Nathan, D.

    2017-11-01

    Totally about 174 groundwater samples have been collected during pre-monsoon and post-monsoon season to study the suitability for domestic and agriculture purposes along the coastal aquifers of Puducherry region. Parameters such as pH, total dissolved solids (TDS), electrical conductivity (EC), sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), bicarbonate (HCO3), chloride (Cl) and sulfate (SO4) were analyzed to assess the suitability of groundwater for domestic purposes. Sodium adsorption ratio (SAR), magnesium adsorption ratio (MAR), residual sodium bicarbonate (RSC), soluble sodium percentage (Na%), permeability index (PI) and chlorinity index were assessed for irrigation purposes. The higher concentration of ions such as Na, Ca, Cl and So4 indicates seawater intrusion, mineral dissolution, intense agricultural practices and improper sewage disposal. The level of EC, TDS and hardness in the water samples indicates that maximum of them are suitable for drinking and domestic purposes. The parameters such as SAR, Na%, PI, MAR and Chlorinity index indicates that majority of water sample are very good to moderately suitable for agriculture. In pre-monsoon, RSC of about 5.7% of samples was higher which when used for a longer time alter the soil properties and reduce crop production. Wilcox diagram suggests that water samples are of medium saline to low sodium type indicating that groundwater is suitable for irrigation. Temporal variation of groundwater quality shows significant increasing trend in EC, TDS and ions like Mg, K and Cl in the last decade, mainly due to anthropogenic activities with little geogenic impact in the quality of groundwater.

  10. Modeling nitrate at domestic and public-supply well depths in the Central Valley, California

    Science.gov (United States)

    Nolan, Bernard T.; Gronberg, JoAnn M.; Faunt, Claudia C.; Eberts, Sandra M.; Belitz, Ken

    2014-01-01

    Aquifer vulnerability models were developed to map groundwater nitrate concentration at domestic and public-supply well depths in the Central Valley, California. We compared three modeling methods for ability to predict nitrate concentration >4 mg/L: logistic regression (LR), random forest classification (RFC), and random forest regression (RFR). All three models indicated processes of nitrogen fertilizer input at the land surface, transmission through coarse-textured, well-drained soils, and transport in the aquifer to the well screen. The total percent correct predictions were similar among the three models (69–82%), but RFR had greater sensitivity (84% for shallow wells and 51% for deep wells). The results suggest that RFR can better identify areas with high nitrate concentration but that LR and RFC may better describe bulk conditions in the aquifer. A unique aspect of the modeling approach was inclusion of outputs from previous, physically based hydrologic and textural models as predictor variables, which were important to the models. Vertical water fluxes in the aquifer and percent coarse material above the well screen were ranked moderately high-to-high in the RFR models, and the average vertical water flux during the irrigation season was highly significant (p < 0.0001) in logistic regression.

  11. Modeling nitrate at domestic and public-supply well depths in the Central Valley, California

    Science.gov (United States)

    Nolan, Bernard T.; Gronberg, JoAnn M.; Faunt, Claudia C.; Eberts, Sandra M.; Belitz, Ken

    2014-01-01

    Aquifer vulnerability models were developed to map groundwater nitrate concentration at domestic and public-supply well depths in the Central Valley, California. We compared three modeling methods for ability to predict nitrate concentration >4 mg/L: logistic regression (LR), random forest classification (RFC), and random forest regression (RFR). All three models indicated processes of nitrogen fertilizer input at the land surface, transmission through coarse-textured, well-drained soils, and transport in the aquifer to the well screen. The total percent correct predictions were similar among the three models (69–82%), but RFR had greater sensitivity (84% for shallow wells and 51% for deep wells). The results suggest that RFR can better identify areas with high nitrate concentration but that LR and RFC may better describe bulk conditions in the aquifer. A unique aspect of the modeling approach was inclusion of outputs from previous, physically based hydrologic and textural models as predictor variables, which were important to the models. Vertical water fluxes in the aquifer and percent coarse material above the well screen were ranked moderately high-to-high in the RFR models, and the average vertical water flux during the irrigation season was highly significant (p in logistic regression.

  12. Perceptions of operators as well as domestic and foreign guests

    African Journals Online (AJOL)

    Research in Hospitality Management is co-published by NISC (Pty) Ltd and Routledge, Taylor & Francis Group. Copyright ... rather than of market-driven strategic considerations; for example ... Western world; however, it is a relatively new concept for. Chinese ..... both cases, domestic brands received higher ratings by their.

  13. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer.

    Science.gov (United States)

    Schaider, Laurel A; Ackerman, Janet M; Rudel, Ruthann A

    2016-03-15

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1mg/L NO3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Bayesian nitrate source apportionment to individual groundwater wells in the Central Valley by use of elemental and isotopic tracers

    Science.gov (United States)

    Ransom, Katherine M; Grote, Mark N.; Deinhart, Amanda; Eppich, Gary; Kendall, Carol; Sanborn, Matthew E.; Sounders, A. Kate; Wimpenny, Joshua; Yin, Qing-zhu; Young, Megan B.; Harter, Thomas

    2016-01-01

    Groundwater quality is a concern in alluvial aquifers that underlie agricultural areas, such as in the San Joaquin Valley of California. Shallow domestic wells (less than 150 m deep) in agricultural areas are often contaminated by nitrate. Agricultural and rural nitrate sources include dairy manure, synthetic fertilizers, and septic waste. Knowledge of the relative proportion that each of these sources contributes to nitrate concentration in individual wells can aid future regulatory and land management decisions. We show that nitrogen and oxygen isotopes of nitrate, boron isotopes, and iodine concentrations are a useful, novel combination of groundwater tracers to differentiate between manure, fertilizers, septic waste, and natural sources of nitrate. Furthermore, in this work, we develop a new Bayesian mixing model in which these isotopic and elemental tracers were used to estimate the probability distribution of the fractional contributions of manure, fertilizers, septic waste, and natural sources to the nitrate concentration found in an individual well. The approach was applied to 56 nitrate-impacted private domestic wells located in the San Joaquin Valley. Model analysis found that some domestic wells were clearly dominated by the manure source and suggests evidence for majority contributions from either the septic or fertilizer source for other wells. But, predictions of fractional contributions for septic and fertilizer sources were often of similar magnitude, perhaps because modeled uncertainty about the fraction of each was large. For validation of the Bayesian model, fractional estimates were compared to surrounding land use and estimated source contributions were broadly consistent with nearby land use types.

  15. Groundwater Levels for Selected Wells in the Chehalis River Basin, Washington

    Science.gov (United States)

    Fasser, E.T.; Julich, R.J.

    2010-01-01

    Groundwater levels for selected wells in the Chehalis River basin, Washington, are presented on an interactive web-based map to document the spatial distribution of groundwater levels in the study area during late summer 2009. Groundwater level data and well information were collected by the U.S. Geological Survey using standard techniques. The data are stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.

  16. Well Construction Details, Groundwater Elevations, and Figures for the Tijeras Arroyo Groundwater Area at Sandia National Laboratories, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This Sandia National Laboratories / New Mexico (SNL/NM) submittal contains groundwater information that the United States Geological Survey (USGS) has requested. The USGS will use the information to assist Kirtland Air Force Base (KAFB) in its ongoing groundwater studies. The information in this submittal contains well-construction details and groundwater-elevation data for monitoring wells that SNL/NM has installed. Relevant well-construction data from other government agencies are also summarized. This submittal contains four data tables and three figures. Information in the tables has been used by SNL/NM to prepare groundwater compliance reports that have previously incorporated the three figures. The figures depict the potentiometric surface for the Perched Groundwater System, the potentiometric surface for the Regional Aquifer, and a Conceptual Site Model for the vicinity of Tijeras Arroyo in the northern portion of KAFB.

  17. The application of parallel wells to support the use of groundwater for sustainable irrigation

    Science.gov (United States)

    Suhardi

    2018-05-01

    The use of groundwater as a source of irrigation is one alternative in meeting water needs of plants. Using groundwater for irrigation requires a high cost because of the discharge that can be taken is limited. In addition, the use of large groundwater can cause environmental damage and social conflict. To minimize costs, maintain quality of the environment and to prevent social conflicts, it is necessary to innovate in the groundwater taking system. The study was conducted with an innovation of using parallel wells. Performance is measured by comparing parallel wells with a single well. The results showed that the use of parallel wells to meet the water needs of rice plants and increase the pump discharge up to 100%. In addition, parallel wells can reduce the influence radius of taking of groundwater compared to single well so as to prevent social conflict. Thus, the use of parallel wells can support the achievement of the use of groundwater for sustainable irrigation.

  18. High-throughput DNA microarray detection of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley, Nepal.

    Science.gov (United States)

    Inoue, Daisuke; Hinoura, Takuji; Suzuki, Noriko; Pang, Junqin; Malla, Rabin; Shrestha, Sadhana; Chapagain, Saroj Kumar; Matsuzawa, Hiroaki; Nakamura, Takashi; Tanaka, Yasuhiro; Ike, Michihiko; Nishida, Kei; Sei, Kazunari

    2015-01-01

    Because of heavy dependence on groundwater for drinking water and other domestic use, microbial contamination of groundwater is a serious problem in the Kathmandu Valley, Nepal. This study investigated comprehensively the occurrence of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley by applying DNA microarray analysis targeting 941 pathogenic bacterial species/groups. Water quality measurements found significant coliform (fecal) contamination in 10 of the 11 investigated groundwater samples and significant nitrogen contamination in some samples. The results of DNA microarray analysis revealed the presence of 1-37 pathogen species/groups, including 1-27 biosafety level 2 ones, in 9 of the 11 groundwater samples. While the detected pathogens included several feces- and animal-related ones, those belonging to Legionella and Arthrobacter, which were considered not to be directly associated with feces, were detected prevalently. This study could provide a rough picture of overall pathogenic bacterial contamination in the Kathmandu Valley, and demonstrated the usefulness of DNA microarray analysis as a comprehensive screening tool of a wide variety of pathogenic bacteria.

  19. Hydrology and numerical simulation of groundwater flow and streamflow depletion by well withdrawals in the Malad-Lower Bear River Area, Box Elder County, Utah

    Science.gov (United States)

    Stolp, Bernard J.; Brooks, Lynette E.; Solder, John

    2017-03-28

    The Malad-Lower Bear River study area in Box Elder County, Utah, consists of a valley bounded by mountain ranges and is mostly agricultural or undeveloped. The Bear and Malad Rivers enter the study area with a combined average flow of about 1,100,000 acre-feet per year (acre-ft/yr), and this surface water dominates the hydrology. Groundwater occurs in consolidated rock and basin fill. Groundwater recharge occurs from precipitation in the mountains and moves through consolidated rock to the basin fill. Recharge occurs in the valley from irrigation. Groundwater discharge occurs to rivers, springs and diffuse seepage areas, evapotranspiration, field drains, and wells. Groundwater, including springs, is a source for municipal and domestic water supply. Although withdrawal from wells is a small component of the groundwater budget, there is concern that additional groundwater development will reduce the amount of flow in the Malad River. Historical records of surface-water diversions, land use, and groundwater levels indicate relatively stable hydrologic conditions from the 1960s to the 2010s, and that current groundwater development has had little effect on the groundwater system. Average annual recharge to and discharge from the groundwater flow system are estimated to be 164,000 and 228,000 acre-ft/yr, respectively. The imbalance between recharge and discharge represents uncertainties resulting from system complexities, and the possibility of groundwater inflow from surrounding basins.This study reassesses the hydrologic system, refines the groundwater budget, and creates a numerical groundwater flow model that is used to analyze the effects of groundwater withdrawals on surface water. The model uses the detailed catalog of locations and amounts of groundwater recharge and discharge defined during this study. Calibrating the model to adequately simulate recharge, discharge, and groundwater levels results in simulated aquifer properties that can be used to understand

  20. Estimation of groundwater flow rate using the decay of 222Rn in a well

    International Nuclear Information System (INIS)

    Hamada, Hiromasa

    1999-01-01

    A method of estimating groundwater flow rate using the decay of 222 Rn in a well was investigated. Field application revealed that infiltrated water (i.e., precipitation, pond water and irrigation water) accelerated groundwater flow. In addition, the depth at which groundwater was influenced by surface water was determined. The velocity of groundwater in a test well was estimated to be of the order of 10 -6 cm s -1 , based on the ratio of 222 Rn concentration in groundwater before and after it flowed into the well. This method is applicable for monitoring of groundwater flow rate where the velocity in a well is from 10 -5 to 10 -6 cm s -1

  1. Generalization of Water Pricing Model in Agriculture and Domestic Groundwater for Water Sustainability and Conservation

    Science.gov (United States)

    Hek, Tan Kim; Fadzli Ramli, Mohammad; Iryanto; Rohana Goh, Siti; Zaki, Mohd Faiz M.

    2018-03-01

    The water requirement greatly increased due to population growth, increased agricultural areas and industrial development, thus causing high water demand. The complex problems facing by country is water pricing is not designed optimally as a staple of human needs and on the other hand also cannot guarantee the maintenance and distribution of water effectively. The cheap water pricing caused increase of water use and unmanageable water resource. Therefore, the more optimal water pricing as an effective control of water policy is needed for the sake of ensuring water resources conservation and sustainability. This paper presents the review on problems, issues and mathematical modelling of water pricing based on agriculture and domestic groundwater for water sustainability and conservation.

  2. Exposure to Domestic and Community Violence and Subjective Well-Being in Adolescents

    Directory of Open Access Journals (Sweden)

    Doralúcia Gil da Silva

    Full Text Available Abstract There is major exposure to domestic and community violence during adolescence, which has been negatively related to well-being. This work aimed to identify relationships between domestic and community violence and the levels of subjective well-being perceived by adolescents, considering sex and age. The participants were 426 adolescents from public schools in the south of Brazil; 62% were girls, with a mean age of 14.91 years old ( SD = 1.65, who answered one instrument about exposure to violence and another about well-being. Results indicated greater domestic violence exposure among girls and greater community exposure among boys. The age range from 16 to 18 years old was the most exposed to domestic violence. Boys reported greater well-being and less negative affect. Differences in violence exposure may be related to roles of gender in our society. Well-being promotion is highlighted as a resource for confronting violence among adolescents.

  3. Exposure to Domestic and Community Violence and Subjective Well-Being in Adolescents

    OpenAIRE

    Silva, Doralúcia Gil da; Dell'Aglio, Débora Dalbosco

    2016-01-01

    Abstract There is major exposure to domestic and community violence during adolescence, which has been negatively related to well-being. This work aimed to identify relationships between domestic and community violence and the levels of subjective well-being perceived by adolescents, considering sex and age. The participants were 426 adolescents from public schools in the south of Brazil; 62% were girls, with a mean age of 14.91 years old ( SD = 1.65), who answered one instrument about exposu...

  4. A survey of domestic wells and pit latrines in rural settlements of Mali: Implications of on-site sanitation on the quality of water supplies.

    Science.gov (United States)

    Martínez-Santos, P; Martín-Loeches, M; García-Castro, N; Solera, D; Díaz-Alcaide, S; Montero, E; García-Rincón, J

    2017-10-01

    On-site sanitation is generally advocated as a means to eradicate the health hazards associated with open defecation. While this has provided a welcome upgrade to the livelihoods of millions of people in low-income countries, improved sanitation facilities are increasingly becoming a threat to domestic groundwater-based supplies. Within this context, a survey of pit latrines, domestic wells and improved water sources was carried out in a large rural village of southern Mali. All households were surveyed for water, sanitation and hygiene habits. Domestic wells and improved water sources were georeferenced and sampled for water quality (pH, electric conductivity, temperature, turbidity, total dissolved solids, thermotolerant coliforms, chloride and nitrate) and groundwater level, while all latrines were inspected and georeferenced. A GIS database was then used to evaluate the proportion of water points within the influence area of latrines, as well as to underpin multiple regression models to establish the determinants for fecal contamination in drinking supplies. Moreover, an appraisal of domestic water treatment practices was carried out. This revealed that nearly two-thirds of the population uses bleach to purify drinking supplies, but also that domestic-scale treatment as currently implemented by the population is far from effective. It is thus concluded that existing habits could be enhanced as a means to make water supplies safer. Furthermore, population, well and latrine density were all identified as statistically significant predictors for fecal pollution at different spatial scales. These findings are policy-relevant in the context of groundwater-dependent human settlements, since many countries in the developing world currently pursue the objective of eliminating open defecation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Design, placement, and sampling of groundwater monitoring wells for the management of hazardous waste disposal facilities

    International Nuclear Information System (INIS)

    Tsai, S.Y.

    1988-01-01

    Groundwater monitoring is an important technical requirement in managing hazardous waste disposal facilities. The purpose of monitoring is to assess whether and how a disposal facility is affecting the underlying groundwater system. This paper focuses on the regulatory and technical aspects of the design, placement, and sampling of groundwater monitoring wells for hazardous waste disposal facilities. Such facilities include surface impoundments, landfills, waste piles, and land treatment facilities. 8 refs., 4 figs

  6. In-situ restauration of groundwater. Experiences with a hydro-airlift-well

    International Nuclear Information System (INIS)

    Bruehl, H.; Naumann, J.; Verleger, H.

    1995-01-01

    The Hydro-Airlift-well is a groundwater circulation well designed for the treatment of groundwater polluted by volatile contaminants. Decontamination is performed by a stripping process inside of the well. A pilot project was run in Berlin-Kreuzberg in order to show the method's capability under the hydrogeological conditions of the Spree-valley. Two wells were run successivily for a period of 1 1/2 years, and performance was monitored with regard to decontamination and size of influenced area. The system yielded a good degree of decontamination. If the well design is fit for the prevailing geological conditions, groundwater circulation will occur as desired. (orig.) [de

  7. Use of qualitative and quantitative information in neural networks for assessing agricultural chemical contamination of domestic wells

    Science.gov (United States)

    Mishra, A.; Ray, C.; Kolpin, D.W.

    2004-01-01

    A neural network analysis of agrichemical occurrence in groundwater was conducted using data from a pilot study of 192 small-diameter drilled and driven wells and 115 dug and bored wells in Illinois, a regional reconnaissance network of 303 wells across 12 Midwestern states, and a study of 687 domestic wells across Iowa. Potential factors contributing to well contamination (e.g., depth to aquifer material, well depth, and distance to cropland) were investigated. These contributing factors were available in either numeric (actual or categorical) or descriptive (yes or no) format. A method was devised to use the numeric and descriptive values simultaneously. Training of the network was conducted using a standard backpropagation algorithm. Approximately 15% of the data was used for testing. Analysis indicated that training error was quite low for most data. Testing results indicated that it was possible to predict the contamination potential of a well with pesticides. However, predicting the actual level of contamination was more difficult. For pesticide occurrence in drilled and driven wells, the network predictions were good. The performance of the network was poorer for predicting nitrate occurrence in dug and bored wells. Although the data set for Iowa was large, the prediction ability of the trained network was poor, due to descriptive or categorical input parameters, compared with smaller data sets such as that for Illinois, which contained more numeric information.

  8. Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination

    Science.gov (United States)

    Jasechko, Scott; Perrone, Debra; Befus, Kevin M.; Bayani Cardenas, M.; Ferguson, Grant; Gleeson, Tom; Luijendijk, Elco; McDonnell, Jeffrey J.; Taylor, Richard G.; Wada, Yoshihide; Kirchner, James W.

    2017-06-01

    The vulnerability of groundwater to contamination is closely related to its age. Groundwaters that infiltrated prior to the Holocene have been documented in many aquifers and are widely assumed to be unaffected by modern contamination. However, the global prevalence of these `fossil' groundwaters and their vulnerability to modern-era pollutants remain unclear. Here we analyse groundwater carbon isotope data (12C, 13C, 14C) from 6,455 wells around the globe. We show that fossil groundwaters comprise a large share (42-85%) of total aquifer storage in the upper 1 km of the crust, and the majority of waters pumped from wells deeper than 250 m. However, half of the wells in our study that are dominated by fossil groundwater also contain detectable levels of tritium, indicating the presence of much younger, decadal-age waters and suggesting that contemporary contaminants may be able to reach deep wells that tap fossil aquifers. We conclude that water quality risk should be considered along with sustainable use when managing fossil groundwater resources.

  9. Dug Well Recharge Method for Insitu Mitigation of Fluoride Contamination in Groundwater

    Science.gov (United States)

    Ganesan, G.; Lakshmanan, E.; Gunalan, J.

    2016-12-01

    Groundwater with fluoride concentration exceeding 1.5 mg/l is not suitable for drinking water supply as it may cause health issues such as dental and skeletal fluorosis to humans. Several million people around the world has been affected by fluorosis. The objective of the study is to mitigate the problem of fluoride contamination in groundwater by increasing groundwater recharge through a dug well recharge system. The study was carried out in a part of Vaniyar river basin, northwest Tamil Nadu, India where fluorosis is prevalent. A cylindrical pit of 1m diameter and 1.5 m height was constructed during May 2014 at a distance of about 4 m from a dug well existing in this area. This cylindrical pit was divided into 3 compartments and one of them was filled with gravel and one with sand. The third compartment was kept empty for inspection and maintenance. The rainfall collected in a funnel shaped depression was allowed to pass through these compartments to discharge in the nearby dug well through a pipe. The concentration of the fluoride in groundwater from this well was had been monitoring on bi-monthly basis from the year 2012 to 2014. After construction of dug well recharge system, the groundwater level has raised by about 5 m and the fluoride concentration has decreased from 3.1 mg/l to 1.44 mg/l due to recharge. The concentration of fluoride and groundwater level is being monitored on daily basis from June 2014. It is evident that the recharge system constructed is working well and the concentration of fluoride in groundwater is within the permissible limit. The advantage of this dug well recharge system is its low cost and the ease of implementation. Thus this pilot study on dug well recharge system demonstrated it's potential in reducing the concentration of fluoride in groundwater which is more beneficial to the society as they cannot afford the well proven water treatment methods.

  10. A study on migration of contaminants and effect on the groundwater system at the Gemencheh domestic waste disposal site, Negeri Sembilan using integrated nuclear, geophysical and hydrogeochemical methods

    International Nuclear Information System (INIS)

    Mohd Tadza Abdul Rahman

    2001-01-01

    species concentration, rate and extent of contamination. This method shows that the species of chlorides, nitrates, iron, manganese, lead, mercury, sodium, potassium, calcium, magnesium, sulphates, chromium and cadmium originating from the leachate of domestic waste had contaminated the middle and the downstream regions of the study site. The concentration of these species is tens of times higher than the limits of the Drinking Water Quality 1984 as stipulated by the World Health Organisation except for ferum that had reached a value of 700 times higher. It can be concluded that the domestic waste dumped at the Gemencheh disposal site has seriously contaminated the groundwater. This work also shows that the integration of the three methods is useful because it was possible to compile a lot of data and information which were complete, detailed and extensive as well as able to provide a clear picture of the contaminants species, migration and distribution pattern of contamination as well as impact to groundwater quality at the study site. (author)

  11. Well-Construction, Water-Level, and Water-Quality Data for Ground-Water Monitoring Wells for the J4 Hydrogeologic Study, Arnold Air Force Base, Tennessee

    National Research Council Canada - National Science Library

    Haugh, Connor J

    1996-01-01

    ...) in Coffee County, Tennessee. The wells ranged from 28 to 289 feet deep and were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality...

  12. Streamflow depletion by wells--Understanding and managing the effects of groundwater pumping on streamflow

    Science.gov (United States)

    Barlow, Paul M.; Leake, Stanley A.

    2012-11-02

    Groundwater is an important source of water for many human needs, including public supply, agriculture, and industry. With the development of any natural resource, however, adverse consequences may be associated with its use. One of the primary concerns related to the development of groundwater resources is the effect of groundwater pumping on streamflow. Groundwater and surface-water systems are connected, and groundwater discharge is often a substantial component of the total flow of a stream. Groundwater pumping reduces the amount of groundwater that flows to streams and, in some cases, can draw streamflow into the underlying groundwater system. Streamflow reductions (or depletions) caused by pumping have become an important water-resource management issue because of the negative impacts that reduced flows can have on aquatic ecosystems, the availability of surface water, and the quality and aesthetic value of streams and rivers. Scientific research over the past seven decades has made important contributions to the basic understanding of the processes and factors that affect streamflow depletion by wells. Moreover, advances in methods for simulating groundwater systems with computer models provide powerful tools for estimating the rates, locations, and timing of streamflow depletion in response to groundwater pumping and for evaluating alternative approaches for managing streamflow depletion. The primary objective of this report is to summarize these scientific insights and to describe the various field methods and modeling approaches that can be used to understand and manage streamflow depletion. A secondary objective is to highlight several misconceptions concerning streamflow depletion and to explain why these misconceptions are incorrect.

  13. Several natural indicators of radial well ageing at the Belgrade groundwater source, part 1.

    Science.gov (United States)

    Dimkić, M; Pusić, M; Vidovic, D; Petković, A; Boreli-Zdravković, D

    2011-01-01

    Over time, the radial collector wells of the Belgrade Groundwater Source, located in the alluvial sediments of the Sava River, exhibit a decline in discharge and a reduction in operating efficiency due to well ageing. An increase in hydraulic losses at the lateral screens, due to chemical and biochemical clogging, has been identified as the primary cause. Certain hydrogeological, hydrochemical and microbiological parameters reflect the well-ageing process and can, therefore, be considered as its indicators. An indicator-based determination of scale is an important aspect in the selection of appropriate well locations, structural characteristics, and maintenance approaches. Well ageing was studied over a period of 5 years (2005-2009). The objective was to investigate the causes of well ageing. The correlations established between the groundwater redox potential, the total iron concentration in groundwater, the grain-size distribution of the aquifer, and well discharge, are presented in the paper.

  14. Particle tracking for selected groundwater wells in the lower Yakima River Basin, Washington

    Science.gov (United States)

    Bachmann, Matthew P.

    2015-10-21

    The Yakima River Basin in south-central Washington has a long history of irrigated agriculture and a more recent history of large-scale livestock operations, both of which may contribute nutrients to the groundwater system. Nitrate concentrations in water samples from shallow groundwater wells in the lower Yakima River Basin exceeded the U.S. Environmental Protection Agency drinking-water standard, generating concerns that current applications of fertilizer and animal waste may be exceeding the rate at which plants can uptake nutrients, and thus contributing to groundwater contamination.

  15. Impact of landfills, domestic and industrial waste on the aquifer in Raipur city and contribution of karst feature to the groundwater contaminations

    International Nuclear Information System (INIS)

    Sinha, U.K.; Deodhar, A.; Kulkarni, U.P.; Sharma, Suman

    2004-01-01

    Karst features (landscapes that result from dissolution and surface drainage of carbonate terrains) are potentially a large source of water. They have distinctive features, which distinguish them from fissured and porous aquifers. These features include a general lack of permanent surface streams, existence of surface holes into which surface stream sink, presence of underground big channels and large springs etc. Karst environments are used for potable water supply as well as disposal sites for municipal, agricultural and industrial waste dumping. The peculiar geomorphologic and hydrological features of karst make them highly vulnerable for groundwater pollution. The ease with which they can be polluted make a fit case of taking protection measures in advance. Raipur is a major business, educational center as well as capital city of Chhattisgarh state in India. The city has been rapidly expanding during the last two decades, as a result of rapid industrialisation and various economic developments. Wastes generated from a wide variety of industrial, commercial, agricultural and domestic activities are dumped into pits or low - lying area around the Raipur City. The climate in the area is characterised by very hot summer and well distributed rain over four months during monsoon season. Monsoon precipitation begins from mid June and generally remains active till the end of September. The average annual precipitation is ∼1250 mm. In the study area, groundwater lies in the karstified nature of geological formation and is naturally susceptible to contamination by landfills, domestic and industrial wastes. The karstification feature is exposed to the surface in Raipur city at many places. Environmental isotopes ( 2 H, 3 H, 18 O and 13 C) as well as chemistry of the water samples were used to identify a few places, which are prone to contamination in Raipur city. Deterioration of the groundwater quality is not alarming due to thin shale (impervious layer) cover over the

  16. Modeling groundwater nitrate concentrations in private wells in Iowa.

    Science.gov (United States)

    Wheeler, David C; Nolan, Bernard T; Flory, Abigail R; DellaValle, Curt T; Ward, Mary H

    2015-12-01

    Contamination of drinking water by nitrate is a growing problem in many agricultural areas of the country. Ingested nitrate can lead to the endogenous formation of N-nitroso compounds, potent carcinogens. We developed a predictive model for nitrate concentrations in private wells in Iowa. Using 34,084 measurements of nitrate in private wells, we trained and tested random forest models to predict log nitrate levels by systematically assessing the predictive performance of 179 variables in 36 thematic groups (well depth, distance to sinkholes, location, land use, soil characteristics, nitrogen inputs, meteorology, and other factors). The final model contained 66 variables in 17 groups. Some of the most important variables were well depth, slope length within 1 km of the well, year of sample, and distance to nearest animal feeding operation. The correlation between observed and estimated nitrate concentrations was excellent in the training set (r-square=0.77) and was acceptable in the testing set (r-square=0.38). The random forest model had substantially better predictive performance than a traditional linear regression model or a regression tree. Our model will be used to investigate the association between nitrate levels in drinking water and cancer risk in the Iowa participants of the Agricultural Health Study cohort. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Modeling groundwater nitrate concentrations in private wells in Iowa

    Science.gov (United States)

    Wheeler, David C.; Nolan, Bernard T.; Flory, Abigail R.; DellaValle, Curt T.; Ward, Mary H.

    2015-01-01

    Contamination of drinking water by nitrate is a growing problem in many agricultural areas of the country. Ingested nitrate can lead to the endogenous formation of N-nitroso compounds, potent carcinogens. We developed a predictive model for nitrate concentrations in private wells in Iowa. Using 34,084 measurements of nitrate in private wells, we trained and tested random forest models to predict log nitrate levels by systematically assessing the predictive performance of 179 variables in 36 thematic groups (well depth, distance to sinkholes, location, land use, soil characteristics, nitrogen inputs, meteorology, and other factors). The final model contained 66 variables in 17 groups. Some of the most important variables were well depth, slope length within 1 km of the well, year of sample, and distance to nearest animal feeding operation. The correlation between observed and estimated nitrate concentrations was excellent in the training set (r-square = 0.77) and was acceptable in the testing set (r-square = 0.38). The random forest model had substantially better predictive performance than a traditional linear regression model or a regression tree. Our model will be used to investigate the association between nitrate levels in drinking water and cancer risk in the Iowa participants of the Agricultural Health Study cohort.

  18. Modeling the Factors Impacting Pesticide Concentrations in Groundwater Wells

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Binning, Philip John; Albrechtsen, Hans-Jørgen

    2015-01-01

    This study examines the effect of pumping, hydrogeology, and pesticide characteristics on pesticide concentrations in production wells using a reactive transport model in two conceptual hydrogeologic systems; a layered aquifer with and without a stream present. The pumping rate can significantly...... affect the pesticide breakthrough time and maximum concentration at the well. The effect of the pumping rate on the pesticide concentration depends on the hydrogeology of the aquifer; in a layered aquifer, a high pumping rate resulted in a considerably different breakthrough than a low pumping rate......, while in an aquifer with a stream the effect of the pumping rate was insignificant. Pesticide application history and properties have also a great impact on the effect of the pumping rate on the concentration at the well. The findings of the study show that variable pumping rates can generate temporal...

  19. Temperature logging of groundwater in bedrock wells for geothermal gradient characterization in New Hampshire, 2012

    Science.gov (United States)

    Degnan, James; Barker, Gregory; Olson, Neil; Wilder, Leland

    2012-01-01

    The U.S. Geological Survey, in cooperation with the New Hampshire Geological Survey, measured the fluid temperature of groundwater in deep bedrock wells in the State of New Hampshire in order to characterize geothermal gradients in bedrock. All wells selected for the study had low water yields, which correspond to low groundwater flow from fractures. This reduced the potential for flow-induced temperature changes that would mask the natural geothermal gradient in the bedrock. All the wells included in this study were privately owned, and permission to use the wells was obtained from homeowners before logging.

  20. Groundwater quality in Geauga County, Ohio: status, including detection frequency of methane in water wells, 2009, and changes during 1978-2009

    Science.gov (United States)

    Jagucki, Martha L.; Kula, Stephanie P.; Mailot, Brian E.

    2015-01-01

    Domestic wells that are not safeguarded by regular water-quality testing provide drinking water for 79 percent of the residents of Geauga County, in northeastern Ohio. Since 1978, the U.S. Geological Survey (USGS) has worked cooperatively with the Board of Commissioners and Geauga County Planning Commission to monitor the quality of groundwater in four commonly used aquifers in county—the glacial deposits, the Pottsville Formation, the Cuyahoga Group, and the Berea Sandstone. A 33-percent growth in population from 1980 to 2009 increased the potential for humans to influence groundwater resources by withdrawing more groundwater, disposing of more human waste near the land surface, treating an expanded network of township roads with deicing salt, and likely using more solvents, pesticides, and other chemicals on the land surface than were used in preceding decades.

  1. Mitigation of non-point source of fluoride on groundwater by dug well recharge

    Science.gov (United States)

    Ganesan, G.; Lakshmanan, E.

    2017-12-01

    Groundwater used for drinking purpose is affected in many regions due to the presence of excess fluoride. The excess intake of fluoride through drinking water causes fluorosis to human in many states of India, including Tamil Nadu. The present study was carried out with the objective of assessing hydrogeochemistry of groundwater and the feasibility of dug well recharge to reduce the fluoride concentration in Vaniyar river basin, Tamil Nadu, India. The major source for fluoride in groundwater of this area is the epidote hornblende gneissic and charnockite which are the major rocks occurring in this region. As a pilot study a cost effective induced recharge structure was constructed at Papichettipatty village in the study region. The study shows that the groundwater level around the recharge site raised up to 2 m from 14.5 m (bgl) and fluoride concentration has decreased from 3.8 mg/l to 0.9 mg/l due to dilution. The advantage of this induced recharge structure is of its low cost, the ease of implementation, improved groundwater recharge and dilution of fluoride in groundwater. An area of about 1.5 km2 has benefited due to this dug well recharge system.

  2. A pragmatic approach to study the groundwater quality suitability for domestic and agricultural usage, Saq aquifer, northwest of Saudi Arabia.

    Science.gov (United States)

    Nazzal, Yousef; Ahmed, Izrar; Al-Arifi, Nassir S N; Ghrefat, Habes; Zaidi, Faisal K; El-Waheidi, Mahmud M; Batayneh, Awni; Zumlot, Taisser

    2014-08-01

    The present study deals with detailed hydrochemical assessment of groundwater within the Saq aquifer. The Saq aquifer which extends through the NW part of Saudi Arabia is one of the major sources of groundwater supply. Groundwater samples were collected from about 295 groundwater wells and analyzed for various physico-chemical parameters such as electrical conductivity (EC), pH, temperature, total dissolved solids (TDS), Na(+), K(+), Ca(2+), Mg(2+), CO3 (-), HCO3 (-), Cl(-), SO4 (2-), and NO3 (-). Groundwater in the area is slightly alkaline and hard in nature. Electrical conductivity (EC) varies between 284 and 9,902 μS/cm with an average value of 1,599.4 μS/cm. The groundwater is highly mineralized with approximately 30 % of the samples having major ion concentrations above the WHO permissible limits. The NO3 (-) concentration varies between 0.4 and 318.2 mg/l. The depth distribution of NO3 (-) concentration shows higher concentration at shallow depths with a gradual decrease at deeper depths. As far as drinking water quality criteria are concerned, study shows that about 33 % of samples are unfit for use. A detailed assessment of groundwater quality in relation to agriculture use reveals that 21 % samples are unsuitable for irrigation. Using Piper's classification, groundwater was classified into five different groups. Majority of the samples show Mix-Cl-SO4- and Na-Cl-types water. The abundances of Ca(2+) and Mg(2+) over alkalis infer mixed type of groundwater facies and reverse exchange reactions. The groundwater has acquired unique chemical characteristics through prolonged rock-water interactions, percolation of irrigation return water, and reactions at vadose zone.

  3. The assessment of groundwater geochemistry of some wells in Rafsanjan plain, Iran

    Directory of Open Access Journals (Sweden)

    Milad Mirzaei Aminiyan

    2016-07-01

    Full Text Available Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Groundwater and irrigation water quality play important roles in main production this crop. For this purpose, 94 well water samples were taken from 25 wells and samples analyzed. The results showed that four main types of water were found: Na-Cl, K-Cl, Na-SO4, and K-SO4. It seems that most wells in terms of water quality (salinity and alkalinity and based on Wilcox diagram have critical status. The analysis suggested that more than 87% of the well water samples have high values of EC that these values are higher than into critical limit EC value for irrigation water, which may be due to the sandy soils in this area. Most groundwater were relatively unsuitable for irrigation but it could be used by application of correct management such as removing and reducing the ion concentrations of Cl‾, SO42‾, Na+ and total hardness in groundwater and also the concentrated deep groundwater was required treatment to reduce the salinity and sodium hazard. Given that irrigation water quality in this area was relatively unsuitable for most agriculture production but pistachio tree was adapted to this area conditions. The integrated management of groundwater for irrigation is the way to solve water quality issues not only in Rafsanjan area, but also in other arid and semi-arid areas.

  4. Methane in groundwater from a leaking gas well, Piceance Basin, Colorado, USA

    Science.gov (United States)

    McMahon, Peter B.; Thomas, Judith C.; Crawford, John T.; Dornblaser, Mark M.; Hunt, Andrew G.

    2018-01-01

    Site-specific and regional analysis of time-series hydrologic and geochemical data collected from 15 monitoring wells in the Piceance Basin indicated that a leaking gas well contaminated shallow groundwater with thermogenic methane. The gas well was drilled in 1956 and plugged and abandoned in 1990. Chemical and isotopic data showed the thermogenic methane was not from mixing of gas-rich formation water with shallow groundwater or natural migration of a free-gas phase. Water-level and methane-isotopic data, and video logs from a deep monitoring well, indicated that a shale confining layer ~125 m below the zone of contamination was an effective barrier to upward migration of water and gas. The gas well, located 27 m from the contaminated monitoring well, had ~1000 m of uncemented annular space behind production casing that was the likely pathway through which deep gas migrated into the shallow aquifer. Measurements of soil gas near the gas well showed no evidence of methane emissions from the soil to the atmosphere even though methane concentrations in shallow groundwater (16 to 20 mg/L) were above air-saturation levels. Methane degassing from the water table was likely oxidized in the relatively thick unsaturated zone (~18 m), thus rendering the leak undetectable at land surface. Drilling and plugging records for oil and gas wells in Colorado and proxies for depth to groundwater indicated thousands of oil and gas wells were drilled and plugged in the same timeframe as the implicated gas well, and the majority of those wells were in areas with relatively large depths to groundwater. This study represents one of the few detailed subsurface investigations of methane leakage from a plugged and abandoned gas well. As such, it could provide a useful template for prioritizing and assessing potentially leaking wells, particularly in cases where the leakage does not manifest itself at land surface.

  5. The Savannah River Site's Groundwater Monitoring Program 1991 well installation report

    International Nuclear Information System (INIS)

    1992-06-01

    This report is a summary of the well and environmental soil boring information compiled for the groundwater monitoring program of the Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) at the Savannah River Site (SRS) during 1991. It includes discussion of environmental soil borings, surveying, well installations, abandonments, maintenance, and stabilization

  6. A case study of optimization in the decision process: Siting groundwater monitoring wells

    International Nuclear Information System (INIS)

    Cardwell, H.; Huff, D.; Douthitt, J.; Sale, M.

    1993-12-01

    Optimization is one of the tools available to assist decision makers in balancing multiple objectives and concerns. In a case study of the siting decision for groundwater monitoring wells, we look at the influence of the optimization models on the decisions made by the responsible groundwater specialist. This paper presents a multi-objective integer programming model for determining the location of monitoring wells associated with a groundwater pump-and-treat remediation. After presenting the initial optimization results, we analyze the actual decision and revise the model to incorporate elements of the problem that were later identified as important in the decision-making process. The results of a revised model are compared to the actual siting plans, the recommendations from the initial optimization runs, and the initial monitoring network proposed by the decision maker

  7. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation

    Science.gov (United States)

    Sutton, Patrick T.; Ginn, Timothy R.

    2014-12-01

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5 h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater.

  8. Characteristic groundwater level regimes in the capture zones of radial collector wells and importance of identification (Case study of Belgrade Groundwater Source

    Directory of Open Access Journals (Sweden)

    Božović Đorđije

    2016-01-01

    Full Text Available Assessment of the operating modes of radial collector wells reveals that the pumping levels in the well caissons are very low relative to the depth/elevation of the laterals, which is a common occurrence at Belgrade Groundwater Source. As a result, well discharge capacities vary over a broad range and groundwater levels in the capture zones differ even when the rate of discharge is the same. Five characteristic groundwater level regimes are identified and their origin is analyzed using representative wells as examples. The scope and type of background information needed to identify the groundwater level regime are presented and an interpretation approach is proposed for preliminary assessment of the aquifer potential at the well site for providing the needed amount of groundwater. [Projekat Ministarstva nauke Republike Srbije, br. OI176022, br. TR33039 i br. III43004

  9. Estimation of the proximity of private domestic wells to underground storage tanks: Oklahoma pilot study.

    Science.gov (United States)

    Weaver, James W; Murray, Andrew R; Kremer, Fran V

    2017-12-31

    For protecting drinking water supplies, the locations of areas with reliance on private domestic wells (hereafter referred to as "wells") and their relationship to contaminant sources need to be determined. A key resource in the U.S. was the 1990 Census where the source of domestic drinking water was a survey question. Two methods are developed to update estimates of the areal density of well use using readily accessible data. The first uses well logs reported to the states and the addition of housing units reported to the Census Bureau at the county, census tract and census block group scales. The second uses housing units reported to the Census and an estimated well use fraction. To limit the scope and because of abundant data, Oklahoma was used for a pilot project. The resulting well density estimates were consistent among spatial scales, and were statistically similar. High rates of well use were identified to the north and east of Oklahoma City, primarily in expanding cities located over a productive aquifer. In contrast, low rates of well use were identified in rural areas without public water systems and in Oklahoma's second largest city, Tulsa, each attributable to lack of suitable ground water. High densities of well use may be expected in rural areas without public water systems, expanding cities and suburbs, and legacy areas of well usage. The completeness of reported well logs was tested by counts from neighborhoods with known reliance on wells which showed reporting rates of 20% to 98%. Well densities in these neighborhoods were higher than the larger-scale estimates indicating that locally high densities typically exist within analysis units. A Monte Carlo procedure was used to determine that 27% of underground storage tanks that had at least one well within a typical distance of concern of 300m (1000ft). Published by Elsevier B.V.

  10. Nitrate variability in groundwater of North Carolina using monitoring and private well data models.

    Science.gov (United States)

    Messier, Kyle P; Kane, Evan; Bolich, Rick; Serre, Marc L

    2014-09-16

    Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. Results show significant differences in the spatial distribution of groundwater NO3- contamination in monitoring versus private wells; high NO3- concentrations in the southeastern plains of North Carolina; and wastewater treatment residuals and swine confined animal feeding operations as local sources of NO3- in monitoring wells. Results are of interest to agencies that regulate drinking water sources or monitor health outcomes from ingestion of drinking water. Lastly, LUR-BME model estimates can be integrated into surface water models for more accurate management of nonpoint sources of nitrogen.

  11. Desalination of brackish groundwater and concentrate disposal by deep well injection

    NARCIS (Netherlands)

    Wolthek, N.; Raat, K.; Ruijter, J.A.; Kemperman, Antonius J.B.; Oosterhof, A.

    2013-01-01

    In the province of Friesland (in the Northern part of The Netherlands), problems have arisen with the abstraction of fresh groundwater due to salinization of wells by upcoming of brackish water. A solution to this problem is to intercept (abstract) the upcoming brackish water, desalinate it with a

  12. Groundwater recharge estimates of the Indian Wells Basin (California) using geochemical analysis of tritium

    Science.gov (United States)

    Faulkner, K. E.; Hagedorn, K. B.

    2017-12-01

    Quantifying recharge in groundwater basins located in an arid climate is difficult due to the effects of evapotranspiration and generally low rates of inflow. Constraining recharge for the Indian Wells Valley (IWV) will allow a more refined assessment of groundwater sustainability in the basin. In this study, a well-mixed reservoir model, the decay rate of tritium, groundwater tritium data acquired from USGS, and atmospheric tritium data acquired from IAEA allow for calculation of renewal rate within IWV. The resulting renewal rate throughout the basin show correlation to travel time from the source of recharge to the measurement location in keeping with the well-mixed reservoir model. The renewal rate can be used with porosity and effective aquifer thickness to generate recharge rates ranging from 4.7 cm/yr to 10 cm/yr. Refinement of the porosity and effective aquifer thickness values at each sample location is necessary to constrain recharge rates. Groundwater modeling generated recharge rates (9.32 cm/yr) fall within this range. These results are in keeping with the well-mixed aquifer model and fall within a reasonable range for an arid climate, which shows the applicability of the method.

  13. U-234/U-238 ratio: Qualitative estimate of groundwater flow in Rocky Flats monitoring wells

    International Nuclear Information System (INIS)

    Laul, J.C.

    1994-01-01

    Groundwater movement through various pathways is the primary mechanism for the transport of radionuclides and trace elements in a water/rock interaction. About three dozen wells, installed in the Rocky Flats Plant (RFP) Solar Evaporation Ponds (SEP) area, are monitored quarterly to evaluate the extent of any lateral and downgradient migration of contaminants from the Solar Evaporation Ponds: 207-A; 207-B North, 207-B Center, and 207-B South; and 207-C. The Solar Ponds are the main source for the various contaminants: radionuclides (U-238, U-234, Pu-239, 240 and Am-241); anions; and trace metals to groundwaters. The U-238 concentrations in Rocky Flats groundwaters vary from 2 (CO 3 ) 2 2- , because of the predominant bicarbonate medium

  14. Bayesian Nitrate Source Apportionment to Individual Groundwater Wells in the Central Valley by use of Nitrogen, Oxygen, and Boron Isotopic Tracers

    Science.gov (United States)

    Lockhart, K.; Harter, T.; Grote, M.; Young, M. B.; Eppich, G.; Deinhart, A.; Wimpenny, J.; Yin, Q. Z.

    2014-12-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide, an example of which is the San Joaquin Valley, California. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. Dairy manure and synthetic fertilizers are the major sources of nitrate in groundwater in the San Joaquin Valley, however, septic waste can be a major source in some areas. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Consumption of water containing nitrate above the drinking water limit has been linked to major health effects including low blood oxygen in infants and certain cancers. Knowledge of the proportion of each of the three main nitrate sources (manure, synthetic fertilizer, and septic waste) contributing to individual well nitrate can aid future regulatory decisions. Nitrogen, oxygen, and boron isotopes can be used as tracers to differentiate between the three main nitrate sources. Mixing models quantify the proportional contributions of sources to a mixture by using the concentration of conservative tracers within each source as a source signature. Deterministic mixing models are common, but do not allow for variability in the tracer source concentration or overlap of tracer concentrations between sources. Bayesian statistics used in conjunction with mixing models can incorporate variability in the source signature. We developed a Bayesian mixing model on a pilot network of 32 private domestic wells in the San Joaquin Valley for which nitrate as well as nitrogen, oxygen, and boron isotopes were measured. Probability distributions for nitrogen, oxygen, and boron isotope source signatures for manure, fertilizer, and septic waste were compiled from the literature and from a previous groundwater monitoring project on several

  15. Using geochemistry to identify the source of groundwater to Montezuma Well, a natural spring in Central Arizona, USA: Part 2

    Science.gov (United States)

    Johnson, Raymond H.; DeWitt, Ed; Wirt, Laurie; Manning, Andrew H.; Hunt, Andrew G.

    2012-01-01

    Montezuma Well is a unique natural spring located in a sinkhole surrounded by travertine. Montezuma Well is managed by the National Park Service, and groundwater development in the area is a potential threat to the water source for Montezuma Well. This research was undertaken to better understand the sources of groundwater to Montezuma Well. Strontium isotopes (87Sr/86Sr) indicate that groundwater in the recharge area has flowed through surficial basalts with subsequent contact with the underlying Permian aged sandstones and the deeper, karstic, Mississippian Redwall Limestone. The distinctive geochemistry in Montezuma Well and nearby Soda Springs (higher concentrations of alkalinity, As, B, Cl, and Li) is coincident with added carbon dioxide and mantle-sourced He. The geochemistry and isotopic data from Montezuma Well and Soda Springs allow for the separation of groundwater samples into four categories: (1) upgradient, (2) deep groundwater with carbon dioxide, (3) shallow Verde Formation, and (4) mixing zone. δ18O and δD values, along with noble gas recharge elevation data, indicate that the higher elevation areas to the north and east of Montezuma Well are the groundwater recharge zones for Montezuma Well and most of the groundwater in this portion of the Verde Valley. Adjusted groundwater age dating using likely 14C and δ13C sources indicate an age for Montezuma Well and Soda Springs groundwaters at 5,400–13,300 years, while shallow groundwater in the Verde Formation appears to be older (18,900). Based on water chemistry and isotopic evidence, groundwater flow to Montezuma Well is consistent with a hydrogeologic framework that indicates groundwater flow by (1) recharge in higher elevation basalts to the north and east of Montezuma Well, (2) movement through the upgradient Permian and Mississippian units, especially the Redwall Limestone, and (3) contact with a basalt dike/fracture system that provides a mechanism for groundwater to flow to the surface

  16. An Assessment of Peri-Urban Groundwater Quality from Shallow Dug Wells, Mzuzu, Malawi

    Science.gov (United States)

    Holm, R.; Felsot, A.

    2012-12-01

    Throughout Malawi, governmental, non-governmental, religious and civic organizations are targeting the human need for water. Diarrheal diseases, often associated with unsafe drinking water, are a leading cause of mortality in children under five in Malawi with over 6,000 deaths per year (World Health Organization, 2010). From January to March 2012, a field study was undertaken in Malawi to study water quality and develop a public health risk communication strategy. The region studied, Area 1B, represents a comparatively new peri-urban area on the edge of Mzuzu city. Area 1B is serviced by a piped municipal water supply, but many shallow dug wells are also used for household water. Groundwater samples were collected from 30 shallow dug well sites and analyzed for nitrate, total coliform, Escherichia coli, total hardness, total alkalinity and pH. In addition to water quality analyses, a structured household questionnaire was administered to address water use, sanitation, health, consumption patterns, and socioeconomics. Results showed that more than half of the groundwater samples would be considered of unacceptable quality based on World Health Organization (WHO) standards for E. coli contamination. Low levels of nitrate were found in groundwater, but only one well exceeded WHO standards. The structured questionnaire revealed that some residents were still consuming groundwater despite the access to safer municipal water. In general, the widespread E. coli contamination was not statistically correlated with well depth, latrine proximity, or surface features. Similarly, nitrate concentrations were not significantly correlated with proximity to latrines. On the other hand, nitrate was correlated with well depth, which is expected given the high potential for leaching of anionic highly water soluble compounds. E. coli was significantly correlated with nitrate concentration. Projects targeting the need for clean water need to recognize that households with access to a

  17. Developing spontaneity and well-being in women victims of domestic violence

    Directory of Open Access Journals (Sweden)

    Ines Testoni

    2015-01-01

    Full Text Available In this paper we present the results of the last stage of the research project Empower Daphne that involved the participation of six countries belonging to the EU in two phases: I validation of the theoretical model on which basis rests the construct of well-being and spontaneity; II analysis of Morenian psychodrama intervention efficacy. 407 university students were part of the non-clinical sample in the first phase and 136 women victims of domestic violence made up the clinical sample for the second phase. During the six month the women took part in psychodramatic sessions, together with individual interviews. At the beginning and the end of the six month, a questionnaire was administered consisting of a well-being and a spontaneity scales. In the article we present the results that compare well-being and spontaneity between clinical and non-clinical samples, and between the clinical cut-off scores highlighted in the literature and the scores of clinical sample. The findings demonstrate interesting differences between two sample: observed lower levels of spontaneity and well-being in women victims of domestic violence, both before and after the psychodramatic intervention.

  18. Machine Learning for Mapping Groundwater Salinity with Oil Well Log Data

    Science.gov (United States)

    Chang, W. H.; Shimabukuro, D.; Gillespie, J. M.; Stephens, M.

    2016-12-01

    An oil field may have thousands of wells with detailed petrophysical logs, and far fewer direct measurements of groundwater salinity. Can the former be used to extrapolate the latter into a detailed map of groundwater salinity? California Senate Bill 4, with its requirement to identify Underground Sources of Drinking Water, makes this a question worth answering. A well-known obstacle is that the basic petrophysical equations describe ideal scenarios ("clean wet sand") and even these equations contain many parameters that may vary with location and depth. Accounting for other common scenarios such as high-conductivity shaly sands or low-permeability diatomite (both characteristic of California's Central Valley) causes parameters to proliferate to the point where the model is underdetermined by the data. When parameters outnumber data points, however, is when machine learning methods are most advantageous. We present a method for modeling a generic oil field, where groundwater salinity and lithology are depth series parameters, and the constants in petrophysical equations are scalar parameters. The data are well log measurements (resistivity, porosity, spontaneous potential, and gamma ray) and a small number of direct groundwater salinity measurements. Embedded in the model are petrophysical equations that account for shaly sand and diatomite formations. As a proof of concept, we feed in well logs and salinity measurements from the Lost Hills Oil Field in Kern County, California, and show that with proper regularization and validation the model makes reasonable predictions of groundwater salinity despite the large number of parameters. The model is implemented using Tensorflow, which is an open-source software released by Google in November, 2015 that has been rapidly and widely adopted by machine learning researchers. The code will be made available on Github, and we encourage scrutiny and modification by machine learning researchers and hydrogeologists alike.

  19. Functional design criteria for FY 1993-2000 groundwater monitoring wells

    International Nuclear Information System (INIS)

    Williams, B.A.

    1996-01-01

    The purpose of this revision is to update the Line Item Project, 93-L-GFW-152 Functional Design Criteria (FDC) to reflect changes approved in change control M-24-91-6, Engineering Change Notices (ECNs), and expand the scope to include subsurface investigations along with the borehole drilling. This revision improves the ability and effectiveness of maintaining RCRA and Operational groundwater compliance by combining borehole and well drilling with subsurface data gathering objectives. The total projected number of wells to be installed under this project has decreased from 200 and the scope has been broadened to include additional subsurface investigation activities that usually occur simultaneously with most traditional borehole drilling and monitoring well installations. This includes borehole hydrogeologic characterization activities, and vadose monitoring. These activities are required under RCRA 40 CFR 264 and 265 and WAC 173-303 for site characterization, groundwater and vadose assessment and well placement

  20. A comparison of groundwater investigation using temporary points versus permanent monitoring wells

    International Nuclear Information System (INIS)

    Thompson, N.T.

    1994-01-01

    Groundwater investigation within the environmental industry is most often conducted using permanent monitoring wells. A monitoring well, as the term suggests, is permanent to the extent that it is fixed in place to monitor groundwater quality in its immediate vicinity at any given time over the course of an environmental project. Because monitoring wells are relatively time consuming and expensive to construct, a minimum number of wells is normally installed as part of a single investigation event. The initial information obtained from monitoring wells could also be obtained from temporary groundwater sampling points. Temporary points generally are smaller in diameter than monitoring wells, are installed to provide a one time snap shot of the subsurface, and are removed at the completion of the investigation. Since temporary points are usually easier to install and less expensive than monitoring wells, more temporary points can be installed over a single investigation event and can often reduce or eliminate subsequent assessment(s). A brief discussion of temporary point installation and sampling is offered before considering two case studies within the context of the above advantages to temporary point installation. One case study focuses on vertical delineation of dissolved petroleum hydrocarbons, while the second case study discusses lateral delineation of light nonaqueous phase liquid (LNAPL)

  1. Groundwater-Surface water interaction in agricultural watershed that encompasses dense network of High Capacity wells

    Science.gov (United States)

    Talib, A.; Desai, A. R.

    2017-12-01

    The Central Sands region of Wisconsin is characterized by productive trout streams, lakes, farmland and forest. However, stream channelization, past wetland drainage, and ground water withdrawals have disrupted the hydrology of this Central Sands region. Climatically driven conditions in last decade (2000-2008) alone are unable to account for the severely depressed water levels. Increased interception and evapotranspiration from afforested areas in central sand Wisconsin may also be culprit for reduced water recharge. Hence, there is need to study the cumulative effects of changing precipitation patterns, groundwater withdrawals, and forest evapotranspiration to improve projections of the future of lake levels and water availability in this region. Here, the SWAT-MODFLOW coupled model approach was applied at large spatio-temporal scale. The coupled model fully integrates a watershed model (SWAT) with a groundwater flow model (MODFLOW). Surface water and ground water flows were simulated integratively at daily time step to estimate the groundwater discharge to the stream network in Central Sands that encompasses high capacity wells. The model was calibrated (2010-2013) and validated (2014-2017) based on streamflow, groundwater extraction, and water table elevation. As the long-term trends in some of the primary drivers is presently ambiguous in Central Sands under future climate, as is the case for total precipitation or timing of precipitation, we relied on a sensitivity student to quantitatively access how primary and secondary drivers may influence future net groundwater recharge. We demonstrate how such an approach could then be coupled with decision-making models to evaluate the effectiveness of groundwater withdrawal policies under a changing climate.

  2. Hydrographs Showing Ground-Water Level Changes for Selected Wells in the Lower Skagit River Basin, Washington

    Science.gov (United States)

    Fasser, E.T.; Julich, R.J.

    2009-01-01

    Hydrographs for selected wells in the Lower Skagit River basin, Washington, are presented in an interactive web-based map to illustrate monthly and seasonal changes in ground-water levels in the study area. Ground-water level data and well information were collected by the U.S. Geological Survey using standard techniques and were stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.

  3. Hydrographs showing groundwater levels for selected wells in the Puyallup River watershed and vicinity, Pierce and King Counties, Washington

    Science.gov (United States)

    Lane, R.C.; Julich, R.J.; Justin, G.B.

    2013-01-01

    Hydrographs of groundwater levels for selected wells in and adjacent to the Puyallup River watershed in Pierce and King Counties, Washington, are presented using an interactive Web-based map of the study area to illustrate changes in groundwater levels on a monthly and seasonal basis. The interactive map displays well locations that link to the hydrographs, which in turn link to the U.S. Geological Survey National Water Information System, Groundwater Site Inventory System.

  4. Evaluation of Pre- and Post- Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells

    International Nuclear Information System (INIS)

    Kamp, Susan; Dayvault, Jalena

    2016-01-01

    This report documents the efforts and analyses conducted for the Applied Studies and Technology (AS&T) Ancillary Work Plan (AWP) project titled Evaluation of Pre- and Post- Redevelopment Groundwater Sample Laboratory Analyses from Selected LM Groundwater Monitoring Wells. This effort entailed compiling an inventory of nearly 500 previous well redevelopment events at 16 U.S. Department of Energy Office of Legacy Management (LM) sites, searching the literature for impacts of well redevelopment on groundwater sample quality, and-the focus of this report-evaluating the impacts of well redevelopment on field measurements and sample analytical results. Study Catalyst Monitoring well redevelopment, the surging or high-volume pumping of a well to loosen and remove accumulated sediment and biological build-up from a well, is considered an element of monitoring well maintenance that is implemented periodically during the lifetime of the well to mitigate its gradual deterioration. Well redevelopment has been conducted fairly routinely at a few LM sites in the western United States (e.g., the Grand Junction office site and the Gunnison processing site in Colorado), but at most other sites in this region it is not a routine practice. Also, until recently (2014-2015), there had been no specific criteria for implementing well redevelopment, and documentation of redevelopment events has been inconsistent. A catalyst for this evaluation was the self-identification of these inconsistencies by the Legacy Management Support contractor. As a result, in early 2015 Environmental Monitoring Operations (EMO) staff began collecting and documenting additional field measurements during well redevelopment events. In late 2015, AS&T staff undertook an independent internal evaluation of EMO's well redevelopment records and corresponding pre- and post-well-redevelopment groundwater analytical results. Study Findings Although literature discussions parallel the prevailing industry

  5. Evaluation of Pre- and Post- Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells

    Energy Technology Data Exchange (ETDEWEB)

    Kamp, Susan [Navarro Reserch and Engineering, Oak Ridge, TN (United States); Dayvault, Jalena [US Department of Energy, Washington, DC (United States). Office of Legacy Management

    2016-05-01

    This report documents the efforts and analyses conducted for the Applied Studies and Technology (AS&T) Ancillary Work Plan (AWP) project titled Evaluation of Pre- and Post- Redevelopment Groundwater Sample Laboratory Analyses from Selected LM Groundwater Monitoring Wells. This effort entailed compiling an inventory of nearly 500 previous well redevelopment events at 16 U.S. Department of Energy Office of Legacy Management (LM) sites, searching the literature for impacts of well redevelopment on groundwater sample quality, and—the focus of this report—evaluating the impacts of well redevelopment on field measurements and sample analytical results. Study Catalyst Monitoring well redevelopment, the surging or high-volume pumping of a well to loosen and remove accumulated sediment and biological build-up from a well, is considered an element of monitoring well maintenance that is implemented periodically during the lifetime of the well to mitigate its gradual deterioration. Well redevelopment has been conducted fairly routinely at a few LM sites in the western United States (e.g., the Grand Junction office site and the Gunnison processing site in Colorado), but at most other sites in this region it is not a routine practice. Also, until recently (2014–2015), there had been no specific criteria for implementing well redevelopment, and documentation of redevelopment events has been inconsistent. A catalyst for this evaluation was the self-identification of these inconsistencies by the Legacy Management Support contractor. As a result, in early 2015 Environmental Monitoring Operations (EMO) staff began collecting and documenting additional field measurements during well redevelopment events. In late 2015, AS&T staff undertook an independent internal evaluation of EMO's well redevelopment records and corresponding pre- and post-well-redevelopment groundwater analytical results. Study Findings Although literature discussions parallel the prevailing industry

  6. Ground-water altitudes and well data, Nye County, Nevada, and Inyo County, California

    International Nuclear Information System (INIS)

    Ciesnik, M.S.

    1995-01-01

    This report contains ground-water altitudes and well data for wells located in Nye County, Nevada, and Inyo County, California, south of Yucca Mountain, Nevada, the potential site for a high-level nuclear waste repository. Data are from wells whose coordinates are within the Beatty and Death Valley Junction, California-Nevada maps from the US Geological Survey, scale 1:100,000 (30-minute x 60-minute quadrangle). Compilation of these data was made to provide a reference for numerical models of ground-water flow at Yucca Mountain and its vicinity. Water-level measurements were obtained from the US Geological Survey National Water Information System (NWIS) data base, and span the period of October 1951 to May 1991; most measurements were made from 1980 to 1990

  7. An analytical study on groundwater flow in drainage basins with horizontal wells

    Science.gov (United States)

    Wang, Jun-Zhi; Jiang, Xiao-Wei; Wan, Li; Wang, Xu-Sheng; Li, Hailong

    2014-06-01

    Analytical studies on release/capture zones are often limited to a uniform background groundwater flow. In fact, for basin-scale problems, the undulating water table would lead to the development of hierarchically nested flow systems, which are more complex than a uniform flow. Under the premise that the water table is a replica of undulating topography and hardly influenced by wells, an analytical solution of hydraulic head is derived for a two-dimensional cross section of a drainage basin with horizontal injection/pumping wells. Based on the analytical solution, distributions of hydraulic head, stagnation points and flow systems (including release/capture zones) are explored. The superposition of injection/pumping wells onto the background flow field leads to the development of new internal stagnation points and new flow systems (including release/capture zones). Generally speaking, the existence of n injection/pumping wells would result in up to n new internal stagnation points and up to 2n new flow systems (including release/capture zones). The analytical study presented, which integrates traditional well hydraulics with the theory of regional groundwater flow, is useful in understanding basin-scale groundwater flow influenced by human activities.

  8. Occurrence and potential human-health relevance of volatile organic compounds in drinking water from domestic wells in the United States

    Science.gov (United States)

    Rowe, B.L.; Toccalino, P.L.; Moran, M.J.; Zogorski, J.S.; Price, C.V.

    2011-01-01

    BACKGROUND: As the population and demand for safe drinking water from domestic wells increase, it is important to examine water quality and contaminant occurrence. A national assessment in 2006 by the U.S. Geological Survey reported findings for 55 volatile organic compounds (VOCs) based on 2,401 domestic wells sampled during 1985-2002. OBJECTIVES: We examined the occurrence of individual and multiple VOCs and assessed the potential human-health relevance of VOC concentrations. We also identified hydrogeologic and anthropogenic variables that influence the probability of VOC occurrence. METHODS: The domestic well samples were collected at the wellhead before treatment of water and analyzed for 55 VOCs. Results were used to examine VOC occurrence and identify associations of multiple explanatory variables using logistic regression analyses. We used a screening-level assessment to compare VOC concentrations to U.S. Environmental Protection Agency maximum contaminant levels (MCLs) and health-based screening levels. RESULTS: We detected VOCs in 65% of the samples; about one-half of these samples contained VOC mixtures. Frequently detected VOCs included chloroform, toluene, 1,2,4-trimethylbenzene, and perchloroethene. VOC concentrations generally were < 1 ??g/L. One or more VOC concentrations were greater than MCLs in 1.2% of samples, including dibromochloropropane, 1,2-dichloropropane, and ethylene dibromide (fumigants); perchloroethene and trichloroethene (solvents); and 1,1-dichloroethene (organic synthesis compound). CONCLUSIONS: Drinking water supplied by domestic wells is vulnerable to low-level VOC contamination. About 1% of samples had concentrations of potential human-health concern. Identifying factors associated with VOC occurrence may aid in understanding the sources, transport, and fate of VOCs in groundwater.

  9. Predicting the risk of groundwater arsenic contamination in drinking water wells

    Science.gov (United States)

    Cao, Hailong; Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Li, Junxia; Zhan, Hongbin; Liu, Peng

    2018-05-01

    Arsenic (As)-contaminated groundwater is a global concern with potential detrimental effects on the health of hundreds of millions of people worldwide. However, the extent of this problem may be more severe than anticipated, as many wells have not been tested and may contain unsafe-level of As. An optimized statistical regression model was developed to predict the probability of geogenic high As groundwater (As > 10 μg/L) in this study. Easily obtained hydrogeochemical and geological parameters that are significantly related to As geochemical behaviors were selected as explanatory variables in the model. The results indicate that pH, Cl-, HCO3-, SO42-, and NO3- concentrations, stratigraphic information, and well depth are excellent predictors of As exposure in the Datong Basin, China. Predicted unsafe wells correspond well with the known distribution of high As groundwater in the Datong Basin. The successful application of a data set from Bangladesh also demonstrated the applicability and credibility of this proposed method.

  10. Installation of Groundwater Monitoring Wells TAV-MW15 and TAV-MW16.

    Energy Technology Data Exchange (ETDEWEB)

    Lum, Clinton C. L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    This report documents the installation of two groundwater monitoring wells at the Technical Area V Groundwater (TAVG) Area of Concern at Sandia National Laboratories, New Mexico (SNL/NM). SNL/NM is managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA- 0003525. Well installation activities were conducted in accordance with the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB)-approved work plan Revised Treatability Study Work Plan for In-Situ Bioremediation at the Technical Area-V Groundwater Area of Concern (Work Plan) (SNL/NM March 2016). The Work Plan was approved by NMED HWB prior to the start of field work (NMED May 2016). Project activities were performed from November 2016 through January 2017 by SNL/NM Environmental Restoration (ER) Operations personnel, and the SNL/NM drilling contractor Cascade Drilling LP. Drilling activities began with borehole drilling and sampling on November 30, 2016. Well construction and development fieldwork was completed on January 31, 2017. Land surveys to establish the location coordinates and elevations of the two wells were completed on March 23, 2017, and transmitted to SNL/NM personnel on April 17, 2017.

  11. Design of Infiltration Well in Wetlands Area that Suitable for Giving Maximum Groundwater Recharge

    Directory of Open Access Journals (Sweden)

    Irfan Prasetia

    2016-02-01

    Full Text Available Growth in residential, industrial, and office  area,are significantly occurred in all city in Indonesia. Unfortunately, this is also caused more land that being covered by pavement and concrete in the cities. Realized or not it will disturb the availability of the groundwater and also lead to flooding in the rainy season. One of the effective solutions to solve this problem is by making sufficient numbers of infiltration well in the city, especially in the residential area. This research was conducted to analyze the ideal design of the infiltration well in the residential area. The design was made according to the equation by Sunjoto, which also refers to Indonesia standard (SNI No: 03- 2453-2002. The results show that the ideal dimension for the infiltration well is to use the radius of the well (R of 1.25 m. With the R of 1.25 will give a significant recharge to the groundwater as much as ≈ 2.400 liter. It is expected that this research encourage a development in the urban drainage systems which will consider the environment and the groundwater reservation for the balance of our ecosystem.

  12. Deciphering groundwater quality for irrigation and domestic purposes - a case study in Suri I and II blocks, Birbhum District, West Bengal, India

    Science.gov (United States)

    Das, Shreya; Nag, S. K.

    2015-07-01

    Assessment of the hydrochemical characteristics of water and aquifer hydraulic properties is important for groundwater planning and management in the study area. It is not only the basic need for human existence but also a vital input for all development activities. The present hydro-geochemical study of groundwater samples from the Suri I and II blocks of Birbhum district, West Bengal (23.76 ∘-23.99 ∘N; 87.42 ∘-87.64 ∘E) was carried out to assess their suitability for agricultural, domestic and drinking purposes. For this study, samples were collected from 26 locations during the post-monsoon and pre-monsoon sessions spanning over 2012 and 2013. Groundwater samples were analyzed for their physical and chemical properties using standard laboratory methods. Physical and chemical parameters of groundwater such as pH, electrical conductivity, total dissolved solids, Na, K, Ca, Mg, Fe, Cl, HCO3, SO4 and F were determined. Various water quality indices like SAR, SSP, PI, RSC, MAR and KR have been calculated for each water sample to identify the irrigational suitability standard. According to most of these parameters, the groundwater has been found to be well to moderately suitable for irrigation. In the post-monsoon session exceptionally high RSC values for around 80% samples indicate an alkaline hazard to the soil. The ion balance histogram for post-monsoon indicates undesirable ion balance values according to fresh water standards whereas in pre-monsoon, the samples show good ion balance in water. For determination of the drinking suitability standard of groundwater, three parameters have been considered - total hardness (TH), Piper's trilinear diagram and water quality index study. Groundwater of the present study area has been found to be moderately-hard to hard during both sampling sessions and hence poses no health risk which could arise due to excess consumption of calcium or magnesium. Hydrogeochemical facies in the form of Piper's trilinear diagram plot

  13. Hydrographs Showing Groundwater Level Changes for Selected Wells in the Chambers-Clover Creek Watershed and Vicinity, Pierce County, Washington

    Science.gov (United States)

    Justin, G.B.; Julich, R.; Payne, K.L.

    2009-01-01

    Selected groundwater level hydrographs for the Chambers-Clover Creek watershed (CCCW) and vicinity, Washington, are presented in an interactive web-based map to illustrate changes in groundwater levels in and near the CCCW on a monthly and seasonal basis. Hydrographs are linked to points corresponding to the well location on an interactive map of the study area. Groundwater level data and well information from Federal, State, and local agencies were obtained from the U.S. Geological Survey National Water Information System (NWIS), Groundwater Site Inventory (GWSI) System.

  14. In Situ Treatment of Chlorinated Ethene-Contaminated Groundwater Using horizontal Flow Treatment Wells

    National Research Council Canada - National Science Library

    Ferland, Derek

    2000-01-01

    The limitations of conventional containment technologies for groundwater contaminated with chlorinated solvents have motivated development of innovative technologies to achieve national groundwater...

  15. Pumping Drainage Well Layout and Optimum Capacity Design to Lower Groundwater Table in Urban Areas

    Directory of Open Access Journals (Sweden)

    Mojtaba Shourian

    2017-11-01

    Full Text Available High groundwater levels in urban areas pose major problems in construction and mining projects. A typical and effective solution in these situations is to dig drainage wells to lower the water table to the desired level through an appropriate pumping strategy. Although the method is efficient, the operating costs are relatively high and it is, therefore, of great importance to optimize the groundwater pumping system to save costs. In this paper, a simulation-based optimization approach is exploited to minimize the total costs through optimizing the layout and capacity of pumping wells. For this purpose, MODFLOW, the groundwater simulation software, is used to investigate aquifer behavior under pumping wells and the well-known Firefly Optimization Algorithm is exploited to find the optimal well layout and capacity. The proposed FOA-MODFLOW model is tested on the small urban ancient Grand Mosque region in Kerman City, southeast of Iran, to minimize the cost of the draining project. Experimental results indicate that the proposed cost-effective design noticeably outperforms the one proposed by the consulting engineers in terms of both the number of drilled wells and the associated pumping costs. The optimal strategy observes the constraints and demands by constructing only two wells with a total pumping rate of 5503 m3/day and a water table drawdown of more than 1.5 m provided the ground subsidence is within the allowable limit of less than 80 mm. Additionally, examination of the values obtained for the various design parameters shows that the proposed strategy is the best and its sensitivity to maximum permissible water level and pumping rates is highest as compared with other similar designs.

  16. Baseline groundwater quality from 34 wells in Wayne County, Pennsylvania, 2011 and 2013

    Science.gov (United States)

    Sloto, Ronald A.

    2014-01-01

    Wayne County, Pennsylvania, is underlain by the Marcellus Shale, which currently (2014) is being developed elsewhere in Pennsylvania for natural gas. All residents of largely rural Wayne County rely on groundwater for water supply, primarily from bedrock aquifers (shales and sandstones). This study, conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey (Pennsylvania Geological Survey), provides a groundwater-quality baseline for Wayne County prior to development of the natural gas resource in the Marcellus Shale. Selected wells completed in the Devonian-age Catskill Formation, undifferentiated; the Poplar Gap and Packerton Members of the Catskill Formation, undivided; and the Long Run and Walcksville Members of the Catskill Formation, undivided, were sampled.

  17. Groundwater flow analysis and dose rate estimates from releases to wells at a coastal site

    Energy Technology Data Exchange (ETDEWEB)

    Kattilakoski, E.; Suolanen, V. [VTT Energy, Espoo (Finland)

    2000-09-01

    In the groundwater flow modelling part of this work the effective dilution volume in the well scenario was estimated by means of transient simulations of groundwater flow and transport, which are coupled due to the varying salinity. Both deep, drilled wells and shallow surface wells in the vicinity of the repository were considered. The simulations covered the time period from the present to 1000 years after the present. Conceptually the fractured bedrock consists of planar fracture zones (with a high fracture density and a greater ability to conduct water) and the intact rock (in which the fracture density and the hydraulic conductivity are low). For them the equivalent-continuum model was applied separately. Thus, the fractured bedrock was considered as piecewise homogeneous (except for the depth dependence) and isotropic continuum with representative average characteristics. A generic simulation model for groundwater flow and solute transport was developed on the basis of geological, hydrogeological and hydrogeochemical data at a coastal area. The simulation model contains all the data necessary for the numerical simulations, i.e. the groundwater table and topography, salinity, the postglacial land uplift and sea level rise, the conceptual geometry of fracture zones, the hydraulic properties of the bedrock as well as the description of the modelling volume. The model comprises an area of about 26 km{sup 2}. It covers an island and the surrounding sea. The finite element code FEFTRA (formerly known as FEFLOW) was used in this work for the numerical solution. The channelling along the flow routes was found to be critical for the resulting in a well. A deep well may extend near the area of the deep flow routes, but in order to get flow routes into a shallow well, it has to be placed in the immediate vicinity of the discharge areas. According to the groundwater flow analyses the effective dilution volume of the well seems to vary from 30 000 m{sup 3}/a to 460 000 m

  18. Hydrochemical trends for public supply well fields in The Netherlands (1898–2008), natural backgrounds and upscaling to groundwater bodies

    NARCIS (Netherlands)

    Mendizabal, I.; Stuijfzand, P.J.; Baggelaar, P.K.

    2012-01-01

    Statistical trend analysis is applied to a 110. years long groundwater quality time series from the national network of public supply well fields (PSWFs) in The Netherlands. Such a groundwater quality monitoring network should be available in many countries, so that approaches and experiences

  19. Re-thinking the unimpeded tube-well growth under the depleting groundwater resources in the Punjab, Pakistan

    Science.gov (United States)

    Watto, Muhammad Arif; Mugera, Amin W.; Kingwell, Ross; Saqab, Muhammad Mudasar

    2018-04-01

    Groundwater resources are crucial in sustaining agro-ecosystems and ensuring food security in many parts of the world, including Pakistan. However, the sustainability of groundwater resources is subject to a number of challenges, including over-extraction, deterioration in quality, and vulnerability to the impacts of climate change and population growth. Given the current state of groundwater resources in Pakistan, policymakers seek to manage groundwater resources by limiting groundwater extraction. To achieve this goal on a national scale, it is important to understand the determinants of the decisions made by local farmers in respect of tube-well adoption. This study investigates smallholder farmers' decisions to adopt tube-well technology in the face of dwindling groundwater resources and falling water tables. Analysis is based on a cross-sectional survey of 200 rural households from the arid to semi-arid predominantly groundwater-irrigated plains of the Punjab province, Pakistan. It is found that farmers will adopt tube-well technology in pursuit of reliable irrigation water supplies to hedge against production risks but not against the risk associated with unfavourable extreme events (downside risk) such as total crop failure. This suggests that the adoption decision is influenced by the expected long-term rather than the short-term benefits. This paper draws attention to the need to regulate groundwater resource exploitation by requiring the use of tube-well technology to be accompanied by irrigation water-efficient techniques and technologies.

  20. Factors Affecting Water Quality in Domestic Wells in the Upper Floridan Aquifer, Southeastern United States, 1998-2005

    Science.gov (United States)

    Berndt, Marian P.; Crandall, Christy A.; Deacon, Michael; Embry, Teresa L.; Howard, Rhonda S.

    2009-01-01

    The Floridan aquifer system is a highly productive carbonate aquifer that provides drinking water to about 10 million people in Florida, Georgia, and South Carolina. Approximately 1.6 million people rely on domestic wells (privately owned household wells) for drinking water. Withdrawals of water from the Floridan aquifer system have increased by more than 500 percent from 630 million gallons per day (2.38 cubic meters per day) in 1950 to 4,020 million gallons per day (15.2 cubic meters per day) in 2000, largely due to increases in population, tourism, and agriculture production. Water samples were collected from 148 domestic wells in the Upper Floridan aquifer in Florida, Georgia, South Carolina, and Alabama during 1998-2005 as part of the U.S. Geological Survey (USGS) National Water-Quality Assessment Program. The wells were located in different hydrogeologic settings based on confinement of the Upper Floridan aquifer. Five networks of wells were sampled con-sisting of 28 to 30 wells each: two networks were in unconfined areas, two networks were in semiconfined areas, and one network was in the confined area. Physical properties and concentrations of major ions, trace elements, nutrients, radon, and organic compounds (volatile organic compounds and pesticides) were measured in water samples. Concentrations were compared to water-quality benchmarks for human health, either U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Levels (MCLs) for public water supplies or USGS Health-Based Screening Levels (HBSLs). The MCL for fluoride of 4 milligrams per liter (mg/L) was exceeded for two samples (about 1 percent of samples). A proposed MCL for radon of 300 picocuries per liter was exceeded in about 40 percent of samples. Nitrate concentrations in the Upper Floridan aquifer ranged from less than the laboratory reporting level of 0.06 to 8 mg/L, with a median nitrate concentration less than 0.06 mg/L (as nitrogen). Nitrate concentrations did not exceed the

  1. The study of planning and realization of deep groundwater well construction at Tangkil, Kemalang, Klaten

    International Nuclear Information System (INIS)

    Sartapa

    2009-01-01

    The deep groundwater well at Tangkil is one of the cooperation outcomes between the Government of Klaten and P2BGGN - BATAN in a framework of using Klaten water sources. The method of work involves literature study, data analysis, evaluation and interpretation, respectively. The Well has 205.79 m in depth by diameter of 12.25 inch and 15.654 m3 in volume. Construction design of PVC ducks is 8 inch through 200 m depth, the volume of pipe construction is 7.825 m3 and annulus volume is 7.825 m3. The annulus filled with 7.4558 m3 of gravel wrapped, 0.0846 m3 of partition and 0.0846 m3 sanitation cement. The volume of developed pipe construction is 6.936 m3 by depth of 182 m, 8.718 m3 of annulus volume filled with 7.260 m3 or 83,28% of gravel wrapped, therefore the existence of space between its grains which is not filled with 1.013 m3 or 16,72% of gravel wrapped may become an entrance path of sands into the well and may interfere the performance of its pump. The screen pipes has been developed until 174 m depth and 136.60 m of groundwater static surface, hence the round up of groundwater by 73 m of screen pipes is suitable enough for pump installation and water well discharge. The efficiency of annulus relatively poor, therefore periodically need of checking and cleaning the entering of sands into the well has to be conducted. (author)

  2. Can groundwater sampling techniques used in monitoring wells influence methane concentrations and isotopes?

    Science.gov (United States)

    Rivard, Christine; Bordeleau, Geneviève; Lavoie, Denis; Lefebvre, René; Malet, Xavier

    2018-03-06

    Methane concentrations and isotopic composition in groundwater are the focus of a growing number of studies. However, concerns are often expressed regarding the integrity of samples, as methane is very volatile and may partially exsolve during sample lifting in the well and transfer to sampling containers. While issues concerning bottle-filling techniques have already been documented, this paper documents a comparison of methane concentration and isotopic composition obtained with three devices commonly used to retrieve water samples from dedicated observation wells. This work lies within the framework of a larger project carried out in the Saint-Édouard area (southern Québec, Canada), whose objective was to assess the risk to shallow groundwater quality related to potential shale gas exploitation. The selected sampling devices, which were tested on ten wells during three sampling campaigns, consist of an impeller pump, a bladder pump, and disposable sampling bags (HydraSleeve). The sampling bags were used both before and after pumping, to verify the appropriateness of a no-purge approach, compared to the low-flow approach involving pumping until stabilization of field physicochemical parameters. Results show that methane concentrations obtained with the selected sampling techniques are usually similar and that there is no systematic bias related to a specific technique. Nonetheless, concentrations can sometimes vary quite significantly (up to 3.5 times) for a given well and sampling event. Methane isotopic composition obtained with all sampling techniques is very similar, except in some cases where sampling bags were used before pumping (no-purge approach), in wells where multiple groundwater sources enter the borehole.

  3. Determination of protection zones for Dutch groundwater wells against virus contamination--uncertainty and sensitivity analysis.

    Science.gov (United States)

    Schijven, J F; Mülschlegel, J H C; Hassanizadeh, S M; Teunis, P F M; de Roda Husman, A M

    2006-09-01

    Protection zones of shallow unconfined aquifers in The Netherlands were calculated that allow protection against virus contamination to the level that the infection risk of 10(-4) per person per year is not exceeded with a 95% certainty. An uncertainty and a sensitivity analysis of the calculated protection zones were included. It was concluded that protection zones of 1 to 2 years travel time (206-418 m) are needed (6 to 12 times the currently applied travel time of 60 days). This will lead to enlargement of protection zones, encompassing 110 unconfined groundwater well systems that produce 3 x 10(8) m3 y(-1) of drinking water (38% of total Dutch production from groundwater). A smaller protection zone is possible if it can be shown that an aquifer has properties that lead to greater reduction of virus contamination, like more attachment. Deeper aquifers beneath aquitards of at least 2 years of vertical travel time are adequately protected because vertical flow in the aquitards is only 0.7 m per year. The most sensitive parameters are virus attachment and inactivation. The next most sensitive parameters are grain size of the sand, abstraction rate of groundwater, virus concentrations in raw sewage and consumption of unboiled drinking water. Research is recommended on additional protection by attachment and under unsaturated conditions.

  4. Understanding How Domestic Violence Support Services Promote Survivor Well-being: A Conceptual Model.

    Science.gov (United States)

    Sullivan, Cris M

    2018-01-01

    Domestic violence (DV) victim service programs have been increasingly expected by legislators and funders to demonstrate that they are making a significant difference in the lives of those using their services. Alongside this expectation, they are being asked to describe the Theory of Change guiding how they believe their practices lead to positive results for survivors and their children. Having a widely accepted conceptual model is not just potentially useful to funders and policy makers as they help shape policy and practice -- it can also help programs continually reflect upon and improve their work. This paper describes the iterative and collaborative process undertaken to generate a conceptual model describing how DV victim services are expected to improve survivors' lives. The Social and Emotional Well-Being Framework guiding the model is an ideal structure to use to describe the goals and practices of DV programs because this framework: (1) accurately represents DV programs' goal of helping survivors and their children thrive; and (2) recognizes the importance of community, social, and societal context in influencing individuals' social and emotional well-being. The model was designed to guide practice and to generate new questions for research and evaluation that address individual, community, and systems factors that promote or hinder survivor safety and well-being.

  5. Numerical and machine learning simulation of parametric distributions of groundwater residence time in streams and wells

    Science.gov (United States)

    Starn, J. J.; Belitz, K.; Carlson, C.

    2017-12-01

    Groundwater residence-time distributions (RTDs) are critical for assessing susceptibility of water resources to contamination. This novel approach for estimating regional RTDs was to first simulate groundwater flow using existing regional digital data sets in 13 intermediate size watersheds (each an average of 7,000 square kilometers) that are representative of a wide range of glacial systems. RTDs were simulated with particle tracking. We refer to these models as "general models" because they are based on regional, as opposed to site-specific, digital data. Parametric RTDs were created from particle RTDs by fitting 1- and 2-component Weibull, gamma, and inverse Gaussian distributions, thus reducing a large number of particle travel times to 3 to 7 parameters (shape, location, and scale for each component plus a mixing fraction) for each modeled area. The scale parameter of these distributions is related to the mean exponential age; the shape parameter controls departure from the ideal exponential distribution and is partly a function of interaction with bedrock and with drainage density. Given the flexible shape and mathematical similarity of these distributions, any of them are potentially a good fit to particle RTDs. The 1-component gamma distribution provided a good fit to basin-wide particle RTDs. RTDs at monitoring wells and streams often have more complicated shapes than basin-wide RTDs, caused in part by heterogeneity in the model, and generally require 2-component distributions. A machine learning model was trained on the RTD parameters using features derived from regionally available watershed characteristics such as recharge rate, material thickness, and stream density. RTDs appeared to vary systematically across the landscape in relation to watershed features. This relation was used to produce maps of useful metrics with respect to risk-based thresholds, such as the time to first exceedance, time to maximum concentration, time above the threshold

  6. Pumping and recovery test analysis of groundwater Well in Martajasah, Bangkalan, Madura

    International Nuclear Information System (INIS)

    Adi Gunawan Muhammad

    2010-01-01

    Martajasah is one of the villages in Bangkalan Region, Madura, which have difficulty of fresh water. This area has a lot of potential that can be developed, particularly the potential of religious tourism. To increase the utilization potential of the region and support the public healthy, in 2007 PPGN - BATAN cooperated with the Government of Bangkalan has made one (I) exploration/production groundwater - wells with the expectation it can meet a demand of fresh water in the Martajasah Village area. To determine the capacity of the wells, the maximum discharge pumping and the optimum discharge pumping from the wells pumping test it is necessary should be conducted, which includes step draw down pumping test, constant rate pumping test and recovery test. The purpose of this activity is to determine amount of well loss, loss of aquifer, well hydraulics equations and the value of the efficiency of wells to determine the optimum and maximum discharge wells and calculate the value of transmissivity / transmissivity (T) from the aquifer. The scope of these activities include the preparation of working equipment, testing of all equipment, measurement of static groundwater table, pumping test, and analysis of pumping test. Based on the result from step draw down test, well hydraulics equations obtained Sw = 0.0079 Q + 0.000003 Q 2 , so that according to the well hydraulics equations are than obtained a maximum pumping discharge (Q max ) = 3.9 liters / second (336.7 m 3 ) / days) with the well efficiency (E) = 89%, so the optimum pumping discharge (Q opt )=3.455 liters / second = 298.52 m 3 /day. Based on the result from constant rate pumping test and recovery test showed adequate transmissivity of wells, i e T = 136.5 m 2 / day = 5.6875 m 2 / hour = 0.094 m 2 /minute. (author)

  7. Using hydrogeology to identify the source of groundwater to Montezuma Well, a natural spring in central Arizona: part 1

    Science.gov (United States)

    Johnson, Raymond H.; DeWitt, Ed H.; Arnold, L. Rick

    2012-01-01

    Montezuma Well is a natural spring located within a “sinkhole” in the desert environment of the Verde Valley in Central Arizona. It is managed by the National Park Service as part of Montezuma Castle National Monument. Because of increasing development of groundwater in the area, this research was undertaken to better understand the sources of groundwater to Montezuma Well. The use of well logs and geophysics provides details on the geology in the area around Montezuma Well. This includes characterizing the extent and position of a basalt dike that intruded a deep fracture zone. This low permeability barrier forces groundwater to the surface at the Montezuma Well “pool” with sufficient velocity to entrain sand-sized particles from underlying bedrock. Permeable fractures along and above the basalt dike provide conduits that carry deep sourced carbon dioxide to the surface, which can dissolve carbonate minerals along the transport path in response to the added carbon dioxide. At the ground surface, CO2 degasses, depositing travertine. Geologic cross sections, rock geochemistry, and semi-quantitative groundwater flow modeling provide a hydrogeologic framework that indicates groundwater flow through a karstic limestone at depth (Redwall Limestone) as the most significant source of groundwater to Montezuma Well. Additional groundwater flow from the overlying formations (Verde Formation and Permian Sandstones) is a possibility, but significant flow from these units is not indicated.

  8. Review: Moisture loading—the hidden information in groundwater observation well records

    Science.gov (United States)

    van der Kamp, Garth; Schmidt, Randy

    2017-12-01

    Changes of total moisture mass above an aquifer such as snow accumulation, soil moisture, and storage at the water table, represent changes of mechanical load acting on the aquifer. The resulting moisture-loading effects occur in all observation well records for confined aquifers. Deep observation wells therefore act as large-scale geological weighing lysimeters, referred to as "geolysimeters". Barometric pressure effects on groundwater levels are a similar response to surface loading and are familiar to every hydrogeologist dealing with the "barometric efficiency" of observation wells. Moisture-loading effects are small and generally not recognized because they are obscured by hydraulic head fluctuations due to other causes, primarily barometric pressure changes. For semiconfined aquifers, long-term moisture-loading effects may be dissipated and obscured by transient flow through overlying aquitards. Removal of barometric and earth tide effects from observation well records allows identification of moisture loading and comparison with hydrological observations, and also comparison with the results of numerical models that can account for transient groundwater flow.

  9. [Domestic violence, parenting styles and well-being of German and Turkish juveniles].

    Science.gov (United States)

    Uslucan, Haci-Halil

    2009-01-01

    This intercultural comparative study tries to identify the influences of domestic violence and parenting styles on juvenile violence and the well-being of juveniles. To this end, 304 German and 214 Turkish pupils in Berlin at the age of 13 to 16 completed a standardised questionnaire in their schools. The results show that Turkish juveniles report more harsh parenting styles than their German age-mates, but by controlling statistically the educational background of the parents, these differences disappear. Nevertheless, as a stable finding, we can hold that Turkish parents demand from their children a more cultural appropriate and disciplined behaviour. Furthermore, regarding the rates of juvenile violence, the main differences are seen in violence-legitimating attitudes and witnessing parental violence in the Turkish group. Lastly, in the relations between parenting styles and violence, there seems to be no culturally different patterns, but more differences in the intensity of disadvantaging consequences of punishing and harsh parenting on the well-being of juveniles.

  10. Water and rock geochemistry, geologic cross sections, geochemical modeling, and groundwater flow modeling for identifying the source of groundwater to Montezuma Well, a natural spring in central Arizona

    Science.gov (United States)

    Johnson, Raymond H.; DeWitt, Ed; Wirt, Laurie; Arnold, L. Rick; Horton, John D.

    2011-01-01

    The National Park Service (NPS) seeks additional information to better understand the source(s) of groundwater and associated groundwater flow paths to Montezuma Well in Montezuma Castle National Monument, central Arizona. The source of water to Montezuma Well, a flowing sinkhole in a desert setting, is poorly understood. Water emerges from the middle limestone facies of the lacustrine Verde Formation, but the precise origin of the water and its travel path are largely unknown. Some have proposed artesian flow to Montezuma Well through the Supai Formation, which is exposed along the eastern margin of the Verde Valley and underlies the Verde Formation. The groundwater recharge zone likely lies above the floor of the Verde Valley somewhere to the north or east of Montezuma Well, where precipitation is more abundant. Additional data from groundwater, surface water, and bedrock geology are required for Montezuma Well and the surrounding region to test the current conceptual ideas, to provide new details on the groundwater flow in the area, and to assist in future management decisions. The results of this research will provide information for long-term water resource management and the protection of water rights.

  11. Quality of Water from Domestic Wells in Principal Aquifers of the United States, 1991-2004

    Science.gov (United States)

    DeSimone, Leslie A.

    2009-01-01

    As part of the National Water-Quality Assessment Program of the U.S. Geological Survey (USGS), water samples were collected during 1991-2004 from domestic wells (private wells used for household drinking water) for analysis of drinking-water contaminants, where contaminants are considered, as defined by the Safe Drinking Water Act, to be all substances in water. Physical properties and the concentrations of major ions, trace elements, nutrients, radon, and organic compounds (pesticides and volatile organic compounds) were measured in as many as 2,167 wells; fecal indicator bacteria and radionuclides also were measured in some wells. The wells were located within major hydrogeologic settings of 30 regionally extensive aquifers used for water supply in the United States. One sample was collected from each well prior to any in-home treatment. Concentrations were compared to water-quality benchmarks for human health, either U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Levels (MCLs) for public water supplies or USGS Health-Based Screening Levels (HBSLs). No individual contaminant was present in concentrations greater than available health benchmarks in more than 8 percent of the sampled wells. Collectively, however, about 23 percent of wells had at least 1 contaminant present at concentrations greater than an MCL or HBSL, based on analysis of samples from 1,389 wells in which most contaminants were measured. Radon, nitrate, several trace elements, fluoride, gross alpha- and beta-particle radioactivity, and fecal indicator bacteria were found most frequently (in one or more percent of wells) at concentrations greater than benchmarks and, thus, are of potential concern for human health. Radon concentrations were greater than the lower of two proposed MCLs (300 picocuries per liter or pCi/L) in about 65 percent of the wells and greater than the higher proposed MCL (4,000 pCi/L) in about 4 percent of wells. Nitrate, arsenic, manganese, strontium, and

  12. Identify the Effective Wells in Determination of Groundwater Depth in Urmia Plain Using Principle Component Analysis

    Directory of Open Access Journals (Sweden)

    Sahar Babaei Hessar

    2017-06-01

    Full Text Available Introduction: Groundwater is the most important resource of providing sanitary water for potable and household consumption. So continuous monitoring of groundwater level will play an important role in water resource management. But because of the large amount of information, evaluation of water table is a costly and time consuming process. Therefore, in many studies, the data and information aren’t suitable and useful and so, must be neglected. The PCA technique is an optimized mathematical method that reserve data with the highest share in affirming variance with recognizing less important data and limits the original variables into to a few components. In this technique, variation factors called principle components are identified with considering data structures. Thus, variables those have the highest correlation coefficient with principal components are extracted as a result of identifying the components that create the greatest variance. Materials and Methods: The study region has an area of approximately 962 Km2 and area located between 37º 21´ N to 37º 49´ N and 44º 57´ E to 45º 16´ E in West Azerbaijan province of Iran. This area placed along the mountainous north-west of the country, which ends with the plane Urmia Lake and has vast groundwater resources. However, recently the water table has been reduced considerably because of the exceeded exploitation as a result of urbanization and increased agricultural and horticultural land uses. In the present study, the annual water table datasets in 51wells monitored by Ministry of Energy during statistical periods of 2002-2011 were used to data analysis. In order to identify the effective wells in determination of groundwater level, the PCA technique was used. In this research to compute the relative importance of each well, 10 wells were identified with the nearest neighbor for each one. The number of wells (p as a general rule must be less or equal to the maximum number of

  13. Groundwater quality in wells in central rural Finland: a microbiological and radiochemical survey

    International Nuclear Information System (INIS)

    Korhonen, L.; Niskanen, M.; Heinonen-Tanski, H.; Martikainen, P.J.; Salonen, L.; Taipalinen, I.

    1996-01-01

    The microbiological, physicochemical, and radiochemical water quality from samples of 150 rural wells in Finland was analyzed. Organic matter exceeded 12 mg KMnO4 L(-1) in 63% and nitrate 25 mg NO3 L(-1) in 29% of the wells. NO3--concentrations were higher in wells with cattle. Fecal coliforms and fecal streptococci were found in 10-40%. There was no direct positive correlation between heterotrophic and indicator bacteria. Salmonella or Campylobacter were not detected. Human pathogen Listeria monocytogenes was isolated from two and Yersinia enterocolitica serotypes O5 or O6 from four waters not containing fecal coliforms. Thus, the predictive value of fecal coliforms to indicate these pathogens is poor. Coliphages were found in seven wells. Mean concentrations of radon and long-lived alpha-active radionuclides were lower and those of beta-emitting radionuclides higher than the mean concentrations measured from groundwater in Finland. Radionuclides from the Chernobyl fallout were not detected

  14. Development and application of groundwater flow meter in fractured rocks: Measurement of velocity and direction of groundwater flow in single well

    International Nuclear Information System (INIS)

    Kawanishi, M.; Miyakawa, K.; Hirata, Y.

    2001-01-01

    For the confirmation of safety for the geological disposal of radioactive wastes, it is very important to demonstrate the groundwater flow by in-situ investigation in the deep underground. We have developed a groundwater flow meter to measure simultaneously the velocity and direction of groundwater flow by means of detecting the electric potential difference between the groundwater to evaluate and the distilled water as a tracer in a single well. In this paper, we describe the outline of the groundwater flow meter system developed by CRIEPI and Taisei-Kiso-Sekkei Co. Ltd. and the evaluation methodology for observed data by using it in fractured rocks. Furthermore, applied results to in-situ tests at the Tounou mine of Japan Nuclear Fuel Cycle Development Institute (JNC) and the Aespoe Hard Rock Laboratory (HRL) of Swedish Nuclear Fuel and Waste Management Co. (SK) are described. Both sites are different type of fractured rock formations of granite. From these results, it was made clear that this flow meter system can be practically used to measure the groundwater flow direction and velocity as low as order of 1x10 -3 ∼10 -7 cm/sec. (author)

  15. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, D.A.; Laase, A.D. [Oak Ridge National Lab., TN (United States); Locke, D.A. [Oak Ridge Inst. for Science and Education, TN (United States)

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy`s Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended.

  16. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, D.A.; Laase, A.D. (Oak Ridge National Lab., TN (United States)); Locke, D.A. (Oak Ridge Inst. for Science and Education, TN (United States))

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy's Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended.

  17. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    International Nuclear Information System (INIS)

    Pickering, D.A.; Laase, A.D.; Locke, D.A.

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy's Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended

  18. Sampling art for ground-water monitoring wells in nuclide migration

    International Nuclear Information System (INIS)

    Liu Wenyuan; Tu Guorong; Dang Haijun; Wang Xuhui; Ke Changfeng

    2010-01-01

    Ground-Water sampling is one of the key parts in field nuclide migration. The objective of ground-water sampling program is to obtain samples that are representative of formation-quality water. In this paper, the ground-water sampling standards and the developments of sampling devices are reviewed. We also designed the sampling study projects which include the sampling methods, sampling parameters and the elementary devise of two types of ground-Water sampling devices. (authors)

  19. Chemometric expertise of the quality of groundwater sources for domestic use.

    Science.gov (United States)

    Spanos, Thomas; Ene, Antoaneta; Simeonova, Pavlina

    2015-01-01

    In the present study 49 representative sites have been selected for the collection of water samples from central water supplies with different geographical locations in the region of Kavala, Northern Greece. Ten physicochemical parameters (pH, electric conductivity, nitrate, chloride, sodium, potassium, total alkalinity, total hardness, bicarbonate and calcium) were analyzed monthly, in the period from January 2010 to December 2010. Chemometric methods were used for monitoring data mining and interpretation (cluster analysis, principal components analysis and source apportioning by principal components regression). The clustering of the chemical indicators delivers two major clusters related to the water hardness and the mineral components (impacted by sea, bedrock and acidity factors). The sampling locations are separated into three major clusters corresponding to the spatial distribution of the sites - coastal, lowland and semi-mountainous. The principal components analysis reveals two latent factors responsible for the data structures, which are also an indication for the sources determining the groundwater quality of the region (conditionally named "mineral" factor and "water hardness" factor). By the apportionment approach it is shown what the contribution is of each of the identified sources to the formation of the total concentration of each one of the chemical parameters. The mean values of the studied physicochemical parameters were found to be within the limits given in the 98/83/EC Directive. The water samples are appropriate for human consumption. The results of this study provide an overview of the hydrogeological profile of water supply system for the studied area.

  20. Geochemical characterization and evaluation of groundwater suitability for domestic and agricultural utility in semi-arid region of Basara, Telangana State, South India

    Science.gov (United States)

    Adimalla, Narsimha; Venkatayogi, Sudarshan

    2018-03-01

    Hydrogeochemical investigations were carried out in semi-arid region of Basara to estimate the quality of groundwater for its suitability for domestic and agricultural purposes. For this region 34 groundwater samples were collected in different locations and analyzed for various ions, viz., Na+, Ca2+, Mg2+, K+, Cl-, HCO3 -, SO4 2-, CO3 2-, HCO3 -, NO3 - and F- to assess the water chemistry with sodium absorption ratio, %Na, residual sodium carbonate, magnesium hazard. The nitrate and fluoride concentrations were above the maximum permissible limit, while calcium, sodium, potassium and chloride were found below the desirable limits in most of the groundwater samples. The Wilcox diagram illustrates that 59% of the samples belong to excellent to good category, while the US Salinity Laboratory diagram indicates medium salinity/low sodium content in 64.70% of samples. In general, the geochemistry of groundwater in Basara region is influenced by the water rock processes through percolation and dissolution of rock forming minerals, while calculated values of saturation index for Anhydrite, Aragonite, Artinite, Brucite, Calcite, Fluorite, Gypsum, Dolomite and Magnesite of the groundwater samples were less than zero, indicating under-saturation. Chadha rectangular diagram for geochemical classification and hydrochemical processes of groundwater for Basara provinces indicates 50% of Na+-Cl-, 29% of Ca2+-Mg2+-Cl- and 18% of the water samples concentrate in the category of Na+-HCO3 - type.

  1. Areas contributing recharge to production wells and effects of climate change on the groundwater system in the Chipuxet River and Chickasheen Brook Basins, Rhode Island

    Science.gov (United States)

    Friesz, Paul J.; Stone, Janet R.

    2015-01-01

    The Chipuxet River and Chickasheen Brook Basins in southern Rhode Island are an important water resource for public and domestic supply, irrigation, recreation, and aquatic habitat. The U.S. Geological Survey, in cooperation with the Rhode Island Department of Health, began a study in 2012 as part of an effort to protect the source of water to six large-capacity production wells that supply drinking water and to increase understanding of how climate change might affect the water resources in the basins. Soil-water-balance and groundwater-flow models were developed to delineate the areas contributing recharge to the wells and to quantify the hydrologic response to climate change. Surficial deposits of glacial origin ranging from a few feet to more than 200 feet thick overlie bedrock in the 24.4-square mile study area. These deposits comprise a complex and productive aquifer system.

  2. Field Testing of an In-well Point Velocity Probe for the Rapid Characterization of Groundwater Velocity

    Science.gov (United States)

    Osorno, T.; Devlin, J. F.

    2017-12-01

    Reliable estimates of groundwater velocity is essential in order to best implement in-situ monitoring and remediation technologies. The In-well Point Velocity Probe (IWPVP) is an inexpensive, reusable tool developed for rapid measurement of groundwater velocity at the centimeter-scale in monitoring wells. IWPVP measurements of groundwater speed are based on a small-scale tracer test conducted as ambient groundwater passes through the well screen and the body of the probe. Horizontal flow direction can be determined from the difference in tracer mass passing detectors placed in four funnel-and-channel pathways through the probe, arranged in a cross pattern. The design viability of the IWPVP was confirmed using a two-dimensional numerical model in Comsol Multiphysics, followed by a series of laboratory tank experiments in which IWPVP measurements were calibrated to quantify seepage velocities in both fine and medium sand. Lab results showed that the IWPVP was capable of measuring the seepage velocity in less than 20 minutes per test, when the seepage velocity was in the range of 0.5 to 4.0 m/d. Further, the IWPVP estimated the groundwater speed with a precision of ± 7%, and an accuracy of ± 14%, on average. The horizontal flow direction was determined with an accuracy of ± 15°, on average. Recently, a pilot field test of the IWPVP was conducted in the Borden aquifer, C.F.B. Borden, Ontario, Canada. A total of approximately 44 IWPVP tests were conducted within two 2-inch groundwater monitoring wells comprising a 5 ft. section of #8 commercial well screen. Again, all tests were completed in under 20 minutes. The velocities estimated from IWPVP data were compared to 21 Point Velocity Probe (PVP) tests, as well as Darcy-based estimates of groundwater velocity. Preliminary data analysis shows strong agreement between the IWPVP and PVP estimates of groundwater velocity. Further, both the IWPVP and PVP estimates of groundwater velocity appear to be reasonable when

  3. A water-budget approach to estimating potential groundwater recharge from two domestic sewage disposal fields in eastern Bernalillo County, New Mexico, 2011-12

    Science.gov (United States)

    Crilley, Dianna M.; Collison, Jake W.

    2015-08-04

    Eastern Bernalillo County, New Mexico, is a historically rural area that in recent years has experienced an increase in population and in the construction of new housing units, most of which are not connected to a centralized wastewater treatment system. Increasing water use has raised concerns about the effect of development on the available groundwater resources in the area. During 2011–12, the U.S. Geological Survey, in cooperation with Bernalillo County Public Works Natural Resource Services, used a water-budget approach to quantify the amount of potential groundwater recharge occurring from the domestic sewage (effluent) dosed to the sewage disposal field at two locations—sites A and B—in eastern Bernalillo County, N. Mex. The amount of effluent that is potentially available for groundwater recharge was determined as the mean daily volume of effluent dosed to the disposal field in excess of the mean daily volume of effluent loss from evapotranspiration from the disposal field.

  4. Occurrence and status of volatile organic compounds in ground water from rural, untreated, self-supplied domestic wells in the United States, 1986-99

    Science.gov (United States)

    Moran, Michael J.; Lapham, Wayne W.; Rowe, Barbara L.; Zogorski, John S.

    2002-01-01

    Samples of untreated ground water from 1,926 rural, self-supplied domestic wells were analyzed for volatile organic compounds (VOCs) during 1986-99. This information was used to characterize the occurrence and status of VOCs in domestic well water. The samples were either collected as part of the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program occurrence-assessment studies or were compiled by NAWQA from existing ambient ground-water or source-water-quality monitoring programs conducted by local, State, and other Federal agencies. Water samples were collected at the wellhead prior to treatment or storage. In most samples, 55 target VOCs were analyzed, and occurrence and status information generally was computed at an assessment level of 0.2 mg/L (microgram per liter). At least one VOC was detected in 12 percent of samples (232 samples) at an assessment level of 0.2 mg/L. This detection frequency is relatively low compared to the 26 percent detection frequency of at least one VOC in public sup-ply wells sampled by NAWQA, and the difference may be due, in part, to the higher pumping rates, pumping stress factors, and larger contributing areas of public supply wells. Samples with detections of at least one VOC were collected from wells located in 31 of 39 States. Solvents were the most frequently detected VOC group with detections in 4.6 percent of samples (89 samples) at an assessment level of 0.2 mg/L. The geographic distribution of detections of some VOC groups, such as fumigants and oxygenates, relates to the use pattern of com-pounds in that group. With the exception of com-pounds used in organic synthesis, detection frequencies of VOCs by group are proportional to the average half-life of compounds in the group. When the organic synthesis group is excluded from the analysis, a good correlation exists between the detection frequency of VOCs by group and average half-life of compounds in the group. Individually, VOCs were not commonly

  5. Development of a single well dilution probe for groundwater velocity measurements

    International Nuclear Information System (INIS)

    Jain, S.K.; Santra, A.B.; Kulkarni, U.P.; Rao, S.M.

    1982-01-01

    The paper describes the development and design of a single well dilution probe for the measurement of groundwater velocities at different sections of the borehole. In this probe, the radioactive tracer is introduced in the measuring volume by dissolving a gelatine capsule containing the tracer. The continuous mixing of the tracer solution is achieved by a specially designed magnetic stirrer. To prevent vertical flows, the measuring volume is sealed off in the bore-hole at the top and bottom by inflator rubber tubes which are inflated by compressed air from the ground surface. The concentration of the gamma tracer solution is measured 'insitu' by a NaI crystal scintillation detector incorporated in the probe. (author)

  6. Environmental Baseline Survey for Installation of Five New Hydrogeologic Groundwater Monitoring Wells

    Energy Technology Data Exchange (ETDEWEB)

    Catechis, Christopher S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    This Phase I Environmental Baseline Survey (EBS) provides the findings of a survey and assessment for termination of an existing easement granted to the Department of Energy (DOE) for the installation of 5 new hydrogeologic groundwater monitoring wells located on KAFB, New Mexico. The purpose of this EBS is to: Document the nature, magnitude, and extent of any environmental contamination of the property. Identify potential environmental contamination liabilities associated with the property. Develop sufficient information to assess the health and safety risks. Ensure adequate protection for human health and the environment related to a specific property. Determine possible effects of contamination on property valuation, and serve as the basis for notice of environmental condition for applicable federal or local real property disclosure requirements.

  7. Groundwater Contamination in Agbowo Community, Ibadan Nigeria: Impact of Septic Tanks Distances to Wells

    Directory of Open Access Journals (Sweden)

    Odetokun, I. A.

    2011-01-01

    Full Text Available In Nigeria, inadequate supply of pipe borne water is a major concern; hence many homes have wells as a source of water for household uses. The groundwater of forty wells in Agbowo community was assessed for Total Aerobic Bacteria Counts (TABC and Total Coliform Counts (TCC. The location and distances of wells from septic tanks were determined using the Global Positioning System (GPS device and a tape rule respectively. All the wells sampled had high TABC (4.76 ± 1.41 log CFU/mL and TCC (2.2 9± 0.67 log CFU/mL counts which exceeded the international standard of 0 per 100 mL of potable water. There were no significant differences in the bacterial counts between covered and uncovered wells (p>0.05. The mean distance (8.93±3.61m of wells from the septic tanks was below the limit (15.24 m or 50 ft set by United State Environmental Protection Agency (USEPA. TABC increased with a decrease in distance between the wells and septic tanks though not significant (p<0.05. A very weak positive correlation (r2 =0.021 ensued between the distance from septic tank and CC, while a weak negative correlation (r2 = ‒0.261 was obtained between the TCC and TABC. This study accentuates the need to set standards for the siting of wells from septic tanks while considering all possible sources of well contamination as well as treatment of ground water before use.

  8. Groundwater quality monitoring well installation for waste area grouping 7 and solid waste storage area 1, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Mortimore, J.A.; Ebers, M.L.

    1994-09-01

    The purpose of this report is to document the drilling and installation of the groundwater quality monitoring (GQM) wells on the perimeter of Waste Area Grouping (WAG) 7 and at Solid Waste Storage Area (SWSA) 1, which is a part of WAG 1. Installation of GQM wells was required at Oak Ridge National Laboratory (ORNL) for regulatory compliance. Data obtained from these wells will be used to characterize and assess groundwater quality at the perimeter of each WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The wells in WAG 7 and SWSA 1 were drilled and developed during the period from June 1989 to March 1990

  9. Evaluation of groundwater levels in the South Platte River alluvial aquifer, Colorado, 1953-2012, and design of initial well networks for monitoring groundwater levels

    Science.gov (United States)

    Wellman, Tristan

    2015-01-01

    The South Platte River and underlying alluvial aquifer form an important hydrologic resource in northeastern Colorado that provides water to population centers along the Front Range and to agricultural communities across the rural plains. Water is regulated based on seniority of water rights and delivered using a network of administration structures that includes ditches, reservoirs, wells, impacted river sections, and engineered recharge areas. A recent addendum to Colorado water law enacted during 2002-2003 curtailed pumping from thousands of wells that lacked authorized augmentation plans. The restrictions in pumping were hypothesized to increase water storage in the aquifer, causing groundwater to rise near the land surface at some locations. The U.S. Geological Survey (USGS), in cooperation with the Colorado Water Conservation Board and the Colorado Water Institute, completed an assessment of 60 years (yr) of historical groundwater-level records collected from 1953 to 2012 from 1,669 wells. Relations of "high" groundwater levels, defined as depth to water from 0 to 10 feet (ft) below land surface, were compared to precipitation, river discharge, and 36 geographic and administrative attributes to identify natural and human controls in areas with shallow groundwater.

  10. Strategies for safe exploitation of fresh water through multi-strainer skimming wells in saline groundwater areas

    International Nuclear Information System (INIS)

    Alam, M.M.; Jaffery, H.M.; Hanif, M.

    2005-01-01

    Due to growing population of Pakistan, there is a tremendous pressure on our agriculture sector to increase its production to meet the food and fiber requirement. Water is a basic need to increase the agriculture production and to bring more areas under cultivation. The exploitation of groundwater resources is increasing because of limited surface water availability. Statistics indicated that number of public and private tube-wells have increased to more than 5 lacs. Over exploitations of groundwater caused a number of environmental problems including salt water intrusion and increase in the soil and groundwater salinity. A large number of fresh water tube-wells have started pumping saline groundwater in various parts of Pakistan indicating up-coning of saline groundwater in the relatively fresh water aquifers. Use of poor quality groundwater for irrigation is considered as one of the major causes of salinity in the areas of irrigated agriculture. Indiscriminate pumping of the groundwater of marginal quality through skimming fresh water overlain by saline groundwater can not be helpful in the long run. It can add to the root zone salinity and ultimately reduction of crops yield. Mona Reclamation Experimental Project (MREP) is conducting a collaborative research study on 'Root Zone Salinity Management using Fractional Skimming Wells with Pressurized Irrigation' under a research and studies portfolio of the country wide National Drainage Programme (NDP) MREP, IWMI Pakistan and Water Resources Research Institute of PARC are collaborators in this joint research effort. MREP is responsible to specifically address the objective of the study to identify and test a limited number of promising skimming well techniques in the shallow fresh water aquifers which could control the saline water up-coning phenomenon as a consequence of groundwater pumping. Detailed investigations have been done at various locations in the north-central part of Chaj Doab (Sargodha Region) in the

  11. Prediction of groundwater flowing well zone at An-Najif Province, central Iraq using evidential belief functions model and GIS.

    Science.gov (United States)

    Al-Abadi, Alaa M; Pradhan, Biswajeet; Shahid, Shamsuddin

    2015-10-01

    The objective of this study is to delineate groundwater flowing well zone potential in An-Najif Province of Iraq in a data-driven evidential belief function model developed in a geographical information system (GIS) environment. An inventory map of 68 groundwater flowing wells was prepared through field survey. Seventy percent or 43 wells were used for training the evidential belief functions model and the reset 30 % or 19 wells were used for validation of the model. Seven groundwater conditioning factors mostly derived from RS were used, namely elevation, slope angle, curvature, topographic wetness index, stream power index, lithological units, and distance to the Euphrates River in this study. The relationship between training flowing well locations and the conditioning factors were investigated using evidential belief functions technique in a GIS environment. The integrated belief values were classified into five categories using natural break classification scheme to predict spatial zoning of groundwater flowing well, namely very low (0.17-0.34), low (0.34-0.46), moderate (0.46-0.58), high (0.58-0.80), and very high (0.80-0.99). The results show that very low and low zones cover 72 % (19,282 km(2)) of the study area mostly clustered in the central part, the moderate zone concentrated in the west part covers 13 % (3481 km(2)), and the high and very high zones extended over the northern part cover 15 % (3977 km(2)) of the study area. The vast spatial extension of very low and low zones indicates that groundwater flowing wells potential in the study area is low. The performance of the evidential belief functions spatial model was validated using the receiver operating characteristic curve. A success rate of 0.95 and a prediction rate of 0.94 were estimated from the area under relative operating characteristics curves, which indicate that the developed model has excellent capability to predict groundwater flowing well zones. The produced map of groundwater

  12. Characterization of microbial communities distributed in the groundwater pumped from deep tube wells in the Kathmandu Valley of Nepal.

    Science.gov (United States)

    Tanaka, Yasuhiro; Nishida, Kei; Nakamura, Takashi; Chapagain, Saroj Kumar; Inoue, Daisuke; Sei, Kazunari; Mori, Kazuhiro; Sakamoto, Yasushi; Kazama, Futaba

    2012-03-01

    Although groundwater is a major water supply source in the Kathmandu Valley of Nepal, it is known that the groundwater has significant microbial contamination exceeding the drinking water quality standard recommended by the World Health Organization (WHO), and that this has been implicated in causing a variety of diseases among people living in the valley. However, little is known about the distribution of pathogenic microbes in the groundwater. Here, we analysed the microbial communities of the six water samples from deep tube wells by using the 16S rRNA gene sequences based culture-independent method. The analysis showed that the groundwater has been contaminated with various types of opportunistic microbes in addition to fecal microbes. Particularly, the clonal sequences related to the opportunistic microbes within the genus Acinetobacter were detected in all samples. As many strains of Acinetobacter are known as multi-drug resistant microbes that are currently spreading in the world, we conducted a molecular-based survey for detection of the gene encoding carbapenem-hydrolysing β-lactamase (bla(oxa-23-like) gene), which is a key enzyme responsible for multi-drug resistance, in the groundwater samples. Nested polymerase chain reaction (PCR) using two specific primer sets for amplifying bla(oxa-23-like) gene indicated that two of six groundwater samples contain multi-drug resistant Acinetobacter.

  13. Investigation of the Effect of Water Removal from Wells Surrounding Parishan Lake on Groundwater and Surface Water Levels

    International Nuclear Information System (INIS)

    Shafiei, M.; Raini Sarjaz, M.; Fazloli, R.; Gholami Sefidkouhi, M. A.

    2017-01-01

    In recent decades the human impacts on global warming and, its consequences, climate change, stirred up earth ecosystems balance and has created many problems all over the world. Unauthorized underground water removal, especially in arid and semi-arid regions of Iran, along with recent decade drought occurrences significantly lowered underground and surface water levels. To investigate the impacts of water removal from surrounding wells in Parishan Lake water level, during 1996 to 2009 interval, 8 buffer layers surrounding the lake were mapped in ArcGIS 9.3 environment. Each buffer layer wells and their total annual discharges were determined. Using SPSS 16 software, the regression equations between wells water levels and water discharges were computed. By employing Thiessen function and creating Thiessen network (TIN) around observation wells, decline of groundwater levels was evaluated. Finally regression equations between wells discharges and groundwater level declines were created. The findings showed that there are highly significant correlations (p ≤ 0.01), in all buffer layers, between water levels and wells discharges. Investigation of the observation wells surrounding lake showed that severe groundwater level declines has been started since the beginning of the first decade of the 21st century. Using satellite images in ArcGIS 9.3 environment it was confirmed that lake’s area has been reduced significantly. In conclusion, it is obvious that human interferences on lake’s natural ecosystem by digging unauthorized wells and removing underground water more than annual recharges significantly impacted surface and groundwater levels.

  14. Developing a methodology for identifying action zones to protect and manage groundwater well fields

    Science.gov (United States)

    Bellier, Sandra; Viennot, Pascal; Ledoux, Emmanuel; Schott, Celine

    2013-04-01

    Implementation of a long term action plan to manage and protect well fields is a complex and very expensive process. In this context, the relevance and efficiency of such action plans on water quality should be evaluated. The objective of this study is to set up a methodology to identify relevant actions zones in which environmental changes may significantly impact the quantity or quality of pumped water. In the Seine-et-Marne department (France), under French environmental laws three sectors integrating numerous well-field pumping in Champigny's limestone aquifer are considered as priority. This aquifer, located at south-east of Paris, supplies more than one million people with drinking water. Catchments areas of these abstractions are very large (2000 km2) and their intrinsic vulnerability was established by a simple parametric approach that does not permit to consider the complexity of hydrosystem. Consequently, a methodology based on a distributed modeling of the process of the aquifer was developed. The basin is modeled using the hydrogeological model MODCOU, developed in MINES ParisTech since the 1980s. It simulates surface and groundwater flow in aquifer systems and allows to represent the local characteristics of the hydrosystem (aquifers communicating by leakage, rivers infiltration, supply from sinkholes and locally perched or dewatering aquifers). The model was calibrated by matching simulated river discharge hydrographs and piezometric heads with observed ones since the 1970s. Thanks to this modelling tool, a methodology based on the transfer of a theoretical tracer through the hydrosystem from the ground surface to the outlets was implemented to evaluate the spatial distribution of the contribution areas at contrasted, wet or dry recharge periods. The results show that the surface of areas contributing to supply most catchments is lower than 300 km2 and the major contributory zones are located along rivers. This finding illustrates the importance of

  15. Vulnerability of shallow groundwater and drinking-water wells to nitrate in the United States

    Science.gov (United States)

    Nolan, Bernard T.; Hitt, Kerie J.

    2006-01-01

    Two nonlinear models were developed at the national scale to (1) predict contamination of shallow ground water (typically drinking. The new models have several advantages over previous national-scale approaches. First, they predict nitrate concentration (rather than probability of occurrence), which can be directly compared with water-quality criteria. Second, the models share a mechanistic structure that segregates nitrogen (N) sources and physical factors that enhance or restrict nitrate transport and accumulation in ground water. Finally, data were spatially averaged to minimize small-scale variability so that the large-scale influences of N loading, climate, and aquifer characteristics could more readily be identified. Results indicate that areas with high N application, high water input, well-drained soils, fractured rocks or those with high effective porosity, and lack of attenuation processes have the highest predicted nitrate concentration. The shallow groundwater model (mean square error or MSE = 2.96) yielded a coefficient of determination (R2) of 0.801, indicating that much of the variation in nitrate concentration is explained by the model. Moderate to severe nitrate contamination is predicted to occur in the High Plains, northern Midwest, and selected other areas. The drinking-water model performed comparably (MSE = 2.00, R2 = 0.767) and predicts that the number of users on private wells and residing in moderately contaminated areas (>5 to ≤10 mg/L nitrate) decreases by 12% when simulation depth increases from 10 to 50 m.

  16. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping

    Science.gov (United States)

    Naghibi, Seyed Amir; Moghaddam, Davood Davoodi; Kalantar, Bahareh; Pradhan, Biswajeet; Kisi, Ozgur

    2017-05-01

    In recent years, application of ensemble models has been increased tremendously in various types of natural hazard assessment such as landslides and floods. However, application of this kind of robust models in groundwater potential mapping is relatively new. This study applied four data mining algorithms including AdaBoost, Bagging, generalized additive model (GAM), and Naive Bayes (NB) models to map groundwater potential. Then, a novel frequency ratio data mining ensemble model (FREM) was introduced and evaluated. For this purpose, eleven groundwater conditioning factors (GCFs), including altitude, slope aspect, slope angle, plan curvature, stream power index (SPI), river density, distance from rivers, topographic wetness index (TWI), land use, normalized difference vegetation index (NDVI), and lithology were mapped. About 281 well locations with high potential were selected. Wells were randomly partitioned into two classes for training the models (70% or 197) and validating them (30% or 84). AdaBoost, Bagging, GAM, and NB algorithms were employed to get groundwater potential maps (GPMs). The GPMs were categorized into potential classes using natural break method of classification scheme. In the next stage, frequency ratio (FR) value was calculated for the output of the four aforementioned models and were summed, and finally a GPM was produced using FREM. For validating the models, area under receiver operating characteristics (ROC) curve was calculated. The ROC curve for prediction dataset was 94.8, 93.5, 92.6, 92.0, and 84.4% for FREM, Bagging, AdaBoost, GAM, and NB models, respectively. The results indicated that FREM had the best performance among all the models. The better performance of the FREM model could be related to reduction of over fitting and possible errors. Other models such as AdaBoost, Bagging, GAM, and NB also produced acceptable performance in groundwater modelling. The GPMs produced in the current study may facilitate groundwater exploitation

  17. Report on the radiochemical and environmental isotope character for monitoring well UE-1-q: Groundwater Characterization Program

    International Nuclear Information System (INIS)

    Davisson, M.L.; Hudson, G.B.; Kenneally, J.; Nimz, G.J.; Rego, J.H.

    1993-06-01

    Well UE-1-q is located in the northeastern portion of area 1 of the Nevada Test Site in southwestern Nevada, 1244.1 meters above sea level. The well was originally an exploratory hole drilled to a depth of 743 meters below the surface (mbs) by LANL in November of 1980. In May 1992, the Groundwater Characterization Program (GCP) extended the total depth to approximately 792.5 mbs. UE-1-q is cased to a total depth of 749.5 mbs, with the remaining uncased depth exposed exclusively to Paleozoicaged carbonate rock, the principle zone of groundwater sampling. Geologic logging indicates approximately 390 meters of tuffaceous and calcareous alluvium overlies 320 meters of Tertiary-aged volcanic ash-flow and bedded tuffs. Paleozoic carbonate lithology extends from 716 mbs to the total well depth and is separated from the overlying Tertiary volcanic deposits by 6 meters of paleocolluvium. This report outlines the results and interpretations of radiochemical and environmental isotopic analyses of groundwater sampled from UE-1-q on July 10, 1992 during the well pump test following well development. In addition, results of the field tritium monitoring performed during the well drilling are reported in Appendix 1. Sampling, analytical techniques, and analytical uncertainties for the groundwater analyses are presented in Appendix 2

  18. Incorporation of groundwater losses and well level data in rainfall-runoff models illustrated using the PDM

    Directory of Open Access Journals (Sweden)

    R. J. Moore

    2002-01-01

    Full Text Available Intermittent streamflow is a common occurrence in permeable catchments, especially where there are pumped abstractions to water supply. Many rainfall-runoff models are not formulated so as to represent ephemeral streamflow behaviour or to allow for the possibility of negative recharge arising from groundwater pumping. A groundwater model component is formulated here for use in extending existing rainfall-runoff models to accommodate such ephemeral behaviour. Solutions to the Horton-Izzard equation resulting from the conceptual model of groundwater storage are adapted and the form of nonlinear storage extended to accommodate negative inputs, water storage below which outflow ceases, and losses to external springs and underflows below the gauged catchment outlet. The groundwater model component is demonstrated through using it as an extension of the PDM rainfall-runoff model. It is applied to the River Lavant, a catchment in Southern England on the English Chalk, where it successfully simulates the ephemeral streamflow behaviour and flood response together with well level variations. Keywords: groundwater, rainfall-runoff model, ephemeral stream, well level, spring, abstraction

  19. How Well Does the World Health Organization Definition of Domestic Violence Work for India?

    Science.gov (United States)

    Kalokhe, Ameeta S.; Potdar, Ratnaprabha R.; Stephenson, Rob; Dunkle, Kristin L.; Paranjape, Anuradha; del Rio, Carlos; Sahay, Seema

    2015-01-01

    Domestic violence (DV) is reported by 40% of married women in India and associated with substantial morbidity. An operational research definition is therefore needed to enhance understanding of DV epidemiology in India and inform DV interventions and measures. To arrive at a culturally-tailored definition, we aimed to better understand how definitions provided by the World Health Organization and the 2005 India Protection of Women from Domestic Violence Act match the perceptions of behaviors constituting DV among the Indian community. Between September 2012 and January 2013, 16 key informant interviews with experts in DV and family counseling and 2 gender-concordant focus groups of lay community members were conducted in Pune, India to understand community perceptions of the definition of DV, perpetrators of DV, and examples of DV encountered by married women in Pune, India. Several key themes emerged regarding behaviors and acts constituting DV including 1) the exertion of control over a woman’s reproductive decision-making, mobility, socializing with family and friends, finances, and access to food and nutrition, 2) the widespread acceptance of sexual abuse and the influences of affluence on sexual DV manifestations, 3) the shaping of physical abuse experiences by readily-available tools and the presence of witnesses, 4) psychological abuse for infertility, dowry, and girl-children, and 5) the perpetration of DV by the husband and other members of his family. Findings support the need for a culturally-tailored operational definition that expands on the WHO surveillance definition to inform the development of more effective DV intervention strategies and measures. PMID:25811374

  20. How well does the World Health Organization definition of domestic violence work for India?

    Directory of Open Access Journals (Sweden)

    Ameeta S Kalokhe

    Full Text Available Domestic violence (DV is reported by 40% of married women in India and associated with substantial morbidity. An operational research definition is therefore needed to enhance understanding of DV epidemiology in India and inform DV interventions and measures. To arrive at a culturally-tailored definition, we aimed to better understand how definitions provided by the World Health Organization and the 2005 India Protection of Women from Domestic Violence Act match the perceptions of behaviors constituting DV among the Indian community. Between September 2012 and January 2013, 16 key informant interviews with experts in DV and family counseling and 2 gender-concordant focus groups of lay community members were conducted in Pune, India to understand community perceptions of the definition of DV, perpetrators of DV, and examples of DV encountered by married women in Pune, India. Several key themes emerged regarding behaviors and acts constituting DV including 1 the exertion of control over a woman's reproductive decision-making, mobility, socializing with family and friends, finances, and access to food and nutrition, 2 the widespread acceptance of sexual abuse and the influences of affluence on sexual DV manifestations, 3 the shaping of physical abuse experiences by readily-available tools and the presence of witnesses, 4 psychological abuse for infertility, dowry, and girl-children, and 5 the perpetration of DV by the husband and other members of his family. Findings support the need for a culturally-tailored operational definition that expands on the WHO surveillance definition to inform the development of more effective DV intervention strategies and measures.

  1. How well does the World Health Organization definition of domestic violence work for India?

    Science.gov (United States)

    Kalokhe, Ameeta S; Potdar, Ratnaprabha R; Stephenson, Rob; Dunkle, Kristin L; Paranjape, Anuradha; Del Rio, Carlos; Sahay, Seema

    2015-01-01

    Domestic violence (DV) is reported by 40% of married women in India and associated with substantial morbidity. An operational research definition is therefore needed to enhance understanding of DV epidemiology in India and inform DV interventions and measures. To arrive at a culturally-tailored definition, we aimed to better understand how definitions provided by the World Health Organization and the 2005 India Protection of Women from Domestic Violence Act match the perceptions of behaviors constituting DV among the Indian community. Between September 2012 and January 2013, 16 key informant interviews with experts in DV and family counseling and 2 gender-concordant focus groups of lay community members were conducted in Pune, India to understand community perceptions of the definition of DV, perpetrators of DV, and examples of DV encountered by married women in Pune, India. Several key themes emerged regarding behaviors and acts constituting DV including 1) the exertion of control over a woman's reproductive decision-making, mobility, socializing with family and friends, finances, and access to food and nutrition, 2) the widespread acceptance of sexual abuse and the influences of affluence on sexual DV manifestations, 3) the shaping of physical abuse experiences by readily-available tools and the presence of witnesses, 4) psychological abuse for infertility, dowry, and girl-children, and 5) the perpetration of DV by the husband and other members of his family. Findings support the need for a culturally-tailored operational definition that expands on the WHO surveillance definition to inform the development of more effective DV intervention strategies and measures.

  2. Handbook: Collecting Groundwater Samples from Monitoring Wells in Frenchman Flat, CAU 98

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jenny [Desert Research Inst. (DRI), Reno, NV (United States); Lyles, Brad [Desert Research Inst. (DRI), Reno, NV (United States); Cooper, Clay [Desert Research Inst. (DRI), Reno, NV (United States); Hershey, Ron [Desert Research Inst. (DRI), Reno, NV (United States); Healey, John [Desert Research Inst. (DRI), Reno, NV (United States)

    2015-06-01

    CAU. The sampling plan is designed to ensure that monitoring activities occur in compliance with the UGTA Quality Assurance Plan (DOE, 2012). The sampling plan should be referenced for Quality Assurance (QA) elements and procedures governing sampling activities. The NNSS Integrated Sampling Plan specifies the groundwater monitoring that will occur in CAU 98 until the long-term monitoring program is approved in the Closure Report. The plan specifies the wells that must be monitored and categorizes them by their sampling objective with the associated analytical requirements and frequency. Possible sample collection methods and required standard operating procedures are also presented. The intent of this handbook is to augment the NNSS Integrated Sampling Plan by providing well-specific details for the sampling professional implementing the Sampling Plan in CAU 98, Frenchman Flat. This handbook includes each CAU 98 well designated for sampling in the NNSS Integrated Sampling Plan. The following information is provided in the individual well sections: 1. The purpose of sampling. 2. A physical description of the well. 3. The chemical characteristics of the formation water. 4. Recommended protocols for purging and sampling. The well-specific information has been gathered from numerous historical and current sources cited in each section, but two particularly valuable resources merit special mention. These are the USGS NNSS website (http://nevada.usgs.gov/doe_nv/ntsarea5.cfm) and the UGTA Field Operations website (https://ugta.nv.doe.gov/sites/Field%20Operations/default.aspx). 2 Land surface elevation and measuring point for water level measurements in Frenchman Flat were a focus during CAU investigations (see Appendix B, Attachment 1 in Navarro-Intera, 2014). Both websites listed above provide information on the accepted datum for each well. A summary is found on the home page for the well on the USGS website. Additional information is available through a link in the

  3. Evidence for Legacy Contamination of Nitrate in Groundwater of North Carolina Using Monitoring and Private Well Data Models

    Science.gov (United States)

    Messier, K. P.; Kane, E.; Bolich, R.; Serre, M. L.

    2014-12-01

    Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. Legacy contamination, or past releases of NO3-, is thought to be impacting current groundwater and surface water of North Carolina. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure known as constrained forward nonlinear regression and hyperparameter optimization (CFN-RHO) is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is then used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. The major finding regarding legacy sources NO3- in this study is that the LUR-BME models show the geographical extent of low-level contamination of deeper drinking-water aquifers is beyond that of the shallower monitoring well. Groundwater NO3- in monitoring wells is highly variable with many areas predicted above the current Environmental Protection Agency standard of 10 mg/L. Contrarily, the private well results depict widespread, low-level NO3-concentrations. This evidence supports that in addition to downward transport, there is also a significant outward transport of groundwater NO3- in the drinking water aquifer to areas outside the range of sources. Results indicate that the deeper aquifers are potentially acting as a reservoir that is not only deeper, but also covers a larger geographical area, than the reservoir formed by the shallow aquifers. Results are of interest to agencies that regulate surface water and drinking water sources impacted by the effects of

  4. Dryland wheat domestication changed the development of aboveground architecture for a well-structured canopy.

    Directory of Open Access Journals (Sweden)

    Pu-Fang Li

    Full Text Available We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUE(i. Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate.

  5. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions

  6. Groundwater quality and simulation of sources of water to wells in the Marsh Creek valley at the U.S. Geological Survey Northern Appalachian Research Laboratory, Tioga County, Pennsylvania

    Science.gov (United States)

    Risser, Dennis W.; Breen, Kevin J.

    2012-01-01

    This report provides a November 2010 snapshot of groundwater quality and an analysis of the sources of water to wells at the U.S. Geological Survey (USGS) Northern Appalachian Research Laboratory (NARL) near Wellsboro, Pennsylvania. The laboratory, which conducts fisheries research, currently (2011) withdraws 1,000 gallons per minute of high-quality groundwater from three wells completed in the glacial sand and gravel aquifer beneath the Marsh Creek valley; a fourth well that taps the same aquifer provides the potable supply for the facility. The study was conducted to document the source areas and quality of the water supply for this Department of Interior facility, which is surrounded by the ongoing development of natural gas from the Marcellus Shale. Groundwater samples were collected from the four wells used by the NARL and from two nearby domestic-supply wells. The domestic-supply wells withdraw groundwater from bedrock of the Catskill Formation. Samples were analyzed for major ions, nutrients, trace metals, radiochemicals, dissolved gases, and stable isotopes of oxygen and hydrogen in water and carbon in dissolved carbonate to document groundwater quality. Organic constituents (other than hydrocarbon gases) associated with hydraulic fracturing and other human activities were not analyzed as part of this assessment. Results show low concentrations of all constituents. Only radon, which ranged from 980 to 1,310 picocuries per liter, was somewhat elevated. These findings are consistent with the pristine nature of the aquifer in the Marsh Creek valley, which is the reason the laboratory was sited at this location. The sources of water and areas contributing recharge to wells were identified by the use of a previously documented MODFLOW groundwater-flow model for the following conditions: (1) withdrawals of 1,000 to 3,000 gallons per minute from the NARL wells, (2) average or dry hydrologic conditions, and (3) withdrawals of 1,000 gallons per minute from a new

  7. Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex

    International Nuclear Information System (INIS)

    2006-01-01

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure A.1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling (Section 3.0), whereas wells granted ''inactive'' status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 3.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 4.0). This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes (Figure A.1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge directly south of Y-12 that is bound on the

  8. Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-09-30

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure 1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 which provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater sampling (Section 3.0), whereas well granted ''inactive'' status are not used for either purpose. The status designation also determines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 4.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 5.0). This plan applies to groundwater monitoring wells associated with Y-12 and related waste management facilities located within three hydrogeologic regimes (Figure 1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime is directly south of Y-12 and encompasses a section of Chestnut Ridge that is bound to the

  9. Well-construction, water-level, geophysical, and water-quality data for ground-water monitoring wells for Arnold Air Force Base, Tennessee

    Science.gov (United States)

    Hough, C.J.; Mahoney, E.N.; Robinson, J.A.

    1992-01-01

    Sixty-five wells were installed at 39 sites in the Arnold Air Force Base area in Coffee and Franklin Counties, Tennessee. The wells were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. Well depths ranged from 11 to 384 feet. Water-quality samples were collected from 60 wells and analyzed for common inorganic ions, trace metals, and volatile organic compounds. The median dissolved-solids concentrations were 60 milligrams per liter in the shallow aquifer, 48 million gallons per liter in the Manchester aquifer, 1,235 milligrams per liter in the Fort Payne aquifer, and 1,712 milligrams per liter in the upper Central Basin aquifer. Caliper, temperature, natural gamma, electric, neutron porosity, gamma-gamma density, and acoustic velocity borehole-geophysical logs were obtained for the six deep wells completed below the Chattanooga Shale. Petrographic and modal analysis were performed on rock samples from each deep well. These six deep wells provide the first information in the study area on hydraulic head and water quality from below the Chattanooga Shale.

  10. Hydrochemical trends for public supply well fields in The Netherlands (1898-2008), natural backgrounds and upscaling to groundwater bodies

    Science.gov (United States)

    Mendizabal, Igor; Baggelaar, Paul K.; Stuyfzand, Pieter J.

    2012-07-01

    SummaryStatistical trend analysis is applied to a 110 years long groundwater quality time series from the national network of public supply well fields (PSWFs) in The Netherlands. Such a groundwater quality monitoring network should be available in many countries, so that approaches and experiences presented here could be of interest world wide. Trendless concentration data series measured in the early years, which should bear the least anthropogenic influences, are selected to quantify the regional natural background concentration levels (NBLs) of groundwater resources at the depth of abstraction. Trends in the period 1960-2005, which contained a more homogeneous data set, are normalized to drinking water standards, mapped in planar view and cross sections, and used to identify the responsible hydrochemical processes. Seven representative trend bundles are defined by aggregation of trends for individual chemical parameters. Trend reversals due to either environmental sanitation measures or well field adaptation measures are identified by comparing significant trends obtained for two different periods within the time series. Natural background levels (NBLs) for individual PSWFs are upscaled to the national groundwater body level (as reported to EU), by aggregating them according to a PSWF typology based on a Hydrochemical System Analysis. This aggregation method groups together PSWFs that deliver waters of the same origin and similar hydrogeochemical environment. PSWFs delivering old groundwaters with a very stable quality are clearly differentiated from PSWFs pumping highly vulnerable aquifers characterized by strongly deteriorating water quality trends. Results are presented on national maps of The Netherlands with NBLs and water quality trends for selected major constituents. A normalized concentration change index (NCC) is defined and mapped to relate the quality difference between a recent survey (in 2008) and calculated NBLs, to the EU drinking water

  11. Maps showing predicted probabilities for selected dissolved oxygen and dissolved manganese threshold events in depth zones used by the domestic and public drinking water supply wells, Central Valley, California

    Science.gov (United States)

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.

    2018-01-31

    The purpose of the prediction grids for selected redox constituents—dissolved oxygen and dissolved manganese—are intended to provide an understanding of groundwater-quality conditions at the domestic and public-supply drinking water depths. The chemical quality of groundwater and the fate of many contaminants is influenced by redox processes in all aquifers, and understanding the redox conditions horizontally and vertically is critical in evaluating groundwater quality. The redox condition of groundwater—whether oxic (oxygen present) or anoxic (oxygen absent)—strongly influences the oxidation state of a chemical in groundwater. The anoxic dissolved oxygen thresholds of water, making drinking water undesirable with respect to taste, staining, or scaling. Three dissolved manganese thresholds, supply water wells. The 50 µg/L event threshold represents the secondary maximum contaminant level (SMCL) benchmark for manganese (U.S. Environmental Protection Agency, 2017; California Division of Drinking Water, 2014), whereas the 300 µg/L event threshold represents the U.S. Geological Survey (USGS) health-based screening level (HBSL) benchmark, used to put measured concentrations of drinking-water contaminants into a human-health context (Toccalino and others, 2014). The 150 µg/L event threshold represents one-half the USGS HBSL. The resultant dissolved oxygen and dissolved manganese prediction grids may be of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions. Prediction grids for selected redox constituents and thresholds were created by the USGS National Water-Quality Assessment (NAWQA) modeling and mapping team.

  12. Groundwater quality monitoring well installation for Waste Area Grouping at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    Mortimore, J.A.; Lee, T.A.

    1994-09-01

    This report documents the drilling and installation of 18 groundwater quality monitoring (GQM) wells on the perimeter of Waste Area Grouping (WAG) 11. WAG 11 (White Wing Scrap Yard) is located on the west end of East Fork Ridge between White Wing Road and the Oak Ridge Turnpike. The scrap yard is approximately 25 acres in size. The wells at WAG 11 were drilled and developed between January 1990 and October 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The wells at WAG 11 were drilled with auger or air rotary rigs. Depending on the hydrogeologic conditions present at each proposed well location, one of four basic installation methods was utilized. Detailed procedures for well construction were specified by the Engineering Division to ensure that the wells would provide water samples representative of the aquifer. To ensure conformance with the specifications, Energy Systems Construction Engineering and ERCE provided continuous oversight of field activities. The purpose of the well installation program was to install GQM wells for groundwater characterization at WAG 11. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents

  13. Oxytocin as an Indicator of Psychological and Social Well-Being in Domesticated Animals: A Critical Review

    Directory of Open Access Journals (Sweden)

    Jean-Loup Rault

    2017-09-01

    Full Text Available Oxytocin is often portrayed as a hormone specific to social behavior, reflective of positive welfare states, and linked to mental states. Research on oxytocin in domesticated animal species has been few to date but is rapidly increasing (in dog, pig, cattle, sheep, with direct implications for animal welfare. This review evaluates the evidence for the specificity of oxytocin as an indicator of: 1. Social, 2. Positive, and 3. Psychological well-being. Oxytocin has most often been studied in socially relevant paradigms, with a lack of non-social control paradigms. Oxytocin research appears biased toward investigating positive valence, with a lack of control in valence or arousal. Oxytocin actions are modulated by the environmental and social contexts, which are important factors to consider. Limited evidence supports that oxytocin's actions are linked to psychological states; nevertheless whether this is a direct effect of oxytocin per se remains to be demonstrated. Overall, it is premature to judge oxytocin's potential as an animal welfare indicator given the few and discrepant findings and a lack of standardization in methodology. We cover potential causes for discrepancies and suggest solutions through appropriate methodological design, oxytocin sampling or delivery, analysis and reporting. Of particular interest, the oxytocinergic system as a whole remains poorly understood. Appreciation for the differences that social contact and group living pose in domesticated species and the way they interact with humans should be key considerations in using oxytocin as a psychosocial indicator of well-being.

  14. Domestic violence and immigration status among Latina mothers in the child welfare system: findings from the National Survey of Child and Adolescent Well-being II (NSCAW II).

    Science.gov (United States)

    Ogbonnaya, Ijeoma Nwabuzor; Finno-Velasquez, Megan; Kohl, Patricia L

    2015-01-01

    Many children involved with the child welfare system witness parental domestic violence. The association between children's domestic violence exposure and child welfare involvement may be influenced by certain socio-cultural factors; however, minimal research has examined this relationship. The current study compares domestic violence experiences and case outcomes among Latinas who are legal immigrants (n=39), unauthorized immigrants (n=77), naturalized citizens (n=30), and US-born citizen mothers (n=383) reported for child maltreatment. This analysis used data from the second round of the National Survey of Child and Adolescent Well-being. Mothers were asked about whether they experienced domestic violence during the past year. In addition, data were collected to assess if (a) domestic violence was the primary abuse type reported and, if so, (b) the maltreatment allegation was substantiated. Results show that naturalized citizens, legal residents, and unauthorized immigrants did not differ from US-born citizens in self-reports of domestic violence; approximately 33% of mothers reported experiences of domestic violence within the past year. Yet, unauthorized immigrants were 3.76 times more likely than US-born citizens to have cases with allegations of domestic violence as the primary abuse type. Despite higher rates of alleged domestic violence, unauthorized citizens were not more likely than US-born citizens to have these cases substantiated for domestic violence (F(2.26, 153.99)=0.709, p=.510). Findings highlight that domestic violence is not accurately accounted for in families with unauthorized immigrant mothers. We recommend child welfare workers are trained to properly assess and fulfill the needs of immigrant families, particularly as it relates to domestic violence. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. In Situ Catalytic Groundwater Treatment Using Palladium Catalysts and Horizontal Flow Treatment Wells

    Science.gov (United States)

    2008-01-01

    may enter the soil , and subsequently the groundwater, along any portion of this unlined channel. The area south of the buildings has not been...the 1960s in the northwestern corner of Site 19, and an estimated 250,000 gallons of JP-4 jet fuel were released. Soil was excavated and...16,000 Pd catalyst treatment system $61,000 Pd catalyst with eggshell coating (20 kg @ $245 per lb) $11,000 Skid-mounted reactor system and

  16. Evaluation of groundwater suitability for domestic, irrigational, and industrial purposes: a case study from Thirumanimuttar river basin, Tamilnadu, India.

    Science.gov (United States)

    Vasanthavigar, M; Srinivasamoorthy, K; Prasanna, M V

    2012-01-01

    The Thirumanimuttar sub-basin forms an important groundwater province in south India, facing serious deficiency in both quality and quantity of groundwater due to increased demand associated with rapid population explosion, agricultural growth and industrial activities. A total of 194 groundwater samples were collected and 15 water quality parameters were analyzed using standard procedures. Na( + ), Cl( - ), Ca(2 + ), HCO(-)(3), Mg(2 + ) and SO(2-)(4) concentration ions are more dominant in both seasons. The total dissolved solids and electrical conductivity was observed good correlation with Na( + ), Cl( - ), HCO(-)(3), Ca(2 + ), Mg(2 + ), Cl( - ), PO(3-)(4) and NO(-)(3) ions indicating dominance of plagioclase feldspar weathering, anthropogenic input and over drafting of groundwater irrespective of seasons. The Hill-Piper diagram indicates alkaline earths exceed the alkalis, an increase of weak acids was noted during both the seasons. For assessing the groundwater for irrigation suitability parameters like total hardness, sodium adsorption ratio, residual sodium carbonate (RSC), permeability index, and sodium percentage are also calculated. Permanent hardness was noted in higher during both the seasons due to discharge of untreated effluents and ion exchange process. The RSC indicates 56% of the samples are not suitable for irrigation purposes in both seasons, if continuously used will affect the crop yield. From the results, nearly 72% of the samples are not suitable for irrigation.

  17. In-situ remediation of brine impacted soils and groundwater using hydraulic fracturing, desalinization and recharge wells

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, C. [Wiebe Environmental Services Inc., Calgary, AB (Canada); Ratiu, I. [GeoGrid Environmental Inc., Calgary, AB (Canada)

    2006-07-01

    This conference presentation focused on the in-stu remediation of brine impacted soils and groundwater using hydraulic fracturing, desalinization and recharge wells. A former oil battery was established in the 1940s, decommissioned in the late 1960s with a reclamation certificate issued in 1972. The land owner reported poor vegetative growth in the former battery area. The purpose of the study was to investigate the cause of poor growth and delineate contaminants of concern and to remediate impacted soil and groundwater associated with the former battery site. The investigation involved agrological, geophysical and hydrogeological investigation into the extent of anthropogenic impacts as well as the development of remediation options and plans to deal with issues of concern. The presentation provided the results of the investigation, options identified, and discussed limitation on salt remediation and treatment of saline soils. Other topics included hydraulic fracturing, injection wells that were installed to re-circulate treated groundwater though the salt plume, desalinization processes, and next steps. figs.

  18. A two-dimensional analytical well model with applications to groundwater flow and convective transport modelling in the geosphere

    International Nuclear Information System (INIS)

    Chan, T.; Nakka, B.W.

    1994-12-01

    A two-dimensional analytical well model has been developed to describe steady groundwater flow in an idealized, confined aquifer intersected by a withdrawal well. The aquifer comprises a low-dipping fracture zone. The model is useful for making simple quantitative estimates of the transport of contaminants along groundwater pathways in the fracture zone to the well from an underground source that intercepts the fracture zone. This report documents the mathematical development of the analytical well model. It outlines the assumptions and method used to derive an exact analytical solution, which is verified by two other methods. It presents expressions for calculating quantities such as streamlines (groundwater flow paths), fractional volumetric flow rates, contaminant concentration in well water and minimum convective travel time to the well. In addition, this report presents the results of applying the analytical model to a site-specific conceptual model of the Whiteshell Research Area in southeastern Manitoba, Canada. This hydrogeological model includes the presence of a 20-m-thick, low-dipping (18 deg) fracture zone (LD1) that intercepts the horizon of a hypothetical disposal vault located at a depth of 500 m. A withdrawal well intercepts LD1 between the vault level and the ground surface. Predictions based on parameters and boundary conditions specific to LD1 are presented graphically. The analytical model has specific applications in the SYVAC geosphere model (GEONET) to calculate the fraction of a plume of contaminants moving up the fracture zone that is captured by the well, and to describe the drawdown in the hydraulic head in the fracture zone caused by the withdrawal well. (author). 16 refs., 6 tabs., 35 figs

  19. Groundwater quality monitoring well installation for Waste Area Grouping 3 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Mortimore, J.A.; Ebers, M.L.

    1994-09-01

    This report documents the drilling and installation of 15 groundwater quality monitoring (GQM) wells on the perimeter of Waste Area Grouping (WAG) 3. WAG 3 is located in Melton Valley, approximately 3,000 ft west of the west gate of Oak Ridge National Laboratory, and consists of an estimated 22 acres. The subject site contains three solid waste management units: the Contractors' Landfill, the Closed Scrap Metal Area, and Solid Waste Storage Area 3. The wells at WAG 3 were drilled and developed between September 1987 and August 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The wells at WAG 3 were drilled with auger or air rotary rigs. Depending upon the hydrogeologic conditions present at each proposed well location, one of four basic installation methods was utilized. The purpose of the well installation program was to install GQM wells for groundwater characterization at WAG 3. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents

  20. Groundwater quality monitoring well installation for Waste Area Grouping 4 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Mortimore, J.A.

    1994-09-01

    This report documents the drilling and installation of 15 groundwater quality monitoring (GQM) wells on the perimeter of Waste Area Grouping (WAG) 4. WAG 4 is comprised of about 27 acres located in Melton Valley approximately 2700 ft southwest of the Oak Ridge National Laboratory main plant. It contains three inactive solid waste management units: (1) the abandoned intermediate level liquid waste transfer line located along the WAG's northwestern boundary, (2) the experimental pilot pit area, and (3) SWSA 4, the largest unit in the WAG. The wells at WAG 4 were drilled and developed between September 1987 and October 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy (DOE), state, and Environmental Protection Agency regulatory requirements. The wells at WAG 4 were drilled with auger or air rotary rigs. Depending on the hydrogeologic conditions present at each proposed well location, one of four basic installation methods was utilized. The purpose of the well installation program was to install GQM wells for groundwater characterization at WAG 4. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents

  1. Assessment of the contamination with domestic wastewater in supply wells over sandbank area

    Directory of Open Access Journals (Sweden)

    Micheli Rocha Cordeiro

    2012-04-01

    Full Text Available The purpose of this study was to investigate the contamination of septic tanks in the supply wells of a population settled over a sandbank area, the Lagomar neighborhood, in the city of Macaé (RJ. The neighborhood is located in the macro areas of the northern border, adjacent and buffer zone of Restinga de Jurubatiba National Park, with great ecological relevance and scenic beauty, and shelter for numerous coastal lagoons and endemic species. The studied area has low-income population, and no systems of wastewater treatment and public water supply, thus increasing the risk of diseases related to poor environmental sanitation. The presence of fecal coliforms in all samples, including a sample of treated water, indicates health risks to the local population, as well as risks of ecosystem change in the National Park and its surroundings.

  2. Generating false negatives and false positives for As and Mo concentrations in groundwater due to well installation.

    Science.gov (United States)

    Wallis, Ilka; Pichler, Thomas

    2018-08-01

    Groundwater monitoring relies on the acquisition of 'representative' groundwater samples, which should reflect the ambient water quality at a given location. However, drilling of a monitoring well for sample acquisition has the potential to perturb groundwater conditions to a point that may prove to be detrimental to the monitoring objective. Following installation of 20 monitoring wells in close geographic proximity in central Florida, opposing concentration trends for As and Mo were observed. In the first year after well installation As and Mo concentrations increased in some wells by a factor of 2, while in others As and Mo concentrations decreased by a factor of up to 100. Given this relatively short period of time, a natural change in groundwater composition of such magnitude is not expected, leaving well installation itself as the likely cause for the observed concentration changes. Hence, initial concentrations were identified as 'false negatives' if concentrations increased with time or as 'false positives' if concentrations decreased. False negatives were observed if concentrations were already high, i.e., the As or Mo were present at the time of drilling. False positives were observed if concentrations were relatively lower, i.e., As or Mo were present at low concentrations of approximately 1 to 2μg/L before drilling, but then released from the aquifer matrix as a result of drilling. Generally, As and Mo were present in the aquifer matrix in either pyrite or organic matter, both of which are susceptible to dissolution if redox conditions change due to the addition of oxygen. Thus, introduction of an oxidant into an anoxic aquifer through use of an oxygen saturated drilling fluid served as the conceptual model for the trends where concentrations decreased with time. Mixing between drilling fluid and groundwater (i.e., dilution) was used as the conceptual model for scenarios where increasing trends were observed. Conceptual models were successfully tested

  3. Groundwater quality monitoring well installation for Waste Area Grouping 17 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Mortimore, J.A.; Ebers, M.L.

    1994-09-01

    This report documents the drilling and installation of groundwater quality monitoring (GQM) wells on the perimeter of Waste Area Grouping (WAG) 17. WAG 17 is composed of approximately 23 acres and is located in Bethel Valley about 3,100 ft east of the Oak Ridge National Laboratory (ORNL) main plant area. The facilities in WAG 17 constitute the ORNL Services Area and include the shipping and receiving departments, machine shops, carpenter shops, paint shops, lead burning facilities, tritium facility, and the materials storage area. The wells at WAG 17 were drilled and developed between November 1989 and April 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The purpose of the well installation program was to install GQM wells for groundwater characterization at WAG 17. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG 17 characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents

  4. Groundwater quality monitoring well installation for Upper Waste Areas Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Mortimore, J.A.; Lee, T.A.

    1994-09-01

    This report documents the drilling and installation of seven groundwater quality monitoring (GQM) wells on the perimeter of Upper Waste Area Grouping (WAG) 2. Upper WAG 2 is composed of portions of White Oak Creek (WOC), Melton Branch, two of Melton Branch's tributaries, and the floodplains surrounding these water bodies. The WOC section of the subject site begins at the confluence of WOC and Melton Branch and extends 0.62 mile upstream to the 7,500 bridge. The Melton Branch portion of the site also begins at the confluence of WOC and Melton Branch and extends eastward 0.88 mile upstream. The wells at Upper WAG 2 were drilled and developed between December 1989 and October 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The purpose of the well installation program was to install GQM wells for groundwater characterization at Upper WAG-2. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents

  5. Groundwater quality monitoring well installation for Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Mortimore, J.A.; Ebers, M.L.

    1994-09-01

    This report documents the drilling and installation of 22 groundwater quality monitoring (GQM) wells on the perimeter of Waste Area Grouping (WAG) 5. WAG 5 is located south of the Oak Ridge National Laboratory main plant area in Melton Valley and includes 33 solid waste management units. The wells at WAG 5 were drilled and developed between July 1987 and March 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The purpose of the well installation program was to install GQM wells for groundwater characterization at WAG 5. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents

  6. Neural Network approach to assess the thermal affected zone around the injection well in a groundwater heat pump system

    Science.gov (United States)

    Lo Russo, Stefano; Taddia, Glenda; Verda, Vittorio

    2014-05-01

    The common use of well doublets for groundwater-sourced heating or cooling results in a thermal plume of colder or warmer re-injected groundwater known as the Thermal Affected Zone(TAZ). The plumes may be regarded either as a potential anthropogenic geothermal resource or as pollution, depending on downstream aquifer usage. A fundamental aspect in groundwater heat pump (GWHP) plant design is the correct evaluation of the thermally affected zone that develops around the injection well. Temperature anomalies are detected through numerical methods. Crucial elements in the process of thermal impact assessment are the sizes of installations, their position, the heating/cooling load of the building, and the temperature drop/increase imposed on the re-injected water flow. For multiple-well schemes, heterogeneous aquifers, or variable heating and cooling loads, numerical models that simulate groundwater and heat transport are needed. These tools should consider numerous scenarios obtained considering different heating/cooling loads, positions, and operating modes. Computational fluid dynamic (CFD) models are widely used in this field because they offer the opportunity to calculate the time evolution of the thermal plume produced by a heat pump, depending on the characteristics of the subsurface and the heat pump. Nevertheless, these models require large computational efforts, and therefore their use may be limited to a reasonable number of scenarios. Neural networks could represent an alternative to CFD for assessing the TAZ under different scenarios referring to a specific site. The use of neural networks is proposed to determine the time evolution of the groundwater temperature downstream of an installation as a function of the possible utilization profiles of the heat pump. The main advantage of neural network modeling is the possibility of evaluating a large number of scenarios in a very short time, which is very useful for the preliminary analysis of future multiple

  7. A partial exponential lumped parameter model to evaluate groundwater age distributions and nitrate trends in long-screened wells

    Science.gov (United States)

    Jurgens, Bryant; Böhlke, John Karl; Kauffman, Leon J.; Belitz, Kenneth; Esser, Bradley K.

    2016-01-01

    A partial exponential lumped parameter model (PEM) was derived to determine age distributions and nitrate trends in long-screened production wells. The PEM can simulate age distributions for wells screened over any finite interval of an aquifer that has an exponential distribution of age with depth. The PEM has 3 parameters – the ratio of saturated thickness to the top and bottom of the screen and mean age, but these can be reduced to 1 parameter (mean age) by using well construction information and estimates of the saturated thickness. The PEM was tested with data from 30 production wells in a heterogeneous alluvial fan aquifer in California, USA. Well construction data were used to guide parameterization of a PEM for each well and mean age was calibrated to measured environmental tracer data (3H, 3He, CFC-113, and 14C). Results were compared to age distributions generated for individual wells using advective particle tracking models (PTMs). Age distributions from PTMs were more complex than PEM distributions, but PEMs provided better fits to tracer data, partly because the PTMs did not simulate 14C accurately in wells that captured varying amounts of old groundwater recharged at lower rates prior to groundwater development and irrigation. Nitrate trends were simulated independently of the calibration process and the PEM provided good fits for at least 11 of 24 wells. This work shows that the PEM, and lumped parameter models (LPMs) in general, can often identify critical features of the age distributions in wells that are needed to explain observed tracer data and nonpoint source contaminant trends, even in systems where aquifer heterogeneity and water-use complicate distributions of age. While accurate PTMs are preferable for understanding and predicting aquifer-scale responses to water use and contaminant transport, LPMs can be sensitive to local conditions near individual wells that may be inaccurately represented or missing in an aquifer-scale flow model.

  8. Hydrogeology and groundwater quality at monitoring wells installed for the Tunnel and Reservoir Plan System and nearby water-supply wells, Cook County, Illinois, 1995–2013

    Science.gov (United States)

    Kay, Robert T.

    2016-04-04

    Groundwater-quality data collected from 1995 through 2013 from 106 monitoring wells open to the base of the Silurian aquifer surrounding the Tunnel and Reservoir Plan (TARP) System in Cook County, Illinois, were analyzed by the U.S. Geological Survey, in cooperation with the Metropolitan Water Reclamation District of Greater Chicago, to assess the efficacy of the monitoring network and the effects of water movement from the tunnel system to the surrounding aquifer. Groundwater from the Silurian aquifer typically drains to the tunnel system so that analyte concentrations in most of the samples from most of the monitoring wells primarily reflect the concentration of the analyte in the nearby Silurian aquifer. Water quality in the Silurian aquifer is spatially variable because of a variety of natural and non-TARP anthropogenic processes. Therefore, the trends in analyte values at a given well from 1995 through 2013 are primarily a reflection of the spatial variation in the value of the analyte in groundwater within that part of the Silurian aquifer draining to the tunnels. Intermittent drainage of combined sewer flow from the tunnel system to the Silurian aquifer when flow in the tunnel systemis greater than 80 million gallons per day may affect water quality in some nearby monitoring wells. Intermittent drainage of combined sewer flow from the tunnel system to the Silurian aquifer appears to affect the values of electrical conductivity, hardness, sulfate, chloride, dissolved organic carbon, ammonia, and fecal coliform in samples from many wells but typically during less than 5 percent of the sampling events. Drainage of combined sewer flow into the aquifer is most prevalent in the downstream parts of the tunnel systems because of the hydraulic pressures elevated above background values and long residence time of combined sewer flow in those areas. Elevated values of the analytes emplaced during intermittent migration of combined sewer flow into the Silurian aquifer

  9. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    International Nuclear Information System (INIS)

    Joel L. Morrison

    2001-01-01

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. the consortium creates a partnership with the US petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the third quarterly technical progress report for the SWC. During this reporting period the SWC entered into a co-funding arrangement with the New York State Energy Development Authority (NYSERDA) to provide an additional$100,000 in co-funding for stripper well production-orientated projects.The SWC hosted its first meeting in which members proposed research projects to the SWC membership. The meeting was held on April 9-10, 2001 in State College, Pennsylvania. Twenty three proposals were submitted to the SWC for funding consideration. Investigators of the proposed projects provided the SWC membership with a 20 minute (15 minute technical discussion, 5 minute question and answer session) presentation. Of the 23 proposals, the Executive Council approved$921,000 in funding for 13 projects. Penn State then immediately started the process of issuing subcontracts to the various projects approved for funding

  10. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    Energy Technology Data Exchange (ETDEWEB)

    Joel L. Morrison

    2001-09-12

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. the consortium creates a partnership with the US petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the third quarterly technical progress report for the SWC. During this reporting period the SWC entered into a co-funding arrangement with the New York State Energy Development Authority (NYSERDA) to provide an additional $100,000 in co-funding for stripper well production-orientated projects.The SWC hosted its first meeting in which members proposed research projects to the SWC membership. The meeting was held on April 9-10, 2001 in State College, Pennsylvania. Twenty three proposals were submitted to the SWC for funding consideration. Investigators of the proposed projects provided the SWC membership with a 20 minute (15 minute technical discussion, 5 minute question and answer session) presentation. Of the 23 proposals, the Executive Council approved $921,000 in funding for 13 projects. Penn State then immediately started the process of issuing subcontracts to the various projects approved for funding.

  11. Installation of a groundwater monitoring-well network on the east side of the Uncompahgre River in the Lower Gunnison River Basin, Colorado, 2014

    Science.gov (United States)

    Thomas, Judith C.

    2015-10-07

    The east side of the Uncompahgre River Basin has been a known contributor of dissolved selenium to recipient streams. Discharge of groundwater containing dissolved selenium contributes to surface-water selenium concentrations and loads; however, the groundwater system on the east side of the Uncompahgre River Basin is not well characterized. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and the Bureau of Reclamation, has established a groundwater-monitoring network on the east side of the Uncompahgre River Basin. Thirty wells total were installed for this project: 10 in 2012 (DS 923, http://dx.doi.org/10.3133/ds923), and 20 monitoring wells were installed during April and June 2014 which are presented in this report. This report presents location data, lithologic logs, well-construction diagrams, and well-development information. Understanding the groundwater system can provide managers with an additional metric for evaluating the effectiveness of salinity and selenium control projects.

  12. Field evaluation of a horizontal well recirculation system for groundwater treatment: Pilot test at the Clean Test Site Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    Muck, M.T.; Kearl, P.M.; Siegrist, R.L.

    1998-01-01

    This report presents the results of field testing a horizontal well recirculation system at the Portsmouth Gaseous Diffusion Plant (PORTS). The recirculation system uses a pair of horizontal wells, one for groundwater extraction and treatment and the other for reinjection of treated groundwater, to set up a recirculation flow field. The induced flow field from the injection well to the extraction well establishes a sweeping action for the removal and treatment of groundwater contaminants. The overall purpose of this project is to study treatment of mixed groundwater contaminants that occur in a thin water-bearing zone not easily targeted by traditional vertical wells. The project involves several research elements, including treatment-process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and pilot testing at a contaminated site. The results of the pilot test at an uncontaminated site, the Clean Test Site (CTS), are presented in this report

  13. STakeholder-Objective Risk Model (STORM): Determiningthe aggregated risk of multiple contaminant hazards in groundwater well catchments

    DEFF Research Database (Denmark)

    Enzenhoefer, R.; Binning, Philip John; Nowak, W.

    2015-01-01

    Risk is often defined as the product of probability, vulnerability and value. Drinking water supply from groundwater abstraction is often at risk due to multiple hazardous land use activities in the well catchment. Each hazard might or might not introduce contaminants into the subsurface at any......-pathway-receptor concept, mass-discharge-based aggregation of stochastically occuring spill events, accounts for uncertainties in the involved flow and transport models through Monte Carlo simulation, and can address different stakeholder objectives. We illustrate the application of STORM in a numerical test case inspired...

  14. Groundwater quality monitoring well installation for Waste Area Groupings 8 and 9 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Mortimore, J.A.; Ebers, M.L.

    1994-09-01

    This report documents the drilling and installation of nine groundwater quality monitoring (GQM) wells on the perimeter of Waste Area Grouping (WAG) 8 and two GQM wells on the perimeter of WAG 9. WAG 8 encompasses approximately 34 acres, most of which are located in Melton Valley. Irregular in shape, the site has two sinuous extensions from its northern end that contain the low-level radioactive waste (LLW) transfer lines. WAG 8 contains 22 solid waste management units (SWMUs) that can be divided into 4 groups. These groups include the High Flux Isotope Reactor/Transuranium Processing Facility waste collection basins, the LLW line leak sites, and the active LLW tanks. WAG 9 encompasses about 3 acres and is located west of the main portion of WAG 8 and south of Melton Valley Drive. WAG 9 contains four SWMUs. The wells in WAGs 8 and 9 were drilled and developed from June 1989 to March 1990. Monitoring wells were installed to characterize and assess the WAGs in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The purpose of the well installation program was to install GQM wells for groundwater characterization at WAGs 8 and 9. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents

  15. TECHNICAL EVALUATION OF TEMPORAL GROUNDWATER MONITORING VARIABILITY IN MW66 AND NEARBY WELLS, PADUCAH GASEOUS DIFFUSION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.; Eddy-Dilek, C.

    2012-08-28

    Evaluation of disposal records, soil data, and spatial/temporal groundwater data from the Paducah Gaseous Diffusion Plant (PGDP) Solid Waste Management Unit (SWMU) 7 indicate that the peak contaminant concentrations measured in monitoring well (MW) 66 result from the influence of the regional PGDP NW Plume, and does not support the presence of significant vertical transport from local contaminant sources in SWMU 7. This updated evaluation supports the 2006 conceptualization which suggested the high and low concentrations in MW66 represent different flow conditions (i.e., local versus regional influences). Incorporation of the additional lines of evidence from data collected since 2006 provide the basis to link high contaminant concentrations in MW66 (peaks) to the regional 'Northwest Plume' and to the upgradient source, specifically, the C400 Building Area. The conceptual model was further refined to demonstrate that groundwater and the various contaminant plumes respond to complex site conditions in predictable ways. This type of conceptualization bounds the expected system behavior and supports development of environmental cleanup strategies, providing a basis to support decisions even if it is not feasible to completely characterize all of the 'complexities' present in the system. We recommend that the site carefully consider the potential impacts to groundwater and contaminant plume migration as they plan and implement onsite production operations, remediation efforts, and reconfiguration activities. For example, this conceptual model suggests that rerouting drainage water, constructing ponds or basin, reconfiguring cooling water systems, capping sites, decommissioning buildings, fixing (or not fixing) water leaks, and other similar actions will potentially have a 'direct' impact on the groundwater contaminant plumes. Our conclusion that the peak concentrations in MW66 are linked to the regional PGDP NW Plume does not imply that

  16. IN SITU DESTRUCTION OF CHLORINATED HYDROCARBON COMPOUNDS IN GROUNDWATER USING CATALYTIC REDUCTIVE REDUCTIVE DEHALOGENATION IN A REACTIVE WELL: TESTING AND OPERATIONAL EXPERIENCES. (R825421)

    Science.gov (United States)

    A groundwater treatment technology based on catalytic reductive dehalogenation has been developed to efficiently destroy chlorinated hydrocarbons in situ using a reactive well approach. The treatment process utilizes dissolved H2 as an electron donor, in...

  17. Comparison of CO2 Detection Methods Tested in Shallow Groundwater Monitoring Wells at a Geological Sequestration Site

    Energy Technology Data Exchange (ETDEWEB)

    Edenborn, Harry M.; Jain, Jinesh N.

    2016-05-17

    The geological storage of anthropogenic carbon dioxide (CO2) is one method of reducing the amount of CO2 released into the atmosphere. Monitoring programs typically determine baseline conditions in surface and near-surface environments before, during, and after CO2 injection to evaluate if impacts related to injection have occurred. Because CO2 concentrations in groundwater fluctuate naturally due to complex geochemical and geomicrobiologicalinteractions, a clear understanding of the baseline behavior of CO2 in groundwater near injection sites is important. Numerous ways of measuring aqueous CO2 in the field and lab are currently used, but most methods have significant shortcomings (e.g., are tedious, lengthy, have interferences, or have significant lag time before a result is determined). In this study, we examined the effectiveness of two novel CO2 detection methods and their ability to rapidly detect CO2in shallow groundwater monitoring wells associated with the Illinois Basin –Decatur Project geological sequestration site. The CarboQC beverage carbonation meter was used to measure the concentration of CO2 in water by monitoring temperature and pressure changes and calculating the PCO2 from the ideal gas law. Additionally, a non-dispersive infrared (NDIR) CO< sub>2sensor enclosed in a gas-permeable, water-impermeable membrane measured CO2by determining an equilibrium concentration. Results showed that the CarboQC method provided rapid (< 3 min) and repeatable results under field conditions within a measured concentration range of 15 –125 mg/L CO2. The NDIR sensor results correlated well (r2= 0.93) with the CarboQC data, but CO2 equilibration required at least 15 minutes, making the method somewhat less desirable under field conditions. In contrast, NDIR-based sensors have a greater potential for long-term deployment. Both

  18. Migration of methane into groundwater from leaking production wells near Lloydminster

    International Nuclear Information System (INIS)

    1995-03-01

    The problem of migration of methane from leaking oil and gas wells into aquifers in the Lloydminster area in Saskatchewan, was discussed. A study was conducted to determine if the methane in shallow aquifers near the leaking wells, came from the wells or occurred naturally. Migration rate in aquifers, concentration gradients and approximate flux rates of methane from leaking wells to shallow aquifers, were studied. The methods of investigation included drilling of test holes at selected sites, installation of monitoring wells, purging of wells, pumping tests and water level monitoring, sampling and analyses for dissolved methane. The relatively high methane concentrations in many of the monitoring wells indicated the presence of a methane plume that has migrated from the production well. It was suggested that other leaky well sites in the area should be investigated to determine if similar plumes were present. 18 refs., 5 tabs., 13 figs

  19. Coupling of bio-PRB and enclosed in-well aeration system for remediation of nitrobenzene and aniline in groundwater.

    Science.gov (United States)

    Liu, Na; Ding, Feng; Wang, Liu; Liu, Peng; Yu, Xiaolong; Ye, Kang

    2016-05-01

    A laboratory-scale bio-permeable reactive barrier (bio-PRB) was constructed and combined with enclosed in-well aeration system to treat nitrobenzene (NB) and aniline (AN) in groundwater. Batch-style experiments were first conducted to evaluate the effectiveness of NB and AN degradation, using suspension (free cells) of degrading consortium and immobilized consortium by a mixture of perlite and peat. The NB and AN were completely degraded in 4 mg L(-1) when the aeration system was applied into the bio-PRB system. The NB and AN were effectively removed when the aeration system was functional in the bio-PRB. The removal efficiency decreased when the aeration system malfunctioned for 20 days, thus indicating that DO was an important factor for the degradation of NB and AN. The regain of NB and AN removal after the malfunction indicates the robustness of degradation consortium. No original organics and new formed by-products were observed in the effluent. The results indicate that NB and AN in groundwater can be completely mineralized in a bio-PRB equipped with enclosed in-well aeration system and filled with perlite and peat attached with degrading consortium.

  20. Estimates of ambient groundwater velocity in the alluvium south of Yucca Mountain from single-well tracer tests

    International Nuclear Information System (INIS)

    Reimus, P.W.; Umari, M.J.; Roback, R.; Earle, John; Darnell, Jon; Farnham, Irene

    2002-01-01

    The saturated alluvium located south of Yucca Mountain, Nevada is expected to serve as the final barrier to radionuclide transport from the proposed high-level nuclear waste repository at Yucca Mountain. The alluvium will act as a barrier if radionuclides breach the engineered barriers in the repository, move through the unsaturated zone beneath the repository to the water table, and then migrate through saturated volcanic tuffs to the alluvium. Three single-well injection-withdrawal tracer tests were conducted between December 2000 and April 2001 in the saturated alluviuni at NC-EWDP-19D1, a Nye County-Early Warning Drilling Program well located about 18 km south of Yucca Mountain. The tests had the objectives of (1) distinguishing between a single- and a dual-porosity conceptual radionuclide transport model for the alluvium, and (2) obtaining estimates of ambient groundwater velocity in the alluvium.

  1. Shallow, non-pumped wells: a low-energy alternative for cleaning polluted groundwater.

    Science.gov (United States)

    Hudak, Paul F

    2013-07-01

    This modeling study evaluated the capability of non-pumped wells with filter media for preventing contaminant plumes from migrating offsite. Linear configurations of non-pumped wells were compared to permeable reactive barriers in simulated shallow homogeneous and heterogeneous aquifers. While permeable reactive barriers enabled faster contaminant removal and shorter distances of contaminant travel, non-pumped wells also prevented offsite contaminant migration. Overall, results of this study suggest that discontinuous, linear configurations of non-pumped wells may be a viable alternative to much more costly permeable reactive barriers for preventing offsite contaminant travel in some shallow aquifers.

  2. Considering groundwater use to improve the assessment of groundwater pumping for irrigation in North Africa

    Science.gov (United States)

    Massuel, Sylvain; Amichi, Farida; Ameur, Fatah; Calvez, Roger; Jenhaoui, Zakia; Bouarfa, Sami; Kuper, Marcel; Habaieb, Hamadi; Hartani, Tarik; Hammani, Ali

    2017-09-01

    Groundwater resources in semi-arid areas and especially in the Mediterranean face a growing demand for irrigated agriculture and, to a lesser extent, for domestic uses. Consequently, groundwater reserves are affected and water-table drops are widely observed. This leads to strong constraints on groundwater access for farmers, while managers worry about the future evolution of the water resources. A common problem for building proper groundwater management plans is the difficulty in assessing individual groundwater withdrawals at regional scale. Predicting future trends of these groundwater withdrawals is even more challenging. The basic question is how to assess the water budget variables and their evolution when they are deeply linked to human activities, themselves driven by countless factors (access to natural resources, public policies, market, etc.). This study provides some possible answers by focusing on the assessment of groundwater withdrawals for irrigated agriculture at three sites in North Africa (Morocco, Tunisia and Algeria). Efforts were made to understand the different features that influence irrigation practices, and an adaptive user-oriented methodology was used to monitor groundwater withdrawals. For each site, different key factors affecting the regional groundwater abstraction and its past evolution were identified by involving farmers' knowledge. Factors such as farmer access to land and groundwater or development of public infrastructures (electrical distribution network) are crucial to decode the results of well inventories and assess the regional groundwater abstraction and its future trend. This leads one to look with caution at the number of wells cited in the literature, which could be oversimplified.

  3. Groundwater flow to a horizontal or slanted well in an unconfined aquifer

    Science.gov (United States)

    Zhan, Hongbin; Zlotnik, Vitaly A.

    2002-07-01

    New semianalytical solutions for evaluation of the drawdown near horizontal and slanted wells with finite length screens in unconfined aquifers are presented. These fully three-dimensional solutions consider instantaneous drainage or delayed yield and aquifer anisotropy. As a basis, solution for the drawdown created by a point source in a uniform anisotropic unconfined aquifer is derived in Laplace domain. Using superposition, the point source solution is extended to the cases of the horizontal and slanted wells. The previous solutions for vertical wells can be described as a special case of the new solutions. Numerical Laplace inversion allows effective evaluation of the drawdown in real time. Examples illustrate the effects of well geometry and the aquifer parameters on drawdown. Results can be used to generate type curves from observations in piezometers and partially or fully penetrating observation wells. The proposed solutions and software are useful for the parameter identification, design of remediation systems, drainage, and mine dewatering.

  4. Transient effects on groundwater chemical compositions from pumping of supply wells at the Nevada National Security Site, 1951-2008

    Science.gov (United States)

    Paces, James B.; Elliott, Peggy E.; Fenelon, Joseph M.; Laczniak, Randell J.; Moreo, Michael T.

    2012-01-01

    Nuclear testing and support activities at the Nevada National Security Site have required large amounts of water for construction, public consumption, drilling, fire protection, hydraulic and nuclear testing, and dust control. To supply this demand, approximately 20,000 million gallons of water have been pumped from 23 wells completed in 19 boreholes located across the Nevada National Security Site starting as early as the 1950s. As a consequence of more or less continuous pumping from many of these wells for periods as long as 58 years, transient groundwater flow conditions have been created in the aquifers that supplied the water. To evaluate whether long-term pumping caused changes in water compositions over time, available chemical analyses of water samples from these 19 boreholes were compiled, screened, and evaluated for variability including statistically significant temporal trends that can be compared to records of groundwater pumping. Data used in this report have been extracted from a large database (Geochem08, revision 3.0, released in September 2008) containing geochemical and isotopic information created and maintained by primary contractors to the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office. Data extracted from this source were compiled for the entire period of record, converted to uniform reporting units, and screened to eliminate analyses of poor or unknown quality, as well as clearly spurious values. The resulting data are included in accompanying spreadsheets that give values for (1) pH and specific conductance, (2) major ion concentrations, (3) trace element concentrations and environmental isotope ratios, and (4) mean, median, and variance estimates for major ion concentrations. The resulting data vary widely in quality and time-series density. An effort has been made to establish reasonable ranges of analytical uncertainty expected for each analyte and eliminate analyses that are obvious outliers

  5. The hydrogeological well database TANGRAM©: a tool for data processing to support groundwater assessment

    Directory of Open Access Journals (Sweden)

    Tullia Bonomi

    2014-06-01

    Full Text Available At the Department of Earth and Environmental Sciences of the University of Milano-Bicocca (DISAT-UNIMIB, a hydrogeological well database, called TANGRAM©, has been developed and published on line at www.TANGRAM.samit.unimib.it, developing an earlier 1989 DOS version. This package can be used to store, display, and process all data related to water wells, including administrative information, well characteristics, stratigraphic logs, water levels, pumping rates, and other hydrogeological information. Currently, the database contains more than 39.200 wells located in the Italian region of Lombardy (90%, Piedmont (9% and Valle d’Aosta (1%. TANGRAM© has been created both as a tool for researches and for public administration’s administrators who have projects in common with DISAT-UNIMIB. Indeed, transferring wells data from paper into TANGRAM© offers both an easier and more robust way to correlate hydrogeological data and a more organized management of the administrative information. Some Administrations use TANGRAM© regularly as a tool for wells data management (Brescia Province, ARPA Valle Aosta. An innovative aspect of the database is the quantitative extraction of stratigraphic data. In the part of the software intended for research purposes, all well logs are translated into 8-digit alphanumeric codes and the user composes the code interpreting the description at each stratigraphic level. So the stratigraphic well data can be coded, then quantified and processed. This is made possible by attributing a weight to the digits of the code for textures. The program calculates the weighted percentage of the chosen lithology, as related to each individual layer. These extractions are the starting point for subsequent hydrogeological studies: well head protection area, reconstruction of the dynamics of flow, realization of the quarry plans and flux and transport hydrogeological models. The results of a two-dimensional distribution of coarse

  6. Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand.

    Science.gov (United States)

    Wongsasuluk, Pokkate; Chotpantarat, Srilert; Siriwong, Wattasit; Robson, Mark

    2014-02-01

    Most local people in the agricultural areas of Hua-ruea sub-district, Ubon Ratchathani province (Thailand), generally consume shallow groundwater from farm wells. This study aimed to assess the health risk related to heavy metal contamination in that groundwater. Samples were randomly collected from 12 wells twice in each of the rainy and the dry seasons and were analyzed by inductive coupled plasma spectrometry-mass spectrometry (ICP-MS). The concentration of detected metals in each well and the overall mean were below the acceptable groundwater standard limits for As, Cd, Cr, Cu, Hg, Ni and Zn, but Pb levels were higher in four wells with an overall average Pb concentration of 16.66 ± 18.52 μg/l. Exposure questionnaires, completed by face-to-face interviews with 100 local people who drink groundwater from farm wells, were used to evaluate the hazard quotients (HQs) and hazard indices (HIs). The HQs for non-carcinogenic risk for As, Cu, Zn and Pb, with a range of 0.004-2.901, 0.053-54.818, 0.003-6.399 and 0.007-26.80, respectively, and the HI values (range from 0.10 to 88.21) exceeded acceptable limits in 58 % of the wells. The HI results were higher than one for groundwater wells located in intensively cultivated chili fields. The highest cancer risk found was 2.6 × 10(-6) for As in well no. 11. This study suggested that people living in warmer climates are more susceptible to and at greater risk of groundwater contamination because of their increased daily drinking water intake. This may lead to an increased number of cases of non-carcinogenic and carcinogenic health defects among local people exposed to heavy metals by drinking the groundwater.

  7. Non-pumping reactive wells filled with mixing nano and micro zero-valent iron for nitrate removal from groundwater: Vertical, horizontal, and slanted wells

    Science.gov (United States)

    Hosseini, Seiyed Mossa; Tosco, Tiziana; Ataie-Ashtiani, Behzad; Simmons, Craig T.

    2018-03-01

    Non-pumping reactive wells (NPRWs) filled by zero-valent iron (ZVI) can be utilized for the remediation of groundwater contamination of deep aquifers. The efficiency of NPRWs mainly depends on the hydraulic contact time (HCT) of the pollutant with the reactive materials, the extent of the well capture zone (Wcz), and the relative hydraulic conductivity of aquifer and reactive material (Kr). We investigated nitrate removal from groundwater using NPRWs filled by ZVI (in nano and micro scales) and examined the effect of NPRWs orientations (i.e. vertical, slanted, and horizontal) on HCT and Wcz. The dependence of HCT on Wcz for different Kr values was derived theoretically for a homogeneous and isotropic aquifer, and verified using particle tracking simulations performed using the semi-analytical particle tracking and pathlines model (PMPATH). Nine batch experiments were then performed to investigate the impact of mixed nano-ZVI, NZVI (0 to 2 g l-1) and micro-ZVI, MZVI (0 to 4 g l-1) on the nitrate removal rate (with initial NO3-=132 mg l-1). The NPRWs system was tested in a bench-scale sand medium (60 cm length × 40 cm width × 25 cm height) for three orientations of NPRWs (vertical, horizontal, and slanted with inclination angle of 45°). A mixture of nano/micro ZVI, was used, applying constant conditions of pore water velocity (0.024 mm s-1) and initial nitrate concentration (128 mg l-1) for five pore volumes. The results of the batch tests showed that mixing nano and micro Fe0 outperforms these individual materials in nitrate removal rates. The final products of nitrate degradation in both batch and bench-scale experiments were NO2-, NH4+, and N2(gas). The results of sand-box experiments indicated that the slanted NPRWs have a higher nitrate reduction rate (57%) in comparison with vertical (38%) and horizontal (41%) configurations. The results also demonstrated that three factors have pivotal roles in expected HCT and Wcz, namely the contrast between the hydraulic

  8. Estimating nitrate concentrations in groundwater at selected wells and springs in the surficial aquifer system and Upper Floridan aquifer, Dougherty Plain and Marianna Lowlands, Georgia, Florida, and Alabama, 2002-50

    Science.gov (United States)

    Crandall, Christy A.; Katz, Brian G.; Berndt, Marian P.

    2013-01-01

    Groundwater from the surficial aquifer system and Upper Floridan aquifer in the Dougherty Plain and Marianna Lowlands in southwestern Georgia, northwestern Florida, and southeastern Alabama is affected by elevated nitrate concentrations as a result of the vulnerability of the aquifer, irrigation water-supply development, and intensive agricultural land use. The region relies primarily on groundwater from the Upper Floridan aquifer for drinking-water and irrigation supply. Elevated nitrate concentrations in drinking water are a concern because infants under 6 months of age who drink water containing nitrate concentrations above the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter as nitrogen can become seriously ill with blue baby syndrome. In response to concerns about water quality in domestic wells and in springs in the lower Apalachicola–Chattahoochee–Flint River Basin, the Florida Department of Environmental Protection funded a study in cooperation with the U.S. Geological Survey to examine water quality in groundwater and springs that provide base flow to the Chipola River. A three-dimensional, steady-state, regional-scale groundwater-flow model and two local-scale models were used in conjunction with particle tracking to identify travel times and areas contributing recharge to six groundwater sites—three long-term monitor wells (CP-18A, CP-21A, and RF-41) and three springs (Jackson Blue Spring, Baltzell Springs Group, and Sandbag Spring) in the lower Apalachicola–Chattahoochee–Flint River Basin. Estimated nitrate input to groundwater at land surface, based on previous studies of nitrogen fertilizer sales and atmospheric nitrate deposition data, were used in the advective transport models for the period 2002 to 2050. Nitrate concentrations in groundwater samples collected from the six sites during 1993 to 2007 and groundwater age tracer data were used to calibrate the transport aspect of the simulations

  9. Groundwater recharge through wells in open loop geothermal system: problems and solutions - part 1

    Directory of Open Access Journals (Sweden)

    Giovanni Pietro Beretta

    2017-07-01

    Full Text Available In the two parts of this article, the problems related to the management of water wells as part of a low-enthalpy geothermal power plant by means of heat pumps (open loop system are described. In many cases, in absence of discharge in surface water and/or to ensure the conservation of the resource from a quantitative point of view, a doublet system constituted by a pumping and a recharge well is provided. The clogging phenomenon often occurs in this kind of plant, affecting wells with different functions and different thermal potential related to water withdrawal and reinjection into the ground. This phenomenon is due to the presence of air bubbles, suspended solids, bacterial growth and to the chemical-physical reactions that are described in the text. Besides acknowledging the activities for recharge wells management to avoid the fracturing of the drain and the cementation, is also suggested the procedure of in situ tests that are used to properly determine the optimal well discharge, which determines the efficiency and effectiveness of the geothermal system and its economic performance.It is finally shown a regional regulation on the water quality used in an open loop.

  10. Installation and Implementation of a Comprehensive Groundwater Monitoring Program for the Indian Wells Valley, California

    Science.gov (United States)

    2010-04-01

    Location: Project Number: COC Number: --- --- --- --- CAMBELL RANCH Receive Date: Sampling Date: Sample Depth: Sample Matrix: --- 02/22/2007 11:10 02/02...Manager: Indian Wells Valley Water [none] Mike Stoner Reported: 03/27/2007 11:18 BCL Sample ID: 0702234-10 Client Sample Name: CAMBELL RANCH, 2/2/2007

  11. Defining an optimum pumping-time requirement for sampling ground-water wells on the Hanford site

    International Nuclear Information System (INIS)

    Scharnhorst, N.L.

    1982-04-01

    The objective was to determine the optimum time period necessary to pump water from a well before a representative sample of the ground water can be obtained. It was assumed that a representative sample has been collected if the concentration of chemical parameters is the same in a number of samples taken consecutively, so that the concentration of parameters does not vary with time of collection. Ground-water samples used in this project were obtained by pumping selected wells on the Hanford Site. At each well, samples were taken at two minute intervals, and on each sample various chemical analyses were performed. Samples were checked for pH, sulfate, iron, specific conductivity, chloride, nitrate and alkalinity. The data showed that pH, alkalinity, sulfate and specific conductivity levels stabilized almost immediately after pumping of the well began. In many wells, the chloride and nitrate levels were unstable throughout the 38-minute sampling period. Iron levels, however, did not behave in either fashion. The concentration of iron in the samples was high when pumping began but dropped rapidly as pumping continued. The best explanation for this is that iron is flushed from the sides of the casing into the well when pumping begins. After several minutes of pumping, most of the dissolved iron is washed from the well casing and the iron concentration reaches a stable plateau representative of the iron concentration in the ground water.Since iron concentration takes longest to stabilize, the optimum pumping time for a well is based on the iron stabilization time for that well

  12. 2013 Survey of Iowa groundwater and evaluation of public well vulnerability classifications for contaminants of emerging concern

    Science.gov (United States)

    Hruby, Claire E.; Libra, Robert D.; Fields, Chad L.; Kolpin, Dana W.; Hubbard, Laura E.; Borchardt, Mark R.; Spencer, Susan K.; Wichman, Michael D.; Hall, Nancy; Schueller, Michael D.; Furlong, Edward T.; Weyer, Peter J.

    2015-01-01

    Studies in Iowa have long documented the vulnerability of wells with less than 50 feet (15 meters) of confining materials above the source aquifer to contamination from nitrate and various pesticides. Recent studies in Wisconsin have documented the occurrence of viruses in untreated groundwater, even in wells considered to have little vulnerability to contamination from near-surface activities. In addition, sensitive methods have become available for analyses of pharmaceuticals and pesticides. This study represents the first comprehensive examination of contaminants of emerging concern in Iowa’s groundwater conducted to date, and one of the first conducted in the United States. Raw groundwater samples were collected from 66 public supply wells during the spring of 2013, when the state was recovering from drought conditions. Samples were analyzed for 206 chemical and biological parameters; including 20 general water-quality parameters and major ions, 19 metals, 5 nutrients, 10 virus groups, 3 species of pathogenic bacteria, 5 microbial indicators, 108 pharmaceuticals, 35 pesticides and pesticide degradates, and tritium. The wells chosen for this study represent a diverse range of ages, depths, confining material thicknesses, pumping rates, and land use settings. The most commonly detected contaminant group was pesticide compounds, which were present in 41% of the samples. As many as 6 pesticide compounds were found together in a sample, most of which were chloroacetanilide degradates. While none of the measured concentrations of pesticide compounds exceeded current benchmark levels, several of these compounds are listed on the U.S. Environmental Protection Agency’s Contaminant Candidate List and could be subject to drinking water standards in the future. Despite heavy use in the past decade, glyphosate was not detected, and its metabolite, aminomethylphosphonic acid, was only detected in two of 60 wells tested (3%) at the detection limit of 0.02

  13. Procedures for the collection and preservation of groundwater and surface water samples and for the installation of monitoring wells

    International Nuclear Information System (INIS)

    Korte, N.; Kearl, P.

    1984-01-01

    Proper sampling procedures are essential for a successful water-quality monitoring program. It must be emphasized, however, that it is impossible to maintain absolutely in-situ conditions when collecting and preserving a water sample, whether from a flowing stream or an aquifer. Consequently, the most that can reasonably be expected is to collect a best possible sample with minimal disturbance. This document describes procedures for installing monitoring wells and for collecting samples of surface water and groundwater. The discussion of monitoring wells includes mention of multilevel sampling and a general overview of vadose-zone monitoring. Guidelines for well installation are presented in detail. The discussion of water-sample collection contains evaluations of sampling pumps, filtration equipment, and sample containers. Sample-preservation techniques, as published by several government and private sources, are reviewed. Finally, step-by-step procedures for collection of water samples are provided; these procedures address such considerations as necessary equipment, field operations, and written documentation. Separate procedures are also included for the collection of samples for determination of sulfide and for reactive aluminum. The report concludes with a brief discussion of adverse sampling, conditions that may significantly affect the quality of the data. Appendix A presents a rationale for the development and use of statistical considerations in water sampling to ensure a more complete water quality monitoring program. 51 references, 9 figures, 4 tables

  14. Cyanobacteria and cyanotoxins are present in drinking water impoundments and groundwater wells in desert environments.

    Science.gov (United States)

    Chatziefthimiou, Aspassia D; Metcalf, James S; Glover, W Broc; Banack, Sandra A; Dargham, Soha R; Richer, Renee A

    2016-05-01

    Desert environments and drylands experience a drastic scarcity of water resources. To alleviate dependence on freshwater for drinking water needs, countries have invested in infrastructure development of desalination plants. Collectively, the countries of the Arabian Gulf produce 45% of the world's desalinated water, which is stored in dams, mega-reservoirs and secondary house water tanks to secure drinking water beyond daily needs. Improper storage practices of drinking water in impoundments concomitant with increased temperatures and light penetration may promote the growth of cyanobacteria and accumulation of cyanotoxins. To shed light on this previously unexplored research area in desert environments, we examined drinking and irrigation water of urban and rural environments to determine whether cyanobacteria and cyanotoxins are present, and what are the storage and transportation practices as well as the environmental parameters that best predict their presence. Cyanobacteria were present in 80% of the urban and 33% of the rural water impoundments. Neurotoxins BMAA, DAB and anatoxin-a(S) were not detected in any of the water samples, although they have been found to accumulate in the desert soils, which suggests a bioaccumulation potential if they are leached into the aquifer. A toxic BMAA isomer, AEG, was found in 91.7% of rural but none of the urban water samples and correlated with water-truck transportation, light exposure and chloride ions. The hepatotoxic cyanotoxin microcystin-LR was present in the majority of all sampled impoundments, surpassing the WHO provisional guideline of 1 μg/l in 30% of the urban water tanks. Finally, we discuss possible management strategies to improve storage and transportation practices in order to minimize exposure to cyanobacteria and cyanotoxins, and actions to promote sustainable use of limited water resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Ground-water sampling of the NNWSI (Nevada Nuclear Waste Storage Investigation) water table test wells surrounding Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Matuska, N.A.

    1988-12-01

    The US Geological Survey (USGS), as part of the Nevada Nuclear Waste Storage Investigation (NNWSI) study of the water table in the vicinity of Yucca Mountain, completed 16 test holes on the Nevada Test Site and Bureau of Land Management-administered lands surrounding Yucca Mountain. These 16 wells are monitored by the USGS for water-level data; however, they had not been sampled for ground-water chemistry or isotropic composition. As part of the review of the proposed Yucca Mountain high-level nuclear waste repository, the Desert Research Institute (DRI) sampled six of these wells. The goal of this sampling program was to measure field-dependent parameters of the water such as electrical conductivity, pH, temperature and dissolved oxygen, and to collect samples for major and minor element chemistry and isotopic analysis. This information will be used as part of a program to geochemically model the flow direction between the volcanic tuff aquifers and the underlying regional carbonate aquifer

  16. Nitrate in groundwater of the United States, 1991-2003

    Science.gov (United States)

    Burow, Karen R.; Nolan, Bernard T.; Rupert, Michael G.; Dubrovsky, Neil M.

    2010-01-01

    An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.

  17. Assessment of well vulnerability for groundwater source protection based on a solute transport model: a case study from Jilin City, northeast China

    Science.gov (United States)

    Huan, Huan; Wang, Jinsheng; Lai, Desheng; Teng, Yanguo; Zhai, Yuanzheng

    2015-05-01

    Well vulnerability assessment is essential for groundwater source protection. A quantitative approach to assess well vulnerability in a well capture zone is presented, based on forward solute transport modeling. This method was applied to three groundwater source areas (Jiuzhan, Hadawan and Songyuanhada) in Jilin City, northeast China. The ratio of the maximum contaminant concentration at the well to the released concentration at the contamination source ( c max/ c 0) was determined as the well vulnerability indicator. The results indicated that well vulnerability was higher close to the pumping well. The well vulnerability in each groundwater source area was low. Compared with the other two source areas, the cone of depression at Jiuzhan resulted in higher spatial variability of c max/ c 0 and lower minimum c max/ c 0 by three orders of magnitude. Furthermore, a sensitivity analysis indicated that the denitrification rate in the aquifer was the most sensitive with respect to well vulnerability. A process to derive a NO3-N concentration at the pumping well is presented, based on determining the maximum nitrate loading limit to satisfy China's drinking-water quality standards. Finally, the advantages, disadvantages and prospects for improving the precision of this well vulnerability assessment approach are discussed.

  18. Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: Correlations with redox indicative parameters and implications for groundwater treatment

    International Nuclear Information System (INIS)

    Katsoyiannis, Ioannis A.; Hug, Stephan J.; Ammann, Adrian; Zikoudi, Antonia; Hatziliontos, Christodoulos

    2007-01-01

    The cities in the Aksios and Kalikratia areas in Northern Greece rely on arsenic contaminated groundwater for their municipal water supply. As remedial action strongly depends on arsenic speciation, the presence of other possible contaminants, and on the general water composition, a detailed study with samples from 21 representative locations was undertaken. Arsenic concentrations were typically 10-70 μg/L. In the groundwaters of the Aksios area with lower Eh values (87-172 mV), pH 7.5-8.2 and 4-6 mM HCO 3 alkalinity, As(III) predominated. Manganese concentrations were mostly above the EC standard of 0.05 mg/L (0.1-0.7 mg/L). In groundwaters of the Kalikratia area with higher Eh values (272-352 mV), pH 6.7-7.5 and 6-12 mM HCO 3 alkalinity, As(V) was the main species. Uranium in the groundwaters was also investigated and correlations with total arsenic concentrations and speciation were examined to understand more of the redox chemistry of the examined groundwaters. Uranium concentrations were in the range 0.01-10 μg/L, with the higher concentrations to occur in the oxidizing groundwaters of the Kalikratia area. Uranium and total arsenic concentrations showed no correlation, whereas uranium concentrations correlated strongly with As(III)/As(tot) ratios, depicting their use as a possible indicator of groundwater redox conditions. Finally, boron was found to exceed the EC drinking water standard of 1 mg/L in some wells in the Kalikratia area and its removal should also be considered in the design of a remedial action

  19. Simulations of groundwater flow, transport, and age in Albuquerque, New Mexico, for a study of transport of anthropogenic and natural contaminants (TANC) to public-supply wells

    Science.gov (United States)

    Heywood, Charles E.

    2013-01-01

    Vulnerability to contamination from manmade and natural sources can be characterized by the groundwater-age distribution measured in a supply well and the associated implications for the source depths of the withdrawn water. Coupled groundwater flow and transport models were developed to simulate the transport of the geochemical age-tracers carbon-14, tritium, and three chlorofluorocarbon species to public-supply wells in Albuquerque, New Mexico. A separate, regional-scale simulation of transport of carbon-14 that used the flow-field computed by a previously documented regional groundwater flow model was calibrated and used to specify the initial concentrations of carbon-14 in the local-scale transport model. Observations of the concentrations of each of the five chemical species, in addition to water-level observations and measurements of intra-borehole flow within a public-supply well, were used to calibrate parameters of the local-scale groundwater flow and transport models. The calibrated groundwater flow model simulates the mixing of “young” groundwater, which entered the groundwater flow system after 1950 as recharge at the water table, with older resident groundwater that is more likely associated with natural contaminants. Complexity of the aquifer system in the zone of transport between the water table and public-supply well screens was simulated with a geostatistically generated stratigraphic realization based upon observed lithologic transitions at borehole control locations. Because effective porosity was simulated as spatially uniform, the simulated age tracers are more efficiently transported through the portions of the simulated aquifer with relatively higher simulated hydraulic conductivity. Non-pumping groundwater wells with long screens that connect aquifer intervals having different hydraulic heads can provide alternate pathways for contaminant transport that are faster than the advective transport through the aquifer material. Simulation of

  20. Integrated assessment of variable density-viscosity groundwater flow for a high temperature mono-well aquifer thermal energy storage (HT-ATES) system in a geothermal reservoir

    NARCIS (Netherlands)

    Zeghici, Răzvan Mihai; Oude Essink, Gualbert H.P.; Hartog, Niels; Sommer, Wijb

    2015-01-01

    The use of groundwater systems for heat storage increasingly gains interest among water managers, policy makers and researchers as a way to increase the efficiency of energy production and to allow the re-use of waste heat. Typically, mono-well storage systems are thought to require the use of

  1. Final report on the waste area grouping perimeter groundwater quality monitoring well installation program at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Greene, J.A.

    1991-06-01

    A groundwater quality monitoring well installation program was conducted at Oak Ridge National Laboratory (ORNL) to meet the requirements of environmental regulations, including the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). A total of 173 wells were installed and developed at 11 different waste area groupings (WAGs) between June 1986 and November 1990. A location map of the wells is included

  2. Groundwater-based water wells characterization from Guinea Bissau (Western Africa): A risk evaluation for the local population.

    Science.gov (United States)

    Ferrante, Margherita; Signorelli, Salvatore Santo; Ferlito, Santina Letizia; Grasso, Alfina; Dimartino, Angela; Copat, Chiara

    2018-04-01

    The study conducted in two regions of Guinea Bissau, Oio and Cacheu, focusing on the characterization of the groundwater supplies sampled during the dry season and their associated risks for human health. Twenty samples were collected in wells located nearby pit latrines. In situ analyses were conducted with Semi-quantitative test strips for the determination of turbidity, pH, chloride, carbonate, sulfites, ammonium, nitrite and nitrate. The analysis of metals was performed by an ICP-MS Elan DRC-e and an ICP-OES Optima 8000. The Target Hazard Quotient (THQ) was applied to evaluate the risk of developing chronic systemic effects derived from exposure to metals. Values of concern of turbidity ammonium, and pH values were lower than the normal range for drinking water in most samples. From both regions, Fe and Al were occasionally found with values higher than the international thresholds fixed by the World Health Organization and by the European Commission for drinking water, while, only in one sample from Cacheu region Pb was found significantly above these limits. THQs resulted next to the level of risk (1) for the highest values found of Al, As, Fe and Mn. Of great concern is the resident risk obtained from a well water of Cacheu for the highest value of Pb (96.8μg/L), because the values of the resident risk found of 1 and 0.7 for child and adults respectively. The results obtained highlighted a close correlation between the chemistry of water and sediment and a correlation with the proximity of the water supplies with the latrines. This study evidenced the potential toxicity of the water supplies for the local populations and the risk of developing chronic systemic effects due to some physico-chemical parameters, the importance of functioning water pipeline system, the importance of maintaining adequate distance between latrines and drinking water access. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Characteristics and factors of groundwater contamination in Asian coastal megacities

    Science.gov (United States)

    Saito, M.; Onodera, S. I.; Jin, G.; Shimizu, Y.; Admajaya, F. T.

    2017-12-01

    For the sustainable use of groundwater resources for the future, it is important to conserve its quality as well as quantity. Especially in the developing megacities, land subsidence and groundwater pollution by several contaminants (e.g. nitrogen, trace metals and organic pollutants etc.) is one of a critical environmental problems, because of the intensive extraction of groundwater and huge amount of contaminant load derived from domestic wastewater as well as agricultural and industrial wastewater. However, the process of groundwater degradation, including depletion and contamination with urbanization, has not been examined well in the previous studies. In the present study, we aim to confirm the characteristics and factors of groundwater contamination in coastal Asian megacities such as Osaka and Jakarta. In Osaka, groundwater was used as a water resource during the period of rapid population increase before 1970, and consequently groundwater resources have been degraded. Hydraulic potential of groundwater has been recovered after the regulation for abstraction. However, it is still below sea level in the deeper aquifer (>20 m) of some regions, and higher Cl-, NH4+-N and PO43-P concentrations were detected in these regions. The results also suggest that shallower aquifer (>10 m) is influenced by infiltration of sewage to groundwater. In the Jakarta metropolitan area, current hydraulic potential is below sea level in because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The distribution of Cl- and Mn concentration in groundwater suggests that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. It implies an accumulation of contaminants in deep aquifers. On the other hands, NO3-N in groundwater is suggested to be attenuated by the processes of denitrification and dilution in the coastal area.

  4. Methane and benzene in drinking-water wells overlying the Eagle Ford, Fayetteville, and Haynesville Shale hydrocarbon production areas

    Data.gov (United States)

    Department of the Interior — Groundwater samples were collected from domestic and public-supply wells in the Eagle Ford study area in 2015–16, in the Fayetteville study area in 2015, and in the...

  5. Y-12 Groundwater Protection Program CY 2009 Triennial Report Of The Monitoring Well Inspection And Maintenance Program, Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    This document is the triennial report for the Well Inspection and Maintenance Program of the Y- 12 Groundwater Protection Program (GWPP), at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12). This report formally documents well inspection events conducted on active and inactive wells at Y-12 during calendar years (CY) 2007 through 2009; it documents well maintenance and plugging and abandonment activities completed since the last triennial inspection event (CY 2006); and provides summary tables of well inspection events, well maintenance events, and well plugging and abandonment events during the reference time period.

  6. Buyer's participation and well developed domestic infrastructure. Keys to successful introduction of nuclear power in a small country

    International Nuclear Information System (INIS)

    Numminen, K.; Laine, P.

    1983-01-01

    Nuclear power is advantageous for a small country such as Finland which does not possess indigenous fossil fuel. For instance, the cost of imports required by nuclear fuel is essentially smaller than the cost of production of electric energy based on coal or fuel oil. In Finland the advantageousness of nuclear power was already proved in the 1950s but before starting the first power plant project it took 15 years to develop step by step the required infrastructure: building the research institutes and training their staff, creating connections to the international organizations and elsewhere abroad, training Finnish design staff, developing the domestic industry to the high quality required by nuclear power, and establishing the necessary authorities and public administration. Thanks to thorough preparation the implementation of the plant projects progressed at a good pace in the 1970s. The lesson learned from operation of the plants is that in a small country - located far from its main supplier - the staff at the plant and the supporting staff in the power company have to be able to analyse the problems occurring, usually in the conventional equipment, and carry out quick repairs without aid from the main supplier. This requires a high level of educational attainment from the staff and the best way to achieve this is for the staff to participate in the design and construction as much as possible already in the implementation phase. In order to maintain high availability, the capability of the domestic industry must also be good - especially in the fields of mechanical industry and electronics. In Finland over 30% of electric energy was produced in 1981 by four nuclear units. Two of these were built as manifold east-west adjustment work with the Soviet supplier and the other two are of Swedish origin

  7. Domestic violence as a threat to maternal and child well-being in an urban migrant community in Peru

    Directory of Open Access Journals (Sweden)

    Brieanne K. Kohrt

    Full Text Available OBJECTIVE: To examine the impact that domestic violence (DV has on hindering the success of urban migrants in Peru and any association with maternal depression, impaired parenting, social capital, and child development. METHODS: This was a cross-sectional study consisting of structured interviews with 97 mothers and their school-aged children in El Porvenir, a predominantly migrant area of the city of Trujillo, Peru. Data collection occurred in February-June 2011. Proven tools previously validated for use in Spanish were used to assess the following variables: maternal depression, social capital, domestic violence, parenting behaviors, child socioemotional development, and child cognitive development. Correlational, multiple regression, tests of interaction, and indirect/mediator models were used for analysis. RESULTS: Sixty-five percent of women reported currently experiencing DV. DV strongly predicted depression (P < 0.001. Women who reported DV were less likely to be employed (P < 0.05, had lower cognitive social capital (P < 0.01, engaged in fewer caregiving activities (P < 0.05, had less maternal energy (P < 0.05, and were less warm (P < 0.05. DV was associated with internalizing behaviors in children (P < 0.01, with impaired parenting partially mediating this relationship. CONCLUSIONS: DV compromises women's mental health and parenting ability. High rates of DV among urban migrants affect the whole community by hindering employment potential and reducing trust among community members. Interventions targeting DV-related variables (e.g., substance abuse and limited job opportunities for men could reduce the deleterious effects of DV on urban migrant communities across Latin America.

  8. STakeholder-Objective Risk Model (STORM): Determining the aggregated risk of multiple contaminant hazards in groundwater well catchments

    Science.gov (United States)

    Enzenhoefer, R.; Binning, P. J.; Nowak, W.

    2015-09-01

    Risk is often defined as the product of probability, vulnerability and value. Drinking water supply from groundwater abstraction is often at risk due to multiple hazardous land use activities in the well catchment. Each hazard might or might not introduce contaminants into the subsurface at any point in time, which then affects the pumped quality upon transport through the aquifer. In such situations, estimating the overall risk is not trivial, and three key questions emerge: (1) How to aggregate the impacts from different contaminants and spill locations to an overall, cumulative impact on the value at risk? (2) How to properly account for the stochastic nature of spill events when converting the aggregated impact to a risk estimate? (3) How will the overall risk and subsequent decision making depend on stakeholder objectives, where stakeholder objectives refer to the values at risk, risk attitudes and risk metrics that can vary between stakeholders. In this study, we provide a STakeholder-Objective Risk Model (STORM) for assessing the total aggregated risk. Or concept is a quantitative, probabilistic and modular framework for simulation-based risk estimation. It rests on the source-pathway-receptor concept, mass-discharge-based aggregation of stochastically occuring spill events, accounts for uncertainties in the involved flow and transport models through Monte Carlo simulation, and can address different stakeholder objectives. We illustrate the application of STORM in a numerical test case inspired by a German drinking water catchment. As one may expect, the results depend strongly on the chosen stakeholder objectives, but they are equally sensitive to different approaches for risk aggregation across different hazards, contaminant types, and over time.

  9. Hydrogeologic Settings and Ground-Water Flow Simulations for Regional Studies of the Transport of Anthropogenic and Natural Contaminants to Public-Supply Wells - Studies Begun in 2001

    Science.gov (United States)

    Paschke, Suzanne S.

    2007-01-01

    This study of the Transport of Anthropogenic and Natural Contaminants to public-supply wells (TANC study) is being conducted as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program and was designed to increase understanding of the most important factors to consider in ground-water vulnerability assessments. The seven TANC studies that began in 2001 used retrospective data and ground-water flow models to evaluate hydrogeologic variables that affect aquifer susceptibility and vulnerability at a regional scale. Ground-water flow characteristics, regional water budgets, pumping-well information, and water-quality data were compiled from existing data and used to develop conceptual models of ground-water conditions for each study area. Steady-state regional ground-water flow models were used to represent the conceptual models, and advective particle-tracking simulations were used to compute areas contributing recharge and traveltimes from recharge to selected public-supply wells. Retrospective data and modeling results were tabulated into a relational database for future analysis. Seven study areas were selected to evaluate a range of hydrogeologic settings and management practices across the Nation: the Salt Lake Valley, Utah; the Eagle Valley and Spanish Springs Valley, Nevada; the San Joaquin Valley, California; the Northern Tampa Bay region, Florida; the Pomperaug River Basin, Connecticut; the Great Miami River Basin, Ohio; and the Eastern High Plains, Nebraska. This Professional Paper Chapter presents the hydrogeologic settings and documents the ground-water flow models for each of the NAWQA TANC regional study areas that began work in 2001. Methods used to compile retrospective data, determine contributing areas of public-supply wells, and characterize oxidation-reduction (redox) conditions also are presented. This Professional Paper Chapter provides the foundation for future susceptibility and vulnerability analyses in the TANC

  10. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    Science.gov (United States)

    Arnold, Terri L.; Desimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, MaryLynn; Kingsbury, James A.; Belitz, Kenneth

    2016-06-20

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  11. Microbiological quality of water from hand-dug wells used for domestic purposes in urban communities in Kumasi, Ghana

    DEFF Research Database (Denmark)

    Akple, M.; Keraita, Bernard; Konradsen, Flemming

    2011-01-01

    Assessment was done on the microbiological quality of water in hand-dug wells in urban communities in Kumasi, Ghana. A total of 256 water samples were taken from eight wells and examined for faecal coliforms, enterococci and helminths. High contamination levels were recorded in the wells, more so...

  12. Simulations of groundwater flow and particle-tracking analysis in the zone of contribution to a public-supply well in San Antonio, Texas

    Science.gov (United States)

    Lindgren, Richard L.; Houston, Natalie A.; Musgrove, MaryLynn; Fahlquist, Lynne S.; Kauffman, Leon J.

    2011-01-01

    In 2006, a public-supply well in San Antonio, Texas, was selected for intensive study to assess the vulnerability of public-supply wells in the Edwards aquifer to contamination by a variety of compounds. A local-scale, steady-state, three-dimensional numerical groundwater-flow model was developed and used in this study to evaluate the movement of water and solutes from recharge areas to the selected public-supply well. Particle tracking was used to compute flow paths and advective traveltimes throughout the model area and to delineate the areas contributing recharge and zone of contribution for the selected public-supply well.

  13. Groundwater quality monitoring well installation for Lower Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    Mortimore, J.A.; Lee, T.A.

    1994-09-01

    This report documents the drilling and installation of 11 groundwater quality monitoring (GQM) wells on the perimeter of Lower Waste Area Grouping (WAG) 2. Lower WAG 2 consists of White Oak Lake and the embayment below White Oak Dam above the Clinch River. The wells in Lower WAG 2 were drilled and developed between December 1989 and September 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The wells at Lower WAG 2 were drilled with auger or air rotary rigs. Depending on the hydrogeologic conditions present at each proposed well location, one of three basic installation methods was utilized. Detailed procedures for well construction were specified by the Engineering Division to ensure that the wells would provide water samples representative of the aquifer. To ensure conformance with the specifications, Energy Systems Construction Engineering and ERCE provided continuous oversight of field activities. The purpose of the well installation program was to install GQM wells for groundwater characterization at Lower WAG 2. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents

  14. Spatial control of groundwater contamination, using principal

    Indian Academy of Sciences (India)

    Spatial control of groundwater contamination, using principal component analysis ... anthropogenic (agricultural activities and domestic wastewaters), and marine ... The PC scores reflect the change of groundwater quality of geogenic origin ...

  15. In search of thermogenic methane in groundwater in the Netherlands, with emphasis on the location of a historic gas well blowout

    Science.gov (United States)

    Schout, G.; Griffioen, J.; Hassanizadeh, S. M.; Hartog, N.

    2017-12-01

    Similar to the US, the Netherlands has a long history of oil & gas production, with around 2500 onshore hydrocarbon wells drilled since the late 1930s. While conventional reserves are diminishing, a governmental moratorium was put in place on shale gas exploration and production until 2023, in part due to concerns about its effects on groundwater quality. To investigate the industry's historic and potential future impact on groundwater quality in the country, a study was carried out to assess i) baseline methane concentrations and origin ii) the natural connectivity of deeper gas-bearing layers with the shallower groundwater systems. Through datamining, a dataset consisting of 12,200 groundwater analyses with methane concentrations was assembled. Furthermore, 25 additional samples were collected at targeted locations and analysed for dissolved gas molecular and isotopic composition. Methane concentrations are positively skewed with median, mean and maximum concentrations of 0.28, 2.17 and 120 mg/L, respectively. No correlation between methane concentrations and distance to hydrocarbon wells or faults is observed. In general, concentrations cannot be readily explained by factors such as the depth, geographic location, host formation and depositional environment. Thermogenic methane was first encountered at several hundred meters depth, below thick successions of marine Paleogene and Neogene clays that are present throughout the country and impede vertical flow. All methane encountered above these formations was found to be biogenic in origin, with one notable exception - a sample taken at the site of a catastrophic gas well blowout that occurred in 1965 near the village of Sleen. Combined, these findings suggest that thermogenic methane does not naturally occur in Dutch shallow groundwater and its presence can be used as an indicator of anthropogenic gas leakage. The unique Sleen blowout site was selected for a detailed investigation of the long-term effects of

  16. Groundwater-level analysis of selected wells in the Hoosic River Valley near Hoosick Falls, New York, for aquifer framework and properties

    Science.gov (United States)

    Williams, John H.; Heisig, Paul M.

    2018-03-05

    The U.S. Geological Survey, in cooperation with the New York State Department of Environmental Conservation, analyzed groundwater levels, drilling record logs, and field water-quality data from selected wells, and the surficial geology in the Hoosic River valley south of the village of Hoosick Falls, New York, to provide information about the framework and properties of a confined aquifer. The aquifer, which consists of ice-contact sand and gravel overlain by lacustrine clay and silt, was evaluated by the New York State Department of Environmental Conservation as part of their investigation of alternate water supplies for the village whose wellfield has been affected by perfluorooctanoic acid. Wells inventoried in the study area were classified as confined, water table, or transitional between the two aquifer conditions. Groundwater levels in three confined-aquifer wells and a transitional-aquifer well responded to pumping of a test production well finished in the confined aquifer. Groundwater levels in a water-table well showed no detectable water-level change in response to test-well pumping. Analysis of drawdown and recovery data from the three confined-aquifer wells and a transitional-aquifer well through the application of the Theis type-curve method provided estimates of aquifer properties. Representation of a constant-head boundary in the analysis where an unnamed pond and fluvial-terrace deposits abut the valley wall resulted in satisfactory matches of the Theis type curves with the observed water-level responses. Aquifer transmissivity estimates ranged from 1,160 to 1,370 feet squared per day. Aquifer storativity estimates ranged from 5.2×10–5 to 1.1×10–3 and were consistent with the inferred degree of confinement and distance from the represented recharge boundary.

  17. Simulations of Groundwater Flow and Particle Tracking Analysis in the Area Contributing Recharge to a Public-Supply Well near Tampa, Florida, 2002-05

    Science.gov (United States)

    Crandall, Christy A.; Kauffman, Leon J.; Katz, Brian G.; Metz, Patricia A.; McBride, W. Scott; Berndt, Marian P.

    2009-01-01

    Shallow ground water in the north-central Tampa Bay region, Florida, is affected by elevated nitrate concentrations, the presence of volatile organic compounds, and pesticides as a result of groundwater development and intensive urban land use. The region relies primarily on groundwater for drinking-water supplies. Sustainability of groundwater quality for public supply requires monitoring and understanding of the mechanisms controlling the vulnerability of public-supply wells to contamination. A single public-supply well was selected for intensive study based on the need to evaluate the dominant processes affecting the vulnerability of public-supply wells in the Upper Floridan aquifer in the City of Temple Terrace near Tampa, Florida, and the presence of a variety of chemical constituents in water from the well. A network of 29 monitoring wells was installed, and water and sediment samples were collected within the area contributing recharge to the selected public-supply well to support a detailed analysis of physical and chemical conditions and processes affecting the water chemistry in the well. A three-dimensional, steady-state groundwater flow model was developed to evaluate the age of groundwater reaching the well and to test hypotheses on the vulnerability of the well to nonpoint source input of nitrate. Particle tracking data were used to calculate environmental tracer concentrations of tritium and sulfur hexafluoride and to calibrate traveltimes and compute flow paths and advective travel times in the model area. The traveltime of particles reaching the selected public-supply well ranged from less than 1 day to 127.0 years, with a median of 13.1 years; nearly 45 percent of the simulated particle ages were less than about 10 years. Nitrate concentrations, derived primarily from residential/commercial fertilizer use and atmospheric deposition, were highest (2.4 and 6.11 milligrams per liter as nitrogen, median and maximum, respectively) in shallow

  18. groundwater prospecting of bodo, gokana local government area of ...

    African Journals Online (AJOL)

    groundwater in Bodo community, Gokana L.G.A of. Rivers State is considered pertinent, considering that the primary sources of domestic water in the community are surface water bodies such as streams and shallow wells which are very prone to contamination, coupled the high level of environmental pollution caused by ...

  19. Using Oil and Gas Well Log Records to Understand Possible Connections Between Wastewater Injection Zones and Usable Groundwater Aquifers in California

    Science.gov (United States)

    Shimabukuro, D.; Haugen, E. A.; Battistella, C.; Treguboff, E. W.; Kale, J. M.

    2015-12-01

    Although the disposal of produced water in wastewater injection wells has been occurring in California for decades, it is not clear whether injected fluids may be migrating into usable groundwater aquifers. One problem is the poor characterization of federally-protected (oil and gas well records collected by the California Division of Oil, Gas, and Geothermal Resources (DOGGR). These scanned records contain two useful sources of information. First, geophysical well logs, such those measuring resistivity and porosity, can be used to determine aquifer salinity. This allows a three-dimensional understanding of the distribution of protected groundwater. Second, driller's logs contain lithological descriptions at depth. These lithologies can be used to construct a three-dimensional texture model, which can then be used in a groundwater flow model. A large number of undergraduate researchers at CSU Sacramento and CSU Long Beach have been collecting information on well records in the Ventura Basin and the Southern San Joaquin Valley. Each well record is examined with basic metadata entered into an online database in an effort to identify appropriate geophysical well logs and driller's logs. High-quality driller's logs are coded and used to create three-dimensional framework models for each well field. The geophysical logs are digitized and will be used to determine aquifer salinity. In addition, we are using information from the DOGGR well records to investigate wellbore integrity, waste disposal and waterflood injection volumes, and the possibility of induced seismicity. This project is part of the broader effort of the California State Water Resources Control Board to implement Senate Bill 4.

  20. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  1. Ground-Water Quality Data in the Owens and Indian Wells Valleys Study Unit, 2006: Results from the California GAMA Program

    Science.gov (United States)

    Densmore, Jill N.; Fram, Miranda S.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 1,630 square-mile Owens and Indian Wells Valleys study unit (OWENS) was investigated in September-December 2006 as part of the Priority Basin Project of Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board (SWRCB). The Owens and Indian Wells Valleys study was designed to provide a spatially unbiased assessment of raw ground-water quality within OWENS study unit, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 74 wells in Inyo, Kern, Mono, and San Bernardino Counties. Fifty-three of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 21 wells were selected to evaluate changes in water chemistry in areas of interest (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater- indicator compounds], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3- trichloropropane (1,2,3-TCP)], naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water], and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. This study evaluated the quality of raw ground water in the aquifer in the OWENS study unit and did not attempt to evaluate the quality of treated water

  2. Y-12 Groundwater Protection Program CY2012 Triennial Report Of The Monitoring Well Inspection And Maintenance Program Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-09-01

    This document is the triennial report for the Well Inspection and Maintenance Program of the Y- 12 Groundwater Protection Program (GWPP), at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12). This report formally documents well inspections completed by the GWPP on active and inactive wells at Y-12 during calendar years (CY) 2010 through 2012. In addition, this report also documents well inspections performed under the Y-12 Water Resources Restoration Program, which is administered by URS|CH2M Oak Ridge (UCOR). This report documents well maintenance activities completed since the last triennial inspection event (CY 2009); and provides summary tables of well inspections and well maintenance activities during the reference time period.

  3. Simulations of Ground-Water Flow and Particle Pathline Analysis in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    Science.gov (United States)

    Burow, Karen R.; Jurgens, Bryant C.; Kauffman, Leon J.; Phillips, Steven P.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    Shallow ground water in the eastern San Joaquin Valley is affected by high nitrate and uranium concentrations and frequent detections of pesticides and volatile organic compounds (VOC), as a result of ground-water development and intensive agricultural and urban land use. A single public-supply well was selected for intensive study to evaluate the dominant processes affecting the vulnerability of public-supply wells in the Modesto area. A network of 23 monitoring wells was installed, and water and sediment samples were collected within the approximate zone of contribution of the public-supply well, to support a detailed analysis of physical and chemical conditions and processes affecting the water chemistry in the well. A three-dimensional, steady-state local ground-water-flow and transport model was developed to evaluate the age of ground water reaching the well and to evaluate the vulnerability of the well to nonpoint source input of nitrate and uranium. Particle tracking was used to compute pathlines and advective travel times in the ground-water flow model. The simulated ages of particles reaching the public-supply well ranged from 9 to 30,000 years, with a median of 54 years. The age of the ground water contributed to the public-supply well increased with depth below the water table. Measured nitrate concentrations, derived primarily from agricultural fertilizer, were highest (17 milligrams per liter) in shallow ground water and decreased with depth to background concentrations of less than 2 milligrams per liter in the deepest wells. Because the movement of water is predominantly downward as a result of ground-water development, and because geochemical conditions are generally oxic, high nitrate concentrations in shallow ground water are expected to continue moving downward without significant attenuation. Simulated long-term nitrate concentrations indicate that concentrations have peaked and will decrease in the public-supply well during the next 100 years

  4. High-resolution monitoring across the soil-groundwater interface - Revealing small-scale hydrochemical patterns with a novel multi-level well

    Science.gov (United States)

    Gassen, Niklas; Griebler, Christian; Stumpp, Christine

    2016-04-01

    Biogeochemical turnover processes in the subsurface are highly variable both in time and space. In order to capture this variability, high resolution monitoring systems are required. Particular in riparian zones the understanding of small-scale biogeochemical processes is of interest, as they are regarded as important buffer zones for nutrients and contaminants with high turnover rates. To date, riparian research has focused on influences of groundwater-surface water interactions on element cycling, but little is known about processes occurring at the interface between the saturated and the unsaturated zone during dynamic flow conditions. Therefore, we developed a new type of high resolution multi-level well (HR-MLW) that has been installed in the riparian zone of the Selke river. This HR-MLW for the first time enables to derive water samples both from the unsaturated and the saturated zone across one vertical profile with a spatial vertical resolution of 0.05 to 0.5 m to a depth of 4 m b.l.s. Water samples from the unsaturated zone are extracted via suction cup sampling. Samples from the saturated zone are withdrawn through glass filters and steel capillaries. Both, ceramic cups and glass filters, are installed along a 1" HDPE piezometer tube. First high resolution hydrochemical profiles revealed a distinct depth-zonation in the riparian alluvial aquifer. A shallow zone beneath the water table carried a signature isotopically and hydrochemically similar to the nearby river, while layers below 1.5 m were influenced by regional groundwater. This zonation showed temporal dynamics related to groundwater table fluctuations and microbial turnover processes. The HR-MLW delivered new insight into mixing and turnover processes between riverwater and groundwater in riparian zones, both in a temporal and spatial dimension. With these new insights, we are able to improve our understanding of dynamic turnover processes at the soil - groundwater interface and of surface

  5. A model for evaluating the three-dimensional groundwater dividing pathline between a contaminant source and a partially penetrating water-supply well

    Science.gov (United States)

    Harmsen, Eric W.; Converse, James C.; Anderson, Mary P.; Hoopes, John A.

    1991-09-01

    Effluent from septic tank-drainfields can degrade groundwater quality and contaminate nearby water-supply wells. Such groundwater contamination is a problem in the unsewered subdivisions of the sand plain of central Wisconsin, for example. To help planners minimize the risk of direct contamination of a water-supply well by a septic system, a model was developed to estimate the location of the critical dividing pathline between a rectangular contaminant source (the septic tank drainfield) and a partially penetrating pumping well. The model is capable of handling three-dimensional, transient flow in an unconfined, homogeneous, anisotropic aquifer of infinite areal extent, under a regional horizontal hydraulic gradient. Model results are in very good agreement with several other numerical and analytical models. Examples are given for which the safe, horizontal and vertical separation distances to avoid well water contamination are determined for typical central Wisconsin sand plain conditions. A companion paper (Harmsen et al., 1991) describes the application of this model, using a Monte-Carlo analysis, to study the variation of these separation distances in the Wisconsin sand plain. The model can also be applied to larger scale problems and, therefore, could be useful in implementing the U.S. Environmental Protection Agency's new well head protection program.

  6. Deep groundwater flow systems and their characterization in single-well settings by ''push-pull'' tracer tests

    International Nuclear Information System (INIS)

    Hebig-Schubert, Klaus

    2014-01-01

    This thesis demonstrates the growing importance of deep groundwater research and the increasing demand for the development of suitable single-well test methods. At the forefront of the research on groundwater in the deep underground, radioactive waste disposal in deep geological repositories, CO 2 storage, geothermal energy supply, and aquifer storage and recovery systems (ASR) are on the agenda. The developments of suitable methods for investigating these resources are a main target. Currently available methods show considerable limitations. Accordingly, comprehensive methods for the hydraulic and hydrochemical characterization of deeper aquifers with single-well access are needed. Therefore, the goal of this PhD thesis was to identify, test, and enhance potentially suitable single-well methods for characterization of groundwater flow and solute transport in such settings. For this, several Single-Well Injection-Withdrawal (''push-pull'') tracer tests were applied at the Hamasato field site (Horonobe, Japan) in a ∝100 m deep groundwater monitoring well. Aim was to characterize the impact of a dynamic saltwater-freshwater interface on a coastal aquifer. Based on the experiences of the first methodological test, a second field campaign was conducted. This campaign focused on a systematic evaluation of the push-pull tracer test method for the first time at all. The experiments focused on the investigation of the so-called ''chaser'' and its impact on the test results. The chaser is a specific part of many push-pull tracer tests setups. From these experiments, a specific test design for the investigation of the saltwater-freshwater interface in a single-well setting was developed. The application of this design on questions regarding different fluids within the same system, e.g. different mineralized fluids (saltwater-freshwater-interface, ASR) or temperatures (geothermal research), are promising future approaches for this

  7. Deep groundwater flow systems and their characterization in single-well settings by ''push-pull'' tracer tests

    Energy Technology Data Exchange (ETDEWEB)

    Hebig-Schubert, Klaus

    2014-11-21

    This thesis demonstrates the growing importance of deep groundwater research and the increasing demand for the development of suitable single-well test methods. At the forefront of the research on groundwater in the deep underground, radioactive waste disposal in deep geological repositories, CO{sub 2} storage, geothermal energy supply, and aquifer storage and recovery systems (ASR) are on the agenda. The developments of suitable methods for investigating these resources are a main target. Currently available methods show considerable limitations. Accordingly, comprehensive methods for the hydraulic and hydrochemical characterization of deeper aquifers with single-well access are needed. Therefore, the goal of this PhD thesis was to identify, test, and enhance potentially suitable single-well methods for characterization of groundwater flow and solute transport in such settings. For this, several Single-Well Injection-Withdrawal (''push-pull'') tracer tests were applied at the Hamasato field site (Horonobe, Japan) in a ∝100 m deep groundwater monitoring well. Aim was to characterize the impact of a dynamic saltwater-freshwater interface on a coastal aquifer. Based on the experiences of the first methodological test, a second field campaign was conducted. This campaign focused on a systematic evaluation of the push-pull tracer test method for the first time at all. The experiments focused on the investigation of the so-called ''chaser'' and its impact on the test results. The chaser is a specific part of many push-pull tracer tests setups. From these experiments, a specific test design for the investigation of the saltwater-freshwater interface in a single-well setting was developed. The application of this design on questions regarding different fluids within the same system, e.g. different mineralized fluids (saltwater-freshwater-interface, ASR) or temperatures (geothermal research), are promising future approaches for

  8. ANIMAL BEHAVIOR AND WELL-BEING SYMPOSIUM: Interaction between coping style/personality, stress, and welfare: Relevance for domestic farm animals.

    Science.gov (United States)

    Koolhaas, J M; Van Reenen, C G

    2016-06-01

    This paper will argue that understanding animal welfare and the individual vulnerability to stress-related disease requires a fundamental understanding of functional individual variation as it occurs in nature as well as the underlying neurobiology and neuroendocrinology. Ecological studies in feral populations of mice, fish, and birds start to recognize the functional significance of phenotypes that individually differ in their behavioral and neuroendocrine response to environmental challenge. Recent studies indicate that the individual variation within a species may buffer the species for strong fluctuations in the natural habitat. Similarly, evolutionary ancient behavioral trait characteristics have now been identified in a range of domestic farm animals including cattle, pigs, and horses. Individual variation in behavior can be summarized in a 3-dimensional model with coping style, emotionality, and sociality as independent dimensions. These dimensions can be considered trait characteristics that are stable over time and across situations within the individual. This conceptual model has several consequences. First, the coping style dimension is strongly associated with differential stress vulnerability. Social stress studies show that proactive individuals are resilient under stable environmental conditions but vulnerable when outcome expectancies are violated. Reactive individuals are, in fact, rather flexible and seem to adapt more easily to a changing environment. A second consequence relates to genetics and breeding. Genetic selection for one trait usually implies selection for other traits as well. It is discussed that a more balanced breeding program that takes into account biologically functional temperamental traits will lead to more robust domestic farm animals. Finally, the relationship between temperamental traits, animal production, fitness, and welfare is discussed.

  9. Groundwater well inventory and assessment in the area of the proposed Normally Pressured Lance natural gas development project, Green River Basin, Wyoming, 2012

    Science.gov (United States)

    Sweat, Michael J.

    2013-01-01

    During May through September 2012, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, inventoried and assessed existing water wells in southwestern Wyoming for inclusion in a possible groundwater-monitor network. Records were located for 3,282 wells in the upper Green River Basin, which includes the U.S. Geological Survey study area and the proposed Normally Pressured Lance natural gas development project area. Records for 2,713 upper Green River Basin wells were determined to be unique (not duplicated) and to have a Wyoming State Engineers Office permit. Further, 376 of these wells were within the U.S. Geological Survey Normally Pressured Lance study area. Of the 376 wells in the U.S. Geological Survey Normally Pressured Lance study area, 141 well records had sufficient documentation, such as well depth, open interval, geologic log, and depth to water, to meet many, but not always all, established monitor well criteria. Efforts were made to locate each of the 141 wells and to document their current condition. Field crews were able to locate 121 of the wells, and the remaining 20 wells either were not located as described, or had been abandoned and the site reclaimed. Of the 121 wells located, 92 were found to meet established monitor well criteria. Results of the field efforts during May through September 2012, and specific physical characteristics of the 92 wells, are presented in this report.

  10. Brackish groundwater in the United States

    Science.gov (United States)

    Stanton, Jennifer S.; Anning, David W.; Brown, Craig J.; Moore, Richard B.; McGuire, Virginia L.; Qi, Sharon L.; Harris, Alta C.; Dennehy, Kevin F.; McMahon, Peter B.; Degnan, James R.; Böhlke, John Karl

    2017-04-05

    For some parts of the Nation, large-scale development of groundwater has caused decreases in the amount of groundwater that is present in aquifer storage and that discharges to surface-water bodies. Water supply in some areas, particularly in arid and semiarid regions, is not adequate to meet demand, and severe drought is affecting large parts of the United States. Future water demand is projected to heighten the current stress on groundwater resources. This combination of factors has led to concerns about the availability of freshwater to meet domestic, agricultural, industrial, mining, and environmental needs. To ensure the water security of the Nation, currently [2016] untapped water sources may need to be developed.Brackish groundwater is an unconventional water source that may offer a partial solution to current and future water demands. In support of the national census of water resources, the U.S. Geological Survey completed the national brackish groundwater assessment to better understand the occurrence and characteristics of brackish groundwater in the United States as a potential water resource. Analyses completed as part of this assessment relied on previously collected data from multiple sources; no new data were collected. Compiled data included readily available information about groundwater chemistry, horizontal and vertical extents and hydrogeologic characteristics of principal aquifers (regionally extensive aquifers or aquifer systems that have the potential to be used as a source of potable water), and groundwater use. Although these data were obtained from a wide variety of sources, the compiled data are biased toward shallow and fresh groundwater resources; data representing groundwater that is at great depths and is saline were not as readily available.One of the most important contributions of this assessment is the creation of a database containing chemical characteristics and aquifer information for the known areas with brackish groundwater

  11. Domestic violence

    Science.gov (United States)

    ... violence; Spousal abuse; Elder abuse; Child abuse; Sexual abuse - domestic violence ... 2016. National Domestic Violence Hotline website. What is domestic violence? www.thehotline.org/is-this-abuse/abuse-defined . Accessed July 10, 2016.

  12. Criteria for a Sustainable Exploitation of Groundwater. 1. Well Hydraulics and the Regional Simulation of Aquifers; Criterios para una explotacion sustentable del agua subterranea

    Energy Technology Data Exchange (ETDEWEB)

    Perez Monteagudo, Fernando [Instituto Superior Politecnico Jose A. Echeverrria (Cuba)

    2002-12-01

    Compared to surface water, groundwater has several disadvantages: its renewal is slow, its potential is more difficult to estimate, and its exploitation often requires more energy. However, it has the advantage of a higher quality. The long-tem storage effect of aquifers guarantees its continuous availability even in regions with wide temporal variations in precipitation. Although at a global scale groundwater use seems small compared with surface water, the order of importance is reversed if only drinking water is considered. Due to its quality, limited vulnerability, and relatively continuous availability, groundwater is a resource of strategic importance. That is why its exploitation must by ruled by sustainability criteria. This work intends to describe in a general framework the basic criteria that must regulate the sustainable management of groundwater. These criteria can be classified as quantitative and qualitative. Both criteria should be integrated to define groundwater resource management strategies. In the first part of this work, the quantitative aspects are emphasized. Among these criteria that rule the limitation of groundwater, drawdowns are of fundamental importance. New, recently developed tools for this purpose are described, which also establish the links between well hydraulics and the regional simulation of aquifers, such as non-Darcy flow, the interference of wells with non-Darcy flow, and the local optimisation approach, among others. The international trends in this field are also discussed. [Spanish] Comparada con el agua superficial, el agua subterranea tiene la siguientes desventajas: una lenta renovacion, un potencial mas dificil de estimar y que con frecuencia se requiere de mas energia para explotarla. Sin embargo, posee una mayor calidad, ademas de que la capacidad de almacenamiento a largo plazo de los acuiferos garantiza la continuidad de su disponibilidad, incluso en regiones con fuertes variaciones temporales de precipitaciones

  13. Groundwater quality in the shallow aquifers of the Madera–Chowchilla and Kings subbasins, San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.; Shelton, Jennifer L.

    2018-01-08

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking-water supply and increases public access to groundwater-quality information. Many households and small communities in the Madera– Chowchilla and Kings subbasins of the San Joaquin Valley rely on private domestic wells for their drinking-water supplies.

  14. Implementing the Prepaid Smart Meter System for Irrigated Groundwater Production in Northern China: Status and Problems

    OpenAIRE

    Xiaowei Wang; Jingli Shao; Frank van Steenbergen; Qiulan Zhang

    2017-01-01

    To reduce the gap between groundwater demand and supply caused by agricultural groundwater over-exploitation, the Prepaid Smart Meter System (PSMS) is being strongly implemented by the Chinese government in northern China. This study reports the analysis and results of PSMS field surveys in six typical provinces in northern China as well as domestic literature reviews. Based on the architecture and implementation policies of the system, the implementation differences between areas and the inf...

  15. Changes of Groundwater Quality in the Sorrounding Pollution Sources Due to Earthquake Dissaster

    Directory of Open Access Journals (Sweden)

    Sudarmadji Sudarmadji

    2016-05-01

    Full Text Available Groundwater is the main domestic water supply of the population of the Yogyakarta Special Region, both in the urban and as well as in the rural area due to its quantity and quality advantages. The rapid population growth has caused an increase of groundwater demand, consequently it is facing some problems to the sustainability of groundwater supply. Lowering of groundwater level has been observed in some places, as well as the degradation of groundwater quality. Earthquake which stroke Yogyakarta on 27 May 2006, damaged buildings and other infrastructures in the area, including roads and bridges. It might also damage the underground structures such as septic tanks, and pipes underneath the earth surface. It might cause cracking of the geologic structures. Furthermore, the damage of underneath infrastructures might create groundwater quality changes in the area. Some complains of local community on lowering and increasing groundwater level and groundwater quality changes were noted. Field observation and investigation were conducted, including collection of groundwater samples close to (the pollution sources. Laboratory analyses indicated that some parameters increased to exceed the drinking water quality standards. The high content of Coli form bacteria possibly was caused by contamination of nearby septic tanks or other pollution sources to the observed groundwater in the dug well.

  16. Depth-dependent groundwater quality sampling at City of Tallahassee test well 32, Leon County, Florida, 2013

    Science.gov (United States)

    McBride, W. Scott; Wacker, Michael A.

    2015-01-01

    Public-supply wells sometimes produce water of less than desirable quality because contaminants can migrate to the open interval of wells through preferential pathways. If these pathways can be identified, zones that produce poor quality water can be excluded during the well-construction process. The U.S. Geological Survey has developed geophysical testing methods that can be used to delineate zones of high permeability in test wells. Once the highly permeable zones are identified, water-quality data can be collected from each zone to identify whether any of the zones produce water of poor quality. The zones producing poor quality water can then be cased off in the final well design so that they do not contribute flow to the production well, reducing subsequent water-treatment costs.

  17. A GIS analysis of the relationship between sinkholes, dry-well complaints and groundwater pumping for frost-freeze protection of winter strawberry production in Florida.

    Directory of Open Access Journals (Sweden)

    Mark D Aurit

    Full Text Available Florida is riddled with sinkholes due to its karst topography. Sometimes these sinkholes can cause extensive damage to infrastructure and homes. It has been suggested that agricultural practices, such as sprinkler irrigation methods used to protect crops, can increase the development of sinkholes, particularly when temperatures drop below freezing, causing groundwater levels to drop quickly during groundwater pumping. In the strawberry growing region, Dover/Plant City, Florida, the effects have caused water shortages resulting in dry-wells and ground subsidence through the development of sinkholes that can be costly to maintain and repair. In this study, we look at how frost-freeze events have affected West Central Florida over the past 25 years with detailed comparisons made between two cold-years (with severe frost-freeze events and a warm year (no frost-freeze events. We analyzed the spatial and temporal correlation between strawberry farming freeze protection practices and the development of sinkholes/dry well complaints, and assessed the economic impact of such events from a water management perspective by evaluating the cost of repairing and drilling new wells and how these compared with using alternative crop-protection methods. We found that the spatial distribution of sinkholes was non-random during both frost-freeze events. A strong correlation between sinkhole occurrence and water extraction and minimum temperatures was found. Furthermore as temperatures fall below 41°F and water levels decrease by more than 20 ft, the number of sinkholes increase greatly (N >10. At this time alternative protection methods such as freeze-cloth are cost prohibitive in comparison to repairing dry wells. In conclusion, the findings from this study are applicable in other agricultural areas and can be used to develop comprehensive water management plans in areas where the abstraction of large quantities of water occur.

  18. A GIS analysis of the relationship between sinkholes, dry-well complaints and groundwater pumping for frost-freeze protection of winter strawberry production in Florida.

    Science.gov (United States)

    Aurit, Mark D; Peterson, Robert O; Blanford, Justine I

    2013-01-01

    Florida is riddled with sinkholes due to its karst topography. Sometimes these sinkholes can cause extensive damage to infrastructure and homes. It has been suggested that agricultural practices, such as sprinkler irrigation methods used to protect crops, can increase the development of sinkholes, particularly when temperatures drop below freezing, causing groundwater levels to drop quickly during groundwater pumping. In the strawberry growing region, Dover/Plant City, Florida, the effects have caused water shortages resulting in dry-wells and ground subsidence through the development of sinkholes that can be costly to maintain and repair. In this study, we look at how frost-freeze events have affected West Central Florida over the past 25 years with detailed comparisons made between two cold-years (with severe frost-freeze events) and a warm year (no frost-freeze events). We analyzed the spatial and temporal correlation between strawberry farming freeze protection practices and the development of sinkholes/dry well complaints, and assessed the economic impact of such events from a water management perspective by evaluating the cost of repairing and drilling new wells and how these compared with using alternative crop-protection methods. We found that the spatial distribution of sinkholes was non-random during both frost-freeze events. A strong correlation between sinkhole occurrence and water extraction and minimum temperatures was found. Furthermore as temperatures fall below 41°F and water levels decrease by more than 20 ft, the number of sinkholes increase greatly (N >10). At this time alternative protection methods such as freeze-cloth are cost prohibitive in comparison to repairing dry wells. In conclusion, the findings from this study are applicable in other agricultural areas and can be used to develop comprehensive water management plans in areas where the abstraction of large quantities of water occur.

  19. Review Team Focused Modeling Analysis of Radial Collector Well Operation on the Hypersaline Groundwater Plume beneath the Turkey Point Site near Homestead, Florida

    International Nuclear Information System (INIS)

    Oostrom, Martinus; Vail, Lance W.

    2016-01-01

    Researchers at Pacific Northwest National Laboratory served as members of a U.S. Nuclear Regulatory Commission review team for the Florida Power & Light Company's application for two combined construction permits and operating licenses (combined licenses or COLs) for two proposed new reactor units-Turkey Point Units 6 and 7. The review team evaluated the environmental impacts of the proposed action based on the October 29, 2014 revision of the COL application, including the Environmental Report, responses to requests for additional information, and supplemental information. As part of this effort, team members tasked with assessing the environmental effects of proposed construction and operation of Units 6 and 7 at the Turkey Point site reviewed two separate modeling studies that analyzed the interaction between surface water and groundwater that would be altered by the operation of radial collector wells (RCWs) at the site. To further confirm their understanding of the groundwater hydrodynamics and to consider whether certain actions, proposed after the two earlier modeling studies were completed, would alter the earlier conclusions documented by the review team in their draft environmental impact statement (EIS; NRC 2015), a third modeling analysis was performed. The third modeling analysis is discussed in this report.

  20. Review Team Focused Modeling Analysis of Radial Collector Well Operation on the Hypersaline Groundwater Plume beneath the Turkey Point Site near Homestead, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vail, Lance W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-01

    Researchers at Pacific Northwest National Laboratory served as members of a U.S. Nuclear Regulatory Commission review team for the Florida Power & Light Company’s application for two combined construction permits and operating licenses (combined licenses or COLs) for two proposed new reactor units—Turkey Point Units 6 and 7. The review team evaluated the environmental impacts of the proposed action based on the October 29, 2014 revision of the COL application, including the Environmental Report, responses to requests for additional information, and supplemental information. As part of this effort, team members tasked with assessing the environmental effects of proposed construction and operation of Units 6 and 7 at the Turkey Point site reviewed two separate modeling studies that analyzed the interaction between surface water and groundwater that would be altered by the operation of radial collector wells (RCWs) at the site. To further confirm their understanding of the groundwater hydrodynamics and to consider whether certain actions, proposed after the two earlier modeling studies were completed, would alter the earlier conclusions documented by the review team in their draft environmental impact statement (EIS; NRC 2015), a third modeling analysis was performed. The third modeling analysis is discussed in this report.

  1. Hydrogeochemistry and Stable Isotope Studies of Groundwater in the Ga West Municipal Area, Ghana

    International Nuclear Information System (INIS)

    Saka, David

    2011-07-01

    This study assesses groundwater in the Ga West Municipal Area of Ghana using hydrogeochemistry and stable isotope approaches. High salinity groundwaters are obtained in the municipality which poses problems for current and future domestic water supply exploitation. The increase in salinity is related to the dissolution of minerals in the host rocks and the evaporative concentration of solutes. The dominant groundwater composition in both shallow and deep wells sampled is Na-Cl, with concentration increasing substantially with well depths. The mixing process between freshwater and saline water was observed in the shift from CaHCO3 facies to Ca-Cl facies. Schoeller diagrams showed that groundwater movement in the study area is mostly vertical, moving from the shallow groundwaters towards the deep groundwaters. There were however few exceptions where no relationship was established between the shallow and the deep groundwaters. The oxygen and hydrogen isotope compositions in the groundwater samples suggest that groundwater recharge is of meteoric origin, with few samples showing evidence of evaporation. An average deuterium excess of rainfall of 14.2‰ was observed, which indicates the significance of kinetic evaporation due to low humidity conditions prevalent in the study area. The d-excess also indicates modern recharge along the Akwapim-Togo Ranges. Groundwater analysis for trace metals indicates that 93% of the groundwaters have Iron concentration above recommended limits. However, Cu, Zn, Pb, Cd and Cr have values within the acceptable limits. Generally, about 40% of the groundwaters sampled are not suitable for drinking and domestic purposes based on comparison with international standards for drinking water. (au)

  2. Effects of changes in pumping on regional groundwater-flow paths, 2005 and 2010, and areas contributing recharge to discharging wells, 1990–2010, in the vicinity of North Penn Area 7 Superfund site, Montgomery County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    2017-06-06

    A previously developed regional groundwater flow model was used to simulate the effects of changes in pumping rates on groundwater-flow paths and extent of recharge discharging to wells for a contaminated fractured bedrock aquifer in southeastern Pennsylvania. Groundwater in the vicinity of the North Penn Area 7 Superfund site, Montgomery County, Pennsylvania, was found to be contaminated with organic compounds, such as trichloroethylene (TCE), in 1979. At the time contamination was discovered, groundwater from the underlying fractured bedrock (shale) aquifer was the main source of supply for public drinking water and industrial use. As part of technical support to the U.S. Environmental Protection Agency (EPA) during the Remedial Investigation of the North Penn Area 7 Superfund site from 2000 to 2005, the U.S. Geological Survey (USGS) developed a model of regional groundwater flow to describe changes in groundwater flow and contaminant directions as a result of changes in pumping. Subsequently, large decreases in TCE concentrations (as much as 400 micrograms per liter) were measured in groundwater samples collected by the EPA from selected wells in 2010 compared to 2005‒06 concentrations.To provide insight on the fate of potentially contaminated groundwater during the period of generally decreasing pumping rates from 1990 to 2010, steady-state simulations were run using the previously developed groundwater-flow model for two conditions prior to extensive remediation, 1990 and 2000, two conditions subsequent to some remediation 2005 and 2010, and a No Pumping case, representing pre-development or cessation of pumping conditions. The model was used to (1) quantify the amount of recharge, including potentially contaminated recharge from sources near the land surface, that discharged to wells or streams and (2) delineate the areas contributing recharge that discharged to wells or streams for the five conditions.In all simulations, groundwater divides differed from

  3. Approach for delineation of contributing areas and zones of transport to selected public-supply wells using a regional ground-water flow model, Palm Beach County, Florida

    Science.gov (United States)

    Renken, R.A.; Patterson, R.D.; Orzol, L.L.; Dixon, Joann

    2001-01-01

    Rapid urban development and population growth in Palm Beach County, Florida, have been accompanied with the need for additional freshwater withdrawals from the surficial aquifer system. To maintain water quality, County officials protect capture areas and determine zones of transport of municipal supply wells. A multistep process was used to help automate the delineation of wellhead protection areas. A modular ground-water flow model (MODFLOW) Telescopic Mesh Refinement program (MODTMR) was used to construct an embedded flow model and combined with particle tracking to delineate zones of transport to supply wells; model output was coupled with a geographic information system. An embedded flow MODFLOW model was constructed using input and output file data from a preexisting three-dimensional, calibrated model of the surficial aquifer system. Three graphical user interfaces for use with the geographic information software, ArcView, were developed to enhance the telescopic mesh refinement process. These interfaces include AvMODTMR for use with MODTMR; AvHDRD to build MODFLOW river and drain input files from dynamically segmented linear (canals) data sets; and AvWELL Refiner, an interface designed to examine and convert well coverage spatial data layers to a MODFLOW Well package input file. MODPATH (the U.S. Geological Survey particle-tracking postprocessing program) and MODTOOLS (the set of U.S. Geological Survey computer programs to translate MODFLOW and MODPATH output to a geographic information system) were used to map zones of transport. A steady-state, five-layer model of the Boca Raton area was created using the telescopic mesh refinement process and calibrated to average conditions during January 1989 to June 1990. A sensitivity analysis of various model parameters indicates that the model is most sensitive to changes in recharge rates, hydraulic conductivity for layer 1, and leakance for layers 3 and 4 (Biscayne aquifer). Recharge (58 percent); river (canal

  4. Simulating Groundwater Dynamics across the Contiguous United States Using MODFLOW-OWHM

    Science.gov (United States)

    Alattar, M.; Troy, T. J.; Russo, T. A.

    2017-12-01

    Groundwater is a critical water resource for irrigation, industry, and domestic water supply. Because of the importance of groundwater, especially for agriculture water supply, many regional studies have been implemented to understand groundwater dynamics, to protect groundwater resources, and to support more efficient management of surface and groundwater supplies to meet the water demands. While these regional studies provide invaluable insights into local problems, it is difficult to understand the state of America's water supplies holistically to understand how irrigation, pumping, and climate determine groundwater availability. To fill this gap, we use MODFLOW-OWHM to simulate and analyze groundwater flow across the United States from 1950 through 2010 at a monthly resolution. The model estimates the irrigation demand by crop type, pumping rates from groundwater wells, and groundwater availability and water levels. This allows us to analyze the impact of crop choices and on groundwater pumping as well as surface water withdrawals. The model is calibrated and validated across the contiguous United States with parameter sensitivity analysis. Because of the study region size, climate conditions vary temporally and spatially based on the mean climate and phenomena such as El Niño and La Niña. We do model experiments to analyze how this climate variability can affect recharge and water table depths and how irrigated crop choices impact surface and ground water sustainability. These model simulations have the potential to inform water resources management at a range of spatial scales.

  5. Groundwater Quality of Southeastern Brazzaville, Congo

    Directory of Open Access Journals (Sweden)

    Matini Laurent

    2010-01-01

    Full Text Available The groundwater in southeastern Brazzaville (Congo was analyzed for their fluoride contents and others related parameters in rainy season. The fluoride contents in water samples (wells and spring can be gather in three classes in the study area: low, optimal, high. Fluoride concentration in water samples presents a low significant correlation with Ca2+. This suggests that fluoride in the groundwater come from fluoride-bearing minerals such as CaF2 (fluorite. Maps were drawn to show the geographical distribution of EC, Ca2+, Mg2+and F-. Factor analysis and cluster analysis were applied to the dataset. Factor analysis resulted in four factors explained 76.90% of the total groundwater quality variance. Factor 1 (hardness of the groundwater includes total hardness, the concentration of K+, Ca2+ and pH. Factor 2 (low mineralization of the groundwater includes concentrations of TDS, Cl--, SO42+ and EC. Factor 3 (anthropogenic activities with the impact of agricultural fertilizers, farming activities, domestic wastewater, septic tanks includes concentrations of Na+ and NO3-. Factor 4 (weathering of calcium minerals includes concentrations of F-. For cluster analysis, Ward’s method and the Euclidean distance were used. The findings of the cluster analysis are presented in the form of dendrogram of the well water sites (cases. The discriminating parameters between clusters have been highlighted from the Student test. In majority, they are in accordance with those highlighted by factor analysis.

  6. Determination of 234U and 238U activity concentrations in groundwaters from three deep wells drilled in Itu Intrusive Suite (SP)

    International Nuclear Information System (INIS)

    Souza, Francisca de

    2006-01-01

    Activity concentrations of ( 234 U) and ( 238 U) were determined in groundwaters drawn from three deep wells drilled in rocks from Itu Intrusive Suite (SP), two located in Salto town (S and SY wells) and the other one in Itu (I well). Sampling was done from September, 2004 to December, 2005, and twelve samples of each well were collected monthly. For those determinations alpha spectrometry technique was used, providing high precision results, as shown by the very good agreement of the data obtained in the analyses of 23 duplicates. The waters from the three wells presented a considerable enrichment of 234 U in relation to 238 U, indicating an important radioactive disequilibrium of these isotopes. In well I, the activity concentrations of ( 238 U) varied from (1,06 +- 0,03) to (2,1+- 0,2) mBq/L and those of ( 234 U) spanned from (3,1 +- 0,2) to (6,0 +- 0,4) mBq/L, whereas ( 234 U/ 238 U) activity ratios did not present significant variation, during the sampling time interval, presenting an average of 2,8 +- 0,1. The S waters showed the lowest uranium concentrations and the largest diversity of ( 238 U) and ( 234 U) activity concentrations, which varied from (0,26 +- 0,02) to (1,07+- 0,08) mBq/L and from (1,8 +- 0,1) to (7,0 +- 0,5) mBq/L, respectively, and also presented variable ( 234 U/ 238 U) activity ratios, spanning from (2,79 +- 0,07) to (8,1+- 0,3). In SY well, ( 238 U) activities varied between (0,8 +- 0,1) and (4,2 +- 0,3) mBq/L and those ones of ( 234 U) from (14 +- 1) to (53 +- 4) mBq/L, whereas ( 234 U/ 238 U) ratios fell in the interval from 12,6 +- 0,3 to 18,3 +- 0,4, with the highest activities of both radioisotopes registered during the dry season and the lowest ones in the rainy time period. The ( 234 U/ 238 U) activity ratios, which were invariable during sampling period of well I, indicated the contribution of rainfall to recharge the aquifer. The observed correlation between those ratios and uranium concentrations, for S and SY wells, showed

  7. ENA of heterocyclic hydrocarbons by adding hydrogen peroxide in groundwater circulation wells - a field-based study on a large physical model scale

    International Nuclear Information System (INIS)

    Sagner, A.; Tiehm, A.; Trotschler, O.; Haslwimmer, Th.; Koschitzky, H.P.

    2005-01-01

    Heterocyclic Hydrocarbons (NSO-HET) are ingredients of tar oil, commonly found down-gradient of former gasworks sites. Typical NSO-HET are benzofurans, methyl-benzofurans, methylquinoline, acridine or carbazole. During investigations of MNA (monitored natural attenuation) remediation strategies, it was found that most NSO-HET are highly mobile due to their high water solubility and low biodegradation rates. In addition, some were found to be highly toxic and carcinogenic. In particular under anaerobic conditions, NSO-HET biodegradation rates are low. However, aerobic biological degradation was found to be effective. Based on the extension and contaminant distribution of the plume (∼ 800 m long) down-gradient of a former gasworks 'Testfeld Sued' (TFS) in Southern Germany, the most applicable technology for enhancing the natural degradation of PAH, BTEX and NSO-HET was selected and tested under controlled conditions in a large physical model (Large Flume of VEGAS). The investigations focused on a technology for a homogeneous infiltration of electron acceptor solutions such as oxygen and hydrogen peroxide to provide the bacteria with molecular oxygen. An initial infiltration of oxygen (air-saturated water) during the adaptation of microorganism to aerobic biodegradation was followed by a time-limited addition of hydrogen peroxide to achieve an oxygen concentration up to 23 mg/L in the model aquifer. An almost complete degradation of NSO-HET was found. On the basis of numerical simulations and lab experiments, it was found that natural dispersion will not lead to a wide-ranging homogeneous distribution and mixing of the oxygen in the aquifer. The Groundwater Circulation Wells technology (GCW) can be applied to achieve a maximum mixing of the electron acceptor solution with the groundwater. A spherical groundwater circulation is induced by means of ex- and infiltration ports in vertical wells. Infiltration and ex-filtration ports are located in hydraulically separated

  8. Groundwater quality in Coachella Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  9. Work plan for monitor well/groundwater elevation data recorder installation at the Cheney Disposal site, Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1994-09-01

    In May 1990, during the excavation for the Grand Junction, Colorado, Cheney Reservoir disposal cell (Cheney), a water bearing paleochannel was encountered along the northern boundary of the excavation (designated the Northwest Paleochannel). To ensure the long-term integrity of the disposal embankment, remedial actions were taken including the excavation of the paleochannel and underlying material to bedrock, backfilling of the trapezoidal trench with granular material, and placement of a geotextile liner above the granular material. Compacted clay backfill was placed above the reconstructed paleochannel trench, and the northwest corner was restored to the designated grade. Investigation of other paleochannels determined that ground water flow terminated before it migrated as far west as the disposal cell. Therefore, flow in these paleochannels would have no impact on the disposal cell. Although characterization efforts did not indicate the presence of a ground water-bearing paleochannel south of the disposal cell, the potential could not be ruled out. As a best management practice for long-term monitoring at Cheney, two monitor wells will be installed within the paleochannels. One well will be installed within 50 feet (ft) west of the reconstructed Northwest Paleochannel. The second well will be installed near the southwestern (downgradient) corner of the disposal cell. The purposes of these wells are to characterize ground water flow (if any) within the paleochannels and to monitor the potential for water movement (seepage) into or out of the disposal cell. Initial monitoring of the paleochannels will consist of water level elevation measurement collection and trend analysis to evaluate fluctuations in storage. The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of two ground water monitor wells and two ground water elevation data recorders (data loggers) at Cheney

  10. Ground-water flow and quality, and geochemical processes, in Indian Wells Valley, Kern, Inyo, and San Bernardino counties, California, 1987-88

    Science.gov (United States)

    Berenbrock, Charles; Schroeder, R.A.

    1994-01-01

    An existing water-quality data base for the 300- square-mile Indian Wells Valley was updated by means of chemical and isotopic analysis of ground water. The wide range in measured concentrations of major ions and of minor constituents such as fluoride, borate, nitrate, manganese, and iron is attributed to geochemical reactions within lacustrine deposits of the valley floor. These reactions include sulfate reduction accompanied by generation of alkalinity, precipitation of carbonates, exchange of aqueous alkaline-earth ions for sodium on clays, and dissolution of evaporite minerals. Differences in timing and location of recharge, which originates primarily in the Sierra Nevada to the west, and evapotranspiration from a shallow water table on the valley floor result in a wide range in ratios of stable hydrogen and oxygen isotopes. As ground water moves from alluvium into lustrine deposits of the ancestral China Lake, dissolved-solids concen- trations increase from about 200 to more than 1,000 milligrams per liter; further large increases to several thousand milligrams per liter occur beneath the China Lake playa. Historical data show an increase during the past 20 years in dissolved- solids concentration in several wells in the principal pumping areas at Ridgecrest and between Ridgecrest and Inyokern. The increase apparently is caused by induced flow of saline ground water from nearby China, Mirror, and Satellite Lakes. A simplified advective-transport model calculates ground-water travel times between parts of the valley of at least several thousand years, indi- cating the presence of old ground water. A local ground-water line and an evaporation line estimated using isotopic data from the China Lake area inter- sect at a delta-deuterium value of about -125 permil. This indicates that late Pleistocene recharge was 15 to 35 permil more negative than current recharge.

  11. Qualitative study to explore the health and well-being impacts on adults providing informal support to female domestic violence survivors.

    Science.gov (United States)

    Gregory, Alison; Feder, Gene; Taket, Ann; Williamson, Emma

    2017-03-24

    Domestic violence (DV) is hazardous to survivors' health, from injuries sustained and from resultant chronic physical and mental health problems. Support from friends and relatives is significant in the lives of DV survivors; research shows associations between positive support and the health, well-being and safety of survivors. Little is known about how people close to survivors are impacted. The aim of this study was exploratory, with the following research question: what are the health and well-being impacts on adults who provide informal support to female DV survivors? A qualitative study using semistructured interviews conducted face to face, by telephone or using Skype. A thematic analysis of the narratives was carried out. Community-based, across the UK. People were eligible to take part if they had had a close relationship (either as friend, colleague or family member) with a woman who had experienced DV, and were aged 16 or over during the time they knew the survivor. Participants were recruited via posters in community venues, social media and radio advertisement. 23 participants were recruited and interviewed; the majority were women, most were white and ages ranged from mid-20s to 80. Generated themes included: negative impacts on psychological and emotional well-being of informal supporters, and related physical health impacts. Some psychological impacts were over a limited period; others were chronic and had the potential to be severe and enduring. The impacts described suggested that those providing informal support to survivors may be experiencing secondary traumatic stress as they journey alongside the survivor. Friends and relatives of DV survivors experience substantial impact on their own health and well-being. There are no direct services to support this group. These findings have practical and policy implications, so that the needs of informal supporters are legitimised and met. Published by the BMJ Publishing Group Limited. For permission to

  12. Domestic Violence

    Science.gov (United States)

    Domestic violence is a type of abuse. It usually involves a spouse or partner, but it can also ... a child, elderly relative, or other family member. Domestic violence may include Physical violence that can lead to ...

  13. Domestic violence

    OpenAIRE

    Tačík, Michal

    2015-01-01

    Domestic violence The present thesis deals with the phenomenon of domestic violence, from the substantive, procedural and criminological aspects. The first part defines the specifics of domestic violence, its signs and forms. It shows a typology of victims and perpetrators. It analyzes in detail the basic facts of the crimes that are the most commonly perpetrated forms of domestic violence. It also describes the sanctions and some of the treatment programs that are available for perpetrators ...

  14. Application of the Local Grid Refinement package to an inset model simulating the interactions of lakes, wells, and shallow groundwater, northwestern Waukesha County, Wisconsin

    Science.gov (United States)

    Feinstein, D.T.; Dunning, C.P.; Juckem, P.F.; Hunt, R.J.

    2010-01-01

    Groundwater use from shallow, high-capacity wells is expected to increase across southeastern Wisconsin in the next decade (2010-2020), owing to residential and business growth and the need for shallow water to be blended with deeper water of lesser quality, containing, for example, excessive levels of radium. However, this increased pumping has the potential to affect surface-water features. A previously developed regional groundwater-flow model for southeastern Wisconsin was used as the starting point for a new model to characterize the hydrology of part of northwestern Waukesha County, with a particular focus on the relation between the shallow aquifer and several area lakes. An inset MODFLOW model was embedded in an updated version of the original regional model. Modifications made within the inset model domain include finer grid resolution; representation of Beaver, Pine, and North Lakes by use of the LAK3 package in MODFLOW; and representation of selected stream reaches with the SFR package. Additionally, the inset model is actively linked to the regional model by use of the recently released Local Grid Refinement package for MODFLOW-2005, which allows changes at the regional scale to propagate to the local scale and vice versa. The calibrated inset model was used to simulate the hydrologic system in the Chenequa area under various weather and pumping conditions. The simulated model results for base conditions show that groundwater is the largest inflow component for Beaver Lake (equal to 59 percent of total inflow). For Pine and North Lakes, it is still an important component (equal, respectively, to 16 and 5 percent of total inflow), but for both lakes it is less than the contribution from precipitation and surface water. Severe drought conditions (simulated in a rough way by reducing both precipitation and recharge rates for 5 years to two-thirds of base values) cause correspondingly severe reductions in lake stage and flows. The addition of a test well

  15. Full-scale testing and early production results from horizontal air sparging and soil vapor extraction wells remediating jet fuel in soil and groundwater at JFK International Airport, New York

    International Nuclear Information System (INIS)

    Roth, R.J.; Bianco, P.; Pressly, N.C.

    1996-01-01

    Jet fuel contaminated soil and groundwater contaminated at the International Arrivals Building (IAB) of the JFK International Airport in Jamaica, New York, are being remediated using soil vapor extraction (SVE) and air sparging (AS). The areal extent of the contaminated soil is estimated to be 70 acres and the volume of contaminated groundwater is estimated to be 2.3 million gallons. The remediation uses approximately 13,000 feet of horizontal SVE (HSVE) wells and 7,000 feet of horizontal AS (HAS) wells. The design of the HSVE and HAS wells was based on a pilot study followed by a full-scale test. In addition to the horizontal wells, 28 vertical AS wells and 15 vertical SVE wells are used. Three areas are being remediated, thus, three separate treatment systems have been installed. The SVE and AS wells are operated continuously while groundwater will be intermittently extracted at each HAS well, treated by liquid phase activated carbon and discharged into stormwater collection sewerage. Vapors extracted by the SVE wells are treated by vapor phase activated carbon and discharged into ambient air. The duration of the remediation is anticipated to be between two and three years before soil and groundwater are remediated to New York State cleanup criteria for the site. Based on the monitoring data for the first two months of operation, approximately 14,600 lbs. of vapor phase VOCs have been extracted. Analyses show that the majority of the VOCs are branched alkanes, branched alkenes, cyclohexane and methylated cyclohexanes

  16. Simulations of Ground-Water Flow, Transport, Age, and Particle Tracking near York, Nebraska, for a Study of Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells

    Science.gov (United States)

    Clark, Brian R.; Landon, Matthew K.; Kauffman, Leon J.; Hornberger, George Z.

    2008-01-01

    Contamination of public-supply wells has resulted in public-health threats and negative economic effects for communities that must treat contaminated water or find alternative water supplies. To investigate factors controlling vulnerability of public-supply wells to anthropogenic and natural contaminants using consistent and systematic data collected in a variety of principal aquifer settings in the United States, a study of Transport of Anthropogenic and Natural Contaminants to public-supply wells was begun in 2001 as part of the U.S. Geological Survey National Water-Quality Assessment Program. The area simulated by the ground-water flow model described in this report was selected for a study of processes influencing contaminant distribution and transport along the direction of ground-water flow towards a public-supply well in southeastern York, Nebraska. Ground-water flow is simulated for a 60-year period from September 1, 1944, to August 31, 2004. Steady-state conditions are simulated prior to September 1, 1944, and represent conditions prior to use of ground water for irrigation. Irrigation, municipal, and industrial wells were simulated using the Multi-Node Well package of the modular three-dimensional ground-water flow model code, MODFLOW-2000, which allows simulation of flow and solutes through wells that are simulated in multiple nodes or layers. Ground-water flow, age, and transport of selected tracers were simulated using the Ground-Water Transport process of MODFLOW-2000. Simulated ground-water age was compared to interpreted ground-water age in six monitoring wells in the unconfined aquifer. The tracer chlorofluorocarbon-11 was simulated directly using Ground-Water Transport for comparison with concentrations measured in six monitoring wells and one public supply well screened in the upper confined aquifer. Three alternative model simulations indicate that simulation results are highly sensitive to the distribution of multilayer well bores where leakage

  17. Groundwater demand management at local scale in rural areas of India: a strategy to ensure water well sustainability based on aquifer diffusivity and community participation

    Science.gov (United States)

    Kulkarni, Himanshu; Vijay Shankar, P. S.; Deolankar, S. B.; Shah, Mihir

    Watershed development programmes provide an opportunity for sustainable management strategies, although currently, they remain largely `supply-side' mechanisms of water resources development. Hydrogeological conditions, community participation and status of groundwater usage are important in evolving strategies on `demand-side' groundwater management. Neemkheda aquifer is a typical low-storage, low-hydraulic conductivity aquifer from a watershed in the dryland regions of Madhya Pradesh State of central India. A shallow unconfined aquifer, it consists of an upper coarse, calcareous sandstone unit underlain by a fine-grained sandstone unit. A `well commune' of seven wells is poised to test the concept of joint groundwater management, wherein wells are mechanisms of tapping a common water source, the Neemkheda aquifer. The strategy for systematic groundwater management in the Neemkheda well commune is based upon the relationship between Transmissivity (T) and Storage coefficient (S), i.e. aquifer diffusivity, and its variation within the aquifer. Wells within a high diffusivity domain tend to dewater more quickly than wells within a low diffusivity domain. A well-use schedule during the dry season, based upon aquifer diffusivity forms the basis of the groundwater management concept. The distribution of local aquifer diffusivities governs the relationship between local and regional aquifer depletion times and forms the basis of the groundwater management exercise being proposed for the Neemkheda aquifer. Los programas de desarrollo de una cuenca hídrica son una oportunidad para el uso de estrategias de gestión sostenible, aunque hoy en día estas siguen siendo principalmente mecanismos para el desarrollo de recursos hídricos con énfasis en la ``oferta''. Las condiciones hidrogeológicas, la participación comunitaria y la condición de utilización del agua subterránea, son importantes en el desarrollo de estrategias para la gestión del agua subterránea, desde

  18. Ground-Water Availability in the United States

    Science.gov (United States)

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  19. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  20. Domestic violence

    Directory of Open Access Journals (Sweden)

    Kiurski Jasmina

    2003-01-01

    Full Text Available In this article author examines a definition of a family, the role of a family as a social and legal institution as well as state reaction in a situation of mal function of a family. Special attention is given to a definition of a family, its protective function and criminal law in modern legal systems. Author also analyzes recent reform of our legislation firstly new criminal offence (Article 118a of the Criminal Code of Republic of Serbia - Domestic Violence - and its relation to other similar criminal offences. Finally, author gives an overview of up-to-now practice from District and Municipal Prosecutors Offices in Belgrade and suggestions for solving observed problems in implementation of this criminal offence.

  1. Application of comprehensive geophysical prospecting method in groundwater exploration

    Science.gov (United States)

    Yang, Fan; Gao, Pengju; Li, Dong; Ma, Hanwen; Cheng, Guoliang

    2018-01-01

    In order to solve the problem of shortage of water resources in northern Shaanxi, we selected rectangular large loop source transient electromagnetic method with high water affinity, and radioactive α measurement method which can delineate the water storage structure, comprehensive geophysical prospecting methods to look for groundwater. Algorithm has established a forward model, and compared all-time apparent resistivity in late-time apparent resistivity is better than late. We can find out the exact location of the groundwater and thus improving wells rate by comparatively using these two kinds of geophysical prospecting method. Hydrogeology drilling confirmed water inflow of a single well can be up to 40 m 3/h, it can fully cover native Domestic and Agricultural water, and provide an important basis for groundwater exploration.

  2. Groundwater quality in the Mojave area, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Mojave River make up one of the study areas being evaluated. The Mojave study area is approximately 1,500 square miles (3,885 square kilometers) and includes four contiguous groundwater basins: Upper, Middle, and Lower Mojave River Groundwater Basins, and the El Mirage Valley (California Department of Water Resources, 2003). The Mojave study area has an arid climate, and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). Land use in the study area is approximately 82 percent (%) natural (mostly shrubland), 4% agricultural, and 14% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Victorville, Hesperia, and Apple Valley (2010 populations of 116,000, 90,000 and 69,000, respectively). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in the Mojave study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Mojave study area are completed to depths between 200 and 600 feet (18 to 61 meters), consist of solid casing from the land surface to a depth of 130 to 420 feet (40 to 128 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the mountains to the south, mostly through the Mojave River channel. The primary sources

  3. Groundwater-quality data in seven GAMA study units: results from initial sampling, 2004-2005, and resampling, 2007-2008, of wells: California GAMA Program Priority Basin Project

    Science.gov (United States)

    Kent, Robert; Belitz, Kenneth; Fram, Miranda S.

    2014-01-01

    The Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The GAMA-PBP began sampling, primarily public supply wells in May 2004. By the end of February 2006, seven (of what would eventually be 35) study units had been sampled over a wide area of the State. Selected wells in these first seven study units were resampled for water quality from August 2007 to November 2008 as part of an assessment of temporal trends in water quality by the GAMA-PBP. The initial sampling was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within the seven study units. In the 7 study units, 462 wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study area. Wells selected this way are referred to as grid wells or status wells. Approximately 3 years after the initial sampling, 55 of these previously sampled status wells (approximately 10 percent in each study unit) were randomly selected for resampling. The seven resampled study units, the total number of status wells sampled for each study unit, and the number of these wells resampled for trends are as follows, in chronological order of sampling: San Diego Drainages (53 status wells, 7 trend wells), North San Francisco Bay (84, 10), Northern San Joaquin Basin (51, 5), Southern Sacramento Valley (67, 7), San Fernando–San Gabriel (35, 6), Monterey Bay and Salinas Valley Basins (91, 11), and Southeast San Joaquin Valley (83, 9). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], pesticides, and pesticide degradates), constituents of special interest (perchlorate, N

  4. Hanford wells

    International Nuclear Information System (INIS)

    McGhan, V.L.; Myers, D.A.; Damschen, D.W.

    1976-03-01

    The Hanford Reservation contains about 2100 wells constructed from pre-Hanford Works to the present. As of Jan. 1976, about 1800 wells still exist, 850 of which were drilled to the groundwater table; 700 still contain water. This report provides the most complete documentation of these wells and supersedes all previous compilations, including BNWL-1739

  5. Uranium concentrations in groundwater, northeastern Washington

    Science.gov (United States)

    Kahle, Sue C.; Welch, Wendy B.; Tecca, Alison E.; Eliason, Devin M.

    2018-04-18

    88,600 μg/L, and the median concentration of uranium in groundwater for all sites was 1.4 μg/L.New (2017) uranium in groundwater concentration data were obtained by sampling 13 private domestic wells for uranium in areas without recent (2000s) water-quality data. Uranium was detected in all 13 wells sampled for this study; concentrations ranged from 1.03 to 1,180 μg/L with a median of 22 μg/L. Uranium concentrations of groundwater samples from 6 of the 13 wells exceeded the MCL for uranium. Uranium concentrations in water samples from two wells were 1,130 and 1,180 μg/L, respectively; nearly 40 times the MCL.Additional data collection and analysis are needed in rural areas where self-supplied groundwater withdrawals are the primary source of water for human consumption. Of the roughly 43,000 existing water wells in the study area, only 1,755 wells, as summarized in this document, have available uranium concentration data, and some of those data are decades old. Furthermore, analysis of area groundwater quality would benefit from a more extensive chemical-analysis suite including general chemistry in order to better understand local geochemical conditions that largely govern the mobility of uranium. Although the focus of the present study is uranium, it also is important to recognize that there are other radionuclides of concern that may be present in area groundwater.

  6. To study the effects of groundwater contamination in Kasur due to Nallah Rohi

    International Nuclear Information System (INIS)

    Ghumman, A.R.; Shamim, M.A.

    2005-01-01

    Groundwater contamination is a worldwide known problem. Pakistan, being a developing country, is also facing the problem created by groundwater pollution. Disposal of domestic wastes and agricultural treatments has been reported to be a considerable factor for causing the pollution, especially the groundwater contamination. In the rural areas of Pakistan, latrines and septic tanks have become common because of the advancement in the living standards. All of the domestic wastes is disposed off into the ponds or nearby passing streams. In the similar fashion, drains in the big and well developed cities of Pakistan lead the domestic waste, along with the industrial waste, into the passing by streams, canals and rivers. All of such disposed off waste is untreated because of the lack of legislation and its improper implementation. The contaminated water affects the health of human beings and also destroys the crops when this water is used for irrigation. So this paper deals with the effects and condition of the disposal of the harmful chemicals, which ultimately through seepage reach the groundwater and make it hazardous. Also, the lateral distances of the contaminated groundwater were found out. For experimentation, major city of Kasur which is in the vicinity of Nullah Rohi, was selected. All the wastes including both the industrial as well as domestic, of the whole area, is disposed off into the Nullah. The percolation of the harmful chemicals and its mixing with groundwater has resulted in the hazardous effects on the inhabitants of the area on the irrigation land as well. So the water in the vicinity, at different locations was tested and the degree of contamination and the lateral distances of contaminated water were also worked out. (author)

  7. Depth Stratification Leads to Distinct Zones of Manganese and Arsenic Contaminated Groundwater.

    Science.gov (United States)

    Ying, Samantha C; Schaefer, Michael V; Cock-Esteb, Alicea; Li, Jun; Fendorf, Scott

    2017-08-15

    Providing access to safe drinking water is a global challenge, for which groundwater is increasingly being used throughout the world. However, geogenic contaminants limit the suitability of groundwater for domestic purposes over large geographic areas across most continents. Geogenic contaminants in groundwater are often evaluated individually, but here we demonstrate the need to evaluate multiple contaminants to ensure that groundwater is safe for human consumption and agricultural usage. We compiled groundwater chemical data from three aquifer regions across the world that have been reported to have widespread As and Mn contamination including the Glacial Aquifer in the U.S., the Ganges-Brahmaputra-Mehta Basin within Bangladesh, and the Mekong Delta in Cambodia, along with newly sampled wells in the Yangtze River Basin of China. The proportion of contaminated wells increase by up to 40% in some cases when both As and Mn contaminants are considered. Wilcoxon rank-sum analysis indicates that Mn contamination consistently occurs at significantly shallower depths than As contaminated wells in all regions. Arsenic concentrations in groundwater are well predicted by redox indicators (Eh and dissolved oxygen) whereas Mn shows no significant relationship with either parameter. These findings illustrate that the number of safe wells may be drastically overestimated in some regions when Mn contamination is not taken into account and that depth may be used as a distinguishing variable in efforts to predict the presence of groundwater contaminants regionally.

  8. Closing the irrigation deficit in Cambodia: Implications for transboundary impacts on groundwater and Mekong River flow

    Science.gov (United States)

    Erban, Laura E.; Gorelick, Steven M.

    2016-04-01

    Rice production in Cambodia, essential to food security and exports, is largely limited to the wet season. The vast majority (96%) of land planted with rice during the wet season remains fallow during the dry season. This is in large part due to lack of irrigation capacity, increases in which would entail significant consequences for Cambodia and Vietnam, located downstream on the Mekong River. Here we quantify the extent of the dry season ;deficit; area in the Cambodian Mekong River catchment, using a recent agricultural survey and our analysis of MODIS satellite data. Irrigation of this land for rice production would require a volume of water up to 31% of dry season Mekong River flow to Vietnam. However, the two countries share an aquifer system in the Mekong Delta, where irrigation demand is increasingly met by groundwater. We estimate expansion rates of groundwater-irrigated land to be >10% per year in the Cambodian Delta using LANDSAT satellite data and simulate the effects of future expansion on groundwater levels over a 25-year period. If groundwater irrigation continues to expand at current rates, the water table will drop below the lift limit of suction pump wells, used for domestic supply by >1.5 million people, throughout much of the area within 15 years. Extensive groundwater irrigation jeopardizes access for shallow domestic water supply wells, raises the costs of pumping for all groundwater users, and may exacerbate arsenic contamination and land subsidence that are already widespread hazards in the region.

  9. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  10. "Even 'Daily' is Not Enough": How Well Do We Measure Domestic Violence and Abuse?-A Think-Aloud Study of a Commonly Used Self-Report Scale.

    Science.gov (United States)

    Evans, Maggie; Gregory, Alison; Feder, Gene; Howarth, Emma; Hegarty, Kelsey

    2016-01-01

    This article explores the challenges of providing a quantitative measure of domestic violence and abuse (DVA), illustrated by the Composite Abuse Scale, a validated multidimensional measure of frequency and severity of abuse, used worldwide for prevalence studies and intervention trials. Cognitive "think-aloud" and qualitative interviewing with a sample of women who had experienced DVA revealed a tendency toward underreporting their experience of abuse, particularly of coercive control, threatening behavior, restrictions to freedom, and sexual abuse. Underreporting was linked to inconsistency and uncertainty in item interpretation and response, fear of answering truthfully, and unwillingness to identify with certain forms of abuse. Suggestions are made for rewording or reconceptualizing items and the inclusion of a distress scale to measure the individual impact of abuse. The importance of including qualitative methods in questionnaire design and in the interpretation of quantitative findings is highlighted.

  11. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production

    Science.gov (United States)

    Lockhart, K. M.; King, A. M.; Harter, T.

    2013-08-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. The San Joaquin Valley, California, is an example of an agricultural landscape with a large diversity of field, vegetable, tree, nut, and citrus crops, but also confined animal feeding operations (CAFOs, here mostly dairies) that generate, store, and land apply large amounts of liquid manure. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤ 150 m deep), of which many have been affected by nitrate. Variability in crops, soil type, and depth to groundwater contribute to large variability in nitrate occurrence across the underlying aquifer system. The role of these factors in controlling groundwater nitrate contamination levels is examined. Two hundred domestic wells were sampled in two sub-regions of the San Joaquin Valley, Stanislaus and Merced (Stan/Mer) and Tulare and Kings (Tul/Kings) Counties. Forty six percent of well water samples in Tul/Kings and 42% of well water samples in Stan/Mer exceeded the MCL for nitrate (10 mg/L NO3-N). For statistical analysis of nitrate contamination, 78 crop and landuse types were considered by grouping them into ten categories (CAFO, citrus, deciduous fruits and nuts, field crops, forage, native, pasture, truck crops, urban, and vineyards). Vadose zone thickness, soil type, well construction information, well proximity to dairies, and dominant landuse near the well were considered. In the Stan/Mer area, elevated nitrate levels in domestic wells most strongly correlate with the combination of very shallow (≤ 21 m) water table and the presence of either CAFO derived animal waste applications or deciduous fruit and nut crops (synthetic fertilizer applications). In Tulare County, statistical data indicate that elevated

  12. Assessment of hydrogeologic terrains, well-construction characteristics, groundwater hydraulics, and water-quality and microbial data for determination of surface-water-influenced groundwater supplies in West Virginia

    Science.gov (United States)

    Kozar, Mark D.; Paybins, Katherine S.

    2016-08-30

    In January 2014, a storage tank leaked, spilling a large quantity of 4-methylcyclohexane methanol into the Elk River in West Virginia and contaminating the water supply for more than 300,000 people. In response, the West Virginia Legislature passed Senate Bill 373, which requires the West Virginia Department of Health and Human Resources (WVDHHR) to assess the susceptibility and vulnerability of public surface-water-influenced groundwater supply sources (SWIGS) and surface-water intakes statewide. In response to this mandate for reassessing SWIGS statewide, the U.S. Geological Survey (USGS), in cooperation with the WVDHHR, Bureau of Public Health, Office of Environmental Health Services, compiled available data and summarized the results of previous groundwater studies to provide the WVDHHR with data that could be used as part of the process for assessing and determining SWIGS.

  13. Development of simulated groundwater-contributing areas to selected streams, ponds, coastal water bodies, and production wells in the Plymouth-Carver region and Cape Cod, Massachusetts

    Science.gov (United States)

    Carlson, Carl S.; Masterson, John P.; Walter, Donald A.; Barbaro, Jeffrey R.

    2017-12-21

    IntroductionThe U.S. Geological Survey (USGS), in support of the Massachusetts Estuaries Project (MEP), delineated groundwater-contributing areas to various hydrologic receptors including ponds, streams, and coastal water bodies throughout southeastern Massachusetts, including portions of the Plymouth-Carver aquifer system and all of Cape Cod. These contributing areas were delineated over a 6-year period from 2003 through 2008 by using previously published regional USGS groundwater-flow models for the Plymouth-Carver region (Masterson and others, 2009), the Sagamore (western) and Monomoy (eastern) flow lenses of Cape Cod (Walter and Whealan, 2005), and lower Cape Cod (Masterson, 2004). The original USGS groundwater-contributing areas were subsequently revised in some locations by the MEP to remove modeling artifacts or to make the contributing areas more consistent with site-specific hydrologic conditions without further USGS review. This report describes the process used to create the USGS groundwater-contributing areas and provides these model results in their original format in a single, publicly accessible publication.

  14. Domestic violence

    OpenAIRE

    Kiurski Jasmina

    2003-01-01

    Since the 1960s, there has been growing awareness regarding the issue of domestic violence as a form of violence against women, which has been largely influenced by the work of feminist activist and scholars in North America and Europe (Dobash and Dobash 1992). Other terms have been used to describe the same phenomenon, including domestic abuse, spousal abuse, wife battering, marital violence, intimate partner violence. Though there is no doubt that this problem has existed for much more than...

  15. Norms in multilevel groundwater governance and sustainable development

    NARCIS (Netherlands)

    Conti, K.I.

    2017-01-01

    Groundwater constitutes 98-99% of the world’s available freshwater resources. Humans abstract 200 times more groundwater than oil - using it heavily for domestic, municipal, agricultural and industrial purposes. Consequently, humans cause groundwater depletion and quality degradation in some

  16. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    International Nuclear Information System (INIS)

    1993-12-01

    This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium

  17. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  18. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    International Nuclear Information System (INIS)

    1994-04-01

    This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium

  19. Groundwater quality in the Delaware and St. Lawrence River Basins, New York, 2010

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2012-01-01

    Water samples were collected from 10 production and domestic wells in the Delaware River Basin in New York and from 20 production and domestic wells in the St. Lawrence River Basin in New York from August through November 2010 to characterize groundwater quality in the basins. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria.

  20. Hydrogeologic investigation and simulation of ground-water flow in the Upper Floridan Aquifer of north-central Florida and southwestern Georgia and delineation of contributing areas for selected city of Tallahassee, Florida, water-supply wells

    Science.gov (United States)

    Davis, J. Hal

    1996-01-01

    A 4-year investigation of the Upper Floridan aquifer and ground-water flow system in Leon County, Florida, and surrounding counties of north-central Florida and southwestern Georgia began in 1990. The purpose of the investigation was to describe the ground-water flow system and to delineate the contributing areas to selected City of Tallahassee, Florida, water-supply wells. The investigation was prompted by the detection of low levels of tetrachloroethylene in ground-water samples collected from several of the city's water-supply wells. Hydrologic data and previous studies indicate that; ground-water flow within the Upper Floridan aquifer can be considered steady-state; the Upper Floridan aquifer is a single water-bearing unit; recharge is from precipitation; and that discharge occurs as spring flow, leakage to rivers, leakage to the Gulf of Mexico, and pumpage. Measured transmissivities of the aquifer ranged from 1,300 ft2/d (feet squared per day) to 1,300,000 ft2/d. Steady-state ground-water flow in the Upper Floridan aquifer was simulated using a three-dimensional ground- water flow model. Transmissivities ranging from less than 5,000 ft2/d to greater than 11,000,000 ft2/d were required to calibrate to observed conditions. Recharge rates used in the model ranged from 18.0 inches per year in areas where the aquifer was unconfined to less than 2 inches per year in broad areas where the aquifer was confined. Contributing areas to five Tallahassee water-supply wells were simulated by particle- tracking techniques. Particles were seeded in model cells containing pumping wells then tracked backwards in time toward recharge areas. The contributing area for each well was simulated twice, once assuming a porosity of 25 percent and once assuming a porosity of 5 percent. A porosity of 25 percent is considered a reasonable average value for the Upper Floridan aquifer; the 5 percent porosity simulated the movement of ground-water through only solution-enhanced bedding plains

  1. Groundwater quality data in 15 GAMA study units: results from the 2006–10 Initial sampling and the 2009–13 resampling of wells, California GAMA Priority Basin Project

    Science.gov (United States)

    Kent, Robert

    2015-08-31

    The Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) program was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). From May 2004 to March 2012, the GAMA-PBP collected samples from more than 2,300 wells in 35 study units across the State. Selected wells in each study unit were sampled again approximately 3 years after initial sampling as part of an assessment of temporal trends in water quality by the GAMA-PBP. This triennial (every 3 years) trend sampling of GAMA-PBP study units concluded in December 2013. Fifteen of the study units, initially sampled between January 2006 and June 2010 and sampled a second time between April 2009 and April 2013 to assess temporal trends, are the subject of this report.

  2. Field Scale Groundwater Nitrate Loading Model for the Central Valley, California, 1945-Current

    Science.gov (United States)

    Harter, T.; Dzurella, K.; Bell, A.; Kourakos, G.

    2015-12-01

    Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distinguishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the

  3. Field evaluation of a horizontal well recirculation system for groundwater treatment: Field demonstration at X-701B Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.; Muck, M.; Kearl, P.; Siegrist, R.; Schlosser, R.; Zutman, J. [Oak Ridge National Lab., TN (United States); Houk, T. [Lockheed Martin Energy Systems, Piketon, OH (United States). Portsmouth Gaseous Diffusion Plant

    1998-08-01

    This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3{1/2} year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and because they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc{sup 99}) (activities up to 926 pCi/L).

  4. Field evaluation of a horizontal well recirculation system for groundwater treatment: Field demonstration at X-701B Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    Korte, N.; Muck, M.; Kearl, P.; Siegrist, R.; Schlosser, R.; Zutman, J.; Houk, T.

    1998-01-01

    This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3 1/2 year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and because they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc 99 ) (activities up to 926 pCi/L)

  5. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    Science.gov (United States)

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  6. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    International Nuclear Information System (INIS)

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the δ 18 O values of groundwater were relatively homogeneous (mostly -7.0 ± 0.5 per-thousand), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high 18 O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low 18 O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in δ 18 O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are ∼10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for ∼40 years, creating cones of depression ∼25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low 18 O water (-11.0 per-thousand) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp 18 O gradients in our groundwater isotope map

  7. Sanitary Landfill groundwater monitoring report. Fourth quarterly report and summary 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Fifty-seven wells of the LFW series monitor groundwater quality in Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1993. Benzene, chlorobenzene, chloroethene 1,2 dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, lindane, mercury, tetrachloroethylene, and tritium also exceeded standards in one or more wells. No groundwater contaminants were observed in wells screened in the lower section of Steed Pond Aquifer.

  8. Groundwater recharge in the tropics: a pan-African analysis of observations

    Science.gov (United States)

    Taylor, R. G.

    2015-12-01

    Groundwater is a vital source of freshwater in sub-Saharan Africa where rainfall and river discharge are unreliable and per-capita reservoir storage is among the lowest in the world. Groundwater is widely considered a distributed, low-cost and climate-resilient option to meet rapidly growing freshwater demand and alleviate endemic poverty by expanding access to safe water and improving food security through irrigation. Recent research indicates that groundwater storage in Africa is about 100 times greater than annual river discharge yet major uncertainties remain in the magnitude and nature of replenishment through recharge as well as the impacts of land-use and climate change. Here, we present newly compiled, multi-decadal observations of groundwater levels from 5 countries (Benin, Burkina Faso, Niger, Tanzania, Uganda) and paired measurements of stable isotope ratios of O and H in precipitation and groundwater at 11 locations. These data reveal both a distinct bias in groundwater recharge to intensive rainfall and rapid recharge pathways (e.g. focused, macropore flow) that are inconsistent with conventional recharge models assuming pore-matrix flow defined by the Darcy-Richards equation. Further the records highlight the substantial influence of land-use change (e.g. conversion of natural, perennial cover to croplands) on groundwater recharge. The compiled observations also provide, for the first time, a pan-African baseline to evaluate the performance of large-scale hydrological models and Land-Surface Models incorporating groundwater in this region. Our results suggest that the intensification of precipitation brought about by global warming favours groundwater replenishment in sub-Saharan Africa. As such, groundwater may prove to be a climate-resilient source of freshwater in the tropics, enabling adaptive strategies such as groundwater-fed irrigation and sustaining domestic and industrial water supplies.

  9. Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada

    Science.gov (United States)

    Paradis, Daniel; Vigneault, Harold; Lefebvre, René; Savard, Martine M.; Ballard, Jean-Marc; Qian, Budong

    2016-03-01

    Nitrate (N-NO3) concentration in groundwater, the sole source of potable water in Prince Edward Island (PEI, Canada), currently exceeds the 10 mg L-1 (N-NO3) health threshold for drinking water in 6 % of domestic wells. Increasing climatic and socio-economic pressures on PEI agriculture may further deteriorate groundwater quality. This study assesses how groundwater nitrate concentration could evolve due to the forecasted climate change and its related potential changes in agricultural practices. For this purpose, a tridimensional numerical groundwater flow and mass transport model was developed for the aquifer system of the entire Island (5660 km2). A number of different groundwater flow and mass transport simulations were made to evaluate the potential impact of the projected climate change and agricultural adaptation. According to the simulations for year 2050, N-NO3 concentration would increase due to two main causes: (1) the progressive attainment of steady-state conditions related to present-day nitrogen loadings, and (2) the increase in nitrogen loadings due to changes in agricultural practices provoked by future climatic conditions. The combined effects of equilibration with loadings, climate and agricultural adaptation would lead to a 25 to 32 % increase in N-NO3 concentration over the Island aquifer system. The change in groundwater recharge regime induced by climate change (with current agricultural practices) would only contribute 0 to 6 % of that increase for the various climate scenarios. Moreover, simulated trends in groundwater N-NO3 concentration suggest that an increased number of domestic wells (more than doubling) would exceed the nitrate drinking water criteria. This study underlines the need to develop and apply better agricultural management practices to ensure sustainability of long-term groundwater resources. The simulations also show that observable benefits from positive changes in agricultural practices would be delayed in time due to

  10. Vulnerability of deep groundwater in the Bengal Aquifer System to contamination by arsenic

    Science.gov (United States)

    Burgess, W.G.; Hoque, M.A.; Michael, H.A.; Voss, C.I.; Breit, G.N.; Ahmed, K.M.

    2010-01-01

    Shallow groundwater, the primary water source in the Bengal Basin, contains up to 100 times the World Health Organization (WHO) drinking-water guideline of 10g l 1 arsenic (As), threatening the health of 70 million people. Groundwater from a depth greater than 150m, which almost uniformly meets the WHO guideline, has become the preferred alternative source. The vulnerability of deep wells to contamination by As is governed by the geometry of induced groundwater flow paths and the geochemical conditions encountered between the shallow and deep regions of the aquifer. Stratification of flow separates deep groundwater from shallow sources of As in some areas. Oxidized sediments also protect deep groundwater through the ability of ferric oxyhydroxides to adsorb As. Basin-scale groundwater flow modelling suggests that, over large regions, deep hand-pumped wells for domestic supply may be secure against As invasion for hundreds of years. By contrast, widespread deep irrigation pumping might effectively eliminate deep groundwater as an As-free resource within decades. Finer-scale models, incorporating spatial heterogeneity, are needed to investigate the security of deep municipal abstraction at specific urban locations. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  11. Groundwater quality in the Antelope Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  12. Groundwater quality in the Owens Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  13. Medicolegal characteristics of domestic violence

    OpenAIRE

    Antović Aleksandra R.; Stojanović Jovan

    2017-01-01

    Introduction/Objective. Domestic violence is a phenomenon as old as the history of human civilization, present in all cultures, epochs and social systems. Despite the fact that domestic violence represents a dangerous and unacceptable social phenomenon, as well as a significant medical problem, there are still no precise data on the prevalence of this phenomenon in our country. This study aims to determine the elementary forensic characteristics of domestic violence that would represented the...

  14. Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: Influence of legacy land use

    Science.gov (United States)

    Kent, Robert; Landon, Matthew K.

    2013-01-01

    Concentrations and temporal changes in concentrations of nitrate and total dissolved solids (TDS) in groundwater of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins of the Upper Santa Ana Valley Groundwater Basin were evaluated to identify trends and factors that may be affecting trends. One hundred, thirty-one public-supply wells were selected for analysis based on the availability of data spanning at least 11 years between the late 1980s and the 2000s. Forty-one of the 131 wells (31%) had a significant (p relations of nitrate trends to depth, lateral position, and VOCs imply that increasing nitrate concentrations are associated with nitrate loading from historical agricultural land use and that more recent urban land use is generally associated with lower nitrate concentrations and greater VOC occurrence. Increasing TDS trends were associated with relatively greater current nitrate concentrations and relatively greater amounts of urban land. Decreasing TDS trends were associated with relatively greater amounts of natural land use. Trends in TDS concentrations were not related to depth, lateral position, or VOC occurrence, reflecting more complex factors affecting TDS than nitrate in the study area.

  15. Hanford wells

    International Nuclear Information System (INIS)

    Chamness, M.A.; Merz, J.K.

    1993-08-01

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details

  16. The effect of industrial effluent stream on the groundwater

    International Nuclear Information System (INIS)

    Yasar, A.; Ahmad, N.; Chaudhry, M.N.; Sarwar, M.

    2005-01-01

    This study was performed to investigate the effect of the industrial wastewater stream on the groundwater. Wastewater was characterized in terms of inorganic and organic constituents. Inorganic constituents included Na/sup +/, Ca/sup 2+/ K/sup +/, Cl/sup -/, NO/sub 3//sup -/ and SO/sub 4//sup 2-/ coupled with heavy metal elements such as, Cd, Cr, Pb, Mn, Cu, Ni, Fe and In. Organic load of the stream was determined in terms of chemical oxygen demand (COD), biological oxygen demand (BOD/sub 5/) and ammonia-nitrogen (NH/sub 3/-N) contents. Other characteristics were pH, electrical conductivity (EC) and total dissolved solids (TDS). The correlation coefficients between quality parameter pairs of stream water and groundwater were determined to ascertain the source of groundwater contamination. At station 1, BOD/sub 5/ and COD contents were 20 times and Cr concentration was 10 times higher than the permissible limits for stream water [1]. Contents of these parameters reflected the level of industrial and domestic pollution coming from India. However, large variations in the levels of these parameters at down stream sites of the drain were characteristic of type and nature of industrial effluents and domestic sewage joining the stream. Analysis results of more than one hundred groundwater samples from shallow and deep wells around the drain showed that groundwater of shallow aquifers was contaminated due to drain water. A comparison of the contents of these parameters in shallow wells with WHO standards showed that some parameters such as turbidity, TDS, Na/sup +/, F -and heavy metals like Cr were found higher than the permissible limits. (author)

  17. Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: influence of legacy land use.

    Science.gov (United States)

    Kent, Robert; Landon, Matthew K

    2013-05-01

    Concentrations and temporal changes in concentrations of nitrate and total dissolved solids (TDS) in groundwater of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins of the Upper Santa Ana Valley Groundwater Basin were evaluated to identify trends and factors that may be affecting trends. One hundred, thirty-one public-supply wells were selected for analysis based on the availability of data spanning at least 11 years between the late 1980s and the 2000s. Forty-one of the 131 wells (31%) had a significant (p<0.10) increase in nitrate and 14 wells (11%) had a significant decrease in nitrate. For TDS, 46 wells (35%) had a significant increase and 8 wells (6%) had a significant decrease. Slopes for the observed significant trends ranged from -0.44 to 0.91 mg/L/yr for nitrate (as N) and -8 to 13 mg/L/yr for TDS. Increasing nitrate trends were associated with greater well depth, higher percentage of agricultural land use, and being closer to the distal end of the flow system. Decreasing nitrate trends were associated with the occurrence of volatile organic compounds (VOCs); VOC occurrence decreases with increasing depth. The relations of nitrate trends to depth, lateral position, and VOCs imply that increasing nitrate concentrations are associated with nitrate loading from historical agricultural land use and that more recent urban land use is generally associated with lower nitrate concentrations and greater VOC occurrence. Increasing TDS trends were associated with relatively greater current nitrate concentrations and relatively greater amounts of urban land. Decreasing TDS trends were associated with relatively greater amounts of natural land use. Trends in TDS concentrations were not related to depth, lateral position, or VOC occurrence, reflecting more complex factors affecting TDS than nitrate in the study area. Published by Elsevier B.V.

  18. Sanitary landfill groundwater monitoring report. Fourth quarter 1994 and 1994 summary

    International Nuclear Information System (INIS)

    1995-02-01

    Eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1994. Benzene, chloroethene (vinyl chloride), 1,2-dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, mercury, nonvolatile beta, tetrachloroethylene, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 140 ft/year during first and fourth quarters 1994

  19. Groundwater quality in the Colorado River basins, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from

  20. Abundance of Pathogenic Escherichia coli Virulence-Associated Genes in Well and Borehole Water Used for Domestic Purposes in a Peri-Urban Community of South Africa.

    Science.gov (United States)

    Abia, Akebe Luther King; Schaefer, Lisa; Ubomba-Jaswa, Eunice; Le Roux, Wouter

    2017-03-20

    In the absence of pipe-borne water, many people in Africa, especially in rural communities, depend on alternative water sources such as wells, boreholes and rivers for household and personal hygiene. Poor maintenance and nearby pit latrines, however, lead to microbial pollution of these sources. We evaluated the abundance of Escherichia coli and the prevalence of pathogenic E. coli virulence genes in water from wells, boreholes and a river in a South African peri-urban community. Monthly samples were collected between August 2015 and November 2016. In all, 144 water samples were analysed for E. coli using the Colilert 18 system. Virulence genes ( eagg , eaeA , stx1 , stx2 , flichH7 , ST , ipaH , ibeA ) were investigated using real-time polymerase chain reaction. Mean E. coli counts ranged between 0 and 443.1 Most Probable Number (MPN)/100 mL of water sample. Overall, 99.3% of samples were positive for at least one virulence gene studied, with flicH7 being the most detected gene (81/140; 57.6%) and the stx2 gene the least detected gene (8/140; 5.7%). Both intestinal and extraintestinal pathogenic E. coli genes were detected. The detection of virulence genes in these water sources suggests the presence of potentially pathogenic E. coli strains and is a public health concern.

  1. Abundance of Pathogenic Escherichia coli Virulence-Associated Genes in Well and Borehole Water Used for Domestic Purposes in a Peri-Urban Community of South Africa

    Directory of Open Access Journals (Sweden)

    Akebe Luther King Abia

    2017-03-01

    Full Text Available In the absence of pipe-borne water, many people in Africa, especially in rural communities, depend on alternative water sources such as wells, boreholes and rivers for household and personal hygiene. Poor maintenance and nearby pit latrines, however, lead to microbial pollution of these sources. We evaluated the abundance of Escherichia coli and the prevalence of pathogenic E. coli virulence genes in water from wells, boreholes and a river in a South African peri-urban community. Monthly samples were collected between August 2015 and November 2016. In all, 144 water samples were analysed for E. coli using the Colilert 18 system. Virulence genes (eagg, eaeA, stx1, stx2, flichH7, ST, ipaH, ibeA were investigated using real-time polymerase chain reaction. Mean E. coli counts ranged between 0 and 443.1 Most Probable Number (MPN/100 mL of water sample. Overall, 99.3% of samples were positive for at least one virulence gene studied, with flicH7 being the most detected gene (81/140; 57.6% and the stx2 gene the least detected gene (8/140; 5.7%. Both intestinal and extraintestinal pathogenic E. coli genes were detected. The detection of virulence genes in these water sources suggests the presence of potentially pathogenic E. coli strains and is a public health concern.

  2. Application of hydrogeology and groundwater-age estimates to assess the travel time of groundwater at the site of a landfill to the Mahomet Aquifer, near Clinton, Illinois

    Science.gov (United States)

    Kay, Robert T.; Buszka, Paul M.

    2016-03-02

    than or longer than those calculated using site data and ranged from 230 to 580 years.Tritium data from 1996 to 2011 USGS regional sampling of groundwater from domestic wells in the confined part of the Mahomet aquifer—which are 2.5 to about 40 miles from the Clinton site—were compared with site-specific data from a production well at the Clinton site. Tritium-based groundwater-age estimates indicated predominantly pre- 1953 recharge dates for USGS and other prior regional samples of groundwater from domestic wells in the Mahomet aquifer. These results agreed with the tritium-based, pre-1953 recharge age estimated for a groundwater sample and a sequential replicate sample from a production well in the confined part of the Mahomet aquifer beneath the Clinton site.The regional tritium-based groundwater age estimates also were compared with pesticide detections in samples from distal domestic wells in the USGS regional network that are about 2.5 to 40 miles from the Clinton site to identify whether very small amounts of post-1952 recharge have in places reached confined parts of the Mahomet aquifer at locations other than the Clinton site in an approximately 2,000 square mile area of the Mahomet aquifer. Very small amounts of post-1952 recharge were defined in this analysis as less than about 2.5 percent of the total recharge contributing to a groundwater sample, based on results from the two-part mixing analysis of tritium data from the Clinton site. Pesticide-based groundwater-age estimates based on 22 detections of pesticides (13 of these detections were estimated concentrations), including atrazine, deethylatrazine (2-Chloro-4-isopropylamino-6-amino- s-triazine), cyanazine, diazinon, metolachlor, molinate, prometon, and trifluralin in groundwater samples from 10 domestic wells 2.5 to about 40 miles distant from the Clinton site indicate that very small amounts of post-1956 to post-1992 recharge can in places reach the confined part of the Mahomet aquifer in other

  3. A Commune-Level Groundwater Potential Map for the Republic of Mali

    Directory of Open Access Journals (Sweden)

    Silvia Díaz-Alcaide

    2017-10-01

    Full Text Available Groundwater represents an essential resource in sub-Saharan Africa, where several hundred million people rely on aquifers for domestic supply. This paper presents a method to map groundwater potential in the Republic of Mali based on a spatially-distributed database of 26,040 boreholes. The database includes exhaustive information on key parameters such as borehole location, success rate of borehole production, depth, yield, static groundwater level or water quality. Representative variables were classified and interpreted jointly to develop a groundwater potential index for each of the 703 communes in Mali. This provides a methodological novelty because groundwater potential studies typically rely on indirect indicators such as lineaments, slope, soil moisture and landforms. Also, such large borehole databases have seldom been used to estimate groundwater potential. The highest indexes were obtained for the areas in and around the River Niger’s Inner Delta, including southern Tombouctou and the central parts of the Ségou and Mopti Regions. The lower Precambrian formations, which include the country’s thoroughly populated southern plateau, had moderate scores. The lowest groundwater potential was found in the northern part of the Kayes and Koulikoro Regions, as well as in the entire region of Kidal. By providing results at the commune scale, these outcomes show that groundwater potential across the country’s geological and hydrogeological units can be highly variable, and that local and regional-scale information may be useful for groundwater management purposes. These results are policy-relevant in a context of rapid change and population growth, where groundwater resources can be expected to be increasingly relied upon in the coming years.

  4. Distribution and migration mechanism of fluoride in groundwater in the Manas River Basin, Northwest China

    Science.gov (United States)

    Liu, Yalei; Jin, Menggui; Ma, Bin; Wang, Jianjun

    2018-04-01

    Elevated fluoride (F) concentration in groundwater is posing a public health risk in the Manas River Basin (MRB), Northwest China. Based on the characterization of regional groundwater flow, 90 groundwater samples from aquifers were analyzed, along with top-soil leachate and pore-water samples from aquitards. Stable oxygen (δ18O) and hydrogen isotopes, radiocarbon and hydrochemical analyses of the groundwater and pore-water samples were conducted to trace groundwater hydrological and hydrochemical processes and thereby understand the distribution and migration mechanism of F. The groundwater is recharged by meteoric precipitation through vapor condensation processes in the Tianshan Mountains. The F concentration in groundwater samples from this basin ranged from 0.11 to 48.15 mg/L (mean 2.56 mg/L). In 37 of the 90 groundwater samples, the F concentrations were above the safe level for drinking water. The F concentrations progressively increased with the residence time and well depths in the northwest of the alluvial-fluvial plain, where groundwater is overexploited for agricultural and domestic use. Positive correlations between F and sodium (Na)/calcium (Ca) indicate that the enrichment and migration of F are influenced by cation exchange processes under high-Na and alkaline pH conditions. The relationships between δ18O and F and chloride (Cl) concentrations were nonlinear due to leaching and mixing processes. This shows that vertical leaching by irrigation return flow and mixing with pore water are the dominant processes driving the migration of F in the groundwater flow system of MRB, in addition to geochemical processes.

  5. Groundwater-surface water interaction

    International Nuclear Information System (INIS)

    White, P.A.; Clausen, B.; Hunt, B.; Cameron, S.; Weir, J.J.

    2001-01-01

    This chapter discusses natural and modified interactions between groundwater and surface water. Theory on recharge to groundwater from rivers is introduced, and the relative importance of groundwater recharge from rivers is illustrated with an example from the Ngaruroro River, Hawke's Bay. Some of the techniques used to identify and measure recharge to groundwater from gravel-bed rivers will be outlined, with examples from the Ngaruroro River, where the recharge reach is relatively well defined, and from the Rakaia River, where it is poorly defined. Groundwater recharged from rivers can have characteristic chemical and isotopic signatures, as shown by Waimakariri River water in the Christchurch-West Melton groundwater system. The incorporation of groundwater-river interaction in a regional groundwater flow model is outlined for the Waimea Plains, and relationships between river scour and groundwater recharge are examined for the Waimakariri River. Springs are the result of natural discharge from groundwater systems and are important water sources. The interactions between groundwater systems, springs, and river flow for the Avon River in New Zealand will be outlined. The theory of depletion of stream flow by groundwater pumpage will be introduced with a case study from Canterbury, and salt-water intrusion into groundwater systems with examples from Nelson and Christchurch. The theory of artificial recharge to groundwater systems is introduced with a case study from Hawke's Bay. Wetlands are important to flora, and the relationship of the wetland environment to groundwater hydrology will be discussed, with an example from the South Taupo wetland. (author). 56 refs., 25 figs., 3 tabs

  6. Nitrate pollution of groundwater

    International Nuclear Information System (INIS)

    Heaton, T.H.E.

    1986-01-01

    Concern about the possible health risks associated with the consumption of nitrate has led many countries, including South Africa, to propose that 10mg of nitrogen (as nitrate or nitrite) per liter should be the maximum allowable limit for domestic water supplies. Groundwater in certain parts of South Africa and Namibia contains nitrate in concentrations which exceed this limit. The CSIR's Natural Isotope Division has been studying the nitrogen isotope composition of the nitrate as an aid to investigation into the sources of this nitrate contamination

  7. Groundwater: from mystery to management

    International Nuclear Information System (INIS)

    Narasimhan, T N

    2009-01-01

    Groundwater has been used for domestic and irrigation needs from time immemorial. Yet its nature and occurrence have always possessed a certain mystery because water below the land surface is invisible and relatively inaccessible. The influence of this mystery lingers in some tenets that govern groundwater law. With the birth of modern geology during the late nineteenth century, groundwater science became recognized in its own right. Over the past two centuries, groundwater has lost its shroud of mystery, and its scientific understanding has gradually grown hand-in-hand with its development for human use. Groundwater is a component of the hydrological cycle, vital for human sustenance. Its annual renewability from precipitation is limited, and its chemical quality is vulnerable to degradation by human action. In many parts of the world, groundwater extraction is known to greatly exceed its renewability. Consequently, its rational management to benefit present and future generations is a matter of deep concern for many nations. Groundwater management is a challenging venture, requiring an integration of scientific knowledge with communal will to adapt to constraints of a finite common resource. As scientists and policy makers grapple with the tasks of groundwater management, it is instructive to reflect on the evolution of groundwater knowledge from its initial phase of demystification at the beginning of the nineteenth century, through successive phases of technological conquest, scientific integration, discovery of unintended consequences and the present recognition of an imperative for judicious management. The following retrospective provides a broad context for unifying the technical contributions that make up this focus issue on groundwater resources, climate and vulnerability.

  8. Hydrogeology and groundwater evaluation of a shallow coastal aquifer, southern Akwa Ibom State (Nigeria)

    Science.gov (United States)

    Edet, Aniekan

    2017-09-01

    The rapid expansion of economic activities in coastal parts of Nigeria has triggered an uncoordinated development of groundwater leading to stress on the resource. Hence a study was conducted to assess the hydrogeological characteristics of the shallow coastal aquifer of southern Akwa Ibom State, Nigeria. Emphasis was on the hydraulic characteristics, quality with respect to domestic and irrigation purposes and influence of seawater. The study result revealed that the aquifer consist of intercalations of clayey sand and sand. The aquifer is characterized by high hydraulic conductivity and transmissivity values. The groundwater flow direction is southwards with higher groundwater depletion in the dry season. Groundwater samples from hand dug wells and boreholes were evaluated based on World Health Organization standard and some indices, respectively, for drinking and irrigation uses. The groundwaters are fit for drinking and domestic uses. However, more than 70 % of the pH values are not within the allowable limits of between 6.5 and 9.2 for drinking and domestic use. Therefore, it is recommended that neutralizing filter containing calcite or ground limestone should be applied to raise the pH of the groundwater. Of the 10 parameters used to assess the water for irrigation use, only sodium adsorption ratio (SAR), magnesium hazard (MH) and magnesium ratio indicated the excellent quality of these waters. Na+-K+-HCO3 - constitute the dominant water type. Total dissolved solids and ratios of Na+/Cl-, Mg2+/Cl-, and Ca2+/SO4 2- and saltwater mixing index (SMI) suggest some level of seawater intrusion in the area.

  9. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  10. Application of Geospatial Techniques for Groundwater Quality and Availability Assessment: A Case Study in Jaffna Peninsula, Sri Lanka

    Directory of Open Access Journals (Sweden)

    Kuddithamby Gunaalan

    2018-01-01

    Full Text Available Groundwater is one of the most important natural resources in the northern coastal belt of Sri Lanka, as there are no major water supply schemes or perennial rivers. Overexploitation, seawater intrusion and persistent pollution of this vital resource are threatening human health as well as ecosystems in the Jaffna Peninsula. Therefore, the main intent of the present paper is to apply geospatial techniques to assess the spatial variation of groundwater quality and availability for the sustainable management of groundwater in the coastal areas. The electrical conductivity (EC and depth to water (DTW of 41 wells were measured during the period from March to June 2014, which represents the dry period of the study area. Surface interpolation, gradient analysis, a local indicators of spatial autocorrelations (LISA and statistical analysis were used to assess the quality and availability of groundwater. The results revealed that the drinking and irrigation water quality in the study area were poor and further deteriorated with the progression of the dry season. Good quality and availability of groundwater were observed in the western zone compared to other zones of the study area. A negative correlation was identified between depth to water and electrical conductivity in the western zone. Hence, relatively deep wells in the western zone of the study area can be used to utilize the groundwater for drinking, domestic and agricultural purposes. The outcomes of this study can be used to formulate policy decisions for sustainable management of groundwater resources in Jaffna Peninsula.

  11. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China.

    Science.gov (United States)

    Han, Dongmei; Cao, Guoliang; McCallum, James; Song, Xianfang

    2015-12-15

    Groundwater within the coastal aquifer systems of the Daweijia area in northeastern China is characterized by a large of variations (33-521mg/L) in NO3(-) concentrations. Elevated nitrate concentrations, in addition to seawater intrusion in the Daweijia well field, both attributable to anthropogenic activities, may impact future water-management practices. Chemical and stable isotopic (δ(18)O, δ(2)H) analysis, (3)H and CFCs methods were applied to provide a better understanding of the relationship between the distribution of groundwater mean residence time (MRT) and nitrate transport, and to identify sources of nitrate concentrations in the complex coastal aquifer systems. There is a relatively narrow range of isotopic composition (ranging from -8.5 to -7.0‰) in most groundwater. Generally higher tritium contents observed in the wet season relative to the dry season may result from rapid groundwater circulation in response to the rainfall through the preferential flow paths. In the well field, the relatively increased nitrate concentrations of groundwater, accompanied by the higher tritium contents in the wet season, indicate the nitrate pollution can be attributed to domestic wastes. The binary exponential and piston-flow mixing model (BEP) yielded feasible age distributions based on the conceptual model. The good inverse relationship between groundwater MRTs (92-467years) and the NO3(-) concentrations in the shallow Quaternary aquifers indicates that elevated nitrate concentrations are attributable to more recent recharge for shallow groundwater. However, there is no significant relationship between the MRTs (8-411years) and the NO3(-) concentrations existing in the carbonate aquifer system, due to the complex hydrogeological conditions, groundwater age distributions and the range of contaminant source areas. Nitrate in the groundwater system without denitrification effects could accumulate and be transported for tens of years, through the complex carbonate

  12. Baseline risk assessment of groundwater contamination at the uranium mill tailings site near Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1993-09-01

    This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain

  13. Domestic cat

    Science.gov (United States)

    Diffendorfer, James E.

    2017-01-01

    The familiar domestic cat is not native to southern California and is considered an invasive spe-cies by biologists and conservation organizations. When owners abandon their cats, wild or feral populations may arise, as they have in San Diego County. Cats’ pelage color, tail length, and hair thickness vary widely, given human fascination with breeding diverse phenotypes, but all have a typical felid body with upright ears, forward-looking eyes adapted for nocturnal foraging, protractible claws, and a sinuous, flexible body. Cats allowed outdoors and feral cats kill and eat a wide variety of vertebrates such as small mammals, birds, and reptiles

  14. Groundwater Monitoring and Engineered Geothermal Systems: The Newberry EGS Demonstration

    Science.gov (United States)

    Grasso, K.; Cladouhos, T. T.; Garrison, G.

    2013-12-01

    Engineered Geothermal Systems (EGS) represent the next generation of geothermal energy development. Stimulation of multiple zones within a single geothermal reservoir could significantly reduce the cost of geothermal energy production. Newberry Volcano in central Oregon represents an ideal location for EGS research and development. As such, the goals of the Newberry EGS Demonstration, operated by AltaRock Energy, Inc., include stimulation of a multiple-zone EGS reservoir, testing of single-well tracers and a demonstration of EGS reservoir viability through flow-back and circulation tests. A shallow, local aquifer supplied the approximately 41,630 m3 (11 million gals) of water used during stimulation of NWG 55-29, a deep geothermal well on the western flank of Newberry Volcano. Protection of the local aquifer is of primary importance to both the Newberry EGS Demonstration and the public. As part of the Demonstration, AltaRock Energy, Inc. has developed and implemented a groundwater monitoring plan to characterize the geochemistry of the local aquifer before, during and after stimulation. Background geochemical conditions were established prior to stimulation of NWG 55-29, which was completed in 2012. Nine sites were chosen for groundwater monitoring. These include the water supply well used during stimulation of NWG 55-29, three monitoring wells, three domestic water wells and two hot seeps located in the Newberry Caldera. Together, these nine monitoring sites represent up-, down- and cross-gradient locations. Groundwater samples are analyzed for 25 chemical constituents, stable isotopes, and geothermal tracers used during stimulation. In addition, water level data is collected at three monitoring sites in order to better characterize the effects of stimulation on the shallow aquifer. To date, no significant geochemical changes and no geothermal tracers have been detected in groundwater samples from these monitoring sites. The Newberry EGS Demonstration groundwater

  15. Groundwater Availability Within the Salton Sea Basin Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, A; Demir, Z; Moran, J; Mason, D; Wagoner, J; Kollet, S; Mansoor, K; McKereghan, P

    2008-01-11

    in the Salton Sea Basin is the subject of the project described in this report. Much of the project work was done in cooperation with the US Bureau of Reclamation, Lower Colorado Region Office ('Reclamation'), which manages the Salton Sea Restoration project for the US Department of the Interior, and complements other recent assessment efforts (e.g., Imperial County, 1995). In this context, the notion of groundwater availability is defined by four separate, but interrelated concepts or components: (1) Volume and Capacity--This refers to the volume of groundwater available in storage in (or the related storage capacity of) the sediments and geologic media that comprise a groundwater basin. The volume of groundwater in a basin will vary in time as a function of recharge, well production, and land subsidence. (2) Producibility--This refers to the ease or difficulty of extracting groundwater in a basin from wells. Groundwater producibility will be affected by well depth and the formation permeability surrounding the open intervals in wells. (3) Quality--This refers to the extent that water produced from wells is potable or otherwise suitable for domestic or other uses. It may also refer to the chemical compositions of groundwater that are unrelated to potability or suitability issues. Groundwater quality will be affected by its residence time and flow pathway in the formation and will also be influenced by the quality of its original source before entering the groundwater regime. (4) Renewability and Recharge--This refers to the extent that groundwater is recharged to the basin as part of the natural hydrologic cycle or other artificial means. Groundwater renewability is normally a function of recharge derived from precipitation (and thus a function of regional climate), but may also be affected in local areas by irrigation, leaking canals, aquifer storage and recovery operations, and so forth. Along with the other factors, renewability will strongly affect how

  16. Fluoride contamination in groundwater resources of Alleppey, southern India

    Directory of Open Access Journals (Sweden)

    Dhanya Raj

    2017-01-01

    Full Text Available Alleppey is one of the thickly populated coastal towns of the Kerala state in southern India. Groundwater is the main source of drinking water for the 240,991 people living in this region. The groundwater is being extracted from a multi-layer aquifer system of unconsolidated to semi-consolidated sedimentary formations, which range in age from Recent to Tertiary. The public water distribution system uses dug and tube wells. Though there were reports on fluoride contamination, this study reports for the first time excess fluoride and excess salinity in the drinking water of the region. The quality parameters, like Electrical Conductivity (EC ranges from 266 to 3900 μs/cm, the fluoride content ranges from 0.68 to 2.88 mg/L, and the chloride ranges between the 5.7 to 1253 mg/L. The main water types are Na-HCO3, Na-CO3 and Na-Cl. The aqueous concentrations of F− and CO32− show positive correlation whereas F− and Ca2+ show negative correlation. The source of fluoride in the groundwater could be from dissolution of fluorapatite, which is a common mineral in the Tertiary sediments of the area. Long residence time, sediment–groundwater interaction and facies changes (Ca-HCO3 to Na-HCO3 during groundwater flow regime are the major factors responsible for the high fluoride content in the groundwater of the area. High strontium content and high EC in some of the wells indicate saline water intrusion that could be due to the excess pumping from the deeper aquifers of the area. The water quality index computation has revealed that 62% of groundwater belongs to poor quality and is not suitable for domestic purposes as per BIS and WHO standards. Since the groundwater is the only source of drinking water in the area, proper treatment strategies and regulating the groundwater extraction are required as the quality deterioration poses serious threat to human health.

  17. Use of environmental isotopes for studying human induced change in groundwater environment in Lahore, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Akram, W.; Sajjad, M.I.; Rafiq, M.; Tasneem, Azam M.

    2002-01-01

    Lahore is the second biggest city of Pakistan where groundwater is the only source of drinking water supply for the city. On the other hand, the quality of groundwater is being degraded due to various human activities especially due to waste disposal practices. Untreated domestic and industrial wastes are discharged into open channels, drains, etc. which leads to surface water and groundwater pollution. This study was undertaken to assess the changes in groundwater environment due to such activities. Water samples were collected on periodical basis from existing handpumps, tube wells and drains and analyzed for isotopic ( 2 H, 3 H, 13 C, 18 O) and major dissolved ions. Samples having high nitrate were analyzed for 15 N. Selected samples were also analyzed for Coliform bacteria. Results of only selected parameters are discussed here. The data showed that quality of shallow groundwater has deteriorated at most of the locations and concentrations of several chemical parameters are higher than WHO permissible levels for drinking water. Comparison with a previous study carried out in 1991, indicated a clear increasing trend of total dissolved salts in groundwater. An outstanding feature of the data is the increasing trend of nitrate concentrations both in shallow and deep groundwater. Results of nitrate analysis indicate that concentrations vary from 10 to 188 mg/l in shallow groundwater and 9 to 41 mg/l in deep groundwater. Frequency histogram of nitrate concentrations is shown. Nitrates which were generally a few ppm have increased at almost all the surveyed locations and have even crossed the WHO limit of 45 mg/l at several shallow locations. High nitrate waters exist as isolated pockets. Results of tritium analysis indicated that shallow groundwater has generally high tritium values. Presence of more nitrate at shallow depths, occurrence of high nitrate waters as isolated pockets and high tritium in contaminated waters suggest that nitrates are derived from as

  18. Radon Concentration in Groundwater in the Central Region of Gyeongju, Korea - 13130

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Min; Lee, A. Rim; Park, Chan Hee; Moon, Joo Hyun [Dongguk University, Seokjangdong, Gyeongju, Gyeongbuk, 780-714 (Korea, Republic of)

    2013-07-01

    Radon is a naturally occurring radioactive gas that is a well known cause of lung cancer through inhalation. Nevertheless, stomach cancer can also occur if radon-containing water is ingested. This study measured the radon concentration in groundwater for drinking or other domestic uses in the central region of Gyeongju, Korea. The groundwater samples were taken from 11 points chosen from the 11 administrative districts in the central region of Gyeongju by selecting a point per district considering the demographic distribution including the number of tourists who visit the ancient ruins and archaeological sites. The mean radon concentrations in the groundwater samples ranged from 14.38 to 9050.73 Bq.m{sup -3}, which were below the recommendations by the U.S. EPA and WHO. (authors)

  19. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    Science.gov (United States)

    Pitt, William A.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  20. Environmental isotope and geophysical techniques to identify groundwater potential zones in drought prone areas of Amravati District, Maharashtra, India

    International Nuclear Information System (INIS)

    Jacob, Noble

    2017-01-01

    The groundwater potential of Anjangaon village in Amaravati district of Maharashtra is generally poor and the water quality is saline in most of the places. Farmers dig open wells (up to 30 m depth) and drill bore wells (100-150 m depth) for domestic and irrigation purposes. Most of the wells failed and farmers are struggling for fresh water in this region. To evaluate the groundwater recharge and to identify the groundwater potential zones an environmental isotope and geophysical study was carried out. Water samples were collected from rain, springs, open wells, bore wells and detention tanks and measured for environmental isotopes such as "1"8O, "2H and "3H. Isotope results indicate that the groundwater is getting modern component of recharge from the rain as well as from the detention tanks. The percentage contributions from the detention tanks were estimated to be about 40 to 90 %. In the southern part of the Anjagaon village, an electrical resistivity survey of the geological formation was carried out and a groundwater potential zone was delineated at 45m depth. The farmers were asked to drill bore wells at the identified depth. The drilled five bore wells yielded perennial source of good quality water

  1. Land Subsidence Caused by Groundwater Exploitation in Quetta Valley, Pakistan

    Directory of Open Access Journals (Sweden)

    Najeebullah Kakar

    2016-12-01

    Full Text Available Land subsidence is affecting several metropolitan cities in developing as well as developed countries around the world such as Nagoya (Japan, Shanghai (China, Venice (Italy and San Joaquin valley (United States. This phenomenon is attributed to natural as well as anthropogenic activities that include extensive groundwater withdrawals. Quetta is the largest city of Balochistan province in Pakistan. This valley is mostly dry and ground water is the major source for domestic and agricultural consumption. The unplanned use of ground water resources has led to the deterioration of water quality and quantity in the Quetta valley. Water shortage in the region was further aggravated by the drought during (1998-2004 that hit the area forcing people to migrate from rural to urban areas. Refugees from the war torn neighboring Afghanistan also contributed to rapid increase in population of Quetta valley that has increased from 0.26 million in 1975 to 3.0 million in 2016. The objective of this study was to measure the land subsidence in Quetta valley and identify the effects of groundwater withdrawals on land subsidence. To achieve this goal, data from five Global Positioning System (GPS stations were acquired and processed. Furthermore the groundwater decline data from 41 observation wells during 2010 to 2015 were calculated and compared with the land deformation. The results of this study revealed that the land of Quetta valley is subsiding from 30mm/y on the flanks to 120 mm/y in the central part. 1.5-5.0 m/y of groundwater level drop was recorded in the area where the rate of subsidence is highest. So the extensive groundwater withdrawals in Quetta valley is considered to be the driving force behind land subsidence.

  2. Groundwater Potential

    African Journals Online (AJOL)

    big timmy

    4Department of Geology, Ekiti State University, Ado-Ekiti, Nigeria. Corresponding ... integrated for the classification of the study area into different groundwater potential zones. .... table is mainly controlled by subsurface movement of water into ...

  3. The economic value of groundwater in Obama

    OpenAIRE

    Burnett, Kimberly; Wada, Christopher; Endo, Aiko; Taniguchi, Makoto

    2015-01-01

    Study region: Obama City has a population of 33,000 and is located in the central Wakasa district, in southwest Fukui Prefecture, Japan. Obama’s groundwater resources are supported by the Kitagawa (38 km2) and Miniamigawa (17 km2) river basins. Groundwater is used aboveground year round for commercial and domestic purposes and during winter months to melt snow. Submarine groundwater discharge along the coast supports a nearshore fishery in the region. Study focus: Results from a choice-bas...

  4. NITRATE POLLUTION IN SHALLOW GROUNDWATER OF A HARD ROCK REGION IN SOUTH CENTRAL INDIA

    Science.gov (United States)

    Brindha, K.; Rajesh, R.; Murugan, R.; Elango, L.

    2009-12-01

    Groundwater forms a major source of drinking water in most parts of the world. Due to the lack of piped drinking water supply, the population in rural areas depend on the groundwater resources for domestic purposes. Hence, the quality of groundwater in such regions needs to be monitored regularly. Presence of high concentration of nitrate in groundwater used for drinking is a major problem in many countries as it causes health related problems. Most often infants are affected by the intake of high nitrate in drinking water and food. The present study was carried out with the objective of assessing the nitrate concentration in groundwater and determining the causes for nitrate in groundwater in parts of Nalgonda district in India which is located at a distance of about 135 km towards ESE direction from Hyderabad. Nitrate concentration in groundwater of this area was analysed by collecting groundwater samples from forty six representative wells. Samples were collected once in two months from March 2008 to March 2009. A total of 244 groundwater samples were collected during the study. Soil samples were collected from fifteen locations during May 2009 and the denitrifying bacteria were isolated from the soil using spread plate method. The nitrate concentration in groundwater samples were analysed in the laboratory using Metrohm 861 advanced compact ion chromatograph using appropriate standards. The highest concentration of nitrate recorded during the sampling period was 879.65mg/l and the lowest concentration was below detection limit. The maximum permissible limit of nitrate for drinking water as per Bureau of Indian Standards is 45mg/l. About 13% of the groundwater samples collected from this study area possessed nitrate concentration beyond this limit. The nitrate concentration was high in the southeastern part of the study area. This implies that the nitrate concentration in groundwater tends to increase along the flow direction. Application of fertilizers is one

  5. Intensive rice agriculture deteriorates the quality of shallow groundwater in a typical agricultural catchment in subtropical central China.

    Science.gov (United States)

    Wang, Yi; Li, Yuyuan; Li, Yong; Liu, Feng; Liu, Xinliang; Gong, Dianlin; Ma, Qiumei; Li, Wei; Wu, Jinshui

    2015-09-01

    High nitrogen (N) concentrations in rural domestic water supplies have been attributed to excessive agricultural N leaching into shallow groundwater systems; therefore, it is important to determine the impact of agriculture (e.g., rice production) on groundwater quality. To understand the impact of agricultural land use on the N concentrations in the shallow groundwater in subtropical central China, a large observation program was established to observe ammonium-N (NH4-N), nitrate-N (NO3-N), and total N (TN) concentrations in 161 groundwater observation wells from April 2010 to November 2012. The results indicated that the median values of NH4-N, NO3-N, and TN concentrations in the groundwater were 0.15, 0.39, and 1.38 mg N L(-1), respectively. A total of 36.3 % of the water samples were categorized as NH4-N pollution, and only a small portion of the samples were categorized as NO3-N pollution, based on the Chinese Environmental Quality Standards for Groundwater of GB/T 14848-93 (General Administration of Quality Supervision of China, 1993). These results indicated of moderate groundwater NH4-N pollution, which was mainly attributed to intensive rice agriculture with great N fertilizer application rates in the catchment. In addition, tea and vegetable fields showed higher groundwater NO3-N and TN concentrations than other agricultural land use types. The factorial correspondence analysis (FCA) suggested that the flooded agricultural land use types (e.g., single-rice and double-rice) had potential to impose NH4-N pollution, particularly in the soil exhausting season during from July to October. And, the great N fertilizer application rates could lead to a worse NO3-N and TN pollution in shallow groundwater. Hence, to protect groundwater quality and minimize NH4-N pollution, managing optimal fertilizer application and applying appropriate agricultural land use types should be implemented in the region.

  6. Vertical variation in groundwater chemistry inferred from fluid specific-conductance well logging of the Snake River Plain Basalt aquifer, Idaho National Engineering Laboratory, southeastern Idaho

    International Nuclear Information System (INIS)

    Wood, S.H.; Bennecke, W.

    1994-01-01

    Well logging of electrical fluid specific conductance (C s ) shows that permeable zones yielding ground water to intrawell flows and the water columns in some wells at INEL have highly different chemistry, with as much as a two-fold variation in C s . This suggests that dedicated-pump sampling of ground water in the aquifer may not be representative of the chemistry of the waste plumes migrating southwest of the nuclear facilities. Natural background C s in basalt-aquifer ground water of this part of the Snake River Plain aquifer is less than 325μS/cm (microSiemans/cm), and total dissolved solids in mg/L units, (TDS) ∼ 0.6C s . This relationship underestimates TDS for waters with chemical waste, when C s is above 800 μS/cm. At well 59 near the ICPP water of 1115 μS/cm (∼6570+ mg/L TDS) enters the well from a permeable zone between 521 and 537 ft depth; the zone being 60 ft below the water level and water of 550 μS/cm. At the time of logging (9/14/93) the 1115/μS/cm water was flowing down the well, mixing with less concentrated waters and exciting at 600 or 624-ft depth. Waste water disposed of down the injection well at ICPP until 1984 was estimated to have a C 5 of 1140 μS/cm, identical to the water detected in logging. 29 refs., 8 figs., 1 tab

  7. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China

    International Nuclear Information System (INIS)

    Han, Dongmei; Cao, Guoliang; McCallum, James; Song, Xianfang

    2015-01-01

    Groundwater within the coastal aquifer systems of the Daweijia area in northeastern China is characterized by a large of variations (33–521 mg/L) in NO_3"− concentrations. Elevated nitrate concentrations, in addition to seawater intrusion in the Daweijia well field, both attributable to anthropogenic activities, may impact future water-management practices. Chemical and stable isotopic (δ"1"8O, δ"2H) analysis, "3H and CFCs methods were applied to provide a better understanding of the relationship between the distribution of groundwater mean residence time (MRT) and nitrate transport, and to identify sources of nitrate concentrations in the complex coastal aquifer systems. There is a relatively narrow range of isotopic composition (ranging from − 8.5 to − 7.0‰) in most groundwater. Generally higher tritium contents observed in the wet season relative to the dry season may result from rapid groundwater circulation in response to the rainfall through the preferential flow paths. In the well field, the relatively increased nitrate concentrations of groundwater, accompanied by the higher tritium contents in the wet season, indicate the nitrate pollution can be attributed to domestic wastes. The binary exponential and piston-flow mixing model (BEP) yielded feasible age distributions based on the conceptual model. The good inverse relationship between groundwater MRTs (92–467 years) and the NO_3"− concentrations in the shallow Quaternary aquifers indicates that elevated nitrate concentrations are attributable to more recent recharge for shallow groundwater. However, there is no significant relationship between the MRTs (8–411 years) and the NO_3"− concentrations existing in the carbonate aquifer system, due to the complex hydrogeological conditions, groundwater age distributions and the range of contaminant source areas. Nitrate in the groundwater system without denitrification effects could accumulate and be transported for tens of years, through the

  8. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dongmei [Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); National Centre for Groundwater Research and Training, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Cao, Guoliang [National Centre for Groundwater Research and Training, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Center for Water Research, College of Engineering, Peking University, Beijing 100871 (China); McCallum, James [National Centre for Groundwater Research and Training, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); School of the Environment, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Song, Xianfang [Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China)

    2015-12-15

    Groundwater within the coastal aquifer systems of the Daweijia area in northeastern China is characterized by a large of variations (33–521 mg/L) in NO{sub 3}{sup −} concentrations. Elevated nitrate concentrations, in addition to seawater intrusion in the Daweijia well field, both attributable to anthropogenic activities, may impact future water-management practices. Chemical and stable isotopic (δ{sup 18}O, δ{sup 2}H) analysis, {sup 3}H and CFCs methods were applied to provide a better understanding of the relationship between the distribution of groundwater mean residence time (MRT) and nitrate transport, and to identify sources of nitrate concentrations in the complex coastal aquifer systems. There is a relatively narrow range of isotopic composition (ranging from − 8.5 to − 7.0‰) in most groundwater. Generally higher tritium contents observed in the wet season relative to the dry season may result from rapid groundwater circulation in response to the rainfall through the preferential flow paths. In the well field, the relatively increased nitrate concentrations of groundwater, accompanied by the higher tritium contents in the wet season, indicate the nitrate pollution can be attributed to domestic wastes. The binary exponential and piston-flow mixing model (BEP) yielded feasible age distributions based on the conceptual model. The good inverse relationship between groundwater MRTs (92–467 years) and the NO{sub 3}{sup −} concentrations in the shallow Quaternary aquifers indicates that elevated nitrate concentrations are attributable to more recent recharge for shallow groundwater. However, there is no significant relationship between the MRTs (8–411 years) and the NO{sub 3}{sup −} concentrations existing in the carbonate aquifer system, due to the complex hydrogeological conditions, groundwater age distributions and the range of contaminant source areas. Nitrate in the groundwater system without denitrification effects could accumulate and be

  9. Compendium of ordinances for groundwater protection

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    Groundwater is an extremely important resource in the Tennessee Valley. Nearly two-thirds of the Tennessee Valley's residents rely, at least in part, on groundwater supplies for drinking water. In rural areas, approximately ninety-five percent of residents rely on groundwater for domestic supplies. Population growth and economic development increase the volume and kinds of wastes requiring disposal which can lead to groundwater contamination. In addition to disposal which can lead to groundwater contamination. In addition to disposal problems associated with increases in conventional wastewater and solid waste, technological advancements in recent decades have resulted in new chemicals and increased usage in agriculture, industry, and the home. Unfortunately, there has not been comparable progress in identifying the potential long-term effects of these chemicals, in managing them to prevent contamination of groundwater, or in developing treatment technologies for removing them from water once contamination has occurred. The challenge facing residence of the Tennessee Valley is to manage growth and economic and technological development in ways that will avoid polluting the groundwater resource. Once groundwater has been contaminated, cleanup is almost always very costly and is sometimes impractical or technically infeasible. Therefore, prevention of contamination -- not remedial treatment--is the key to continued availability of usable groundwater. This document discusses regulations to aid in this prevention.

  10. Surface and groundwater quality assessment of Marikina river

    International Nuclear Information System (INIS)

    Dela Pena, Jowell P.; Pael, Limela G.

    2009-03-01

    The study used the physico-chemical characteristics to determine the degree of pollution in different surface and groundwater sources in Marikina. The hydrogen ion concentration in all the stations for surface water was generally basic ranging from 7.24 to 7.44, while conductivity was observed to be highest in Royal Ville station that has a value of 253 μ/cm. Among the four stations in groundwater which obtained an acidic pH, Brgy. Singkamas deep-well has a neutral value. The conductivity was observed to be highest in Brgy. Conception which has a value of 1026 μ/cm. The major ions result showed that the three stations from Marikina River have conformed to the water quality criteria for fresh waters set by the Department of Environment and Natural Resources, while results from different deep-well stations showed that among four stations, Brgy. Singkamas and Conception deep-well have exceeded the recommended value concentration for drinking water quality standards. The multi-element results were obtained from an Energy-Dispersive X-ray Fluorescence Spectroscopy. Results showed that significant concentrations of metals like Al, Cd, Cr, Fe, and Pb in both surface and groundwater stations have exceeded the maximum concentrations set by both DENR and PNSDW. The significant differences in the concentrations of physico-chemical components facilitate detection of contamination from domestic and industrial wastes. (author)

  11. Data Validation Package May 2016 Groundwater Sampling at the Lakeview, Oregon, Processing Site August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Hall, Steve [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-08-01

    This biennial event includes sampling five groundwater locations (four monitoring wells and one domestic well) at the Lakeview, Oregon, Processing Site. For this event, the domestic well (location 0543) could not be sampled because no one was in residence during the sampling event (Note: notification was provided to the resident prior to the event). Per Appendix A of the Groundwater Compliance Action Plan, sampling is conducted to monitor groundwater quality on a voluntary basis. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). One duplicate sample was collected from location 0505. Water levels were measured at each sampled monitoring well. The constituents monitored at the Lakeview site are manganese and sulfate. Monitoring locations that exceeded the U.S. Environmental Protection Agency (EPA) Secondary Maximum Contaminant Levels for these constituents are listed in Table 1. Review of time-concentration graphs included in this report indicate that manganese and sulfate concentrations are consistent with historical measurements.

  12. Well Salinization Risk and Effects of Baltic Sea Level Rise on the Groundwater-Dependent Island of Öland, Sweden

    Directory of Open Access Journals (Sweden)

    Marcus Eriksson

    2018-02-01

    Full Text Available In this study, we estimate baseline conditions in terms of the current risk of well salinization on the Baltic Sea island of Öland, Sweden, and assess the effects of future sea level rise on the land area, infrastructure and cultural values. We use a multicriterion geographical information systems (GIS approach. Geomorphological and physical parameters affect the risk of saltwater intrusion into freshwater aquifers, including their hydrology, geomorphology, and climatology; the spatial distribution of the current risk of salinization is mapped in this study. In the event of a future 2 m sea level rise, a total land area of 67 km2 will be inundated on Öland, corresponding to approximately 5% of the island’s land surface. Inundation includes urban areas, nature reserves, and animal protection areas, implying the loss of environmental and socioeconomic values. A future 2 m sea level rise will also cause direct inundation of 3% of all wells on the island. Currently, 17.5% of all wells are at a high risk of becoming saltwater contaminated. More generally, the present results add evidence showing a relatively high vulnerability of major Baltic Sea islands and their infrastructure to future sea level rise. The approach used here and related results, including salinization risk maps, may prove useful for decision-makers in the planning of infrastructure. Drilling of new wells could for instance preferably be done in areas with identified lower risk-index values, which would facilitate an overall higher freshwater withdrawal in the interest of the entire island.

  13. Baseline risk assessment of groundwater contamination at the uranium mill tailings site near Shiprock, New Mexico. Draft

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain.

  14. Hydrochemical characterization of groundwater aquifer using ...

    African Journals Online (AJOL)

    Hydrochemical data analysis revealed four sources of solutes. The processes responsible for their enrichment include: chemical weathering, leaching of the overlying sediments, domestic activities, climatic condition and the flow pattern of the aquifer. The factors have contributed to the changes of the groundwater chemistry ...

  15. Groundwater hydrochemistry evaluation in rural Botswana: A ...

    African Journals Online (AJOL)

    ... of groundwater from domestic water supply boreholes across rural Botswana. Ionic concentrations of K+, Na+, Ca2+, Mg2+, F-, Cl-, SO4 2-, HCO3 -, Fe3+, Mn-, and N. Parameters such as pH, total dissolved solids (TDS), and electrical conductance (EC) were correlated and their levels compared to international standards.

  16. Ground-water heat pumps: an examination of hydrogeologic, environmental, legal, and economic factors affecting their use

    Energy Technology Data Exchange (ETDEWEB)

    Armitage, D M; Bacon, D J; Massey-Norton, J T; Miller, J D

    1980-11-12

    Groundwater is attractive as a potential low-temperature energy source in residential space-conditioning applications. When used in conjuncton with a heat pump, ground water can serve as both a heat source (for heating) and a heat sink (for cooling). Major hydrogeologic aspects that affect system use include groundwater temperature and availability at shallow depths as these factors influence operational efficiency. Ground-water quality is considered as it affects the performance and life-expectancy of the water-side heat exchanger. Environmental impacts related to groundwater heat pump system use are most influenced by water use and disposal methods. In general, recharge to the subsurface (usually via injection wells) is recommended. Legal restrictions on system use are often stricter at the municipal and county levels than at state and Federal levels. Although Federal regulations currently exist, the agencies are not equipped to regulate individual, domestic installations. Computer smulations indicate that under a variety of climatologic conditions, groundwater heat pumps use less energy than conventional heating and cooling equipment. Life-cycle cost comparisons with conventional equipment depend on alternative system choices and well cost options included in the groundwater heat pump system.

  17. Use of Microgravity to Assess the Effects of El Nino on Ground-Water Storage in Southern Arizona

    Science.gov (United States)

    Parker, John T.C.; Pool, Donald R.

    1998-01-01

    The availability of ground water is of extreme importance in areas, such as southern Arizona, where it is the main supply for agricultural, industrial, or domestic purposes. Where ground-water use exceeds recharge, monitoring is critical for managing water supplies. Typically, monitoring has been done by measuring water levels in wells; however, this technique only partially describes ground-water conditions in a basin. A new application of geophysical technology is enabling U.S. Geological Survey (USGS) scientists to measure changes in the amount of water in an aquifer using a network of microgravity stations. This technique enables a direct measurement of ground-water depletion and recharge. In Tucson, Arizona, residents have relied solely upon ground water for most of their needs since the 19th century. Water levels in some wells in the Tucson area have declined more than 200 ft in the past 50 years. Similar drops in water levels have occurred elsewhere in Arizona. In response to the overdrafting of ground water, the State of Arizona passed legislation designed to attain 'safe yield,' which is defined as a balance between ground-water withdrawals and annual recharge of aquifers. To monitor progress in complying with the legislation, ground-water withdrawals are measured and estimated, and annual recharge is estimated. The Tucson Basin and Avra Valley are two ground-water basins that form the Tucson Active Management Area (TAMA), which by State statute must attain 'safe yield' by the year 2025.

  18. Challenges for creating a site-specific groundwater-use record for the Ozark Plateaus aquifer system (central USA) from 1900 to 2010

    Science.gov (United States)

    Knierim, Katherine J.; Nottmeier, Anna M.; Worland, Scott; Westerman, Drew A.; Clark, Brian R.

    2017-09-01

    Hydrologic budgets to determine groundwater availability are important tools for water-resource managers. One challenging component for developing hydrologic budgets is quantifying water use through time because historical and site-specific water-use data can be sparse or poorly documented. This research developed a groundwater-use record for the Ozark Plateaus aquifer system (central USA) from 1900 to 2010 that related county-level aggregated water-use data to site-specific well locations and aquifer units. A simple population-based linear model, constrained to 0 million liters per day in 1900, provided the best means to extrapolate groundwater-withdrawal rates pre-1950s when there was a paucity of water-use data. To disaggregate county-level data to individual wells across a regional aquifer system, a programmatic hierarchical process was developed, based on the level of confidence that a well pumped groundwater for a specific use during a specific year. Statistical models tested on a subset of the best-available site-specific water-use data provided a mechanism to bracket historic groundwater use, such that groundwater-withdrawal rates ranged, on average, plus or minus 38% from modeled values. Groundwater withdrawn for public supply and domestic use accounted for between 48 and 74% of total groundwater use since 1901, highlighting that groundwater provides an important drinking-water resource. The compilation, analysis, and spatial and temporal extrapolation of water-use data remain a challenging task for water scientists, but is of paramount importance to better quantify groundwater use and availability.

  19. Treatability Study of In Situ Technologies for Remediation of Hexavalent Chromium in Groundwater at the Puchack Well Field Superfund Site, New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Vermeul, Vince R.; Szecsody, Jim E.; Truex, Michael J.; Burns, Carolyn A.; Girvin, Donald C.; Phillips, Jerry L.; Devary, Brooks J.; Fischer, Ashley E.; Li, Shu-Mei W.

    2006-11-13

    This treatability study was conducted by Pacific Northwest National Laboratory (PNNL), at the request of the U. S. Environmental Protection Agency (EPA) Region 2, to evaluate the feasibility of using in situ treatment technologies for chromate reduction and immobilization at the Puchack Well Field Superfund Site in Pennsauken Township, New Jersey. In addition to in situ reductive treatments, which included the evaluation of both abiotic and biotic reduction of Puchack aquifer sediments, natural attenuation mechanisms were evaluated (i.e., chromate adsorption and reduction). Chromate exhibited typical anionic adsorption behavior, with greater adsorption at lower pH, at lower chromate concentration, and at lower concentrations of other competing anions. In particular, sulfate (at 50 mg/L) suppressed chromate adsorption by up to 50%. Chromate adsorption was not influenced by inorganic colloids.

  20. Nonlinear ecosystem services response to groundwater availability under climate extremes

    Science.gov (United States)

    Qiu, J.; Zipper, S. C.; Motew, M.; Booth, E.; Kucharik, C. J.; Steven, L. I.

    2017-12-01

    Depletion of groundwater has been accelerating at regional to global scales. Besides serving domestic, industrial and agricultural needs, in situ groundwater is also a key control on biological, physical and chemical processes across the critical zone, all of which underpin supply of ecosystem services essential for humanity. While there is a rich history of research on groundwater effects on subsurface and surface processes, understanding interactions, nonlinearity and feedbacks between groundwater and ecosystem services remain limited, and almost absent in the ecosystem service literature. Moreover, how climate extremes may alter groundwater effects on services is underexplored. In this research, we used a process-based ecosystem model (Agro-IBIS) to quantify groundwater effects on eight ecosystem services related to food, water and biogeochemical processes in an urbanizing agricultural watershed in the Midwest, USA. We asked: (1) Which ecosystem services are more susceptible to shallow groundwater influences? (2) Do effects of groundwater on ecosystem services vary under contrasting climate conditions (i.e., dry, wet and average)? (3) Where on the landscape are groundwater effects on ecosystem services most pronounced? (4) How do groundwater effects depend on water table depth? Overall, groundwater significantly impacted all services studied, with the largest effects on food production, water quality and quantity, and flood regulation services. Climate also mediated groundwater effects with the strongest effects occurring under dry climatic conditions. There was substantial spatial heterogeneity in groundwater effects across the landscape that is driven in part by spatial variations in water table depth. Most ecosystem services responded nonlinearly to groundwater availability, with most apparent groundwater effects occurring when the water table is shallower than a critical depth of 2.5-m. Our findings provide compelling evidence that groundwater plays a vital

  1. Factors associated with sources, transport, and fate of chloroform and three other trihalomethanes in untreated groundwater used for drinking water

    Science.gov (United States)

    Carter, Janet M.; Moran, Michael J.; Zogorski, John S.; Price, Curtis V.

    2012-01-01

    Multiple lines of evidence for indicating factors associated with the sources, transport, and fate of chloroform and three other trihalomethanes (THMs) in untreated groundwater were revealed by evaluating low-level analytical results and logistic regression results for THMs. Samples of untreated groundwater from wells used for drinking water were collected from 1996-2007 from 2492 wells across the United States and analyzed for chloroform, bromodichloromethane, dibromochloromethane, and bromoform by a low-level analytical method implemented in April 1996. Using an assessment level of 0.02 μg/L, chloroform was detected in 36.5% of public-well samples and 17.6% of domestic-well samples, with most concentrations less than 1 μg/L. Brominated THMs occurred less frequently than chloroform but more frequently in public-well samples than domestic-well samples. For both public and domestic wells, THMs occurred most frequently in urban areas. Logistic regression analyses showed that the occurrence of THMs was related to nonpoint sources such as urban land use and to point sources like septic systems. The frequent occurrence and concentration distribution pattern of THMs, as well as their frequent co-occurrence with other organic compounds and nitrate, all known to have anthropogenic sources, and the positive associations between THM occurrence and dissolved oxygen and recharge indicate the recycling of water that contains THMs and other anthropogenic contaminants.

  2. Factors associated with sources, transport, and fate of chloroform and three other trihalomethanes in untreated groundwater used for drinking water.

    Science.gov (United States)

    Carter, Janet M; Moran, Michael J; Zogorski, John S; Price, Curtis V

    2012-08-07

    Multiple lines of evidence for indicating factors associated with the sources, transport, and fate of chloroform and three other trihalomethanes (THMs) in untreated groundwater were revealed by evaluating low-level analytical results and logistic regression results for THMs. Samples of untreated groundwater from wells used for drinking water were collected from 1996-2007 from 2492 wells across the United States and analyzed for chloroform, bromodichloromethane, dibromochloromethane, and bromoform by a low-level analytical method implemented in April 1996. Using an assessment level of 0.02 μg/L, chloroform was detected in 36.5% of public-well samples and 17.6% of domestic-well samples, with most concentrations less than 1 μg/L. Brominated THMs occurred less frequently than chloroform but more frequently in public-well samples than domestic-well samples. For both public and domestic wells, THMs occurred most frequently in urban areas. Logistic regression analyses showed that the occurrence of THMs was related to nonpoint sources such as urban land use and to point sources like septic systems. The frequent occurrence and concentration distribution pattern of THMs, as well as their frequent co-occurrence with other organic compounds and nitrate, all known to have anthropogenic sources, and the positive associations between THM occurrence and dissolved oxygen and recharge indicate the recycling of water that contains THMs and other anthropogenic contaminants.

  3. Assessment of Groundwater Resources in the Context of Climate Change and Population Growth: Case of the Klela Basin in Southern Mali

    Directory of Open Access Journals (Sweden)

    Adama Toure

    2017-07-01

    Full Text Available Groundwater in the Klela basin in Mali, a subbasin of the Bani basin (one of the main tributaries of the Niger River, is required for domestic use, irrigation and livestock. Furthermore, water supply of the city of Sikasso directly depends on the groundwater resources, which are under pressure caused by increased water demand as well as climate variability and climate change. As a consequence, freshwater availability is being threatened which can have a direct negative impact on irrigation agriculture. The aim of this study was to evaluate future behavior of groundwater resources in the context of climate change and population growth using socio-economic and population growth scenarios for water demand and the Representative Concentration Pathways scenarios (RCP4.5 and RCP8.5 data for calculating groundwater recharge using the Thornthwaite model. The WEAP (Water Evaluation and Planning system model was applied to balance water availability and demand and to compute changes in groundwater storage up to 2050. The overall results show that groundwater recharge as well as storage is decreasing over time, especially in the 2030s which can lead to severe agricultural droughts in this period. Recharge declined by approximatively 49% and stored groundwater by 24% over the study period.

  4. Groundwater-quality data from the National Water-Quality Assessment Project, January through December 2014 and select quality-control data from May 2012 through December 2014

    Science.gov (United States)

    Arnold, Terri L.; Bexfield, Laura M.; Musgrove, MaryLynn; Lindsey, Bruce D.; Stackelberg, Paul E.; Barlow, Jeannie R.; Desimone, Leslie A.; Kulongoski, Justin T.; Kingsbury, James A.; Ayotte, Joseph D.; Fleming, Brandon J.; Belitz, Kenneth

    2017-10-05

    Groundwater-quality data were collected from 559 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from January through December 2014. The data were collected from four types of well networks: principal aquifer study networks, which are used to assess the quality of groundwater used for public water supply; land-use study networks, which are used to assess land-use effects on shallow groundwater quality; major aquifer study networks, which are used to assess the quality of groundwater used for domestic supply; and enhanced trends networks, which are used to evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, radionuclides, and some constituents of special interest (arsenic speciation, chromium [VI] and perchlorate). These groundwater-quality data, along with data from quality-control samples, are tabulated in this report and in an associated data release.

  5. Groundwater level status report for 2010, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2011-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2010 is provided in this report. This report summarizes groundwater level data for 194 monitoring wells, including 63 regional aquifer wells (including 10 regional/intermediate wells), 34 intermediate wells, 97 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 162 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells and seasonal responses to snowmelt runoff observed in intermediate wells.

  6. Sources of groundwater contamination

    International Nuclear Information System (INIS)

    Assaf, H.; Al-Masri, M. S.

    2007-09-01

    In spite of the importance of water for life, either for drinking, irrigation, industry or other wide uses in many fields, human beings seem to contaminate it and make it unsuitable for human uses. This is due to disposal of wastes in the environment without treatment. In addition to population increase and building expanding higher living costs, industrial and economical in growth that causes an increase in water consumption. All of these factors have made an increase pressure on our water environment quantitatively and qualitatively. In addition, there is an increase of potential risks to the water environmental due to disposal of domestic and industrial wastewater in areas near the water sources. Moreover, the use of unacceptable irrigation systems may increase soil salinity and evaporation rates. The present report discusses the some groundwater sources and problem, hot and mineral waters that become very important in our life and to our health due to its chemical and radioactivity characteristics.(authors)

  7. Hydrogeochemistry for the assessment of groundwater quality in Varanasi: a fast-urbanizing center in Uttar Pradesh, India.

    Science.gov (United States)

    Janardhana Raju, Nandimandalam; Shukla, U K; Ram, Prahlad

    2011-02-01

    The hydrogeochemical parameters for groundwater samples of the Varanasi area, a fast-urbanizing region in India, were studied to evaluate the major ion chemistry, weathering and solute acquisition processes controlling water composition, and suitability of water quality for domestic and irrigation uses. Sixty-eight groundwater samples were collected randomly from dug wells and hand pumps in the urban Varanasi area and analyzed for various chemical parameters. Geologically, the study area comprises Quaternary alluvium made up of an alternating succession of clay, silty clay, and sand deposits. The Total dissolved solids classification reveals that except two locations, the groundwater samples are desirable for drinking, and all are useful for irrigation purposes. The cationic and anionic concentrations indicated that the majority of the groundwater samples belong to the order of Na>Ca>Mg>K and HCO3>Cl>SO4 types, respectively. Geochemical classification of groundwater based on the Chadha rectangular diagram shows that the majority (81%) of groundwater samples belong to the calcium-bicarbonate type. The HCO3/(HCO3+SO4) ratio (0.87) indicates mostly carbonic acid weathering process due to presence of kankar carbonate mixed with clay/fine sand. The high nitrate concentration (>45 mg/l) of about 18% of the groundwater samples may be due to the local domestic sewage, leakage of septic tanks, and improper management of sanitary landfills. In general, the calculated values of sodium adsorption ratio, percent sodium, residual sodium carbonate, and permeability index indicate good to permissible use of water for irrigation, and only a few locations demand remedial measures for better crop yields.

  8. Hydrological challenges to groundwater trading: Lessons from south-west Western Australia

    Science.gov (United States)

    Skurray, James H.; Roberts, E. J.; Pannell, David J.

    2012-01-01

    SummaryPerth, Western Australia (pop. 1.6 m) derives 60% of its public water supply from the Gnangara groundwater system (GGS). Horticulture, domestic self-supply, and municipal parks are other major consumers of GGS groundwater. The system supports important wetlands and groundwater-dependent ecosystems. Underlying approximately 2200 km 2 of the Swan Coastal Plain, the GGS comprises several aquifer levels with partial interconnectivity. Supplies of GGS groundwater are under unprecedented stress, due to reduced recharge and increases in extraction. Stored reserves in the superficial aquifer fell by 700 GL between 1979 and 2008. Over a similar period, annual extraction for public supply increased by more than 350% from the system overall. Some management areas are over-allocated by as much as 69%. One potential policy response is a trading scheme for groundwater use. There has been only limited trading between GGS irrigators. Design and implementation of a robust groundwater trading scheme faces hydrological and/or hydro-economic challenges, among others. Groundwater trading involves transfers of the right to extract water. The resulting potential for spatial (and temporal) redistribution of the impacts of extraction requires management. Impacts at the respective selling and buying locations may differ in scale and nature. Negative externalities from groundwater trading may be uncertain as well as not monetarily compensable. An ideal groundwater trading scheme would ensure that marginal costs from trades do not exceed marginal benefits, incorporating future effects and impacts on third-parties. If this condition could be met, all transactions would result in constant or improved overall welfare. This paper examines issues that could reduce public welfare if groundwater trading is not subject to well-designed governance arrangements that are appropriate to meeting the above condition. It also outlines some opportunities to address key risks within the design of a

  9. Groundwater sampling in uranium reconnaissance

    International Nuclear Information System (INIS)

    Butz, T.R.

    1977-03-01

    The groundwater sampling program is based on the premise that ground water geochemistry reflects the chemical composition of, and geochemical processes active in the strata from which the sample is obtained. Pilot surveys have shown that wells are the best source of groundwater, although springs are sampled on occasion. The procedures followed in selecting a sampling site, the sampling itself, and the field measurements, as well as the site records made, are described

  10. Hydrological challenges to groundwater trading: lessons from south-west Western Australia

    OpenAIRE

    Skurray, James H.; Roberts, E.J.; Pannell, David J.

    2013-01-01

    Perth, Western Australia (pop. 1.6m) derives 60% of its public water supply from the Gnangara groundwater system (GGS). Horticulture, domestic self-supply, and municipal parks are other major consumers of GGS groundwater. The system supports important wetlands and groundwater-dependent ecosystems. Underlying approximately 2,200 km2 of the Swan Coastal Plain, the GGS comprises several aquifer levels with partial interconnectivity. Supplies of GGS groundwater are under unprecedented stress, due...

  11. Groundwater level status report for 2009, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2010-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2009 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 55 regional aquifer wells (including 11 regional/intermediate wells), 26 intermediate wells, 98 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 161 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

  12. Groundwater-derived nutrient inputs to the Upper Gulf of Thailand

    Science.gov (United States)

    Burnett, William C.; Wattayakorn, Gullaya; Taniguchi, Makoto; Dulaiova, Henrieta; Sojisuporn, Pramot; Rungsupa, Sompop; Ishitobi, Tomotoshi

    2007-01-01

    We report here the first direct measurements of nutrient fluxes via groundwater discharge into the Upper Gulf of Thailand. Nutrient and standard oceanographic surveys were conducted during the wet and dry seasons along the Chao Phraya River, Estuary and out into the Upper Gulf of Thailand. Additional measurements in selected near-shore regions of the Gulf included manual and automatic seepage meter deployments, as well as nutrient evaluations of seepage and coastal waters. The river transects characterized the distribution of biogeochemical parameters in this highly contaminated urban environment. Seepage flux measurements together with nutrient analyses of seepage fluids were used to estimate nutrient fluxes via groundwater pathways for comparison to riverine fluxes. Our findings show that disseminated seepage of nutrient-rich mostly saline groundwater into the Upper Gulf of Thailand is significant. Estimated fluxes of dissolved inorganic nitrogen (DIN) supplied via groundwater discharge were 40-50% of that delivered by the Chao Phraya River, inorganic phosphate was 60-70%, and silica was 15-40%. Dissolved organic nitrogen (DON) and phosphorus (DOP) groundwater fluxes were also high at 30-40% and 30-130% of the river inputs, respectively. These observations are especially impressive since the comparison is being made to the river that is the largest source of fresh water into the Gulf of Thailand and flows directly through the megacity of Bangkok with high nutrient loadings from industrial and domestic sources.

  13. Horizontal wells in subsurface remediation

    International Nuclear Information System (INIS)

    Losonsky, G.; Beljin, M.S.

    1992-01-01

    This paper reports on horizontal wells which offer an effective alternative to vertical wells in various environmental remediation technologies. Hydrogeological advantages of horizontal wells over vertical wells include a larger zone of influence, greater screen length, higher specific capacity and lower groundwater screen entrance velocity. Because of these advantages, horizontal wells can reduce treatment time and costs of groundwater recovery (pump-and-treat), in situ groundwater aeration (sparging) and soil gas extraction (vacuum extraction). Horizontal wells are also more effective than vertical wells in landfill leachate collection (under-drains), bioremediation, and horizontal grout injection

  14. Baseline risk assessment for groundwater contamination at the uranium mill tailings site, Gunnison, Colorado

    International Nuclear Information System (INIS)

    1990-11-01

    The Gunnison Baseline Risk Assessment for Groundwater Contamination at the Uranium Mill Tailings Site was performed to determine if long-term use of groundwater from domestic wells near the site has a potential for adverse health effects. The risk assessment was based on the results of sampling domestic wells during 1989--1990. A risk assessment evaluates health risks by comparing the amount of a contaminant taken in by a person with the amount of the contaminant that may be toxic. The Gunnison Risk Assessment used high intake values to estimate the maximum levels a person might be exposed to. The results of the risk assessment are divided into cancer (carcinogenic) risks and non-carcinogenic risks. Five key contaminants were evaluated for adverse health risks: uranium, manganese, lead antimony, and cadmium. Due to the potential health risks and the unavoidable uncertainties associated with limited groundwater and toxicity data, it is prudent public health policy to provide a permanent alternate water supply. Additionally, providing a permanent alternate water supply is cost-effective compared to long-term routine monitoring

  15. Groundwater Circulating Well Assessment and Guidance

    Science.gov (United States)

    1998-04-03

    storage tank. 1 .3 .3.2.3 Biofiltration . Vapor-phase bioreactors are an effective method for treat ing a variety of gas-phase organic contam inants and...operation. Another advantage of the dipole test is that water is not withdrawn from the ground, eliminating d isposal requirements. It is strongly...example, if a bioprocess is being considered, respiration gases m ust be mon itored to provide evidence for treatment process effectiveness. Conversely

  16. Water use and groundwater contamination

    International Nuclear Information System (INIS)

    Elton, J.J.; Livingstone, B.

    1998-01-01

    A general review of the groundwater resources in Saskatchewan and their vulnerability to contamination was provided. In particular, the use of water and the effects on water by the oil and gas industry in Saskatchewan were discussed. It was suggested that public concerns over scarcity and contamination of water are gradually changing perceptions about Canada's abundance of water. Saskatchewan's surface water covers 12 per cent of the province. About 90 per cent of the rural populations and 80 per cent of municipalities depend on groundwater supplies. Regulations affecting oil and gas operations that could affect water resources have become more stringent. Techniques used in the detection and monitoring of groundwater affected by salt and petroleum hydrocarbons were described. Electromagnetic surveys are used in detecting salt-affected soils and groundwater. Laboratory analysis of chloride concentrations are needed to define actual chloride concentrations in groundwater. Wells and barriers can be installed to control and recover chloride plumes. Deep well injection and reverse osmosis are other methods, but there is no cheap or simple treatment or disposal method for salt-impacted groundwater. Spills or leaks of petroleum hydrocarbons from various sources can also lead to contamination of groundwater. Various assessment and remediation methods are described. Although there is no scarcity of techniques, all of them are difficult, costly, and may take several years to complete. 11 refs., 1 tab

  17. Risk screening for exposure to groundwater pollution in a wastewater irrigation district of the Mexico City region.

    Science.gov (United States)

    Downs, T J; Cifuentes-García, E; Suffet, I M

    1999-07-01

    Untreated wastewater from the Mexico City basin has been used for decades to irrigate cropland in the Mezquital Valley, State of Hidalgo, Mexico. Excess irrigation water recharges the near-surface aquifer that is used as a domestic water supply source. We assessed the groundwater quality of three key groundwater sources of domestic water by analyzing for 24 trace metals, 67 target base/neutral/acid (BNA) organic compounds, nontarget BNA organics, 23 chlorinated pesticides, 20 polychlorinated biphenyls, and nitrate, as well as microbiological contaminants--coliforms, Vibrio cholerae, and Salmonella. Study participants answered a questionnaire that estimated ingestion and dermal exposure to groundwater; 10% of the sample reported frequent diarrhea and 9% reported persistent skin irritations. Detection of V. cholerae non-01 in surface waters at all sites suggested a potential risk (surrogate indicator present) of diarrheal disease for canal and river bathers by accidental ingestion, as well as potential Vibrio contamination of near-surface groundwater and potential cholera risk, magnified by lapses in disinfection. High total coliform levels in surface water and lower levels in groundwater at all sites indicated fecal contamination and a potential risk of gastrointestinal disease in populations exposed to inadequately disinfected groundwater. Using chemical criteria, no significant risk from ingestion or dermal contact was identified at the method detection limits at any site, except from nitrate exposure: infants and young children are at risk from methemoglobinemia at all sites. Results suggest that pathogen risk interventions are a priority, whereas nitrate risk needs further characterization to determine if formal treatment is needed. The risks exist inside and outside the irrigation district. The method was highly cost-effective.

  18. Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes

    Directory of Open Access Journals (Sweden)

    L. Yang

    2012-11-01

    Full Text Available The Jialu River, a secondary tributary of the Huaihe River, has been severely contaminated from major contaminant sources, such as a number of untreated or lightly treated sewage waste in some cities. Groundwater along the river is not an isolated component of the hydrologic system, but is instead connected with the surface water. This study aims to investigate temporal and spatial variations in water chemistry affected by humans and to characterize the relationships between surface water (e.g. reservoirs, lakes and rivers and groundwater near the river in the shallow Quaternary aquifer. Concentration of Cl in north Zhengzhou City increased prominently due to the discharge of a large amount of domestic water. Nitrate and potassium show maximum concentrations in groundwater in Fugou County. These high levels can be attributed to the use of a large quantity of fertilizer over this region. Most surface water appeared to be continuously recharged from the surrounding groundwater (regional wells based on comparison surface water with groundwater levels, stable-isotopes and major ion signatures. However, the groundwater of a transitional well (location SY3 seemed to be recharged by river water via bank infiltration in September 2010. Fractional contributions of river water to the groundwater were calculated based on isotopic and chemical data using a mass-balance approach. Results show that the groundwater was approximately composed of 60–70% river water. These findings should be useful for a better understanding of hydrogeological processes at the river-aquifer interface and ultimately benefit water management in the future.

  19. Domestic Violence - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Domestic Violence URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Domestic Violence - Multiple Languages To use the sharing features on ...

  20. Data Validation Package - April and July 2015 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [Dept. of Energy (DOE), Washington, DC (United States). Office of Legacy Management; Campbell, Sam [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-02-01

    This event included annual sampling of groundwater and surface water locations at the Gunnison, Colorado, Processing Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. Samples were collected from 28 monitoring wells, three domestic wells, and six surface locations in April at the processing site as specified in the 2010 Ground Water Compliance Action Plan for the Gunnison, Colorado, Processing Site. Domestic wells 0476 and 0477 were sampled in July because the homes were unoccupied in April, and the wells were not in use. Duplicate samples were collected from locations 0113, 0248, and 0477. One equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. No issues were identified during the data validation process that requires additional action or follow-up.

  1. Combining geochemical tracers with geophysical tools to study groundwater quality in Mesilla Bolson of the semi-arid Rio Grande watershed

    Science.gov (United States)

    Ma, L.; Hiebing, M.; Garcia, S.; Szynkiewicz, A.; Doser, D. I.

    2017-12-01

    Mesilla Bolson is an important alluvial aquifer system of the semi-arid Rio Grande watershed in southern New Mexico and West Texas. It is one of the two major groundwater sources for the City of El Paso in Texas and provides about 30% of the region's domestic groundwater needs. Groundwater from Mesilla Bolson is also extensively used for agriculture irrigation in this region. However, high concentrations of total dissolved solids in some areas of this region significantly impact groundwater quality for the Rio Grande alluvial aquifer. For example, an increase in groundwater salinity is generally observed from north to south within the aquifer. Some previous researchers have suggested this salinity change is due to 1) runoff and recharge from agricultural activity; 2) natural upwelling of deeper brackish groundwater; and 3) water-rock interactions in the aquifer. To better study how agricultural and municipal practices contribute to increasing salinity, we sampled 50 wells of the Mesilla Bolson in 2015-2016 for uranium (234U/238U), strontium (87Sr/86Sr), boron (d11B), and sulfur (d34S) isotope compositions to characterize major salinity sources of groundwater. In addition, we applied a geophysical gravity survey to determine the possible influences of faults and other subsurface structures on groundwater quality in this region. Our multi-isotope results suggest that the groundwater resources of this alluvial aquifer have been already impacted by human activities and groundwater recharge to the alluvial aquifer is affected by surface processes such as i) the return flows from the Rio Grande surface water used for irrigation, ii) municipal discharges, and iii) irrigation with the reclaimed city water. However, natural upwelling is also probably responsible for the salinity increase near some fault areas, primarily due to water-rock interactions such as dissolution of evaporites within the deeper basin. In some areas of the Mesilla Bolson, fault systems act as conduits

  2. Study on groundwater flow system in a sedimentary rock area. Case study for the Yoro river basin, Chiba Prefecture

    International Nuclear Information System (INIS)

    Sakai, Ryutaro; Munakata, Masahiro; Kimura, Hideo

    2007-01-01

    In the safety assessment for a geological disposal of long-lived radioactive waste such as high-level radioactive waste and TRU waste etc, it is important to estimate radionuclide migration to human society associated with groundwater flow. Groundwater flow systems for many domestic areas including Tono Mine, Kamaishi Mine and Horonobe district have been studied, but deep groundwater flow circumstances, and mixing between deep groundwater and shallow groundwater flow system are not well understood. Japan Atomic Energy Agency (JAEA) has started to investigate a sedimentary rock area in the Yoro river basin, in Chiba Prefecture, where the topographic and geological features are relatively simple for mathematical modeling, and hydraulic data as well as data from river and well water are available. Hydro-chemical conditions of the regional groundwater were discussed based on temperature, chemical compositions, isotopic ratios of hydrogen and oxygen, and the isotopic age of radioactive carbon for water samples collected from wells, rivers and springs in the Yoro river basin. It was found that the groundwater system in this basin consists of types of water: Ca-HCO 3 type water, Na-HCO 3 type water and NaCl type water. The Ca-HCO 3 type water is meteoric water cultivated several thousand years or after, the Na-HCO 3 type water is meteoric water cultivated under cold climates several to twenty thousand years ago. The NaCl type water is fossil brine water formed twenty thousand years ago. It was also observed that the Na-HCO 3 type water upwelled at the surface originates from GL-200m to -400m. This observation indicates that the Na-HCO 3 type water upwelled through the Ca-HCO 3 type water area with the both waters partially mixed. (author)

  3. Biogeochemical factors affecting the presence of 210Po in groundwater

    International Nuclear Information System (INIS)

    Seiler, Ralph L.; Stillings, Lisa L.; Cutler, Nichole; Salonen, Laina; Outola, Iisa

    2011-01-01

    Research highlights: → 210 Po activities in numerous domestic wells in Fallon NV exceed 500 mBq/L. → 210 Po levels in sediment are not the primary determinant on levels in groundwater. → δ 34 S measurements indicate SO 4 reduction occurred in all 210 Po contaminated wells. → 210 Po contaminated wells are anoxic, have high pH and low Ca. → Po mobilization probably involves an anaerobic S cycle in which H 2 S dissolves MnO 2 . - Abstract: The discovery of natural 210 Po enrichment at levels exceeding 500 mBq/L in numerous domestic wells in northern Nevada, USA, led to a geochemical investigation of the processes responsible for its mobilization. 210 Po activities in 63 domestic and public-supply wells ranged from below 1 mBq/L to 6590 ± 590 mBq/L, among the highest reported levels in the USA. There is little spatial or depth variability in 210 Pb activity in study-area sediments and mobilization of a few percent of the 210 Po in the sediments would account for all of the 210 Po in water. Stable-isotope measurements indicate SO 4 reduction has occurred in all 210 Po contaminated wells. Sulfide species are not accumulating in the groundwater in much of Lahontan Valley, probably because of S cycling involving microbial SO 4 reduction, abiotic oxidation of H 2 S to S 0 by Mn(IV), followed by microbial disproportionation of S 0 to H 2 S and SO 4 . The high pH, Ca depletion, MnCO 3 saturation, and presence of S 0 in Lahontan Valley groundwater may be consequences of the anaerobic S cycling. Consistent with data from naturally-enriched wells in Florida, 210 Po activities begin to decrease when aqueous sulfide species begin to accumulate. This may be due to formation and precipitation of PoS, however, Eh-pH diagrams suggest PoS would not be stable in study-area groundwater. An alternative explanation for the study area is that H 2 S accumulation begins when anaerobic S cycling stops because Mn oxides are depleted and their reduction is no longer releasing 210 Po

  4. Potential hydrologic characterization wells in Amargosa Valley

    International Nuclear Information System (INIS)

    Lyles, B.; Mihevc, T.

    1994-09-01

    More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley

  5. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China

    Science.gov (United States)

    Zhang, Qianqian; Sun, Jichao; Liu, Jingtao; Huang, Guanxing; Lu, Chuan; Zhang, Yuxi

    2015-11-01

    Nitrate contamination of groundwater has become an environmental problem of widespread concern in China. We collected 899 groundwater samples from a rapidly urbanized area, in order to identify the main sources and driving mechanisms of groundwater nitrate contamination. The results showed that the land use has a significant effect on groundwater nitrate concentration (P population growth. This study revealed that domestic wastewater and industrial wastewater were the main sources of groundwater nitrate pollution. Therefore, the priority method for relieving groundwater nitrate contamination is to control the random discharge of domestic and industrial wastewater in regions undergoing rapid urbanization. Capsule abstract. The main driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth.

  6. Domestic Violence during Pregnancy in India

    Science.gov (United States)

    Mahapatro, Meerambika; Gupta, R. N.; Gupta, Vinay; Kundu, A. S.

    2011-01-01

    Domestic violence can result in many negative health consequences for women's health and well-being. Studies on domestic violence illustrate that abused women in various settings had increased health problems such as injury, chronic pain, gastrointestinal, and gynecological signs including sexually transmitted diseases, depression, and…

  7. Empowering Women with Domestic Violence Experience

    Science.gov (United States)

    Anczewska, Marta; Roszczynska-Michta, Joanna; Waszkiewicz, Justyna; Charzynska, Katarzyna; Czabala, Czeslaw

    2012-01-01

    It is generally held that it has been only recently that domestic violence gained appropriate attention as a major social problem. However several approaches, drawn from different theories are applicable in explaining the origin of this negative phenomenon. It is well recognized that trauma of domestic violence has destructive impact on somatic…

  8. Lead poisoning in domestic ducks

    Energy Technology Data Exchange (ETDEWEB)

    Rac, R; Crisp, C S

    1954-05-01

    The death of wild ducks, due to the ingestion of lead shop, occurs frequently and is well documented. This paper discusses the death of domestic ducks due to the ingestion of lead. It describes the symptoms, and pathology of the lead poisoning of a clutch of 11 ducklings which were being raised on a farm in Australia. 3 references, 1 table.

  9. Pollutants transport and distribution studies in groundwater system by nuclear, geophysics and hydrogeochemical methods

    International Nuclear Information System (INIS)

    Mohd Tadza Abdul Rahman; Daud Mohamad

    2000-01-01

    In Malaysia, the most common means of managing municipal refuse is by dumping it indiscriminately in piles on the selected open land. Leachate that is formed primarily in association with precipitation that infiltrates through the refuse normally results in the migration of leachate into underlying groundwater zone. The study of pollutant transport derived from domestic refuse and their impact on water quality in groundwater system has been performed in a selected landfill site at Gemencheh, Negeri Sembilan. The study involved the determination of flow velocity and flow direction of pollutants by nuclear techniques and a detail survey by geophysical method as well as hydrogeochemical approach as a supporting evidence of pollution occurrence. Hydrogeochemical approach involved the determination of pollutants species such as chloride and nitrate. A network of about 30 observation points had been identified and sampled. The results of the study have shown that the pollutants were concentrated at the middle of the dumping site and transported with the flow velocity between 0.2-15.4 metres per day toward northeast direction. Furthermore, the study established that the municipal or domestic landfalls are considered as one of the potential sources of groundwater pollution in Malaysia

  10. Multi-perpetrator domestic violence.

    Science.gov (United States)

    Salter, Michael

    2014-04-01

    A significant proportion of reports of domestic violence against women involve multiple perpetrators. Although the number of perpetrators has been consistently identified as a measure of abuse severity, only a minority of studies of domestic violence examine the role of multiple offenders. Data on multi-perpetrator domestic violence (MDV) is frequently removed from analysis in domestic violence studies, or multi-perpetrator incidents are treated as single-perpetrator incidents. However, the available research links MDV to negative mental and physical health outcomes, intimate partner homicide, homelessness among women, and severe mental illness and suicidality. This article reviews the available prevalence data on MDV and draws together research on the contexts in which MDV takes place. It highlights two groups that are particularly vulnerable to MDV: (1) girls and women partnered to members of gangs and organized crime groups and (2) girls and women in some ethnic minority communities. While discussions of honor in relation to domestic violence are often racialized in Western media, this article highlights the cross-cultural role of masculine honor in collective violence against women in the working class and impoverished communities of majority cultures as well as in migrant and ethnic minority communities. It is clear that such complex forms of violence present a range of challenges for intervention and treatment and the article emphasizes the need for specialized and coordinated modes of investigation, support, and care.

  11. Assessment of Petroleum Leakage in Groundwater of the Abadan Refinery

    Directory of Open Access Journals (Sweden)

    Seyed Reza Shadizadeh

    2010-06-01

    Full Text Available Knowledge of petroleum leakage at oil refineries is vital for environmental study of water and soil pollution. Abadan Refinery is located between the Arvandrud and Bahmanshir rivers in the highly populated area of Abadan city. These rivers supply domestic, industrial, and agricultural water toAbadancity. During the war betweenIranandIraq, enormous volumes of oil and petroleum products leaked from storage tanks and pipelines at Abadan Refinery into the surrounding environment. The resulting pollution is a serious threat and a growing environmental concern for the region. In this work, twenty boreholes were dug to investigate petroleum leaks into the surrounding area both during and after the war. The thickness of petroleum floating on underground waters at the refinery was measured by sampling underground water over a period of one year along with measuring the piezometric heads of groundwater monitoring wells. Also, groundwater movement pattern at Abadan Refinery was determined by measuring the water table in each well over the same period. The results of sampling indicate that oil leaks were observed in just two wells; namely, wells No.3 and No.11. The results also show that the greatest portion of the oil spill in underground layers at Abadan Refinery was absorbed into clay soil.

  12. HANFORD GROUNDWATER REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    geographically dispersed community is united in its desire to protect the Columbia River and have a voice in Hanford's future. This paper presents the challenges, and then discusses the progress and efforts underway to reduce the risk posed by contaminated groundwater at Hanford. While Hanford groundwater is not a source of drinking water on or off the Site, there are possible near-shore impacts where it flows into the Columbia River. Therefore, this remediation is critical to the overall efforts to clean up the Site, as well as protect a natural resource.

  13. Groundwater use in Pakistan: opportunities and limitations

    International Nuclear Information System (INIS)

    Bhutta, M.N.

    2005-01-01

    Groundwater potential in the Indus Basin is mainly due to recharge from irrigation system, rivers and rainfall. Its quality and quantity varies spatially and temporally. However, the potential is linked with the surface water supplies. Irrigated agriculture is the major user of groundwater. Annual recharge to groundwater in the basin is estimated as 68 MAF. But 50 percent of the area has marginal to hazardous groundwater quality. Existing annual groundwater pumpage is estimated as 45 MAF (55 BCM). More than 13 MAF mainly of groundwater is lost as non-beneficial ET losses. Groundwater contributes 35 percent of total agricultural water requirements in the country. Annual cropping intensities have increased from 70% to 150% due to groundwater use. Increase in crop yield due to groundwater use has been observed 150-200. percent. Total investment on private tube wells has been made more than Rs.25.0 billion. In the areas where farmers are depending more on groundwater. mining of groundwater has been observed. Population pressure, inadequate supply of canal water and development of cheap local tub well technology have encouraged farmers to invest in the groundwater development. Deterioration of groundwater has also been observed due to excessive exploitation. The available information about the private tube wells is insufficient for different areas. Although during the past decade the growth of tube wells was tremendous but was not reflected accordingly in the statistics. Monitoring of groundwater quality is not done systematically and adequately. It is very difficult to manage a resource for which adequate information is not available. The present scenario of groundwater use is not sustainable and therefore certain measures are needed to be taken. It is recommended to. have a systematic monitoring of groundwater. For the sustainable use of groundwater, it is recommended to manage the demand of water i.e. grow more crops with less water. To achieve high productivity of

  14. The spatial and seasonal variability of the groundwater chemistry and quality in the exploited aquifer in the Daxing District, Beijing, China.

    Science.gov (United States)

    Zhai, Yuanzheng; Lei, Yan; Zhou, Jun; Li, Muzi; Wang, Jinsheng; Teng, Yanguo

    2015-02-01

    The aquifer in the Beijing Plain is intensively used as a primary source to meet the growing needs of the various sectors (drinking, agricultural, and industrial purposes). The analysis of groundwater chemical characteristics provides much important information useful in water resources management. To characterize the groundwater chemistry, reveal its spatial and seasonal variability, and determine its quality suitability for domestic and agricultural uses, a total of 200 groundwater samples were collected in June and October 2012 from 100 exploited wells in Daxing District, Beijing, China. All of the indices (39 items) listed in the Quality Standard for Groundwater of China (QSGC) as well as eight additional common parameters were tested and analyzed for all samples, based on which research target was achieved. The seasonal effect on the groundwater chemistry and quality was very slight, whereas the spatial changes were very obvious. The aquifer is mainly dominated by HCO3-Ca·Mg-type water. Of the 39 quality indices listed in QSGC, 28 indices of all of the samples for the 2 months can be classified into the excellent level, whereas the remaining 11 indices can be classified into different levels with the total hardness, NO3, NO2, and Fe being the worst, mainly distributed in the residential and industrial land. According to the general quality index, the groundwater can be classified from good to a relatively poor level, mainly from southeast to northwest. Furthermore, the relatively poor-level area in the northwest expands to the southeast more than in the past years, to which people should pay attention because this reverse spatial distribution relative to the natural law indicates an obvious, anthropogenic impact on the groundwater. In addition, the groundwater in this area is generally very suitable for irrigation year-round. Nevertheless, we recommend performing agricultural water-saving measures for the sustainable development of water and urbanization

  15. Contamination of groundwater by the fumigants ethylene dibromide (EDB) and dibromochloropropane (DBCP) near McBee, South Carolina

    Science.gov (United States)

    Landmeyer, James E.; Campbell, Bruce G.

    2010-01-01

    McBee is a small town of about 700 people located in Chesterfield County, South Carolina, in the Sandhills region of the upper Coastal Plain. The halogenated organic compounds ethylene dibromide (EDB) and dibromochloropropane (DBCP) have been detected in several public and domestic supply and irrigation wells since 2002 at concentrations above their U.S. Environmental Protection Agency Maximum Contaminant Limits of 0.05 and 0.2 microgram per liter (µg/L), respectively. The source(s) and release histories of EDB and DBCP to local groundwater are unknown, but believed to be related to their historical use between the 1940s and their ban in the late 1970s as fumigants to control nematode damage in peach orchards. However, gasoline and jet-fuel supplies also contained EDB and are an alternative source of contamination to groundwater. The detection of EDB and DBCP in water wells has raised health concerns because groundwater is the sole source of water supply in the McBee area. In April 2010, forensic, geochemical-based investigation was initiated by the U.S. Geological Survey in cooperation with the Alligator Rural Water & Sewer Company to provide additional data regarding EDB and DBCP in local groundwater. The investigation includes an assessment of the use, release, and disposal history of EDB and DBCP in the area, the distribution of EDB and DBCP concentrations in the unsaturated zone, and transport and fate in groundwater.

  16. Sources and behaviour of nitrogen compounds in the shallow groundwater of agricultural areas (Poyang Lake basin, China).

    Science.gov (United States)

    Soldatova, Evgeniya; Guseva, Natalia; Sun, Zhanxue; Bychinsky, Valeriy; Boeckx, Pascal; Gao, Bai

    2017-07-01

    Nitrogen contamination of natural water is a typical problem for various territories throughout the world. One of the regions exposed to nitrogen pollution is located in the Poyang Lake basin. As a result of agricultural activity and dense population, the shallow groundwater of this area is characterised by a high concentration of nitrogen compounds, primarily NO 3 - , with the concentration varying from 0.1mg/L to 206mg/L. Locally, high ammonium content occurs in the shallow groundwater with low reduction potential Eh (shallow groundwater of the Poyang Lake basin has Eh>100mV. To identify sources of nitrogen species and the factors that determine their behaviour, the dual stable isotope approach (δ 15 N and δ 18 О) and physical-chemical modelling were applied. Actual data were collected by sampling shallow groundwater from domestic water supply wells around the lake. The δ 18 О values from -4.1‰ to 13.9‰ with an average value of 5.3 permille indicate a significant influence of nitrification on nitrogen balance. The enrichment of nitrate with the 15 N isotope indicates that manure and domestic sewage are the principal sources of nitrogen compounds. Inorganic nitrogen speciation and thermodynamic calculations demonstrate the high stability of nitrate in the studied groundwater. Computer simulation and field observations indicate the reducing conditions formed under joint effects of anthropogenic factors and appropriate natural conditions, such as the low-level topography in which decreased water exchange rate can occur. The simulation also demonstrates the growth in pH of the groundwater as a consequence of fertilisation, which, in turn, conduced to the clay mineral formation at lower concentrations of aqueous clay-forming components than the ones under the natural conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Implementing the Prepaid Smart Meter System for Irrigated Groundwater Production in Northern China: Status and Problems

    Directory of Open Access Journals (Sweden)

    Xiaowei Wang

    2017-05-01

    Full Text Available To reduce the gap between groundwater demand and supply caused by agricultural groundwater over-exploitation, the Prepaid Smart Meter System (PSMS is being strongly implemented by the Chinese government in northern China. This study reports the analysis and results of PSMS field surveys in six typical provinces in northern China as well as domestic literature reviews. Based on the architecture and implementation policies of the system, the implementation differences between areas and the influencing factors were analyzed, particularly the acknowledgment of farmers, the installation proportion of tube wells, the social benefits. Great achievements have been gained in the implementation, and the management targets have been achieved, including accurately metering overall irrigation groundwater production, assisting in the total amount control and quota management, reducing groundwater exploitation, and improving water use efficiency. However, shortcomings remain in the implementation process, such as single initial investment channels, imperfect policy system construction, a lack of retrieving and analyzing data, and the unbalanced development between areas. Countermeasures and suggestions for these problems are discussed in this article.

  18. Managed aquifer recharge by a check dam to improve the quality of fluoride-rich groundwater: a case study from southern India.

    Science.gov (United States)

    Gowrisankar, G; Jagadeshan, G; Elango, L

    2017-04-01

    In many regions around the globe, including India, degradation in the quality of groundwater is of great concern. The objective of this investigation is to determine the effect of recharge from a check dam on quality of groundwater in a region of Krishnagiri District of Tamil Nadu State, India. For this study, water samples from 15 wells were periodically obtained and analysed for major ions and fluoride concentrations. The amount of major ions present in groundwater was compared with the drinking water guideline values of the Bureau of Indian Standards. With respect to the sodium and fluoride concentrations, 38% of groundwater samples collected was not suitable for direct use as drinking water. Suitability of water for agricultural use was determined considering the electrical conductivity, sodium adsorption ratio, sodium percentage, permeability index, Wilcox and United States Salinity Laboratory diagrams. The influence of freshwater recharge from the dam is evident as the groundwater in wells nearer to the check dam was suitable for both irrigation and domestic purposes. However, the groundwater away from the dam had a high ionic composition. This study demonstrated that in other fluoride-affected areas, the concentration can be reduced by dilution with the construction of check dams as a measure of managed aquifer recharge.

  19. Hoe Creek groundwater restoration, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Renk, R.R.; Crader, S.E.; Lindblom, S.R.; Covell, J.R.

    1990-01-01

    During the summer of 1989, approximately 6.5 million gallons of contaminated groundwater were pumped from 23 wells at the Hoe Creek underground coal gasification site, near Gillette, Wyoming. The organic contaminants were removed using activated carbon before the water was sprayed on 15.4 acres at the sites. Approximately 2647 g (5.8 lb) of phenols and 10,714 g (23.6 lb) of benzene were removed from the site aquifers. Phenols, benzene, toluene, ethylbenzene, and naphthalene concentrations were measured in 43 wells. Benzene is the only contaminant at the site exceeds the federal standard for drinking water (5 {mu}g/L). Benzene leaches into the groundwater and is slow to biologically degrade; therefore, the benzene concentration has remained high in the groundwater at the site. The pumping operation affected groundwater elevations across the entire 80-acre site. The water levels rebounded quickly when the pumping operation was stopped on October 1, 1989. Removing contaminated groundwater by pumping is not an effective way to clean up the site because the continuous release of benzene from coal tars is slow. Benzene will continue to leach of the tars for a long time unless its source is removed or the leaching rate retarded through mitigation techniques. The application of the treated groundwater to the surface stimulated plant growth. No adverse effects were noted or recorded from some 60 soil samples taken from twenty locations in the spray field area. 20 refs., 52 figs., 8 tabs.

  20. Hydrogeologic setting, conceptual groundwater flow system, and hydrologic conditions 1995–2010 in Florida and parts of Georgia, Alabama, and South Carolina

    Science.gov (United States)

    Bellino, Jason C.; Kuniansky, Eve L.; O'Reilly, Andrew M.; Dixon, Joann F.

    2018-05-04

    The hydrogeologic setting and groundwater flow system in Florida and parts of Georgia, Alabama, and South Carolina is dominated by the highly transmissive Floridan aquifer system. This principal aquifer is a vital source of freshwater for public and domestic supply, as well as for industrial and agricultural uses throughout the southeastern United States. Population growth, increased tourism, and increased agricultural production have led to increased demand on groundwater from the Floridan aquifer system, particularly since 1950. The response of the Floridan aquifer system to these stresses often poses regional challenges for water-resource management that commonly transcend political or jurisdictional boundaries. To help water-resource managers address these regional challenges, the U.S. Geological Survey (USGS) Water Availability and Use Science Program began assessing groundwater availability of the Floridan aquifer system in 2009.The current conceptual groundwater flow system was developed for the Floridan aquifer system and adjacent systems partly on the basis of previously published USGS Regional Aquifer-System Analysis (RASA) studies, specifically many of the potentiometric maps and the modeling efforts in these studies. The Floridan aquifer system extent was divided into eight hydrogeologically distinct subregional groundwater basins delineated on the basis of the estimated predevelopment (circa 1880s) potentiometric surface: (1) Panhandle, (2) Dougherty Plain-Apalachicola, (3) Thomasville-Tallahassee, (4) Southeast Georgia-Northeast Florida-South South Carolina, (5) Suwannee, (6) West-central Florida, (7) East-central Florida, and (8) South Florida. The use of these subregions allows for a more detailed analysis of the individual basins and the groundwater flow system as a whole.The hydrologic conditions and associated groundwater budget were updated relative to previous RASA studies to include additional data collected since the 1980s and to reflect the

  1. Hydrogeologic framework and selected components of the groundwater budget for the upper Umatilla River Basin, Oregon

    Science.gov (United States)

    Herrera, Nora B.; Ely, Kate; Mehta, Smita; Stonewall, Adam J.; Risley, John C.; Hinkle, Stephen R.; Conlon, Terrence D.

    2017-05-31

    Umatilla River Basin during 1951–2010 is about 9.6 inches per year (in/yr). Annual recharge from precipitation for water year 2010 ranged from 3 in. in the lowland area to about 30 in. in the Blue Mountains. Using Kahle and others (2011) data and methods from the Columbia Plateau regional model, average annual recharge from irrigation is estimated to be about 2.2 in/yr for the 13 square miles of irrigated land in the upper Umatilla River Basin.Groundwater discharges to streams throughout the year and is a large component of annual streamflow in the upper Umatilla River Basin. Upward vertical hydraulic gradients near the Umatilla River indicate the potential for groundwater discharge. Groundwater discharge to the Umatilla River generally occurs in the upper part of the basin, upstream from the main stem.Groundwater development in the upper Umatilla River Basin began sometime after 1950 (Davies-Smith and others, 1988; Gonthier and Bolke, 1991). By water year 2010, groundwater use in the upper Umatilla River Basin was approximately 11,214 acre-feet (acre-ft). Total groundwater withdrawals for the study area were estimated at 7,575 acre-ft for irrigation, 3,173 acre-ft for municipal use, and 466 acre-ft for domestic use.Total groundwater flow into or from the study area depends locally on geology and hydraulic head distribution. Estimates of subsurface flow were calculated using the U.S. Geological Survey Columbia Plateau regional groundwater flow model. Net flux values range from 25,000 to 27,700 acre-ft per year and indicate that groundwater is moving out of the upper Umatilla River Basin into the lower Umatilla River Basin.Water level changes depend on storage changes within an aquifer, and storage changes depend on the storage properties of the aquifer, as well as recharge to or discharge from the aquifer. Groundwater level data in the upper Umatilla River Basin are mostly available from wells in Columbia River basalt units, which indicate areas of long-term water level

  2. Rapid groundwater-related land subsidence in Yemen observed by multi-temporal InSAR

    KAUST Repository

    Abdullin, Ayrat; Xu, Wenbin; Kosmicki,  Maximillian; Jonsson, Sigurjon

    2015-01-01

    Several basins in Yemen are suffering from a rapid drawdown of groundwater, which is the most important water source for agricultural irrigation, industry and domestic use. However, detailed geodetic measurements in the region have been lacking

  3. Hydrochemical analysis of groundwater using multivariate statistical methods - The Volta region, Ghana

    Science.gov (United States)

    Banoeng-Yakubo, B.; Yidana, S.M.; Nti, E.

    2009-01-01

    Q and R-mode multivariate statistical analyses were applied to groundwater chemical data from boreholes and wells in the northern section of the Volta region Ghana. The objective was to determine the processes that affect the hydrochemistry and the variation of these processes in space among the three main geological terrains: the Buem formation, Voltaian System and the Togo series that underlie the area. The analyses revealed three zones in the groundwater flow system: recharge, intermediate and discharge regions. All three zones are clearly different with respect to all the major chemical parameters, with concentrations increasing from the perceived recharge areas through the intermediate regions to the discharge areas. R-mode HCA and factor analysis (using varimax rotation and Kaiser Criterion) were then applied to determine the significant sources of variation in the hydrochemistry. This study finds that groundwater hydrochemistry in the area is controlled by the weathering of silicate and carbonate minerals, as well as the chemistry of infiltrating precipitation. This study finds that the ??D and ??18O data from the area fall along the Global Meteoric Water Line (GMWL). An equation of regression derived for the relationship between ??D and ??18O bears very close semblance to the equation which describes the GMWL. On the basis of this, groundwater in the study area is probably meteoric and fresh. The apparently low salinities and sodicities of the groundwater seem to support this interpretation. The suitability of groundwater for domestic and irrigation purposes is related to its source, which determines its constitution. A plot of the sodium adsorption ratio (SAR) and salinity (EC) data on a semilog axis, suggests that groundwater serves good irrigation quality in the area. Sixty percent (60%), 20% and 20% of the 67 data points used in this study fall within the medium salinity - low sodicity (C2-S1), low salinity -low sodicity (C1-S1) and high salinity - low

  4. Single well techniques

    International Nuclear Information System (INIS)

    Drost, W.

    1983-01-01

    The single well technique method includes measurement of parameters of groundwater flow in saturated rock. For determination of filtration velocity the dilution of radioactive tracer is measured, for direction logging the collimeter is rotated in the probe linked with the compass. The limiting factor for measurement of high filtration velocities is the occurrence of turbulent flow. The single well technique is used in civil engineering projects, water works and subsurface drainage of liquid waste from disposal sites. The radioactive tracer method for logging the vertical fluid movement in bore-holes is broadly used in groundwater survey and exploitation. (author)

  5. Criminal aspects domestic violence

    OpenAIRE

    Smetanová, Kristina

    2013-01-01

    Smetanová, Kristina. Criminal aspects of domestic violence The topic of this thesis is the criminal aspects of domestic violence. The aim of the thesis is to describe this dangerous and complicated social problem and focus on outlining the possibilities of protection under Czech criminal law. The thesis consists of eight chapters. The first chapter explains what the domestic violence is and which sources, types and characters does it have.The second chapter shows who can be the violent person...

  6. Domestic violence : evidence review.

    OpenAIRE

    Westmarland, Nicole; Thorlby, Katie; Wistow, Jane; Gadd, David

    2014-01-01

    While domestic violence is high on the public policy agenda in the UK, successive reviews have highlighted policing problems. A recent HMIC report found domestic violence is not policed at the same level as other offences and identified a catalogue of policing failures that have a long history of recurrence. With domestic violence accounting for around a large proportion of violent crime incidents reported to the police, and the majority of all female homicides (Office for National Statistics...

  7. Physicians and domestic violence

    OpenAIRE

    Joslin, Jonathan

    1994-01-01

    Domestic violence, spouse abuse, and battering all refer to the victimization of a person with whom the abuser has or has had an intimate relationship. Domestic violence may take the form of physical, sexual and psychological abuse, is generally repeated, and often escalates within relationships. Most evidence indicates that domestic violence is predominantly perpetrated by men against women. Some evidence suggests that women are just as likely to use violence against male partners as men are...

  8. Domestic violence against children

    OpenAIRE

    Mihić Biljana D.

    2002-01-01

    In this paper the author is analysing definitions and basic notions related to domestic violence against children, as one of the most serious forms of violence. The special chapter deals with effects of violence against children and causes of domestic violence against them. Also, the author is analysing different forms of social reaction and considering the problem of legal regulation of mandatory reporting domestic violence against children.

  9. De-domestication

    DEFF Research Database (Denmark)

    Gamborg, Christian; Gemmen, Bart; Christiansen, Stine Billeschou

    2010-01-01

    as wild or non-wild and the effect this has on questions about how they should be treated. It also concerns the value of nature, and the kind and degree of nature management considered appropriate. The paper first describes actual de-domestication practices and considers the character of human duties...... to animals in process of de-domestication. Secondly, the paper explores the implications of de-domestication for nature management, focusing on notions of naturalness and wildness. Finally, because the current division of ethical topics, with its dependence upon whether animals and nature are domesticated...

  10. Groundwater quality in the shallow aquifers of the Monterey Bay, Salinas Valley, and adjacent highland areas, Southern Coast Ranges, California

    Science.gov (United States)

    Burton, Carmen

    2018-05-30

    The Monterey-Salinas Shallow Aquifer study unit covers approximately 7,820 square kilometers (km2) in Santa Cruz, Monterey, and San Luis Obispo Counties in the Central Coast Hydrologic Region of California. The study unit was divided into four study areas—Santa Cruz, Pajaro Valley, Salinas Valley, and Highlands. More than 75 percent of the water used for drinking-water supply in the Central Coast Hydrologic Region of California is groundwater, and there are more than 8,000 well driller’s logs for domestic wells (California Department of Water Resources, 2013).

  11. Environmental quality assessment of groundwater resources in Al Jabal Al Akhdar, Sultanate of Oman

    Science.gov (United States)

    Al-Kalbani, Mohammed Saif; Price, Martin F.; Ahmed, Mushtaque; Abahussain, Asma; O'Higgins, Timothy

    2017-11-01

    The research was conducted to assess the quality of groundwater resources of Al Jabal Al Akhdar, Oman. 11 drinking water sources were sampled during summer and winter seasons during 2012-2013 to evaluate their physico-chemical quality indicators; and assess their suitability for drinking and other domestic purposes. Sample collection, handling and processing followed the standard methods recommended by APHA and analyzed in quality assured laboratories using appropriate analytical methods and instrumental techniques. The results show that the quality parameters in all drinking water resources are within the permissible limits set by Omani and WHO standards; and the drinking water quality index is good or medium in quality based on NFS-WQI classification criteria, indicating their suitability for human consumption. There is an indication of the presence of high nitrate concentrations in some groundwater wells, which require more investigations and monitoring program to be conducted on regular basis to ensure good quality water supply for the residents in the mountain. The trilinear Piper diagram shows that most of the drinking water resources of the study area fall in the field of calcium and bicarbonate type with some magnesium bicarbonate type indicating that most of the major ions are natural in origin due to the geology of the region. This study is a first step towards providing indicators on groundwater quality of this fragile mountain ecosystem, which will be the basis for future planning decisions on corrective demand management measures to protect groundwater resources of Al Jabal Al Akhdar.

  12. Geoelectrical mapping and groundwater contamination

    Science.gov (United States)

    Blum, Rainer

    Specific electrical resistivity of near-surface materials is mainly controlled by the groundwater content and thus reacts extremely sensitive to any change in the ion content. Geoelectric mapping is a well-established, simple, and inexpensive technique for observing areal distributions of apparent specific electrical resistivities. These are a composite result of the true resistivities in the underground, and with some additional information the mapping of apparent resistivities can help to delineate low-resistivity groundwater contaminations, typically observed downstream from sanitary landfills and other waste sites. The presence of other good conductors close to the surface, mainly clays, is a serious noise source and has to be sorted out by supporting observations of conductivities in wells and geoelectric depth soundings. The method may be used to monitor the extent of groundwater contamination at a specific time as well as the change of a contamination plume with time, by carrying out repeated measurements. Examples for both are presented.

  13. Groundwater-quality data for the Madera/Chowchilla–Kings shallow aquifer study unit, 2013–14: Results from the California GAMA Program

    Science.gov (United States)

    Shelton, Jennifer L.; Fram, Miranda S.

    2017-02-03

    Groundwater quality in the 2,390-square-mile Madera/Chowchilla–Kings Shallow Aquifer study unit was investigated by the U.S. Geological Survey from August 2013 to April 2014 as part of the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment Program’s Priority Basin Project. The study was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality in the shallow aquifer systems of the Madera, Chowchilla, and Kings subbasins of the San Joaquin Valley groundwater basin. The shallow aquifer system corresponds to the part of the aquifer system generally used by domestic wells and is shallower than the part of the aquifer system generally used by public-supply wells. This report presents the data collected for the study and a brief preliminary description of the results.Groundwater samples were collected from 77 wells and were analyzed for organic constituents, inorganic constituents, selected isotopic and age-dating tracers, and microbial indicators. Most of the wells sampled for this study were private domestic wells. Unlike groundwater from public-supply wells, the groundwater from private domestic wells is not regulated for quality in California and is rarely analyzed for water-quality constituents. To provide context for the sampling results, however, concentrations of constituents measured in the untreated groundwater were compared with regulatory and non-regulatory benchmarks established for drinking-water quality by the U.S. Environmental Protection Agency, the State of California, and the U.S. Geological Survey.Of the 319 organic constituents assessed in this study (90 volatile organic compounds and 229 pesticides and pesticide degradates), 17 volatile organic compounds and 23 pesticides and pesticide degradates were detected in groundwater samples; concentrations of all but 2 were less than the respective benchmarks. The fumigants 1,2-dibromo-3-chloropropane (DBCP

  14. Major gene mutations and domestication of plants

    International Nuclear Information System (INIS)

    Ashri, A.

    1989-01-01

    From the approximately 200,000 species of flowering plants known, only about 200 have been domesticated. The process has taken place in many regions over long periods. At present there is great interest in domesticating new species and developing new uses for existing ones in order to supply needed food, industrial raw materials, etc. It is proposed that major gene mutations were important in domestication; many key characters distinguishing cultivated from related wild species are controlled by one or very few major genes. The deliberate effort to domesticate new species requires at least the following: identification of needs and potential sources, establishment of suitable niches, choice of taxa to be domesticated, specification of the desired traits and key characters to be modified, as well as the potential role of induced mutations. (author). 14 refs

  15. Distribution of Isotopic and Environmental Tracers in Groundwater, Northern Ada County, Southwestern Idaho

    Science.gov (United States)

    Adkins, Candice B.; Bartolino, James R.

    2010-01-01

    Residents of northern Ada County, Idaho, depend on groundwater for domestic and agricultural uses. The population of this area is growing rapidly and groundwater resources must be understood for future water-resource management. The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, used a suite of isotopic and environmental tracers to gain a better understanding of groundwater ages, recharge sources, and flowpaths in northern Ada County. Thirteen wells were sampled between September and October 2009 for field parameters, major anions and cations, nutrients, oxygen and hydrogen isotopes, tritium, radiocarbon, chlorofluorocarbons, and dissolved gasses. Well depths ranged from 30 to 580 feet below land surface. Wells were grouped together based on their depth and geographic location into the following four categories: shallow aquifer, intermediate/deep aquifer, Willow Creek aquifer, and Dry Creek aquifer. Major cations and anions indicated calcium-bicarbonate and sodium-bicarbonate water types in the study area. Oxygen and hydrogen isotopes carried an oxygen-18 excess signature, possibly indicating recharge from evaporated sources or water-rock interactions in the subsurface. Chlorofluorocarbons detected modern (post-1940s) recharge in every well sampled; tritium data indicated modern water (post-1951) in seven, predominantly shallow wells. Nutrient concentrations tended to be greater in wells signaling recent recharge based on groundwater age dating, thus confirming the presence of recent recharge in these wells. Corrected radiocarbon results generated estimated residence times from modern to 5,100 years before present. Residence time tended to increase with depth, as confirmed by all three age-tracers. The disagreement among residence times indicates that samples were well-mixed and that the sampled aquifers contain a mixture of young and old recharge. Due to a lack of data, no conclusions about sources of recharge could be drawn

  16. Tracers Reveal Recharge Elevations, Groundwater Flow Paths and Travel Times on Mount Shasta, California

    Directory of Open Access Journals (Sweden)

    Elizabeth Peters

    2018-01-01

    Full Text Available Mount Shasta (4322 m is famous for its spring water. Water for municipal, domestic and industrial use is obtained from local springs and wells, fed by annual snow melt and sustained perennially by the groundwater flow system. We examined geochemical and isotopic tracers in samples from wells and springs on Mount Shasta, at the headwaters of the Sacramento River, in order to better understand the hydrologic system. The topographic relief in the study area imparts robust signatures of recharge elevation to both stable isotopes of the water molecule (δ18O and δD and to dissolved noble gases, offering tools to identify recharge areas and delineate groundwater flow paths. Recharge elevations determined using stable isotopes and noble gas recharge temperatures are in close agreement and indicate that most snowmelt infiltrates at elevations between 2000 m and 2900 m, which coincides with areas of thin soils and barren land cover. Large springs in Mt Shasta City discharge at an elevation more than 1600 m lower. High elevation springs (>2000 m yield very young water (<2 years while lower elevation wells (1000–1500 m produce water with a residence time ranging from 6 years to over 60 years, based on observed tritium activities. Upslope movement of the tree line in the identified recharge elevation range due to a warming climate is likely to decrease infiltration and recharge, which will decrease spring discharge and production at wells, albeit with a time lag dependent upon the length of groundwater flow paths.

  17. Development of Operation Management Model of Groundwater According to Nitrate Contamination

    Directory of Open Access Journals (Sweden)

    Elahe Pourfarahabadi

    2014-10-01

    Full Text Available Nitrate is one of the most important groundwater pollutants with such different sources as chemical fertilizers, pesticides, or domestic and industrial wastewater. In this research, the optimal operation of groundwater wells in aquifers with nitrate pollution is investigated using simulation and optimization techniques. For the simulation part, an artificial neural network (ANN model is developed, and for the optimization model, the particle swarm optimization (PSO is used. Considering the high nitrate concentration in Karaj area and its increase in recent years, the northern part of this aquifer is selected as a case study to apply the proposed methodology. A seasonal ANN model is developed with input layers including well discharge in the current and previous seasons, nitrate concentration in the previous season, aquifer thickness, and well coordinates, all selected based on sensitivity analysis. The results of PSO algorithm shows that nitrate concentration can be controlled by increasing or decreasing well discharge in different zones. Therefore, it is possible to reduce nitrate concentration in critical areas by changing the spatial distribution of groundwater extractions in different zones keeping the total discharge constant.

  18. Assessment of the impacts of pit latrines on groundwater quality in rural areas: A case study from Marondera district, Zimbabwe

    Science.gov (United States)

    Dzwairo, Bloodless; Hoko, Zvikomborero; Love, David; Guzha, Edward

    In resource-poor and low-population-density areas, on-site sanitation is preferred to off-site sanitation and groundwater is the main source of water for domestic uses. Groundwater pollution potential from on-site sanitation in such areas conflicts with Integrated Water Resources Management (IWRM) principles that advocate for sustainable use of water resources. Given the widespread use of groundwater for domestic purposes in rural areas, maintaining groundwater quality is a critical livelihood intervention. This study assessed impacts of pit latrines on groundwater quality in Kamangira village, Marondera district, Zimbabwe. Groundwater samples from 14 monitoring boreholes and 3 shallow wells were analysed during 6 sampling campaigns, from February 2005 to May 2005. Parameters analysed were total and faecal coliforms, NH4+-N, NO3--N, conductivity, turbidity and pH, both for boreholes and shallow wells. Total and faecal coliforms both ranged 0-TNTC (too-numerous-to-count), 78% of results meeting the 0 CFU/100 ml WHO guidelines value. NH4+-N range was 0-2.0 mg/l, with 99% of results falling below the 1.5 mg/l WHO recommended value. NO3--N range was 0.0-6.7 mg/l, within 10 mg/l WHO guidelines value. The range for conductivity values was 46-370 μS/cm while the pH range was 6.8-7.9. There are no WHO guideline values for these two parameters. Turbidity ranged from 1 NTU to 45 NTU, 59% of results meeting the 5 NTU WHO guidelines limit. Depth from the ground surface to the water table for the period February 2005 to May 2005 was determined for all sampling points using a tape measure. The drop in water table averaged from 1.1 m to 1.9 m and these values were obtained by subtracting water table elevations from absolute ground surface elevation. Soil from the monitoring boreholes was classified as sandy. The soil infiltration layer was taken as the layer between the pit latrine bottom and the water table. It averaged from 1.3 m to 1.7 m above the water table for two latrines

  19. VAT on domestic energy

    International Nuclear Information System (INIS)

    Crawford, Ian; Smith, Stephen; Webb, Steven.

    1993-01-01

    This publication traces the background to the imposition of VAT on domestic energy, and considers the current patterns of spending. Results of a simulation of the effects of imposition of 17.5% VAT on domestic fuels are presented, and policy measures to offset the impact on poorer households are considered. (UK)

  20. Optimisation of groundwater level monitoring networks using geostatistical modelling based on the Spartan family variogram and a genetic algorithm method

    Science.gov (United States)

    Parasyris, Antonios E.; Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2016-04-01

    Groundwater level monitoring networks provide essential information for water resources management, especially in areas with significant groundwater exploitation for agricultural and domestic use. Given the high maintenance costs of these networks, development of tools, which can be used by regulators for efficient network design is essential. In this work, a monitoring network optimisation tool is presented. The network optimisation tool couples geostatistical modelling based on the Spartan family variogram with a genetic algorithm method and is applied to Mires basin in Crete, Greece, an area of high socioeconomic and agricultural interest, which suffers from groundwater overexploitation leading to a dramatic decrease of groundwater levels. The purpose of the optimisation tool is to determine which wells to exclude from the monitoring network because they add little or no beneficial information to groundwater level mapping of the area. Unlike previous relevant investigations, the network optimisation tool presented here uses Ordinary Kriging with the recently-established non-differentiable Spartan variogram for groundwater level mapping, which, based on a previous geostatistical study in the area leads to optimal groundwater level mapping. Seventy boreholes operate in the area for groundwater abstraction and water level monitoring. The Spartan variogram gives overall the most accurate groundwater level estimates followed closely by the power-law model. The geostatistical model is coupled to an integer genetic algorithm method programmed in MATLAB 2015a. The algorithm is used to find the set of wells whose removal leads to the minimum error between the original water level mapping using all the available wells in the network and the groundwater level mapping using the reduced well network (error is defined as the 2-norm of the difference between the original mapping matrix with 70 wells and the mapping matrix of the reduced well network). The solution to the

  1. Groundwater recharge in suburban areas of Hanoi, Vietnam: effect of decreasing surface-water bodies and land-use change

    Science.gov (United States)

    Kuroda, Keisuke; Hayashi, Takeshi; Do, An Thuan; Canh, Vu Duc; Nga, Tran Thi Viet; Funabiki, Ayako; Takizawa, Satoshi

    2017-05-01

    Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.

  2. Groundwater-quality characteristics for the Wyoming Groundwater-Quality Monitoring Network, November 2009 through September 2012

    Science.gov (United States)

    Boughton, Gregory K.

    2014-01-01

    Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron

  3. Abused domestic workers in Europe

    DEFF Research Database (Denmark)

    Stenum, Helle

    This study analyses au pair arrangements in six EU Member States (Denmark, Germany, Ireland, the Netherlands, Poland and Spain) through descriptions of national and international legal frameworks and practices of au pairing. The findings show different patterns of au pair migration and different ...... situations of au pairing as well as different strategies to protect the au pairs. The overall recommendation is to separate current au pair immigration into two programmes: one of cultural exchange and one of domestic and care work....

  4. Reconsidering Our Domestic Violence System.

    Science.gov (United States)

    Starsoneck, Leslie; Ake, George

    2018-01-01

    Children's exposure to domestic violence is well established as an adverse childhood experience (ACE). Much is known about the impact of this exposure, but efforts to ameliorate its effects are too often unsuccessful. Reconsidering our response requires a candid assessment of whether convening large and disparate systems leads to the best outcome. ©2018 by the North Carolina Institute of Medicine and The Duke Endowment. All rights reserved.

  5. Sources and behaviour of nitrogen compounds in the shallow groundwater of agricultural areas (Poyang Lake basin, China)

    Science.gov (United States)

    Soldatova, Evgeniya; Guseva, Natalia; Sun, Zhanxue; Bychinsky, Valeriy; Boeckx, Pascal; Gao, Bai

    2017-07-01

    Nitrogen contamination of natural water is a typical problem for various territories throughout the world. One of the regions exposed to nitrogen pollution is located in the Poyang Lake basin. As a result of agricultural activity and dense population, the shallow groundwater of this area is characterised by a high concentration of nitrogen compounds, primarily NO3-, with the concentration varying from 0.1 mg/L to 206 mg/L. Locally, high ammonium content occurs in the shallow groundwater with low reduction potential Eh ( 100 mV. To identify sources of nitrogen species and the factors that determine their behaviour, the dual stable isotope approach (δ15N and δ18О) and physical-chemical modelling were applied. Actual data were collected by sampling shallow groundwater from domestic water supply wells around the lake. The δ18О values from - 4.1‰ to 13.9‰ with an average value of 5.3 permille indicate a significant influence of nitrification on nitrogen balance. The enrichment of nitrate with the 15N isotope indicates that manure and domestic sewage are the principal sources of nitrogen compounds. Inorganic nitrogen speciation and thermodynamic calculations demonstrate the high stability of nitrate in the studied groundwater. Computer simulation and field observations indicate the reducing conditions formed under joint effects of anthropogenic factors and appropriate natural conditions, such as the low-level topography in which decreased water exchange rate can occur. The simulation also demonstrates the growth in pH of the groundwater as a consequence of fertilisation, which, in turn, conduced to the clay mineral formation at lower concentrations of aqueous clay-forming components than the ones under the natural conditions.

  6. Domestication and Genetics of Papaya: A Review

    Directory of Open Access Journals (Sweden)

    Mariana Chávez-Pesqueira

    2017-12-01

    Full Text Available A wealth of plant species used by humans for different purposes, but mainly as food, originated and domesticated in the Mesoamerican region. Papaya (Carica papaya is the third most cultivated tropical crop worldwide, and it has been hypothesized that Mesoamerica is the most likely center of its origin and domestication. In support of it, many wild populations of papaya occur throughout Mesoamerica and hence represent the gene pool of genetic variability for further evolution and future crop management. Despite its importance, a dearth of information exists regarding the status of wild populations of papaya, as compared to the extent of knowledge, and interest, on domesticated varieties. We review the evidence on the extant wild populations of papaya, as well as its origin and distribution. Also, we synthetize what is known on the domestication history of the species, including the domestication syndrome that distinguishes wild and domesticated papayas. Moreover, we make an account of the use of genetic markers to assess genetic diversity of wild and domesticated papaya, and discuss the importance of papaya as the first species with a transgenic cultivar to be released for human consumption, and one that has its complete genome sequenced. Evidence from different disciplines strongly suggest that papaya originated and was domesticated in Mesoamerica, and that wild populations in the region possess, still, high genetic diversity compared to the domesticated papaya. Finally, we outline papaya as an excellent model species for genomic studies that will help gain insight into the domestication process and improvement of papaya and other tropical crops.

  7. Groundwater environmental capacity and its evaluation index.

    Science.gov (United States)

    Xing, Li Ting; Wu, Qiang; Ye, Chun He; Ye, Nan

    2010-10-01

    To date, no unified and acknowledged definition or well-developed evaluation index system of groundwater environment capacity can be found in the academia at home or abroad. The article explores the meaning of water environment capacity, and analyzes the environmental effects caused by the exploitation of groundwater resources. This research defines groundwater environmental capacity as a critical value in terms of time and space, according to which the groundwater system responds to the external influences within certain goal constraint. On the basis of observing the principles of being scientific, dominant, measurable, and applicable, six level 1 evaluation indexes and 11 constraint factors are established. Taking Jinan spring region for a case study, this research will adopt groundwater level and spring flow as constraint factors, and the allowable groundwater yield as the critical value of groundwater environmental capacity, prove the dynamic changeability and its indicating function of groundwater environmental capacity through calculation, and finally point out the development trends of researches on groundwater environmental capacity.

  8. Sanitary Landfill Groundwater Monitoring Report, Fourth Quarter 1999 and 1999 Summary

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    A maximum of thirty eight-wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Iron (Total Recoverable), Chloroethene (Vinyl Chloride) and 1,1-Dichloroethane were the most widespread constituents exceeding the Final Primary Drinking Water Standards during 1999. Trichloroethylene, 1,1-Dichloroethylene, 1,2-Dichloroethane, 1,4-Dichlorobenzene, Aluminum (Total Recoverable), Benzene, cis-1,2-Dichloroethylene, Dichlorodifluoromethane, Dichloromethane (Methylene Chloride), Gross Alpha, Mercury (Total Recoverable), Nonvolatile Beta, Tetrachloroethylene, Total Organic Halogens, Trichlorofluoromethane, Tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 144.175 ft/year during first quarter 1999 and 145.27 ft/year during fourth quarter 1999

  9. Characteristics and consequences of psychopathic domestic violence

    Directory of Open Access Journals (Sweden)

    Radulović Danka M.

    2005-01-01

    Full Text Available Domestic violence is a problem to which more attention is paid today. However, in its theoretical consideration, as well as in practical reaction, one must not lose sight of characteristics of domestic violence of one, rather numerous category of perpetrators who have psychopathic structure of personality. Domestic violence which offenders are psychopaths must be treated very carefully, because each mistake in intervention can cause much bigger damage to the victim than absence of reaction at all. Due to that, before any intervention, it would be necessary to make a diagnosis on whether the perpetrator has psychopathic structure of personality or not.

  10. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication

    Directory of Open Access Journals (Sweden)

    Lippold Sebastian

    2011-11-01

    Full Text Available Abstract Background DNA target enrichment by micro-array capture combined with high throughput sequencing technologies provides the possibility to obtain large amounts of sequence data (e.g. whole mitochondrial DNA genomes from multiple individuals at relatively low costs. Previously, whole mitochondrial genome data for domestic horses (Equus caballus were limited to only a few specimens and only short parts of the mtDNA genome (especially the hypervariable region were investigated for larger sample sets. Results In this study we investigated whole mitochondrial genomes of 59 domestic horses from 44 breeds and a single Przewalski horse (Equus przewalski using a recently described multiplex micro-array capture approach. We found 473 variable positions within the domestic horses, 292 of which are parsimony-informative, providing a well resolved phylogenetic tree. Our divergence time estimate suggests that the mitochondrial genomes of modern horse breeds shared a common ancestor around 93,000 years ago and no later than 38,000 years ago. A Bayesian skyline plot (BSP reveals a significant population expansion beginning 6,000-8,000 years ago with an ongoing exponential growth until the present, similar to other domestic animal species. Our data further suggest that a large sample of wild horse diversity was incorporated into the domestic population; specifically, at least 46 of the mtDNA lineages observed in domestic horses (73% already existed before the beginning of domestication about 5,000 years ago. Conclusions Our study provides a window into the maternal origins of extant domestic horses and confirms that modern domestic breeds present a wide sample of the mtDNA diversity found in ancestral, now extinct, wild horse populations. The data obtained allow us to detect a population expansion event coinciding with the beginning of domestication and to estimate both the minimum number of female horses incorporated into the domestic gene pool and the

  11. LIQUID WASTE FROM SEPTIC TANKS AS A SOURCE OF MICROBIOLOGICAL POLLUTION OF GROUNDWATER

    Directory of Open Access Journals (Sweden)

    Robert Nowak

    2016-05-01

    Full Text Available Pollution of soil and water environment by liquid waste originating from septic tanks is a huge problem in Poland. This applies especially to rural areas. Negative changes are observed both in the vicinity of the leaking tanks, from which concentrated and rotten sewage infiltrates into the ground, and in surface water as well as arable land, to which impurities from the emptied tanks are discharged. The paper presents the scale of the practice of uncontrolled domestic sewage discharge into the environment on the example of selected municipality. Presented data were compared with the results of the qualitative assessment of groundwater, which is collected in the same municipality for waterworks. In a significant number of wells, water was not safe in sanitary terms, as the presence of microbiological contamination was recorded. Among determined microorganisms, the indicator organisms of domestic waste pollution prevailed. Water quality problems have been reported at intake points located near the properties equipped with septic tanks or in places, to which sewage from emptying septic tanks were transferred in an uncontrolled manner. In this way it has been shown that there is a relationship between improperly maintained wastewater management and groundwater quality collected for the purpose of water supply.

  12. Wild genius - domestic fool? Spatial learning abilities of wild and domestic guinea pigs

    Directory of Open Access Journals (Sweden)

    Sachser Norbert

    2010-03-01

    Full Text Available Abstract Background Domestic animals and their wild relatives differ in a wide variety of aspects. The process of domestication of the domestic guinea pig (Cavia aperea f. porcellus, starting at least 4500 years ago, led to changes in the anatomy, physiology, and behaviour compared with their wild relative, the wild cavy, Cavia aperea. Although domestic guinea pigs are widely used as a laboratory animal, learning and memory capabilities are often disregarded as being very scarce. Even less is known about learning and memory of wild cavies. In this regard, one striking domestic trait is a reduction in relative brain size, which in the domesticated form of the guinea pig amounts to 13%. However, the common belief, that such a reduction of brain size in the course of domestication of different species is accomplished by less learning capabilities is not at all very well established in the literature. Indeed, domestic animals might also even outperform their wild conspecifics taking advantage of their adaptation to a man-made environment. In our study we compared the spatial learning abilities of wild and domestic guinea pigs. We expected that the two forms are different regarding their learning performance possibly related to the process of domestication. Therefore wild cavies as well as domestic guinea pigs of both sexes, aged 35 to 45 days, were tested in the Morris water maze to investigate their ability of spatial learning. Results Both, wild cavies and domestic guinea pigs were able to learn the task, proving the water maze to be a suitable test also for wild cavies. Regarding the speed of learning, male as well as female domestic guinea pigs outperformed their wild conspecifics significantly. Interestingly, only domestic guinea pigs showed a significant spatial association of the platform position, while other effective search strategies were used by wild cavies. Conclusion The results demonstrate that domestic guinea pigs do not at all

  13. Wild genius - domestic fool? Spatial learning abilities of wild and domestic guinea pigs.

    Science.gov (United States)

    Lewejohann, Lars; Pickel, Thorsten; Sachser, Norbert; Kaiser, Sylvia

    2010-03-25

    Domestic animals and their wild relatives differ in a wide variety of aspects. The process of domestication of the domestic guinea pig (Cavia aperea f. porcellus), starting at least 4500 years ago, led to changes in the anatomy, physiology, and behaviour compared with their wild relative, the wild cavy, Cavia aperea. Although domestic guinea pigs are widely used as a laboratory animal, learning and memory capabilities are often disregarded as being very scarce. Even less is known about learning and memory of wild cavies. In this regard, one striking domestic trait is a reduction in relative brain size, which in the domesticated form of the guinea pig amounts to 13%. However, the common belief, that such a reduction of brain size in the course of domestication of different species is accomplished by less learning capabilities is not at all very well established in the literature. Indeed, domestic animals might also even outperform their wild conspecifics taking advantage of their adaptation to a man-made environment.In our study we compared the spatial learning abilities of wild and domestic guinea pigs. We expected that the two forms are different regarding their learning performance possibly related to the process of domestication. Therefore wild cavies as well as domestic guinea pigs of both sexes, aged 35 to 45 days, were tested in the Morris water maze to investigate their ability of spatial learning. Both, wild cavies and domestic guinea pigs were able to learn the task, proving the water maze to be a suitable test also for wild cavies. Regarding the speed of learning, male as well as female domestic guinea pigs outperformed their wild conspecifics significantly. Interestingly, only domestic guinea pigs showed a significant spatial association of the platform position, while other effective search strategies were used by wild cavies. The results demonstrate that domestic guinea pigs do not at all perform worse than their wild relatives in tests of spatial

  14. Narratives of Domestic Violence

    OpenAIRE

    Hunter, Rosemary

    2006-01-01

    Second wave feminists in Australia brought the social issue of domestic violence out of the suburban shadows and into the activist and policy spotlight in the 1970s. Subsequent feminist-inspired law reforms around domestic violence included the introduction of state domestic violence order regimes in the 1980s, and amendments to the Family Law Act 1975 (Cth) in 1995 to specify family violence as one of the matters to be taken into account by the Family Court in\\ud determining the best interes...

  15. Electric wiring domestic

    CERN Document Server

    Coker, A J

    1992-01-01

    Electric Wiring: Domestic, Tenth Edition, is a clear and reliable guide to the practical aspects of domestic electric wiring. Intended for electrical contractors, installation engineers, wiremen and students, its aim is to provide essential up to date information on modern methods and materials in a simple, clear, and concise manner. The main changes in this edition are those necessary to bring the work into line with the 16th Edition of the Regulations for Electrical Installations issued by the Institution of Electrical Engineers. The book begins by introducing the basic features of domestic

  16. Domestic Hypermedia: Mixed Media in the Home

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Petersen, Marianne Graves

    2004-01-01

    , domestic materials, such as photos, music, messages. become digitized. Based on the analyses we propose a Domestic Hypermedia infrastructure combining spatial, context-aware and physical hypermedia to support collaborative structuring and ambient presentation of materials in homes.......This paper analyses the potentials for use of hypermedia in homes based on empirical studies. The use of physical materials is characterized by collaborative spatial organization and persistent visual awareness. Qualities that are currently not well supported for digital materials. However...

  17. How does climate change affect groundwater in South Africa?

    CSIR Research Space (South Africa)

    Maserumule, R

    2008-11-01

    Full Text Available % of the population and more than 300 towns are entirely dependent upon this resources for their domestics water supply. The poster describes the impact that climate change has on groundwater resources in South Africa. This is an important step in determining...

  18. Assessment of groundwater quality around a petroleum tank farm, in ...

    African Journals Online (AJOL)

    Investigation of the physical and chemical properties of groundwater around a Petroleum Tank Farm was carried out between January and August, 2015 to assess the suitability of the borehole water for drinking and other domestic uses. The results show that pH of water was acidic with values ranging from 4.62 to 6.87, EC ...

  19. Potential impacts of climate change and variability on groundwater ...

    African Journals Online (AJOL)

    Aizebeokhai

    768 ... This is largely due to the risk it poses to the environment ... Nigeria, particularly in rural areas which rely on low-cost domestic ... influenced by groundwater flow under or around the dam. ... densely vegetated mangrove swamps in the south,.

  20. Groundwater recharge and agricultural contamination

    Science.gov (United States)

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water–rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agricultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3–, N2, Cl, SO42–, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well as a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3–, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  1. Ecology and living conditions of groundwater fauna

    International Nuclear Information System (INIS)

    Thulin, Barbara; Hahn, Hans Juergen

    2008-09-01

    This report presents the current state of ecological knowledge and applied research relating to groundwater. A conceptual picture is given of groundwater fauna occurrence in regard to Swedish environmental conditions. Interpretation features for groundwater fauna and applications are outlined. Groundwater is one of the largest and oldest limnic habitats populated by a rich and diverse fauna. Both very old species and species occurring naturally in brackish or salt water can be found in groundwater. Groundwater ecosystems are heterotrophic; the fauna depends on imports from the surface. Most species are meiofauna, 0.3-1 mm. The food chain of groundwater fauna is the same as for relatives in surface water and salt water. Smaller animals graze biofilms and detritus, larger animals act facutatively as predators. A difference is that stygobiotic fauna has become highly adapted to its living space and tolerates very long periods without food. Oxygen is a limiting factor, but groundwater fauna tolerates periods with low oxygen concentrations, even anoxic conditions. For longer periods of time a minimum oxygen requirement of 1 mg/l should be fulfilled. Geographic features such as Quaternary glaciation and very old Pliocene river systems are important for distribution patterns on a large spatial scale, but aquifer characteristics are important on a landscape scale. Area diversity is often comparable to surface water diversity. However, site diversity is low in groundwater. Site specific hydrological exchange on a geological facies level inside the aquifer, e.g. porous, fractured and karstic aquifers as well as the hyporheic zone, controls distribution patterns of groundwater fauna. For a better understanding of controlling factors indicator values are suggested. Different adequate sampling methods are available. They are representative for the aquifer, but a suitable number of monitoring wells is required. The existence of groundwater fauna in Sweden is considered as very

  2. Ecology and living conditions of groundwater fauna

    Energy Technology Data Exchange (ETDEWEB)

    Thulin, Barbara [Geo Innova AB (Sweden); Hahn, Hans Juergen [Arbeitsgruppe Grundwasseroekologie, Univ. of Koblenz-Landau (Germany)

    2008-09-15

    This report presents the current state of ecological knowledge and applied research relating to groundwater. A conceptual picture is given of groundwater fauna occurrence in regard to Swedish environmental conditions. Interpretation features for groundwater fauna and applications are outlined. Groundwater is one of the largest and oldest limnic habitats populated by a rich and diverse fauna. Both very old species and species occurring naturally in brackish or salt water can be found in groundwater. Groundwater ecosystems are heterotrophic; the fauna depends on imports from the surface. Most species are meiofauna, 0.3-1 mm. The food chain of groundwater fauna is the same as for relatives in surface water and salt water. Smaller animals graze biofilms and detritus, larger animals act facutatively as predators. A difference is that stygobiotic fauna has become highly adapted to its living space and tolerates very long periods without food. Oxygen is a limiting factor, but groundwater fauna tolerates periods with low oxygen concentrations, even anoxic conditions. For longer periods of time a minimum oxygen requirement of 1 mg/l should be fulfilled. Geographic features such as Quaternary glaciation and very old Pliocene river systems are important for distribution patterns on a large spatial scale, but aquifer characteristics are important on a landscape scale. Area diversity is often comparable to surface water diversity. However, site diversity is low in groundwater. Site specific hydrological exchange on a geological facies level inside the aquifer, e.g. porous, fractured and karstic aquifers as well as the hyporheic zone, controls distribution patterns of groundwater fauna. For a better understanding of controlling factors indicator values are suggested. Different adequate sampling methods are available. They are representative for the aquifer, but a suitable number of monitoring wells is required. The existence of groundwater fauna in Sweden is considered as very

  3. Domestic Communication Satellites

    Science.gov (United States)

    Horowitz, Andrew

    1974-01-01

    A discussion of the Federal Communications Commission's new policy on domestic satellites in light of our 1) military and economic history; 2) corporate interests; 3) citizen surveillance; and 4) media control. (HB)

  4. Groundwater arsenic contamination throughout China.

    Science.gov (United States)

    Rodríguez-Lado, Luis; Sun, Guifan; Berg, Michael; Zhang, Qiang; Xue, Hanbin; Zheng, Quanmei; Johnson, C Annette

    2013-08-23

    Arsenic-contaminated groundwater used for drinking in China is a health threat that was first recognized in the 1960s. However, because of the sheer size of the country, millions of groundwater wells remain to be tested in order to determine the magnitude of the problem. We developed a statistical risk model that classifies safe and unsafe areas with respect to geogenic arsenic contamination in China, using the threshold of 10 micrograms per liter, the World Health Organization guideline and current Chinese standard for drinking water. We estimate that 19.6 million people are at risk of being affected by the consumption of arsenic-contaminated groundwater. Although the results must be confirmed with additional field measurements, our risk model identifies numerous arsenic-affected areas and highlights the potential magnitude of this health threat in China.

  5. Groundwater Managment Districts

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset outlines the location of the five Groundwater Management Districts in Kansas. GMDs are locally formed and elected boards for regional groundwater...

  6. Geophysical and geochemical characterisation of groundwater resources in Western Zambia

    DEFF Research Database (Denmark)

    Chongo, Mkhuzo; Banda, Kawawa Eddy; Bauer-Gottwein, Peter

    Zambia’s rural water supply system depends on groundwater resources to a large extent. However, groundwater resources are variable in both quantity and quality across the country and a national groundwater resources assessment and mapping program is presently not in place. In the Machile area...... in South-Western Zambia, groundwater quality problems are particularly acute. Saline groundwater occurrence is widespread and affects rural water supply, which is mainly based on shallow groundwater abstraction using hand pumps. This study has mapped groundwater quality variations in the Machile area using...... both ground-based and airborne geophysical methods as well as extensive water quality sampling. The occurrence of saline groundwater follows a clear spatial pattern and appears to be related to the palaeo Lake Makgadikgadi, whose northernmost extension reached into the Machile area. Because the lake...

  7. Evaluating Domestic Violence Initiatives

    OpenAIRE

    Parmar, Alpa; Sampson, Alice

    2006-01-01

    This paper critiques the approach of identifying ‘best practice’ projects and discusses the problem with simply transferring projects into different contexts. The argument is illustrated by explaining the evaluation process of three domestic violence projects which all had the same aim, which was to reduce domestic violence. The evaluated projects all delivered advocacy programmes and were located in disadvantaged areas in the United Kingdom. A more suitable evaluation approach is proposed wh...

  8. The extent of groundwater use for domestic and irrigation activities ...

    African Journals Online (AJOL)

    AKMENSAH

    2015-06-04

    Jun 4, 2015 ... Albert Kobina Mensah1*, Evans Appiah Kissi2, Kwabena Krah3 and Okoree D. Mireku4. 1Department of Geography, Kenyatta University, Nairobi. 2Department of .... catchment in Kiambu County in Kenya had limited themselves to the assessment of water quality. Little work has been done on the extent to ...

  9. Assessing regional groundwater stress for nations using multiple data sources with the groundwater footprint

    International Nuclear Information System (INIS)

    Gleeson, Tom; Wada, Yoshihide

    2013-01-01

    Groundwater is a critical resource for agricultural production, ecosystems, drinking water and industry, yet groundwater depletion is accelerating, especially in a number of agriculturally important regions. Assessing the stress of groundwater resources is crucial for science-based policy and management, yet water stress assessments have often neglected groundwater and used single data sources, which may underestimate the uncertainty of the assessment. We consistently analyze and interpret groundwater stress across whole nations using multiple data sources for the first time. We focus on two nations with the highest national groundwater abstraction rates in the world, the United States and India, and use the recently developed groundwater footprint and multiple datasets of groundwater recharge and withdrawal derived from hydrologic models and data synthesis. A minority of aquifers, mostly with known groundwater depletion, show groundwater stress regardless of the input dataset. The majority of aquifers are not stressed with any input data while less than a third are stressed for some input data. In both countries groundwater stress affects agriculturally important regions. In the United States, groundwater stress impacts a lower proportion of the national area and population, and is focused in regions with lower population and water well density compared to India. Importantly, the results indicate that the uncertainty is generally greater between datasets than within datasets and that much of the uncertainty is due to recharge estimates. Assessment of groundwater stress consistently across a nation and assessment of uncertainty using multiple datasets are critical for the development of a science-based rationale for policy and management, especially with regard to where and to what extent to focus limited research and management resources. (letter)

  10. Groundwater conditions in Utah, spring of 2013

    Science.gov (United States)

    Burden, Carole B.; Birken, Adam S.; Derrick, V. Noah; Fisher, Martel J.; Holt, Christopher M.; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.

    2013-01-01

    This is the fiftieth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2012. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water. usgs.gov/publications/GW2013.pdf. Groundwater conditions in Utah for calendar year 2011 are reported in Burden and others (2012) and available online at http://ut.water.usgs.gov/ publications/GW2012.pdf

  11. Apparent 85Kr ages of groundwater within the Royal watershed, Maine, USA.

    Science.gov (United States)

    Sidle, W C

    2006-01-01

    Specific 85Kr activity is mapped from 264 domestic and municipal wells sampled during 2002-2004 in the Royal watershed (361 km2), Maine. Gas samples are collected at 20 m, 40 m, and > 50 m interval depths within the unconfined aquifers. Gas extraction for 85Kr from wells is obtained directly via a wellhead methodology avoiding conventional collection of large sample volumes. Atmospheric 85Kr input to the recharge environment is estimated at 1.27 Bq m(-3) by time-series analyses of weighted monthly precipitation (2001-2004). Numerical simulation of Kr gas transport through the variable unsaturated zones to the water table suggests up to 12-year time lags locally, thus biasing the 85Kr groundwater ages. Apparent 85Kr ages suggest that approximately 70% of groundwater near 20 m depth was recharged less than 30 years BP (2004). Mass-age transport modeling suggests that post mid-1950s recharge penetrates to part of the basin's floor and that older groundwater seeps from the underlying fractured bedrock may occur.

  12. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2011-01-01

    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of

  13. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junxia; Wang, Yanxin, E-mail: yx.wang@cug.edu.cn; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000–10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ{sup 37}Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. - Highlights: • Natural high arsenic, fluoride and iodine groundwater co-occur with saline water.

  14. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China

    International Nuclear Information System (INIS)

    Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2016-01-01

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000–10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ"3"7Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. - Highlights: • Natural high arsenic, fluoride and iodine groundwater co-occur with saline water. • Groundwater

  15. Hydrogeological Characteristics of Groundwater Yield in Shallow ...

    African Journals Online (AJOL)

    Hydrogeological Characteristics of Groundwater Yield in Shallow Wells of the ... of Water Resources and Lower Niger River Basin Development Authority in Ilorin. ... moment correlation, multiple and stepwise multiple regression analysis.

  16. Continuous Groundwater Monitoring Collocated at USGS Streamgages

    Science.gov (United States)

    Constantz, J. E.; Eddy-Miller, C.; Caldwell, R.; Wheeer, J.; Barlow, J.

    2012-12-01

    USGS Office of Groundwater funded a 2-year pilot study collocating groundwater wells for monitoring water level and temperature at several existing continuous streamgages in Montana and Wyoming, while U.S. Army Corps of Engineers funded enhancement to streamgages in Mississippi. To increase spatial relevance with in a given watershed, study sites were selected where near-stream groundwater was in connection with an appreciable aquifer, and where logistics and cost of well installations were considered representative. After each well installation and surveying, groundwater level and temperature were easily either radio-transmitted or hardwired to existing data acquisition system located in streamgaging shelter. Since USGS field personnel regularly visit streamgages during routine streamflow measurements and streamgage maintenance, the close proximity of observation wells resulted in minimum extra time to verify electronically transmitted measurements. After field protocol was tuned, stream and nearby groundwater information were concurrently acquired at streamgages and transmitted to satellite from seven pilot-study sites extending over nearly 2,000 miles (3,200 km) of the central US from October 2009 until October 2011, for evaluating the scientific and engineering add-on value of the enhanced streamgage design. Examination of the four-parameter transmission from the seven pilot study groundwater gaging stations reveals an internally consistent, dynamic data suite of continuous groundwater elevation and temperature in tandem with ongoing stream stage and temperature data. Qualitatively, the graphical information provides appreciation of seasonal trends in stream exchanges with shallow groundwater, as well as thermal issues of concern for topics ranging from ice hazards to suitability of fish refusia, while quantitatively this information provides a means for estimating flux exchanges through the streambed via heat-based inverse-type groundwater modeling. In June

  17. GIS based Hydrogeological Vulnerability Mapping of Groundwater Resources in Jerash Area-Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Hammouri, N [Department of Earth and Environmental Sciences, Faculty of Natural Resources and Environment, Hashemite University, Zarqa (Jordan); El-Naqa, A [Department of Water Management and Environment, Faculty of Natural Resources and Environment, Hashemite University, Zarqa (Jordan)

    2008-04-15

    This paper presents groundwater vulnerability mapping for Jerash area, north Jordan generated using EPIK and DRASTIC models. These models have been implemented using GIS to delineate groundwater protection zones and to suggest a protection plan to improve groundwater quality of the major springs and wells. Most of the groundwater resources in the study area are polluted and bacteria and nitrate levels are high. Different sources of groundwater pollution have been identified. Domestic wastewater is considered as a major source of pollution. Urban runoff, fertilizers from agricultural return flows and solid waste disposal appear to be secondary sources. The most relevant vulnerability class of EPIK map is very high which accounts for about 41 % of the total area. While in the DRASTIC vulnerability map, areas with high vulnerability were only about 23 % of the total area. There is a good correlation between vulnerability maps obtained from both models with microbiological and chemical pollution evidences. There is also a good agreement between the areas classified as highly vulnerable and those that have high levels of pollution. [Spanish] El estudio de vulnerabilidad de aguas subterraneas en la region de Yerash, Jordania fue obtenido mediante las metodologias de EPIK y DRASTIC. Se uso GIS para mapear las zonas protegidas y para sugerir un plan de proteccion para mejorar la calidad del agua subterranea en los principales manantiales y pozos. Los niveles de contaminacion bacteriana y de nitratos son elevados. El efluente domestico es la fuente mas importante de contaminacion; vienen en segundo lugar la precipitacion en zonas urbanas, los fertilizantes agricolas y los desechos solidos. En el mapa de EPIK, la vulnerabilidad extrema abarca hasta 41% del area total; en cambio, en el mapa de DRASTIC las areas de alta vulnerabilidad ocupan solo un 23% del area. La correlacion de los datos de contaminacion microbiana y quimica con ambos mapas der vulnerabilidad es buena

  18. Concentrations of nitrate in drinking water in the lower Yakima River Basin, Groundwater Management Area, Yakima County, Washington, 2017

    Science.gov (United States)

    Huffman, Raegan L.

    2018-05-29

    The U.S. Geological Survey, in cooperation with the lower Yakima River Basin Groundwater Management Area (GWMA) group, conducted an intensive groundwater sampling collection effort of collecting nitrate concentration data in drinking water to provide a baseline for future nitrate assessments within the GWMA. About every 6 weeks from April through December 2017, a total of 1,059 samples were collected from 156 wells and 24 surface-water drains. The domestic wells were selected based on known location, completion depth, ability to collect a sample prior to treatment on filtration, and distribution across the GWMA. The drains were pre-selected by the GWMA group, and further assessed based on ability to access sites and obtain a representative sample. More than 20 percent of samples from the domestic wells and 12.8 percent of drain samples had nitrate concentrations that exceeded the maximum contaminant level (MCL) of 10 milligrams per liter established by the U.S. Environmental Protection Agency. At least one nitrate concentration above the MCL was detected in 26 percent of wells and 33 percent of drains sampled. Nitrate was not detected in 13 percent of all samples collected.

  19. Know Your Rights: Domestic Violence

    Science.gov (United States)

    ... 3224 TTD You CAN do something about domestic violence Domestic violence is a pattern of many behaviors directed ... violence. Look in the Yellow Pages under “domestic violence help,” “domestic violence shelters,” “human services organizations,” or “crisis intervention” ...

  20. Hydrogeochemical quality and suitability studies of groundwater in northern Bangladesh.

    Science.gov (United States)

    Islam, M J; Hakim, M A; Hanafi, M M; Juraimi, Abdul Shukor; Aktar, Sharmin; Siddiqa, Aysha; Rahman, A K M Shajedur; Islam, M Atikul; Halim, M A

    2014-07-01

    Agriculture, rapid urbanization and geochemical processes have direct or indirect effects on the chemical composition of groundwater and aquifer geochemistry. Hydro-chemical investigations, which are significant for assessment of water quality, were carried out to study the sources of dissolved ions in groundwater of Dinajpur district, northern Bangladesh. The groundwater samplish were analyzed for physico-chemical properties like pH, electrical conductance, hardness, alkalinity, total dissolved solids and Ca2+, Mg2+, Na+, K+, CO3(2-), HCO3(-), SO4(2-) and Cl- ions, respectively. Based on the analyses, certain parameters like sodium adsorption ratio, soluble sodium percentage, potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio were also calculated. The results showed that the groundwater of study area was fresh, slightly acidic (pH 5.3-6.4) and low in TDS (35-275 mg I(-1)). Ground water of the study area was found suitable for irrigation, drinking and domestic purposes, since most of the parameters analyzed were within the WHO recommended values for drinking water. High concentration of NO3- and Cl- was reported in areas with extensive agriculture and rapid urbanization. Ion-exchange, weathering, oxidation and dissolution of minerals were major geochemical processes governing the groundwater evolution in study area. Gibb's diagram showed that all the samples fell in the rock dominance field. Based on evaluation, it is clear that groundwater quality of the study area was suitable for both domestic and irrigation purposes.

  1. Temporal trends in concentrations of DBCP and nitrate in groundwater in the eastern San Joaquin Valley, California, USA

    Science.gov (United States)

    Burow, K.R.; Dubrovsky, N.M.; Shelton, James L.

    2007-01-01

    Temporal monitoring of the pesticide 1,2-dibromo-3-chloropropane (DBCP) and nitrate and indicators of mean groundwater age were used to evaluate the transport and fate of agricultural chemicals in groundwater and to predict the long-term effects in the regional aquifer system in the eastern San Joaquin Valley, California. Twenty monitoring wells were installed on a transect along an approximate groundwater flow path. Concentrations of DBCP and nitrate in the wells were compared to concentrations in regional areal monitoring networks. DBCP persists at concentrations above the US Environmental Protection Agency's maximum contaminant level (MCL) at depths of nearly 40 m below the water table, more than 25 years after it was banned. Nitrate concentrations above the MCL reached depths of more than 20 m below the water table. Because of the intensive pumping and irrigation recharge, vertical flow paths are dominant. High concentrations (above MCLs) in the shallow part of the regional aquifer system will likely move deeper in the system, affecting both domestic and public-supply wells. The large fraction of old water (unaffected by agricultural chemicals) in deep monitoring wells suggests that it could take decades for concentrations to reach MCLs in deep, long-screened public-supply wells, however. ?? Springer-Verlag 2007.

  2. STRATEGIC ISSUES GROUNDWATER EXTRACTION MANAGEMENT IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Ekaterina I. Golovina

    2017-05-01

    Full Text Available Water is a key component of our environment; it is a renewable, limited and vulnerable natural resource, which provides economic, social, and environmental well-being of the population. The most promising source of drinking water supply is groundwater usage. Drinking and industrial groundwater is one of the most important components of the groundwater mineral resource base in the Russian Federation. Modern system of groundwater extraction management and state regulation is currently imperfect and has definite disadvantages, among them - lack of control over natural resources by the state, an old system of tax rates for the use of groundwater, commercialization stage of licensing, the budget deficit, which is passed on other sph