WorldWideScience

Sample records for groundwater discharge zones

  1. 14C age reassessment of groundwater from the discharge zone due to cross-flow mixing in the deep confined aquifer

    Science.gov (United States)

    Mao, Xumei; Wang, Hua; Feng, Liang

    2018-05-01

    In a groundwater flow system, the age of groundwater should gradually increase from the recharge zone to the discharge zone within the same streamline. However, it is occasionally observed that the groundwater age becomes younger in the discharge zone in the piedmont alluvial plain, and the oldest age often appears in the middle of the plain. A new set of groundwater chemistry and isotopes was employed to reassess the groundwater 14C ages from the discharge zone in the North China Plain (NCP). Carbonate precipitation, organic matter oxidation and cross-flow mixing in the groundwater from the recharge zone to the discharge zone are recognized according to the corresponding changes of HCO3- (or DIC) and δ13C in the same streamline of the third aquifer of the NCP. The effects of carbonate precipitation and organic matter oxidation are calibrated with a 13C mixing model and DIC correction, but these corrected 14C ages seem unreasonable because they grow younger from the middle plain to the discharge zone in the NCP. The relationship of Cl- content and the recharge distance is used to estimate the expected Cl- content in the discharge zone, and ln(a14C)/Cl is proposed to correct the a14C in groundwater for the effect of cross-flow mixing. The 14C ages were reassessed with the corrected a14C due to the cross-flow mixing varying from 1.25 to 30.58 ka, and the groundwater becomes older gradually from the recharge zone to the discharge zone. The results suggest that the reassessed 14C ages are more reasonable for the groundwater from the discharge zone due to cross-flow mixing.

  2. Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach.

    Science.gov (United States)

    Freitas, Juliana G; Rivett, Michael O; Roche, Rachel S; Durrant Neé Cleverly, Megan; Walker, Caroline; Tellam, John H

    2015-02-01

    The typically elevated natural attenuation capacity of riverbed-hyporheic zones is expected to decrease chlorinated hydrocarbon (CHC) groundwater plume discharges to river receptors through dechlorination reactions. The aim of this study was to assess physico-chemical processes controlling field-scale variation in riverbed-hyporheic zone dechlorination of a TCE groundwater plume discharge to an urban river reach. The 50-m long pool-riffle-glide reach of the River Tame in Birmingham (UK) studied is a heterogeneous high energy river environment. The shallow riverbed was instrumented with a detailed network of multilevel samplers. Freeze coring revealed a geologically heterogeneous and poorly sorted riverbed. A chlorine number reduction approach provided a quantitative indicator of CHC dechlorination. Three sub-reaches of contrasting behaviour were identified. Greatest dechlorination occurred in the riffle sub-reach that was characterised by hyporheic zone flows, moderate sulphate concentrations and pH, anaerobic conditions, low iron, but elevated manganese concentrations with evidence of sulphate reduction. Transient hyporheic zone flows allowing input to varying riverbed depths of organic matter are anticipated to be a key control. The glide sub-reach displayed negligible dechlorination attributed to the predominant groundwater baseflow discharge condition, absence of hyporheic zone, transition to more oxic conditions and elevated sulphate concentrations expected to locally inhibit dechlorination. The tail-of-pool-riffle sub-reach exhibited patchy dechlorination that was attributed to sub-reach complexities including significant flow bypass of a low permeability, high organic matter, silty unit of high dechlorination potential. A process-based conceptual model of reach-scale dechlorination variability was developed. Key findings of practitioner relevance were: riverbed-hyporheic zone CHC dechlorination may provide only a partial, somewhat patchy barrier to CHC

  3. Submarine Groundwater Discharge in the Coastal Zone

    Science.gov (United States)

    Bakti, Hendra

    2018-02-01

    Indonesia is one of the archipelagic countries that has the longest coastline in the world. Because it is located in the tropics, in general it has a very high rainfall. Each island has a different morphology which is composed of a variety of rocks with different hydrogeological properties. This natural condition allows for the presence of groundwater in different amount in each island. The difference in groundwater hydraulics gradients in aquifer continuous to the sea has triggered the discharge of groundwater to offshore known as submarine groundwater discharge (SGD). Its presence can be as seepage or submarine springs with components derived from land and sea and a mixture between them. The understanding of SGD phenomenon is very important because it can be useful as a source of clean water in coastal areas, affecting marine health, and improving marine environment.

  4. Acid-base status of soils in groundwater discharge zones — relation to surface water acidification

    Science.gov (United States)

    Norrström, Ann Catrine

    1995-08-01

    Critical load calculations have suggested that groundwater at depth of 2 m in Sweden is very sensitive to acid load. As environmental isotope studies have shown that most of the runoff in streams has passed through the soil, there is a risk in the near future of accelerated acidification of surface waters. To assess the importance of the last soil horizon of contact before discharge, the upper 0-0.2m of soils in seven discharge zones were analysed for pools of base cations, acidity and base saturation. The sites were about 3-4 m 2 in size and selected from two catchments exposed to different levels of acid deposition. The soils in the seven sites had high concentrations of exchangeable base cations and consequently high base saturation. The high correlation ( r2 = 0.74) between base saturation in the soils of the discharge zones and mean pH of the runoff waters suggested that the discharge zone is important for surface water acidification. The high pool of exchangeable base cations will buffer initially against the acid load. As the cation exchange capacity (meq dm -3) and base saturation were lower in the sites from the catchment receiving lower deposition, these streams may be more vulnerable to acidification in the near future. The high concentration of base cations in non-exchangeable fractions may also buffer against acidification as it is likely that some of these pools will become exchangeable with time.

  5. Groundwater Discharge along a Channelized Coastal Plain Stream

    Energy Technology Data Exchange (ETDEWEB)

    LaSage, Danita M [Ky Dept for natural resources, Div of Mine Permits; Sexton, Joshua L [JL Sexton and Son; Mukherjee, Abhijit [Univ of Tx, Jackson School of Geosciences, Bur of Econ. Geology; Fryar, Alan E [Univ of KY, Dept of Earth and Geoligical Sciences; Greb, Stephen F [Univ of KY, KY Geological Survey

    2015-10-01

    In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.

  6. Estimating groundwater discharge into the ocean in the Yucatán Peninsula

    Science.gov (United States)

    Alvarez Rodriguez, G.; Gutierrez-Jurado, H. A.; Uuh-Sonda, J.

    2017-12-01

    The Yucatán peninsula is an emerged flat carbonate block abundant in soluble rocks. High permeability and dissolution of the rock, facilitates the development of channels, sinkholes and caves where underground rivers discharge into the ocean. There are no rivers or streams acting as a surface drainage system, all rainfall water entering the peninsula is discharged either as evapotranspiration (ET) or as underground runoff into the ocean. To date there are no estimates of the total groundwater discharge from the peninsula into the sea, and of the spatial distribution of recharge and discharge areas thereby hindering efforts to understand the dynamics of a complex hydrologic system. In this study, we estimate the discharge (Q) by solving the water balance equation (ΔS=PPT-ET-Q) using remote sensing products over a period of 12 years; the change in storage (ΔS) was retrieved from the satellite GRACE; precipitation (PPT) from the Tropical Rainfall Measuring Mission; and evapotranspiration (ET) from the Moderate Resolution Imaging Spectroradiometer. Results show that freshwater discharge via evapotranspiration can be a significant portion of the water budget depending on the climatic conditions throughout the year. We observe high recharge-discharge inter-annual variability in the center of the peninsula and some clearly defined recharge and discharge zones around the perimeter. On average the dryer north-east and wetter north-western parts of the peninsula act as recharge zones (where the influx of water is higher than the outflow), while the central-northern part of the peninsula corresponding to agricultural lands, acts as a discharge zone (outflow is higher than influx). The most southern region of the peninsula and the western mangroves are always discharge zones. Finally, our analyses reveal a number of highly subsidized zones, where precipitation levels are consistently lower than evapotranspiration, hence indicating the presence of groundwater dependent

  7. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina)

    Science.gov (United States)

    Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.

    2014-01-01

    . Differences in microbial sulfate reduction, organic matter supply, and/or groundwater residence time likely contributed to this pattern. The contrasting features of the east and west sub-marsh zones highlight the need for multiple techniques for characterization of submarine groundwater discharge sources and the impact of biogeochemical processes on the delivery of nutrients and carbon to coastal areas via submarine groundwater discharge.

  8. Seasonal Arsenic Accumulation in Stream Sediments at a Groundwater Discharge Zone

    DEFF Research Database (Denmark)

    MacKay, Allison A.; Gan, Ping; Yu, Ran

    2014-01-01

    Seasonal changes in arsenic and iron accumulation rates were examined in the sediments of a brook that receives groundwater discharges of arsenic and reduced iron. Clean glass bead columns were deployed in sediments for known periods over the annual hydrologic cycle to monitor changes in arsenic...... and iron concentrations in bead coatings. The highest accumulation rates occurred during the dry summer period (July-October) when groundwater discharges were likely greatest at the sample locations. The intermediate flow period (October-March), With higher surface water: levels, was associated with losses...... of arsenic and iron from bead column coatings at. depths below 2-6 cm. Batch incubations indicated iron releases from solids to be induced by biological reduction of iron (oxy)hydroxide solids. Congruent arsenic releases during incubation were limited by the high arsenic sorption capacity (0.536 mg...

  9. Effects of groundwater withdrawals from the Hurricane Fault zone on discharge of saline water from Pah Tempe Springs, Washington County, Utah

    Science.gov (United States)

    Gardner, Philip M.

    2018-04-10

    Pah Tempe Springs, located in Washington County, Utah, contribute about 95,000 tons of dissolved solids annually along a 1,500-foot gaining reach of the Virgin River. The river gains more than 10 cubic feet per second along the reach as thermal, saline springwater discharges from dozens of orifices located along the riverbed and above the river on both banks. The spring complex discharges from fractured Permian Toroweap Limestone where the river crosses the north-south trending Hurricane Fault. The Bureau of Reclamation Colorado River Basin Salinity Control Program is evaluating the feasibility of capturing and desalinizing the discharge of Pah Tempe Springs to improve downstream water quality in the Virgin River. The most viable plan, identified by the Bureau of Reclamation in early studies, is to capture spring discharge by pumping thermal groundwater from within the Hurricane Fault footwall damage zone and to treat this water prior to returning it to the river.Three multiple-day interference tests were conducted between November 2013 and November 2014, wherein thermal groundwater was pumped from fractured carbonate rock in the fault damage zone at rates of up to 7 cubic feet per second. Pumping periods for these tests lasted approximately 66, 74, and 67 hours, respectively, and the tests occurred with controlled streamflows of approximately 2.0, 3.5, and 24.5 cubic feet per second, respectively, in the Virgin River upstream from the springs reach. Specific conductance, water temperature, and discharge were monitored continuously in the river (upstream and downstream of the springs reach) at selected individual springs, and in the pumping discharge during each of the tests. Water levels were monitored in three observation wells screened in the thermal system. Periodic stream and groundwater samples were analyzed for dissolved-solids concentration and the stable isotopes of oxygen and hydrogen. Additional discrete measurements of field parameters (specific

  10. Vadose zone monitoring plan using geophysical nuclear logging for radionuclides discharged to Hanford liquid waste disposal facilities

    International Nuclear Information System (INIS)

    Price, R.K.

    1995-11-01

    During plutonium production at Hanford, large quantities of hazardous and radioactive liquid effluent waste have been discharged to the subsurface (vadose zone). These discharges at over 330 liquid effluent disposal facilities (ie. cribs, ditches, and ponds) account for over 3,000,000 curies of radioactive waste released into the subsurface. It is estimated that 10% of the contaminants have reached the groundwater in many places. Continuing migration may further impact groundwater quality in the future. Through the RCRA Operational Monitoring Program, a Radionuclide Logging System (RLS) has been obtained by Hanford Technical Services (HTS) and enhanced to measure the distribution of contaminants and monitor radionuclide movement in existing groundwater and vadose zone boreholes. Approximately 100 wells are logged by HTS each year in this program. In some cases, movement has been observed years after discharges were terminated. A similar program is in place to monitor the vadose zone at the Tank Farms. This monitoring plan describes Hanford Programs for monitoring the movement of radioactive contamination in the vadose zone. Program background, drivers, and strategy are presented. The objective of this program is to ensure that DOE-RL is aware of any migration of contaminants in the vadose zone, such that groundwater can be protected and early actions can be taken as needed

  11. Nuclear and isotopic techniques for the characterization of submarine groundwater discharge in coastal zones. Results of a coordinated research project 2001-2006

    International Nuclear Information System (INIS)

    2007-07-01

    Submarine groundwater discharge (SGD) is now recognized as an important pathway between land and sea. As such, this flow may contribute to the biogeochemical and other marine budgets of nearshore waters. These discharges typically display significant spatial and temporal variability, making direct assessments difficult. Groundwater seepage is patchy, diffuse, temporally variable, and may involve multiple aquifers. Thus, the measurement of its magnitude and associated chemical fluxes is a challenging enterprise. An initiative on SGD characterization was developed by the IAEA and UNESCO in 2000 as a 5-year plan to assess methodologies and importance of SGD for coastal zone management. The IAEA component included a Coordinated Research Project (CRP) on Nuclear and Isotopic Techniques for the Characterization of Submarine Groundwater Discharge (SGD) in Coastal Zones, carried out jointly by the IAEA's Isotope Hydrology Section in Vienna and the Marine Environment Laboratory in Monaco, together with 9 laboratories from 8 countries. In addition to the IAEA, the Intergovernmental Oceanographic Commission (IOC) and the International Hydrological Programme (IHP) have provided support. This overall effort originally grew from a project sponsored by the Scientific Committee on Ocean Research (SCOR) who established a Working Group (112) on SGD. The activities included joint meetings (Vienna 2000, 2002, and 2005; Syracuse, Italy, 2001; and Monaco 2004), sampling expeditions (Australia 2000; Sicily 2001 and 2002; New York 2002; Brazil 2003; and Mauritius 2005), joint analytical work, data evaluation, and preparation of joint publications. The objectives of the CRP included the improvement of capabilities for water resources and environmental management of coastal zones; application of recently developed nuclear and isotopic techniques suitable for quantitative estimation of various components of SGD; understanding of the influence of SGD on coastal processes and on groundwater

  12. Isotope Investigations of Groundwater Movement in a Coarse Gravel Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    Mali, N. [Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia); Kozar-Logar, J. [Jozef Stefan Institute, Ljubljana (Slovenia); Leis, A. [Institute of Water Resources Management, Hydrogeology and Geophysics, Joanneum Research Forschungsgesellschaft mbH, Graz (Austria)

    2013-07-15

    The unsaturated zone above an aquifer serves as a water reservoir which discharges water and possible pollution to the saturated zone. This paper presents the application of oxygen-18 and tritium isotope methods in the study of groundwater transport processes in the unsaturated zone of Selniska Dobrava coarse gravel aquifer. The Selniska Dobrava gravel aquifer is an important water resource for Maribor and its surroundings, therefore the determination of transport processes in the unsaturated zone is important regarding its protection. Groundwater flow characteristics were estimated using isotopes and based on experimental work in a lysimeter. Tritium investigation results were compared with the results of long term oxygen-18 isotope investigation. In this paper the analytical approach, results and interpretation of {delta}{sup 18}O and tritium measurements in the unsaturated zone are presented. (author)

  13. The discharge of nitrate-contaminated groundwater from developed shoreline to marsh-fringed estuary

    Science.gov (United States)

    Portnoy, J.W.; Nowicki, B.L.; Roman, C.T.; Urish, D.W.

    1998-01-01

    As residential development, on-site wastewater disposal, and groundwater contamination increase in the coastal zone, assessment of nutrient removal by soil and sedimentary processes becomes increasingly important. Nitrogen removal efficiency depends largely on the specific flow paths taken by groundwater as it discharges into nitrogen-limited estuarine waters. Shoreline salinity surveys, hydraulic studies, and thermal infrared imagery indicated that groundwater discharge into the Nauset Marsh estuary (Eastham, Massachusetts) occurred in high-velocity seeps immediately seaward of the upland-fringing salt marsh. Discharge was highly variable spatially and occurred through permeable, sandy sediments during low tide. Seepage chamber monitoring showed that dissolved inorganic nitrogen (principally nitrate) traversed nearly conservatively from the aquifer through shallow estuarine sediments to coastal waters at flux rates of 1–3 mmol m−2 h−1. A significant relationship between pore water NO3-N concentrations and NO3-N flux rates may provide a rapid method of estimating nitrogen loading from groundwater to the water column.

  14. Flow and discharge of groundwater from a snowmelt-affected sandy beach

    Science.gov (United States)

    Chaillou, G.; Lemay-Borduas, F.; Larocque, M.; Couturier, M.; Biehler, A.; Tommi-Morin, G.

    2018-02-01

    The study is based on a complex and unique data set of water stable isotopes (i.e., δ18O and δ2H), radon-222 activities (i.e., 222Rn) and groundwater levels to better understand the interaction of fresh groundwater and recirculated seawater in a snowmelt-affected subterranean estuary (STE) in a boreal region (Îles-de-la-Madeleine, Qc, Canada). By using a combination of hydrogeological and marine geochemical approaches, the objective was to analyze and quantify submarine groundwater discharge processes through a boreal beach after the snow melt period, in early June. The distribution of δ18O and δ2H in beach groundwater showed that inland fresh groundwater contributed between 97 and 30% of water masses presented within the STE. A time series of water table levels during the 16 days of the study indicated that tides propagated as a dynamic wave limiting the mass displacement of seawater within the STE. This up-and-down movement of the water table (∼10-30 cm) induced the vertical infiltration of seawater at the falling tide. At the front of the beach, a radon-based mass balance calculated with high-resolution 222Rn survey estimated total SGD of 3.1 m3/m/d at the discharge zone and a mean flow to 1.5 m3/m/d in the bay. The nearshore discharge agreed relatively well with Darcy fluxes calculated at the beach face. Fresh groundwater makes up more than 50% of the total discharge during the measuring campaign. These results indicate that beaches in boreal and cold regions could be important sources of freshwater originate and groundwater-borne solutes and contaminants to the marine environment after the snowmelt.

  15. Redox Zonation and Oscillation in the Hyporheic Zone of the Ganges-Brahmaputra-Meghna Delta: Implications for the Fate of Groundwater Arsenic during Discharge

    Science.gov (United States)

    Jung, Hun Bok; Zheng, Yan; Rahman, Mohammad W.; Rahman, Mohammad M.; Ahmed, Kazi M.

    2015-01-01

    Riverbank sediment cores and pore waters, shallow well waters, seepage waters and river waters were collected along the Meghna Riverbank in Gazaria Upazila, Bangladesh in Jan. 2006 and Oct.-Nov. 2007 to investigate hydrogeochemical processes controlling the fate of groundwater As during discharge. Redox transition zones from suboxic (0-2 m depth) to reducing (2-5 m depth) then suboxic conditions (5-7 m depth) exist at sites with sandy surficial deposits, as evidenced by depth profiles of pore water (n=7) and sediment (n=11; diffuse reflectance, Fe(III)/Fe ratios and Fe(III) concentrations). The sediment As enrichment zone (up to ~700 mg kg−1) is associated with the suboxic zones mostly between 0-2 m depth and less frequently between 5-7 m depth. The As enriched zones consist of several 5 to 10 cm-thick dispersed layers and span a length of ~5-15 m horizontally from the river shore. Depth profiles of riverbank pore water deployed along a 32 m transect perpendicular to the river shore show elevated levels of dissolved Fe (11.6±11.7 mg L−1) and As (118±91 μg L−1, mostly as arsenite) between 2-5 m depth, but lower concentrations between 0-2 m depth (0.13±0.19 mg L−1 Fe, 1±1 μg L−1 As) and between 5-6 m depth (1.14±0.45 mg L−1 Fe, 28±17 μg L−1 As). Because it would take more than a few hundred years of steady groundwater discharge (~10 m yr−1) to accumulate hundreds of mg kg−1 of As in the riverbank sediment, it is concluded that groundwater As must have been naturally elevated prior to anthropogenic pumping of the aquifer since the 1970s. Not only does this lend unequivocal support to the argument that As occurrence in the Ganges-Brahmaputra-Meghna Delta groundwater is of geogenic origin, it also calls attention to the fate of this As enriched sediment as it may recycle As into the aquifer. PMID:26855475

  16. Characteristic groundwater level regimes in the capture zones of radial collector wells and importance of identification (Case study of Belgrade Groundwater Source

    Directory of Open Access Journals (Sweden)

    Božović Đorđije

    2016-01-01

    Full Text Available Assessment of the operating modes of radial collector wells reveals that the pumping levels in the well caissons are very low relative to the depth/elevation of the laterals, which is a common occurrence at Belgrade Groundwater Source. As a result, well discharge capacities vary over a broad range and groundwater levels in the capture zones differ even when the rate of discharge is the same. Five characteristic groundwater level regimes are identified and their origin is analyzed using representative wells as examples. The scope and type of background information needed to identify the groundwater level regime are presented and an interpretation approach is proposed for preliminary assessment of the aquifer potential at the well site for providing the needed amount of groundwater. [Projekat Ministarstva nauke Republike Srbije, br. OI176022, br. TR33039 i br. III43004

  17. Seasonal arsenic accumulation in stream sediments at a groundwater discharge zone.

    Science.gov (United States)

    MacKay, Allison A; Gan, Ping; Yu, Ran; Smets, Barth F

    2014-01-21

    Seasonal changes in arsenic and iron accumulation rates were examined in the sediments of a brook that receives groundwater discharges of arsenic and reduced iron. Clean glass bead columns were deployed in sediments for known periods over the annual hydrologic cycle to monitor changes in arsenic and iron concentrations in bead coatings. The highest accumulation rates occurred during the dry summer period (July-October) when groundwater discharges were likely greatest at the sample locations. The intermediate flow period (October-March), with higher surface water levels, was associated with losses of arsenic and iron from bead column coatings at depths below 2-6 cm. Batch incubations indicated iron releases from solids to be induced by biological reduction of iron (oxy)hydroxide solids. Congruent arsenic releases during incubation were limited by the high arsenic sorption capacity (0.536 mg(As)/mg(Fe)) of unreacted iron oxide solids. The flooded spring (March-June) with high surface water flows showed the lowest arsenic and iron accumulation rates in the sediments. Comparisons of accumulation rates across a shoreline transect were consistent with greater rates at regions exposed above surface water levels for longer times and greater losses at locations submerged below surface water. Iron (oxy)hydroxide solids in the shallowest sediments likely serve as a passive barrier to sorb arsenic released to pore water at depth by biological iron reduction.

  18. Chemistry of groundwater discharge inferred from longitudinal river sampling

    Science.gov (United States)

    Batlle-Aguilar, J.; Harrington, G. A.; Leblanc, M.; Welch, C.; Cook, P. G.

    2014-02-01

    We present an approach for identifying groundwater discharge chemistry and quantifying spatially distributed groundwater discharge into rivers based on longitudinal synoptic sampling and flow gauging of a river. The method is demonstrated using a 450 km reach of a tropical river in Australia. Results obtained from sampling for environmental tracers, major ions, and selected trace element chemistry were used to calibrate a steady state one-dimensional advective transport model of tracer distribution along the river. The model closely reproduced river discharge and environmental tracer and chemistry composition along the study length. It provided a detailed longitudinal profile of groundwater inflow chemistry and discharge rates, revealing that regional fractured mudstones in the central part of the catchment contributed up to 40% of all groundwater discharge. Detailed analysis of model calibration errors and modeled/measured groundwater ion ratios elucidated that groundwater discharging in the top of the catchment is a mixture of local groundwater and bank storage return flow, making the method potentially useful to differentiate between local and regional sourced groundwater discharge. As the error in tracer concentration induced by a flow event applies equally to any conservative tracer, we show that major ion ratios can still be resolved with minimal error when river samples are collected during transient flow conditions. The ability of the method to infer groundwater inflow chemistry from longitudinal river sampling is particularly attractive in remote areas where access to groundwater is limited or not possible, and for identification of actual fluxes of salts and/or specific contaminant sources.

  19. Quantifying submarine groundwater discharge in the coastal zone via multiple methods

    International Nuclear Information System (INIS)

    Burnett, W.C.; Aggarwal, P.K.; Aureli, A.; Bokuniewicz, H.; Cable, J.E.; Charette, M.A.; Kontar, E.; Krupa, S.; Kulkarni, K.M.; Loveless, A.; Moore, W.S.; Oberdorfer, J.A.; Oliveira, J.; Ozyurt, N.; Povinec, P.; Privitera, A.M.G.; Rajar, R.; Ramessur, R.T.; Scholten, J.; Stieglitz, T.; Taniguchi, M.; Turner, J.V.

    2006-01-01

    Submarine groundwater discharge (SGD) is now recognized as an important pathway between land and sea. As such, this flow may contribute to the biogeochemical and other marine budgets of near-shore waters. These discharges typically display significant spatial and temporal variability making assessments difficult. Groundwater seepage is patchy, diffuse, temporally variable, and may involve multiple aquifers. Thus, the measurement of its magnitude and associated chemical fluxes is a challenging enterprise. A joint project of UNESCO and the International Atomic Energy Agency (IAEA) has examined several methods of SGD assessment and carried out a series of five intercomparison experiments in different hydrogeologic environments (coastal plain, karst, glacial till, fractured crystalline rock, and volcanic terrains). This report reviews the scientific and management significance of SGD, measurement approaches, and the results of the intercomparison experiments. We conclude that while the process is essentially ubiquitous in coastal areas, the assessment of its magnitude at any one location is subject to enough variability that measurements should be made by a variety of techniques and over large enough spatial and temporal scales to capture the majority of these changing conditions. We feel that all the measurement techniques described here are valid although they each have their own advantages and disadvantages. It is recommended that multiple approaches be applied whenever possible. In addition, a continuing effort is required in order to capture long-period tidal fluctuations, storm effects, and seasonal variations

  20. Quantifying submarine groundwater discharge in the coastal zone via multiple methods

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, W.C. [Department of Oceanography, Florida State University, Tallahassee, FL 32306 (United States); Aggarwal, P.K.; Kulkarni, K.M. [Isotope Hydrology Section, International Atomic Energy Agency (Austria); Aureli, A. [Department Water Resources Management, University of Palermo, Catania (Italy); Bokuniewicz, H. [Marine Science Research Center, Stony Brook University (United States); Cable, J.E. [Department Oceanography, Louisiana State University (United States); Charette, M.A. [Department Marine Chemistry, Woods Hole Oceanographic Institution (United States); Kontar, E. [Shirshov Institute of Oceanology (Russian Federation); Krupa, S. [South Florida Water Management District (United States); Loveless, A. [University of Western Australia (Australia); Moore, W.S. [Department Geological Sciences, University of South Carolina (United States); Oberdorfer, J.A. [Department Geology, San Jose State University (United States); Oliveira, J. [Instituto de Pesquisas Energeticas e Nucleares (Brazil); Ozyurt, N. [Department Geological Engineering, Hacettepe (Turkey); Povinec, P.; Scholten, J. [Marine Environment Laboratory, International Atomic Energy Agency (Monaco); Privitera, A.M.G. [U.O. 4.17 of the G.N.D.C.I., National Research Council (Italy); Rajar, R. [Faculty of Civil and Geodetic Engineering, University of Ljubljana (Slovenia); Ramessur, R.T. [Department Chemistry, University of Mauritius (Mauritius); Stieglitz, T. [Mathematical and Physical Sciences, James Cook University (Australia); Taniguchi, M. [Research Institute for Humanity and Nature (Japan); Turner, J.V. [CSIRO, Land and Water, Perth (Australia)

    2006-08-31

    Submarine groundwater discharge (SGD) is now recognized as an important pathway between land and sea. As such, this flow may contribute to the biogeochemical and other marine budgets of near-shore waters. These discharges typically display significant spatial and temporal variability making assessments difficult. Groundwater seepage is patchy, diffuse, temporally variable, and may involve multiple aquifers. Thus, the measurement of its magnitude and associated chemical fluxes is a challenging enterprise. A joint project of UNESCO and the International Atomic Energy Agency (IAEA) has examined several methods of SGD assessment and carried out a series of five intercomparison experiments in different hydrogeologic environments (coastal plain, karst, glacial till, fractured crystalline rock, and volcanic terrains). This report reviews the scientific and management significance of SGD, measurement approaches, and the results of the intercomparison experiments. We conclude that while the process is essentially ubiquitous in coastal areas, the assessment of its magnitude at any one location is subject to enough variability that measurements should be made by a variety of techniques and over large enough spatial and temporal scales to capture the majority of these changing conditions. We feel that all the measurement techniques described here are valid although they each have their own advantages and disadvantages. It is recommended that multiple approaches be applied whenever possible. In addition, a continuing effort is required in order to capture long-period tidal fluctuations, storm effects, and seasonal variations. (author)

  1. Decomposition of groundwater level fluctuations using transfer modelling in an area with shallow to deep unsaturated zones

    Science.gov (United States)

    Gehrels, J. C.; van Geer, F. C.; de Vries, J. J.

    1994-05-01

    Time series analysis of the fluctuations in shallow groundwater levels in the Netherlands lowlands have revealed a large-scale decline in head during recent decades as a result of an increase in land drainage and groundwater withdrawal. The situation is more ambiguous in large groundwater bodies located in the eastern part of the country, where the unsaturated zone increases from near zero along the edges to about 40 m in the centre of the area. As depth of the unsaturated zone increases, groundwater level reacts with an increasing delay to fluctuations in climate and influences of human activities. The aim of the present paper is to model groundwater level fluctuations in these areas using a linear stochastic transfer function model, relating groundwater levels to estimated precipitation excess, and to separate artificial components from the natural groundwater regime. In this way, the impact of groundwater withdrawal and the reclamation of a 1000 km 2 polder area on the groundwater levels in the adjoining higher ground could be assessed. It became evident that the linearity assumption of the transfer functions becomes a serious drawback in areas with the deepest groundwater levels, because of non-linear processes in the deep unsaturated zone and the non-synchronous arrival of recharge in the saturated zone. Comparison of the results from modelling the influence of reclamation with an analytical solution showed that the lowering of groundwater level is partly compensated by reduced discharge and therefore is less than expected.

  2. Understanding the hydrologic impacts of wastewater treatment plant discharge to shallow groundwater: Before and after plant shutdown

    Science.gov (United States)

    Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.

    2016-01-01

    Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.

  3. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    Directory of Open Access Journals (Sweden)

    D. K. Hare

    2017-11-01

    Full Text Available Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns

  4. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    Science.gov (United States)

    Hare, Danielle K.; Boutt, David F.; Clement, William P.; Hatch, Christine E.; Davenport, Glorianna; Hackman, Alex

    2017-11-01

    Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns may allow resource

  5. Geophysical and hydrogeological characterisation of the impacts of on-site wastewater treatment discharge to groundwater in a poorly productive bedrock aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, Shane [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland (United Kingdom); McCarthy, Valerie; Rafferty, Patrick [Department of Applied Sciences, Dundalk Institute of Technology, Dublin Road, Dundalk (Ireland); Orr, Alison; Flynn, Raymond [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland (United Kingdom)

    2015-08-01

    Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100 m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar

  6. Geophysical and hydrogeological characterisation of the impacts of on-site wastewater treatment discharge to groundwater in a poorly productive bedrock aquifer

    International Nuclear Information System (INIS)

    Donohue, Shane; McCarthy, Valerie; Rafferty, Patrick; Orr, Alison; Flynn, Raymond

    2015-01-01

    Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100 m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar

  7. Groundwater flow and heterogeneous discharge into a seepage lake

    DEFF Research Database (Denmark)

    Kazmierczak, Jolanta; Müller, Sascha; Nilsson, B.

    2016-01-01

    with the lake remained under seemingly steady state conditions across seasons, a high spatial and temporal heterogeneity in the discharge to the lake was observed. The results showed that part of the groundwater flowing from the west passes beneath the lake and discharges at the eastern shore, where groundwater......Groundwater discharge into a seepage lake was investigated by combining flux measurements, hydrochemical tracers, geological information, and a telescopic modeling approach using first two-dimensional (2-D) regional then 2-D local flow and flow path models. Discharge measurements and hydrochemical...... tracers supplement each other. Discharge measurements yield flux estimates but rarely provide information about the origin and flow path of the water. Hydrochemical tracers may reveal the origin and flow path of the water but rarely provide any information about the flux. While aquifer interacting...

  8. Groundwater discharge mapping by thermal infra-red imagery

    International Nuclear Information System (INIS)

    Brereton, N.R.

    1984-02-01

    An area around Altnabreac in northern Scotland has been studied as part of the UK programme of research into the feasibility of disposal of radioactive waste into geological formations. An essential prerequisite to being able to predict the behaviour, migratory pathways and travel times of radionuclides emanating from a waste repository is an understanding of the regional and near surface groundwater flow systems and groundwater geochemical evolution. The groundwater system at depth has been studied by means of boreholes but an understanding of the shallow groundwater flow, and its interaction with groundwater upwelling from depth, can be gained from studies of the spatial distribution and geochemistry of surface springs and discharges. A survey was carried out using the thermal infra-red linescan technique with the objective of locating all significant spring discharges over the study area. The terrain around Altnabreac is largely covered by superficial deposits which overlie weathered granite. The survey was carried out from a height of 275m at a spatial resolution of about 0.5m. About 280 line Km were covered but allowing for overlap between adjacent flight lines and some repeat coverage, the actual area surveyed was 68 sq Km. The most striking aspect of the results is the wide distribution of groundwater discharges in the Altnabreac area. An analysis of the data identified three general categories of spring and many of these springs were subsequently visited for verification and to allow samples to be collected for chemical analysis. The results from this survey indicates that the groundwater table is strongly influenced by local topography and that the majority of the spring discharges represent near surface recent groundwaters circulating within the superficial deposits and weathered granite

  9. Vessel Sewage Discharges: No-Discharge Zones (NDZs)

    Science.gov (United States)

    States may petition the EPA to establish areas, called no discharge zones (NDZs), where vessel sewage discharges are prohibited. This page describes how NDZs are designated, the types of designations, who enforces them, and how to comply.

  10. Effect of an offshore sinkhole perforation in a coastal confined aquifer on submarine groundwater discharge

    Science.gov (United States)

    Fratesi, S.E.; Leonard, V.; Sanford, W.E.

    2007-01-01

    In order to explore submarine groundwater discharge in the vicinity of karst features that penetrate the confining layer of an offshore, partially confined aquifer, we constructed a three-dimensional groundwater model using the SUTRA (Saturated-Unsaturated TRAnsport) variable-density groundwater flow model. We ran a parameter sensitivity analysis, testing the effects of recharge rates, permeabilities of the aquifer and confining layer, and thickness of the confining layer. In all simulations, less than 20% of the freshwater recharge for the entire model exits through the sinkhole. Recirculated seawater usually accounts for 10-30% of the total outflow from the model. Often, the sinkhole lies seaward of the transition zone and acts as a recharge feature for recirculating seawater. The permeability ratio between aquifer and confining layer influences the configuration of the freshwater wedge the most; as confining layer permeability decreases, the wedge lengthens and the fraction of total discharge exiting through the sinkhole increases. Copyright ?? 2007 IAHS Press.

  11. Groundwater and solute transport modeling at Hyporheic zone of upper part Citarum River

    Science.gov (United States)

    Iskandar, Irwan; Farazi, Hendy; Fadhilah, Rahmat; Purnandi, Cipto; Notosiswoyo, Sudarto

    2017-06-01

    Groundwater and surface water interaction is an interesting topic to be studied related to the water resources and environmental studies. The study of interaction between groundwater and river water at the Upper Part Citarum River aims to know the contribution of groundwater to the river or reversely and also solute transport of dissolved ions between them. Analysis of drill logs, vertical electrical sounding at the selected sections, measurement of dissolved ions, and groundwater modeling were applied to determine the flow and solute transport phenomena at the hyporheic zone. It showed the hyporheic zone dominated by silt and clay with hydraulic conductivity range from 10-4∼10-8 m/s. The groundwater flowing into the river with very low gradient and it shows that the Citarum River is a gaining stream. The groundwater modeling shows direct seepage of groundwater into the Citarum River is only 186 l/s, very small compared to the total discharge of the river. Total dissolved ions of the groundwater ranged from 200 to 480 ppm while the river water range from 200 to 2,000 ppm. Based on solute transport modeling it indicates dissolved ions dispersion of the Citarum River into groundwater may occur in some areas such as Bojongsoang-Dayeuh Kolot and Nanjung. This situation would increase the dissolved ions in groundwater in the region due to the contribution of the Citarum River. The results of the research can be a reference for further studies related to the mechanism of transport of the pollutants in the groundwater around the Citarum River.

  12. ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 2. Groundwater contaminant mass discharge reduction

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Lange, Ida Vedel; Bjerg, Poul Løgstrup

    2012-01-01

    The impact of source mass depletion on the down-gradient contaminant mass discharge was monitored for a 19-month period as a part of a field demonstration of the ZVI-Clay soil mixing remediation technology. Groundwater samples were collected from conventional monitoring wells (120 samples) and a ...... down-gradient contaminant mass discharge reduction (76%) for the parent compound (PCE), while the overall reduction of chlorinated ethenes was smaller (21%)....

  13. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux in the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.

  14. Strategies for implementing zero discharge in an industrial smelter : 1. Managing fluroide in groundwater

    Science.gov (United States)

    Stagnitti, F.; Salzman, S.; Thwaites, L.; Allinson, G.; Le Blanc, M.; Hill, J.; Doerr, S.; de Rooij, G.

    2003-04-01

    The Portland Aluminium smelter produces approximately 75 ML of process wastewater each year. This is combined with storm water runoff from the site to give an annual production of 715 ML. In common with many other smelters, this wastewater stream is currently discharged to the ocean. However, although the quality of the water Portland Aluminium discharges currently meets all Australian Environmental Protection Agency license requirements, this mode of release is unlikely to be acceptable in the near future, and alternative disposal options for the water are required. The Portland smelter has developed strategies which will enable it to achieve zero-discharge within 5 years. These strategies include separating process water from storm water, recycling storm water, construction of evaporation ponds to receive process water, irrigation of process water and storm water on lands within the site and maintenance of important wetland functions. The poster presents a summary of the management strategies currently being trialed and in particular focuses on modeling the spatial and temporal variations of fluoride found in the shallow groundwater and the implications of achieving zero-discharge. The poster also discusses the possible impacts on the distribution of fluoride and other solutes in the vadose zone by the irrigation of treated process water on blue-gum plantations. Computer simulations indicate that irrigation of process water (either treated or untreated) on the land poses no significant long-term threat to regional or surficial groundwater. However the impacts of increased solute transport through the vadose zone on changes in soil structure and nutrition require further investigation.

  15. Nested-scale discharge and groundwater level monitoring to improve predictions of flow route discharges and nitrate loads

    Science.gov (United States)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.; van Geer, F. C.; Torfs, P. J. J. F.; de Louw, P. G. B.

    2010-10-01

    Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for predictions of catchment-scale discharge and nitrate loads. In order to relate field-site measurements to the catchment-scale an upscaling approach is introduced that assumes that scale differences in flow route fluxes originate from differences in the relationship between groundwater storage and the spatial structure of the groundwater table. This relationship is characterized by the Groundwater Depth Distribution (GDD) curve that relates spatial variation in groundwater depths to the average groundwater depth. The GDD-curve was measured for a single field site (0.009 km2) and simple process descriptions were applied to relate the groundwater levels to flow route discharges. This parsimonious model could accurately describe observed storage, tube drain discharge, overland flow and groundwater flow simultaneously with Nash-Sutcliff coefficients exceeding 0.8. A probabilistic Monte Carlo approach was applied to upscale field-site measurements to catchment scales by inferring scale-specific GDD-curves from hydrographs of two nested catchments (0.4 and 6.5 km2). The estimated contribution of tube drain effluent (a dominant source for nitrates) decreased with increasing scale from 76-79% at the field-site to 34-61% and 25-50% for both catchment scales. These results were validated by demonstrating that a model conditioned on nested-scale measurements simulates better nitrate loads and better predictions of extreme discharges during validation periods compared to a model that was conditioned on catchment discharge only.

  16. Identifying Groundwater Discharge in the Merced River Basin, California Using Radon-222

    Science.gov (United States)

    Shaw, G. D.; Hudson, G. B.; Moran, J.; Conklin, M.

    2004-12-01

    Groundwater flow in fractured granite of the Sierra Nevada is poorly characterized, in particular, contributions of mountain block recharge are not known. Using a combination of water quality and isotopic analyses, groundwater inputs to the Upper Merced River were characterized. Between November 2003 and July 2004, monthly water quality samples were taken from Happy Isles to the inlet of Lake McClure, a 75 km reach. These samples demonstrated the expected dilution due to snowmelt in the spring. In the fall, the spatial profile matched the geology with anion concentrations increasing downstream of the transition from the Sierra Nevada batholith to the country rock, suggesting significant groundwater inputs. From July 19 to 21, 2004, radon-222 and other noble gases (He, Ne, Ar, Kr and Xe abundances and 3He/4He ratio) were measured along a 37 km reach of the Merced River, extending from the top of Yosemite Valley to the confluence of the South Fork of the Merced River. All radon samples were extracted into mineral oil immediately in the field and counted using liquid scintillation; noble gas samples were collected in copper tubes. Radon-222 activity varied from about 1 to 100 pCi/L (at collection time) indicating significant, spatially variable groundwater discharge into the Merced River. Two one-mile reaches of the Merced River were sampled for 222Rn on a fine scale. Large fracture sets in these two locations and previous temperature measurements suggested that groundwater discharge was higher relative to other locations along the river. Radon-222 activity was low upstream and downstream of large fractures observed in the bedrock; whereas, 222Rn activity was high at large fracture zones. Degassing is rapid downstream of fractures where no groundwater discharge is observed. For a representative groundwater end-member, radon-222 activity measured in Fern Spring, Yosemite Valley was about 1200 pCi/L. Excess 4He from U and Th decay is observed in samples with elevated

  17. Dilution and volatilization of groundwater contaminant discharges in streams

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Bjerg, Poul Løgstrup; Sonne, Anne Thobo

    2015-01-01

    measurement. The solution was successfully applied to published field data obtained in a large and a small Danish stream and provided valuable information on the risk posed by the groundwater contaminant plumes. The results provided by the dilution and volatilization model are very different to those obtained......An analytical solution to describe dilution and volatilization of a continuous groundwater contaminant plume into streams is developed for risk assessment. The location of groundwater plume discharge into the stream (discharge through the side versus bottom of the stream) and different...

  18. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring

    Science.gov (United States)

    Watlet, Arnaud; Kaufmann, Olivier; Triantafyllou, Antoine; Poulain, Amaël; Chambers, Jonathan E.; Meldrum, Philip I.; Wilkinson, Paul B.; Hallet, Vincent; Quinif, Yves; Van Ruymbeke, Michel; Van Camp, Michel

    2018-03-01

    Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL) site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT) monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets) and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1) upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2) deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3) a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of the sources of drip

  19. Estimates of Nutrient Loading by Ground-Water Discharge into the Lynch Cove Area of Hood Canal, Washington

    Science.gov (United States)

    Simonds, F. William; Swarzenski, Peter W.; Rosenberry, Donald O.; Reich, Christopher D.; Paulson, Anthony J.

    2008-01-01

    field investigations show that ground-water discharge into the Lynch Cove area of Hood Canal is highly dynamic and strongly affected by the large tidal range. In areas with a steep shoreline and steep hydraulic gradient, ground-water discharge is spatially concentrated in or near the intertidal zone, with increased discharge during low tide. Topographically flat areas with weak hydraulic gradients had more spatial variability, including larger areas of seawater recirculation and more widely dispersed discharge. Measured total-dissolved-nitrogen concentrations in ground water ranged from below detection limits to 2.29 milligrams per liter and the total load entering Lynch Cove was estimated to be approximately 98 ? 10.3 metric tons per year (MT/yr). This estimate is based on net freshwater seepage rates from Lee-type seepage meter measurements and can be compared to estimates derived from geochemical tracer mass balance estimates (radon and radium) of 231 to 749 MT/yr, and previous water-mass-balance estimates (14 to 47 MT/ yr). Uncertainty in these loading estimates is introduced by complex biogeochemical cycles of relevant nutrient species, the representativeness of measurement sites, and by energetic dynamics at the coastal aquifer-seawater interface caused by tidal forcing.

  20. The Role of Frozen Soil in Groundwater Discharge Predictions for Warming Alpine Watersheds

    Science.gov (United States)

    Evans, Sarah G.; Ge, Shemin; Voss, Clifford I.; Molotch, Noah P.

    2018-03-01

    Climate warming may alter the quantity and timing of groundwater discharge to streams in high alpine watersheds due to changes in the timing of the duration of seasonal freezing in the subsurface and snowmelt recharge. It is imperative to understand the effects of seasonal freezing and recharge on groundwater discharge to streams in warming alpine watersheds as streamflow originating from these watersheds is a critical water resource for downstream users. This study evaluates how climate warming may alter groundwater discharge due to changes in seasonally frozen ground and snowmelt using a 2-D coupled flow and heat transport model with freeze and thaw capabilities for variably saturated media. The model is applied to a representative snowmelt-dominated watershed in the Rocky Mountains of central Colorado, USA, with snowmelt time series reconstructed from a 12 year data set of hydrometeorological records and satellite-derived snow covered area. Model analyses indicate that the duration of seasonal freezing in the subsurface controls groundwater discharge to streams, while snowmelt timing controls groundwater discharge to hillslope faces. Climate warming causes changes to subsurface ice content and duration, rerouting groundwater flow paths but not altering the total magnitude of future groundwater discharge outside of the bounds of hydrologic parameter uncertainties. These findings suggest that frozen soil routines play an important role for predicting the future location of groundwater discharge in watersheds underlain by seasonally frozen ground.

  1. The role of frozen soil in groundwater discharge predictions for warming alpine watersheds

    Science.gov (United States)

    Evans, Sarah G.; Ge, Shemin; Voss, Clifford I.; Molotch, Noah P.

    2018-01-01

    Climate warming may alter the quantity and timing of groundwater discharge to streams in high alpine watersheds due to changes in the timing of the duration of seasonal freezing in the subsurface and snowmelt recharge. It is imperative to understand the effects of seasonal freezing and recharge on groundwater discharge to streams in warming alpine watersheds as streamflow originating from these watersheds is a critical water resource for downstream users. This study evaluates how climate warming may alter groundwater discharge due to changes in seasonally frozen ground and snowmelt using a 2‐D coupled flow and heat transport model with freeze and thaw capabilities for variably saturated media. The model is applied to a representative snowmelt‐dominated watershed in the Rocky Mountains of central Colorado, USA, with snowmelt time series reconstructed from a 12 year data set of hydrometeorological records and satellite‐derived snow covered area. Model analyses indicate that the duration of seasonal freezing in the subsurface controls groundwater discharge to streams, while snowmelt timing controls groundwater discharge to hillslope faces. Climate warming causes changes to subsurface ice content and duration, rerouting groundwater flow paths but not altering the total magnitude of future groundwater discharge outside of the bounds of hydrologic parameter uncertainties. These findings suggest that frozen soil routines play an important role for predicting the future location of groundwater discharge in watersheds underlain by seasonally frozen ground.

  2. EPA Region 1 No Discharge Zones

    Science.gov (United States)

    This dataset details No Discharge Zones (NDZ) for New England. Boaters may not discharge waste into these areas. Boundaries were determined mostly by Federal Register Environmental Documents in coordination with Massachusetts Coastal Zone Management (MA CZM) and EPA Region 1 Office of Ecosystem Protection (OEP) staff.

  3. Observations of nearshore groundwater discharge: Kahekili Beach Park submarine springs, Maui, Hawaii

    Science.gov (United States)

    Swarzenski, Peter W.; Dulai, H.; Kroeger, K.D.; Smith, C.G.; Dimova, N.; Storlazzi, C. D.; Prouty, N.G.; Gingerich, S.B.; Glenn, C. R.

    2016-01-01

    Study regionThe study region encompasses the nearshore, coastal waters off west Maui, Hawaii. Here abundant groundwater—that carries with it a strong land-based fingerprint—discharges into the coastal waters and over a coral reef.Study focusCoastal groundwater discharge is a ubiquitous hydrologic feature that has been shown to impact nearshore ecosystems and material budgets. A unique combined geochemical tracer and oceanographic time-series study addressed rates and oceanic forcings of submarine groundwater discharge at a submarine spring site off west Maui, Hawaii.New hydrological insights for the regionEstimates of submarine groundwater discharge were derived for a primary vent site and surrounding coastal waters off west Maui, Hawaii using an excess 222Rn (t1/2 = 3.8 d) mass balance model. Such estimates were complemented with a novel thoron (220Rn,t1/2 = 56 s) groundwater discharge tracer application, as well as oceanographic time series and thermal infrared imagery analyses. In combination, this suite of techniques provides new insight into the connectivity of the coastal aquifer with the near-shore ocean and examines the physical drivers of submarine groundwater discharge. Lastly, submarine groundwater discharge derived constituent concentrations were tabulated and compared to surrounding seawater concentrations. Such work has implications for the management of coastal aquifers and downstream nearshore ecosystems that respond to sustained constituent loadings via this submarine route.

  4. Joint Calibration of Submarine Groundwater Discharge (SGD) with Tidal Pumping: Modeling Variable-density Groundwater Flow in Unconfined Coastal Aquifer of Apalachee Bay, Gulf of Mexico

    Science.gov (United States)

    Li, X.; Hu, B.; Burnett, W.; Santos, I.

    2008-05-01

    Submarine Groundwater Discharge (SGD) as an unseen phenomenon is now recognized as an important pathway between land and sea. These discharges typically display significant spatial and temporal variability making quantification difficult. Groundwater seepage is patchy, diffuse, and temporally variable, and thus makes the estimation of its magnitude and components is a challenging enterprise. A two-dimensional hydrogeological model is developed to the near-shore environment of an unconfined aquifer at a Florida coastal area in the northeastern Gulf of Mexico. Intense geological survey and slug tests are set to investigate the heterogeneity of this layered aquifer. By applying SEAWAT2000, considering the uncertainties caused by changes of boundary conditions, a series of variable-density-flow models incorporates the tidal-influenced seawater recirculation and the freshwater-saltwater mixing zone under the dynamics of tidal pattern, tidal amplitude and variation of water table. These are thought as the contributing factors of tidal pumping and hydraulic gradient which are the driven forces of SGD. A tidal-influenced mixing zone in the near-shore aquifer shows the importance of tidal mechanism to flow and salt transport in the process of submarine pore water exchange. Freshwater ratio in SGD is also analyzed through the comparison of Submarine Groundwater Recharge and freshwater inflow. The joint calibration with other methods (natural tracer model and seepage meter) is also discussed.

  5. Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.

    2014-01-01

    The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

  6. Groundwater Discharge of Legacy Nitrogen to River Networks: Linking Regional Groundwater Models to Streambed Groundwater-Surface Water Exchange and Nitrogen Processing

    Science.gov (United States)

    Barclay, J. R.; Helton, A. M.; Briggs, M. A.; Starn, J. J.; Hunt, A.

    2017-12-01

    Despite years of management, excess nitrogen (N) is a pervasive problem in many aquatic ecosystems. More than half of surface water in the United States is derived from groundwater, and widespread N contamination in aquifers from decades of watershed N inputs suggest legacy N discharging from groundwater may contribute to contemporary N pollution problems in surface waters. Legacy N loads to streams and rivers are controlled by both regional scale flow paths and fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients that occur at stream bed interfaces. Adequately incorporating these disparate scales is a challenge, but it is essential to understanding legacy N transport and making informed management decisions. We developed a regional groundwater flow model for the Farmington River, a HUC-8 basin that drains to the Long Island Sound, a coastal estuary that suffers from elevated N loads despite decades of management, to understand broad patterns of regional transport. To evaluate and refine the regional model, we used thermal infrared imagery paired with vertical temperature profiling to estimate groundwater discharge at the streambed interface. We also analyzed discharging groundwater for multiple N species to quantify fine scale patterns of N loading and transformation via denitrification at the streambed interface. Integrating regional and local estimates of groundwater discharge of legacy N to river networks should improve our ability to predict spatiotemporal patterns of legacy N loading to and transformation within surface waters.

  7. Groundwater flow in a coastal peatland and its influence on submarine groundwater discharge

    Science.gov (United States)

    Ptak, T.; Ibenthal, M.; Janssen, M.; Massmann, G.; Lenartz, B.

    2017-12-01

    Coastal peatlands are characterized by intense interactions between land and sea, comprising both a submarine discharge of fresh groundwater and inundations of the peatland with seawater. Nutrients and salts can influence the biogeochemical processes both in the shallow marine sediments and in the peatland. The determination of flow direction and quantity of groundwater flow are therefore elementary. Submarine groundwater discharge (SGD) has been reported from several locations in the Baltic. The objective of this study is to quantify the exchange of fresh and brackish water across the shoreline in a coastal peatland in Northeastern Germany, and to assess the influence of a peat layer extending into the Baltic Sea. Below the peatland, a shallow fine sand aquifer differs in depth and is limited downwards by glacial till. Water level and electrical conductivity (EC) are permanently measured in different depths at eight locations in the peatland. First results indicate a general groundwater flow direction towards the sea. Electrical conductivity measurements suggest different permeabilities within the peat layer, depending on its thickness and degradation. Near the beach, EC fluctuates partially during storm events due to seawater intrusion and reverse discharge afterwards. The groundwater flow will be verified with a 3D model considering varying thicknesses of the aquifer. Permanent water level and electrical conductivity readings, meteorological data and hydraulic conductivity from slug tests and grain size analysis are the base for the calibration of the numerical model.

  8. A Modified Water-Table Fluctuation Method to Characterize Regional Groundwater Discharge

    Directory of Open Access Journals (Sweden)

    Lihong Yang

    2018-04-01

    Full Text Available A modified Water-Table Fluctuation (WTF method is developed to quantitatively characterize the regional groundwater discharge patterns in stressed aquifers caused by intensive agricultural pumping. Two new parameters are defined to express the secondary information in the observed data. One is infiltration efficiency and the other is discharge modulus (recurring head loss due to aquifer discharge. An optimization procedure is involved to estimate these parameters, based on continuous groundwater head measurements and precipitation records. Using the defined parameters and precipitation time series, water level changes are calculated for individual wells with fidelity. The estimated parameters are then used to further address the characterization of infiltration and to better quantify the discharge at the regional scale. The advantage of this method is that it considers recharge and discharge simultaneously, whereas the general WTF methods mostly focus on recharge. In the case study, the infiltration efficiency reveals that the infiltration is regionally controlled by the intrinsic characteristics of the aquifer, and locally distorted by engineered hydraulic structures that alter surface water-groundwater interactions. The seasonality of groundwater discharge is characterized by the monthly discharge modulus. These results from individual wells are clustered into groups that are consistent with the local land use pattern and cropping structures.

  9. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements

    International Nuclear Information System (INIS)

    Burnett, William C.; Dulaiova, Henrieta

    2003-01-01

    Submarine groundwater discharge (SGD) into the coastal zone has received increased attention in the last few years as it is now recognized that this process represents an important pathway for material transport. Assessing these material fluxes is difficult, as there is no simple means to gauge the water flux. To meet this challenge, we have explored the use of a continuous radon monitor to measure radon concentrations in coastal zone waters over time periods from hours to days. Changes in the radon inventories over time can be converted to fluxes after one makes allowances for tidal effects, losses to the atmosphere, and mixing with offshore waters. If one assumes that advective flow of radon-enriched groundwater (pore waters) represent the main input of 222 Rn in the coastal zone, the calculated radon fluxes may be converted to water fluxes by dividing by the estimated or measured 222 Rn pore water activity. We have also used short-lived radium isotopes ( 223 Ra and 224 Ra) to assess mixing between near-shore and offshore waters in the manner pioneered by . During an experiment in the coastal Gulf of Mexico, we showed that the mixing loss derived from the 223 Ra gradient agreed very favorably to the estimated range based on the calculated radon fluxes. This allowed an independent constraint on the mixing loss of radon--an important parameter in the mass balance approach. Groundwater discharge was also estimated independently by the radium isotopic approach and was within a factor of two of that determined by the continuous radon measurements and an automated seepage meter deployed at the same site

  10. Radon as an indicator of submarine groundwater discharge in coastal regions

    International Nuclear Information System (INIS)

    Jacob, Noble; Shivanna, K.; Suresh Babu, D.S.

    2009-01-01

    This article reviews the various available methodologies to estimate submarine groundwater discharge (SGD) and demonstrates the utility of radon with a case study. An attempt has been made to identify the existence of submarine groundwater discharge (SGD) and semi-quantitatively estimate its rate in the coastal area of Vizhinjam, Thiruvananthapuram, Kerala. Natural 222 Rn (half-life = 3.8 days) was used as a tracer of SGD because of its conservative nature, short half-life, easiness in measurement and high abundance in groundwater. As in situ radon ( 222 Rn) monitoring study conducted in this region indicated comparatively higher 222 Rn activities (average 14.1±1.7 Bq/m 3 ) in the coastal waters revealing significant submarine groundwater discharge. The SGD may be a combination of fresh groundwater and recirculated seawater that is controlled by the hydraulic gradient in the adjacent aquifer and varying tidal conditions in the coastal waters. Using a transient 222 Rn mass balance model for the coastal waters, SGD rates were computed and the average value was found to be 10.9±6.1 cm/day. These estimates are comparable with those reported in the literature. In general, identification and estimation of submarine groundwater discharge is important in the Indian context because of the possibility of large amounts of groundwater loss through its long coastline, that can be judiciously exploited to cater to the present water requirements for drinking and irrigation purposes. (author)

  11. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring

    Directory of Open Access Journals (Sweden)

    A. Watlet

    2018-03-01

    Full Text Available Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1 upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2 deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3 a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of

  12. Submarine groundwater discharge into the coast revealed by water chemistry of man-made undersea liquefied petroleum gas cavern

    Science.gov (United States)

    Lee, Jin-Yong; Cho, Byung Wook

    2008-10-01

    SummaryThe occurrence of submarine groundwater discharge (SGD) as well as its supply of many nutrients and metals to coastal seawaters is now generally known. However, previous studies have focused on the chemical and radiological analysis of groundwater, surface seawater, shallow marine sediments and their pore waters, as well as the measurement of upward flow through the marine sediments, as end members of the discharge process. In this study, chemical and isotopic analysis results of marine subsurface waters are reported. These were obtained from deep boreholes of an undersea liquefied petroleum gas (LPG) storage cavern, located about 8 km off the western coast of Korea. The cavern is about 130-150 m below the sea bottom, which is covered by a 4.8-19.5 m silty clay stratum. An isotopic composition (δ 2H and δ 18O) of the marine subsurface waters falls on a mixing line between terrestrial groundwater and seawater. Vertical EC profiling at the cavern boreholes revealed the existence of a fresh water zone. An increase in the contents of ferrous iron and manganese and a decrease in levels of nitrate, bicarbonate and cavern seepage were recorded in August 2006, indicating a decreased submarine groundwater flux originating from land, mainly caused by an elevated cavern gas pressure. It is suggested in this study that the main source of fresh waters in the man-made undersea cavern is the submarine groundwater discharge mainly originating from the land.

  13. Quantification of Groundwater Discharge in a Subalpine Stream Using Radon-222

    Directory of Open Access Journals (Sweden)

    Elizabeth Avery

    2018-01-01

    Full Text Available During the dry months of the water year in Mediterranean climates, groundwater influx is essential to perennial streams for sustaining ecosystem health and regulating water temperature. Predicted earlier peak flow due to climate change may result in decreased baseflow and the transformation of perennial streams to intermittent streams. In this study, naturally occurring radon-222 (222Rn was used as a tracer of groundwater influx to Martis Creek, a subalpine stream near Lake Tahoe, CA. Groundwater 222Rn is estimated based on measurements of 222Rn activity in nearby deep wells and springs. To determine the degassing constant (needed for quantification of water and gas flux, an extrinsic tracer, xenon (Xe, was introduced to the stream and monitored at eight downstream locations. The degassing constant for 222Rn is based on the degassing constant for Xe, and was determined to be 1.9–9.0 m/day. Applying a simple model in which stream 222Rn activity is a balance between the main 222Rn source (groundwater and sink (volatilization, the influx in reaches of the upstream portion of Martis Creek was calculated to be <1 to 15 m3/day/m, which cumulatively constitutes a significant portion of the stream discharge. Experiments constraining 222Rn emanation from hyporheic zone sediments suggest that this should be considered a maximum rate of influx. Groundwater influx is typically difficult to identify and quantify, and the method employed here is useful for identifying locations for focused stream flow measurements, for formulating a water budget, and for quantifying streamwater–groundwater interaction.

  14. Groundwater monitoring and modelling of the “Vector” site for near-surface radioactive waste disposal in the Chornobyl exclusion zone

    Directory of Open Access Journals (Sweden)

    D. Bugai

    2017-12-01

    Full Text Available Results of purposeful groundwater monitoring and modelling studies are presented, which were carried out in order to better understand groundwater flow patterns from the “Vector” site for near-surface radioactive waste disposal and storage in the Chornobyl exclusion zone towards river network. Both data of observations at local-scale monitoring well network at “Vector” site carried out in 2015 - 2016 and modelling analyses using the regional groundwater flow model of Chornobyl exclusion zone suggest that the groundwater discharge contour for water originating from “Vector” site is Sakhan River, which is the tributary to Pripyat River. The respective groundwater travel time is estimated at 210 - 340 years. The travel times in subsurface for 90Sr, 137Cs, and transuranium radionuclides (Pu isotopes, 241Am are estimated respectively at thousands, tenths of thousands, hundreds of thousands – million of years. These results, as well as presented data of analyses of lithological properties of the geological deposits of the unsaturated zone at “Vector” site, provide evidence for good protection of surface water resources from radioactivity sources (e.g., radioactive wastes to be disposed in the near-sursface facilities at “Vector” site.

  15. Resilience of Groundwater Impacted by Land Use and Climate Change in a Karst Aquifer, South China.

    Science.gov (United States)

    Guo, Fang; Jiang, Guanghui; Polk, Jason S; Huang, Xiufeng; Huang, Siyu

    2015-11-01

    Changes of groundwater flow and quality were investigated in a subtropical karst aquifer to determine the driving mechanism. Decreases in groundwater flow are more distinct in discharge zones than those in recharge and runoff zones. Long-term measurement of the represented regional groundwater outlet reveals that groundwater discharge decrease by nearly 50% during the dry season. The hydrochemistry of groundwater in the runoff and discharge zones is of poorer quality than in the recharge zone. Indications of intensive land resource exploitation and changes in land use patterns were attributed to changes in groundwater conditions since 1990, but the influence of climate change was likely from 2001, because the water temperature exhibited increasing trends at a mean rate of 0.02 °C/yr even though groundwater depth was high in the aquifer. These conclusions imply the need for further groundwater monitoring and reevaluation to understand the resilience of aquifer during urbanization and development.

  16. Seasonal variations in groundwater upwelling zones in a Danish lowland stream analyzed using Distributed Temperature Sensing (DTS)

    DEFF Research Database (Denmark)

    Matheswaran, Karthikeyan; Blemmer, Morten; Rosbjerg, Dan

    2014-01-01

    –night temperature difference were applied to three DTS datasets representing stream temperature responses to the variable meteorological and hydrological conditions prevailing in summer, winter and spring. The standard deviation criterion was useful to identify groundwater discharge zones in summer and spring......-term deployment covering variable meteorological and hydrological scenarios. Copyright © 2012 John Wiley & Sons, Ltd....

  17. Numerical and experimental investigations of submarine groundwater discharge to a coastal lagoon

    DEFF Research Database (Denmark)

    Haider, Kinza

    The main goal of this study is to understand and estimate the amount of submarine groundwater discharge into Ringkøbing Fjord from shallow and deep aquifer systems at the Eastern shoreline from Ringkøbing catchment in Western Denmark. In order to accomplish this objective, the study was initiated...... of the groundwater discharge occurred near the shoreline of the lagoon, but also off-shore discharge from deep confined aquifers system occurred at places where confining clay layers are eroded by buried valleys. The simulated fresh groundwater discharge was a non-negligible component, 59 % of recharge on the lagoon...... and 6 % of river input into the lagoon. This large-scale study was the motivation to conduct field investigation techniques in order to understand the dynamic processes in the near-shore environment. Field campaigns were conducted every two months in order to understand the seasonal groundwater...

  18. Observations of nearshore groundwater discharge: Kahekili Beach Park submarine springs, Maui, Hawaii

    Directory of Open Access Journals (Sweden)

    P.W. Swarzenski

    2017-06-01

    New hydrological insights for the region: Estimates of submarine groundwater discharge were derived for a primary vent site and surrounding coastal waters off west Maui, Hawaii using an excess 222Rn (t1/2 = 3.8 d mass balance model. Such estimates were complemented with a novel thoron (220Rn, t1/2 = 56 s groundwater discharge tracer application, as well as oceanographic time series and thermal infrared imagery analyses. In combination, this suite of techniques provides new insight into the connectivity of the coastal aquifer with the near-shore ocean and examines the physical drivers of submarine groundwater discharge. Lastly, submarine groundwater discharge derived constituent concentrations were tabulated and compared to surrounding seawater concentrations. Such work has implications for the management of coastal aquifers and downstream nearshore ecosystems that respond to sustained constituent loadings via this submarine route.

  19. Persistence of uranium groundwater plumes: Contrasting mechanisms at two DOE sites in the groundwater-river interaction zone

    Science.gov (United States)

    Zachara, John M.; Long, Philip E.; Bargar, John; Davis, James A.; Fox, Patricia; Fredrickson, Jim K.; Freshley, Mark D.; Konopka, Allan E.; Liu, Chongxuan; McKinley, James P.; Rockhold, Mark L.; Williams, Kenneth H.; Yabusaki, Steve B.

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of

  20. Discovery and characterization of submarine groundwater discharge in the Siberian Arctic seas: a case study in the Buor-Khaya Gulf, Laptev Sea

    Science.gov (United States)

    Charkin, Alexander N.; Rutgers van der Loeff, Michiel; Shakhova, Natalia E.; Gustafsson, Örjan; Dudarev, Oleg V.; Cherepnev, Maxim S.; Salyuk, Anatoly N.; Koshurnikov, Andrey V.; Spivak, Eduard A.; Gunar, Alexey Y.; Ruban, Alexey S.; Semiletov, Igor P.

    2017-10-01

    It has been suggested that increasing terrestrial water discharge to the Arctic Ocean may partly occur as submarine groundwater discharge (SGD), yet there are no direct observations of this phenomenon in the Arctic shelf seas. This study tests the hypothesis that SGD does exist in the Siberian Arctic Shelf seas, but its dynamics may be largely controlled by complicated geocryological conditions such as permafrost. The field-observational approach in the southeastern Laptev Sea used a combination of hydrological (temperature, salinity), geological (bottom sediment drilling, geoelectric surveys), and geochemical (224Ra, 223Ra, 228Ra, and 226Ra) techniques. Active SGD was documented in the vicinity of the Lena River delta with two different operational modes. In the first system, groundwater discharges through tectonogenic permafrost talik zones was registered in both winter and summer. The second SGD mechanism was cryogenic squeezing out of brine and water-soluble salts detected on the periphery of ice hummocks in the winter. The proposed mechanisms of groundwater transport and discharge in the Arctic land-shelf system is elaborated. Through salinity vs. 224Ra and 224Ra / 223Ra diagrams, the three main SGD-influenced water masses were identified and their end-member composition was constrained. Based on simple mass-balance box models, discharge rates at sites in the submarine permafrost talik zone were 1. 7 × 106 m3 d-1 or 19.9 m3 s-1, which is much higher than the April discharge of the Yana River. Further studies should apply these techniques on a broader scale with the objective of elucidating the relative importance of the SGD transport vector relative to surface freshwater discharge for both water balance and aquatic components such as dissolved organic carbon, carbon dioxide, methane, and nutrients.

  1. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    Science.gov (United States)

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Matthew; Clark, Jordan F.

    2018-02-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  2. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    Science.gov (United States)

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Mathew; Clark, Jordan F.

    2018-01-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  3. EPA Region 1 No Discharge Zones

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset details No Discharge Zones (NDZ) for New England. Boaters may not discharge waste into these areas. Boundaries were determined mostly by Federal...

  4. Focused groundwater discharge of phosphorus to a eutrophic seepage lake (Lake Væng, Denmark): implications for lake ecological state and restoration

    DEFF Research Database (Denmark)

    Kidmose, Jacob; Nilsson, Bertel; Engesgaard, Peter

    2013-01-01

    and borehole data. Discharge was found to be much focused and opposite to expected increase away from the shoreline. The average total phosphorus concentration in discharging groundwater sampled just beneath the lakebed was 0.162 mg TP/l and thereby well over freshwater ecological thresholds (0...... paths through the aquifer–lakebed interface either being overland flow through a seepage face, or focused in zones with very high discharge rates. In-lake springs have measured discharge of up to 7.45 m3 per m2 of lakebed per day. These findings were based on seepage meter measurements at 18 locations...

  5. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea

    Science.gov (United States)

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ13C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes.

  6. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea.

    Science.gov (United States)

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ(13)C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Identification of groundwater discharge in Cuddalore coast, Tamil Nadu using radium isotopes

    International Nuclear Information System (INIS)

    Diksha Chawla; Noble Jacob; Mohokar, H.V.

    2014-01-01

    For the optimal exploitation and management of coastal aquifers of Tamil Nadu, it is essential to evaluate the groundwater outflow into the sea also called as submarine groundwater discharge. In this study, radium isotopes ( 223,224 Ra) were employed to understand the groundwater discharge in coastal areas of Cuddalore district, Tamil Nadu. Sea water samples (100 L) were collected from various locations of Cuddalore coast in October 2011 and passed through Mn-impregnated acrylic fiber columns. These acrylic columns were analyzed for 223,224 Ra activities using radium delayed coincidence counter. The observed higher activities of 223,224 Ra excess (0.02 ± 0.001-3.28 ± 0.16 and 64 ± 3-380 ± 19 mBq/100 L respectively) indicate that groundwater discharge occurs in this coastal region. (author)

  8. Groundwater Discharge to Upper Barataria Basin Driven by Mississippi River Stage

    Science.gov (United States)

    Cable, J. E.; Kim, J.; Johannesson, K. H.; Kolker, A.; Telfeyan, K.; Breaux, A.

    2017-12-01

    Groundwater flow into deltaic wetlands occurs despite the heterogeneous and anisotropic depositional environment of deltas. Along the Mississippi River this groundwater flow is augmented by the vast alluvial aquifer and the levees which confine the river to a zone much more narrow than the historical floodplain. The effect of the levees has been to force the river stage to as much as 10 m above the adjacent back-levee wetlands. Consequently, the head difference created by higher river stages can drive groundwater flow into these wetlands, especially during flood seasons. We measured Rn-222 in the surface waters of a bayou draining a bottomland hardwood swamp in the lower Mississippi River valley over a 14-month period. With a half-life of 3.83 days and its conservative geochemical behavior, Rn-222 is a well-known tracer for groundwater inputs in both fresh and marine environments. Transects from the mouth to the headwaters of the bayou were monitored for Rn-222 in real-time using Rad-7s on a semi-monthly basis. We found that Rn-222 decreased exponentially from the swamp at the headwaters to the mouth of the bayou. Using a mass balance approach, we calculated groundwater inputs to the bayou headwaters and compared these discharge estimates to variations in Mississippi River stage. Groundwater inputs to the Barataria Basin, Louisiana, represent a significant fraction of the freshwater budget of the basin. The flow appears to occur through the sandy Point Bar Aquifer that lies adjacent to the river and underlies many of the freshwater swamps of the Basin. Tracer measurements throughout the Basin in these swamp areas appear to confirm our hypothesis about the outlet for groundwater in this deltaic environment.

  9. Multi-scale evaluations of submarine groundwater discharge

    Directory of Open Access Journals (Sweden)

    M. Taniguchi

    2015-03-01

    Full Text Available Multi-scale evaluations of submarine groundwater discharge (SGD have been made in Saijo, Ehime Prefecture, Shikoku Island, Japan, by using seepage meters for point scale, 222Rn tracer for point and coastal scales, and a numerical groundwater model (SEAWAT for coastal and basin scales. Daily basis temporal changes in SGD are evaluated by continuous seepage meter and 222Rn mooring measurements, and depend on sea level changes. Spatial evaluations of SGD were also made by 222Rn along the coast in July 2010 and November 2011. The area with larger 222Rn concentration during both seasons agreed well with the area with larger SGD calculated by 3D groundwater numerical simulations.

  10. Determining flow, recharge, and vadose zone drainage in an unconfined aquifer from groundwater strontium isotope measurements, Pasco Basin, WA

    International Nuclear Information System (INIS)

    2004-01-01

    Strontium isotope compositions (87Sr/86Sr) measured in groundwater samples from 273 wells in the Pasco Basin unconfined aquifer below the Hanford Site show large and systematic variations that provide constraints on groundwater recharge, weathering rates of the aquifer host rocks, communication between unconfined and deeper confined aquifers, and vadose zone-groundwater interaction. The impact of millions of cubic meters of wastewater discharged to the vadose zone (103-105 times higher than ambient drainage) shows up strikingly on maps of groundwater 87Sr/86Sr. Extensive access through the many groundwater monitoring wells at the site allows for an unprecedented opportunity to evaluate the strontium geochemistry of a major aquifer, hosted primarily in unconsolidated sediments, and relate it to both long term properties and recent disturbances. Groundwater 87Sr/86Sr increases systematically from 0.707 to 0.712 from west to east across the Hanford Site, in the general direction of groundwater flow, as a result of addition of Sr from the weathering of aquifer sediments and from diffuse drainage through the vadose zone. The lower 87Sr/86Sr groundwater reflects recharge waters that have acquired Sr from Columbia River Basalts. Based on a steady-state model of Sr reactive transport and drainage, there is an average natural drainage flux of 0-1.4 mm/yr near the western margin of the Hanford Site, and ambient drainage may be up to 30 mm/yr in the center of the site assuming an average bulk rock weathering rate of 10-7.5 g/g/yr

  11. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    International Nuclear Information System (INIS)

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992

  12. Delineation of submarine groundwater discharge (SGD) in a large-scaled reclaimed land

    Science.gov (United States)

    Lee, B.; Park, S.; Hwang, J.; Song, S.; Choi, J.; Nam, K.

    2010-12-01

    The Saemangeum reclaimed land in Korea is currently under construction for an eco-friendly multifunctional complex including agriculture, eco-tourism, business, and renewable energy industry. Regarding water supply for the reclaimed land, groundwater is the sustainable water resource and submarine groundwater discharge (SGD), subsurface fluids flowing from land to the sea, is considered as an alternative one. This study was conducted to identify SGD below a southeastern part of the reclaimed land and to delineate its pathway by investigating groundwater chemistry and electrical resistivity distribution of subsurface. Thirty four groundwater samples were collected from shallow agricultural wells placed along the past coast line (~5 km length) of the southeastern part in May and October, 2009. Field parameters including pH, EC, temperature, and ORP were measured using a portable multi-sensor and alkalinity by titration. They were analyzed for stable isotopes (δ18O and δ2H), cations (Na, K, Ca, Mg, Si, and NH4), anions (Cl, NO3, SO4, and PO4), and metals (Fe and Mn). Mean EC value was 1,163 µS/cm, corresponding to the appropriate crop growth because the criteria of crop yield is less 2,000 µS/cm. Stable isotopes results were plotted on the local meteoric water line, indicating lighter than those from sea water. It implied that the groundwater originated from inland precipitation and occurred as SGD along the coast line. From the groundwater compositions showing various water types including Na-HCO3, Ca-Cl, and Na-Cl, it could be concluded that small-scale SGD and seawater intrusion have great influences on the groundwater quality. From correlation analysis of EC-pH, Cl-HCO3, NO3-SO4, NO3-Cl, and (Fe, Mn)-NH4, spatial distributions of SGD were identified. A small catchment (0.2 km2) in the reclaimed land was selected to delineate a SGD flow path by two-dimensional electrical resistivity survey. The longitudinal and transverse lines were 760 and 275 m, respectively

  13. Identification of discharge zones and quantification of contaminant mass discharges into a local stream from a landfill in a heterogeneous geologic setting

    DEFF Research Database (Denmark)

    Milosevic, Nemanja; Thomsen, Nanna Isbak; Juhler, R.K.

    2012-01-01

    Contaminants from Risby Landfill (Denmark) are expected to leach through the underlying geologic strata and eventually reach the local Risby Stream. Identification of the groundwater discharge zone was conducted systematically by an array of methods including studies on site geology and hydrogeol...... for landfill sites so the approaches and findings from Risby Landfill can be applied to other landfill sites. The study highlights that landfills may pose a risk to surface waters and future studies should be directed towards evaluation of both chemical and ecological risk....

  14. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.

    Science.gov (United States)

    Zachara, John M; Long, Philip E; Bargar, John; Davis, James A; Fox, Patricia; Fredrickson, Jim K; Freshley, Mark D; Konopka, Allan E; Liu, Chongxuan; McKinley, James P; Rockhold, Mark L; Williams, Kenneth H; Yabusaki, Steve B

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of

  15. Groundwater discharge by evapotranspiration, flow of water in unsaturated soil, and stable isotope water sourcing in areas of sparse vegetation, Amargosa Desert, Nye County, Nevada

    Science.gov (United States)

    Moreo, Michael T.; Andraski, Brian J.; Garcia, C. Amanda

    2017-08-29

    This report documents methodology and results of a study to evaluate groundwater discharge by evapotranspiration (GWET) in sparsely vegetated areas of Amargosa Desert and improve understanding of hydrologic-continuum processes controlling groundwater discharge. Evapotranspiration and GWET rates were computed and characterized at three sites over 2 years using a combination of micrometeorological, unsaturated zone, and stable-isotope measurements. One site (Amargosa Flat Shallow [AFS]) was in a sparse and isolated area of saltgrass (Distichlis spicata) where the depth to groundwater was 3.8 meters (m). The second site (Amargosa Flat Deep [AFD]) was in a sparse cover of predominantly shadscale (Atriplex confertifolia) where the depth to groundwater was 5.3 m. The third site (Amargosa Desert Research Site [ADRS]), selected as a control site where GWET is assumed to be zero, was located in sparse vegetation dominated by creosote bush (Larrea tridentata) where the depth to groundwater was 110 m.Results indicated that capillary rise brought groundwater to within 0.9 m (at AFS) and 3 m (at AFD) of land surface, and that GWET rates were largely controlled by the slow but relatively persistent upward flow of water through the unsaturated zone in response to atmospheric-evaporative demands. Greater GWET at AFS (50 ± 20 millimeters per year [mm/yr]) than at AFD (16 ± 15 mm/yr) corresponded with its shallower depth to the capillary fringe and constantly higher soil-water content. The stable-isotope dataset for hydrogen (δ2H) and oxygen (δ18O) illustrated a broad range of plant-water-uptake scenarios. The AFS saltgrass and AFD shadscale responded to changing environmental conditions and their opportunistic water use included the time- and depth-variable uptake of unsaturated-zone water derived from a combination of groundwater and precipitation. These results can be used to estimate GWET in other areas of Amargosa Desert where hydrologic conditions are similar.

  16. Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error

    Science.gov (United States)

    Christensen, N. K.; Minsley, B. J.; Christensen, S.

    2017-02-01

    We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.

  17. Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error

    Science.gov (United States)

    Christensen, Nikolaj K; Minsley, Burke J.; Christensen, Steen

    2017-01-01

    We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.

  18. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2012-15

    Science.gov (United States)

    Bartholomay, Roy C.; Maimer, Neil V.; Rattray, Gordon W.; Fisher, Jason C.

    2017-04-10

    Since 1952, wastewater discharged to in ltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater-monitoring networks at the INL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from the ESRP aquifer, multilevel monitoring system (MLMS) wells in the ESRP aquifer, and perched groundwater wells in the USGS groundwater monitoring networks during 2012-15.

  19. Data-Driven Approach for Analyzing Hydrogeology and Groundwater Quality Across Multiple Scales.

    Science.gov (United States)

    Curtis, Zachary K; Li, Shu-Guang; Liao, Hua-Sheng; Lusch, David

    2017-08-29

    Recent trends of assimilating water well records into statewide databases provide a new opportunity for evaluating spatial dynamics of groundwater quality and quantity. However, these datasets are scarcely rigorously analyzed to address larger scientific problems because they are of lower quality and massive. We develop an approach for utilizing well databases to analyze physical and geochemical aspects of groundwater systems, and apply it to a multiscale investigation of the sources and dynamics of chloride (Cl - ) in the near-surface groundwater of the Lower Peninsula of Michigan. Nearly 500,000 static water levels (SWLs) were critically evaluated, extracted, and analyzed to delineate long-term, average groundwater flow patterns using a nonstationary kriging technique at the basin-scale (i.e., across the entire peninsula). Two regions identified as major basin-scale discharge zones-the Michigan and Saginaw Lowlands-were further analyzed with regional- and local-scale SWL models. Groundwater valleys ("discharge" zones) and mounds ("recharge" zones) were identified for all models, and the proportions of wells with elevated Cl - concentrations in each zone were calculated, visualized, and compared. Concentrations in discharge zones, where groundwater is expected to flow primarily upwards, are consistently and significantly higher than those in recharge zones. A synoptic sampling campaign in the Michigan Lowlands revealed concentrations generally increase with depth, a trend noted in previous studies of the Saginaw Lowlands. These strong, consistent SWL and Cl - distribution patterns across multiple scales suggest that a deep source (i.e., Michigan brines) is the primary cause for the elevated chloride concentrations observed in discharge areas across the peninsula. © 2017, National Ground Water Association.

  20. Submarine groundwater discharge within a landslide scar at the French Mediterranean coast

    NARCIS (Netherlands)

    Oehler, Till; Mogollón, José M.; Moosdorf, Nils; Winkler, Andreas; Kopf, Achim; Pichler, Thomas

    2017-01-01

    Submarine groundwater discharge (SGD), the flow of fresh and saline groundwater from the seabed into the coastal ocean, has been intensively investigated in the recent years. This research has usually been restricted to shallow water and intertidal areas, whereas knowledge about groundwater seepage

  1. Simulating the effects of a beaver dam on regional groundwater flow through a wetland

    Directory of Open Access Journals (Sweden)

    Kathleen Feiner

    2015-09-01

    New hydrological insights for the region: The construction of a beaver dam resulted in minimal changes to regional groundwater flow paths at this site, which is attributed to a clay unit underlying the peat, disconnecting this wetland from regional groundwater flow. However, groundwater discharge from the wetland pond increased by 90%. Simulating a scenario with the numerical model in which the wetland is connected to regional groundwater flow results in a much larger impact on flow paths. In the absence of the clay layer, the simulated construction of a beaver dam causes a 70% increase in groundwater discharge from the wetland pond and increases the surface area of both the capture zone and the discharge zone by 30% and 80%, respectively.

  2. Tracing coastal and estuarine groundwater discharge sources in a complex faulted and fractured karst aquifer system

    Science.gov (United States)

    Lagomasino, D.; Price, R. M.

    2013-05-01

    Groundwater discharge can be an important input of water, nutrients and other constituents to coastal wetlands and adjacent marine areas, particularly in karst regions with little to no surface water flow. A combination of natural processes (e.g., sea-level rise and climate change) and anthropogenic pressures (e.g., urban growth and development) can alter the subterranean water flow to the coastline. For water management practices and environmental preservation to be better suited for the natural and human environment, a better understanding is needed of the hydrogeologic connectivity between the areas of fresh groundwater recharge and the coastal zone. The Yucatan peninsula has a unique tectonic and geologic history consisting of a Cretaceous impact crater, Miocene and Eocene tectonic plate movements, and multiple sea-level stands. These events have shaped many complex geologic formations and structures. The Sian Káan Biosphere Reserve (SKBR), a UNESCO World Heritage Site located along the Atlantic Ocean, overlaps two distinct hydrogeologic regions: the evaporate region to the south and south west, and the Holbox Fracture Zone to the north. These two regions create a complex network of layered, perched and fractured aquifers and an extensive groundwater cave network. The two regions are distinguished by bedrock mineralogical differences that can be used to trace shallow subsurface water from interior portions of the peninsula to the Bahia de la Ascension in the SKBR. The objective of this research was to use naturally occurring geochemical tracers (eg., Cl-, SO42-, HCO3-, K+, Mg2+, Na+, Ca2+ and stable isotopes of oxygen and hydrogen) to decipher the sources of groundwater flow through the coastal wetlands of the SKBR and into the Bahia de la Ascension. Surface water and groundwater samples were collected during two field campaigns in 2010 and 2012 within the coastal and estuarine waters of the SKBR. Additional water samples were collected at select cenotes along

  3. Particle tracking for unsaturated-zone groundwater travel time analysis at Yucca Mountain

    International Nuclear Information System (INIS)

    Arnold, B.W.; Skinner, L.H.; Zieman, N.B.

    1995-01-01

    A particle tracking code developed to link numerical modeling of groundwater flow in the unsaturated zone to the analysis of groundwater travel times was used to produce preliminary estimates of the distribution of groundwater-travel time from a potential repository at Yucca Mountain, Nevada to the water table. Compliance with 10CFR960 requires the demonstration that pre-waste-emplacement groundwater travel time from the disturbed zone to the accessible environment is expected to exceed 1,000 years along any path of likely and significant radionuclide travel. The use of multiple particles and multiple realizations of the geology and parameter distributions in the unsaturated zone allows a probabilistic analysis of groundwater travel times that may be applied for evaluating compliance

  4. What Controls Submarine Groundwater Discharge?

    Science.gov (United States)

    Martin, J. B.; Cable, J. E.; Cherrier, J.; Roy, M.; Smith, C. G.; Dorsett, A.

    2008-05-01

    Numerous processes have been implicated in controlling submarine groundwater discharge (SGD) to coastal zones since Ghyben, Herzberg and Dupuit developed models of fresh water discharge from coastal aquifers at the turn of the 19th century. Multiple empirical and modeling techniques have also been applied to these environments to measure the flow. By the mid-1950's, Cooper had demonstrated that dispersion across the fresh water-salt water boundary required salt water entrained into fresh water flow be balanced by recharge of salt water across the sediment-water interface seaward of the outflow face. Percolation of water into the beach face from wind and tidal wave run up and changes in pressure at the sediment-water interface with fluctuating tides have now been recognized, and observed, as processes driving seawater into the sediments. Within the past few years, variations in water table levels and the 1:40 amplification from density difference in fresh water and seawater have been implicated to pump salt water seasonally across the sediment- water interface. Salt water driven by waves, tides and seasonal water table fluctuations is now recognized as a component of SGD when it flows back to overlying surface waters. None of these processes are sufficiently large to provide measured volumes of SGD in Indian River Lagoon, Florida, however, because minimal tides and waves exist, flat topography and transmissive aquifers minimize fluctuations of the water table, and little water is entrained across the salt water-fresh water boundary. Nonetheless, the saline fraction of SGD represents more than 99% of the volume of total SGD in the Indian River Lagoon. This volume of saline SGD can be driven by the abundance of burrowing organisms in the lagoon, which pump sufficient amounts of water through the sediment- water interface. These bioirrigating organisms are ubiquitous at all water depths in sandy sediment and thus may provide one of the major sources of SGD world wide

  5. Seawater-groundwater exchange and nutrients carried by submarine groundwater discharge in different types of wetlands at Jiaozhou Bay, China

    Science.gov (United States)

    Qu, Wenjing; Li, Hailong; Huang, Hao; Zheng, Chunmiao; Wang, Chaoyue; Wang, Xuejing; Zhang, Yan

    2017-12-01

    In Jiaozhou Bay, there are four wetland types, including sandy beaches, mud flats, tidal marshes, and estuarine intertidal zones. Four typical transects representing each of the wetland types were selected to investigate the flow dynamics, seawater-groundwater exchange and nutrients carried by submarine groundwater discharge (SGD). Based on field measurements of groundwater heads and salinity along each transect, the SGD averaged over the observation period was estimated using generalized Darcy's law. The SGD along the four transects ranges from 3.6 × 10-3 to 7.6 cm/d with the maximum occurring at the sandy beach. The SGD rate has a good correlation with the hydraulic conductivities of the wetland sediments. There is a positive correlation between the ratio of NO3-N/DIN and SGD rates. The SGD-associated nutrient output rate ranges from 3.3 × 10-2 to 9.5 mmol/m2/d for DIN (dissolved inorganic nitrogen), and from 6.2 × 10-5 to 1.8 × 10-2 mmol/m2/d for DIP (dissolved inorganic phosphorus). Compared to the nutrients delivered by the river, nutrients carried by SGD provide a more important source for the phosphate-limited environment to plankton in Jiaozhou Bay.

  6. Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones

    Directory of Open Access Journals (Sweden)

    S. Peter

    2012-11-01

    Full Text Available For the design and the assessment of river restoration projects, it is important to know to what extent the elimination of reactive nitrogen (N can be improved in the riparian groundwater. We investigated the effectiveness of different riparian zones, characterized by a riparian vegetation succession, for nitrate (NO3 removal from infiltrating river water in a restored and a still channelized section of the river Thur, Switzerland. Functional genes of denitrification (nirS and nosZ were relatively abundant in groundwater from willow bush and mixed forest dominated zones, where oxygen concentrations remained low compared to the main channel and other riparian zones. After flood events, a substantial decline in NO3 concentration (> 50% was observed in the willow bush zone but not in the other riparian zones closer to the river. In addition, the characteristic enrichment of 15N and 18O in the residual NO3 pool (by up to 22‰ for δ15N and up to 12‰ for δ18O provides qualitative evidence that the willow bush and forest zones were sites of active denitrification and, to a lesser extent, NO3 removal by plant uptake. Particularly in the willow bush zone during a period of water table elevation after a flooding event, substantial input of organic carbon into the groundwater occurred, thereby fostering post-flood denitrification activity that reduced NO3 concentration with a rate of ~21 μmol N l−1 d−1. Nitrogen removal in the forest zone was not sensitive to flood pulses, and overall NO3 removal rates were lower (~6 μmol l−1 d−1. Hence, discharge-modulated vegetation–soil–groundwater coupling was found to be a key driver for riparian NO3 removal. We estimated that

  7. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer, E-mail: odahan@bgu.ac.il; Ronen, Zeev, E-mail: zeevrone@bgu.ac.il

    2017-02-15

    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10{sup 5} to 10{sup 7} copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  8. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    International Nuclear Information System (INIS)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev

    2017-01-01

    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10"5 to 10"7 copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  9. Groundwater Discharges to Rivers in the Western Canadian Oil Sands Region

    Science.gov (United States)

    Ellis, J.; Jasechko, S.

    2016-12-01

    Groundwater discharges into rivers impacts the movement and fate of nutrients and contaminants in the environment. Understanding groundwater-surface water interactions is especially important in the western Canadian oil sands, where groundwater contamination risks are elevated and baseline water chemistry data is lacking, leading to substantial uncertainties about anthropogenic influences on local river quality. High salinity groundwater springs sourced from deep aquifers, comprised of Pleistocene-aged glacial meltwater, are known to discharge into many rivers in the oil sands. Understanding connections between deep aquifers and surficial waterways is important in order to determine natural inputs into these rivers and to assess the potential for injected wastewater or oil extraction fluids to enter surface waters. While these springs have been identified, their spatial distribution along rivers has not been fully characterized. Here we present river chemistry data collected along a number of major river corridors in the Canadian oil sands region. We show that saline groundwater springs vary spatially along the course of these rivers and tend to be concentrated where the rivers incise Devonian- or Cretaceous-aged aquifers along an evaporite dissolution front. Our results suggest that water sourced from Devonian aquifers may travel through bitumen-bearing Cretaceous units and discharge into local rivers, implying a strong groundwater-surface water connection in specialized locations. These findings indicate that oil sands process-affected waters that are injected at depth have the potential to move through these aquifers and reach the rivers at the surface at some time in the future. Groundwater-surface water interactions remain key to understanding the risks oil sands activities pose to aquatic ecosystems and downstream communities.

  10. Empirical quantification of lacustrine groundwater discharge - different methods and their limitations

    Science.gov (United States)

    Meinikmann, K.; Nützmann, G.; Lewandowski, J.

    2015-03-01

    Groundwater discharge into lakes (lacustrine groundwater discharge, LGD) can be an important driver of lake eutrophication. Its quantification is difficult for several reasons, and thus often neglected in water and nutrient budgets of lakes. In the present case several methods were applied to determine the expansion of the subsurface catchment, to reveal areas of main LGD and to identify the variability of LGD intensity. Size and shape of the subsurface catchment served as a prerequisite in order to calculate long-term groundwater recharge and thus the overall amount of LGD. Isotopic composition of near-shore groundwater was investigated to validate the quality of catchment delineation in near-shore areas. Heat as a natural tracer for groundwater-surface water interactions was used to find spatial variations of LGD intensity. Via an analytical solution of the heat transport equation, LGD rates were calculated from temperature profiles of the lake bed. The method has some uncertainties, as can be found from the results of two measurement campaigns in different years. The present study reveals that a combination of several different methods is required for a reliable identification and quantification of LGD and groundwater-borne nutrient loads.

  11. Modelling groundwater discharge areas using only digital elevation models as input data

    International Nuclear Information System (INIS)

    Brydsten, Lars

    2006-10-01

    Advanced geohydrological models require data on topography, soil distribution in three dimensions, vegetation, land use, bedrock fracture zones. To model present geohydrological conditions, these factors can be gathered with different techniques. If a future geohydrological condition is modelled in an area with positive shore displacement (say 5,000 or 10,000 years), some of these factors can be difficult to measure. This could include the development of wetlands and the filling of lakes. If the goal of the model is to predict distribution of groundwater recharge and discharge areas in the landscape, the most important factor is topography. The question is how much can topography alone explain the distribution of geohydrological objects in the landscape. A simplified description of the distribution of geohydrological objects in the landscape is that groundwater recharge areas occur at local elevation curvatures and discharge occurs in lakes, brooks, and low situated slopes. Areas in-between these make up discharge areas during wet periods and recharge areas during dry periods. A model that could predict this pattern only using topography data needs to be able to predict high ridges and future lakes and brooks. This study uses GIS software with four different functions using digital elevation models as input data, geomorphometrical parameters to predict landscape ridges, basin fill for predicting lakes, flow accumulations for predicting future waterways, and topographical wetness indexes for dividing in-between areas based on degree of wetness. An area between the village of and Forsmarks' Nuclear Power Plant has been used to calibrate the model. The area is within the SKB 10-metre Elevation Model (DEM) and has a high-resolution orienteering map for wetlands. Wetlands are assumed to be groundwater discharge areas. Five hundred points were randomly distributed across the wetlands. These are potential discharge points. Model parameters were chosen with the

  12. Characterising and modelling groundwater discharge in anagricultural wetland on the French Atlantic coast

    Directory of Open Access Journals (Sweden)

    Ph. Weng

    2003-01-01

    Full Text Available Interaction between a wetland and its surrounding aquifer was studied in the Rochefort agricultural marsh (150 km2. Groundwater discharge in the marsh was measured with a network of nested piezometers. Hydrological modelling of the wetland showed that a water volume of 770,000 m3 yr–1 is discharging into the marsh, but that this water flux essentially takes place along the lateral borders of the wetland. However, this natural discharge volume represents only 20% of the artificial freshwater injected each year into the wetland to maintain the water level close to the soil surface. Understanding and quantifying the groundwater component in wetland hydrology is crucial for wetland management and conservation. Keywords: wetland, hydrology, groundwater, modelling, marsh

  13. Time-Varying Networks of Inter-Ictal Discharging Reveal Epileptogenic Zone.

    Science.gov (United States)

    Zhang, Luyan; Liang, Yi; Li, Fali; Sun, Hongbin; Peng, Wenjing; Du, Peishan; Si, Yajing; Song, Limeng; Yu, Liang; Xu, Peng

    2017-01-01

    The neuronal synchronous discharging may cause an epileptic seizure. Currently, most of the studies conducted to investigate the mechanism of epilepsy are based on EEGs or functional magnetic resonance imaging (fMRI) recorded during the ictal discharging or the resting-state, and few studies have probed into the dynamic patterns during the inter-ictal discharging that are much easier to record in clinical applications. Here, we propose a time-varying network analysis based on adaptive directed transfer function to uncover the dynamic brain network patterns during the inter-ictal discharging. In addition, an algorithm based on the time-varying outflow of information derived from the network analysis is developed to detect the epileptogenic zone. The analysis performed revealed the time-varying network patterns during different stages of inter-ictal discharging; the epileptogenic zone was activated prior to the discharge onset then worked as the source to propagate the activity to other brain regions. Consistence between the epileptogenic zones detected by our proposed approach and the actual epileptogenic zones proved that time-varying network analysis could not only reveal the underlying neural mechanism of epilepsy, but also function as a useful tool in detecting the epileptogenic zone based on the EEGs in the inter-ictal discharging.

  14. Assessing submarine groundwater discharge (SGD) and nitrate fluxes in highly heterogeneous coastal karst aquifers: Challenges and solutions

    Science.gov (United States)

    Montiel, Daniel; Dimova, Natasha; Andreo, Bartolomé; Prieto, Jorge; García-Orellana, Jordi; Rodellas, Valentí

    2018-02-01

    Groundwater discharge in coastal karst aquifers worldwide represents a substantial part of the water budget and is a main pathway for nutrient transport to the sea. Groundwater discharge to the sea manifests under different forms, making its assessment very challenging particularly in highly heterogeneous coastal systems karst systems. In this study, we present a methodology approach to identify and quantify four forms of groundwater discharge in a mixed lithology system in southern Spain (Maro-Cerro Gordo) that includes an ecologically protected coastal area comprised of karstic marble. We found that groundwater discharge to the sea occurs via: (1) groundwater-fed creeks, (2) coastal springs, (3) diffuse groundwater seepage through seabed sediments, and (4) submarine springs. We used a multi-method approach combining tracer techniques (salinity, 224Ra, and 222Rn) and direct measurements (seepage meters and flowmeters) to evaluate the discharge. Groundwater discharge via submarine springs was the most difficult to assess due to their depth (up to 15 m) and extensive development of the springs conduits. We determined that the total groundwater discharge over the 16 km of shoreline of the study area was at least 11 ± 3 × 103 m3 d-1 for the four types of discharge assessed. Groundwater-derived nitrate (NO3-) fluxes to coastal waters over ∼3 km (or 20%) in a highly populated and farmed section of Maro-Cerro Gordo was 641 ± 166 mol d-1, or ∼75% of the total NO3- loading in the study area. We demonstrate in this study that a multi-method approach must be applied to assess all forms of SGD and derived nutrient fluxes to the sea in highly heterogeneous karst aquifer systems.

  15. Coastal Zone Hazards Related to Groundwater-Surface Water Interactions and Groundwater Flooding

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2009-12-01

    Worldwide, as many as half a million people have died in natural and man-made disasters since the turn of the 21st century (Wirtz, 2008). Further, natural and man-made hazards can lead to extreme financial losses (Elsner et al, 2009). Hazards, hydrological and geophysical risk analysis related to groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of its significance. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models (Geist and Parsons, 2006), and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health (Glantz, 2007). In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction. This paper proposes consideration of two case studies which are important and significant for future development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone (Zavialov, 2005). It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered

  16. Assessment of groundwater recharge potential zone using GIS approach in Purworejo regency, Central Java province, Indonesia

    Science.gov (United States)

    Aryanto, Daniel Eko; Hardiman, Gagoek

    2018-02-01

    Floods and droughts in Purworejo regency are an indication of problems in groundwater management. The current development progress has led to land conversion which has an impact on the problem of water infiltration in Purworejo regency. This study aims to determine the distribution of groundwater recharge potential zones by using geographic information system as the basis for ground water management. The groundwater recharge potential zone is obtained by overlaying all the thematic maps that affect the groundwater infiltration. Each thematic map is weighted according to its effect on groundwater infiltration such as land-use - 25%, rainfall - 20%, litology - 20%, soil - 15%, slope - 10%, lineament - 5%, and river density - 5% to find groundwater recharge potential zones. The groundwater recharge potential zones thus obtained were divided into five categories, viz., very high, high, medium, low and very low zones. The results of this study may be useful for better groundwater planning and management.

  17. Quantification of groundwater recharge through application of pilot techniques in the unsaturated zone.

    Science.gov (United States)

    Kallioras, Andreas; Piepenbrink, Matthias; Schuth, Christoph; Pfletschinger, Heike; Dietrich, Peter; Koeniger, Franz; Rausch, Randolf

    2010-05-01

    Accurate determination of groundwater recharge is a key issue for the "smart mining" of groundwater resources. Groundwater recharge estimation techniques depend on the investigated hydrologic zone, and therefore main approaches are based on (a) unsaturated zone, (b) saturated zone and (c) surface water studies. This research contributes to the determination of groundwater recharge by investigating the infiltration of groundwater through the unsaturated zone. The investigations are conducted through the application of a combination of different pilot field as well as lab techniques. The field techniques include the installation of specially designed Time Domain Reflectometry (TDR) sensors, at different depths within the unsaturated zone for in-situ and continuous measurements of the volumetric pore water content. Additionally, the extraction of pore water -for analysis of its isotopic composition- from multilevel undisturbed soil samples through significant depths within the unsaturated zone column, enables the dating of the groundwater age through the determination of its isotopic composition. The in-situ investigation of the unsaturated zone is complemented by the determination of high resolution temperature profiles. The installation of the pilot TDR sensors is achieved by using direct push methods at significant depths within the unsaturated zone, providing continuous readings of the soil moisture content. The direct push methods are also ideal for multilevel sampling of undisturbed -without using any drilling fluids which affect the isotopic composition of the containing pore water- soil and consequent extraction of the included pore water for further isotopic determination. The pore water is extracted by applying the method of azeotropic distillation; a method which has the least isotopic fractionation effects on groundwater samples. The determination of different isotopic signals such as 18O, 2H, 3H, and 36Cl, aims to the investigation of groundwater transit

  18. Vegetation induced diel signal and its meaning in recharge and discharge regions

    Science.gov (United States)

    Gribovszki, Zoltán; Tóth, Tibor; Csáfordi, Péter; Szabó, András; Móricz, Norbert; Kalicz, Péter

    2017-04-01

    Afforestation, promoted by the European Union is planned in Hungary in the next decades. One of the most important region for afforestation is the Hungarian Great Plain where the precipitation is far below potential ET so forests can not survive without significant water uptake from shallow groundwater. Diel fluctuations of hydrological variables (e.g., soil moisture, shallow groundwater level, streamflow rate) are rarely investigated in the hydrologic literature although these short-term fluctuations may incorporate useful information (like groundwater uptake) about hydro-ecological systems in shallow groundwater areas. Vegetation induced diel fluctuations are rarely compared under varying hydrologic conditions (such as recharge and discharge zones). In this study, the data of soil moisture and shallow groundwater monitoring under different surface covers (forest and neighboring agricultural plots) in discharge and recharge regions were analyzed to gain a better understanding of the vegetation hydrological impact or water uptake in changing climate. The pilot areas of the study are located in Hungarian Great Plain and in Western Hungary. The water table under the forest displayed a typical night-time recovery in the discharge region, indicating a significant groundwater supply. Certainly, the root system of the forest was able to tap the groundwater in depths measuring a few metres, while the shallower roots of the herbaceous vegetation generally did not reach the groundwater reservoir at these depths. In the recharge zone the water table under the forest showed step-like diel pattern that refer to a lack of additional groundwater supply from below. The low groundwater evapotranspiration of the forest in the recharge zone was due to the lack of the groundwater supply in the recharge area. Similar patterns can be detected in the soil moisture of recharge and discharge zones as well. Our results suggest that local estimations of groundwater evapotranspiration from

  19. Mapping Submarine Groundwater Discharge - how to investigate spatial discharge variability on coastal and beach scales

    Science.gov (United States)

    Stieglitz, T. C.; Burnett, W. C.; Rapaglia, J.

    2008-12-01

    Submarine groundwater discharge (SGD) is now increasingly recognized as an important component in the water balance, water quality and ecology of the coastal zone. A multitude of methods are currently employed to study SGD, ranging from point flux measurements with seepage meters to methods integrating over various spatial and temporal scales such as hydrological models, geophysical techniques or surface water tracer approaches. From studies in a large variety of hydrogeological settings, researchers in this field have come to expect that SGD is rarely uniformly distributed. Here we discuss the application of: (a) the mapping of subsurface electrical conductivity in a discharge zone on a beach; and (b) the large-scale mapping of radon in coastal surface water to improving our understanding of SGD and its spatial variability. On a beach scale, as part of intercomparison studies of a UNESCO/IAEA working group, mapping of subsurface electrical conductivity in a beach face have elucidated the non-uniform distribution of SGD associated with rock fractures, volcanic settings and man-made structures (e.g., piers, jetties). Variations in direct point measurements of SGD flux with seepage meters were linked to the subsurface conductivity distribution. We demonstrate how the combination of these two techniques may complement one another to better constrain SGD measurements. On kilometer to hundred kilometer scales, the spatial distribution and regional importance of SGD can be investigated by mapping relevant tracers in the coastal ocean. The radon isotope Rn-222 is a commonly used tracer for SGD investigations due to its significant enrichment in groundwater, and continuous mapping of this tracer, in combination with ocean water salinity, can be used to efficiently infer locations of SGD along a coastline on large scales. We use a surface-towed, continuously recording multi-detector setup installed on a moving vessel. This tool was used in various coastal environments, e

  20. Identification of groundwater discharge in Cuddalore Coast, Tamil Nadu using radium isotopes

    International Nuclear Information System (INIS)

    Diksha; Jacob, Noble; Mohokar, H.V.

    2013-01-01

    For the optimal exploitation and management of coastal aquifers of Tamil Nadu, it is essential to evaluate the groundwater outflow into the sea. In this study, radium isotopes ( 223,224 Ra) were employed to understand the groundwater discharge in coastal areas of Cuddalore district, Tamil Nadu. Sea water samples (100 L) were collected from various locations of Cuddalore coast in October 2011 and passed through Mn-impregnated acrylic fiber columns. These acrylic columns were analyzed for 223,224 Ra activities using Radium Delayed Coincidence Counter (RaDeCC). The observed higher activities of 223,224 Ra (0-0.18 and 3.84-22.77 dpm/L respectively) indicate that groundwater discharge occurs in this coastal region. (author)

  1. identification of hydrogeochemical processes in groundwater using

    African Journals Online (AJOL)

    PROF EKWUEME

    and the hydrochemical data was subjected to multivariate statistical analysis and conventional ... Groundwater flows through geological materials as it moves along ... using various conventional graphical methods and ...... from recharge zone to discharge zone, a bivariate plot of. Ca2+ + .... Handbook of Applied Hydrology,.

  2. Submarine groundwater discharge to a small estuary estimated from radon and salinity measurements and a box model

    Directory of Open Access Journals (Sweden)

    J. Crusius

    2005-01-01

    Full Text Available Submarine groundwater discharge was quantified by a variety of methods for a 4-day period during the early summer of 2004, in Salt Pond, adjacent to Nauset Marsh, on Cape Cod, USA. Discharge estimates based on radon and salinity took advantage of the presence of the narrow channel connecting Salt Pond to Nauset Marsh, which allowed constructing whole-pond mass balances as water flowed in and out due to tidal fluctuations. The data suggest that less than one quarter of the discharge in the vicinity of Salt Pond happened within the pond itself, while three quarters or more of the discharge occurred immediately seaward of the pond, either in the channel or in adjacent regions of Nauset Marsh. Much of this discharge, which maintains high radon activities and low salinity, is carried into the pond during each incoming tide. A box model was used as an aid to understand both the rates and the locations of discharge in the vicinity of Salt Pond. The model achieves a reasonable fit to both the salinity and radon data assuming submarine groundwater discharge is fresh and that most of it occurs either in the channel or in adjacent regions of Nauset Marsh. Salinity and radon data, together with seepage meter results, do not rule out discharge of saline groundwater, but suggest either that the saline discharge is at most comparable in volume to the fresh discharge or that it is depleted in radon. The estimated rate of fresh groundwater discharge in the vicinity of Salt Pond is 3000-7000 m3 d-1. This groundwater flux estimated from the radon and salinity data is comparable to a value of 3200-4500 m3 d-1 predicted by a recent hydrologic model (Masterson, 2004; Colman and Masterson, 2004, although the model predicts this rate of discharge to the pond whereas our data suggest most of the groundwater bypasses the pond prior to discharge. Additional work is needed to determine if the measured rate of discharge is representative of the long-term average, and to

  3. Arid-zone groundwater recharge and palaeorecharge: insights from the radioisotope chlorine-36

    International Nuclear Information System (INIS)

    Jacobson, G.; Wischusen, J.; Cresswell, R.; Fifield, K.

    1998-01-01

    AGSO's collaborative 'Western water' study of groundwater resources in Aboriginal lands in the southwest Northern Territory arid zone, has applied the radioisotope 36 CI and 14 C to investigate the sustainability of community water supplies drawn from shallow aquifers in the Papunya-Kintore-Yuendumu area. The 36 CI results have important implications for groundwater management throughout the arid zone, because substantial recharge occurs only during favourable, wet, interglacial climatic regimes. this has important implications for groundwater management in this area and elsewhere in central Australia, where most of the community water supplies depend on 'old' stored groundwater

  4. Weekly variations of discharge and groundwater quality caused by intermittent water supply in an urbanized karst catchment

    Science.gov (United States)

    Grimmeisen, Felix; Zemann, Moritz; Goeppert, Nadine; Goldscheider, Nico

    2016-06-01

    Leaky sewerage and water distribution networks are an enormous problem throughout the world, specifically in developing countries and regions with water scarcity. Especially in many arid and semi-arid regions, intermittent water supply (IWS) is common practice to cope with water shortage. This study investigates the combined influence of urban activities, IWS and water losses on groundwater quality and discusses the implications for water management. In the city of As-Salt (Jordan), local water supply is mostly based on groundwater from the karst aquifer that underlies the city. Water is delivered to different supply zones for 24, 48 or 60 h each week with drinking water losses of around 50-60%. Fecal contamination in groundwater, mostly originating from the likewise leaky sewer system is a severe challenge for the local water supplier. In order to improve understanding of the local water cycle and contamination dynamics in the aquifer beneath the city, a down gradient spring and an observation well were chosen to identify contaminant occurrence and loads. Nitrate, Escherichia coli, spring discharge and the well water level were monitored for 2 years. Autocorrelation analyses of time series recorded during the dry season revealed weekly periodicity of spring discharge (45 ± 3.9 L s-1) and NO3-N concentrations (11.4 ± 0.8 mg L-1) along with weekly varying E. coli levels partly exceeding 2.420 MPN 100 mL-1. Cross-correlation analyses demonstrate a significant and inverse correlation of nitrate and discharge variations which points to a periodic dilution of contaminated groundwater by freshwater from the leaking IWS being the principal cause of the observed fluctuations. Contaminant inputs from leaking sewers appear to be rather constant. The results reveal the distinct impact of leaking clean IWS on the local groundwater and subsequently on the local water supply and therefore demonstrate the need for action regarding the mitigation of groundwater contamination and

  5. Numerical modeling for saturated-zone groundwater travel time analysis at Yucca Mountain

    International Nuclear Information System (INIS)

    Arnold, B.W.; Barr, G.E.

    1996-01-01

    A three-dimensional, site-scale numerical model of groundwater flow in the saturated zone at Yucca Mountain was constructed and linked to particle tracking simulations to produce an estimate of the distribution of groundwater travel times from the potential repository to the boundary of the accessible environment. This effort and associated modeling of groundwater travel times in the unsaturated zone were undertaken to aid in the evaluation of compliance of the site with 10CFR960. These regulations stipulate that pre-waste-emplacement groundwater travel time to the accessible environment shall exceed 1,000 years along any path of likely and significant radionuclide travel

  6. Isotopes of carbon, nitrogen and oxygen reveal contributions of submarine groundwater and septic systems discharges to algal bloom in Boracay Island

    International Nuclear Information System (INIS)

    Sucgang, Raymond; Pabroa, Preciosa Corazon; Mendoza, Norman; Racho, Joseph Michael; Bautista, Angel; Morco, Ryan; Petrache, Christina; Castaneda, Soledad; Dela Rosa, Alumanda

    2014-01-01

    The study showed that critical areas in Boracay island were contaminated by coliform bacteria and blue green algae (cyanobacteria). The distribution of tritium, 18 O, 15 N and 13 C in seawater, biota and sediments in the inter tidal zone, helped to identify sites with septic sewage outflows and submarine groundwater discharge, SGD. Nitrates (from 0.0 to 2.3 parts per million, ppm) and nutrients were discovered in seawater, particularly in four identified sites in the bathing zone. Point sources of infiltrating plumes were exposed by anomalies in tritium and 18 O in sea water. Septic and canal outflows as well as land based run-offs and submarine groundwater discharge were the identified causes of nutrient enrichments in sites with eminent algal bloom. The isotope composition implied that algae acquire nutrients from septic contamination, while a number of corals assimilate inorganic fertilizer nutrients from land-based plumes and SGD. The elements identified in sediments and corals were related to the natural mineral matrix of calcareous beach zone materials, however, sporadic spikes of lead, chromium and zinc were detected in particular sites at certain depths. These element spikes proxy processes linked to anthropogenic pollution and or organic matter decomposition in the sediment-water interfaces. The practicality of applying isotope-based techniques in conjunction with other chemical methods for the tracking down of the sources of nutrient contamination in polluted systems in demonstrated by the study.(author)

  7. Nitrates in Groundwater Discharges from the Azores Archipelago: Occurrence and Fluxes to Coastal Waters

    Directory of Open Access Journals (Sweden)

    J. Virgílio Cruz

    2017-02-01

    Full Text Available Groundwater discharge is an important vector of chemical fluxes to the ocean environment, and as the concentration of nutrients is often higher in discharging groundwater, the deterioration of water quality in the receiving environment can be the result. The main objective of the present paper is to estimate the total NO3 flux to coastal water bodies due to groundwater discharge in the volcanic Azores archipelago (Portugal. Therefore, 78 springs discharging from perched-water bodies have been monitored since 2003, corresponding to cold (mean = 14.9 °C and low mineralized (47.2–583 µS/cm groundwater from the sodium-bicarbonate to sodium-chloride water types. A set of 36 wells was also monitored, presenting groundwater with a higher mineralization. The nitrate content in springs range between 0.02 and 37.4 mg/L, and the most enriched samples are associated to the impact of agricultural activities. The total groundwater NO3 flux to the ocean is estimated in the range of 5.23 × 103 to 190.6 × 103 mol/km2/a (∑ = ~523 × 103 mol/km2/a, exceeding the total flux associated to surface runoff (∑ = ~281 × 103 mol/km2/a. In the majority of the islands, the estimated fluxes are higher than runoff fluxes, with the exception of Pico (47.2%, Corvo (46% and Faial (7.2%. The total N-NO3 flux estimated in the Azores (~118.9 × 103 mol/km2/a is in the lower range of estimates made in other volcanic islands.

  8. The magnitude and origin of groundwater discharge to eastern U.S. and Gulf of Mexico coastal waters

    Science.gov (United States)

    Befus, Kevin; Kroeger, Kevin D.; Smith, Christopher G.; Swarzenski, Peter W.

    2017-01-01

    Fresh groundwater discharge to coastal environments contributes to the physical and chemical conditions of coastal waters, but the role of coastal groundwater at regional to continental scales remains poorly defined due to diverse hydrologic conditions and the difficulty of tracking coastal groundwater flow paths through heterogeneous subsurface materials. We use three-dimensional groundwater flow models for the first time to calculate the magnitude and source areas of groundwater discharge from unconfined aquifers to coastal waterbodies along the entire eastern U.S. We find that 27.1 km3/yr (22.8–30.5 km3/yr) of groundwater directly enters eastern U.S. and Gulf of Mexico coastal waters. The contributing recharge areas comprised ~175,000 km2 of U.S. land area, extending several kilometers inland. This result provides new information on the land area that can supply natural and anthropogenic constituents to coastal waters via groundwater discharge, thereby defining the subterranean domain potentially affecting coastal chemical budgets and ecosystem processes.

  9. Modelling groundwater discharge areas using only digital elevation models as input data

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars [Umeaa Univ. (Sweden). Dept. of Biology and Environmental Science

    2006-10-15

    Advanced geohydrological models require data on topography, soil distribution in three dimensions, vegetation, land use, bedrock fracture zones. To model present geohydrological conditions, these factors can be gathered with different techniques. If a future geohydrological condition is modelled in an area with positive shore displacement (say 5,000 or 10,000 years), some of these factors can be difficult to measure. This could include the development of wetlands and the filling of lakes. If the goal of the model is to predict distribution of groundwater recharge and discharge areas in the landscape, the most important factor is topography. The question is how much can topography alone explain the distribution of geohydrological objects in the landscape. A simplified description of the distribution of geohydrological objects in the landscape is that groundwater recharge areas occur at local elevation curvatures and discharge occurs in lakes, brooks, and low situated slopes. Areas in-between these make up discharge areas during wet periods and recharge areas during dry periods. A model that could predict this pattern only using topography data needs to be able to predict high ridges and future lakes and brooks. This study uses GIS software with four different functions using digital elevation models as input data, geomorphometrical parameters to predict landscape ridges, basin fill for predicting lakes, flow accumulations for predicting future waterways, and topographical wetness indexes for dividing in-between areas based on degree of wetness. An area between the village of and Forsmarks' Nuclear Power Plant has been used to calibrate the model. The area is within the SKB 10-metre Elevation Model (DEM) and has a high-resolution orienteering map for wetlands. Wetlands are assumed to be groundwater discharge areas. Five hundred points were randomly distributed across the wetlands. These are potential discharge points. Model parameters were chosen with the

  10. Groundwater discharge to the Mississippi River and groundwater balances for the Interstate 94 Corridor surficial aquifer, Clearwater to Elk River, Minnesota, 2012–14

    Science.gov (United States)

    Smith, Erik A.; Lorenz, David L.; Kessler, Erich W.; Berg, Andrew M.; Sanocki, Chris A.

    2017-12-13

    The Interstate 94 Corridor has been identified as 1 of 16 Minnesota groundwater areas of concern because of its limited available groundwater resources. The U.S. Geological Survey, in cooperation with the Minnesota Department of Natural Resources, completed six seasonal and annual groundwater balances for parts of the Interstate 94 Corridor surficial aquifer to better understand its long-term (next several decades) sustainability. A high-precision Mississippi River groundwater discharge measurement of 5.23 cubic feet per second per mile was completed at low-flow conditions to better inform these groundwater balances. The recharge calculation methods RISE program and Soil-Water-Balance model were used to inform the groundwater balances. For the RISE-derived recharge estimates, the range was from 3.30 to 11.91 inches per year; for the SWB-derived recharge estimates, the range was from 5.23 to 17.06 inches per year.Calculated groundwater discharges ranged from 1.45 to 5.06 cubic feet per second per mile, a ratio of 27.7 to 96.4 percent of the measured groundwater discharge. Ratios of groundwater pumping to total recharge ranged from 8.6 to 97.2 percent, with the longer-term groundwater balances ranging from 12.9 to 19 percent. Overall, this study focused on the surficial aquifer system and its interactions with the Mississippi River. During the study period (October 1, 2012, through November 30, 2014), six synoptic measurements, along with continuous groundwater hydrographs, rainfall records, and a compilation of the pertinent irrigation data, establishes the framework for future groundwater modeling efforts.

  11. Using radon-222 for tracing groundwater discharge into an open-pit lignite mining lake--a case study.

    Science.gov (United States)

    Schmidt, Axel; Schubert, Michael

    2007-12-01

    Groundwater discharge into an open pit lignite mining lake was investigated using radon-222 as a naturally occurring environmental tracer. The chosen study site was a meromictic lake, i.e., a water body that is divided horizontally into two separate layers--the upper mixolimnion (with seasonal mixing) and the lower monimolimnion (without seasonal mixing). For the estimation of groundwater discharge rates into the lake, a simple box model including all radon sinks and sources related to each layer was applied. Two field investigations were performed. During the October campaign, the total groundwater discharge into the lake was found to be 18.9 and 0.7 m(3) d(-1) for the mixolimnion and monimolimnion, respectively. During the December campaign, the groundwater discharge into the mixolimnion was 15.0 m(3) d(-1), whereas no discharge at all was observed into the monimolimnion. Based on the given water volumes, the residence time of lake water was 5.3 years for the monimolimnion and varies between 0.9 and 1.1 years for the mixolimnion. The investigation confirmed radon to be a useful environmental tracer for groundwater and surface water interactions in meromictic lake environments.

  12. Biogeochemical transport in the Loxahatchee River estuary, FL: The role of submarine groundwater discharge

    Science.gov (United States)

    Swarzenski, P.; Orem, B.; McPherson, B.; Baskaran, M.; Wan, Y.

    2005-05-01

    The distributions of dissolved organic carbon (DOC), silica, select trace elements (Mn, Fe, Ba, Sr, Co, V,) and a suite of naturally-occurring radionuclides in the U/Th decay series (222Rn, 223,224,226,228Ra, 238U) were studied during high and low discharge conditions in the Loxahatchee River estuary, Florida. The zero-salinity endmember of this still relatively pristine estuary may reflect not only river-borne constituents, but also those advected during active groundwater/surface-water discharge. During low discharge conditions, with the notable exception of Co, trace metals indicate nearly conservative mixing from a salinity of ~12 through the estuary (This statement contracdicts with what is said in p. 7). In contrast, of the trace metals studied, only Sr, Fe, U and V exhibited conservative estuarine mixing during high discharge. Dissolved organic carbon and Si concentrations were highest at zero salinities, and generally decreased with an increase in salinity during both discharge regimes, indicating removal of land-derived dissolved organic matter and silica in the estuary. Suspended particulate matter (SPM) concentrations were generally lowest ( 28 dpm L-1) at the freshwater endmember of the estuary, and appear to identify regions of the river most influenced by active submarine groundwater discharge (where is the data that show this?). Activities of four naturally-occurring isotopes of Ra (223,224,226,228Ra) in this estuary and select adjacent shallow groundwater wells indicate mean estuarine water mass residence times of less than 1 day; values in close agreement to those calculated by tidal prism and tidal period. A radium-based model for estimating submarine groundwater discharge to the Loxahatchee River estuary yielded an average of 1.03 V 3.84 x 105 m3 day-1, depending on river discharge stage as well as slight variations in the particular Ra models used. Such calculated flux estimates are in close agreement with results obtained from a 2-day

  13. Evapotranspiration Dynamics and Effects on Groundwater Recharge and Discharge at the Tuba City, Arizona, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-01

    The U.S. Department of Energy Office of Legacy Management is evaluating groundwater flow and contaminant transport at a former uranium mill site near Tuba City, Arizona. We estimated effects of temporal and spatial variability in evapotranspiration (ET) on recharge and discharge within a groundwater model domain (GMD) as part of this evaluation. We used remote sensing algorithms and precipitation (PPT) data to estimate ET and the ET/PPT ratios within the 3531 hectare GMD. For the period from 2000 to 2012, ET and PPT were nearly balanced (129 millimeters per year [mm yr-1] and 130 mm yr-1, respectively; ET/PPT = 0.99). However, seasonal and annual variability in ET and PPT were out of phase, and spatial variability in vegetation differentiated discharge and recharge areas within the GMD. Half of ET occurred during spring and early summer when PPT was low, and about 70% of PPT arriving in fall and winter was discharged as plant transpiration in the spring and summer period. Vegetation type and health had a significant effect on the site water balance. Plant cover and ET were significantly higher (1) during years of lighter compared to years of heavier grazing pressure, and (2) on rangeland protected from grazing compared to rangeland grazed by livestock. Heavy grazing increased groundwater recharge (PPT > ET over the 13-year period). Groundwater discharge (ET > PPT over the 13-year period) was highest in riparian phreatophyte communities but insignificant in desert phreatophyte communities impacted by heavy grazing. Grazing management in desert upland and phreatophyte communities may result in reduced groundwater recharge, increased groundwater discharge, and could be used to influence local groundwater flow.

  14. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques

    Directory of Open Access Journals (Sweden)

    N.S. Magesh

    2012-03-01

    Full Text Available Integration of remote sensing data and the geographical information system (GIS for the exploration of groundwater resources has become a breakthrough in the field of groundwater research, which assists in assessing, monitoring, and conserving groundwater resources. In the present paper, various groundwater potential zones for the assessment of groundwater availability in Theni district have been delineated using remote sensing and GIS techniques. Survey of India toposheets and IRS-1C satellite imageries are used to prepare various thematic layers viz. lithology, slope, land-use, lineament, drainage, soil, and rainfall were transformed to raster data using feature to raster converter tool in ArcGIS. The raster maps of these factors are allocated a fixed score and weight computed from multi influencing factor (MIF technique. Moreover, each weighted thematic layer is statistically computed to get the groundwater potential zones. The groundwater potential zones thus obtained were divided into four categories, viz., very poor, poor, good, and very good zones. The result depicts the groundwater potential zones in the study area and found to be helpful in better planning and management of groundwater resources.

  15. [Relationship between groundwater quality index of nutrition element and organic matter in riparian zone and water quality in river].

    Science.gov (United States)

    Hua-Shan, Xu; Tong-Qian, Zhao; Hong-Q, Meng; Zong-Xue, Xu; Chao-Hon, Ma

    2011-04-01

    Riparian zone hydrology is dominated by shallow groundwater with complex interactions between groundwater and surface water. There are obvious relations of discharge and recharge between groundwater and surface water. Flood is an important hydrological incident that affects groundwater quality in riparian zone. By observing variations of physical and chemical groundwater indicators in riparian zone at the Kouma section of the Yellow River Wetland, especially those took place in the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between the groundwater quality in riparian zone and the flood water quality in the river is studied. Results show that there will be great risk of nitrogen, phosphorus, nitrate nitrogen and organic matter permeating into the groundwater if floodplain changes into farmland. As the special control unit of nitrogen pollution between rivers and artificial wetlands, dry fanning areas near the river play a very important role in nitrogen migration between river and groundwater. Farm manure as base fertilizer may he an important source of phosphorus leak and loss at the artificial wetlands. Phosphorus leaks into the groundwater and is transferred along the hydraulic gradient, especially during the period of regulation for water and sediment at the Xiaolangdi Reservoir. The land use types and farming systems of the riparian floodplain have a major impact on the nitrate nitrogen contents of the groundwater. Nitrogen can infiltrate and accumulate quickly at anaerobic conditions in the fish pond area, and the annual nitrogen achieves a relatively balanced state in lotus area. In those areas, the soil is flooded and at anaerobic condition in spring and summer, nitrogen infiltrates and denitrification significantly, but soil is not flooded and at aerobic condition in the autumn and winter, and during these time, a significant nitrogen nitrification process occurs. In the area between 50 m and 200 m from the river

  16. Groundwater discharge by evapotranspiration, Dixie Valley, west-central Nevada, March 2009-September 2011

    Science.gov (United States)

    Garcia, C. Amanda; Huntington, Jena M; Buto, Susan G.; Moreo, Michael T.; Smith, J. LaRue; Andraski, Brian J.

    2014-01-01

    With increasing population growth and land-use change, urban communities in the desert Southwest are progressively looking toward remote basins to supplement existing water supplies. Pending applications by Churchill County for groundwater appropriations from Dixie Valley, Nevada, a primarily undeveloped basin east of the Carson Desert, have prompted a reevaluation of the quantity of naturally discharging groundwater. The objective of this study was to develop a revised, independent estimate of groundwater discharge by evapotranspiration (ETg) from Dixie Valley using a combination of eddy-covariance evapotranspiration (ET) measurements and multispectral satellite imagery. Mean annual ETg was estimated during water years 2010 and 2011 at four eddy-covariance sites. Two sites were in phreatophytic shrubland dominated by greasewood, and two sites were on a playa. Estimates of total ET and ETg were supported with vegetation cover mapping, soil physics considerations, water‑level measurements from wells, and isotopic water sourcing analyses to allow partitioning of ETg into evaporation and transpiration components. Site-based ETg estimates were scaled to the basin level by combining remotely sensed imagery with field reconnaissance. Enhanced vegetation index and brightness temperature data were compared with mapped vegetation cover to partition Dixie Valley into five discharging ET units and compute basin-scale ETg. Evapotranspiration units were defined within a delineated groundwater discharge area and were partitioned as (1) playa lake, (2) playa, (3) sparse shrubland, (4) moderate-to-dense shrubland, and (5) grassland.

  17. Sandcastle Moats and Petunia Bed Holes. A Book about Groundwater.

    Science.gov (United States)

    Nickinson, Pat

    This book provides five instructional units on groundwater. Units included are: (1) "Where's the Groundwater?" (describing the concepts of a saturated zone, water table, hydrologic cycle, recharge and discharge, core of depression, subsidence, and saltwater intrusion); (2) "How Does It Travel?" (discussing porosity,…

  18. Integration of In Situ Radon Modeling with High Resolution Aerial Remote Sensing for Mapping and Quantifying Local to Regional Flow and Transport of Submarine Groundwater Discharge from Coastal Aquifers

    Science.gov (United States)

    Glenn, C. R.; Kennedy, J. J.; Dulaiova, H.; Kelly, J. L.; Lucey, P. G.; Lee, E.; Fackrell, J.

    2015-12-01

    Submarine groundwater discharge (SGD) is a principal conduit for huge volumes of fresh groundwater loss and is a key transport mechanism for nutrient and contaminant pollution to coastal zones worldwide. However, the volumes and spatially and temporally variable nature of SGD is poorly known and requires rapid and high-resolution data acquisition at the scales in which it is commonly observed. Airborne thermal infrared (TIR) remote sensing, using high-altitude manned aircraft and low-altitude remote-controlled unmanned aerial vehicles (UAVs or "Drones") are uniquely qualified for this task, and applicable wherever 0.1°C temperature contrasts exist between discharging and receiving waters. We report on the use of these technologies in combination with in situ radon model studies of SGD volume and nutrient flux from three of the largest Hawaiian Islands. High altitude manned aircraft results produce regional (~300m wide x 100s km coastline) 0.5 to 3.2 m-resolution sea-surface temperature maps accurate to 0.7°C that show point-source and diffuse flow in exquisite detail. Using UAVs offers cost-effective advantages of higher spatial and temporal resolution and instantaneous deployments that can be coordinated simultaneously with any ground-based effort. We demonstrate how TIR-mapped groundwater discharge plume areas may be linearly and highly correlated to in situ groundwater fluxes. We also illustrate how in situ nutrient data may be incorporated into infrared imagery to produce nutrient distribution maps of regional worth. These results illustrate the potential for volumetric quantification and up-scaling of small- to regional-scale SGD. These methodologies provide a tremendous advantage for identifying and differentiating spring-fed, point-sourced, and/or diffuse groundwater discharge into oceans, estuaries, and streams. The integrative techniques are also important precursors for developing best-use and cost-effective strategies for otherwise time-consuming in

  19. Simulating the effects of a beaver dam on regional groundwater flow through a wetland

    OpenAIRE

    Kathleen Feiner; Christopher S. Lowry

    2015-01-01

    Study Focus: This research examines a wetland environment before and after the construction of a beaver dam to determine the hydrologic impacts on regional groundwater flow and quantify changes to the capture zone of a wetland pond. Increased hydraulic head behind a newly built beaver dam can cause shifts in the capture zone of a wetland pond. Changes in groundwater flux, and the extent of both the capture and discharge zones of this wetland were examined with the use of a groundwater flow mo...

  20. Ground-Water Occurrence and Contribution to Streamflow, Northeast Maui, Hawaii

    Science.gov (United States)

    Gingerich, Stephen B.

    1999-01-01

    The study area lies on the northern flank of the East Maui Volcano (Haleakala) and covers about 129 square miles between the drainage basins of Maliko Gulch to the west and Makapipi Stream to the east. About 989 million gallons per day of rainfall and 176 million gallons per day of fog drip reaches the study area and about 529 million gallons per day enters the ground-water system as recharge. Average annual ground-water withdrawal from wells totals only about 3 million gallons per day; proposed (as of 1998) additional withdrawals total about 18 million gallons per day. Additionally, tunnels and ditches of an extensive irrigation network directly intercept at least 10 million gallons per day of ground water. The total amount of average annual streamflow in gaged stream subbasins upstream of 1,300 feet altitude is about 255 million gallons per day and the total amount of average annual base flow is about 62 million gallons per day. Six major surface-water diversion systems in the study area have diverted an average of 163 million gallons per day of streamflow (including nearly all base flow of diverted streams) for irrigation and domestic supply in central Maui during 1925-97. Fresh ground water is found in two main forms. West of Keanae Valley, ground-water flow appears to be dominated by a variably saturated system. A saturated zone in the uppermost rock unit, the Kula Volcanics, is separated from a freshwater lens near sea level by an unsaturated zone in the underlying Honomanu Basalt. East of Keanae Valley, the ground-water system appears to be fully saturated above sea level to altitudes greater than 2,000 feet. The total average annual streamflow of gaged streams west of Keanae Valley is about 140 million gallons per day at 1,200 feet to 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast. All of the base flow measured in the study area west of Keanae Valley represents ground-water discharge from the high

  1. Influence of the tension-saturated zone on contaminant migration in shallow water-table regimes

    International Nuclear Information System (INIS)

    Gillham, R.W.

    1982-01-01

    Groundwater discharge represents a major pathway for the return to the biosphere of contaminants that are released to the subsurface environment. An understanding of the transport processes in groundwater discharge zones is therefore an important consideration in pathway analyses associated with the environmental assessment of proposed waste-management facilities. Shallow water tables are a common characteristic of groundwater discharge zones, particularly in humid climatic regions. In this paper, the results of field tests, laboratory tests and numerical simulations are used to show that under shallow water-table conditions, the zone of tension saturation can result in a rapid and highly disproportionate water-table response to precipitation. It is further shown that this response can result in complex migration patterns that would not be predicted by the classical approaches to solute transport modelling and that the response could result in large and highly transient inputs to surface water

  2. Evidence of terrestrial discharge of deep groundwater on the Canadian Shield from helium in soil gases

    International Nuclear Information System (INIS)

    Gascoyne, M.; Sheppard, M.I.

    1993-01-01

    Assessment of the impact of deep geological disposal of nuclear fuel wastes at a site in the Canadian Shield requires knowledge of the location and size of areas of discharge of deep groundwater from the vicinity of the underground disposal vault. A strong He anomaly has been detected in soil gases in a 10 X 10 m area of wetland on the banks of Boggy Creek, near Lac du Bonnet, Manitoba. The area has He concentrations in near-surface soils as high as 360 nL·L -1 and is assumed to indicate discharge of He-rich groundwater through a permeable subsurface bedrock fracture. Elevated Cl - concentrations in groundwater and its use as a open-quotes deer lickclose quotes support this interpretation. A He flux density of ∼ 2.1 L·m -2 ·a -1 is determined from a depth profile of He concentrations at one location in the site. A total He flux of 270 L·a -1 is determined for the entire site, which corresponds to a deep groundwater discharge of about 26 000 L·a -1 . This estimate is comparable with He fluxes and calculated groundwater discharges for two other lake-bottom locations on the Canadian Shield. 26 refs., 6 figs., 1 tab

  3. The role of groundwater discharge fluxes on Si:P ratios in a major tributary to Lake Erie.

    Science.gov (United States)

    Maavara, Taylor; Slowinski, Stephanie; Rezanezhad, Fereidoun; Van Meter, Kimberly; Van Cappellen, Philippe

    2018-05-01

    Groundwater discharge can be a major source of nutrients to river systems. Although quantification of groundwater nitrate loading to streams is common, the dependence of surface water silicon (Si) and phosphorus (P) concentrations on groundwater sources has rarely been determined. Additionally, the ability of groundwater discharge to drive surface water Si:P ratios has not been contextualized relative to riverine inputs or in-stream transformations. In this study, we quantify the seasonal dynamics of Si and P cycles in the Grand River (GR) watershed, the largest Canadian watershed draining into Lake Erie, to test our hypothesis that regions of Si-rich groundwater discharge increase surface water Si:P ratios. Historically, both the GR and Lake Erie have been considered stoichiometrically P-limited, where the molar Si:P ratio is greater than the ~16:1 phytoplankton uptake ratio. However, recent trends suggest that eastern Lake Erie may be approaching Si-limitation. We sampled groundwater and surface water for dissolved and reactive particulate Si as well as total dissolved P for 12months within and downstream of a 50-km reach of high groundwater discharge. Our results indicate that groundwater Si:P ratios are lower than the corresponding surface water and that groundwater is a significant source of bioavailable P to surface water. Despite these observations, the watershed remains P-limited for the majority of the year, with localized periods of Si-limitation. We further find that groundwater Si:P ratios are a relatively minor driver of surface water Si:P, but that the magnitude of Si and P loads from groundwater represent a large proportion of the overall fluxes to Lake Erie. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Application of {sup 222} Rn as a tracer of groundwater discharge at the coastal zone of Ubatuba, Sao Paulo State, Brazil; Aplicacao de {sup 222} Rn como tracador da descarga de aguas subterraneas na regiao costeira de Ubatuba, Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Joselene de; Farias, Luciana A.; Mazzilli, Barbara P. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Dept. de Radiometria Ambiental]. E-mail: jolivei@net.ipen.br; Burnett, William C. [Florida State Univ., Tallahassee, FL (United States); Saraiva, Elisabete de S.B. e; Furtado, Valdenir V. [Sao Paulo Univ., SP (Brazil). Inst. Oceanografico. Dept. de Oceanografia Quimica e Geologica

    2002-07-01

    Submarine groundwater discharge (SGD) and recycled seawater can provide chemical constituents to coastal zone, representing an important material flux pathway from land to sea in some areas. Geochemical tracers, like {sup 222} Rn and {sup 226} Ra, are advantageous for regional-scale assessment of SGD, because their signals represent values integrated through the water column that removes small-scale variations. These radionuclides are usually enriched in groundwater compared to seawater, can be measured at very low concentrations and are conservative. This work reports preliminary results of a study carried out in a series of small embayements of Ubatuba, Sao Paulo State-Brazil, covering latitudes between 23 deg 26{sup '}S and 23 deg 46{sup '}S and longitudes between 45 deg02{sup '}W and 45 deg 11{sup '}W. The main aims of this research were to set up an analytical method to assess {sup 222} Rn and {sup 226} Ra activities in seawater samples and to apply the excess {sup 222} Rn inventories obtained to estimate the submarine groundwater discharge. Measurements made during 2001/2002 included {sup 222} Rn and {sup 226} Ra in seawater, {sup 222} Rn in sediment, seawater and sediment physical properties. (author)

  5. The application of isotope and geochemical techniques to reveal contributions of submarine groundwater and septic systems discharges to algal bloom in Boracay Island

    International Nuclear Information System (INIS)

    Sucgang, Raymond J.; Pabroa, Preciosa Corazon C.; Mendoza, Norman DS.; Racho, Joseph Michael D.; Bautista VII, Angel P.; Jimenez, Gloria R.; Cuyco, Danilo A.; Dawal, Carla S.; Petrache, Christina A.; Castaneda, Soledad S.; Dela Rosa, Alumanda M.

    2014-01-01

    The study shows that critical areas in Boracay island are contaminated by coliform bacteria and blue green algae (cyanobacteria). The distribution of tritium, 18 O, 15 N, and 13 C in seawater, biota and sediments in the intertidal zone, helped to identify sites with specific sewage outflows and submarine groundwater discharge, SGD, Nitrates (from, 0.0 to 2.3 parts per million, ppm) and nutrients were discovered in seawater, particularly in four identified sites in the bathing zone. Point sources of infiltrating plumes were exposed by anomalies in tritium and 18 O in sea water. Septic and canal outflows as well as land based run-offs and submarine groundwater discharge were the identified causes of nutrient enrichments in sites with eminent algal bloom. The isotope composition implied that algae acquire nutrients from septic contamination, while a number of corals assimilate inorganic fertilizer nutrients from land-based plumes and SGD. The elements identified in sediments and corals were related to the natural mineral matrix of calcareous beach zone materials; however, sporadic spikes of lead, chromium and zinc were detected in particular sites at certain depths. These element spikes proxy processes linked to anthropogenic pollution and or organic matter decomposition in the sediment-water interfaces. The practicality of applying isotope-based techniques in conjunction with other chemical methods for the tracking down of the sources of nutrient contamination in polluted systems is demonstrated by the study.

  6. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    previous hypothesis that regional groundwater flow from the piedmont groundwater recharge zone predominantly discharges at the coastline may therefore be false. A more reliable alternative might be to conceptualize deep groundwater below the coastal plains a hydrodynamically stagnant zone, responding gradually to landscape and hydrological change on geologic timescales. This study brings a new and original understanding of the groundwater flow system in an important regional basin, in the context of its geometry and evolution over geological timescales. There are important implications for the sustainability of the ongoing high rates of groundwater extraction in the NCB.

  7. Initial site characterisation of a dissolved hydrocarbon groundwater plume discharging to a surface water environment

    International Nuclear Information System (INIS)

    Westbrook, S.J.; Commonwealth Scientific and Industrial Research Organisation Land and Water, Wembley, WA; Davis, G.B.; Rayner, J.L.; Fisher, S.J.; Clement, T.P.

    2000-01-01

    Preliminary characterisation of a dissolved hydrocarbon groundwater plume flowing towards a tidally- and seasonally-forced estuarine system has been completed at a site in Perth, Western Australia. Installation and sampling of multiport boreholes enabled fine scale (0.5-m) vertical definition of hydrocarbon concentrations. Vertical electrical conductivity profiles from multiport and spear probe sampling into the river sediments indicated that two groundwater/river water interfaces or dispersion zones are present: (a) an upper dispersion zone between brackish river water and groundwater, and (b) a lower interface between groundwater and deeper saline water. On-line water level loggers show that near-shore groundwater levels are also strongly influence by tidal oscillation. Results from the initial site characterisation will be used to plan further investigations of contaminated groundwater/surface water interactions and the biodegradation processes occurring at the site

  8. Spatial and temporal variation of nutrients in groundwater and associated processes in the coastal zone of the Pearl River Delta, China

    Science.gov (United States)

    Chen, J.

    2017-12-01

    Rapid urbanization has occurred in the Pearl River Delta since 1980s, resulting in tremendous accumulation of population and material in an area of around 1.1x104 km2. Massive nutrients were released to the coastal zone either via the Pearl River or the aquifer, and effects of these nutrients on ecosystem and drinking water supply are a big public concern. Field campaigns to collect groundwater samples were implemented in rainy (April- September) and dry seasons (October - March) during the period of 2005-2016, and samples were analyzed for major ions, nutrients, multiple isotopes, N2O and microbiological DNA. Seasonal and spatial pattern of nutrients from the recharge to the discharge zone in two case study areas were identified and compared regarding relevant N transformation processes. Main sources of nutrients in groundwater and major mechanisms, e.g. denitrification, nitrification and etc., involved in these processes were raised by integrating microbiological, isotopic and geochemical evidences. Driven forces of the change in nutrients in the past 10 years were investigated based on statistical data, and total nutrient load in groundwater in the delta was estimated.

  9. Regional Hydrogeochemistry of a Modern Coastal Mixing Zone

    Science.gov (United States)

    Wicks, Carol M.; Herman, Janet S.

    1996-02-01

    In west central Florida, groundwater samples were collected along flow paths in the unconfined upper Floridan aquifer that cross the inland, freshwater recharge area and the coastal discharge area. A groundwater flow and solute transport model was used to evaluate groundwater flow and mixing of fresh and saline groundwater along a cross section of the unconfined upper Floridan aquifer. Results show that between 8% and 15% of the fresh and 30-31% of the saline groundwater penetrates to the depth in the flow system where contact with and dissolution of gypsum is likely. The deeply circulating fresh and saline groundwater returns to the near-surface environment discharging CaSO4-rich water to the coastal area where it mixes with fresh CaHCO3 groundwater, resulting in a prediction of calcite precipitation in the modern mixing zone.

  10. Deciphering groundwater potential zones in hard rock terrain using geospatial technology.

    Science.gov (United States)

    Dar, Imran A; Sankar, K; Dar, Mithas A

    2011-02-01

    Remote sensing and geographical information system (GIS) has become one of the leading tools in the field of groundwater research, which helps in assessing, monitoring, and conserving groundwater resources. This paper mainly deals with the integrated approach of remote sensing and GIS to delineate groundwater potential zones in hard rock terrain. Digitized vector maps pertaining to chosen parameters, viz. geomorphology, geology, land use/land cover, lineament, relief, and drainage, were converted to raster data using 23 m×23 m grid cell size. Moreover, curvature of the study area was also considered while manipulating the spatial data. The raster maps of these parameters were assigned to their respective theme weight and class weights. The individual theme weight was multiplied by its respective class weight and then all the raster thematic layers were aggregated in a linear combination equation in Arc Map GIS Raster Calculator module. Moreover, the weighted layers were statistically modeled to get the areal extent of groundwater prospects with respect to each thematic layer. The final result depicts the favorable prospective zones in the study area and can be helpful in better planning and management of groundwater resources especially in hard rock terrains.

  11. Radon concentration distributions in shallow and deep groundwater around the Tachikawa fault zone.

    Science.gov (United States)

    Tsunomori, Fumiaki; Shimodate, Tomoya; Ide, Tomoki; Tanaka, Hidemi

    2017-06-01

    Groundwater radon concentrations around the Tachikawa fault zone were surveyed. The radon concentrations in shallow groundwater samples around the Tachikawa fault segment are comparable to previous studies. The characteristics of the radon concentrations on both sides of the segment are considered to have changed in response to the decrease in groundwater recharge caused by urbanization on the eastern side of the segment. The radon concentrations in deep groundwater samples collected around the Naguri and the Tachikawa fault segments are the same as those of shallow groundwater samples. However, the radon concentrations in deep groundwater samples collected from the bedrock beside the Naguri and Tachikawa fault segments are markedly higher than the radon concentrations expected from the geology on the Kanto plane. This disparity can be explained by the development of fracture zones spreading on both sides of the two segments. The radon concentration distribution for deep groundwater samples from the Naguri and the Tachikawa fault segments suggests that a fault exists even at the southern part of the Tachikawa fault line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Interpretation of environmental isotopic groundwater data. Arid and semi-arid zones

    International Nuclear Information System (INIS)

    Geyh, M.A.

    1980-01-01

    Various hydrodynamic aspects are discussed in order to show their implication for the hydrogeological interpretation of environmental isotope and hydrochemical groundwater data. Special attention is drawn to radiocarbon and tritium studies carried out in arid and semi-arid zones. An exponential model has been utilized to determine the mean residence time of the long-term water from springs in karst and crystalline regions. Hydrogeological parameters such as the porosity can be checked by this result. In addition, the exponential model offers the possibility of determining the initial 14 C content of spring water, which is sensitively dependent on the soil of the recharge area. A base-flow model has been introduced to interpret the 14 C and 3 H data of groundwater samples from older karst regions. Differences between pumped and drawn samples exist with respect to the groundwater budget. Owing to pumping, the old base flow is accelerated and becomes enriched in pumped groundwater in comparison to the short-term water. Radiocarbon ages of groundwater in alluvium may be dubious because of isotope exchange with the CO 2 in the root zone along the river bank. Under confined conditions 14 C groundwater ages are diminished if the hydraulic head of the confined aquifer is lower than that of the shallow one. This is due to the radiocarbon downwards transport by convection of shallow groundwater. The same effect occurs, though much faster, if the groundwater table is depleted by groundwater withdrawal. The decrease of the radiocarbon groundwater ages in time can be used to determine the hydraulic transmissibility coefficient of the aquitarde. According to the practical and theoretic results obtained the hydrodynamic aspects require at least the same attention for the interpretation of environmental isotope and hydrochemical data of groundwater as do hydrochemical and isotope fractionation processes. (author)

  13. A 3-D numerical model of the influence of meanders on groundwater discharge to a gaining stream in an unconfined sandy aquifer

    DEFF Research Database (Denmark)

    Balbarini, Nicola; Boon, Wietse M.; Nicolajsen, Ellen

    2017-01-01

    Groundwater discharge to streams depends on stream morphology and groundwater flow direction, but are not always well understood. Here a 3-D groundwater flow model is employed to investigate the impact of meandering stream geometries on groundwater discharge to streams in an unconfined and homoge...

  14. Recharge and discharge of near-surface groundwater in Forsmark. Comparison of classification methods

    International Nuclear Information System (INIS)

    Werner, Kent; Johansson, Per-Olof; Brydsten, Lars; Bosson, Emma; Berglund, Sten

    2007-03-01

    This report presents and compares data and models for identification of near-surface groundwater recharge and discharge (RD) areas in Forsmark. The general principles of groundwater recharge and discharge are demonstrated and applied to interpret hydrological and hydrogeological observations made in the Forsmark area. 'Continuous' RD classification methods considered in the study include topographical modelling, map overlays, and hydrological-hydrogeological flow modelling. 'Discrete' (point) methods include field-based and hydrochemistry-based RD classifications of groundwater monitoring well locations. The topographical RD modelling uses the digital elevation model as the only input. The map overlays use background maps of Quaternary deposits, soils, and ground- and field layers of the vegetation/land use map. Further, the hydrological-hydrogeological modelling is performed using the MIKE SHE-MIKE 11 software packages, taking into account e.g. topography, meteorology, hydrogeology, and geometry of watercourses and lakes. The best between-model agreement is found for the topography-based model and the MIKE SHE-MIKE 11 model. The agreement between the topographical model and the map overlays is less good. The agreement between the map overlays on the one hand, and the MIKE SHE and field-based RD classifications on the other, is thought to be less good, as inferred from the comparison made with the topography-based model. However, much improvement of the map overlays can likely be obtained, e.g. by using 'weights' and calibration (such exercises were outside the scope of the present study). For field-classified 'recharge wells', there is a good agreement to the hydrochemistry-based (Piper plot) well classification, but less good for the field-classified 'discharge wells'. In addition, the concentration of the age-dating parameter tritium shows low variability among recharge wells, but a large spread among discharge wells. The usefulness of hydrochemistry-based RD

  15. Nested-scale discharge and groundwater level monitoring to improve predictions of flow route discharges and nitrate loads

    NARCIS (Netherlands)

    Velde, Y. van der; Rozemeijer, J.C.; Rooij, G.H.de; Geer, F.C. van; Torfs, P.J.J.F.; Louw, P.G.B. de

    2010-01-01

    Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for predictions of catchment-scale

  16. Identification of groundwater prospective zones by using remote ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 114; Issue 5. Identification of groundwater prospective zones by using remote sensing and geoelectrical methods in Jharia and Raniganj coalfields, Dhanbad district, Jharkhand state. Basudeo Rai A Tiwari V S Dubey. Volume 114 Issue 5 October 2005 pp 515-522 ...

  17. Hydrological mediated denitrification in groundwater below a seasonal flooded restored riparian zone

    DEFF Research Database (Denmark)

    Jensen, Jannick Kolbjørn; Engesgaard, Peter; Johnsen, Anders R.

    2017-01-01

    nitrate removal in groundwater primarily by two mechanisms. First, by creating a stagnant flow zone beneath the flooded area thereby increasing the residence time and leaving more time for nitrate removal. Secondly, nitrate removal is increased by enhancing upward flow into the highly reactive organic......A restored riparian zone was characterized to understand the effects of flooding on subsurface hydrological flow paths and nitrate removal in groundwater. Field and laboratory investigations were combined with numerical modeling of dynamic flow and reactive nitrate transport. Flooding enhances...

  18. Assessment of human activities impact on groundwater quality discharging into a reef lagoon

    Science.gov (United States)

    Rebolledo-Vieyra, M.; Hernandez, L.; Paytan, A.; Merino-Ibarra, M.; Lecossec, A.; Soto, M.

    2010-03-01

    The Eastern coast of the Yucatan Peninsula has the fastest growth rate in Mexico and groundwater is the only source of drinking water in the region. The consequences of the lack of proper infrastructure to collect and treat wastewater and the impact of human activities on the quality of groundwater are addressed. The groundwater in the coastal aquifer of Quintana Roo (SE Mexico) discharges directly into the ocean (Submarine Groundwater Discharges). In addition, the coral reef of the Eastern Yucatan Peninsula is part of the Mesoamerican Coral Reef System, one of the largest in the world. The interaction of the reef-lagoon hydraulics with the coastal aquifer of Puerto Morelos (NE Yucatan Peninsula), and a major input of NH4, SO4, SiO2, as a consequence of the use of septic tanks and the lack of modern wastewater treatment plants are presented. A conceptual model of the coastal aquifer was developed, in order to explain how the human activities are impacting directly on the groundwater quality that, potentially, will have a direct impact on the coral reef. The protection and conservation of coral reefs must be directly related with a policy of sound management of coastal aquifers and wastewater treatment.

  19. Artificial groundwater recharge zones mapping using remote sensing and GIS: a case study in Indian Punjab.

    Science.gov (United States)

    Singh, Amanpreet; Panda, S N; Kumar, K S; Sharma, Chandra Shekhar

    2013-07-01

    Artificial groundwater recharge plays a vital role in sustainable management of groundwater resources. The present study was carried out to identify the artificial groundwater recharge zones in Bist Doab basin of Indian Punjab using remote sensing and geographical information system (GIS) for augmenting groundwater resources. The study area has been facing severe water scarcity due to intensive agriculture for the past few years. The thematic layers considered in the present study are: geomorphology (2004), geology (2004), land use/land cover (2008), drainage density, slope, soil texture (2000), aquifer transmissivity, and specific yield. Different themes and related features were assigned proper weights based on their relative contribution to groundwater recharge. Normalized weights were computed using the Saaty's analytic hierarchy process. Thematic layers were integrated in ArcGIS for delineation of artificial groundwater recharge zones. The recharge map thus obtained was divided into four zones (poor, moderate, good, and very good) based on their influence to groundwater recharge. Results indicate that 15, 18, 37, and 30 % of the study area falls under "poor," "moderate," "good," and "very good" groundwater recharge zones, respectively. The highest recharge potential area is located towards western and parts of middle region because of high infiltration rates caused due to the distribution of flood plains, alluvial plain, and agricultural land. The least effective recharge potential is in the eastern and middle parts of the study area due to low infiltration rate. The results of the study can be used to formulate an efficient groundwater management plan for sustainable utilization of limited groundwater resources.

  20. Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2011-12-01

    We report here some efforts and results in studying the imbalance in groundwater-surface water interactions and processes of groundwater-surface water interactions and groundwater flooding creating hazards in the coastal zones. Hazards, hydrological and geophysical risk analysis related to imbalance in groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of significance of imbalance in groundwater-surface water interactions. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models, and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health. In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction under conditions of imbalance in groundwater-surface water interactions. This paper proposes consideration of two case studies which are important and significant for future understanding of a concept of imbalance in groundwater-surface water interactions and development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone. It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due

  1. A simple groundwater scheme in the TRIP river routing model: global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges

    Directory of Open Access Journals (Sweden)

    J.-P. Vergnes

    2012-10-01

    Full Text Available Groundwater is a non-negligible component of the global hydrological cycle, and its interaction with overlying unsaturated zones can influence water and energy fluxes between the land surface and the atmosphere. Despite its importance, groundwater is not yet represented in most climate models. In this paper, the simple groundwater scheme implemented in the Total Runoff Integrating Pathways (TRIP river routing model is applied in off-line mode at global scale using a 0.5° model resolution. The simulated river discharges are evaluated against a large dataset of about 3500 gauging stations compiled from the Global Data Runoff Center (GRDC and other sources, while the terrestrial water storage (TWS variations derived from the Gravity Recovery and Climate Experiment (GRACE satellite mission help to evaluate the simulated TWS. The forcing fields (surface runoff and deep drainage come from an independent simulation of the Interactions between Soil-Biosphere-Atmosphere (ISBA land surface model covering the period from 1950 to 2008. Results show that groundwater improves the efficiency scores for about 70% of the gauging stations and deteriorates them for 15%. The simulated TWS are also in better agreement with the GRACE estimates. These results are mainly explained by the lag introduced by the low-frequency variations of groundwater, which tend to shift and smooth the simulated river discharges and TWS. A sensitivity study on the global precipitation forcing used in ISBA to produce the forcing fields is also proposed. It shows that the groundwater scheme is not influenced by the uncertainties in precipitation data.

  2. Groundwater/Vadose Zone Integration Project Management Plan

    International Nuclear Information System (INIS)

    Hughes, M. C.

    1999-01-01

    This Project Management Plan (PMP) defines the authorities, roles, and responsibilities of the US Department of Energy (DOE), Richland Operations Office (RL) and those contractor organizations participating in the Hanford Site' s Groundwater/Vadose Zone (GW/VZ) Integration Project. The PMP also describes the planning and control systems, business processes, and other management tools needed to properly and consistently conduct the Integration Project scope of work

  3. The effect of Littorella uniflora on nutrients in a groundwater fed lake

    DEFF Research Database (Denmark)

    Ommen, Daniela Oliveira; Vinther, Hanne Fogh; Krüger, Laila

    into the lake; and a smaller recharge zone where water from the lake flows back into the aquifer. This variable groundwater pattern combined with only minor surface inlets and outlets provides good conditions for studying the interactions between groundwater and Littorella uniflora. Preliminary results from......Lake Hampen is a Lobelia lake situated high up in the Jutland ridge and which lies close to the groundwater boundary. This means that the groundwater flow between the aquifer and the lake is not constant. Lake Hampen has a large discharge zone where the groundwater flows from the aquifer......,49 to 0,88mg NO3-N L-1 in the recharge zone. There are also indications that the plants have the capability to effectively reduce high nitrate concentrations within the rhizosphere (reduction of 30 to 0,1mg NO3-N L-1 was observed)....

  4. Recharge and discharge calculations to characterize the groundwater hydrologic balance

    International Nuclear Information System (INIS)

    Liddle, R.G.

    1998-01-01

    Several methods are presented to quantify the ground water component of the hydrologic balance; including (1) hydrograph separation techniques, (2) water budget calculations, (3) spoil discharge techniques, and (4) underground mine inflow studies. Stream hydrograph analysis was used to calculate natural groundwater recharge and discharge rates. Yearly continuous discharge hydrographs were obtained for 16 watersheds in the Cumberland Plateau area of Tennessee. Baseflow was separated from storm runoff using computerized hydrograph analysis techniques developed by the USGS. The programs RECESS, RORA, and PART were used to develop master recession curves, calculate ground water recharge, and ground water discharge respectively. Station records ranged from 1 year of data to 60 years of data with areas of 0.67 to 402 square miles. Calculated recharge ranged from 7 to 28 inches of precipitation while ground water discharge ranged from 6 to 25 inches. Baseflow ranged from 36 to 69% of total flow. For sites with more than 4 years of data the median recharge was 20 inches/year and the 95% confidence interval for the median was 16.4 to 23.8 inches of recharge. Water budget calculations were also developed independently by a mining company in southern Tennessee. Results showed about 19 inches of recharge is available on a yearly basis. A third method used spoil water discharge measurements to calculate average recharge rate to the mine. Results showed 21.5 inches of recharge for this relatively flat area strip mine. In a further analysis it was shown that premining soil recharge rates of 19 inches consisted of about 17 inches of interflow and 2 inches of deep aquifer recharge while postmining recharge to the spoils had almost no interflow component. OSM also evaluated underground mine inflow data from northeast Tennessee and southeast Kentucky. This empirical data showed from 0.38 to 1.26 gallons per minute discharge per unit acreage of underground workings. This is the

  5. Analysis on groundwater evolution and interlayer oxidation zone position at the southern margin of Yilin basin

    International Nuclear Information System (INIS)

    Zhang Guanghui

    2007-01-01

    This paper discusses the development and evolution history of groundwater and its reworking to the interlayer oxidation zone, hydrogeochemical zonation of interlayer oxidation zone, mechanism of water-rock interaction and transportation pattern of uranium in the water in Yili Basin. It is suggested that groundwater is one of the important factors to control the development of interlayer oxidation zone and uranium mineralization. (authors)

  6. Recharge and discharge of near-surface groundwater in Forsmark. Comparison of classification methods

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent [Golder Associates AB, Uppsala (Sweden); Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Taeby (Sweden); Brydsten, Lars [Umeaa University, Dept. of Ecology and Environmental Science (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2007-03-15

    This report presents and compares data and models for identification of near-surface groundwater recharge and discharge (RD) areas in Forsmark. The general principles of groundwater recharge and discharge are demonstrated and applied to interpret hydrological and hydrogeological observations made in the Forsmark area. 'Continuous' RD classification methods considered in the study include topographical modelling, map overlays, and hydrological-hydrogeological flow modelling. 'Discrete' (point) methods include field-based and hydrochemistry-based RD classifications of groundwater monitoring well locations. The topographical RD modelling uses the digital elevation model as the only input. The map overlays use background maps of Quaternary deposits, soils, and ground- and field layers of the vegetation/land use map. Further, the hydrological-hydrogeological modelling is performed using the MIKE SHE-MIKE 11 software packages, taking into account e.g. topography, meteorology, hydrogeology, and geometry of watercourses and lakes. The best between-model agreement is found for the topography-based model and the MIKE SHE-MIKE 11 model. The agreement between the topographical model and the map overlays is less good. The agreement between the map overlays on the one hand, and the MIKE SHE and field-based RD classifications on the other, is thought to be less good, as inferred from the comparison made with the topography-based model. However, much improvement of the map overlays can likely be obtained, e.g. by using 'weights' and calibration (such exercises were outside the scope of the present study). For field-classified 'recharge wells', there is a good agreement to the hydrochemistry-based (Piper plot) well classification, but less good for the field-classified 'discharge wells'. In addition, the concentration of the age-dating parameter tritium shows low variability among recharge wells, but a large spread among discharge

  7. Radiotracer technique to study pollutant behavior in the vadose zone for groundwater protection

    International Nuclear Information System (INIS)

    Kulkarni, U.P.; Sinha, U.K.; Navada, S.V.; Datta, P.S.; Sud, Y.K.; Kulkarni, K.M.; Aggrawal, P.; )

    2004-01-01

    Pollutants are generated either by industrial or agricultural activity. Pollutants produced due to industrial activities fall into point source category and those generated from agricultural are grouped into extended source category. Under an International Atomic Energy Agency/Coordinated Research Program study, emphasis has been given on transport of pollutants, generated from agricultural activities, in particular, due to the application of fertilizer inputs to a variety of crops. Pollutants take entry through the vadose zone and ultimately join the saturated zone. Once groundwater is polluted it is rather difficult or impossible to take remedial measures for groundwater protection. Groundwater being an important natural resource, it is important to protect it from getting polluted. It is hence essential to have a clear understanding of the complex processes (physical, biological and chemical etc.) undergoing in the unsaturated zone. Radiotracers give good insight about the pollutant behavior in the vadose zone. Tritiated water and 60 Co (a gamma emitting tracer in the cyanide complex form) were used as tracers and were injected at 60 cm depth in the vadose zone of IARI farm for pollutant transport study. Tritium and 60 Co tracer displacements were measured by liquid scintillation and sodium iodide scintillation method respectively. It was found that the tritium tracer moved up to 2.4 meters in six months and part of the tritium tracer was exchanged with immobile water in the soil, as three distinct peaks were observed in tritium profile. 60 Co and tritium tracers were found to move with the same velocity in the vadose zone. These tracer studies indicate that the pollutants may reach the groundwater in about three years. (author)

  8. Characterization of the Spatial and Temporal Variations of Submarine Groundwater Discharge Using Electrical Resistivity and Seepage Measurements

    Science.gov (United States)

    Durand, Josephine Miryam Kalyanie

    Submarine groundwater discharge (SGD) encompasses all fluids crossing the sediment/ocean interface, regardless of their origin, composition or driving forces. SGD provides a pathway for terrestrial contaminants that can significantly impact coastal ecosystems. Overexploitation of groundwater resources can decrease SGD which favors seawater intrusion at depth. Understanding SGD is therefore crucial for water quality and resource management. Quantifying SGD is challenging due to its diffuse and heterogeneous nature, in addition to significant spatio-temporal variations at multiple scales. In this thesis, an integrated approach combining electrical resistivity (ER) surveys, conductivity and temperature point measurements, seepage rates using manual and ultrasonic seepage meters, and pore fluid salinities was used to characterize SGD spatio-temporal variations and their implications for contaminant transport at several locations on Long Island, NY. The influence of surficial sediments on SGD distribution was investigated in Stony Brook Harbor. A low-permeability mud layer, actively depositing in the harbor, limits SGD at the shoreline, prevents mixing with seawater and channels a significant volume of freshwater offshore. SGD measured at locations without mud is high and indicates significant mixing between porewater and seawater. A 2D steady-state density-difference numerical model of the harbor was developed using SEAWAT and was validated by our field observations. Temporal variations of SGD due to semi-diurnal tidal forcing were studied in West Neck Bay, Shelter Island, using a 12-hr time-lapse ER survey together with continuous salinity and seepage measurements in the intertidal zone. The observed dynamic patterns of groundwater flux and salinity distribution disagree with published standard transient state numerical models, suggesting the need for developing more specific models of non-homogeneous anisotropic aquifers. SGD distribution and composition were

  9. Groundwater quality for irrigation of deep aquifer in southwestern zone of Bangladesh

    Directory of Open Access Journals (Sweden)

    Mirza A.T.M. Tanvir Rahman

    2012-07-01

    Full Text Available In coastal regions of Bangladesh, sources of irrigation are rain, surface and groundwater. Due to rainfall anomaly andsaline contamination, it is important to identify deep groundwater that is eligible for irrigation. The main goal of the study wasto identify deep groundwater which is suitable for irrigation. Satkhira Sadar Upazila, at the southwestern coastal zone ofBangladesh, was the study area, which was divided into North, Center and South zones. Twenty samples of groundwaterwere analyzed for salinity (0.65-4.79 ppt, sodium absorption ratio (1.14-11.62, soluble sodium percentage (32.95-82.21, electricalconductivity (614-2082.11 μS/cm, magnesium adsorption ratio (21.96-26.97, Kelly’s ratio (0.48-4.62, total hardness(150.76-313.33 mg/l, permeability index (68.02-94.16 and residual sodium bi-carbonate (79.68-230.72 mg/l. Chemical constituentsand values were compared with national and international standards. Northern deep groundwater has the highest salinityand chemical concentrations. Salinity and other chemical concentrations show a decreasing trend towards the south. Lowchemical concentrations in the southern region indicate the best quality groundwater for irrigation.

  10. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques.

    Science.gov (United States)

    Thilagavathi, N; Subramani, T; Suresh, M; Karunanidhi, D

    2015-04-01

    This study proposes to introduce the remote sensing and geographic information system (GIS) techniques in mapping the groundwater potential zones. Remote sensing and GIS techniques have been used to map the groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India. Charnockites and fissile hornblende biotite gneiss are the major rock types in this region. Dunites and peridodites are the ultramafic rocks which cut across the foliation planes of the gneisses and are highly weathered. It comprises magnesite and chromite deposits which are excavated by five mining companies by adopting bench mining. The thickness of weathered and fracture zone varies from 2.2 to 50 m in gneissic formation and 5.8 to 55 m in charnockite. At the contacts of gneiss and charnockite, the thickness ranges from 9.0 to 90.8 m favoring good groundwater potential. The mine lease area is underlined by fractured and sheared hornblende biotite gneiss where groundwater potential is good. Water catchment tanks in this area of 5 km radius are small to moderate in size and are only seasonal. They remain dry during summer seasons. As perennial water resources are remote, the domestic and agricultural activities in this region depend mainly upon the groundwater resources. The mines are located in gently slope area, and accumulation of water is not observed except in mine pits even during the monsoon period. Therefore, it is essential to map the groundwater potential zones for proper management of the aquifer system. Satellite imageries were also used to extract lineaments, hydrogeomorphic landforms, drainage patterns, and land use, which are the major controlling factors for the occurrence of groundwater. Various thematic layers pertaining to groundwater existence such as geology, geomorphology, land use/land cover, lineament, lineament density, drainage, drainage density, slope, and soil were generated using GIS tools. By integrating all the above thematic layers based on the ranks and

  11. Is groundwater discharge a significant source of carbon dioxide in North Creek, NSW, Australia?

    Science.gov (United States)

    Atkins, M. L.; Santos, I. R.; Ruiz-Halpern, S.

    2012-12-01

    Dissolved carbon dioxide is enriched in groundwater. However, the contribution of groundwater discharge as a source of CO2 to freshwater ecosystems, estuaries and coastal waters is poorly understood. CO2 evasion from waterbodies has been considered a significant contributor to the global carbon cycle. We assessed for radon (natural groundwater tracer), pCO2 and other parameters in the tidal North Creek in northern NSW, Australia. Once a natural wetland area, the floodplain has been extensively drained for agricultural and residential development. A 16km high resolution spatial survey revealed increasing radon (up to 17.3 dpm L-1) and pCO2 (up to 11151 μatm) concentration in the upstream direction. Allocated 24-h time series experiments were performed at two fixed sites downstream and upstream. Creek water was continuously pumped into a shower head equilibrator. A Licor-7000 and RAD7 monitor were connected in series in a closed air loop system incorporating the showerhead exchanger to measure pCO2 and radon at 10 minute intervals. Under normal hydrological conditions, radon (17.5 - 58.7 dpm L-1) and pCO2 (3031 - 14880 μatm) concentrations were high. Upstream measurements demonstrated a strong correlation between pCO2 and radon (r2 = 0.81, n = 142, p standard deviation and median flux for the three time series deployments were 167 mmol m-2 d-1, 44 mmol m-2 d-1 and 154 mmol m-2 d-1 respectively, rendering this aquatic system a major pathway of CO2 to the atmosphere. Our observations imply that groundwater discharge drove CO2 dynamics at the upstream site while mangrove respiration drove CO2 at the downstream site. Overall, groundwater discharge accounted for at least 32% of surface water in North Creek. Our observations demonstrate that groundwater seepage is an important factor driving CO2 supersaturation in this coastal creek. Groundwater should be accounted for in CO2 budgets in coastal waters.

  12. Quantifying shallow and deep groundwater inputs to rivers with groundwater dating in hydrological observatories.

    Science.gov (United States)

    Aquilina, Luc; Marçais, Jean; Gauvain, Alexandre; Kolbe, Tamara; de Dreuzy, Jean-Raynald; Labasque, Thierry; Abbott, Benjamin W.; Vergnaud, Virginie; Chatton, Eliot; Thomas, Zahra; Ruiz, Laurent; Bour, Olivier; Pinay, Gilles

    2017-04-01

    River water derives in part from groundwater—water that has spent some time in the subsurface (e.g. soil, unsaturated zone, saturated zone). However, because groundwater residence times vary from months to millennia, determining the proportion of shallow and deep groundwater contribution can be challenging. Groundwater dating with anthropogenic gases and natural geochemical tracers can decipher the origin of groundwater contribution to rivers, particularly when repeat samplings are carried out in different hydrological conditions. Here, we present two different applications of this approach from three hydrological observatories (H+ hydrogeological network; Aghrys and Armorique observatories) in western France, all these observatories belonging to the OZCAR national network. We carried out a regional investigation of mean groundwater ages in hard rock aquifers in Brittany, using long-term chronicles from hydrological observatories and regional monitoring sites. We determined the mean residence-time (RT) and annual renewal rate (RR) of four compartments of these aquifers: the direct contribution of a very young water component (i.e. RT less than 1-2 yr), the upper variably saturated zone (RR 27-33%), the weathered layer (RR 1.8-2.1%) and the fractured zone (RR 0.1%). From these values and a nitrate chronicle, we were able to determine the respective contributions of each compartment to the largest river in Brittany, the Vilaine, which drains 30% of the region. We found that the deep fractured compartment with very slow renewal times contributed to 25-45% of river water in winter and 30-60% in summer. The very young water which includes direct precipitation and soil fluxes constituted 40-65% of the winter river water (Aquilina et al., 2012). To complement these estimates, we investigated the relationship between dissolved silica and groundwater age in the Armorique hydrological observatory in northern Brittany. We computed the silica concentration expected along the

  13. Small-scale spatial variability of phenoxy acid mineralization potentials in transition zones with a multidisciplinary approach

    DEFF Research Database (Denmark)

    Pazarbasi, Meric Batioglu

    The phenoxy acid group of herbicides is widely used to control broadleaf weeds, and it contaminates groundwater and surface water by leaching from agricultural soil or landfills. Due to the distinct vertical and horizontal gradients in nutrients and hydrologic exchange in transition zones...... in two transition zones, (1) the interfaces of unsaturated and saturated zones and (2) groundwater and surface water. Small-scale spatial variability of phenoxy acids was previously shown in topsoil; however, such small-scale studies are scarce in subsurface environments. We therefore studied the factors...... classes in the different mineralization potentials of discharge zones. Understanding of the natural attenuation potential of groundwater-surface water transition zones is important for stream water protection. In landfill-impacted groundwater-surface water interface, we further analyzed bacterial...

  14. Groundwater chemistry of shallow aquifers in the coastal zones of Cochin, India

    Digital Repository Service at National Institute of Oceanography (India)

    Laluraj, C.M.; Gopinath, G.; DineshKumar, P.K.

    Laluraj et al.: Groundwater chemistry of shallow aquifers - 133 - APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 3(1): 133-139. http://www.ecology.kee.hu ● ISSN 1589 1623  2005, Penkala Bt., Budapest, Hungary GROUNDWATER CHEMISTRY OF SHALLOW AQUIFERS... post monsoon (November 2003) in the coastal zones of Cochin. Laluraj et al.: Groundwater chemistry of shallow aquifers - 134 - APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 3(1): 133-139. http://www.ecology.kee.hu ● ISSN 1589 1623  2005, Penkala...

  15. Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling

    Science.gov (United States)

    Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.

    2016-01-01

    Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.

  16. Initial studies of submarine groundwater discharge in Mississippi coastal waters

    Science.gov (United States)

    Shiller, A. M.; Moore, W. S.; Joung, D. J.; Box, H.; Ho, P.; Whitmore, L. M.; Gilbert, M.; Anderson, H.

    2017-12-01

    Submarine groundwater discharge (SGD) is a critical component of coastal ecosystems, affecting biogeochemistry and productivity. The SGD flux and effect on the ecosystem of the Mississippi (MS) Bight has not previously been studied. We have determined Ba, δ18O of water, and Ra-isotopes, together with nutrients, chlorophyll, and dissolved oxygen (DO) during multiple cruises from fall 2015 to summer 2016. Water isotope distributions (δ18O) show that, although the MS River Delta bounds the western side of the Bight, nonetheless, Mobile Bay and other local rivers are the Bight's dominant freshwater sources. But elevated dissolved Ba and Ra isotopes cannot be explained by river input. Spatially, SGD in the MS Bight occurs over a wide area, with hot spots near the barrier islands (e.g., Chandeleurs, Horn and Dauphin Islands) and the mouth of Mobile Bay, probably in association with old buried river channels, or dredged ship channels. Based on their high concentrations in saline groundwaters sampled on the barrier islands, the elevated Ba and Ra in MS Bight water are likely due to SGD. In subsurface waters, long-lived Ra isotopes were negatively correlated with DO during spring and summer 2016, suggesting direct discharge of DO-depleted groundwater and/or accumulation of SGD-derived Ra and microbial DO consumption under strongly stratified conditions. Our ongoing study suggests that seasonal variability in flushing, water stratification, and SGD input play important roles in biological production and bottom water hypoxia in the MS Bight.

  17. Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222

    Science.gov (United States)

    Dimova, N.T.; Burnett, W.C.

    2011-01-01

    In order to evaluate groundwater discharge into small lakes we constructed a model that is based on the budget of 222Rn (radon t1/2 5 3.8 d) as a tracer. The main assumptions in our model are that the lake's waters are wellmixed horizontally and vertically; the only significant 222Rn source is via groundwater discharge; and the only losses are due to decay and atmospheric evasion. In order to evaluate the groundwater-derived 222Rn flux, we monitored the 222Rn concentration in lake water over periods long enough (usually 1-3 d) to observe changes likely caused by variations in atmospheric exchange (primarily a function of wind speed and temperature). We then attempt to reproduce the observed record by accounting for decay and atmospheric losses and by estimating the total 222Rn input flux using an iterative approach. Our methodology was tested in two lakes in central Florida: one of which is thought to have significant groundwater inputs (Lake Haines) and another that is known not to have any groundwater inflows but requires daily groundwater augmentation from a deep aquifer (Round Lake). Model results were consistent with independent seepage meter data at both Lake Haines (positive seepage of ??? 1.6 ?? 104 m3 d-1 in Mar 2008) and at Round Lake (no net groundwater seepage). ?? 2011, by the American Society of Limnology and Oceanography, Inc.

  18. Simple estimate of entrainment rate of pollutants from a coastal discharge into the surf zone.

    Science.gov (United States)

    Wong, Simon H C; Monismith, Stephen G; Boehm, Alexandria B

    2013-10-15

    Microbial pollutants from coastal discharges can increase illness risks for swimmers and cause beach advisories. There is presently no predictive model for estimating the entrainment of pollution from coastal discharges into the surf zone. We present a novel, quantitative framework for estimating surf zone entrainment of pollution at a wave-dominant open beach. Using physical arguments, we identify a dimensionless parameter equal to the quotient of the surf zone width l(sz) and the cross-flow length scale of the discharge la = M(j) (1/2)/U(sz), where M(j) is the discharge's momentum flux and U(sz) is a representative alongshore velocity in the surf zone. We conducted numerical modeling of a nonbuoyant discharge at an alongshore uniform beach with constant slope using a wave-resolving hydrodynamic model. Using results from 144 numerical experiments we develop an empirical relationship between the surf zone entrainment rate α and l(sz)/(la). The empirical relationship can reasonably explain seven measurements of surf zone entrainment at three diverse coastal discharges. This predictive relationship can be a useful tool in coastal water quality management and can be used to develop predictive beach water quality models.

  19. Radon and radium isotopes trace groundwater discharge into the ocean

    International Nuclear Information System (INIS)

    Burnett, W.C.; Dulaiova, H.; Lambert, M.J.

    2002-01-01

    We construct a mass balance for radon to match inputs via groundwater discharge and diffusion from sediments with outputs via decay, atmospheric evasion, and mixing with offshore waters. The net change in inventory per unit time provides an estimate of the net flux after corrections are made for atmospheric loss. Minimum losses by mixing can be evaluated by use of observed negative net fluxes after other corrections are applied. After estimates for mixing are factored in, one can convert the derived total radon fluxes to water fluxes by dividing by the measured or estimated concentration of radon in the groundwater. This produced results comparable to more labour-intensive methods in recent intercomparison experiments

  20. Environmental risk of climate change and groundwater abstraction on stream ecological conditions

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige; Bøgh, Eva; Jensen, Niels H.

    with DAISY, a one dimensional crop model describing soil water dynamics in the root zone, and MIKE SHE, a distributed groundwater-surface water model. The relative and combined impacts on low flows, groundwater levels, and nitrate leaching are quantified and compared to assess the water resource sensitivity...... and risk to stream ecological conditions. We find low flow and annual discharge to be most impacted by scenarios of climate change, with high variation across climate models (+/- 40% change). Doubling of current groundwater abstraction rates reduces annual discharge by approximately 20%, with higher...... flows and groundwater levels are of interest, as they relate to aquatic habitat and nitrate leaching, respectively. This study evaluates the risk to stream ecological conditions for a lowland Danish catchment under multiple scenarios of climate change and groundwater abstraction. Projections of future...

  1. Tracing submarine groundwater discharge in the NE Gulf of Mexico by 222Rn

    International Nuclear Information System (INIS)

    Young, J.E.; Burnett, W.C.; Chanton, J.P.; Cable, P.H.; Corbett, D.R.

    1993-01-01

    Inputs of freshwater and dissolved components to the ocean by submarine groundwater discharge (SGD) have been largely neglected as source functions for biogeochemical budgets. In order to locate and quantify groundwater inputs, a tracing technique has been developed using 222 Rn, a member of the natural 238 U decay-series. Because 222 Rn has a short half-life (t 1/2 = 3.84 days), is an inert gas, is relatively easy to measure at low concentrations, and has concentrations in groundwater several orders of magnitude greater than seawater, it should make an excellent tracer. Excess 222 Rn concentrations far above ''normal'' ocean values were found in the bottom waters of the northeastern Gulf of Mexico, which suggests this region has significant groundwater discharge. After measuring high water column inventories of excess 222 Rn in this region, an advection/diffusion model was applied to evaluate potential benthic sources of radon. The model is designed to account for sediment diffusion of radon and includes a groundwater term for advective flow into the overlying water. Flow rates and concentrations are adjusted in the model to balance the large difference in the measured water column inventories and the inventory predicted by sediment diffusion alone. The vertical diffusive/advective transport determines the shape of the concentration gradient and fluxes at the sediment-water interface are calculate based on these terms. The authors work shows that SGD could account for as much as 95% of the radon inventory in these offshore waters

  2. Radioactive waste isolation in arid zones

    International Nuclear Information System (INIS)

    Nativ, R.

    1991-01-01

    Arid zones are currently considered ideal sites for the isolation of radioactive and other hazardous wastes. Because arid zones have low precipitation, other hydrological features such as minimal surface water, low recharge rates, small hydraulic gradients, deep water table and lower water quality are also inferred. These premises have proved to be misleading in many circumstances, resulting in groundwater contamination by radionuclides. Case studies indicating surface water damages, occurrence of active recharge, groundwater flow and considerable discharge of potable water in arid and hyper-arid terrains, as well as the possibility of future climatic changes, require careful hydrological assessment of proposed sites in arid areas. (author)

  3. The evolution of redox conditions and groundwater geochemistry in recharge-discharge environments on the Canadian Shield

    International Nuclear Information System (INIS)

    Gascoyne, M.

    1996-10-01

    Groundwater composition evolves along flow paths from recharge to discharge in response to interactions with bedrock and fracture-filling minerals, and dissolution of soluble (Cl-rich) salts in the rock matrix. The groundwater redox potential changes from oxidizing to reducing conditions due, initially, to rapid consumption of dissolved oxygen by organics in the upper ∼100 m of bedrock and, subsequently, interaction with Fe (II)-containing minerals. Measured Eh values of groundwaters at depth in the granitic Lac du Bonnet batholith indicate that biotite and chlorite control groundwater redox potential. This is supported by other geochemical characteristics such as absence of CH 4 , H 2 S, H 2 , NO 3 , low concentrations of Fe (II), and abundance of SO 4 . Further evidence of evolution of redox conditions is given by variations in U concentration ranging from up to 1000 μg/L in dilute near-surface waters to <1 μg/L in some deep, saline groundwaters. Groundwaters at about 400 m depth in a recharge area on the Lac du Bonnet batholith contain significantly more U than groundwaters further along the flow path or near surface in discharge areas. Uranium concentration is found to be a useful and sensitive indicator of redox conditions. (author)

  4. Development of Operation Management Model of Groundwater According to Nitrate Contamination

    Directory of Open Access Journals (Sweden)

    Elahe Pourfarahabadi

    2014-10-01

    Full Text Available Nitrate is one of the most important groundwater pollutants with such different sources as chemical fertilizers, pesticides, or domestic and industrial wastewater. In this research, the optimal operation of groundwater wells in aquifers with nitrate pollution is investigated using simulation and optimization techniques. For the simulation part, an artificial neural network (ANN model is developed, and for the optimization model, the particle swarm optimization (PSO is used. Considering the high nitrate concentration in Karaj area and its increase in recent years, the northern part of this aquifer is selected as a case study to apply the proposed methodology. A seasonal ANN model is developed with input layers including well discharge in the current and previous seasons, nitrate concentration in the previous season, aquifer thickness, and well coordinates, all selected based on sensitivity analysis. The results of PSO algorithm shows that nitrate concentration can be controlled by increasing or decreasing well discharge in different zones. Therefore, it is possible to reduce nitrate concentration in critical areas by changing the spatial distribution of groundwater extractions in different zones keeping the total discharge constant.

  5. Radon as a natural geochemical tracer for study of groundwater discharge into lakes

    International Nuclear Information System (INIS)

    Schmidt, Axel

    2008-01-01

    In the presented work the suitability of the naturally occurring radioactive noble gas isotope radon-222 for qualitative and quantitative description of groundwater discharge into lakes was studied. Basis of these investigations was the development of two innovative techniques for the on-site determination of radon in water. In the ex-situ radon measurement procedure, water from the source concerned is taken up in an exchange cell used for this purpose. Inside this cell, the radon dissolved in water is transferred via diffusion into a closed counter-flow of air and subsequently detected by a radon-in-air monitor. Where the in-situ radon determination is concerned, a module composed of a semipermeable membrane is introduced into a water column. Subsequently, the radon dissolved in the water body diffuses through the membrane into the corresponding air flow, by means of which it is transferred into a radon-in-air monitor and is detected. Combination of the developed mobile radon extraction techniques with a suitable and portable radon monitor allow the detection of radon-222 with sufficient accuracy (smaller 20 %) in groundwater as well as in surface waters, i.e., within a broad range of concentrations. Radon-222 was subsequently used to characterize groundwater discharge into a meromictic and a dimictic lake, i.e. two types of lake basically distinct from each other with respect to their water circulation properties were investigated. The use of the noble gas isotope radon-222 as a geochemical tracer makes the application of on-site detection techniques possible and that this in turn permits a rapid, reliable, and cost-effective assessment of groundwater discharge rates into lake water bodies

  6. Radon as a natural geochemical tracer for study of groundwater discharge into lakes

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Axel

    2008-06-27

    In the presented work the suitability of the naturally occurring radioactive noble gas isotope radon-222 for qualitative and quantitative description of groundwater discharge into lakes was studied. Basis of these investigations was the development of two innovative techniques for the on-site determination of radon in water. In the ex-situ radon measurement procedure, water from the source concerned is taken up in an exchange cell used for this purpose. Inside this cell, the radon dissolved in water is transferred via diffusion into a closed counter-flow of air and subsequently detected by a radon-in-air monitor. Where the in-situ radon determination is concerned, a module composed of a semipermeable membrane is introduced into a water column. Subsequently, the radon dissolved in the water body diffuses through the membrane into the corresponding air flow, by means of which it is transferred into a radon-in-air monitor and is detected. Combination of the developed mobile radon extraction techniques with a suitable and portable radon monitor allow the detection of radon-222 with sufficient accuracy (smaller 20 %) in groundwater as well as in surface waters, i.e., within a broad range of concentrations. Radon-222 was subsequently used to characterize groundwater discharge into a meromictic and a dimictic lake, i.e. two types of lake basically distinct from each other with respect to their water circulation properties were investigated. The use of the noble gas isotope radon-222 as a geochemical tracer makes the application of on-site detection techniques possible and that this in turn permits a rapid, reliable, and cost-effective assessment of groundwater discharge rates into lake water bodies.

  7. Surface modification by preparation of buffer zone in glow-discharge plasma

    International Nuclear Information System (INIS)

    Cho, D.L.

    1986-01-01

    Reactive species, energetic particles, and uv radiation in the plasma created by a glow discharge strongly interact with solid surfaces under the influence of the plasma. As a result of the strong interaction, various physical and chemical reactions, unique and advantageous for the surface modification of solid materials, occur on the solid surfaces. The surface modification is carried out through formation of a thin buffering layer on the solid surface. The preparation of a buffer zone on solid surfaces for surface modification is described. Two kinds of a buffer zone are prepared by plasma polymerization, or simultaneous sputter deposition of electrode material with plasma polymerization: a transitional buffer zone and a graded buffer zone. Important factors for preparation of the buffer zone (pre-conditioning of a substrate surface, thin-film deposition, post-treatment of the film, magnetron discharge, energy input, geometry of a substrate and a plasma) are discussed

  8. Vadose Zone Nitrate Transport Dynamics Resulting from Agricultural Groundwater Banking

    Science.gov (United States)

    Murphy, N. P.; McLaughlin, S.; Dahlke, H. E.

    2017-12-01

    In recent years, California's increased reliance on groundwater resources to meet agricultural and municipal demands has resulted in significant overdraft and water quality issues. Agricultural groundwater banking (AGB) has emerged as a promising groundwater replenishment opportunity in California; AGB is a form of managed aquifer recharge where farmland is flooded during the winter using excess surface water in order to recharge the underlying groundwater. Suitable farmland that is connected to water delivery systems is available for AGB throughout the Central Valley. However, questions remain how AGB could be implemented on fertilized agricultural fields such that nitrate leaching from the root zone is minimized. Here, we present results from field and soil column studies that investigate the transport dynamics of nitrogen in the root and deeper vadose zone during flooding events. We are specifically interested in estimating how timing and duration of flooding events affect percolation rates, leaching and nitrification/denitrification processes in three soil types within the Central Valley. Laboratory and field measurements include nitrogen (NO3-, NH4+, NO2-, N2O), redox potentials, total organic carbon, dissolved oxygen, moisture content and EC. Soil cores are collected in the field before and after recharge events up to a depth of 4m, while other sensors monitor field conditions continuously. Preliminary results from the three field sites show that significant portions of the applied floodwater (12-62 cm) infiltrated below the root zone: 96.1% (Delhi), 88.6% (Modesto) and 76.8% (Orland). Analysis of the soil cores indicate that 70% of the residual nitrate was flushed from the sandy soil, while the fine sandy loam showed only a 5% loss and in some cores even an increase in soil nitrate (in the upper 20cm). Column experiments support these trends and indicate that increases in soil nitrate in the upper root zone might be due to organic nitrogen mineralization and

  9. The predicted impacts to the groundwater and Columbia River from ammoniated water discharges to the 216-A-36B crib

    International Nuclear Information System (INIS)

    Buelt, J.L.; Conbere, W.; Freshley, M.D.; Hicks, R.J.; Kuhn, W.L.; Lamar, D.A.; Serne, R.J.; Smoot, J.L.

    1988-03-01

    Impact from past and potential future discharges of ammoniated water to the 216-A-36B crib have on groundwater and river concentrations of hazardous chemical constitutents are studied. Until August 1987, the 216-A-36B crib, located in the 200-East Area of the Hanford Site, accepted ammoniated water discharges. Although this study addresses known hazardous chemical constituents associated with such discharges, the primary concern is the discharge of NH 4 OH because of its microbiological conversion to NO 2 /sup /minus// and NO 3 /sup /minus//. As a result of fuel decladding operations, material balance calculations indicate that NH 4 OH has been discharged to the 216-A-36B crib in amounts that exceed reportable quantities under the Comprehensive Environmental Response, Compensation and Liability Act of 1980. Although flow to the crib is relatively constant, the estimated NH 4 OH discharge varies from negligible to a maximum of 10,000 g-molesh. Because these discharges are intermittent, the concentration delivered to the groundwater is a function of soil sorption, microbiological conversion rates of NH 4 + to NO 2 /sup /minus// and NO 3 /sup /minus//, and groundwater dispersion. This report provides results based on the assumptions of maximum, nominal, and discountinued NH 4 OH discharges to the crib. Consequently, the results show maximum and realistic estimates of NH 4 + , NO 2 /sup /minus// and NO 3 /sup /minus// concentrations in the groundwater

  10. Using an autonomous Wave Glider to detect seawater anomalies related to submarine groundwater discharge - engineering challenge

    Science.gov (United States)

    Leibold, P.; Brueckmann, W.; Schmidt, M.; Balushi, H. A.; Abri, O. A.

    2017-12-01

    Coastal aquifer systems are amongst the most precious and vulnerable water resources worldwide. While differing in lateral and vertical extent they commonly show a complex interaction with the marine realm. Excessive groundwater extraction can cause saltwater intrusion from the sea into the aquifers, having a strongly negative impact on the groundwater quality. While the reverse pathway, the discharge of groundwater into the sea is well understood in principle, it's mechanisms and quantities not well constrained. We will present a project that combines onshore monitoring and modeling of groundwater in the coastal plain of Salalah, Oman with an offshore autonomous robotic monitoring system, the Liquid Robotics Wave Glider. Eventually, fluxes detected by the Wave Glider system and the onshore monitoring of groundwater will be combined into a 3-D flow model of the coastal and deeper aquifers. The main tool for offshore SGD investigation project is a Wave Glider, an autonomous vehicle based on a new propulsion technology. The Wave Glider is a low-cost satellite-connected marine craft, consisting of a combination of a sea-surface and an underwater component which is propelled by the conversion of ocean wave energy into forward thrust. While the wave energy propulsion system is purely mechanical, electrical energy for onboard computers, communication and sensors is provided by photovoltaic cells. For the project the SGD Wave Glider is being equipped with dedicated sensors to measure temperature, conductivity, Radon isotope (222Rn, 220Rn) activity concentration as well as other tracers of groundwater discharge. Dedicated software using this data input will eventually allow the Wave Glider to autonomously collect information and actively adapt its search pattern to hunt for spatial and temporal anomalies. Our presentation will focus on the engineering and operational challenges ofdetecting submarine groundwater discharges with the Wave Glider system in the Bay of Salalah

  11. Hydraulic evaluation of the groundwater conditions at Finnsjoen. The effects on dilution in a domestic well

    International Nuclear Information System (INIS)

    Axelsson, C.L.; Bystroem, J.; Eriksson, Aa.; Holmen, J.; Haitjema, H.M.

    1991-09-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is presently performing a safety analysis study, SKB 91, for a final repository for spent nuclear fuel. The study is carried out for a generic repository located to the Finnsjoen area, which is one of SKBs oldest study-areas. An important part of the safety analysis is the dose calculations. Radionuclides can be transported to the biosphere via the sea, a lake, and via extraction of groundwater from drilled or dug wells. Thus, an important scenario to study is the dilution of radionuclides in a domestic well drilled in the future close to the repository. The present study is discussing; * Localization, drilling and construction of wells. * Specific capacities and chloride content of the rock mass and wells found in the Finnsjoe are. * Risk areas for future drilled wells. * Dilution in future wells drilled in fracture zones or in the hard rock in the vicinity of the repository. The evaluations show that a well pumping 6 m 3 /day, located in a fracture zone or in the rock mass, has no influence on the local groundwater flow system except for the very vicinity of the well. Consequently, a well may be drilled in the hard rock without any risk of pumping groundwater that has passed the repository. Wells may also be located anywhere in fracture zones, except for in the very discharge area, without any risk of getting groundwater affected by the repository. Modelling indicate that a well drilled in the discharge area for contaminated groundwater, may collect all groundwater from the repository. However, this is based on assumptions of homogeneous continuous fracture zones with a high hydraulic conductivity compared to the rock mass, which will give rise to a concentrated discharge area. (44 refs., 31 figs., 6 tabs.) (au)

  12. Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: Implication of water balance in the Badain Jaran Desert, China

    Science.gov (United States)

    Luo, Xin; Jiao, Jiu Jimmy; Wang, Xu-sheng; Liu, Kun

    2016-03-01

    How lake systems are maintained and water is balanced in the lake areas in the Badain Jaran Desert (BJD), northeast of China have been debated for about a decade. In this study, continuous 222Rn measurement is used to quantify groundwater discharge into two representative fresh and brine water lakes in the desert using a steady-state mass-balance model. Two empirical equations are used to calculate atmospheric evasion loss crossing the water-air interface of the lakes. Groundwater discharge rates yielded from the radon mass balance model based on the two empirical equations are well correlated and of almost the same values, confirming the validity of the model. The fresh water and brine lakes have a daily averaged groundwater discharge rate of 7.6 ± 1.7 mm d-1 and 6.4 ± 1.8 mm d-1, respectively. The temporal fluctuations of groundwater discharge show similar patterns to those of the lake water level, suggesting that the lakes are recharged from nearby groundwater. Assuming that all the lakes have the same discharge rate as the two studied lakes, total groundwater discharge into all the lakes in the desert is estimated to be 1.59 × 105 m3 d-1. A conceptual model of water balance within a desert lake catchment is proposed to characterize water behaviors within the catchment. This study sheds lights on the water balance in the BJD and is of significance in sustainable regional water resource utilization in such an ecologically fragile area.

  13. Regional differences in climate change impacts on groundwater and stream discharge in Denmark

    DEFF Research Database (Denmark)

    Van Roosmalen, Lieke Petronella G; Christensen, Britt S.B.; Sonnenborg, Torben O.

    2007-01-01

    of the hydrological response to the simulated climate change is highly dependant on the geological setting of the model area. In the Jylland area, characterized by sandy top soils and large interconnected aquifers, groundwater recharge increases significantly, resulting in higher groundwater levels and increasing......Regional impact studies of the effects of future climate change are necessary because projected changes in meteorological variables vary regionally and different hydrological systems can react in various ways to the same changes. In this study the effects of climate change on groundwater recharge...... simulates changes in groundwater head, recharge, and discharge. Precipitation, temperature, and reference evapotranspiration increase for both the A2 and B2 scenarios. This results in a significant increase in mean annual net precipitation, but with decreased values in the summer months. The magnitude...

  14. Catchment tracers reveal discharge, recharge and sources of groundwater-borne pollutants in a novel lake modelling approach

    Science.gov (United States)

    Kristensen, Emil; Madsen-Østerbye, Mikkel; Massicotte, Philippe; Pedersen, Ole; Markager, Stiig; Kragh, Theis

    2018-02-01

    Groundwater-borne contaminants such as nutrients, dissolved organic carbon (DOC), coloured dissolved organic matter (CDOM) and pesticides can have an impact the biological quality of lakes. The sources of pollutants can, however, be difficult to identify due to high heterogeneity in groundwater flow patterns. This study presents a novel approach for fast hydrological surveys of small groundwater-fed lakes using multiple groundwater-borne tracers. Water samples were collected from the lake and temporary groundwater wells, installed every 50 m within a distance of 5-45 m to the shore, were analysed for tracer concentrations of CDOM, DOC, total dissolved nitrogen (TDN, groundwater only), total nitrogen (TN, lake only), total dissolved phosphorus (TDP, groundwater only), total phosphorus (TP, lake only), δ18O / δ16O isotope ratios and fluorescent dissolved organic matter (FDOM) components derived from parallel factor analysis (PARAFAC). The isolation of groundwater recharge areas was based on δ18O measurements and areas with a high groundwater recharge rate were identified using a microbially influenced FDOM component. Groundwater discharge sites and the fractions of water delivered from the individual sites were isolated with the Community Assembly via Trait Selection model (CATS). The CATS model utilized tracer measurements of TDP, TDN, DOC and CDOM from the groundwater samples and related these to the tracer measurements of TN, TP, DOC and CDOM in the lake. A direct comparison between the lake and the inflowing groundwater was possible as degradation rates of the tracers in the lake were taken into account and related to a range of water retention times (WRTs) of the lake (0.25-3.5 years in 0.25-year increments). These estimations showed that WRTs above 2 years required a higher tracer concentration of inflowing water than found in any of the groundwater wells around the lake. From the estimations of inflowing tracer concentration, the CATS model isolated

  15. Tracking groundwater discharge to a large river using tracers and geophysics.

    Science.gov (United States)

    Harrington, Glenn A; Gardner, W Payton; Munday, Tim J

    2014-01-01

    Few studies have investigated large reaches of rivers in which multiple sources of groundwater are responsible for maintaining baseflow. This paper builds upon previous work undertaken along the Fitzroy River, one of the largest perennial river systems in north-western Australia. Synoptic regional-scale sampling of both river water and groundwater for a suite of environmental tracers ((4) He, (87) Sr/(86) Sr, (222) Rn and major ions), and subsequent modeling of tracer behavior in the river, has enabled definition and quantification of groundwater input from at least three different sources. We show unambiguous evidence of both shallow "local" groundwater, possibly recharged to alluvial aquifers beneath the adjacent floodplain during recent high-flow events, and old "regional" groundwater introduced via artesian flow from deep confined aquifers. We also invoke hyporheic exchange and either bank return flow or parafluvial flow to account for background (222) Rn activities and anomalous chloride trends along river reaches where there is no evidence of the local or regional groundwater inputs. Vertical conductivity sections acquired through an airborne electromagnetic (AEM) survey provide insights to the architecture of the aquifers associated with these sources and general groundwater quality characteristics. These data indicate fresh groundwater from about 300 m below ground preferentially discharging to the river, at locations consistent with those inferred from tracer data. The results demonstrate how sampling rivers for multiple environmental tracers of different types-including stable and radioactive isotopes, dissolved gases and major ions-can significantly improve conceptualization of groundwater-surface water interaction processes, particularly when coupled with geophysical techniques in complex hydrogeological settings. © 2013, National Ground Water Association.

  16. Composition and fluxes of submarine groundwater along the Caribbean coast of the Yucatan Peninsula

    Science.gov (United States)

    Null, Kimberly A.; Knee, Karen L.; Crook, Elizabeth D.; de Sieyes, Nicholas R.; Rebolledo-Vieyra, Mario; Hernández-Terrones, Laura; Paytan, Adina

    2014-04-01

    Submarine groundwater discharge (SGD) to the coastal environment along the eastern Yucatan Peninsula, Quintana Roo, Mexico was investigated using a combination of tracer mass balances and analytical solutions. Two distinct submarine groundwater sources including water from the unconfined surficial aquifer discharging at the beach face and water from a deeper aquifer discharging nearshore through submarine springs (ojos) were identified. The groundwater of nearshore ojos was saline and significantly enriched in short-lived radium isotopes (223Ra, 224Ra) relative to the unconfined aquifer beach face groundwater. We estimated SGD from ojos using 223Ra and used a salinity mass balance to estimate the freshwater discharge at the beach face. Analytical calculations were also used to estimate wave set-up and tidally driven saline seepage into the surf zone and were compared to the salinity-based freshwater discharge estimates. Results suggest that average SGD from ojos along the Yucatan Peninsula Caribbean coast is on the order of 308 m3 d-1 m-1 and varies between sampling regions. Higher discharge was observed in the southern regions (568 m3 d-1 m-1) compared to the north (48 m3 d-1 m-1). Discharge at the beach face was in the range of 3.3-8.5 m3 d-1 m-1 for freshwater and 2.7 m3 d-1 m-1 for saline water based on the salinity mass balance and wave- and tidally-driven discharge, respectively. Although discharge from the ojos was larger in volume than discharge from the unconfined aquifer at the beach face, dissolved inorganic nitrogen (DIN) was significantly higher in beach groundwater; thus, discharge of this unconfined beach aquifer groundwater contributed significantly to total DIN loading to the coast. DIN fluxes were up to 9.9 mol d-1 m-1 from ojos and 2.1 mol d-1 m-1 from beach discharge and varied regionally along the 500 km coastline sampled. These results demonstrate the importance of considering the beach zone as a significant nutrient source to coastal waters

  17. Regional variability of nitrate fluxes in the unsaturated zone and groundwater, Wisconsin, USA

    Science.gov (United States)

    Green, Christopher T.; Liao, Lixia; Nolan, Bernard T.; Juckem, Paul F.; Shope, Christopher L.; Tesoriero, Anthony J.; Jurgens, Bryant

    2018-01-01

    Process-based modeling of regional NO3− fluxes to groundwater is critical for understanding and managing water quality, but the complexity of NO3− reactive transport processes make implementation a challenge. This study introduces a regional vertical flux method (VFM) for efficient estimation of reactive transport of NO3− in the vadose zone and groundwater. The regional VFM was applied to 443 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3−, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and tritiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with estimates from previous studies. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams (2) since 1945 fractions of applied N leached to groundwater have increased for manure-N, possibly due to increased injection of liquid manure, and decreased for fertilizer-N, and (3) under current practices and conditions, approximately 60% of the shallow aquifer will eventually be affected by downward migration of NO3−, with denitrification protecting the remaining 40%. Recharge variability strongly affected the unsaturated zone lag times and the eventual depth of the NO3− front. Principal components regression demonstrated that VFM parameters and predictions were significantly correlated with hydrogeochemical landscape features. The diverse and sometimes conflicting aspects of N management (e.g. limiting N volatilization versus limiting N losses to groundwater) warrant continued development of large-scale holistic strategies to manage water quality and quantity.

  18. Regional Variability of Nitrate Fluxes in the Unsaturated Zone and Groundwater, Wisconsin, USA

    Science.gov (United States)

    Green, Christopher T.; Liao, Lixia; Nolan, Bernard T.; Juckem, Paul F.; Shope, Christopher L.; Tesoriero, Anthony J.; Jurgens, Bryant C.

    2018-01-01

    Process-based modeling of regional NO3- fluxes to groundwater is critical for understanding and managing water quality, but the complexity of NO3- reactive transport processes makes implementation a challenge. This study introduces a regional vertical flux method (VFM) for efficient estimation of reactive transport of NO3- in the vadose zone and groundwater. The regional VFM was applied to 443 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3-, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and tritiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with estimates from previous studies. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams, (2) since 1945 fractions of applied N leached to groundwater have increased for manure-N, possibly due to increased injection of liquid manure, and decreased for fertilizer-N, and (3) under current practices and conditions, approximately 60% of the shallow aquifer will eventually be affected by downward migration of NO3-, with denitrification protecting the remaining 40%. Recharge variability strongly affected the unsaturated zone lag times and the eventual depth of the NO3- front. Principal components regression demonstrated that VFM parameters and predictions were significantly correlated with hydrogeochemical landscape features. The diverse and sometimes conflicting aspects of N management (e.g., limiting N volatilization versus limiting N losses to groundwater) warrant continued development of large-scale holistic strategies to manage water quality and quantity.

  19. Quantity and quality of groundwater discharge in a hypersaline lake environment

    Science.gov (United States)

    Anderson, R.B.; Naftz, D.L.; Day-Lewis, F. D.; Henderson, R.D.; Rosenberry, D.O.; Stolp, B.J.; Jewell, P.

    2014-01-01

    Geophysical and geochemical surveys were conducted to understand groundwater discharge to Great Salt Lake (GSL) and assess the potential significance of groundwater discharge as a source of selenium (Se). Continuous resistivity profiling (CRP) focusing below the sediment/water interface and fiber-optic distributed temperature sensing (FO-DTS) surveys were conducted along the south shore of GSL. FO-DTS surveys identified persistent cold-water temperature anomalies at 10 separate locations. Seepage measurements were conducted at 17 sites (mean seepage rate = 0.8 cm/day). High resistivity anomalies identified by the CRP survey were likely a mirabilite (Na2SO4·10H2O) salt layer acting as a semi-confining layer for the shallow groundwater below the south shore of the lake. Positive seepage rates measured along the near-shore areas of GSL indicate that a ∼1-m thick oolitic sand overlying the mirabilite layer is likely acting as a shallow, unconfined aquifer. Using the average seepage rate of 0.8 cm/day over an area of 1.6 km2, an annual Se mass loading to GSL of 23.5 kg was estimated. Determination of R/Ra values (calculated 3He/4He ratio over the present-day atmospheric 3He/4He ratio) 34S and δ18O isotopic values in samples of dissolved sulfate from the shallow groundwater below the mirabilite are almost identical to the isotopic signature of the mirabilite core material. The saturation index calculated for groundwater samples using PHREEQC indicates the water is at equilibrium with mirabilite. Water samples collected from GSL immediately off shore contained Se concentrations that were 3–4 times higher than other sampling sites >25 km offshore from the study site and may be originating from less saline groundwater seeps mixing with the more saline water from GSL. Additional evidence for mixing with near shore seeps is found in the δD and δ18O isotopic values and Br:Cl ratios. Geochemical modeling for a water sample collected in the vicinity of the study area

  20. Dissolved organic matter composition of winter flow in the Yukon River basin: Implications of permafrost thaw and increased groundwater discharge

    Science.gov (United States)

    O'Donnell, Jonathan A.; Aiken, George R.; Walvoord, Michelle Ann; Butler, Kenna D.

    2012-01-01

    Groundwater discharge to rivers has increased in recent decades across the circumpolar region and has been attributed to thawing permafrost in arctic and subarctic watersheds. Permafrost-driven changes in groundwater discharge will alter the flux of dissolved organic carbon (DOC) in rivers, yet little is known about the chemical composition and reactivity of dissolved organic matter (DOM) of groundwater in permafrost settings. Here, we characterize DOM composition of winter flow in 60 rivers and streams of the Yukon River basin to evaluate the biogeochemical consequences of enhanced groundwater discharge associated with permafrost thaw. DOC concentration of winter flow averaged 3.9 ± 0.5 mg C L−1, yet was highly variable across basins (ranging from 20 mg C L−1). In comparison to the summer-autumn period, DOM composition of winter flow had lower aromaticity (as indicated by specific ultraviolet absorbance at 254 nm, or SUVA254), lower hydrophobic acid content, and a higher proportion of hydrophilic compounds (HPI). Fluorescence spectroscopy and parallel factor analysis indicated enrichment of protein-like fluorophores in some, but not all, winter flow samples. The ratio of DOC to dissolved organic nitrogen, an indicator of DOM biodegradability, was positively correlated with SUVA254 and negatively correlated with the percentage of protein-like compounds. Using a simple two-pool mixing model, we evaluate possible changes in DOM during the summer-autumn period across a range of conditions reflecting possible increases in groundwater discharge. Across three watersheds, we consistently observed decreases in DOC concentration and SUVA254 and increases in HPI with increasing groundwater discharge. Spatial patterns in DOM composition of winter flow appear to reflect differences in the relative contributions of groundwater from suprapermafrost and subpermafrost aquifers across watersheds. Our findings call for more explicit consideration of DOC loss and stabilization

  1. Assessing the impact of dairy waste lagoons on groundwater quality using a spatial analysis of vadose zone and groundwater information in a coastal phreatic aquifer.

    Science.gov (United States)

    Baram, S; Kurtzman, D; Ronen, Z; Peeters, A; Dahan, O

    2014-01-01

    Dairy waste lagoons are considered to be point sources of groundwater contamination by chloride (Cl(-)), different nitrogen-species and pathogens/microorganisms. The objective of this work is to introduce a methodology to assess the past and future impacts of such lagoons on regional groundwater quality. The method is based on a spatial statistical analysis of Cl(-) and total nitrogen (TN) concentration distributions in the saturated and the vadose (unsaturated) zones. The method provides quantitative data on the relation between the locations of dairy lagoons and the spatial variability in Cl(-) and TN concentrations in groundwater. The method was applied to the Beer-Tuvia region, Israel, where intensive dairy farming has been practiced for over 50 years above the local phreatic aquifer. Mass balance calculations accounted for the various groundwater recharge and abstraction sources and sinks in the entire region. The mass balances showed that despite the small surface area covered by the dairy lagoons in this region (0.8%), leachates from lagoons have contributed 6.0% and 12.6% of the total mass of Cl(-) and TN (mainly as NO3(-)-N) added to the aquifer. The chemical composition of the aquifer and vadose zone water suggested that irrigated agricultural activity in the region is the main contributor of Cl(-) and TN to the groundwater. A low spatial correlation between the Cl(-) and NO3(-)-N concentrations in the groundwater and the on-land location of the dairy farms strengthened this assumption, despite the dairy waste lagoon being a point source for groundwater contamination by Cl(-) and NO3(-)-N. Mass balance calculations, for the vadose zone of the entire region, indicated that drying of the lagoons would decrease the regional groundwater salinization process (11% of the total Cl(-) load is stored under lagoons). A more considerable reduction in the groundwater contamination by NO3(-)-N is expected (25% of the NO3(-)-N load is stored under lagoons). Results

  2. Delineation of a wellhead protection zone and determination of flowpaths from potential groundwater contaminant source areas at Camp Ripley, Little Falls, Minnesota.

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, J. J.; Environmental Science Division

    2006-12-22

    Groundwater at Camp Ripley, Minnesota, is recharged both on post and off site and discharged to rivers, wetlands, and pumping wells. The subsurface geologic materials have a wide range of permeabilities and are arranged in a complex fashion as a result of the region's multiple glacial advances. Correlation of individual glacial geologic units is difficult, even between nearby boreholes, because of the heterogeneities in the subsurface. This report documents the creation of a numerical model of groundwater flow for Camp Ripley and hydrologically related areas to the west and southwest. The model relies on a hydrogeological conceptual model built on the findings of a University of Minnesota-Duluth drilling and sampling program conducted in 2001. Because of the site's stratigraphic complexity, a geostatistical approach was taken to handle the uncertainty of the subsurface correlation. The U.S. Geological Survey's MODFLOW code was used to create the steady-state model, which includes input data from a variety of sources and is calibrated to water levels in monitoring wells across much of the site. This model was used for several applications. Wellhead protection zones were delineated for on-site production wells H, L, and N. The zones were determined on the basis of a probabilistic assessment of the groundwater captured by these wells; the assessment, in turn, had been based on multiple realizations of the study area's stratigraphy and groundwater flowfield. An additional application of the model was for estimating flowpaths and times of travel for groundwater at Camp Ripley's range areas and waste management facilities.

  3. Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: a case study from Birbhum district, West Bengal

    Science.gov (United States)

    Thapa, Raju; Gupta, Srimanta; Guin, Shirshendu; Kaur, Harjeet

    2017-11-01

    Remote sensing and GIS play a vital role in exploration and assessment of groundwater and has wide application in detection, monitoring, assessment, conservation and various other fields of groundwater-related studies. In this research work, delineation of groundwater potential zone in Birbhum district has been carried out. Various thematic layers viz. geology, geomorphology, soil type, elevation, lineament and fault density, slope, drainage density, land use/land cover, soil texture, and rainfall are digitized and transformed into raster data in ArcGIS 10.3 environment as input factors. Thereafter, multi-influencing factor (MIF) technique is employed where ranks and weights, assigned to each factor are computed statistically. Finally, groundwater potential zones are classified into four categories namely low, medium, high and very high zone. It is observed that 18.41% (836.86 km2) and 34.41% (1563.98 km2) of the study area falls under `low' and `medium' groundwater potential zone, respectively. Approximately 1601.19 km2 area accounting for 35.23% of the study area falls under `high' category and `very high' groundwater potential zone encompasses an area of 542.98 km2 accounting for 11.95% of the total study area. Finally, the model generated groundwater potential zones are validated with reported potential yield data of various wells in the study area. Success and prediction rate curve reveals an accuracy achievement of 83.03 and 78%, respectively. The outcome of the present research work will help the local authorities, researchers, decision makers and planners in formulating better planning and management of groundwater resources in the study area in future perspectives.

  4. An update of hydrologic conditions and distribution of selected constituents in water, Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2006-08

    Science.gov (United States)

    Davis, Linda C.

    2010-01-01

    Since 1952, radiochemical and chemical wastewater discharged to infiltration ponds (also called percolation ponds), evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched groundwater wells in the USGS groundwater monitoring networks during 2006-08. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2005 to March-May 2008, water levels in wells generally remained constant or rose slightly in the southwestern corner of the INL. Water levels declined in the central and northern parts of the INL. The declines ranged from about 1 to 3 feet in the central part of the INL, to as much as 9 feet in the northern part of the INL. Water levels in perched groundwater wells around the Advanced Test Reactor Complex (ATRC) also declined. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2006-08. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In April

  5. Characterization of mean transit time at large springs in the Upper Colorado River Basin, USA: A tool for assessing groundwater discharge vulnerability

    Science.gov (United States)

    Solder, John; Stolp, Bernard J.; Heilweil, Victor M.; Susong, David D.

    2016-01-01

    Environmental tracers (noble gases, tritium, industrial gases, stable isotopes, and radio-carbon) and hydrogeology were interpreted to determine groundwater transit-time distribution and calculate mean transit time (MTT) with lumped parameter modeling at 19 large springs distributed throughout the Upper Colorado River Basin (UCRB), USA. The predictive value of the MTT to evaluate the pattern and timing of groundwater response to hydraulic stress (i.e., vulnerability) is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the springs range from 10 to 15,000 years and 90 % of the cumulative discharge-weighted travel-time distribution falls within the range of 2−10,000 years. Historical variability in discharge was assessed as the ratio of 10–90 % flow-exceedance (R 10/90%) and ranged from 2.8 to 1.1 for select springs with available discharge data. The lag-time (i.e., delay in discharge response to drought conditions) was determined by cross-correlation analysis and ranged from 0.5 to 6 years for the same select springs. Springs with shorter MTTs (<80 years) statistically correlate with larger discharge variations and faster responses to drought, indicating MTT can be used for estimating the relative magnitude and timing of groundwater response. Results indicate that groundwater discharge to streams in the UCRB will likely respond on the order of years to climate variation and increasing groundwater withdrawals.

  6. Using Contaminant Transport Modeling to Determine Historical Discharges at the Surface

    Science.gov (United States)

    Fogwell, T. W.

    2013-12-01

    When it is determined that a contaminated site needs to be remediated, the issue of who is going to pay for that remediation is an immediate concern. This means that there needs to be a determination of who the responsible parties are for the existing contamination. Seldom is it the case that records have been made and kept of the surface contaminant discharges. In many cases it is possible to determine the relative amount of contaminant discharge at the surface of the various responsible parties by employing a careful analysis of the history of contaminant transport through the surface, through the vadose zone, and within the saturated zone. The process begins with the development of a dynamic conceptual site model that takes into account the important features of the transport of the contaminants through the vadose zone and in the groundwater. The parameters for this model can be derived from flow data available for the site. The resulting contaminant transport model is a composite of the vadose zone transport model, together with the saturated zone (groundwater) flow model. Any calibration of the model should be carefully employed in order to avoid using information about the conclusions of the relative discharge amounts of the responsible parties in determining the calibrated parameters. Determination of the leading edge of the plume is an important first step. It is associated with the first discharges from the surface of the site. If there were several discharging parties at the same time, then it is important to establish a chemical or isotopic signature of the chemicals that were discharged. The time duration of the first discharger needs to be determined as accurately as possible in order to establish the appropriate characterization of the leading portion of the resulting plume in the groundwater. The information about the first discharger and the resulting part of the plume associated with this discharger serves as a basis for the determination of the

  7. An integrated hydrogeological study to support sustainable development and management of groundwater resources: a case study from the Precambrian Crystalline Province, India

    Science.gov (United States)

    Madhnure, Pandith; Peddi, Nageshwar Rao; Allani, Damodar Rao

    2016-03-01

    The rapid expansion of agriculture, industries and urbanization has triggered unplanned groundwater development leading to severe stress on groundwater resources in crystalline rocks of India. With depleting resources from shallow aquifers, end users have developed resources from deeper aquifers, which have proved to be counterproductive economically and ecologically. An integrated hydrogeological study has been undertaken in the semi-arid Madharam watershed (95 km2) in Telangana State, which is underlain by granites. The results reveal two aquifer systems: a weathered zone (maximum 30 m depth) and a fractured zone (30-85 m depth). The weathered zone is unsaturated to its maximum extent, forcing users to tap groundwater from deeper aquifers. Higher orders of transmissivity, specific yield and infiltration rates are observed in the recharge zone, while moderate orders are observed in an intermediate zone, and lower orders in the discharge zone. This is due to the large weathering-zone thickness and a higher sand content in the recharge zone than in the discharge zone, where the weathered residuum contains more clay. The NO3 - concentration is high in shallow irrigation wells, and F- is high in deeper wells. Positive correlation is observed between F- and depth in the recharge zone and its proximity. Nearly 50 % of groundwater samples are unfit for human consumption and the majority of irrigation-well samples are classed as medium to high risk for plant growth. Both supply-side and demand-side measures are recommended for sustainable development and management of this groundwater resource. The findings can be up-scaled to other similar environments.

  8. Fresh Versus Marine Submarine Groundwater Discharge: How 222Rn Might Help Distinguish These Two Sources

    Science.gov (United States)

    Smith, C. G.; Cable, J. E.; Martin, J. B.; Roy, M.

    2008-05-01

    Pore water distributions of 222Rn (t1/2 = 3.83 d), obtained during two sampling trips 9-12 May 2005 and 6-8 May 2006, are used to determine spatial and temporal variations of fluid discharge from a seepage face located along the mainland shoreline of Indian River Lagoon, Florida. Porewater samples were collected from a 30 m transect of multi-level piezometers and analyzed for 222Rn via liquid scintillation counting; the mean of triplicate measurements was used to represent the porewater 222Rn activities. Sediment samples were collected from five vibracores (0, 10, 17.5, 20, and 30 m offshore) and emanation rates of 222Rn (sediment supported) were determined using a standard cryogenic extraction technique. A conceptual 222Rn transport model and subsequent numerical model were developed based on the vertical distribution of dissolved and sediment-supported 222Rn and applicable processes occurring along the seepage face (e.g. advection, diffusion, and nonlocal exchange). The model was solved inversely with the addition of two Monte Carlo (MC) simulations to increase the statistical reliability of three parameters: fresh groundwater seepage velocity (v), irrigation intensity (α0), and irrigation attenuation (α1). The first MC simulation ensures that the Nelder-Mead minimization algorithm converges on a global minimum of the merit function and that the parameters estimates are consistent within this global minimum. The second MC simulation provides 90% confidence intervals on the parameter estimates using the measured 222Rn activity variance. Fresh groundwater seepage velocities obtained from the model decrease linearly with distance from the shoreline; seepage velocities range between 0.6 and 42.2 cm d-1. Based on this linear relationship, the terminus of the fresh groundwater seepage is approximately 25 m offshore and total fresh groundwater discharge for the May-2005 and May-2006 sampling trips are 1.16 and 1.45 m3 d-1 m-1 of shoreline, respectively. We hypothesize

  9. A Groundwater Model to Assess Water Resource Impacts at the Brenda Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); Bowen, Esther E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support utility-scale solar energy development at the Brenda Solar Energy Zone (SEZ), as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program.

  10. A practical assessment of aquifer discharge for regional groundwater demand by characterizing leaky confined aquifer overlain on a Mesozoic granitic gneiss basement

    Science.gov (United States)

    Shih, David Ching-Fang

    2018-04-01

    Due to increasing population worldwide, there is an urgent need to manage these important but diminishing groundwater resources efficiently to ensure their continued availability. The major innovative design of this study is to provide a practical assessment process for groundwater discharge under a regional demand by characterizing the nature of leaky confined aquifers overlain on a Mesozoic granitic gneiss basement which involves the important groundwater system in the Kinmen region (Taiwan, ROC) and the assessment of adoptable groundwater discharge in aquifer is needed. The storage coefficient presents an order of one in a thousand and hydraulic conductivity is approximately at the order of 1-8 m/d and 0.4-0.9 m/d for aquifer and aquitard respectively. Groundwater discharge and admissible number of pumping well is suggested considering scheduled maximum groundwater volume and head decline change for eastern and western studied area respectively. The safety subjected to the conservative issue is then addressed by the use of scheduled maximum groundwater volume. It reveals that the safety can be ensured using the indicator as scheduled maximum groundwater volume with predefined scenarios. The result can be utilized practically for developing management strategy of groundwater resources due to the applicability and novel of method.

  11. Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India.

    Science.gov (United States)

    Rashid, Mehnaz; Lone, Mahjoor Ahmad; Ahmed, Shakeel

    2012-08-01

    The increasing demand of water has brought tremendous pressure on groundwater resources in the regions were groundwater is prime source of water. The objective of this study was to explore groundwater potential zones in Maheshwaram watershed of Andhra Pradesh, India with semi-arid climatic condition and hard rock granitic terrain. GIS-based modelling was used to integrate remote sensing and geophysical data to delineate groundwater potential zones. In the present study, Indian Remote Sensing RESOURCESAT-1, Linear Imaging Self-Scanner (LISS-4) digital data, ASTER digital elevation model and vertical electrical sounding data along with other data sets were analysed to generate various thematic maps, viz., geomorphology, land use/land cover, geology, lineament density, soil, drainage density, slope, aquifer resistivity and aquifer thickness. Based on this integrated approach, the groundwater availability in the watershed was classified into four categories, viz. very good, good, moderate and poor. The results reveal that the modelling assessment method proposed in this study is an effective tool for deciphering groundwater potential zones for proper planning and management of groundwater resources in diverse hydrogeological terrains.

  12. Prediction of groundwater flowing well zone at An-Najif Province, central Iraq using evidential belief functions model and GIS.

    Science.gov (United States)

    Al-Abadi, Alaa M; Pradhan, Biswajeet; Shahid, Shamsuddin

    2015-10-01

    The objective of this study is to delineate groundwater flowing well zone potential in An-Najif Province of Iraq in a data-driven evidential belief function model developed in a geographical information system (GIS) environment. An inventory map of 68 groundwater flowing wells was prepared through field survey. Seventy percent or 43 wells were used for training the evidential belief functions model and the reset 30 % or 19 wells were used for validation of the model. Seven groundwater conditioning factors mostly derived from RS were used, namely elevation, slope angle, curvature, topographic wetness index, stream power index, lithological units, and distance to the Euphrates River in this study. The relationship between training flowing well locations and the conditioning factors were investigated using evidential belief functions technique in a GIS environment. The integrated belief values were classified into five categories using natural break classification scheme to predict spatial zoning of groundwater flowing well, namely very low (0.17-0.34), low (0.34-0.46), moderate (0.46-0.58), high (0.58-0.80), and very high (0.80-0.99). The results show that very low and low zones cover 72 % (19,282 km(2)) of the study area mostly clustered in the central part, the moderate zone concentrated in the west part covers 13 % (3481 km(2)), and the high and very high zones extended over the northern part cover 15 % (3977 km(2)) of the study area. The vast spatial extension of very low and low zones indicates that groundwater flowing wells potential in the study area is low. The performance of the evidential belief functions spatial model was validated using the receiver operating characteristic curve. A success rate of 0.95 and a prediction rate of 0.94 were estimated from the area under relative operating characteristics curves, which indicate that the developed model has excellent capability to predict groundwater flowing well zones. The produced map of groundwater

  13. Groundwater age determination using 85Kr and multiple age tracers (SF6, CFCs, and 3H to elucidate regional groundwater flow systems

    Directory of Open Access Journals (Sweden)

    Makoto Kagabu

    2017-08-01

    New hydrological insights for the region: The groundwater ages could not be estimated using CFCs or SF6, particularly in the urban areas because of artificial additions to the concentration over almost the entire study area. However, even in these regional circumstances, apparent ages of approximately 16, 36, and not less than 55 years were obtained for three locations on the A–A’ line (recharge area, discharge area, and stagnant zone of groundwater, respectively from 85Kr measurements. This trend was also supported by lumped parameter model analysis using a time series of 3H observations. In contrast, along the B–B’ line, the groundwater age of not less than 55 years at three locations, including the recharge to discharge area, where CFCs and SF6 were not detected, implies old groundwater: this is also the area in which denitrification occurs. In the C area, very young groundwater was obtained from shallow water and older groundwater was detected at greater depths, as supported by the long-term fluctuations of the NO3−–N concentration in the groundwater. The results of this study can be effectively used as a “time axis” for sustainable groundwater use and protection of groundwater quality in the study area, where groundwater accounts for almost 100% of the drinking water resources.

  14. Mapping of groundwater potential zones in the musi basin using remote sensing data and gis

    NARCIS (Netherlands)

    Ganapuram, Sreedhar; Vijaya Kumar, G.T.; Murali Krishna, I.V.; Kahya, Ercan; Demirel, M.C.

    2009-01-01

    The objective of this study is to explore the groundwater availability for agriculture in the Musi basin. Remote sensing data and geographic information system were used to locate potential zones for groundwater in the Musi basin. Various maps (i.e., base, hydrogeomorphological, geological,

  15. Marine electrical resistivity imaging of submarine groundwater discharge: Sensitivity analysis and application in Waquoit Bay, Massachusetts, USA

    Science.gov (United States)

    Henderson, Rory; Day-Lewis, Frederick D.; Abarca, Elena; Harvey, Charles F.; Karam, Hanan N.; Liu, Lanbo; Lane, John W.

    2010-01-01

    Electrical resistivity imaging has been used in coastal settings to characterize fresh submarine groundwater discharge and the position of the freshwater/salt-water interface because of the relation of bulk electrical conductivity to pore-fluid conductivity, which in turn is a function of salinity. Interpretation of tomograms for hydrologic processes is complicated by inversion artifacts, uncertainty associated with survey geometry limitations, measurement errors, and choice of regularization method. Variation of seawater over tidal cycles poses unique challenges for inversion. The capabilities and limitations of resistivity imaging are presented for characterizing the distribution of freshwater and saltwater beneath a beach. The experimental results provide new insight into fresh submarine groundwater discharge at Waquoit Bay National Estuarine Research Reserve, East Falmouth, Massachusetts (USA). Tomograms from the experimental data indicate that fresh submarine groundwater discharge may shut down at high tide, whereas temperature data indicate that the discharge continues throughout the tidal cycle. Sensitivity analysis and synthetic modeling provide insight into resolving power in the presence of a time-varying saline water layer. In general, vertical electrodes and cross-hole measurements improve the inversion results regardless of the tidal level, whereas the resolution of surface arrays is more sensitive to time-varying saline water layer.

  16. Radionuclides in groundwater flow system understanding

    Science.gov (United States)

    Erőss, Anita; Csondor, Katalin; Horváth, Ákos; Mádl-Szőnyi, Judit; Surbeck, Heinz

    2017-04-01

    Using radionuclides is a novel approach to characterize fluids of groundwater flow systems and understand their mixing. Particularly, in regional discharge areas, where different order flow systems convey waters with different temperature, composition and redox-state to the discharge zone. Radium and uranium are redox-sensitive parameters, which causes fractionation along groundwater flow paths. Discharging waters of regional flow systems are characterized by elevated total dissolved solid content (TDS), temperature and by reducing conditions, and therefore with negligible uranium content, whereas local flow systems have lower TDS and temperature and represent oxidizing environments, and therefore their radium content is low. Due to the short transit time, radon may appear in local systems' discharge, where its source is the soil zone. However, our studies revealed the importance of FeOOH precipitates as local radon sources throughout the adsorption of radium transported by the thermal waters of regional flow systems. These precipitates can form either by direct oxidizing of thermal waters at discharge, or by mixing of waters with different redox state. Therefore elevated radon content often occurs in regional discharge areas as well. This study compares the results of geochemical studies in three thermal karst areas in Hungary, focusing on radionuclides as natural tracers. In the Buda Thermal Karst, the waters of the distinct discharge areas are characterized by different temperature and chemical composition. In the central discharge area both lukewarm (20-35°C, 770-980 mg/l TDS) and thermal waters (40-65°C, 800-1350 mg/l TDS), in the South only thermal water discharge (33-43°C, 1450-1700 mg/l TDS) occur. Radionuclides helped to identify mixing of fluids and to infer the temperature and chemical composition of the end members for the central discharge area. For the southern discharge zone mixing components could not be identified, which suggests different cave

  17. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at a substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.

  18. Submarine groundwater discharge as an integral environmental "currency" limiting population and development within the ecosphere of small islands

    Science.gov (United States)

    Coffey, Ruth

    Submarine groundwater discharge (SGD) from oceanic islands has been estimated to contribute over a third of the global SGD due to orographic precipitation, short aquifer pathways and poorly developed surface drainage. This seepage of groundwater across the sea floor connects land and coastal ocean resources, and is hereby proposed as a parameter to evaluate the interconnections between coastal environmental quality and coastal populations and development. Relatively few islands have been studied, but SGD is typically found to be an important, and often the only, source of nutrients to coastal waters. Freshwater and its pollutant load are delivered to the coastal zone via SGD with consequent impacts on tourism and fisheries thus linking the land-based and marine economic sectors. The characteristics of SGD were investigated on Barbados, Guam and Bimini, islands all of, at least partly, carbonate origin, This study evaluates the similarities and differences between these islands and assesses the applicability of using SGD as a parameter within a population--development--environment model. Model scenarios can be used to explore the integrated coastal impacts of wastewater treatment practices and changes in seasonal rainfall due to climate change. This study also presents novel analytical methods for SGD field data.

  19. Modeling of electrical confined-capillary-discharge where the discharge zone is extended by an additional pipe

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, E. [Propulsion Physics Laboratory, Soreq NRC, Yavne 81800 (Israel)], E-mail: eyal_we@soreq.gov.il; Zoler, D.; Wald, S. [Propulsion Physics Laboratory, Soreq NRC, Yavne 81800 (Israel); Elias, E. [Department of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2009-03-02

    Plasma injectors are a source of pulsed, high momentum and temperature fluid. This fluid can serve as a very efficient reactive mixing and accelerating agent in several applications including chemical waste decomposition and hard materials coating. It can also serve as an efficient medium for synthesis of nano-particles and their deposition on various substrates. In those applications tuning the momentum and the thermodynamic properties of the plasma jet is of paramount importance as the quality of the interaction strongly depends on them. This Letter proposes a method and a model that will allow additional tuning to the thermodynamic properties of the plasma jet by adding an extension to the discharge zone. A steady state model of processes taking place in a realistic confined capillary discharge system is presented. A comparison between this system and the parameters characterizing a discharge in a 'conventional' ablative system is presented. The results obtained indicate that the non-discharge zone may provide an additional degree of freedom to optimize the system's performance. It enhances the control of the plasma parameters that allows optimal and predictable momentum control over the plasma jet. The theoretical predictions for the plasma parameters agree well with experimentally obtained data.

  20. Effects of Changes in Irrigation Practices and Aquifer Development on Groundwater Discharge to the Jobos Bay National Estuarine Research Reserve near Salinas, Puerto Rico

    Science.gov (United States)

    Kuniansky, Eve L.; Rodriguez, Jose M.

    2010-01-01

    Since 1990, about 75 acres of black mangroves have died in the Jobos Bay National Estuarine Research Reserve near Salinas, Puerto Rico. Although many factors can contribute to the mortality of mangroves, changes in irrigation practices, rainfall, and water use resulted in as much as 25 feet of drawdown in the potentiometric surface of the aquifer in the vicinity of the reserve between 1986 and 2002. To clarify the issue, the U.S. Geological Survey, in cooperation with the Puerto Rico Department of Natural and Environmental Resources, conducted a study to ascertain how aquifer development and changes in irrigation practices have affected groundwater levels and groundwater flow to the Mar Negro area of the reserve. Changes in groundwater flow to the mangrove swamp and bay from 1986 to 2004 were estimated in this study by developing and calibrating a numerical groundwater flow model. The transient simulations indicate that prior to 1994, high irrigation return flows more than offset the effect of reduced groundwater withdrawals. In this case, the simulated discharge to the coast in the modeled area was 19 million gallons per day. From 1994 through 2004, furrow irrigation was completely replaced by micro-drip irrigation, thus eliminating return flows and the simulated average coastal discharge was 7 million gallons per day, a reduction of 63 percent. The simulated average groundwater discharge to the coastal mangrove swamps in the reserve from 1986 to 1993 was 2 million gallons per day, compared to an average simulated discharge of 0.2 million gallons per day from 1994 to 2004. The average annual rainfall for each of these periods was 38 inches. The groundwater discharge to the coastal mangrove swamps in the Jobos Bay National Estuarine Research Reserve was estimated at about 0.5 million gallons per day for 2003-2004 because of higher than average annual rainfall during these 2 years. The groundwater flow model was used to test five alternatives for increasing

  1. Measurement of submarine groundwater discharge using diverse methods in Coleroon Estuary, Tamil Nadu, India

    Science.gov (United States)

    Prakash, R.; Srinivasamoorthy, K.; Gopinath, S.; Saravanan, K.

    2018-03-01

    Submarine groundwater discharge (SGD) is described as submarine inflow of fresh and brackish groundwater from land into the sea. The release of sewages from point and non-point source pollutants from industries, agricultural and domestic activities gets discharged through groundwater to ocean creating natural disparity like decreasing flora fauna and phytoplankton blooms. Hence, to quantify fluxes of SGD in coastal regions is important. Quantification of SGD was attempted in Coleroon estuary, India, using three dissimilar methods like water budget, Darcy law and manual seepage meter. Three seepage meters were installed at two prominent litho units (alluvium and fluvio marine) at a distance of (0-14.7 km) away from Bay of Bengal. The water budget and Darcy law-quantified submarine seepage at a rate of 6.9 × 106 and 3.2 × 103 to 308.3 × 103 m3 year-1, respectively, and the seepage meter quantified seepage rate of 0.7024 m h-1 at an average. Larger seepage variations were isolated from three different techniques and the seepage rates were found to be influenced by hydrogeological characteristics of the litho units and distance from the coast.

  2. Determination of protection zones for Dutch groundwater wells against virus contamination--uncertainty and sensitivity analysis.

    Science.gov (United States)

    Schijven, J F; Mülschlegel, J H C; Hassanizadeh, S M; Teunis, P F M; de Roda Husman, A M

    2006-09-01

    Protection zones of shallow unconfined aquifers in The Netherlands were calculated that allow protection against virus contamination to the level that the infection risk of 10(-4) per person per year is not exceeded with a 95% certainty. An uncertainty and a sensitivity analysis of the calculated protection zones were included. It was concluded that protection zones of 1 to 2 years travel time (206-418 m) are needed (6 to 12 times the currently applied travel time of 60 days). This will lead to enlargement of protection zones, encompassing 110 unconfined groundwater well systems that produce 3 x 10(8) m3 y(-1) of drinking water (38% of total Dutch production from groundwater). A smaller protection zone is possible if it can be shown that an aquifer has properties that lead to greater reduction of virus contamination, like more attachment. Deeper aquifers beneath aquitards of at least 2 years of vertical travel time are adequately protected because vertical flow in the aquitards is only 0.7 m per year. The most sensitive parameters are virus attachment and inactivation. The next most sensitive parameters are grain size of the sand, abstraction rate of groundwater, virus concentrations in raw sewage and consumption of unboiled drinking water. Research is recommended on additional protection by attachment and under unsaturated conditions.

  3. Catchment tracers reveal discharge, recharge and sources of groundwater-borne pollutants in a novel lake modelling approach

    Directory of Open Access Journals (Sweden)

    E. Kristensen

    2018-02-01

    Full Text Available Groundwater-borne contaminants such as nutrients, dissolved organic carbon (DOC, coloured dissolved organic matter (CDOM and pesticides can have an impact the biological quality of lakes. The sources of pollutants can, however, be difficult to identify due to high heterogeneity in groundwater flow patterns. This study presents a novel approach for fast hydrological surveys of small groundwater-fed lakes using multiple groundwater-borne tracers. Water samples were collected from the lake and temporary groundwater wells, installed every 50 m within a distance of 5–45 m to the shore, were analysed for tracer concentrations of CDOM, DOC, total dissolved nitrogen (TDN, groundwater only, total nitrogen (TN, lake only, total dissolved phosphorus (TDP, groundwater only, total phosphorus (TP, lake only, δ18O ∕ δ16O isotope ratios and fluorescent dissolved organic matter (FDOM components derived from parallel factor analysis (PARAFAC. The isolation of groundwater recharge areas was based on δ18O measurements and areas with a high groundwater recharge rate were identified using a microbially influenced FDOM component. Groundwater discharge sites and the fractions of water delivered from the individual sites were isolated with the Community Assembly via Trait Selection model (CATS. The CATS model utilized tracer measurements of TDP, TDN, DOC and CDOM from the groundwater samples and related these to the tracer measurements of TN, TP, DOC and CDOM in the lake. A direct comparison between the lake and the inflowing groundwater was possible as degradation rates of the tracers in the lake were taken into account and related to a range of water retention times (WRTs of the lake (0.25–3.5 years in 0.25-year increments. These estimations showed that WRTs above 2 years required a higher tracer concentration of inflowing water than found in any of the groundwater wells around the lake. From the estimations of inflowing tracer concentration

  4. Radon as a groundwater tracer in Forsmark and Laxemar

    International Nuclear Information System (INIS)

    Grolander, Sara

    2009-10-01

    Radon concentrations were measured in different water types in Forsmark and Laxemar during the site investigation and within this study. From these measurements it can be concluded that large differences between surface water, near surface groundwater and deep groundwater can be found in both Laxemar and Forsmark. The differences in radon concentrations between different water types are used in this study to detect interactions between surface water, near surface water and deep groundwater. From the radon measurements it can also be concluded that radon concentration in deep groundwater varies largely with depth. These variations with depth are probably caused by groundwater flow in conductive fracture zones in the bedrock. The focus of this study has been the radon concentration of near surface groundwater and the interaction between near surface groundwater and deep groundwater. Radon measurements have been done using the RAD-7 radon detector within this study. It could be concluded that RAD-7 is a good technique for radon measurements and also easy to use in field. The radon concentrations measured in near surface groundwater in Laxemar within this study were low and homogenous. The variation in radon concentration has been analyses and compared to other parameters. Since the hypothesis of this study has been that there are differences in radon concentrations between recharging and discharging groundwater, the most important parameter to consider is the recharge/discharge field classification of the wells. No correlation between the recharge/discharge classifications of wells and the radon concentrations were found. The lack of correlation between groundwater flow patterns and radon concentration means that it is not possible to detect flow patterns in near surface groundwater using radon as a tracer in the Laxemar area. The lack of correlation can be caused by the fact that there are just a few wells located in areas classified as recharge area. It can also be

  5. Groundwater impact assessment report for the 216-U-14 Ditch

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, K.M.; Lindsey, K.A.

    1994-01-01

    Groundwater impact assessments are conducted at liquid effluent receiving sites on the Hanford Site to determine hydrologic and contaminant impacts caused by discharging wastewater to the soil column. The assessments conducted are pursuant to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-17-00A and M-17-00B, as agreed by the US Department of Energy (DOE), Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA) (Ecology et al. 1992). This report assesses impacts on the groundwater and vadose zone from wastewater discharged to the 216-U-14 Ditch. Contemporary effluent waste streams of interest are 242-S Evaporator Steam Condensate and UO{sub 3}/U Plant wastewater.

  6. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    International Nuclear Information System (INIS)

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith LaRue, J.; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation

  7. Submarine groundwater discharge in a subsiding coastal lowland: A {sup 226}Ra and {sup 222}Rn investigation in the Southern Venice lagoon

    Energy Technology Data Exchange (ETDEWEB)

    Gattacceca, Julie C., E-mail: jcg54@esc.cam.ac.uk [CEREGE, Aix-Marseille Universite, UMR 6635 CNRS-IRD-CDF, Europole Mediterraneen de l' Arbois, BP80, 13545 Aix en Provence (France); Mayer, Adriano [IDPA-CNR, Via Mario Bianco 9, 20131 Milano (Italy); Cucco, Andrea [Coastal Oceanography, CNR-IAMC, Oristano Unit, Loc. Sa MArdini, 09072 Oristano (Italy); Claude, Christelle; Radakovitch, Olivier; Vallet-Coulomb, Christine; Hamelin, Bruno [CEREGE, Aix-Marseille Universite, UMR 6635 CNRS-IRD-CDF, Europole Mediterraneen de l' Arbois, BP80, 13545 Aix en Provence (France)

    2011-05-15

    Highlights: > Occurence/magnitude of submarine groundwater discharge investigated in Venice lagoon (Italy) using {sup 226}Ra and {sup 222}Rn isotopic tracers. > Single box mass balance compared with multi boxes mass balance coupled with hydrodynamic model. > Groundwater flux accounts for 1% of lagoon hydrological balance (1-3 times surface runoff) and 30-50% of tracers inputs. > Necessary to assess this flux impact on nutrient budget in lagoon. - Abstract: Several recent studies have suggested that submarine groundwater discharge (SGD) occurs in the Venice lagoon with discharge rates on the same order or larger than the surface runoff, as demonstrated previously in several other coastal zones around the world. Here, the first set of {sup 222}Rn data, along with new {sup 226}Ra data are reported, in order to investigate the occurrence and magnitude of SGD specifically in the southern basin of the lagoon. The independent connection with the Adriatic Sea (at the Chioggia inlet), in addition to the relative isolation of the water body from the main lagoon, make this area an interesting case study. There is probably only minimal fresh groundwater flux to the lagoon because the surrounding aquifer is subsiding and mainly has a lower hydraulic head than seawater. The data show that the Ra and Rn activities are in slight excess in the lagoon compared to the open sea, with values on the same order as those observed in the northern and central basins. Taking into account the water exchange rate between the lagoon and adjacent seawater provided by previous hydrodynamic numerical modelling, it is shown that this excess cannot be supported at steady state by only riverine input and by diffusive release from the sediment interstitial water. High activities observed in groundwater samples collected from 16 piezometers tapping into the shallow aquifer over the coastal lowland substantiate that the excess radioactivity in the lagoon may indeed be due to the advection of groundwater

  8. A Groundwater Model to Assess Water Resource Impacts at the Imperial East Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); O' Connor, Ben L. [Argonne National Lab. (ANL), Argonne, IL (United States); Tompson, Andrew F.B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support the utility-scale solar energy development at the Imperial East Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM) solar energy program.

  9. Comment on Origin of Groundwater Discharge at Fall River Springs

    Energy Technology Data Exchange (ETDEWEB)

    Rose, T

    2006-10-20

    I'm writing at the request of the Pit River Tribe to offer my professional opinion as a geochemist regarding the origin of groundwater discharge at the Fall River Springs, Shasta Co., California. In 1997, I conducted a study of the large volume cold springs associated with the Cascade Volcanoes in northern California, in collaboration with one of my colleagues. This work was published as a Lawrence Livermore National Laboratory report (Davisson and Rose, 1997). The Fall River Springs emerge from the distal end of the Giant Crater Lava Field, a laterally extensive basalt flow that stretches from the southern flank of Medicine Lake Volcano southward for a distance of 40 km. Both Medicine Lake Volcano and the Giant Crater Lava Field have virtually no surface water drainages. Precipitation that falls in these areas is inferred to seep into fractures in the rock, where it is carried down gradient under the force of gravity. Mean annual precipitation rates on Medicine Lake Volcano and the Giant Crater Lava field are adequate to account for the {approx}1200 ft{sup 3}/sec discharge of the Fall River Springs. To evaluate the origin of the springs using geochemical methods, water samples were collected from the Fall River Springs and the Medicine Lake highlands and analyzed for oxygen and hydrogen isotope ratios. The isotope ratios measured for a groundwater sample are diagnostic of the average composition of the precipitation from which the water was derived. The isotope ratios of rain and snow also vary systematically with elevation, such that groundwater derived from recharge at higher elevations can be distinguished from that which originated at lower elevations. The stable isotope data for the Fall River Springs are consistent with groundwater recharge on the Medicine Lake Volcano and adjacent lava field. Mass balance calculations suggest that approximately half of the Fall River Springs flow is derived from the volcanic edifice. Rose and Davisson (1996) showed

  10. Does localized recharge occur at a discharge area within the ground-water flow system of Yucca Mountain, Nevada?

    International Nuclear Information System (INIS)

    Czarnecki, J.B.; Kroitoru, L.; Ronen, D.; Magaritz, M.

    1992-01-01

    Studies done in 1984, at a central site on Franklin Lake playa (also known as Alkali Flat, a major discharge area of the ground-water flow system that includes Yucca Mountain, Nevada, the potential site of a high-level nuclear-waste repository) yield limited hydraulic-head and hydrochemical data from a 3-piezometer nest which indicated a slightly downward hydraulic gradient (-0.02) and decreasing concentration of dissolved solids with increasing depth. Hydraulic-head measurements in June, 1989 made at the piezometer nest showed a substantially larger downward gradient (-0.10) and a 0. 83-meter higher water level in the shallowest piezometer (3.29 meters deep), indicating the possibility of localized recharge. during the period of September-November, 1989, a multilevel sampler was used to obtain detailed hydrochemical profiles of the uppermost 1. 5 m of the saturated zone

  11. Nutrient Enrichment in Estuaries from Discharge of Shallow Ground Water, Mt. Desert Island, Maine

    Science.gov (United States)

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.

    2007-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in its estuaries. Water-quality degradation has been observed at the Park?s Bass Harbor Marsh estuary but not in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, but the importance of shallow ground water that may contain nutrients derived from domestic or other sources is unknown. Northeast Creek and Bass Harbor Marsh estuaries were studied to (1) identify shallow ground-water seeps, (2) assess the chemistry of the water discharged from selected seeps, and (3) assess the chemistry of ground water in shallow ground-water hyporheic zones. The hyporheic zone is defined here as the region beneath and lateral to a stream bed, where there is mixing of shallow ground water and surface water. This study also provides baseline chemical data for ground water in selected bedrock monitoring wells and domestic wells on Mt. Desert Island. Water samples were analyzed for concentrations of nutrients, wastewater compounds, dissolved organic carbon, pH, dissolved oxygen, temperature and specific conductance. Samples from bedrock monitoring wells also were analyzed for alkalinity, major cations and anions, and trace metals. Shallow ground-water seeps to Northeast Creek and Bass Harbor Marsh estuaries at Acadia National Park were identified and georeferenced using aerial infrared digital imagery. Monitoring included the deployment of continuously recording temperature and specific conductance sensors in the seep discharge zone to access marine or freshwater signatures related to tidal flooding, gradient-driven shallow ground-water flow, or shallow subsurface flow related to precipitation events. Many potential shallow ground-water discharge zones were

  12. Qualitative zoning of groundwater for drinking purposes in Lenjan plain using GQI method through GIS

    Directory of Open Access Journals (Sweden)

    Amin Mohebbi Tafreshi

    2017-09-01

    Full Text Available Background: A new method has been presented specifically for zoning the quality of groundwater for drinking purposes; this method is the groundwater quality index (GQI method. The present research used the GQI method to qualitatively zoning of the Lenjan groundwater for drinking purposes. Methods: Three phases were applied in this research. In the first phase, working on the quality data of 38 wells within the studied plain, the raster map of quality concentration parameters, including pH, TDS, Cl, SO4, Ca, Mg, and Na parameters, was provided by interpolation using the kriging method in the ArcGIS software. In the second phase, the mentioned maps were standardized so that various bits of data can follow a common standard and scale. In the third phase, weight was applied to each standardized map, and ultimately the classification map for each parameter was drawn. The final GQI map was created by combining the mentioned classification maps. Results: The GQI values for Lenjan plain were rated from the minimum (67.48 to the maximum (90.05. The results showed an average to acceptable level of quality for drinking water. Conclusion: According to the final map, the central and southern parts of Lenjan plain, which have acceptable GQI rankings, are the best zones from which to use groundwater for drinking purposes.

  13. Surface and subsurface continuous gravimetric monitoring of groundwater recharge processes through the karst vadose zone at Rochefort Cave (Belgium)

    Science.gov (United States)

    Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Triantafyllou, A.; Delforge, D.; Quinif, Y.; Van Ruymbeke, M.; Kaufmann, O.

    2017-12-01

    Ground-based gravimetry is a non-invasive and integrated tool to characterize hydrological processes in complex environments such as karsts or volcanoes. A problem in ground-based gravity measurements however concerns the lack of sensitivity in the first meters below the topographical surface, added to limited infiltration below the gravimeter building (umbrella effect). Such limitations disappear when measuring underground. Coupling surface and subsurface gravity measurements therefore allow isolating hydrological signals occurring in the zone between the two gravimeters. We present a coupled surface/subsurface continuous gravimetric monitoring of 2 years at the Rochefort Cave Laboratory (Belgium). The gravity record includes surface measurements of a GWR superconducting gravimeter and subsurface measurements of a Micro-g LaCoste gPhone gravimeter, installed in a cave 35 m below the surface station. The recharge of karstic aquifers is extremely complex to model, mostly because karst hydrological systems are composed of strongly heterogeneous flows. Most of the problem comes from the inadequacy of conventional measuring tools to correctly sample such heterogeneous media, and particularly the existence of a duality of flow types infiltrating the vadose zone: from rapid flows via open conduits to slow seepage through porous matrix. Using the surface/subsurface gravity difference, we were able to identify a significant seasonal groundwater recharge within the karst vadose zone. Seasonal or perennial perched reservoirs have already been proven to exist in several karst areas due to the heterogeneity of the porosity and permeability gradient in karstified carbonated rocks. Our gravimetric experiment allows assessing more precisely the recharge processes of such reservoirs. The gravity variations were also compared with surface and in-cave hydrogeological monitoring (i.e. soil moisture, in-cave percolating water discharges, water levels of the saturated zone). Combined

  14. Arsenic distribution along different hydrogeomorphic zones in parts of the Brahmaputra River Valley, Assam (India)

    Science.gov (United States)

    Choudhury, Runti; Mahanta, Chandan; Verma, Swati; Mukherjee, Abhijit

    2017-06-01

    The spatial distribution of arsenic (As) concentrations along three classified hydrogeomorphological zones in the Brahmaputra River Valley in Assam (India) have been investigated: zone I, comprising the piedmont and alluvial fans; zone II, comprising the runoff areas; and zone III, comprising the discharge zones. Groundwater (150 samples) from shallow hand-pumped and public water supply wells (2-60 m in depth) was analysed for chemical composition to examine the geochemical processes controlling As mobilization. As concentrations up to 0.134 mg/L were recorded, with concentrations below the World Health Organization and the Bureau of Indian Standards drinking-water limits of 0.01 mg/L being found mainly in the proximal recharge areas. Eh and other redox indicators (i.e., dissolved oxygen, Fe, Mn and As) indicate that, except for samples taken in the recharge zone, groundwater is reducing and exhibits a systematic decrease in redox conditions along the runoff and discharge zones. Hydrogeochemical evaluation indicated that zone I, located along the proximal recharge areas, is characterized by low As concentration, while zones II and III are areas with high and moderate concentrations, respectively. Systematic changes in As concentrations along the three zones support the view that areas of active recharge with high hydraulic gradient are potential areas hosting low-As aquifers.

  15. Looking Deeper Into Hydrologic Connectivity and Streamflow Generation: A Groundwater Hydrologist's Perspective.

    Science.gov (United States)

    Gardner, W. P.

    2016-12-01

    In this presentation the definition of hydraulic connection will be explored with a focus on the role of deep groundwater in streamflow generation and its time and space limits. Regional groundwater flow paths can be important sources of baseflow and potentially event response in surface water systems. This deep groundwater discharge plays an important role in determining how the watershed responds to climatic forcing, whether watersheds are a carbon source or sink and can be significant for watershed geochemistry and nutrient loading. These flow paths potentially "connect" to surface water systems and saturated soil zones at large distances, and over long time scales. However, these flow paths are challenging to detect, especially with hydraulic techniques. Here we will discuss some of the basic physical processes that affect the hydraulic signal along a groundwater flow path and their implications for the definition of hydrologic connection. Methods of measuring hydraulic connection using groundwater head response and their application in detecting regional groundwater discharge will be discussed. Environmental tracers are also a powerful method for identifying connected flowpaths in groundwater systems, and are commonly used to determine flow connection and flow rates in groundwater studies. Isotopic tracer methods for detecting deep, regional flow paths in watersheds will be discussed, along with observations of deep groundwater discharge in shallow alluvial systems around the world. The goal of this talk is to discuss hydraulic and hydrologic connection from a groundwater hydrologist's perspective, spark conversation on the meaning of hydrologic connection, the processes which govern hydraulic response and methods to measure flow connections and flux.

  16. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.

    Science.gov (United States)

    Chong, Andrea D; Mayer, K Ulrich

    2017-09-01

    Historical heavy use of chlorinated solvents in conjunction with improper disposal practices and accidental releases has resulted in widespread contamination of soils and groundwater in North America and worldwide. As a result, remediation of chlorinated solvents is required at many sites. For source zone treatment, common remediation strategies include in-situ chemical oxidation (ISCO) using potassium or sodium permanganate, and the enhancement of biodegradation by primary substrate addition. It is well known that these remediation methods tend to generate gas (carbon dioxide (CO 2 ) in the case of ISCO using permanganate, CO 2 and methane (CH 4 ) in the case of bioremediation). Vigorous gas generation in the presence of chlorinated solvents, which are categorized as volatile organic contaminants (VOCs), may cause gas exsolution, ebullition and stripping of the contaminants from the treatment zone. This process may lead to unintentional 'compartment transfer', whereby VOCs are transported away from the contaminated zone into overlying clean sediments and into the vadose zone. To this extent, benchtop column experiments were conducted to quantify the effect of gas generation during remediation of the common chlorinated solvent trichloroethylene (TCE/C 2 Cl 3 H). Both ISCO and enhanced bioremediation were considered as treatment methods. Results show that gas exsolution and ebullition occurs for both remediation technologies. Facilitated by ebullition, TCE was transported from the source zone into overlying clean groundwater and was subsequently released into the column headspace. For the case of enhanced bioremediation, the intermediate degradation product vinyl chloride (VC) was also stripped from the treatment zone. The concentrations measured in the headspace of the columns (TCE ∼300ppm in the ISCO column, TCE ∼500ppm and VC ∼1380ppm in the bioremediation column) indicate that substantial transfer of VOCs to the vadose zone is possible. These findings

  17. Evapotranspiration Within the Groundwater Model Domain of the Tuba City, Arizona, Disposal Site Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-01

    The revised groundwater model includes estimates of evapotranspiration (ET). The types of vegetation and the influences of ET on groundwater hydrology vary within the model domain. Some plant species within the model domain, classified as phreatophytes, survive by extracting groundwater. ET within these plant communities can result in a net discharge of groundwater if ET exceeds precipitation. Other upland desert plants within the model domain survive on meteoric water, potentially limiting groundwater recharge if ET is equivalent to precipitation. For all plant communities within the model domain, excessive livestock grazing or other disturbances can tip the balance to a net groundwater recharge. This task characterized and mapped vegetation within the groundwater model domain at the Tuba City, Arizona, Site, and then applied a remote sensing algorithm to estimate ET for each vegetation type. The task was designed to address five objectives: 1. Characterize and delineate different vegetation or ET zones within the groundwater model domain, focusing on the separation of plant communities with phreatophytes that survive by tapping groundwater and upland plant communities that are dependent on precipitation. 2. Refine a remote sensing method, developed to estimate ET at the Monument Valley site, for application at the Tuba City site. 3. Estimate recent seasonal and annual ET for all vegetation zones, separating phreatophytic and upland plant communities within the Tuba City groundwater model domain. 4. For selected vegetation zones, estimate ET that might be achieved given a scenario of limited livestock grazing. 5. Analyze uncertainty of ET estimates for each vegetation zone and for the entire groundwater model domain.

  18. Flow pathways in the evolving critical zone - insights from hydraulic groundwater theory

    Science.gov (United States)

    Harman, C. J.; Cosans, C.; Kim, M.

    2017-12-01

    The geochemical signatures of the evolving critical zone are delivered into streams via saturated lateral flow through hillslopes. Here we will draw on hydraulic groundwater theory and scaling arguments to obtain insights into the first-order controls on the transition from vertical infiltration to lateral flow in the critical zone. Hydraulic groundwater theory aims to provide a simplified description of unconfined, saturated groundwater flow in systems that are substantially larger in lateral than vertical extent. The theory rests on the Dupuit assumptions, which are often erroneously stated as including an assumption of exclusively lateral flow. In fact the full three-dimensional flow field can be approximated from these assumptions. Building on this theory, we examine how overall hillslope structure (slope, permeability, convergence/divergence etc.) determines the direction and magnitude of flow in the vicinity of weathering fronts in the critical zone, and how weathering products are delivered to the hillslope base. The results demonstrate that under certain conditions the mere presence of lateral flow will not disturb the lateral symmetry of reaction fronts along the hillslope. Furthermore, coupling to a simple reaction model with porosity/permeability feedback allows us to examine the implications for weathering front advance where saturated lateral flow occurs as a transient perched aquifer at the weathering front. The overall rate of weathering front advance is found to be primarily determined by the component of flow normal to the weathering front, and only significantly accelerated by the lateral component above the weathering front when parent rock permeability is very low.

  19. An isotopic view of water and nitrate transport through the vadose zone in Oregon's southern Willamette Valley's Groundwater Management Area

    Science.gov (United States)

    Brooks, J. R.; Pearlstein, S.; Hutchins, S.; Faulkner, B. R.; Rugh, W.; Willard, K.; Coulombe, R.; Compton, J.

    2017-12-01

    Groundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the USA. The southern Willamette Valley Groundwater Management Area (GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen (N) inputs to the GWMA comes from agricultural fertilizers, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding N transformations. In partnership with local farmers and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variable over time, lysimeter water isotopes were surprisingly consistent, more closely resembling long-term precipitation isotope means rather than recent precipitation isotopic signatures. However, some particularly large precipitation events with unique isotopic signatures revealed high spatial variability in transport, with some lysimeters showing greater proportions of recent precipitation inputs than others. In one installation where we have groundwater wells and lysimeters at multiple depths, nitrate/nitrite concentrations decreased with depth. N concentrations

  20. Conceptual Models for Migration of Key Groundwater Contaminants Through the Vadose Zone and Into the Upper Unconfined Aquifer Below the B-Complex

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Keller, Jason M.; Thorne, Paul D.; Lanigan, David C.; Christensen, J. N.; Thomas, Gregory S.

    2010-07-01

    The B-Complex contains 3 major crib and trench disposal sites and 3 SST farms that have released nearly 346 mega-liters of waste liquids containing the following high groundwater risk drivers: ~14,000 kg of CN, 29,000 kg of Cr, 12,000 kg of U and 145 Ci of Tc-99. After a thorough review of available vadose zone sediment and pore water, groundwater plume, field gamma logging, field electrical resistivity studies, we developed conceptual models for which facilities have been the significant sources of the contaminants in the groundwater and estimated the masses of these contaminants remaining in the vadose zone and currently present in the groundwater in comparison to the totals released. This allowed us to make mass balance calculations on how consistent our knowledge is on the current deep vadose zone and groundwater distribution of contaminants. Strengths and weaknesses of the conceptual models are discussed as well as implications on future groundwater and deep vadose zone remediation alternatives. Our hypothesized conceptual models attribute the source of all of the cyanide and most of the Tc-99 currently in the groundwater to the BY cribs. The source of the uranium is the BX-102 tank overfill event and the source of most of the chromium is the B-7-A&B and B-8 cribs. Our mass balance estimates suggest that there are much larger masses of U, CN, and Tc remaining in the deep vadose zone within ~20 ft of the water table than is currently in the groundwater plumes below the B-Complex. This hypothesis needs to be carefully considered before future remediation efforts are chosen. The masses of these groundwater risk drivers in the the groundwater plumes have been increasing over the last decade and the groundwater plumes are migrating to the northwest towards the Gable Gap. The groundwater flow rate appears to flucuate in response to seasonal changes in hydraulic gradient. The flux of contaminants out of the deep vadose zone from the three proposed sources also

  1. Autonomous long-term gamma-spectrometric monitoring of submarine groundwater discharge trends in Hawaii

    Czech Academy of Sciences Publication Activity Database

    Dulai, H.; Kameník, Jan; Waters, C. A.; Kennedy, J.; Babinec, J.; Jolly, J.; Williamson, M.

    2016-01-01

    Roč. 307, č. 3 (2016), s. 1865-1870 ISSN 0236-5731. [10th International Conference on Methods and Applications of Radioanalytical Chemistry (MARC). Kailua Kona, 12.04.2015-17.04.2015] Institutional support: RVO:61389005 Keywords : submarine groundwater discharge * long-term SGD monitoring * underwater gammaspectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.282, year: 2016

  2. Relating groundwater to seasonal wetlands in southeastern Wisconsin, USA

    Science.gov (United States)

    Skalbeck, J.D.; Reed, D.M.; Hunt, R.J.; Lambert, J.D.

    2009-01-01

    Historically, drier types of wetlands have been difficult to characterize and are not well researched. Nonetheless, they are considered to reflect the precipitation history with little, if any, regard for possible relation to groundwater. Two seasonal coastal wetland types (wet prairie, sedge meadow) were investigated during three growing seasons at three sites in the Lake Michigan Basin, Wisconsin, USA. The six seasonal wetlands were characterized using standard soil and vegetation techniques and groundwater measurements from the shallow and deep systems. They all met wetland hydrology criteria (e.g., water within 30 cm of land surface for 5% of the growing season) during the early portion of the growing season despite the lack of appreciable regional groundwater discharge into the wetland root zones. Although root-zone duration analyses did not fit a lognormal distribution previously noted in groundwater-dominated wetlands, they were able to discriminate between the plant communities and showed that wet prairie communities had shorter durations of continuous soil saturation than sedge meadow communities. These results demonstrate that the relative rates of groundwater outflows can be important for wetland hydrology and resulting wetland type. Thus, regional stresses to the shallow groundwater system such as pumping or low Great Lake levels can be expected to affect even drier wetland types. ?? Springer-Verlag 2008.

  3. Delineation of groundwater development potential zones in parts of marginal Ganga Alluvial Plain in South Bihar, Eastern India.

    Science.gov (United States)

    Saha, Dipankar; Dhar, Y R; Vittala, S S

    2010-06-01

    A part of the Gangetic Alluvial Plain covering 2,228 km(2), in the state of Bihar, is studied for demarcating groundwater development potential zones. The area is mainly agrarian and experiencing intensive groundwater draft to the tune of 0.12 million cubic metre per square kilometres per year from the Quaternary marginal alluvial deposits, unconformably overlain northerly sloping Precambrian bedrock. Multiparametric data on groundwater comprising water level, hydraulic gradient (pre- and post-monsoon), aquifer thickness, permeability, suitability of groundwater for drinking and irrigation and groundwater resources vs. draft are spatially analysed and integrated on a Geographical Information System platform to generate thematic layers. By integrating these layers, three zones have been delineated based on groundwater development potential. It is inferred that about 48% of the area covering northern part has high development potential, while medium and low development potential category covers 41% of the area. Further increase in groundwater extraction is not recommended for an area of 173 km(2), affected by over-exploitation. The replenishable groundwater resource available for further extraction has been estimated. The development potential enhances towards north with increase in thickness of sediments. Local deviations are due to variation of-(1) cumulative thickness of aquifers, (2) deeper water level resulting from localised heavy groundwater extraction and (3) aquifer permeability.

  4. Quantity and quality of ground-water discharge to the South Platte River, Denver to Fort Lupton, Colorado, August 1992 through July 1993

    Science.gov (United States)

    McMahon, P.B.; Lull, K.J.; Dennehy, K.F.; Collins, J.A.

    1995-01-01

    Water-quality studies conducted by the Metro Wastewater Reclamation District have indicated that during low flow in segments of the South Platte River between Denver and Fort Lupton, concentrations of dissolved oxygen are less than minimum concen- trations set by the State of Colorado. Low dissolved-oxygen concentrations are observed in two reaches of the river-they are about 3.3 to 6.4 miles and 17 to 25 miles downstream from the Metro Waste- water Reclamation District effluent outfalls. Concentrations of dissolved oxygen recover between these two reaches. Studies conducted by the U.S. Geological Survey have indicated that ground-water discharge to the river may contribute to these low dissolved-oxygen concentrations. As a result, an assessment was made of the quantity and quality of ground-water discharge to the South Platte River from Denver to Fort Lupton. Measurements of surface- water and ground-water discharge and collections of surface water and ground water for water-quality analyses were made from August 1992 through January 1993 and in May and July 1993. The quantity of ground-water discharge to the South Platte River was determined indirectly by mass balance of surface-water inflows and outflows and directly by instantaneous measurements of ground-water discharge across the sediment/water interface in the river channel. The quality of surface water and ground water was determined by sampling and analysis of water from the river and monitoring wells screened in the alluvial aquifer adjacent to the river and by sampling and analysis of water from piezometers screened in sediments underlying the river channel. The ground-water flow system was subdivided into a large-area and a small-area flow system. The precise boundaries of the two flow systems are not known. However, the large-area flow system is considered to incorporate all alluvial sediments in hydrologic connection with the South Platte River. The small- area flow system is considered to incorporate

  5. Distributed Temperature Sensing - a Useful Tool for Investigation of Surface Water - Groundwater Interaction

    Science.gov (United States)

    Vogt, T.; Hahn-Woernle, L.; Sunarjo, B.; Thum, T.; Schneider, P.; Schirmer, M.; Cirpka, O. A.

    2009-04-01

    In recent years, the transition zone between surface water bodies and groundwater, known as the hyporheic zone, has been identified as crucial for the ecological status of the open-water body and the quality of groundwater. The hyporheic exchange processes vary both in time and space. For the assessment of water quality of both water bodies reliable models and measurements of the exchange rates and their variability are needed. A wide range of methods and technologies exist to estimate water fluxes between surface water and groundwater. Due to recent developments in sensor techniques and data logging work on heat as a tracer in hydrological systems advances, especially with focus on surface water - groundwater interactions. Here, we evaluate the use of Distributed Temperature Sensing (DTS) for the qualitative and quantitative investigation of groundwater discharge into and groundwater recharge from a river. DTS is based on the temperature dependence of Raman scattering. Light from a laser pulse is scattered along an optical fiber of up to several km length, which is the sensor of the DTS system. By sampling the the back-scattered light with high temporal resolution, the temperature along the fiber can be measured with high accuracy (0.1 K) and high spatial resolution (1 m). We used DTS at a test side at River Thur in North-East Switzerland. Here, the river is loosing and the aquifer is drained by two side-channels, enabling us to test DTS for both, groundwater recharge from the river and groundwater discharge into the side-channels. For estimation of seepage rates, we measured highly resolved vertical temperature profiles in the river bed. For this application, we wrapped an optical fiber around a piezometer tube and measured the temperature distribution along the fiber. Due to the wrapping, we obtained a vertical resolution of approximately 5 mm. We analyzed the temperature time series by means of Dynamic Harmonic Regression as presented by Keery et al. (2007

  6. Mapping of road-salt-contaminated groundwater discharge and estimation of chloride load to a small stream in southern New Hampshire, USA

    Science.gov (United States)

    Harte, P.T.; Trowbridge, P.R.

    2010-01-01

    Concentrations of chloride in excess of State of New Hampshire water-quality standards (230 mg/l) have been measured in watersheds adjacent to an interstate highway (I-93) in southern New Hampshire. A proposed widening plan for I-93 has raised concerns over further increases in chloride. As part of this effort, road-salt-contaminated groundwater discharge was mapped with terrain electrical conductivity (EC) electromagnetic (EM) methods in the fall of 2006 to identify potential sources of chloride during base-flow conditions to a small stream, Policy Brook. Three different EM meters were used to measure different depths below the streambed (ranging from 0 to 3 m). Results from the three meters showed similar patterns and identified several reaches where high EC groundwater may have been discharging. Based on the delineation of high (up to 350 mmhos/m) apparent terrain EC, seven-streambed piezometers were installed to sample shallow groundwater. Locations with high specific conductance in shallow groundwater (up to 2630 mmhos/m) generally matched locations with high streambed (shallow subsurface) terrain EC. A regression equation was used to convert the terrain EC of the streambed to an equivalent chloride concentration in shallow groundwater unique for this site. Utilizing the regression equation and estimates of onedimensional Darcian flow through the streambed, a maximum potential groundwater chloride load was estimated at 188 Mg of chloride per year. Changes in chloride concentration in stream water during streamflow recessions showed a linear response that indicates the dominant process affecting chloride is advective flow of chloride-enriched groundwater discharge. Published in 2010 by John Wiley & Sons, Ltd.

  7. Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China

    Science.gov (United States)

    Xu, Wei; Su, Xiaosi; Dai, Zhenxue; Yang, Fengtian; Zhu, Pucheng; Huang, Yong

    2017-11-01

    Environmental tracers (such as major ions, stable and radiogenic isotopes, and heat) monitored in natural waters provide valuable information for understanding the processes of river-groundwater interactions in arid areas. An integrated framework is presented for interpreting multi-tracer data (major ions, stable isotopes (2H, 18O), the radioactive isotope 222Rn, and heat) for delineating the river-groundwater interactions in Nalenggele River basin, northwest China. Qualitative and quantitative analyses were undertaken to estimate the bidirectional water exchange associated with small-scale interactions between groundwater and surface water. Along the river stretch, groundwater and river water exchange readily. From the high mountain zone to the alluvial fan, groundwater discharge to the river is detected by tracer methods and end-member mixing models, but the river has also been identified as a losing river using discharge measurements, i.e. discharge is bidirectional. On the delta-front of the alluvial fan and in the alluvial plain, in the downstream area, the characteristics of total dissolved solids values, 222Rn concentrations and δ18O values in the surface water, and patterns derived from a heat-tracing method, indicate that groundwater discharges into the river. With the environmental tracers, the processes of river-groundwater interaction have been identified in detail for better understanding of overall hydrogeological processes and of the impacts on water allocation policies.

  8. Vadose zone processes delay groundwater nitrate reduction response to BMP implementation as observed in paired cultivated vs. uncultivated potato rotation fields

    Science.gov (United States)

    Jiang, Y.; Nyiraneza, J.; Murray, B. J.; Chapman, S.; Malenica, A.; Parker, B.

    2017-12-01

    Nitrate leaching from crop production contributes to groundwater contamination and subsequent eutrophication of the receiving surface water. A study was conducted in a 7-ha potato-grain-forages rotation field in Prince Edward Island (PEI), Canada during 2011-2016 to link potato rotation practices and groundwater quality. The field consists of fine sandy loam soil and is underlain by 7-9 m of glacial till, which overlies the regional fractured ;red-bed; sandstone aquifer. The water table is generally located in overburden close to the bedrock interface. Field treatments included one field zone taken out of production in 2011 with the remaining zones kept under a conventional potato rotation. Agronomy data including crop tissue, soil, and tile-drain water quality were collected. Hydrogeology data including multilevel monitoring of groundwater nitrate and hydraulic head and data from rock coring for nitrate distribution in overburden and bedrock matrix were also collected. A significant amount of nitrate leached below the soil profile after potato plant kill (referred to as topkill) in 2011, most of it from fertilizer N. A high level of nitrate was also detected in the till vadose zone through coring in December 2012 and through multilevel groundwater sampling from January to May 2014 in both cultivated and uncultivated field zones. Groundwater nitrate concentrations increased for about 2.5 years after the overlying potato field was removed from production. Pressure-driven uniform flow processes dominate water and nitrate transport in the vadose zone, producing an apparently instant water table response but a delayed groundwater quality response to nitrate leaching events. These data suggest that the uniform flow dominated vadose zone in agricultural landscapes can cause the accumulation of a significant amount of nitrate originated from previous farming activities, and the long travel time of this legacy nitrate in the vadose zone can result in substantially delayed

  9. Impacts of model initialization on an integrated surface water - groundwater model

    KAUST Repository

    Ajami, Hoori

    2015-04-01

    Integrated hydrologic models characterize catchment responses by coupling the subsurface flow with land surface processes. One of the major areas of uncertainty in such models is the specification of the initial condition and its influence on subsequent simulations. A key challenge in model initialization is that it requires spatially distributed information on model states, groundwater levels and soil moisture, even when such data are not routinely available. Here, the impact of uncertainty in initial condition was explored across a 208 km2 catchment in Denmark using the ParFlow.CLM model. The initialization impact was assessed under two meteorological conditions (wet vs dry) using five depth to water table and soil moisture distributions obtained from various equilibrium states (thermal, root zone, discharge, saturated and unsaturated zone equilibrium) during the model spin-up. Each of these equilibrium states correspond to varying computation times to achieve stability in a particular aspect of the system state. Results identified particular sensitivity in modelled recharge and stream flow to the different initializations, but reduced sensitivity in modelled energy fluxes. Analysis also suggests that to simulate a year that is wetter than the spin-up period, an initialization based on discharge equilibrium is adequate to capture the direction and magnitude of surface water–groundwater exchanges. For a drier or hydrologically similar year to the spin-up period, an initialization based on groundwater equilibrium is required. Variability of monthly subsurface storage changes and discharge bias at the scale of a hydrological event show that the initialization impacts do not diminish as the simulations progress, highlighting the importance of robust and accurate initialization in capturing surface water–groundwater dynamics.

  10. Nitrate retention in a sand plains stream and the importance of groundwater discharge

    Science.gov (United States)

    Robert S. Stelzer; Damion R. Drover; Susan L. Eggert; Maureen A. Muldoon

    2011-01-01

    We measured net nitrate retention by mass balance in a 700-m upwelling reach of a third-order sand plains stream, Emmons Creek, from January 2007 to November 2008. Surface water and ground-water fluxes of nitrate were determined from continuous records of discharge and from nitrate concentrations based on weekly and biweekly sampling at three surface water stations and...

  11. Preliminary Analysis of the Role of Wetlands and Rivers in the Groundwater Discharge of the Guarani Aquifer System in NE Argentina

    International Nuclear Information System (INIS)

    Vives, L.; Rodriguez, L.; Manzano, M.; Valladares, A.; Agarwaal, P.; Araguas, L.

    2011-01-01

    The Guarani Aquifer System (GAS) is a transboundary aquifer occupying parts of Brazil, Uruguay, Paraguay and Argentina, covering some 1200000 km''2. The location and magnitude of recharge and the magnitude of regional discharges are uncertain. Regional groundwater flow modeling suggests that some discharge may occur through selected reaches of the Parana and Uruguay rivers and their tributaries, and perhaps, through the Ibera wetland system within Argentina. Preliminary findings of hydrochemical and isotopic sampling and analysis from surface water and groundwater in the Southern GAS region, studying the role of rivers and wetlands in the aquifer discharge and revising the conceptual model, are presented.

  12. Integration of ground-water and vadose-zone geochemistry to investigate hydrochemical evolution

    International Nuclear Information System (INIS)

    Fisher, R.S.; Mullican, W.F.

    1990-01-01

    This paper summarizes the results of an extensive groundwater-sampling program conducted in the Hueco Bolson and Diablo Plateau area of West Texas. The origin, hydrochemical evolution, and age of groundwater in arid lands of Trans-Pecos Texas were investigated by combining mineralogic analyses of soils and aquifer matrix, chemical analyses of readily soluble materials in soils and water extracted from the thick, unsaturated zone, and chemical and isotopic analyses of groundwater from three principal aquifers, the Diablo Plateau, Hueco Bolson, and Rio Grande alluvial aquifers. Repeated groundwater sampling over a 3-year period and quarterly sampling of selected wells revealed no significant short-term chemical or isotopic variability. Groundwater ages range from recent to nearly 28,000 years; the distribution of ages reflects relative permeability (transmissivity) of the aquifers. Most groundwaters evolve from calcium-bicarbonate to sodium-sulfate types because of carbonate and sulfate mineral dissolution coupled with exchange of aqueous calcium and magnesium for sodium on clay minerals. Water in the Rio Grande alluvial aquifer evolved to a sodium-chloride type as a result of extensive evapotranspiration on irrigated fields. The appendices list detailed results of field measurements of temperature, pH, Eh, dissolved oxygen, and major ion concentrations

  13. Application of a GIS-/remote sensing-based approach for predicting groundwater potential zones using a multi-criteria data mining methodology.

    Science.gov (United States)

    Mogaji, Kehinde Anthony; Lim, Hwee San

    2017-07-01

    This study integrates the application of Dempster-Shafer-driven evidential belief function (DS-EBF) methodology with remote sensing and geographic information system techniques to analyze surface and subsurface data sets for the spatial prediction of groundwater potential in Perak Province, Malaysia. The study used additional data obtained from the records of the groundwater yield rate of approximately 28 bore well locations. The processed surface and subsurface data produced sets of groundwater potential conditioning factors (GPCFs) from which multiple surface hydrologic and subsurface hydrogeologic parameter thematic maps were generated. The bore well location inventories were partitioned randomly into a ratio of 70% (19 wells) for model training to 30% (9 wells) for model testing. Application results of the DS-EBF relationship model algorithms of the surface- and subsurface-based GPCF thematic maps and the bore well locations produced two groundwater potential prediction (GPP) maps based on surface hydrologic and subsurface hydrogeologic characteristics which established that more than 60% of the study area falling within the moderate-high groundwater potential zones and less than 35% falling within the low potential zones. The estimated uncertainty values within the range of 0 to 17% for the predicted potential zones were quantified using the uncertainty algorithm of the model. The validation results of the GPP maps using relative operating characteristic curve method yielded 80 and 68% success rates and 89 and 53% prediction rates for the subsurface hydrogeologic factor (SUHF)- and surface hydrologic factor (SHF)-based GPP maps, respectively. The study results revealed that the SUHF-based GPP map accurately delineated groundwater potential zones better than the SHF-based GPP map. However, significant information on the low degree of uncertainty of the predicted potential zones established the suitability of the two GPP maps for future development of

  14. Radon as a groundwater tracer in Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Grolander, Sara

    2009-10-15

    Radon concentrations were measured in different water types in Forsmark and Laxemar during the site investigation and within this study. From these measurements it can be concluded that large differences between surface water, near surface groundwater and deep groundwater can be found in both Laxemar and Forsmark. The differences in radon concentrations between different water types are used in this study to detect interactions between surface water, near surface water and deep groundwater. From the radon measurements it can also be concluded that radon concentration in deep groundwater varies largely with depth. These variations with depth are probably caused by groundwater flow in conductive fracture zones in the bedrock. The focus of this study has been the radon concentration of near surface groundwater and the interaction between near surface groundwater and deep groundwater. Radon measurements have been done using the RAD-7 radon detector within this study. It could be concluded that RAD-7 is a good technique for radon measurements and also easy to use in field. The radon concentrations measured in near surface groundwater in Laxemar within this study were low and homogenous. The variation in radon concentration has been analyses and compared to other parameters. Since the hypothesis of this study has been that there are differences in radon concentrations between recharging and discharging groundwater, the most important parameter to consider is the recharge/discharge field classification of the wells. No correlation between the recharge/discharge classifications of wells and the radon concentrations were found. The lack of correlation between groundwater flow patterns and radon concentration means that it is not possible to detect flow patterns in near surface groundwater using radon as a tracer in the Laxemar area. The lack of correlation can be caused by the fact that there are just a few wells located in areas classified as recharge area. It can also be

  15. Global land–ocean linkage: direct inputs of nitrogen to coastal waters via submarine groundwater discharge

    International Nuclear Information System (INIS)

    Beusen, A H W; Slomp, C P; Bouwman, A F

    2013-01-01

    The role of submarine groundwater discharge (SGD), the leakage of groundwater from aquifers into coastal waters, in coastal eutrophication has been demonstrated mostly for the North American and European coastlines, but poorly quantified in other regions. Here, we present the first spatially explicit global estimates of N inputs via SGD to coastal waters and show that it has increased from about 1.0 to 1.4 Tg of nitrate (NO 3 -N) per year over the second half of the 20th century. Since this increase is not accompanied by an equivalent increase of groundwater phosphorus (P) and silicon (Si), SGD transport of nitrate is an important factor for the development of harmful algal blooms in coastal waters. Groundwater fluxes of N are linked to areas with high runoff and intensive anthropogenic activity on land, with Southeast Asia, parts of North and Central America, and Europe being hot spots. (letter)

  16. Analysis of groundwater flow beneath ice sheets

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G. S.; Zatsepin, S.; Maillot, B. [Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix.

  17. Analysis of groundwater flow beneath ice sheets

    International Nuclear Information System (INIS)

    Boulton, G. S.; Zatsepin, S.; Maillot, B.

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix

  18. Groundwater composition fluctuation within technogenic zones (case study: flooded coal mines in Primorsky Krai, Russia)

    Science.gov (United States)

    Tarasenko, I. A.; Zinkov, A. V.; Vakh, E. A.; Vetoshkina, A. V.; Strelnikova, A. B.

    2016-03-01

    The paper considers groundwater composition fluctuation within technogenic zones based on evidence from the flooded coal mines of Primorye. The authors have determined the regularities of hydrogeochemical processes, specified the groundwater composition fluctuation within the technogenic complexes located in the liquidated mine areas, and identified the equilibrium phases between the studied waters and specific secondary minerals. It has been proved that water within natural-technogenic complexes in the liquidated mine areas are saturated with silicates, carbonates, sulfates, oxides, and hydroxides, which should be taken into account when designing technologies for groundwater treatment.

  19. Use of Interface Treatment to Reduce Emissions from Residuals in Lower Permeability Zones to Groundwater flowing Through More Permeable Zones (Invited)

    Science.gov (United States)

    Johnson, P.; Cavanagh, B.; Clifton, L.; Daniels, E.; Dahlen, P.

    2013-12-01

    Many soil and groundwater remediation technologies rely on fluid flow for contaminant extraction or reactant delivery (e.g., soil vapor extraction, pump and treat, in situ chemical oxidation, air sparging, enhanced bioremediation). Given that most unconsolidated and consolidated settings have permeability contrasts, the outcome is often preferential treatment of more permeable zones and ineffective treatment of the lower permeability zones. When this happens, post-treatment contaminant emissions from low permeability zone residuals can cause unacceptable long-term impacts to groundwater in the transmissive zones. As complete remediation of the impacted lower permeability zones may not be practicable with conventional technologies, one might explore options that lead to reduction of the contaminant emissions to acceptable levels, rather than full remediation of the lower permeability layers. This could be accomplished either by creating a sustained emission reaction/attenuation zone at the high-low permeability interface, or by creating a clean soil zone extending sufficiently far into the lower permeability layer to cause the necessary reduction in contaminant concentration gradient and diffusive emission. These options are explored in proof-of-concept laboratory-scale physical model experiments. The physical models are prepared with two layers of contrasting permeability and either dissolved matrix storage or nonaqueous phase liquid (NAPL) in the lower permeability layer. A dissolved oxidant is then delivered to the interface via flow across the higher permeability layer and changes in contaminant emissions from the low permeability zone are monitored before, during, and after oxidant delivery. The use of three oxidants (dissolved oxygen, hydrogen peroxide and sodium persulfate) for treatment of emissions from petroleum hydrocarbon residuals is examined.

  20. Investigation of Submarine Groundwater Discharge and Preferential Groundwater Flow-paths in a Coastal Karst Area using towed Marine and Terrestrial Electrical Resistivity

    Science.gov (United States)

    O'connell, Y.; Daly, E.; Duffy, G.; Henry, T.

    2012-12-01

    Large volumes of groundwater, containing nutrients and contaminants enter the coastal waters of southern Galway Bay on the west coast of Ireland through submarine groundwater discharge (SGD). The SGD occurs through karstified Carboniferous limestone in a major karst region comprising the Burren and Gort Lowlands. The Carboniferous limestones have experienced extensive dissolution resulting in the development of an underground network of conduits and fissures that define a trimodal groundwater flow pattern across the region. Groundwater discharge to the sea in this area is exclusively intertidal and submarine. Storage in the karst is limited and typical winter rainfall conditions result in the karst system becoming saturated. Temporary lakes (turloughs) form in lowlying areas and act as large reservoirs which provide storage to enable the transmission of the large volumes of water in the system to the sea. Between 2010 and 2012, terrestrial and shallow marine geophysical surveying has been undertaken to investigate preferential groundwater flow-paths and SGD locations in order to quantify the groundwater-seawater interactions in this coastal karst system. A report into the groundwater system of this karst region following a major flood event proposed a conceptual conduit model defined by extensive water tracing, water level monitoring, hydrochemical sampling, geological mapping and drilling. Limited information about the dimensions of the conduits was known. Electrical resistivity tomography (ERT) profiling to depths of 100m below ground level, with multiple array configurations, has been carried out to investigate the modes of groundwater flow in to and out of both temporary and permanent freshwater lakes in the system. Towed dipole-dipole profiles have been recorded to investigate conduits beneath a permanent lake exhibiting a tidal influence despite its location 5.5 km from the seashore. The ERT data indicates significant variations in subsurface resistivities

  1. Inferring Groundwater Age in an Alluvial Aquifer from Tracer Concentrations in the Stream - Little Wind River, Wyoming

    Science.gov (United States)

    Goble, D.; Gardner, W. P.; Naftz, D. L.; Solder, J. E.

    2017-12-01

    We use environmental tracers: CFC's, SF6, and 222Rn measured in stream water to determine volume and mean age of groundwater discharging to the Little Wind River, near Riverton, Wyoming. Samples of 222Rn were collected every 200 m along a 2 km reach, surrounding a known groundwater discharge zone. Nearby groundwater wells, in-stream piezometers and seepage meters were sampled for 222Rn, CFC's and SF6. Tracer concentrations measured in groundwater and in-stream piezometers were used to estimate the mean age of the subsurface system. High resolution 222Rn samples were used to determine the location and volume of groundwater inflow using a model of instream transport that includes radioactive decay and gas exchange with the atmosphere. The age of groundwater entering the stream was then estimated from in-stream measured CFC and SF6 concentrations using a new coupled stream transport and lumped-parameter groundwater age model. Ages derived from in-stream measurements were then compared to the age of subsurface water measured in piezometers, seepage meters, and groundwater wells. We then asses the ability of groundwater age inferred from in-stream samples to provide constraint on the age of the subsurface discharge to the stream. The ability to asses groundwater age from in-stream samples can provide a convenient method to constrain the regional distribution of groundwater circulation rates when groundwater sampling is challenging or wells are not in place.

  2. Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, David; Roos, Gillian [Golder Associates Ltd., 2390 Argentia Road, Mississauga, ON L5N 5Z7 (Canada); Ferguson Jones, Andrea [MMM Group Ltd., 100 Commerce Valley Drive West, Thornhill, ON L3T 0A1 (Canada); Case, Glenn [AECL Port Hope Area Initiative Management Office, 115 Toronto Road, Port Hope, ON L1A 3S4 (Canada); Yule, Adam [Public Works and Government Services Canada, 4900 Yonge Street, 11th Floor, Toronto, ON, M2N 6A6 (Canada)

    2013-07-01

    The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSR have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground

  3. Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447

    International Nuclear Information System (INIS)

    Smyth, David; Roos, Gillian; Ferguson Jones, Andrea; Case, Glenn; Yule, Adam

    2013-01-01

    The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSR have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground surface

  4. Evaluating the human impact on groundwater quality discharging into a coastal reef lagoon

    Science.gov (United States)

    Rebolledo-Vieyra, M.; Hernandez-Terrones, L.; Soto, M.; Lecossec, A.; Monroy-Rios, E.

    2008-12-01

    The Eastern coast of the Yucatan Peninsula has the fastest growth rate in Mexico and groundwater is the only source of drinking water in the region. The consequences of the lack of proper infrastructure to collect and treat wastewater and the impact of human activities on the quality of groundwater are addressed. The groundwater in the coastal aquifer of Quintana Roo (SE Mexico) discharges directly into the ocean. In addition, the coral reef of the Eastern Yucatan Peninsula is part of the Mesoamerican Coral Reef System, one of the largest in the world. The interaction of the reef-lagoon hydraulics with the coastal aquifer of Puerto Morelos (NE Yucatan Peninsula), and a major input of NH4, SO4, SiO2, as a consequence of the use of septic tanks and the lack of modern wastewater treatment plants are presented. No seasonal parameters differences were observed, suggesting that groundwater composition reaching the reef lagoon is not changing seasonally. A conceptual model of the coastal aquifer was developed, in order to explain how the human activities are impacting directly on the groundwater quality that, potentially, will have a direct impact on the coral reef. The protection and conservation of coral reefs must be directly related with a policy of sound management of coastal aquifers and wastewater treatment.

  5. Submarine groundwater discharge and nutrient addition to the coastal zone of the Godavari estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Rengarajan, R.; Sarma, V.V.S.S.

    .8 d during November 2011. Knowing the water age, the distribution of radium in the estuary, and the radium isotopic composition of groundwater enabled us to calculate SGD fluxes to the estuary. These fluxes (in units of 106 m3 d...

  6. Preliminary study on acceptability of scope of thermal discharge mixing zone for nuclear power plant

    International Nuclear Information System (INIS)

    Liu Yongye; Yang Yang; Wang Liang; Chen Xiaoqiu; Liu Senlin

    2012-01-01

    Based on the situation that the existing domestic temperature control standards are not performable, the preliminary study on the acceptability of the mixing zone scope of thermal discharge for nuclear power plant was conducted in this paper, taking a coastal power station SNP as a case. The following preliminary conclusions could be drawn from the results of cluster analysis of the SNP site under different results of mathematical modeling and physical model test: 1) The influence intensity of ecological function of the SNP site seawater is small and the scope of thermal discharge mixing zone is acceptable under SNP-1 (Unit 1 and 2) operating condition; 2) the influence intensity of ecological function of the SNP site seawater is small and the scope of thermal discharge mixing zone is acceptable in spring under SNP-1 (Unit 1 and 2) and SNP-2 (Unit 3 and 4) operating condition, while the influence intensity of ecological function of the SNP site seawater is large and the scope of mixing zone is unacceptable in autumn under the same operating condition. (authors)

  7. Water quality responses to the interaction between surface water and groundwater along the Songhua River, NE China

    Science.gov (United States)

    Teng, Yanguo; Hu, Bin; Zheng, Jieqiong; Wang, Jinsheng; Zhai, Yuanzheng; Zhu, Chen

    2018-03-01

    Investigation of surface water and groundwater interaction (SW-GW interaction) provides basic information for regional water-resource protection, management, and development. In this survey of a 10-km-wide area along both sides of the Songhua River, northeast China, the hydrogeochemical responses to different SW-GW interactions were studied. Three types of SW-GW interactions were identified—"recharge", "discharge", and "flow-through"—according to the hydraulic connection between the surface water and groundwater. The single factor index, principal component analysis, and hierarchical cluster analysis of the hydrogeochemistry and pollutant data illuminated the hydrogeochemical response to the various SW-GW interactions. Clear SW-GW interactions along the Songhua River were revealed: (1) upstream in the study area, groundwater usually discharges into the surface water, (2) groundwater is recharged by surface water downstream, and (3) discharge and flow-through coexist in between. Statistical analysis indicated that the degree of hydrogeochemical response in different types of hydraulic connection varied, being clear in recharge and flow-through modes, and less obvious in discharge mode. During the interaction process, dilution, adsorption, redox reactions, nitrification, denitrification, and biodegradation contributed to the pollutant concentration and affected hydrogeochemical response in the hyporheic zone.

  8. Hydrogeology, groundwater flow, and groundwater quality of an abandoned underground coal-mine aquifer, Elkhorn Area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; McCoy, Kurt J.; Britton, James Q.; Blake, B.M.

    2017-01-01

    abandoned mine workings in the Pocahontas No. 3 coal seam and underlying strata in various structural settings of the Turkey Gap and adjacent down-dip mines. Geophysical logging and aquifer testing were conducted on the boreholes to locate the coal- mine aquifers, characterize fracture geometry, and define permeable zones within strata overlying and underlying the Pocahontas No. 3 coal-mine aquifer. Water levels were measured monthly in the wells and showed a relatively static phreatic zone within subsided strata a few feet above the top of or within the Pocahontas No. 3 coal-mine aquifer (PC3MA). A groundwater-flow model was developed to verify and refine the conceptual understanding of groundwater flow and to develop groundwater budgets for the study area. The model consisted of four layers to represent overburden strata, the Pocahontas No. 3 coal-mine aquifer, underlying fractured rock, and fractured rock below regional drainage. Simulation of flow in the flooded abandoned mine entries using highly conductive layers or zones within the model, was unable to realistically simulate interbasin transfer of water. Therefore it was necessary to represent the coal-mine aquifer as an internal boundary condition rather than a contrast in aquifer properties. By representing the coal-mine aquifer with a series of drain nodes and optimizing input parameters with parameter estimation software, model errors were reduced dramatically and discharges for Elkhorn Creek, Johns Knob Branch, and other tributaries were more accurately simulated. Flow in the Elkhorn Creek and Johns Knob Branch watersheds is dependent on interbasin transfer of water, primarily from up dip areas of abandoned mine workings in the Pocahontas No. 3 coal-mine aquifer within the Bluestone River watershed to the east. For the 38th, 70th, and 87th percentile flow duration of streams in the region, mean measured groundwater discharge was estimated to be 1.30, 0.47, and 0.39 cubic feet per square mile (ft3/s/mi2

  9. Response to recharge variation of thin rainwater lenses and their mixing zone with underlying saline groundwater

    Directory of Open Access Journals (Sweden)

    S. Eeman

    2012-10-01

    Full Text Available In coastal zones with saline groundwater, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not constant, which may adversely affect agricultural and natural vegetation if saline water reaches the root zone during the growing season. In this paper, we study the response of thin lenses and their mixing zone to variation of recharge. The recharge is varied using sinusoids with a range of amplitudes and frequencies. We vary lens characteristics by varying the Rayleigh number and Mass flux ratio of saline and fresh water, as these dominantly influence the thickness of thin lenses and their mixing zone. Numerical results show a linear relation between the normalised lens volume and the main lens and recharge characteristics, enabling an empirical approximation of the variation of lens thickness. Increase of the recharge amplitude causes increase and the increase of recharge frequency causes a decrease in the variation of lens thickness. The average lens thickness is not significantly influenced by these variations in recharge, contrary to the mixing zone thickness. The mixing zone thickness is compared to that of a Fickian mixing regime. A simple relation between the travelled distance of the centre of the mixing zone position due to variations in recharge and the mixing zone thickness is shown to be valid for both a sinusoidal recharge variation and actual records of daily recharge data. Starting from a step response function, convolution can be used to determine the effect of variable recharge in time. For a sinusoidal curve, we can determine delay of lens movement compared to the recharge curve as well as the lens amplitude, derived from the convolution integral. Together the proposed equations provide us with a first order approximation of lens

  10. Three-dimensional modeling of nitrate-N transport in vadose zone: Roles of soil heterogeneity and groundwater flux

    Science.gov (United States)

    Akbariyeh, Simin; Bartelt-Hunt, Shannon; Snow, Daniel; Li, Xu; Tang, Zhenghong; Li, Yusong

    2018-04-01

    Contamination of groundwater from nitrogen fertilizers in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have considered a controlled field work to investigate the influence of soil heterogeneity and groundwater flow on nitrate-N distribution in both root zone and deep vadose zone. In this work, a numerical model was developed to simulate nitrate-N transport and transformation beneath a center pivot-irrigated corn field on Nebraska Management System Evaluation area over a three-year period. The model was based on a realistic three-dimensional sediment lithology, as well as carefully controlled irrigation and fertilizer application plans. In parallel, a homogeneous soil domain, containing the major sediment type of the site (i.e. sandy loam), was developed to conduct the same water flow and nitrate-N leaching simulations. Simulated nitrate-N concentrations were compared with the monitored nitrate-N concentrations in 10 multi-level sampling wells over a three-year period. Although soil heterogeneity was mainly observed from top soil to 3 m below the surface, heterogeneity controlled the spatial distribution of nitrate-N concentration. Soil heterogeneity, however, has minimal impact on the total mass of nitrate-N in the domain. In the deeper saturated zone, short-term variations of nitrate-N concentration correlated with the groundwater level fluctuations.

  11. Climate change impact on groundwater levels in the Guarani Aquifer outcrop zone

    Science.gov (United States)

    Melo, D. D.; Wendland, E.

    2013-12-01

    The unsustainable use of groundwater in many countries might cause water availability restrictions in the future. Such issue is likely to worsen due to predicted climate changes for the incoming decades. As numerous studies suggest, aquifers recharge rates will be affected as a result of climate change. The Guarani Aquifer System (GAS) is one of the most important transboundary aquifer in the world, providing drinkable water for millions of people in four South American countries (Brazil, Argentina, Uruguay and Paraguay). Considering the GAS relevance and how its recharge rates might be altered by climatic conditions anomalies, the objective of this work is to assess possible climate changes impacts on groundwater levels in this aquifer outcrop zone. Global Climate Models' (GCM) outputs were used as inputs in a transient flux groundwater model created using the software SPA (Simulation of Process in Aquifers), enabling groundwater table fluctuation to be evaluated under distinct climatic scenarios. Six monitoring wells, located in a representative basin (Ribeirão da Onça basin) inside a GAS outcrop zone (ROB), provided water table measurements between 2004 and 2011 to calibrate the groundwater model. Using observed climatic data, a water budget method was applied to estimate recharge in different types of land uses. Statistically downscaled future climate scenarios were used as inputs for that same recharge model, which provided data for running SPA under those scenarios. The results show that most of the GCMs used here predict temperature arises over 275,15 K and major monthly rainfall mean changes to take place in the dry season. During wet seasons, those means might experience around 50% decrease. The transient model results indicate that water table variations, derived from around 70% of the climate scenarios, would vary below those measured between 2004 and 2011. Among the thirteen GCMs considered in this work, only four of them predicted more extreme

  12. Estimation of nearshore groundwater discharge and its potential effects on a fringing coral reef

    International Nuclear Information System (INIS)

    Blanco, Ariel C.; Watanabe, Atsushi; Nadaoka, Kazuo; Motooka, Shunsuke; Herrera, Eugene C.; Yamamoto, Takahiro

    2011-01-01

    Research highlights: → We characterized SGD in a fringing coral reef using radon tracing. → End-member Rn and gas transfer rate significantly affect flux estimation accuracy. → Reef SGD is strongly influenced by tidal pumping and hydraulic gradient. → SGD elevated nitrate concentrations, which drastically increased nearshore Chl-a. → SGD significantly induced the proliferation of cyanobacteria in nearshore reef areas. - Abstract: Radon ( 222 Rn) measurements were conducted in Shiraho Reef (Okinawa, Japan) to investigate nearshore submarine groundwater discharge (SGD nearshore ) dynamics. Estimated average groundwater flux was 2-3 cm/h (maximum 7-8 cm/h). End-member radon concentration and gas transfer coefficient were identified as major factors influencing flux estimation accuracy. For the 7-km long reef, SGD nearshore was 0.39-0.58 m 3 /s, less than 30% of Todoroki River's baseflow discharge. SGD nearshore was spatially and temporally variable, reflecting the strong influence of subsurface geology, tidal pumping, groundwater recharge, and hydraulic gradient. SGD nearshore elevated nearshore nitrate concentrations (0.8-2.2 mg/l) to half of Todoroki River's baseflow NO 3 - N (2-4 mg/L). This increased nearshore Chl-a from 0.5-2 μg/l compared to the typically low Chl-a (<0.1-0.4 μg/l) in the moat. Diatoms and cyanobacteria concentrations exhibited an increasing trend. However, the percentage contributions of diatoms and cyanobacteria significantly decreased and increased, respectively. SGD may significantly induce the proliferation of cyanobacteria in nearshore reef areas.

  13. A Low-Level Real-Time In Situ Monitoring System for Tritium in Groundwater and Vadose Zone

    Science.gov (United States)

    Santo, J. T.; Levitt, D. G.

    2002-12-01

    Tritium is a radioactive isotope of hydrogen produced as a by-product of the nuclear fuel cycle. It is also an integral part of the nuclear weapons industry and has been released into the environment through both the production and testing of nuclear weapons. There are many sites across the DOE complex where tritium has been released into the subsurface through the disposal of radioactive waste and at the Nevada Test Site, through the underground testing of nuclear weapons. Numerous DOE facilities have an on-going regulatory need to be able to monitor tritium concentrations in groundwater within deep hydrologic zones and in the shallower non-saturated vadose zone beneath waste disposal pits and shafts and other release sites. Typical access to groundwater is through deep monitoring wells and situated in remote locations. In response to this need, Science and Engineering Associates, Inc. (SEA) and its subcontractor, the University of Nevada Las Vegas (UNLV) Harry Reid Center (HRC) for Environmental Studies has conducted the applied research and engineering and produced a real time, in situ monitoring system for the detection and measurement of low levels of tritium in the groundwater and in the shallower vadose zone. The monitoring system has been deployed to measure tritium in both the vadose zone near a subsurface radioactive waste package and the groundwater in a deep hydrologic reservoir at the Nevada Test Site. The monitoring system has been designed to detect tritium in the subsurface below federal and/or state regulatory limits for safe drinking water and has been successfully demonstrated. The development effort is being funded through the U.S. Department of Energy, National Energy Technology Laboratory and the DOE Nevada Operations Office Advanced Monitoring Systems Initiative (AMSI).

  14. Fluid flow in crystalline rocks: Relationships between groundwater spring alignments and other surface lineations at Altnabreac, United Kingdom

    International Nuclear Information System (INIS)

    Brereton, N.R.; McEwen, T.J.; Lee, M.K.

    1987-01-01

    The Strath Halladale Granite in the region around Altnabreac, northern Scotland, United Kingdom, has been studied with a view to establishing a relationship between the regional distribution of faults and fracture zones, surface discharges of groundwater, and groundwater flow systems. A major component of the groundwater flow is through the rock fractures. Because of the extensive superficial cover the surface expression of major fractures was difficult to identify from the limited surface exposures. Geophysical surveys and aerial photography enabled the authors to define lineations which could be related to the presence of fractures. The areal distribution of groundwater spring discharges was mapped using thermal infrared line scan techniques. The distribution of these springs has been studied to assess their relationships to surface lineaments and to correlations with geophysical and fracture mapping data. copyright American Geophysical Union 1987

  15. River water infiltration enhances denitrification efficiency in riparian groundwater.

    Science.gov (United States)

    Trauth, Nico; Musolff, Andreas; Knöller, Kay; Kaden, Ute S; Keller, Toralf; Werban, Ulrike; Fleckenstein, Jan H

    2018-03-01

    Nitrate contamination in ground- and surface water is a persistent problem in countries with intense agriculture. The transition zone between rivers and their riparian aquifers, where river water and groundwater interact, may play an important role in mediating nitrate exports, as it can facilitate intensive denitrification, which permanently removes nitrate from the aquatic system. However, the in-situ factors controlling riparian denitrification are not fully understood, as they are often strongly linked and their effects superimpose each other. In this study, we present the evaluation of hydrochemical and isotopic data from a 2-year sampling period of river water and groundwater in the riparian zone along a 3rd order river in Central Germany. Based on bi- and multivariate statistics (Spearman's rank correlation and partial least squares regression) we can show, that highest rates for oxygen consumption and denitrification in the riparian aquifer occur where the fraction of infiltrated river water and at the same time groundwater temperature, are high. River discharge and depth to groundwater are additional explanatory variables for those reaction rates, but of minor importance. Our data and analyses suggest that at locations in the riparian aquifer, which show significant river water infiltration, heterotrophic microbial reactions in the riparian zone may be fueled by bioavailable organic carbon derived from the river water. We conclude that interactions between rivers and riparian groundwater are likely to be a key control of nitrate removal and should be considered as a measure to mitigate high nitrate exports from agricultural catchments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Unsaturated-zone fast-path flow calculations for Yucca Mountain groundwater travel time analyses (GWTT-94)

    International Nuclear Information System (INIS)

    Arnold, B.W.; Altman, S.J.; Robey, T.H.

    1995-08-01

    Evaluation of groundwater travel time (GWTT) is required as part of the investigation of the suitability of Yucca Mountain as a potential high-level nuclear-waste repository site. The Nuclear Regulatory Commission's GWTT regulation is considered to be a measure of the intrinsic ability of the site to contain radionuclide releases from the repository. The work reported here is the first step in a program to provide an estimate of GWTT at the Yucca Mountain site in support of the DOE's Technical Site Suitability and as a component of a license application. Preliminary estimation of the GWTT distribution in the unsaturated zone was accomplished using a numerical model of the physical processes of groundwater flow in the fractured, porous medium of the bedrock. Based on prior investigations of groundwater flow at the site, fractures are thought to provide the fastest paths for groundwater flow; conditions that lead to flow in fractures were investigated and simulated. Uncertainty in the geologic interpretation of Yucca Mountain was incorporated through the use of geostatistical simulations, while variability of hydrogeologic parameters within each unit was accounted for by the random sampling of parameter probability density functions. The composite-porosity formulation of groundwater flow was employed to simulate flow in both the matrix and fracture domains. In this conceptualization, the occurrence of locally saturated conditions within the unsaturated zone is responsible for the initiation of fast-path flow through fractures. The results of the GWTT-94 study show that heterogeneity in the hydraulic properties of the model domain is an important factor in simulating local regions of high groundwater saturation. Capillary-pressure conditions at the surface boundary influence the extent of the local saturation simulated

  17. Investigation of land subsidence due to groundwater withdraw in Rafsanjan plain using GIS software

    International Nuclear Information System (INIS)

    Rahnama, M. B; Moafi H

    2009-01-01

    Nowadays, the purpose of predicting land subsidence is to manage the optimum usage of groundwater, which is considered according to irregular use of groundwater. Digging deep and semi-deep wells and continuous drought, mainly in wasteland and semi-wasteland zone in recent years causes the land subsidence in Rafsanjan plain. The Rafsanjan basin is located in the nearly central part of Iran in the Kerman province, with a general elevation between 1,400-1,500 m above sea level. In this research, first, the deep and semi-deep wells were investigated and groundwater table data were colleted. Second, these informations were analyzed and corrected. These data were used to create great bank of information data, to manage and program the geographic information system (GIS) software. Then by investigation of an existing land subsidence data, which were collected by GPS in August 1998 and April 1999, by the GIS software, the results show that discharging of groundwater is the main factor of the land subsidence in Rafsanjan zone. Therefore, the critical land subsidence zone of the Rafsanjan plain was determined, and precaution and recommendations are presented. (author)

  18. Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand-bed stream

    Science.gov (United States)

    Rosenberry, Donald O.; Briggs, Martin A.; Delin, Geoffrey N.; Hare, Danielle K.

    2016-01-01

    Quantifying flow of groundwater through streambeds often is difficult due to the complexity of aquifer-scale heterogeneity combined with local-scale hyporheic exchange. We used fiber-optic distributed temperature sensing (FO-DTS), seepage meters, and vertical temperature profiling to locate, quantify, and monitor areas of focused groundwater discharge in a geomorphically simple sand-bed stream. This combined approach allowed us to rapidly focus efforts at locations where prodigious amounts of groundwater discharged to the Quashnet River on Cape Cod, Massachusetts, northeastern USA. FO-DTS detected numerous anomalously cold reaches one to several m long that persisted over two summers. Seepage meters positioned upstream, within, and downstream of 7 anomalously cold reaches indicated that rapid groundwater discharge occurred precisely where the bed was cold; median upward seepage was nearly 5 times faster than seepage measured in streambed areas not identified as cold. Vertical temperature profilers deployed next to 8 seepage meters provided diurnal-signal-based seepage estimates that compared remarkably well with seepage-meter values. Regression slope and R2 values both were near 1 for seepage ranging from 0.05 to 3.0 m d−1. Temperature-based seepage model accuracy was improved with thermal diffusivity determined locally from diurnal signals. Similar calculations provided values for streambed sediment scour and deposition at subdaily resolution. Seepage was strongly heterogeneous even along a sand-bed river that flows over a relatively uniform sand and fine-gravel aquifer. FO-DTS was an efficient method for detecting areas of rapid groundwater discharge, even in a strongly gaining river, that can then be quantified over time with inexpensive streambed thermal methods.

  19. Temporal scaling of groundwater level fluctuations near a stream

    Science.gov (United States)

    Schilling, K.E.; Zhang, Y.-K.

    2012-01-01

    Temporal scaling in stream discharge and hydraulic heads in riparian wells was evaluated to determine the feasibility of using spectral analysis to identify potential surface and groundwater interaction. In floodplains where groundwater levels respond rapidly to precipitation recharge, potential interaction is established if the hydraulic head (h) spectrum of riparian groundwater has a power spectral density similar to stream discharge (Q), exhibiting a characteristic breakpoint between high and low frequencies. At a field site in Walnut Creek watershed in central Iowa, spectral analysis of h in wells located 1 m from the channel edge showed a breakpoint in scaling very similar to the spectrum of Q (~20 h), whereas h in wells located 20 and 40 m from the channel showed temporal scaling from 1 to 10,000 h without a well-defined breakpoint. The spectral exponent (??) in the riparian zone decreased systematically from the channel into the floodplain as groundwater levels were increasingly dominated by white noise groundwater recharge. The scaling pattern of hydraulic head was not affected by land cover type, although the number of analyses was limited and site conditions were variable among sites. Spectral analysis would not replace quantitative tracer or modeling studies, but the method may provide a simple means of confirming potential interaction at some sites. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.

  20. Groundwater Capture Zones

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Source water protection areas are delineated for each groundwater-based public water supply system using available geologic and hydrogeologic information to...

  1. Spatially variable stage-driven groundwater-surface water interaction inferred from time-frequency analysis of distributed temperature sensing data

    Science.gov (United States)

    Mwakanyamale, Kisa; Slater, Lee; Day-Lewis, Frederick D.; Elwaseif, Mehrez; Johnson, Carole D.

    2012-01-01

    Characterization of groundwater-surface water exchange is essential for improving understanding of contaminant transport between aquifers and rivers. Fiber-optic distributed temperature sensing (FODTS) provides rich spatiotemporal datasets for quantitative and qualitative analysis of groundwater-surface water exchange. We demonstrate how time-frequency analysis of FODTS and synchronous river stage time series from the Columbia River adjacent to the Hanford 300-Area, Richland, Washington, provides spatial information on the strength of stage-driven exchange of uranium contaminated groundwater in response to subsurface heterogeneity. Although used in previous studies, the stage-temperature correlation coefficient proved an unreliable indicator of the stage-driven forcing on groundwater discharge in the presence of other factors influencing river water temperature. In contrast, S-transform analysis of the stage and FODTS data definitively identifies the spatial distribution of discharge zones and provided information on the dominant forcing periods (≥2 d) of the complex dam operations driving stage fluctuations and hence groundwater-surface water exchange at the 300-Area.

  2. Fracture detection and groundwater flow characterization in poorly exposed ground using helium and radon in soil gases

    International Nuclear Information System (INIS)

    Gascoyne, M.; Wuschke, D.M.

    1991-05-01

    Radon and helium in soil gases have been used to identify locations of groundwater discharge and the presence of fractures outcropping beneath overburden in two areas near the Underground Research Laboratory (URL), Lac du Bonnet, Manitoba, Canada. In particular, groundwater discharge from a known, inclined fracture zone at the URL was clearly identified by a helium excess in overlying soil gases. A model was developed to describe gas phase flow in bedrock and overburden at this location, from gas injection in an adjacent borehole. Predictions were made of gas transport pathway and breakthrough time at the surface, in preparation for a gas injection test

  3. Assessment of the impact of sea-level rise due to climate change on coastal groundwater discharge.

    Science.gov (United States)

    Masciopinto, Costantino; Liso, Isabella Serena

    2016-11-01

    An assessment of sea intrusion into coastal aquifers as a consequence of local sea-level rise (LSLR) due to climate change was carried out at Murgia and Salento in southern Italy. The interpolation of sea-level measurements at three tide-gauge stations was performed during the period of 2000 to 2014. The best fit of measurements shows an increasing rate of LSLR ranging from 4.4mm/y to 8.8mm/y, which will result in a maximum LSLR of approximately 2m during the 22nd century. The local rate of sea-level rise matches recent 21st and 22nd century projections of mean global sea-level rise determined by other researchers, which include increased melting rates of the Greenland and Antarctic ice sheets, the effect of ocean thermal expansion, the melting of glaciers and ice caps, and changes in the quantity of stored land water. Subsequently, Ghyben-Herzberg's equation for the freshwater/saltwater interface was rewritten in order to determine the decrease in groundwater discharge due to the maximum LSLR. Groundwater flow simulations and ArcGIS elaborations of digital elevation models of the coast provided input data for the Ghyben-Herzberg calculation under the assumption of head-controlled systems. The progression of seawater intrusion due to LSLR suggests an impressive depletion of available groundwater discharge during the 22nd century, perhaps as much as 16.1% of current groundwater pumping for potable water in Salento. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Groundwater-quality data and regional trends in the Virginia Coastal Plain, 1906-2007

    Science.gov (United States)

    McFarland, Randolph E.

    2010-01-01

    A newly developed regional perspective of the hydrogeology of the Virginia Coastal Plain incorporates updated information on groundwater quality in the area. Local-scale groundwater-quality information is provided by a comprehensive dataset compiled from multiple Federal and State agency databases. Groundwater-sample chemical-constituent values and related data are presented in tables, summaries, location maps, and discussions of data quality and limitations. Spatial trends in groundwater quality and related processes at the regional scale are determined from interpretive analyses of the sample data. Major ions that dominate the chemical composition of groundwater in the deep Piney Point, Aquia, and Potomac aquifers evolve eastward and with depth from (1) 'hard' water, dominated by calcium and magnesium cations and bicarbonate and carbonate anions, to (2) 'soft' water, dominated by sodium and potassium cations and bicarbonate and carbonate anions, and lastly to (3) 'salty' water, dominated by sodium and potassium cations and chloride anions. Chemical weathering of subsurface sediments is followed by ion exchange by clay and glauconite, and subsequently by mixing with seawater along the saltwater-transition zone. The chemical composition of groundwater in the shallower surficial and Yorktown-Eastover aquifers, and in basement bedrock along the Fall Zone, is more variable as a result of short flow paths between closely located recharge and discharge areas and possibly some solutes originating from human sources. The saltwater-transition zone is generally broad and landward-dipping, based on groundwater chloride concentrations that increase eastward and with depth. The configuration is convoluted across the Chesapeake Bay impact crater, however, where it is warped and mounded along zones having vertically inverted chloride concentrations that decrease with depth. Fresh groundwater has flushed seawater from subsurface sediments preferentially around the impact crater

  5. Groundwater recharge and discharge scenarios for a nuclear waste repository in bedded salt

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Steinborn, T.L.; Thorson, L.D.

    1979-01-01

    Twelve potential scenarios have been identified whereby groundwater may enter or exit a nuclear waste repository in bedded salt. The 12 scenarios may be grouped into 4 categories or failure modes: dissolution, fracturing, voids, and penetration. Dissolution modes include breccia pipe and breccia blanket formation, and dissolution around boreholes. Fracture modes include flow through preexisting or new fractures and the effects of facies changes. Voids include interstitial voids (pores) and fluid inclusions. Penetration modes include shaft and borehole sealing failures, undetected boreholes, and new mines or wells constructed after repository decommissioning. The potential importance of thermal effects on groundwater flow patterns and on the recharge-discharge process is discussed. The appropriate levels of modeling effort, and the interaction between the adequacy of the geohydrologic data base and the warranted degree of model complexity are also discussed

  6. Numerical simulation studies of the groundwater discharge to streams from abandoned uranium mill tailings

    International Nuclear Information System (INIS)

    Abdul, A.S.; Gillham, R.W.

    1984-06-01

    This report presents an evaluation of the results of simulation studies of groundwater discharge to streams from abandoned uranium mill tailings and the effects of this discharge on the flux of contaminants to surface water systems. In particular, a discussion of the sensitivity of subsurface discharge to specific geometirc, climatic and hydrogeologic factors is presented. Simulations were carried out using a two-dimensional numerical finite-element unsaturated-saturated flow model. A total of twenty-six simulations were made. The first twenty-four of these considered a tailings medium with homogeneous and isotropic hydraulic properties and with textural properties similar to those of sandy geological materials. In addition, two simulations were carried out for tailings materials with hydraulic properties that are similar to those of silt-loam. The results indicated that the actual quantity of subsurface discharge depends on many factors including rainfall rate and duration, surface slope, and texture. However, for the medium-fine sand material, subsurface discharge was always a significant component of the total discharge. Within the context of uranium tailings management this implies that large quantities of contaminants from subsurface sources of medium-textured tailings can be expected to be discharged to streams during stormflow events. Therefore there is reason to suspect that untreated runoff from such tailings will contain significant concentrations of contaminants for long periods of time

  7. The influence of heterogeneity on coastal groundwater flow - physical and numerical modeling of fringing reefs, dykes and structured conductivity fields

    Science.gov (United States)

    Houben, Georg J.; Stoeckl, Leonard; Mariner, Katrina E.; Choudhury, Anis S.

    2018-03-01

    Geological heterogeneity of the subsurface, caused by both discrete features and spatially distributed hydraulic conductivity fields, affects the flow of coastal groundwater. It influences the shape and the position of the interface between saltwater and freshwater, as well as the location and flux rate of freshwater discharge to the ocean. Fringing reefs lead to a bimodal regime of freshwater discharge, with discharge at the beach face and through deeper, submarine springs. Impermeable vertical flow barriers (dykes) lead to an impoundment of fresh groundwater and a compartmentalization of the aquifer but also to a delayed expulsion of saline water. Spatially distributed conductivity fields affect the shape of the interface and the geometry of the saltwater wedge. Higher effective conductivities lead to a further landward intrusion of the wedge toe. These flow characteristics can be important for groundwater extraction, the delineation of protection zones and the assessment of contaminant transport to coastal ecosystems.

  8. Aquifer recharge with stormwater runoff in urban areas: Influence of vadose zone thickness on nutrient and bacterial transfers from the surface of infiltration basins to groundwater.

    Science.gov (United States)

    Voisin, Jérémy; Cournoyer, Benoit; Vienney, Antonin; Mermillod-Blondin, Florian

    2018-05-16

    Stormwater infiltration systems (SIS) have been built in urban areas to reduce the environmental impacts of stormwater runoff. Infiltration basins allow the transfer of stormwater runoff to aquifers but their abilities to retain contaminants depend on vadose zone properties. This study assessed the influence of vadose zone thickness (VZT) on the transfer of inorganic nutrients (PO 4 3- , NO 3 - , NH 4 + ), dissolved organic carbon (total -DOC- and biodegradable -BDOC-) and bacteria. A field experiment was conducted on three SIS with a thin vadose zone (zone (>10 m). Water samples were collected at three times during a rainy period of 10 days in each infiltration basin (stormwater runoff), in the aquifer impacted by infiltration (impacted groundwater) and in the same aquifer but upstream of the infiltration area (non-impacted groundwater). Inorganic nutrients, organic matter, and dissolved oxygen (DO) were measured on all water samples. Bacterial community structures were investigated on water samples through a next-generation sequencing (NGS) scheme of 16S rRNA gene amplicons (V5-V6). The concentrations of DO and phosphate measured in SIS-impacted groundwaters were significantly influenced by VZT due to distinct biogeochemical processes occurring in the vadose zone. DOC and BDOC were efficiently retained in the vadose zone, regardless of its thickness. Bacterial transfers to the aquifer were overall low, but data obtained on day 10 indicated a significant bacterial transfer in SIS with a thin vadose zone. Water transit time and water saturation of the vadose zone were found important parameters for bacterial transfers. Most bacterial taxa (>60%) from impacted groundwaters were not detected in stormwater runoff and in non-impacted groundwaters, indicating that groundwater bacterial communities were significantly modified by processes associated with infiltration (remobilization of bacteria from vadose zone and/or species sorting). Copyright © 2018 Elsevier B

  9. Higher species richness and abundance of fish and benthic invertebrates around submarine groundwater discharge in Obama Bay, Japan

    OpenAIRE

    Tatsuya Utsunomiya; Masaki Hata; Ryo Sugimoto; Hisami Honda; Shiho Kobayashi; Yoji Miyata; Makoto Yamada; Osamu Tominaga; Jun Shoji; Makoto Taniguchi

    2017-01-01

    Study focus: There have been far more studies on how the variability in surface water discharge affects production of animal communities in aquatic ecosystems while less information has been accumulated on the mechanisms of how the groundwater supply works. Study region: Physical and biological surveys were conducted to test the hypothesis that high level of submarine ground water discharge enhances species richness, abundance and biomass of fishes and invertebrates in coastal waters of Ob...

  10. Geochemical investigation of groundwater in the Tono area, Japan. Chemical characteristics and groundwater evolution

    International Nuclear Information System (INIS)

    Iwatsuki, Teruki; Hama, Katsuhiro; Yoshida, Hidekazu

    1997-01-01

    Geochemical investigations form an important part of the R and D program at the Tono study site, central Japan. Detailed geological structure and groundwater chemistry have been studied to understand the geochemical environment in the sedimentary and crystalline rocks distributed in this area. The chemical evolution of the groundwater in the sedimentary rocks is characterized with the variation in Na + , Ca 2+ and HCO 3 - concentrations, and ion exchange and dissolution of calcite are dominant reactions in the evolution of groundwater. Geological investigation shows that a fracture system of crystalline rock can be classified into:intact zone, moderately fractured zone and intensely fractured zone, according to the frequency and the width of fractures and fractured zones. The groundwater in the intact and fractured zones of crystalline rock are characterized by Na + -Ca 2+ -HCO 3 - or Na + -HCO 3 - dominated water, and Na + -Ca 2+ -Fe 2+ -HCO 3 - dominated water. The chemical evolution of groundwater is, generally, controlled by water-rock interaction between plagioclase, iron minerals and groundwater. The groundwater at depth of G.L.-186m in the crystalline rock at the Tono area is characterized by the mixture between the oxidized surface water and the reduced groundwater. The investigation based on correlation between geological structures and groundwater chemistry can be applied to understand the geochemical environment in deep crystalline rock, and will support the development of a realistic hydrogeochemical model. (author)

  11. Identifying three-dimensional nested groundwater flow systems in a Tóthian basin

    Science.gov (United States)

    Wang, Xu-Sheng; Wan, Li; Jiang, Xiao-Wei; Li, Hailong; Zhou, Yangxiao; Wang, Junzhi; Ji, Xiaohui

    2017-10-01

    Nested groundwater flow systems have been revealed in Tóth's theory as the structural property of basin-scale groundwater circulation but were only well known with two-dimensional (2D) profile models. The method of searching special streamlines across stagnation points for partitioning flow systems, which has been successfully applied in the 2D models, has never been implemented for three-dimensional (3D) Tóthian basins because of the difficulty in solving the dual stream functions. Alternatively, a new method is developed to investigate 3D nested groundwater flow systems without determination of stagnation points. Connective indices are defined to quantify the connection between individual recharge and discharge zones along streamlines. Groundwater circulation cells (GWCCs) are identified according to the distribution of the connective indices and then grouped into local, intermediate and regional flow systems. This method requires existing solution of the flow velocity vector and is implemented via particle tracking technique. It is applied in a hypothetical 3D Tóthian basin with an analytical solution of the flow field and in a real-world basin with a numerical modeling approach. Different spatial patterns of flow systems compared to 2D profile models are found. The outcrops boundaries of GWCCs on water table may significantly deviate from and are not parallel to the nearby water table divides. Topological network is proposed to represent the linked recharge-discharge zones through closed and open GWCCs. Sensitivity analysis indicates that the development of GWCCs depends on the basin geometry, hydraulic parameters and water table shape.

  12. Evaluation of the effective equivalent dose in the general public due to the discharge of uranium in groundwater

    International Nuclear Information System (INIS)

    Gordon, A.M.P.L.; Jacomino, V.M.F.

    1989-12-01

    Some facilities available at IPEN-CNEN/SP may discharge uranium in their liquid effluents. The uranium contents of these effluents are analyzed by photometry or fluorimetry, and according to the results obtained a decision is made, by the Environmental Monitoring Division, upon their discharge to the environment. In 1988 a total activity of 3.66x10 9 Bq of uranium was discharge in a volume of approximately 30 m 3 . The effective equivalent dose in the general public was evaluated by making a conservative assumption that all the liquid effluents containing uranium are discharged directly to the soil reaching the groundwater. The dose calculation was carried out by using a generic model which described the transport of radionuclides in the groundwater. In order to be conservative it was also assumed that the critical pathway is the direct in gestion of water through hypothetical wells around the Institute. Conservative assumptions were also made in the characterization of the local aquifer parameters such as vertical and longitudinal dispersivity, effective porosity of the soil, hydraulic conductivity etc., in roder to overestimate the effective equivalent dose. The result obtained, of 5.3x10 -10 mSv/a is far below the dose limit for the public adopted by the Radiological Protection Board. The derived limit for the discharge was also evaluated, using the same model, giving a result of 3.6x10 13 Bq/a. (author) [pt

  13. Groundwater discharge mapping at Altnabreac by thermal infrared linescan surveying

    International Nuclear Information System (INIS)

    Brereton, N.R.; Hall, D.H.

    1983-07-01

    A thermal infra-red linescan survey has been carried out of the area around Altnabreac, Caithness. The objectives of the survey were: to assess the applicability of the technique to the location of springs discharging from peat covered crystalline rocks; to provide the locations of springs for a subsequent geochemical sampling programme; and to gain clearer understanding of the ground water circulation patterns in the area. The number and distribution of springs located by the survey has proved to be far greater than had been previously anticipated and the capabilities of the technique have been clearly demonstrated. The results, together with other geochemical and hydrogeological data, indicate that the majority of the springs represent near surface recent groundwaters circulating within the moraine deposits and weathered granite. (author)

  14. Regional-to-site scale groundwater flow in Romuvaara

    Energy Technology Data Exchange (ETDEWEB)

    Kattilakoski, E.; Koskinen, L. [VTT Energy, Espoo (Finland)

    1999-04-01

    The work describing numerical groundwater flow modelling at the Romuvaara site serves as a background report for the safety assessment TILA-99. The site scale can roughly be taken as the scale of detailed borehole investigations, which have probed the bedrock of Romuvaara over about 2 km{sup 2} large and 1 km deep volume. The site model in this work covers an area of about 12 km{sup 2}. The depth of the model is 2200 m. The site scale flow modelling produced characteristics of the deep groundwater flow and evaluated the impact of a spent fuel repository on the natural groundwater flow conditions. It treated the hydraulic gradient in the intact rock between the repository and the fracture zone nearest to it (about 50 m off) for the block scale model, which describes the groundwater flow on the repository scale. The result quantities were the hydraulic head h (as the base quantity) and its gradient in selected cross sections and fracture zones, the flow rates around the repository, flow paths and discharge areas of the water from the repository. Two repository layouts were discussed. The numerical simulations were performed with the FEFTRA code based on the porous medium concept and the finite element method. The regional model with a no-flow boundary condition at the bottom and on the lateral edges was firstly used to confirm the hydraulic head boundary condition on the lateral edges of an interior site model (having a no-flow boundary condition at the bottom). The groundwater table was used as the hydraulic head boundary condition at the surface of each model. Both the conductivity of the bedrock (modeled with three-dimensional elements) and the transmissivities of the fracture zones (described with two-dimensional elements in the three-dimensional mesh) decreased as a function of the depth. All the results were derived from the site model. The range of variation of the hydraulic gradient immediately outside the repository was studied in the direction of the flow

  15. Characterizing multiple sources and interaction in the critical zone through Sr-isotope tracing of surface and groundwater

    Science.gov (United States)

    Negrel, Philippe; Pauwels, Hélène

    2017-04-01

    The Critical Zone (CZ) is the lithosphere-atmosphere boundary where complex physical, chemical and biological processes occurs and control the transfer and storage of water and chemical elements. This is the place where life-sustaining resources are, where nutrients are being released from the rocks. Because it is the place where we are living, this is a fragile zone, a critical zone as a perturbed natural ecosystem. Water resources in hard-rocks commonly involve different hydrogeological compartments such as overlying sediments, weathered rock, the weathered-fissured zone, and fractured bedrock. Streams, lakes and wetlands that drain such environments can drain groundwater, recharge groundwater, or do both. Groundwater resources in many countries are increasingly threatened by growing demand, wasteful use, and contamination. Surface water and shallow groundwater are particularly vulnerable to pollution, while deeper resources are more protected from contamination. Here, we first report on Sr isotope data as well as major ions, from shallow and deep groundwater in several granite and schist areas over France with intensive agriculture covering large parts of these catchments. In three granite and Brioverian 'schist' areas of the Armorican Massif, the range in Sr contents in groundwater from different catchments agrees with previous work on groundwater sampled from granites in France. The Sr content is well correlated with Mg and both are partly related to agricultural practices and water rock interaction. The relationship between Sr- isotope and Mg/Sr ratios allow defining the different end-members, mainly rain, agricultural practice and water-rock interaction. The data from the Armorican Massif and other surface and groundwater for catchment draining silicate bedrocks (300-450Ma) like the Hérault, Seine, Moselle, Garonne, Morvan, Margeride, Cantal, Pyrénées and Vosges are scattered between at least three geochemical signatures. These include fertilizer and

  16. The influence of the unsaturated zone on the high fluoride contents in groundwater in the middle voltaian aquifers-the Gusghegu District, Northern Region

    International Nuclear Information System (INIS)

    Salifu, M.

    2012-01-01

    Elevated levels of fluoride have been reported to occur in some groundwater in the Gushegu district of the Northern region of Ghana leading to the closure of some boreholes in the area. Hydrochemical data from 21 water, soil and some rock samples were used to evaluate water quality, water types and to identify whether the unsaturated zone has influence on the elevated fluoride levels in groundwater as well as the processes that control fluoride level in the groundwater. Water samples were extracted from soil sample for flouride analysis using the cryogenic vacuum extraction set-up. Results of the water quality analysis showed that the groundwater in the study area were generally potable. A plot of Gibbs diagram revealed that rock weathering and rainfall were the major hydrogeochemical processes regulating the water chemistry of the study area. Two different water types were identified in the study area, namely: Na-HCO 3 - , which happened to be the major water type in the study area and Na-Ca-Mg-HCO 3 - water type. The fluoride concentration in the groundwater varied from 0.0 to 1.97 mg/L while that of the unsaturated zone ranged from 0.0 to 2.08 mg/L. The elevated fluoride levels in the groundwater strongly correlated with that of fluoride levels in the unsaturated zone (r 2 =0.76). Petrographic analysis of rock samples (siltstones) identified the minerals present to be muscovite, plagioclase feldspars, quartz, sericite and iron oxide. Other clay minerals such as montmorillonite, illite and chloride were identified. The elevated fluoride levels recorded in the groundwater may be due to leaching, as a result of the weathering and dissolution of muscovite, sericite as well as the presence of other clay minerals in the unsaturated zone. Application of phosphate fertilizers may also account for the the elevated fluoride concentrations recorded in the study area. Stable isotopic composition of the waters revealed that most of the groundwater were of meteoric origin

  17. Impact of hydrological alterations on river-groundwater exchange and water quality in a semi-arid area: Nueces River, Texas.

    Science.gov (United States)

    Murgulet, Dorina; Murgulet, Valeriu; Spalt, Nicholas; Douglas, Audrey; Hay, Richard G

    2016-12-01

    There is a lack of understanding and methods for assessing the effects of anthropogenic disruptions, (i.e. river fragmentation due to dam construction) on the extent and degree of groundwater-surface water interaction and geochemical processes affecting the quality of water in semi-arid, coastal catchments. This study applied a novel combination of electrical resistivity tomography (ERT) and elemental and isotope geochemistry in a coastal river disturbed by extended drought and periodic flooding due to the operation of multiple dams. Geochemical analyses show that the saltwater barrier causes an increase in salinity in surface water in the downstream river as a result of limited freshwater inflows, strong evaporation effects on shallow groundwater and mostly stagnant river water, and is not due to saltwater intrusion by tidal flooding. Discharge from bank storage is dominant (~84%) in the downstream fragment and its contribution could increase salinity levels within the hyporheic zone and surface water. When surface water levels go up due to upstream freshwater releases the river temporarily displaces high salinity water trapped in the hyporheic zone to the underlying aquifer. Geochemical modeling shows a higher contribution of distant and deeper groundwater (~40%) in the upstream river and lower discharge from bank storage (~13%) through the hyporheic zone. Recharge from bank storage is a source of high salt to both upstream and downstream portions of the river but its contribution is higher below the dam. Continuous ERT imaging of the river bed complements geochemistry findings and indicate that while lithologically similar, downstream of the dam, the shallow aquifer is affected by salinization while fresher water saturates the aquifer in the upstream fragment. The relative contribution of flows (i.e. surface water releases or groundwater discharge) as related to the river fragmentation control changes of streamwater chemistry and likely impact the interpretation

  18. Sources of Magmatic Volatiles Discharging from Subduction Zone Volcanoes

    Science.gov (United States)

    Fischer, T.

    2001-05-01

    Subduction zones are locations of extensive element transfer from the Earth's mantle to the atmosphere and hydrosphere. This element transfer is significant because it can, in some fashion, instigate melt production in the mantle wedge. Aqueous fluids are thought to be the major agent of element transfer during the subduction zone process. Volatile discharges from passively degassing subduction zone volcanoes should in principle, provide some information on the ultimate source of magmatic volatiles in terms of the mantle, the crust and the subducting slab. The overall flux of volatiles from degassing volcanoes should be balanced by the amount of volatiles released from the mantle wedge, the slab and the crust. Kudryavy Volcano, Kurile Islands, has been passively degassing at 900C fumarole temperatures for at least 40 years. Extensive gas sampling at this basaltic andesite cone and application of CO2/3He, N2/3He systematics in combination with C and N- isotopes indicates that 80% of the CO2 and approximately 60% of the N 2 are contributed from a sedimentary source. The mantle wedge contribution for both volatiles is, with 12% and 17% less significant. Direct volatile flux measurements from the volcano using the COSPEC technique in combination with direct gas sampling allows for the calculation of the 3He flux from the volcano. Since 3He is mainly released from the astenospheric mantle, the amount of mantle supplying the 3He flux can be determined if initial He concentrations of the mantle melts are known. The non-mantle flux of CO2 and N2 can be calculated in similar fashion. The amount of non-mantle CO2 and N2 discharging from Kudryavy is balanced by the amount of CO2 and N2 subducted below Kudryavy assuming a zone of melting constrained by the average spacing of the volcanoes along the Kurile arc. The volatile budget for Kudryavy is balanced because the volatile flux from the volcano is relatively small (75 t/day (416 Mmol/a) SO2, 360 Mmol/a of non-mantle CO2 and

  19. Applications of electrical resistivity imaging for characterizing groundwater-surface water interactions from local to regional scales

    Science.gov (United States)

    Cardenas, M. B.; Befus, K. M.; Zamora, P. B.; Ong, J.; Zlotnik, V. A.; Cook, P. L.; Tait, D. R.; Erler, D.; Santos, I. R.; Siringan, F. P.

    2012-12-01

    Surface water (SW) and groundwater (GW) interact across multiple spatial and temporal scales and their interaction is important for ecological and biogeochemical functions. The mixing of GW and SW has been challenging to simultaneously map with sufficient detail and coverage. Fortunately, ambient differences in salinity of waters occupying geologic formations and sediment are an ideal target for electrical resistivity imaging (ERI). We present examples of the application of ERI for mapping GW discharge and for understanding GW-SW interactions at: (1) a large regulated river, (2) neighboring lakes with differing salinity, (3) fringing coral reefs and lagoons, (4) beaches, and (5) estuaries. In all these cases, the ER tomograms were critical for improving conceptual understanding of GW-SW interactions. At the Lower Colorado River in Austin, Texas (USA), time-lapse ERI was conducted across a 12-hour dam-release cycle when the river stage varied by 0.7 m. Using temporal variability in electrical resistivity (ER) signatures, we identified a shallow well-flushed hyporheic zone, a transition zone where SW and GW mix, and a stable deep zone hosting only GW. In alkaline lakes in the Nebraska Sand Hills (Nebraska, USA), ER surveys using boat-towed cables allowed for mapping the 3D electrical structure underneath the lake. The tomograms were used to distinguish flow-through lakes, which have decreasing subsurface ER from GW inflow to outflow area, from pure GW discharge lakes, which have uniformly stratified increasing-with-depth ER profiles. Moreover, GW plumes in both discharge and recharge zones were clearly outlined underneath the lake. More than 30 km of ER profiles collected via boat-towed surveys over a fringing coral reef in the Philippines identified areas of high ER within the reef that coincide with resistive zones in the seawater. Analysis of 222Rn of bottom waters and vertical conductivity-temperature-depth measurements show the persistence of fresh GW input into

  20. Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA

    Science.gov (United States)

    Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.

    2018-04-01

    Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3-) input functions by characterizing unsaturated zone NO3- transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous "vertical flux method" (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3- source concentration factor (which determines the local NO3- input concentration); unsaturated zone travel time; NO3- concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3- "extinction depth", the eventual steady state depth of the NO3- front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 - 0.86 and 0.22 - 0.38, respectively, and predictions were compiled as maps of the above response variables. Testing

  1. Regional groundwater modeling of the saturated zone in the vicinity of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ahola, M.; Sagar, B.

    1992-10-01

    Results of groundwater modeling of the saturated zone in the vicinity of Yucca Mountain are presented. Both a regional (200 x 200 km) and subregional (50 x 50 km) model were used in the analyses. Simulations were conducted to determine the impact of various disruptive that might take place over the life span of a proposed Yucca Mountain geologic conditions repository on the groundwater flow field, as well as changes in the water-table elevations. These conditions included increases in precipitation and groundwater recharge within the regional model, changes in permeability of existing hydrogeologic barriers, a:nd the vertical intrusion of volcanic dikes at various orientations through the saturated zone. Based on the regional analysis, the rise in the water-table under Yucca Mountain due to various postulated conditions ranged from only a few meters to 275 meters. Results of the subregional model analysis, which was used to simulate intrusive dikes approximately 4 kilometers in length in the vicinity of Yucca Mountain, showed water-table rises ranging from a few meters to as much as 103 meters. Dikes oriented approximately north-south beneath Yucca Mountain produced the highest water-table rises. The conclusions drawn from this analysis are likely to change as more site-specific data become available and as the assumptions in the model are improved

  2. Detecting groundwater discharge dynamics from point-to-catchment scale in a lowland stream

    DEFF Research Database (Denmark)

    Poulsen, J. R.; Sebök, Éva; Duque, C.

    2015-01-01

    was quantified using differential gauging with an acoustic Doppler current profiler (ADCP). At the catchment scale (26–114 km2), runoff sources during main rain events were investigated by hydrograph separations based on electrical conductivity (EC) and stable isotopes 2H/1H. Clear differences in runoff sources...... response to precipitation events. This shows a large variability in groundwater discharge to the stream, despite the similar lowland characteristics of sub-catchments indicating the usefulness of environmental tracers for obtaining information about integrated catchment functioning during precipitation...

  3. Application of remote sensing, GIS and MCA techniques for delineating groundwater prospect zones in Kashipur block, Purulia district, West Bengal

    Science.gov (United States)

    Nag, S. K.; Kundu, Anindita

    2018-03-01

    Demand of groundwater resources has increased manifold with population expansion as well as with the advent of modern civilization. Assessment, planning and management of groundwater resource are becoming crucial and extremely urgent in recent time. The study area belongs to Kashipur block, Purulia district, West Bengal. The area is characterized with dry climate and hard rock terrain. The objective of this study is to delineate groundwater potential zone for the assessment of groundwater availability using remote sensing, GIS and MCA techniques. Different thematic layers such as hydrogeomorphology, slope and lineament density maps have been transformed to raster data in TNT mips pro2012. To assign weights and ranks to different input factor maps, multi-influencing factor (MIF) technique has been used. The weights assigned to each factor have been computed statistically. Weighted index overlay modeling technique was used to develop a groundwater potential zone map with three weighted and scored parameters. Finally, the study area has been categorized into four distinct groundwater potential zones—excellent 1.5% (6.45 sq. km), good 53% (227.9 sq. km), moderate 45% (193.5 sq. km.) and poor 0.5% (2.15 sq. km). The outcome of the present study will help local authorities, researchers, decision makers and planners in formulating proper planning and management of groundwater resources in different hydrogeological situations.

  4. Assessment of groundwater potential in Ankobra River Basin

    International Nuclear Information System (INIS)

    Nyarkoh, Charles Prince

    2011-08-01

    Ankobra river basin is endowed with many rich natural resources. The mining activities in the basin and the proposed hydropower generation on the Ankobra river as well as oil discovery in the Western Region would lead to the establishing of new industries in the basin. These would certainly lead to potential population growth. As a result of these developments, there would be stress on surface water resources and therefore there would be demand for ground water. A research was carried out to assess groundwater supply. Hydrogeological data was used to evaluate the ground water storage in the basement complex, regolith. The relevant aquifer characteristics/parameters (extent of the study area, thickness of the ground water zone in the regolith, the porosity and specific capacity of the aquifer zones) were used to compute total groundwater storage and recoverable storage. The groundwater contribution to stream flow was computed using mean monthly discharge data from the filled data and hydrograph drawn. The base flow was then determined from the hydrograph separation using the straight line method. The groundwater potential in the Ankobra basin is 45.82*10 9 m 3 while the recoverable groundwater storage is 29.39*10 9 m 3 . The base flow computed was 13.75m 3/ s. Investigations into groundwater chemistry with particular references to physico-chemical parameters (quality) was analysed. The constituents fall within the acceptable limits of the Ghana Standard Board (GSB) for drinking water standard and are satisfactory for human consumption. However, Tamso, Wantenem, Gyaman, Beyim communities exceeded the GSB'S recommended values of PH (6.5-8.5) and chloride ( 250 mg/I) respectively for drinking water standard.(author)

  5. Underground mining of the lower 163 zone through groundwater drainage at the Eagle Point Mine

    International Nuclear Information System (INIS)

    Robson, D.M.; Bashir, R.; Thomson, J.; Klemmer, S.; Rigden, A.

    2010-01-01

    The Eagle Point Mine is part of the Cameco Rabbit Lake Operation. The mine produces uranium ore using the long-hole, vertical and horizontal retreat mining method. The majority of the mine workings are under Wollaston Lake and cementitious grouting is used as one of the water control measures. Historical groundwater table in the mining area was close to ground surface. The Lower 163 Zone encompasses an estimated 4.2 million pounds U_3O_8 geological resource that was not considered feasible to mine due to the expected groundwater flows in the area. Cross-hole testing was conducted to better understand the groundwater flow through various geologic units. A local depressurization test was conducted to assess the potential for lowering the water table. Following testing an active depressurization was conducted to lower the groundwater table below the planned mining areas. This resulted in safe and drier mining conditions and allowed for the successful extraction of the ore body. (author)

  6. Mapping potential zones for groundwater recharge and its evaluation in arid environments using a GIS approach: Case study of North Gafsa Basin (Central Tunisia)

    Science.gov (United States)

    Mokadem, Naziha; Boughariou, Emna; Mudarra, Matías; Ben Brahim, Fatma; Andreo, Bartolome; Hamed, Younes; Bouri, Salem

    2018-05-01

    With the progressive evolution of industrial sector, agricultural, urbanization, population and drinking water supply, the water demand continuously increases which necessitates the planning of groundwater recharge particularly in arid and semi-arid regions. This paper gives a comprehensive review of various recharges studies in the North Gafsa basin (South Tunisia). This latter is characterized by a natural groundwater recharge that is deeply affected by the lack of precipitations. The aim of this study is to determine the recharge potential zones and to quantify (or estimate) the rainfall recharge of the shallow aquifers. The mapping of the potential recharge zones was established in North Gafsa basin, using geological and hydrological parameters such as slope, lithology, topography and stream network. Indeed, GIS provide tools to reclassify these input layers to produce the final map of groundwater potential zones of the study area. The final output map reveals two distinct zones representing moderate and low groundwater potential recharge. Recharge estimations were based on the four methods: (1) Chloride Method, (2) ERAS Method, (3) DGRE coefficient and (4) Fersi equations. Therefore, the overall results of the different methods demonstrate that the use of the DGRE method applying on the potential zones is more validated.

  7. Approach for delineation of contributing areas and zones of transport to selected public-supply wells using a regional ground-water flow model, Palm Beach County, Florida

    Science.gov (United States)

    Renken, R.A.; Patterson, R.D.; Orzol, L.L.; Dixon, Joann

    2001-01-01

    ) leakance (29 percent); and inflow through the northern, western, and southern prescribed flux model boundaries (10 percent) represent the major inflow components. Principal outflow components in the Boca Raton well field area include well discharge (56 percent), river (canal) leakance (27 percent), and water that discharges along the coast (10 percent). A particle-tracking analysis using MODPATH was conducted to better understand well-field ground-water flow patterns and time of travel. MODTOOLS was used to construct zones-of-transport spatial data for municipal supply wells. Porosity estimates were uniformly increased to study the effect of porosity on zones of transport. Where porosity was increased, the size of the zones of transport were shown to decrease.

  8. Submarine groundwater discharge at Kahana Bay, Oahu, 1997-2001: in situ CTD and water chemistry tracer data (NODC Accession 0011399)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Submarine groundwater discharge (SGD) is neither well understood nor commonly investigated in Hawaii, but it is recognized as a potential pollution source to coastal...

  9. Developing a methodology for identifying action zones to protect and manage groundwater well fields

    Science.gov (United States)

    Bellier, Sandra; Viennot, Pascal; Ledoux, Emmanuel; Schott, Celine

    2013-04-01

    Implementation of a long term action plan to manage and protect well fields is a complex and very expensive process. In this context, the relevance and efficiency of such action plans on water quality should be evaluated. The objective of this study is to set up a methodology to identify relevant actions zones in which environmental changes may significantly impact the quantity or quality of pumped water. In the Seine-et-Marne department (France), under French environmental laws three sectors integrating numerous well-field pumping in Champigny's limestone aquifer are considered as priority. This aquifer, located at south-east of Paris, supplies more than one million people with drinking water. Catchments areas of these abstractions are very large (2000 km2) and their intrinsic vulnerability was established by a simple parametric approach that does not permit to consider the complexity of hydrosystem. Consequently, a methodology based on a distributed modeling of the process of the aquifer was developed. The basin is modeled using the hydrogeological model MODCOU, developed in MINES ParisTech since the 1980s. It simulates surface and groundwater flow in aquifer systems and allows to represent the local characteristics of the hydrosystem (aquifers communicating by leakage, rivers infiltration, supply from sinkholes and locally perched or dewatering aquifers). The model was calibrated by matching simulated river discharge hydrographs and piezometric heads with observed ones since the 1970s. Thanks to this modelling tool, a methodology based on the transfer of a theoretical tracer through the hydrosystem from the ground surface to the outlets was implemented to evaluate the spatial distribution of the contribution areas at contrasted, wet or dry recharge periods. The results show that the surface of areas contributing to supply most catchments is lower than 300 km2 and the major contributory zones are located along rivers. This finding illustrates the importance of

  10. Groundwater discharge and phosphorus dynamics in a flood-pulse system: Tonle Sap Lake, Cambodia

    Science.gov (United States)

    Burnett, William C.; Wattayakorn, Gullaya; Supcharoen, Ratsirin; Sioudom, Khamfeuane; Kum, Veasna; Chanyotha, Supitcha; Kritsananuwat, Rawiwan

    2017-06-01

    Tonle Sap Lake (Cambodia), a classic example of a "flood pulse" system, is the largest freshwater lake in SE Asia, and is reported to have one of the highest freshwater fish productions anywhere. During the dry season (November-April) the lake drains through a tributary to the Mekong River. The flow in the connecting tributary completely reverses during the wet monsoon (May-October), adding huge volumes of water back to the lake, increasing its area about six fold. The lake is likely phosphorus limited and we hypothesized that groundwater discharge, including recirculated lake water, may represent an important source of P and other nutrients. To address this question, we surveyed hundreds of kilometers of the lake for natural 222Rn (radon), temperature, conductivity, GPS coordinates and water depth. All major inorganic nutrients and phosphorus species were evaluated by systematic sampling throughout the lake. Results showed that there were radon hotspots, all at the boundaries between the permanent lake and the floodplain, indicating likely groundwater inputs. A radon mass balance model indicates that the groundwater flow to Tonle Sap Lake is approximately 10 km3/yr, about 25% as large as the floodwaters entering from the Mekong River during the wet monsoon. Our results suggest that the groundwater-derived dissolved inorganic phosphorus (DIP) contribution to Tonle Sap is more than 30% of the average inflows from all natural sources. Since the productivity of the lake appears to be phosphorus limited, this finding suggests that the role of groundwater is significant for Tonle Sap Lake and perhaps for other flood pulse systems worldwide.

  11. [Hydrologic processes of the different landscape zones in Fenhe River headwater catchment].

    Science.gov (United States)

    Yang, Yong-Gang; Li, Cai-Mei; Qin, Zuo-Dong; Zou, Song-Bing

    2014-06-01

    There are few studies on the hydrologic processes of the landscape zone scales at present. Since the water environment is worsening, there is sharp contradiction between supply and demand of water resources in Shanxi province. The principle of the hydrologic processes of the landscape zones in Fenhe River headwater catchment was revealed by means of isotope tracing, hydrology geological exploration and water chemical signal study. The results showed that the subalpine meadow zone and the medium high mountain forest zone were main runoff formation regions in Fenhe River headwater catchment, while the sparse forest shrub zone and the mountain grassland zone lagged the temporal and spatial collection of the precipitation. Fenhe River water was mainly recharged by precipitation, groundwater, melt water of snow and frozen soil. This study suggested that the whole catchment precipitation hardly directly generated surface runoff, but was mostly transformed into groundwater or interflow, and finally concentrated into river channel, completed the "recharge-runoff-discharge" hydrologic processes. This study can provide scientific basis and reference for the containment of water environment deterioration, and is expected to deliver the comprehensive restoration of clear-water reflowing and the ecological environment in Shanxi province.

  12. Environmental isotope and geophysical techniques to identify groundwater potential zones in drought prone areas of Amravati District, Maharashtra, India

    International Nuclear Information System (INIS)

    Jacob, Noble

    2017-01-01

    The groundwater potential of Anjangaon village in Amaravati district of Maharashtra is generally poor and the water quality is saline in most of the places. Farmers dig open wells (up to 30 m depth) and drill bore wells (100-150 m depth) for domestic and irrigation purposes. Most of the wells failed and farmers are struggling for fresh water in this region. To evaluate the groundwater recharge and to identify the groundwater potential zones an environmental isotope and geophysical study was carried out. Water samples were collected from rain, springs, open wells, bore wells and detention tanks and measured for environmental isotopes such as "1"8O, "2H and "3H. Isotope results indicate that the groundwater is getting modern component of recharge from the rain as well as from the detention tanks. The percentage contributions from the detention tanks were estimated to be about 40 to 90 %. In the southern part of the Anjagaon village, an electrical resistivity survey of the geological formation was carried out and a groundwater potential zone was delineated at 45m depth. The farmers were asked to drill bore wells at the identified depth. The drilled five bore wells yielded perennial source of good quality water

  13. Source zone remediation by ZVI-clay soil-mixing: Reduction of tetrachloroethene mass and mass discharge at a Danish DNAPL site

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Lange, Ida Vedel; Binning, Philip John

    2012-01-01

    The presence of chlorinated solvent source zones in the subsurface pose a continuous threat to groundwater quality. The remediation of Dense Non-Aqueous Phase Liquid (DNAPL) sites is especially challenging and the development of innovative remediation technologies is needed. Zero-valent iron (ZVI......) technologies have proven effective for remediation of chlorinated compounds. ZVI-Clay soil-mixing is a new remediation technology, which combines abiotic degradation (via ZVI addition) and immobilization (via soil-mixing and clay addition), whereby a great potential for reduction of both contaminant mass....... The concentrations of chlorinated ethenes were monitored via soil sampling at the source zone and groundwater sampling at a control plane with multilevel samplers covering the entire contaminated plume down-gradient (3 m) of the source zone. The results showed a significant mass depletion of PCE (2-3 orders...

  14. Arsenic transport in groundwater, surface water, and the hyporheic zone of a mine-influenced stream-aquifer system

    OpenAIRE

    Brown, Brendan

    2005-01-01

    We investigated the transport of dissolved arsenic in groundwater, surface water and the hyporheic zone in a stream-aquifer system influenced by an abandoned arsenopyrite mine. Mine tailing piles consisting of a host of arsenic-bearing minerals including arsenopyrite and scorodite remain adjacent to the stream and represent a continuous source of arsenic. Arsenic loads from the stream, springs, and groundwater were quantified at the study reach on nine dates from January to August 2005 and ...

  15. Locating Ground-Water Discharge in the Hanford Reach of the Columbia River

    International Nuclear Information System (INIS)

    Lee, D.R.; Geist, D.R.; Saldi, K.; Hartwig, D.; Cooper, T.

    1997-01-01

    A bottom-contacting probe for measuring electrical conductivity at the sediment-water interface was used to scan the bed of the Columbia River adjacent to the Hanford Site in southeast Washington State during a 10-day investigation. Four river-sections, each about a kilometer in length, were scanned for variations in electrical conductivity. The probe was towed along the riverbed at a speed of 1 m/s and is position was recorded using a Global Positioning System. The bottom tows revealed several areas of elevated electrical conductivity. Where these anomalies were relatively easy to access, piezometers were driven into the riverbed and porewater electrical conductivity ranged from 111 to 150 uS/cm. The piezometers, placed in electrical conductivity ''hotspots'' yielded chemical or isotopic data consistent with previous analyses of water taken from monitoring wells and visible shoreline seeps. Tritium, nitrate, and chromium exceeded water quality standards in some porewaters. The highest tritium and nitrate levels were found near the Old Hanford Townsite at 120,000 pCi/L (+ 5,880 pCi/L total propagated analytical uncertainty) and ug/L (+ 5,880 ug/L), respectively. The maximum chromium (total and hexavalent) levels were found near 100-H reactor area where unfiltered porewater total chromium was 1,900 ug/L (+ 798 ug/L) and hexavalent chromium was 20 ug/L. The electrical conductivity probe provided rapid, cost-effective reconnaissance for ground-water discharge areas when used in combination with conventional piezometers. It may be possible to obtain quantitative estimates of both natural and contaminated ground-water discharge in the Hanford Reach with more extensive surveys of river bottom

  16. Modelling wetland-groundwater interactions in the boreal Kälväsvaara esker, Northern Finland

    Science.gov (United States)

    Jaros, Anna; Rossi, Pekka; Ronkanen, Anna-Kaisa; Kløve, Bjørn

    2016-04-01

    Many types of boreal peatland ecosystems such as alkaline fens, aapa mires and Fennoscandia spring fens rely on the presence of groundwater. In these ecosystems groundwater creates unique conditions for flora and fauna by providing water, nutrients and constant water temperature enriching local biodiversity. The groundwater-peatland interactions and their dynamics are not, however, in many cases fully understood and their measurement and quantification is difficult due to highly heterogeneous structure of peatlands and large spatial extend of these ecosystems. Understanding of these interactions and their changes due to anthropogenic impact on groundwater resources would benefit the protection of the groundwater dependent peatlands. The groundwater-peatland interactions were investigated using the fully-integrated physically-based groundwater-surface water code HydroGeoSphere in a case study of the Kälväsvaara esker aquifer, Northern Finland. The Kälväsvaara is a geologically complex esker and it is surrounded by vast aapa mire system including alkaline and springs fens. In addition, numerous small springs occur in the discharge zone of the esker. In order to quantify groundwater-peatland interactions a simple steady-state model was built and results were evaluated using expected trends and field measurements. The employed model reproduced relatively well spatially distributed hydrological variables such as soil water content, water depths and groundwater-surface water exchange fluxes within the wetland and esker areas. The wetlands emerged in simulations as a result of geological and topographical conditions. They could be identified by high saturation levels at ground surface and by presence of shallow ponded water over some areas. The model outputs exhibited also strong surface water-groundwater interactions in some parts of the aapa system. These areas were noted to be regions of substantial diffusive groundwater discharge by the earlier studies. In

  17. Origin of increased sulfate in groundwater at the ETF disposal site

    International Nuclear Information System (INIS)

    Thornton, E.C.

    1997-09-01

    Treated effluent being discharged to the vadose zone from the C-018H Effluent Treatment Facility (ETF) at the Hanford Site has infiltrated vertically to the unconfined aquifer, as indicated by increasing tritium activity levels in the groundwater. Well 699-48-77A, in particular, exhibits increased levels of tritium and also sulfate in the groundwater. The origin of increased sulfate levels in the groundwater is attributed to the dissolution of gypsum as the effluent flows through the vadose zone. This is supported by the observation that sulfate was found to be present in soils collected from the vadose zone at an average value of about 10.6 ppm. The maximum observed sulfate concentration of 190 mg/L from well 699-48-77A was observed on August 6, 1996, and is less than the maximum value of 879 mg/L that potentially could be achieved if water in the vadose zone was to attain saturation with respect to gypsum and calcite. It is suggested that infiltration rates were high enough that the effluent did not completely equilibrate with gypsum in the vadose zone, and thus, sulfate levels remained below gypsum saturation levels. Sulfate levels appear to be dropping, which may be attributed to the completion of the dissolution of the bulk of gypsum present along the vadose zone flow path traversed by the effluent. Geochemical modeling was undertaken to evaluate the influence of effluent chemistry on sulfate concentration levels in the presence of excess calcite and gypsum. In general, the effect is fairly minor for dilute solutions, but becomes more significant for concentrated solutions

  18. Effects of small-scale hydrogeologic heterogeneity on submarine groundwater discharge (SGD) dynamics in river dominated estuaries: example of Mobile Bay, Alabama

    Science.gov (United States)

    Montiel, D.; Dimova, N.

    2017-12-01

    Submarine groundwater discharge (SGD) is known to be an important pathway for nutrients and dissolved constituents in estuarine environments worldwide. Despite its limited contribution to the total fresh water flux to the ocean (5 - 10 %), SGD-derived material loadings can rival riverine inputs. Therefore, a good understanding of the coastal hydrogeology and subsequent SGD dynamics is crucial to further investigate constituent fluxes and its implications on small and large scale coastal ecosystems. We evaluated SGD in Mobile Bay (Alabama), the fourth largest estuary in the US, using a combination of radiotracer techniques (223Ra, 226Ra, and 222Rn), stable isotopes (δ 18O and δ 2H), geophysical surveys (continuous resistivity profiling (CRP) and electrical resistivity tomography (ERT)), and seepage meters during three consecutive years. A detailed examination of the entire shoreline of Mobile Bay using CRP, ERT imaging, and multiple sediment cores collection unveiled a heterogeneous (horizontal and vertical) distribution of the surficial coastal aquifer. This was reflected and confirmed by groundwater tracer measurements and direct measurements of SGD in the coastal zone. We found that SGD occurs mainly in the northeast section of Mobile Bay with a total flux that ranged between 0.9 and 13 × 105 m3 d-1 during dry and wet periods, which represents 0.4 - 2 % of the total fresh water inputs into the Bay. While total SGD is insignificant when accounting the whole water budget of Mobile Bay, we found that small-scale geology variations produce groundwater flow preferential pathways in particular areas where SGD inputs play an important role in the water and nutrient budgets.

  19. Regional groundwater flow in hard rocks

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Fernando A.L., E-mail: fpacheco@utad.pt

    2015-02-15

    The territory of continental Portugal has a geologic history marked by the Hercynian orogeny, and to the north of this country the Hercynian large-scale tectonic structures are typically represented by long and deep NW–SE trending ductile shear zones and NNE–SSW trending fragile faults. These structures are elements of mineral and thermal water circuits that discharge as springs in more than one hundred locations. The purpose of this study is to investigate if these structures are also used by shallower non-mineral groundwater, integrated in a large-scale regional flow system. Using an original combination of water balance and recession flow models, it was possible to calculate catchment turnover times based solely on groundwater discharge rates and recession flow parameters. These times were then used to classify a group of 46 watersheds as closed or open basins, and among the later class to identify source and sink basins, based on innovative interpretations of relationships between turnover time and catchment area. By definition, source basins transfer groundwater to sink basins and altogether form a regional flow system. Using a Geographic Information System, it could be demonstrated the spatial association of open basins to the Hercynian ductile and fragile tectonic structures and hence to classify the basins as discharge cells of a regional flow system. Most of the studied watersheds are sub-basins of the Douro River basin, one of the largest regional catchments in the Iberian Peninsula, being located in its mouth area. Because the largest part of open basins is sink, which by definition tends to dominate in the mouth area of regional catchments, it is proposed as an extension of the studied area conceptual boundaries towards the Douro River basin headwaters, where the corresponding sources could be searched for. - Highlights: • Introduce a method to distinguish open from closed groundwater basins • Identify structural elements of a regional flow

  20. Regional groundwater flow in hard rocks

    International Nuclear Information System (INIS)

    Pacheco, Fernando A.L.

    2015-01-01

    The territory of continental Portugal has a geologic history marked by the Hercynian orogeny, and to the north of this country the Hercynian large-scale tectonic structures are typically represented by long and deep NW–SE trending ductile shear zones and NNE–SSW trending fragile faults. These structures are elements of mineral and thermal water circuits that discharge as springs in more than one hundred locations. The purpose of this study is to investigate if these structures are also used by shallower non-mineral groundwater, integrated in a large-scale regional flow system. Using an original combination of water balance and recession flow models, it was possible to calculate catchment turnover times based solely on groundwater discharge rates and recession flow parameters. These times were then used to classify a group of 46 watersheds as closed or open basins, and among the later class to identify source and sink basins, based on innovative interpretations of relationships between turnover time and catchment area. By definition, source basins transfer groundwater to sink basins and altogether form a regional flow system. Using a Geographic Information System, it could be demonstrated the spatial association of open basins to the Hercynian ductile and fragile tectonic structures and hence to classify the basins as discharge cells of a regional flow system. Most of the studied watersheds are sub-basins of the Douro River basin, one of the largest regional catchments in the Iberian Peninsula, being located in its mouth area. Because the largest part of open basins is sink, which by definition tends to dominate in the mouth area of regional catchments, it is proposed as an extension of the studied area conceptual boundaries towards the Douro River basin headwaters, where the corresponding sources could be searched for. - Highlights: • Introduce a method to distinguish open from closed groundwater basins • Identify structural elements of a regional flow

  1. Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA

    Science.gov (United States)

    Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.

    2018-01-01

    Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3−) input functions by characterizing unsaturated zone NO3− transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous “vertical flux method” (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3− source concentration factor (which determines the local NO3− input concentration); unsaturated zone travel time; NO3− concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3− “extinction depth”, the eventual steady state depth of the NO3−front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 – 0.86 and 0.22 – 0.38, respectively, and predictions were compiled as maps of the above

  2. A hydrological budget (2002-2008) for a large subtropical wetland ecosystem indicates marine groundwater discharge accompanies diminished freshwater flow

    Science.gov (United States)

    Saha, Amartya K.; Moses, Christopher S.; Price, Rene M.; Engel, Victor; Smith, Thomas J.; Anderson, Gordon

    2012-01-01

    Water budget parameters are estimated for Shark River Slough (SRS), the main drainage within Everglades National Park (ENP) from 2002 to 2008. Inputs to the water budget include surface water inflows and precipitation while outputs consist of evapotranspiration, discharge to the Gulf of Mexico and seepage losses due to municipal wellfield extraction. The daily change in volume of SRS is equated to the difference between input and outputs yielding a residual term consisting of component errors and net groundwater exchange. Results predict significant net groundwater discharge to the SRS peaking in June and positively correlated with surface water salinity at the mangrove ecotone, lagging by 1 month. Precipitation, the largest input to the SRS, is offset by ET (the largest output); thereby highlighting the importance of increasing fresh water inflows into ENP for maintaining conditions in terrestrial, estuarine, and marine ecosystems of South Florida.

  3. Importance of including small-scale tile drain discharge in the calibration of a coupled groundwater-surface water catchment model

    DEFF Research Database (Denmark)

    Hansen, Anne Lausten; Refsgaard, Jens Christian; Christensen, Britt Stenhøj Baun

    2013-01-01

    the catchment. In this study, a coupled groundwater-surface water model based on the MIKE SHE code was developed for the 4.7 km2 Lillebæk catchment in Denmark, where tile drain flow is a major contributor to the stream discharge. The catchment model was calibrated in several steps by incrementally including...... the observation data into the calibration to see the effect on model performance of including diverse data types, especially tile drain discharge. For the Lillebæk catchment, measurements of hydraulic head, daily stream discharge, and daily tile drain discharge from five small (1–4 ha) drainage areas exist....... The results showed that including tile drain data in the calibration of the catchment model improved its general performance for hydraulic heads and stream discharges. However, the model failed to correctly describe the local-scale dynamics of the tile drain discharges, and, furthermore, including the drain...

  4. Semi-Permeable Paleochannels as Conduits for Submarine Groundwater Discharge to the Coast in Barataria Bay, Louisiana

    Science.gov (United States)

    Breaux, A.; Kolker, A.; Telfeyan, K.; Kim, J.; Johannesson, K. H.; Cable, J. E.

    2014-12-01

    Many studies have focused on hydrological and geochemical fluxes to the ocean from land to the ocean via submarine groundwater discharge (SGD), however few have assessed these contributions of SGD in deltaic settings. The Mississippi River delta is the largest delta in North America, and the magnitude of groundwater that discharges from the river into its delta is relatively unknown. Hydrological budgets indicate that there is a large magnitude of surface water lost in the Mississippi's delta as the river flows into the Gulf of Mexico. Recent evidence in our study indicates that paleochannels, or semi-permeable buried sandy bodies that were former distributaries of the river, allow for water to discharge out of the Mississippi's main channel and into its delta driven by a difference in hydraulic head between the river and the lower lying coastal embayments. Our study uses geophysical data, including sonar and resistivity methods, to detect the location of these paleochannels in Barataria Bay, a coastal bay located in the Mississippi Delta. High resolution CHIRP sonar data shows that these paleochannel features are ubiquitous in the Mississippi Delta, whereas resistivity data indicates that lower salinity water is found during high river flow in bays proximate to the river. Sediment core analysis is also used to characterize the area of study, as well as further understand the regional geology of the Mississippi Delta and estimate values of permeability and hydraulic conductivity of sediments taken from two locations in Barataria Bay. The geophysical and sediment core data will likewise be used to contextualize geochemical data collected in the field, which includes an assessment of major cations and anions, as well as in situ Rn-222 activities, a method that has been proven to be useful as a tracer of groundwater movement. The results may be useful in understanding the potential global magnitude of hydrological and geochemical fluxes of other large rivers with

  5. Conceptual and numerical models of groundwater flow and solute transport in fracture zones: Application to the Aspo Island (Sweden)

    International Nuclear Information System (INIS)

    Molinero, J.; Samper, J.

    2003-01-01

    Several countries around the world are considering the final disposal of high-level radioactive waste in deep repositories located in fractured granite formations. Evaluating the long term safety of such repositories requires sound conceptual and numerical models which must consider simultaneously groundwater flow, solute transport and chemical and radiological processes. These models are being developed from data and knowledge gained from in situ experiments carried out at deep underground laboratories such as that of Aspo, Sweden, constructed in fractured granite. The Redox Zone Experiment is one of such experiments performed at Aspo in order to evaluate the effects of the construction of the access tunnel on the hydrogeological and hydrochemical conditions of a fracture zone intersected by the tunnel. Previous authors interpreted hydrochemical and isotopic data of this experiment using a mass-balance approach based on a qualitative description of groundwater flow conditions. Such an interpretation, however, is subject to uncertainties related to an over-simplified conceptualization of groundwater flow. Here we present numerical models of groundwater flow and solute transport for this fracture zone. The first model is based on previously published conceptual model. It presents noticeable un consistencies and fails to match simultaneously observed draw downs and chloride breakthrough curves. To overcome its limitations, a revised flow and transport model is presented which relies directly on available hydrodynamic and transport parameters, is based on the identification of appropriate flow and transport boundary conditions and uses, when needed, solute data extrapolated from nearby fracture zones. A significant quantitative improvement is achieved with the revised model because its results match simultaneously drawdown and chloride data. Other improvements are qualitative and include: ensuring consistency of hydrodynamic and hydrochemical data and avoiding

  6. Field Evaluation Of Arsenic Transport Across The Ground-Water/Surface Water Interface: Ground-Water Discharge And Iron Oxide Precipitation

    Science.gov (United States)

    A field investigation was conducted to examine the distribution of arsenic in ground water, surface water, and sediments at a Superfund Site in the northeastern United States (see companion presentation by K. G. Scheckel et al). Ground-water discharge into the study area was cha...

  7. Recharge and Lateral Groundwater Flow Boundary Conditions for the Saturated Zone Site-Scale Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    B. Arnold; T. Corbet

    2001-12-18

    The purpose of the flow boundary conditions analysis is to provide specified-flux boundary conditions for the saturated zone (SZ) site-scale flow and transport model. This analysis is designed to use existing modeling and analysis results as the basis for estimated groundwater flow rates into the SZ site-scale model domain, both as recharge at the upper (water table) boundary and as underflow at the lateral boundaries. The objective is to provide consistency at the boundaries between the SZ site-scale flow model and other groundwater flow models. The scope of this analysis includes extraction of the volumetric groundwater flow rates simulated by the SZ regional-scale flow model to occur at the lateral boundaries of the SZ site-scale flow model and the internal qualification of the regional-scale model for use in this analysis model report (AMR). In addition, the scope includes compilation of information on the recharge boundary condition taken from three sources: (1) distributed recharge as taken from the SZ regional-scale flow model, (2) recharge below the area of the unsaturated zone (UZ) site-scale flow model, and (3) focused recharge along the Fortymile Wash channel.

  8. In Situ Groundwater Denitrification in the Riparian Zone of a Short-Rotation Woody Crop Experimental Watershed

    Science.gov (United States)

    Jeffers, J. B.; Jackson, C. R.; Rau, B.; Pringle, C. M.; Matteson, C.

    2017-12-01

    The southeastern United States has potential to become a major producer of short rotation woody crops (SRWC) for the production of biofuels, but this will require converting to more intensive forest management practices that will increase nitrate (NO3-) loading and alter nitrogen cycling in nearby freshwater ecosystems. Water quality monitoring in an experimental short-rotation woody crop watershed in the Coastal Plain of South Carolina has shown increased concentrations of NO3- in groundwater but no evidence of increased NO3- in riparian groundwater or surface waters. Forested riparian areas established as streamside management zones (SMZ) are known to act as buffers to surface water bodies by mitigating nutrients. The objectives of this study were to quantify denitrification by measuring dinitrogen (N2) and nitrous oxide (N2O) concentrations along groundwater flow paths and analyze relationships between denitrification estimates, nutrients, and water chemistry parameters. A network of piezometers has been established in the Fourmile Experimental Watershed at the Department of Energy - Savannah River Site. Water samples were collected monthly and were analyzed for concentrations of nutrients (temperature, specific conductivity, dissolved oxygen, pH, dissolved organic carbon) and dissolved gases (N2, Ar, N2O). Preliminary data showed greater dissolved N2O concentrations than dissolved N2 concentrations in groundwater. The ratios of N2O to combined end products of denitrification (N2O / N2O+N2) ranged from 0.33 to 0.99. Mean N2O+N2 concentrations were greater in groundwater samples in the SRWC plot and along the SMZ boundary than along the ephemeral stream within the riparian zone. Correlations between water chemistry parameters and N2 concentrations are indicative of known biogeochemical driving factors of denitrification. Continued monthly sampling will be coupled with analysis of nutrient concentrations (NO3-, NH4+, TN) to help determine transport and processing

  9. Anisotropy of streambed sediments of contrasting geomorphological environments and its relation to groundwater discharge

    Science.gov (United States)

    Sebok, Eva; Duque, Carlos; Engesgaard, Peter; Bøgh, Eva

    2013-04-01

    As a main factor controlling surface water-groundwater exchange, spatial variability in streambed hydraulic conductivity and anisotropy is a key to understand groundwater discharge patterns to streams. Here we report on a field investigation in a soft-bedded stream, where horizontal and vertical streambed hydraulic conductivities were determined in order to, (i) detect spatial and seasonal variability in streambed hydraulic conductivity and anisotropy, (ii) relate this variability to channel morphology and different streambed sediments. The study was carried out at a field site located along Holtum stream in Western Denmark. The 5 m wide stream has a soft sandy streambed, an average discharge of 1000 l/s and an average depth of 0.7 m. Hydraulic tests were carried out in 8 transects across the stream with 5 test locations in each transect to study the spatial variability and streambed hydraulic anisotropy across the stream. Different geomorphological environments were compared by having two transects in a straight channel and six transects across a channel bend with a depositional and an erosional bank. Streambed horizontal hydraulic conductivity (Kh) 0.5 meters below the streambed was determined with slugtests in piezometers. At the same locations falling head tests were conducted in standpipes to calculate vertical hydraulic conductivity (Kv) on a 0.5 m long streambed material column some of which were later removed for grain size analysis. In order to account for any seasonal changes in the temperature-related fluid properties the falling head tests and slugtests were carried out in December 2011 and August 2012. Both the Kh and Kv values show greater variability in the summer dataset. During both seasons the shallow, depositional streambank displays the highest Kh values, while the erosional bank at the thalweg is characterised by lower Kh. Vertical streambed hydraulic conductivities do not show any spatial trend across the stream. Streambed anisotropy values of

  10. Regional groundwater flow in the Atikokan Research Area : simulation of 18O and 3H distributions

    International Nuclear Information System (INIS)

    Ophori, D.U.; Chan, Tin.

    1994-09-01

    AECL is investigating a concept for disposing of nuclear fuel waste deep in plutonic rock of the Canadian Shield. As part of this investigation, we have performed a model simulation of regional groundwater flow in the Atikokan Research Area, a fractured plutonic rock environment of the Canadian Shield, and used the distribution of oxygen-18 ( 18 O) and tritium ( 3 H) in groundwater to test the model. At the first stage of model calibration, groundwater flow was simulated using a three-dimensional finite-element code, MOTIF, in conjunction with a conceptual framework model derived from field geological, geophysical and hydrogeological data. Hydraulic parameters (permeability and porosity) were systematically varied until simulated recharge rates to the water table compared favourably with estimated recharge rates based on stream flow analysis. At the second stage, vertical average linear groundwater velocities from the first stage of the calibration process were combined with conceptualized one-dimensional models of the system to generate depth concentration profiles of 18 O and 3 H. Recharge-, midline-and discharge area models of both the fracture zones and the rock mass were employed. The simulated profiles formed 'envelopes' around all field 18 O and 3 H data, indicating that the calibrated velocities used in the model are reasonable. The models demonstrate that the scatter of δ 18 O and 3 H field data from the Atikokan Research Area is consistent with the groundwater flow model predictions and can be explained by the complexity arising from different hydraulic regimes (recharge, midline, discharge) and hydrogeologic environments (fracture zones, rock mass) of the regional flow system. 50 refs., 14 figs., 3 tabs

  11. Practical problems of groundwater model ages for groundwater protection studies

    International Nuclear Information System (INIS)

    Matthess, G.; Muennich, K.O.; Sonntag, C.

    1976-01-01

    Water authorities in the Federal Republic of Germany have established a system of protection zones for the protection of groundwater supplies from pollution. One zone (Zone II) is defined by an outer boundary from which the groundwater needs 50 days to flow to the well. 50 days is the period accepted for the elimination of pathogenic germs. However, within Zone II carbon-14 measurements of water may give model ages of several thousand years, which may lead to some confusion in the legal and practical aspects of this scheme. These model ages may result from uncertainties in the chemical model, or from mixing of waters of different ages, either within the aquifer or during extraction at the well. The paper discusses scientific aspects of the establishment of protection zones. Two processes affecting the model age determinations are examined in detail. First, the mechanism of diffusion transport downwards through porous, but impermeable, aquicludes is examined for stable trace substances and radioactive isotopes. Secondly, examples are given of model ages resulting from mixtures of new and old waters. It is recommended that such model ages should not be reported as 'ages' since they may be misinterpreted in groundwater protection applications. (author)

  12. Quantification of leachate discharged to groundwater using the water balance method and the hydrologic evaluation of landfill performance (HELP) model.

    Science.gov (United States)

    Alslaibi, Tamer M; Abustan, Ismail; Mogheir, Yunes K; Afifi, Samir

    2013-01-01

    Landfills are a source of groundwater pollution in Gaza Strip. This study focused on Deir Al Balah landfill, which is a unique sanitary landfill site in Gaza Strip (i.e., it has a lining system and a leachate recirculation system). The objective of this article is to assess the generated leachate quantity and percolation to the groundwater aquifer at a specific site, using the approaches of (i) the hydrologic evaluation of landfill performance model (HELP) and (ii) the water balance method (WBM). The results show that when using the HELP model, the average volume of leachate discharged from Deir Al Balah landfill during the period 1997 to 2007 was around, 6800 m3/year. Meanwhile, the average volume of leachate percolated through the clay layer was 550 m3/year, which represents around 8% of the generated leachate. Meanwhile, the WBM indicated that the average volume of leachate discharged from Deir Al Balah landfill during the same period was around 7660 m3/year--about half of which comes from the moisture content of the waste, while the remainder comes from the infiltration of precipitation and re-circulated leachate. Therefore, the estimated quantity of leachate to groundwater by these two methods was very close. However, compared with the measured leachate quantity, these results were overestimated and indicated a dangerous threat to the groundwater aquifer, as there was no separation between municipal, hazardous and industrial wastes, in the area.

  13. Characterization of Discharge Areas of Radionuclides Originating From Nuclear Waste Repositories

    Science.gov (United States)

    Marklund, L.; Xu, S.; Worman, A.

    2009-05-01

    If leakages in nuclear waste repositories located in crystalline bedrock arise, radionuclides will reach the biosphere and cause a risk of radiological impact. The extent of the radiological impact depends on in which landscape elements the radionuclides emerge. In this study, we investigate if there are certain landscape elements that generally will act as discharge areas for radionuclides leaking from subsurface deposits. We also characterize the typical properties that distinguish these areas from others. In humid regions, landscape topography is the most important driving force for groundwater flow. Because groundwater is the main transporting agent for migrating radionuclides, the topography will determine the flowpaths of leaking radionuclides. How topography and heterogeneities in the subsurface affect the discharge distribution of the radionuclides is therefore an important scope of this study. To address these issues, we developed a 3-D transport model. Our analyses are based on site-specific data from two different areas in Sweden, Forsmark, Uppland, and Oskarshamn, Småland. The Swedish Nuclear Waste Management Company (SKB) has selected these two areas as candidate areas for a deep repository of nuclear waste and the areas are currently subject to site investigations. Our results suggest that there are hot-spots in the landscape i.e. areas with high probability of receiving large amounts of radionuclides from a leaking repository of nuclear waste. The hot-spots concentrate in the sea, streams, lakes and wetlands. All these elements are found at lower elevations in the landscape. This pattern is mostly determined by the landscape topography and the locations of fracture zones. There is a relationship between fracture zones and topography, and therefore the importance of the topography for the discharge area distribution is not contradicted by the heterogeneity in the bedrock. The varieties of landscape elements which have potential for receiving

  14. Mapping and quantifying groundwater inflows to Deep Creek (Maribyrnong catchment, SE Australia) using 222Rn, implications for protecting groundwater-dependant ecosystems

    International Nuclear Information System (INIS)

    Cartwright, Ian; Gilfedder, Benjamin

    2015-01-01

    Highlights: • Groundwater inflows in a chain-of-ponds river quantified. • Groundwater inflow vs. discharge relationship determined using Rn. • First long-term continuous Rn monitoring in a river indicates temporal changes to groundwater inflows. • Application to protection of groundwater-dependant ecosystems. - Abstract: Understanding groundwater inflows to rivers is important in managing connected groundwater and surface water systems and for protecting groundwater-dependant ecosystems. This study defines the distribution of gaining reaches and estimates groundwater inflows to a 62 km long section of Deep Creek (Maribyrnong catchment, Australia) using 222 Rn. During summer months, Deep Creek ceases to flow and comprises a chain of ponds that δ 18 O and δ 2 H values, major ion concentrations, and 222 Rn activities imply are groundwater fed. During the period where the river flows, the relative contribution of groundwater inflows to total river discharge ranges from ∼14% at high flow conditions to ∼100% at low flows. That the predicted groundwater inflows account for all of the increase in discharge at low flow conditions lends confidence to the mass balance calculations. Near-continuous 27 week 222 Rn monitoring at one location in the middle of the catchment confirms the inverse correlation between river discharge and relative groundwater inflows, and also implies that there are limited bank return flows. Variations in groundwater inflows are related to geology and topography. High groundwater inflows occur where the river is at the edge of its floodplain, adjacent to hills composed of basement rocks, or flowing through steep incised valleys. Understanding the distribution of groundwater inflows and quantifying the contribution of groundwater to Deep Creek is important for managing and protecting the surface water resources, which support the endangered Yarra pygmy perch

  15. Tidal pumping as a driver of groundwater discharge to a back barrier salt marsh ecosystem

    Science.gov (United States)

    Carter, M. L.; Viso, R. F.; Peterson, R. N.; Hill, J. C.

    2013-12-01

    Submarine groundwater discharge (SGD) typically consists of both terrestrial groundwater and recirculated seawater and has been shown to be a significant pathway of dissolved substances to the coastal zone. The fresh and saline water mixture in the subsurface creates a salinity gradient that can impact biogeochemical processes. Located along the South Atlantic Bight, Georgia's coastline is an approximately 100-mile stretch of complex primary and secondary barrier islands resulting from geologic interactions driven by long-term sea level rise and retreat, accretion, seasonal tidal events, storm overwash, and wave driven erosion. Our study site is located in the Duplin River near Sapelo Island, GA and is part of the Georgia Coastal Ecosystems Long Term Ecosystem Research (GCE-LTER) program. This area is considered mesotidal (2-4m) and tidal pumping may be a dominating process in controlling SGD rates. The Duplin River is connected to the Atlantic Ocean through Doboy Sound to the south. To the north, the river terminates in extensive salt marsh and therefore has no overland freshwater input. Previous studies show a salinity gradient within the Duplin River indicating that SGD must be present as a source of brackish water. To place constraints on SGD processes, we employ a combination of geochemical and geophysical techniques to determine the magnitude of SGD in the Duplin River. Together these techniques permit a more complete understanding of the groundwater system. Three time series stations at the upper, mid and lower reaches of the Duplin River were deployed in June of 2013 to measure groundwater influences during daily and fortnightly tidal cycles. At each station, continuous radon-222 measurements were conducted at 30 minute intervals along with measurements of water level, temperature and conductivity using standard hydrological data loggers. During this period, eight time series resistivity profiles using a 56 electrode (110m long) cable were recorded to

  16. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    Science.gov (United States)

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-05-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  17. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    Directory of Open Access Journals (Sweden)

    C. Liu

    2015-05-01

    Full Text Available Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  18. Analysis of groundwater discharge with a lumped-parameter model, using a case study from Tajikistan

    Science.gov (United States)

    Pozdniakov, S. P.; Shestakov, V. M.

    A lumped-parameter model of groundwater balance is proposed that permits an estimate of discharge variability in comparison with the variability of recharge, by taking into account the influence of aquifer parameters. Recharge-discharge relationships are analysed with the model for cases of deterministic and stochastic recharge time-series variations. The model is applied to study the temporal variability of groundwater discharge in a river valley in the territory of Tajikistan, an independent republic in Central Asia. Résumé Un modèle global de bilan d'eau souterraine a été développé pour estimer la variabilité de l'écoulement par rapport à celle de la recharge, en prenant en compte l'influence des paramètres de l'aquifère. Les relations entre recharge et écoulement sont analysées à l'aide du modèle pour des variations des chroniques de recharge soit déterministes, soit stochastiques. Le modèle est appliquéà l'étude de la variabilité temporelle de l'écoulement souterrain vers une rivière, dans le Tadjikistan, une république indépendante d'Asie centrale. Resumen Se propone un modelo de parámetros concentrados para realizar el balance de aguas subterráneas, el cual permite estimar la variabilidad en la descarga con respecto a la variabilidad en la recarga, en función de los parámetros que caracterizan el acuífero. Las relaciones entre recarga y descarga se analizan con el modelo para distintos casos de series temporales de recarga, tanto deterministas como estocásticas. El modelo se aplica al estudio de la variabilidad temporal de la descarga en un valle aluvial de Tadyikistán, una república independiente del Asia Central.

  19. Autonomous long-term gamma-spectrometric monitoring of submarine groundwater discharge trends in Hawaii

    International Nuclear Information System (INIS)

    Dulai, Henrietta; Waters, Ch.A.; Kennedy, Joseph; Kamenik, Jan; Academy of Sciences of the Czech Republic, Rez; Babinec, James; Jolly, James; Williamson, Mario

    2016-01-01

    We developed a fully autonomous underwater gamma-spectrometer for long-term coastal submarine groundwater discharge (SGD) monitoring. The instrument represents a significant improvement over previous submarine gamma-spectrometers in that it is very robust, has high sensitivity allowing high temporal resolution, and is completely autonomous. Here we describe the technical parameters of the new instrument as well as data collected over its 9-month deployment in Kiholo Bay, HI, USA. We also present methods to convert the measured activities to SGD rates. In Kiholo Bay, the derived SGD matched previous estimates but in addition it revealed previously undocumented short- and long-term patterns in SGD. (author)

  20. Risk assessing heavy metals in the groundwater-surface water interface at a contaminated site

    DEFF Research Database (Denmark)

    Bigi, Giovanni; McKnight, Ursula S.; Bjerg, Poul Løgstrup

    such as surface water and groundwater (EC, 2017). The current study quantified and assessed the contamination of As, Cd, Cr, Cu, Ni, Pb and Zn in the shallow aquifer, hyporheic zone, stream water and streambed sediments at Rådvad site, a former metal manufacturing industrial area located in Denmark, investigating...... in the soil). Stream water was sampled in 12 points, while groundwater was sampled in 4 wells close to the stream where the interaction was suspected. Sediments and hyporheic zone were sampled in pair, where upward hydraulic heads have been detected. A drain discharging in the river was also sampled....... Sediments were divided in different layers and both heavy metal total concentration and chemical partitioning were analysed. Redox species and dissolved organic matter were also analysed in the water samples, while fraction of organic carbon was investigated in the extracted sediments. Results showed a high...

  1. Numerical simulation of groundwater flow in LILW Repository site:I. Groundwater flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Park, Koung Woo; Ji, Sung Hoon; Kim, Chun Soo; Kim, Kyoung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Ji Yeon [Korea Hydro and Nuclear Power Co. Ltd., Seoul (Korea, Republic of)

    2008-12-15

    Based on the site characterization works in a low and intermediate level waste (LILW) repository site, the numerical simulations for groundwater flow were carried out in order to understand the groundwater flow system of repository site. To accomplish the groundwater flow modeling in the repository site, the discrete fracture network (DFN) model was constructed using the characteristics of fracture zones and background fractures. At result, the total 10 different hydraulic conductivity(K) fields were obtained from DFN model stochastically and K distributions of constructed mesh were inputted into the 10 cases of groundwater flow simulations in FEFLOW. From the total 10 numerical simulation results, the simulated groundwater levels were strongly governed by topography and the groundwater fluxes were governed by locally existed high permeable fracture zones in repository depth. Especially, the groundwater table was predicted to have several tens meters below the groundwater table compared with the undisturbed condition around disposal silo after construction of underground facilities. After closure of disposal facilities, the groundwater level would be almost recovered within 1 year and have a tendency to keep a steady state of groundwater level in 2 year.

  2. Natural 222Rn and 220Rn indicate the impact of the Water–Sediment Regulation Scheme (WSRS) on submarine groundwater discharge in the Yellow River estuary, China

    International Nuclear Information System (INIS)

    Xu, Bochao; Xia, Dong; Burnett, William C.; Dimova, Natasha T.; Wang, Houjie; Zhang, Longjun; Gao, Maosheng; Jiang, Xueyan; Yu, Zhigang

    2014-01-01

    Highlights: • 220 Rn and 222 Rn were combined to locate intensive SGD sites. • Influence of WSRS to SGD was found for the first time. • SGD was a dominant nutrient pathway in the Yellow River estuary. - Abstract: Submarine groundwater discharge (SGD) in estuaries brings important influences to coastal ecosystems. In this study, we observed significant SGD in the Yellow River estuary, including a fresh component, during the Water–Sediment Regulation Scheme (WSRS) period. We used the 222 Rn and 220 Rn isotope pair to locate sites of significant SGD within the study area. Three apparent SGD locations were found during a non-WSRS period, one of which became much more pronounced, according to the remarkably elevated radon levels, during the WSRS. Increased river discharge (from 245 m 3 s −1 to 3560 m 3 s −1 ) and the elevated river water level (from 11 m to 13 m) during the WSRS led to a higher hydraulic head, enhancing groundwater discharge in the estuary. Our results suggest that high river discharge (>3000 m 3 s −1 ) might be necessary for elevated fresh submarine groundwater discharging (FSGD). Vertical profiles of salinity, DO and turbidity anomalies along the benthic boundary layer also indicated significant FSGD in the estuary during the WSRS. Nutrient concentrations had positive correlations with 222 Rn during a 24-h observation, which indicates that SGD is a dominant nutrient pathway in this area

  3. Discovery and characterization of submarine groundwater discharge in the Siberian Arctic seas: A case study in Buor-Khaya Gulf, Laptev Sea

    OpenAIRE

    Charkin, Alexander N.; Rutgers van der Loeff, Michiel; Shakhova, Natalia E.; Gustafsson, Örjan; Dudarev, Oleg V.; Cherepnev, Maxim S.; Salyuk, Anatoly N.; Koshurnikov, Andrey V.; Spivak, Eduard A.; Gunar, Alexey Y.; Semiletov, Igor P.

    2017-01-01

    It has been suggested that increasing freshwater discharge to the Arctic Ocean may also occur as submarine groundwater discharge (SGD), yet there are no direct observations of this phenomenon in the Arctic shelf seas. This study tests the hypothesis that SGD does exist in the Siberian-Arctic shelf seas but its dynamics may be largely controlled by complicated geocryological conditions such as permafrost. The field-observational approach in the southeast Laptev Sea used a combination of hydrol...

  4. Electromagnetic exploration in high-salinity groundwater zones: case studies from volcanic and soft sedimentary sites in coastal Japan

    Science.gov (United States)

    Suzuki, Koichi; Kusano, Yukiko; Ochi, Ryota; Nishiyama, Nariaki; Tokunaga, Tomochika; Tanaka, Kazuhiro

    2017-01-01

    Estimating the spatial distribution of groundwater salinity in coastal plain regions is becoming increasingly important for site characterisation and the prediction of hydrogeological environmental conditions resulting from radioactive waste disposal and underground CO2 storage. In previous studies of the freshwater-saltwater interface, electromagnetic methods were used for sites characterised by unconsolidated deposits or Neocene soft sedimentary rocks. However, investigating the freshwater-saltwater interface in hard rock sites (e.g. igneous areas) is more complex, with the permeability of the rocks greatly influenced by fractures. In this study, we investigated the distribution of high-salinity groundwater at two volcanic rock sites and one sedimentary rock site, each characterised by different hydrogeological features. Our investigations included (1) applying the controlled source audio-frequency magnetotelluric (CSAMT) method and (2) conducting laboratory tests to measure the electrical properties of rock core samples. We interpreted the 2D resistivity sections by referring to previous data on geology and geochemistry of groundwater. At the Tokusa site, an area of inland volcanic rocks, low resistivity zones were detected along a fault running through volcanic rocks and shallow sediments. The results suggest that fluids rise through the Tokusa-Jifuku Fault to penetrate shallow sediments in a direction parallel to the river, and some fluids are diluted by rainwater. At the Oki site, a volcanic island on a continental shelf, four resistivity zones (in upward succession: low, high, low and high) were detected. The results suggest that these four zones were formed during a transgression-regression cycle caused by the last glacial period. At the Saijo site, located on a coastal plain composed of thick sediments, we observed a deep low resistivity zone, indicative of fossil seawater remnant from a transgression after the last glacial period. The current coastal

  5. Locating Shallow Groundwater Discharge to Streams Near Concentrated Animal Feeding Operations Using Aerial Infrared Thermography: A Novel Potential Pollution Detection Method

    Science.gov (United States)

    Mapes, K. L.; Pricope, N. G.

    2017-12-01

    The Cape Fear River Basin (CFRB) has some of the highest densities of concentrated animal feeding operations (CAFO) in the United States (factoryfarmmap.org) and was recently named one of the country's most endangered rivers (americanrivers.org). There is high potential for CAFO land use to degrade stream water quality by introducing pollutants, primarily nitrates and fecal coliform, into sub-surface and surface waters. The regionally high water table in the Lower CFRB increases the risk of water quality degradation due to increased connectivity of ground- and surface water. The Lower CFRB is periodically subjected to frequent or intense hurricanes, which have been shown to exacerbate water quality issues associated with CAFOs. Additionally, the growing population in this region is placing more pressure on an already taxed water source and will continue to rely on the Cape Fear River for drinking water and wastewater discharge. While there are documented occurrences of groundwater contamination from CAFOs, we still have little understanding on how and where pollution may be entering streams by shallow sub-surface discharge. Shallow groundwater discharge to streams is becoming easier to detect using thermal infrared imaging cameras onboard unmanned aerial systems. The temperature differences between groundwater and stream water are easily distinguished in the resulting images. While this technology cannot directly measure water quality, it can locate areas of shallow groundwater discharge that can later be tested for pollutants using conventional methods. We will utilize a thermal infrared camera onboard a SenseFly eBee Plus to determine the feasibility of using this technology on a larger scale within the Lower CFRB as an inexpensive means of identifying sites of potential pollution input. Aerial surveys will be conducted in two sub-watersheds: one containing swine CAFO and a control that lacks swine CAFO. Information from this study can be integrated into

  6. Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt

    Science.gov (United States)

    Abdalla, Fathy; Khalil, Ramadan

    2018-05-01

    The potential effects of anthropogenic activities, in particular, unsafe sewage disposal practices, on shallow groundwater in an unconfined aquifer and on surface water were evaluated within an urban area by the use of hydrogeological, hydrochemical, and bacteriological analyses. Physicochemical and bacteriological data was obtained from forty-five sampling points based on33 groundwater samples from variable depths and 12 surface water samples. The pollution sources are related to raw sewage and wastewater discharges, agricultural runoff, and wastewater from the nearby Paper Factory. Out of the 33 groundwater samples studied, 17 had significant concentrations of NO3-, Cl- and SO42-, and high bacteria counts. Most of the water samples from the wells contained high Fe, Mn, Pb, Zn, Cd, and Cr. The majority of surface water samples presented high NO3- concentrations and high bacteria counts. A scatter plot of HCO3- versus Ca indicates that 58% of the surface water samples fall within the extreme contamination zone, while the others are within the mixing zone; whereas 94% of groundwater samples showed evidence of mixing between groundwater and wastewater. The bacteriological assessment showed that all measured surface and groundwater samples contained Escherichia coli and total coliform bacteria. A risk map delineated four classes of contamination, namely, those sampling points with high (39.3%), moderate (36.3%), low (13.3%), and very low (11.1%) levels of contamination. Most of the highest pollution points were in the middle part of the urban area, which suffers from unmanaged sewage and industrial effluents. Overall, the results demonstrate that surface and groundwater in Qus City are at high risk of contamination by wastewater since the water table is shallow and there is a lack of a formal sanitation network infrastructure. The product risk map is a useful tool for prioritizing zones that require immediate mitigation and monitoring.

  7. Response of hyporheic zones to transient forcing

    Science.gov (United States)

    Singh, T.; Wu, L.; Gomez-Velez, J. D.; Krause, S.; Hannah, D. M.; Lewandowski, J.; Nuetzmann, G.

    2017-12-01

    Exchange of water, solutes, and energy between river channels and hyporheic zones (HZs) modulates biogeochemical cycling, regulates stream temperature and impacts ecological structure and function. Numerical modelling of HZ processes is required as field observations are challenging for transient flow. To gain a deeper mechanistic understanding of the effects of transient discharge on hyporheic exchange, we performed a systematic analysis using numerical experiments. In this case, we vary (i) the characteristics of time-varying flood events; (ii) river bedform geometry; (iii) river hydraulic geometry; and (iv) the magnitude and direction of groundwater fluxes (neutral, gaining and losing conditions). We conceptualize the stream bed as a two-dimensional system. Whereby the flow is driven by a dynamically changing head distribution at the water-sediment interface and is modulated by steady groundwater flow. Our model estimates both net values for a single bedform and spatial distributions of (i) the flow field; (ii) mean residence times; and (iii) the concentration of a conservative tracer. A detailed sensitivity analysis was performed by changing channel slope, flood characteristics, groundwater upwelling/downwelling fluxes and biogeochemical time-scales in different bedforms such as ripples, dunes and alternating bars. Results show that change of parameters can have a substantial impact on exchange fluxes which can lead to the expansion, contraction, emergence and/or dissipation of HZs . Our results also reveal that groundwater fluxes have different impacts on HZs during flood events, depending on the channel slope and bedform topography. It is found that topographies with smaller aspect ratios and shallower slopes are more affected by groundwater upwelling/downwelling fluxes during flood events. The analysis of biogeochemical transformations shows that discharge events can potentially affects the efficiencies of nitrate removal. Taking into consideration multiple

  8. Nitrogen and phosphorus budgets for the Yucatán littoral: An approach for groundwater management.

    Science.gov (United States)

    Arandacirerol, Nancy; Comín, Francisco; Herrera-Silveira, Jorge

    2011-01-01

    Human activities have altered the balance of ecosystems to the detriment of natural environments. Eutrophication is a serious risk in Yucatán, a state in the eastern peninsula of México where groundwater supplies the only freshwater to a karst shelf environment. While economic development in Yucatán is increasing, environmental awareness is lagging, and efficient waste treatment systems are lacking. To assess potential nitrogen and phosphorus inputs into the coastal zone of Yucatán, we analyzed government reports and the chemical composition of groundwater and aquaculture wastewater. Swine, poultry, and tourism are revealed as the main continental nutrient sources, while groundwater with high nitrate concentrations is the principal coastal nutrient source, a pattern similar to other river discharges around the world. This study demonstrates that environmental risk management practices must be implemented in the Yucatán region to protect groundwater quality.

  9. CORMIX2: An expert system for hydrodynamic mixing zone analysis of conventional and toxic multiport diffuser discharges

    International Nuclear Information System (INIS)

    Akar, P.J.; Jirka, G.H.

    1991-12-01

    One of the most important tasks in the management of water quality is the ability to achieve pollutant concentrations within regulated standards. The Cornell Mixing Zone Expert System (CORMIX) is a series of software systems for the analysis, prediction, and design of aqueous toxic or conventional pollutant discharges into watercourses, with emphasis on the geometry and dilution characteristics of the initial mixing zone. The present development, subsystem CORMIX2 is concerned with submerged multiport discharges into flowing water environments, such as rivers, lakes, estuaries, and coastal waters. It includes effects of ambient stratification, dynamic attachment of the plume to the bottom of the receiving water, and the limiting case of stagnant conditions

  10. Using tracer-derived groundwater transit times to assess storage within a high-elevation watershed of the upper Colorado River Basin, USA

    Science.gov (United States)

    Georgek, Jennifer L.; Kip Solomon, D.; Heilweil, Victor M.; Miller, Matthew P.

    2018-03-01

    Previous watershed assessments have relied on annual baseflow to evaluate the groundwater contribution to streams. To quantify the volume of groundwater in storage, additional information such as groundwater mean transit time (MTT) is needed. This study determined the groundwater MTT in the West Fork Duchesne watershed in Utah (USA) with lumped-parameter modeling of environmental tracers (SF6, CFCs, and 3H/3He) from 21 springs. Approximately 30% of the springs exhibited an exponential transit time distribution (TTD); the remaining 70% were best characterized by a piston-flow TTD. The flow-weighted groundwater MTT for the West Fork watershed is about 40 years with approximately 20 years in the unsaturated zone. A cumulative distribution of these ages revealed that most of the groundwater is between 30 and 50 years old, suggesting that declining recharge associated with 5-10-year droughts is less likely to have a profound effect on this watershed compared with systems with shorter MTTs. The estimated annual baseflow of West Fork stream flow based on chemical hydrograph separation is 1.7 × 107 m3/year, a proxy for groundwater discharge. Using both MTT and groundwater discharge, the volume of mobile groundwater stored in the watershed was calculated to be 6.5 × 108 m3, or 20 m thickness of active groundwater storage and recharge of 0.09 m/year (assuming porosity = 15%). Future watershed-scale assessments should evaluate groundwater MTT, in addition to annual baseflow, to quantify groundwater storage and more accurately assess watershed susceptibility to drought, groundwater extraction, and land-use change.

  11. Fully integrated physically-based numerical modelling of impacts of groundwater extraction on surface and irrigation-induced groundwater interactions: case study Lower River Murray, Australia

    Science.gov (United States)

    Alaghmand, S.; Beecham, S.; Hassanli, A.

    2013-07-01

    Combination of reduction in the frequency, duration and magnitude of natural floods, rising saline water-table in floodplains and excessive evapotranspiration have led to an irrigation-induced groundwater mound forced the naturally saline groundwater onto the floodplain in the Lower River Murray. It is during the attenuation phase of floods that these large salt accumulations are likely to be mobilised and will discharge into the river. The Independent Audit Group for Salinity highlighted this as the most significant risk in the Murray-Darling Basin. South Australian government and catchment management authorities have developed salt interception schemes (SIS). This is to pump the highly saline groundwater from the floodplain aquifer to evaporation basins in order to reduce the hydraulic gradient that drives the regional saline groundwater towards the River Murray. This paper investigates the interactions between a river (River Murray in South Australia) and a saline semi-arid floodplain (Clarks Floodplain) significantly influenced by groundwater lowering (Bookpurnong SIS). Results confirm that groundwater extraction maintain a lower water-table and more fresh river water flux to the saline floodplain aquifer. In term of salinity, this may lead to less amount of solute stored in the floodplain aquifer. This occurs through two mechanisms; extracting some of the solute mass from the system and changing the floodplain groundwater regime from a losing to gaining one. Finally, it is shown that groundwater extraction is able to remove some amount of solute stored in the unsaturated zone and mitigate the floodplain salinity risk.

  12. Water-table and discharge changes associated with the 2016-2017 seismic sequence in central Italy: hydrogeological data and a conceptual model for fractured carbonate aquifers

    Science.gov (United States)

    Petitta, Marco; Mastrorillo, Lucia; Preziosi, Elisabetta; Banzato, Francesca; Barberio, Marino Domenico; Billi, Andrea; Cambi, Costanza; De Luca, Gaetano; Di Carlo, Giuseppe; Di Curzio, Diego; Di Salvo, Cristina; Nanni, Torquato; Palpacelli, Stefano; Rusi, Sergio; Saroli, Michele; Tallini, Marco; Tazioli, Alberto; Valigi, Daniela; Vivalda, Paola; Doglioni, Carlo

    2018-01-01

    A seismic sequence in central Italy from August 2016 to January 2017 affected groundwater dynamics in fractured carbonate aquifers. Changes in spring discharge, water-table position, and streamflow were recorded for several months following nine Mw 5.0-6.5 seismic events. Data from 22 measurement sites, located within 100 km of the epicentral zones, were analyzed. The intensity of the induced changes were correlated with seismic magnitude and distance to epicenters. The additional post-seismic discharge from rivers and springs was found to be higher than 9 m3/s, totaling more than 0.1 km3 of groundwater release over 6 months. This huge and unexpected contribution increased streamflow in narrow mountainous valleys to previously unmeasured peak values. Analogously to the L'Aquila 2009 post-earthquake phenomenon, these hydrogeological changes might reflect an increase of bulk hydraulic conductivity at the aquifer scale, which would increase hydraulic heads in the discharge zones and lower them in some recharge areas. The observed changes may also be partly due to other mechanisms, such as shaking and/or squeezing effects related to intense subsidence in the core of the affected area, where effects had maximum extent, or breaching of hydraulic barriers.

  13. The vadose zone as a geoindicator of environmental change and groundwater quality in water-scarce areas

    Science.gov (United States)

    Edmunds, W. M.; Baba Goni, I.; Gaye, C. B.; Jin, L.

    2013-12-01

    Inert and reactive tracers in moisture profiles provide considerable potential for the vadose zone to be used as an indicator of rapid environmental change. This indicator is particularly applicable in areas of water stress where long term (decade to century) scale records may be found in deep unsaturated zones in low rainfall areas and provide insights into recent recharge, climate variation and water-rock interactions which generate groundwater quality. Unsaturated zone Cl records obtained by elutriation of moisture are used widely for estimating recharge and water balance studies; isotope profiles (3H, δ2H, δ18O) from total water extraction procedures are used for investigation of residence times and hydrological processes. Apart from water taken using lysimeters, little work has been conducted directly on the geochemistry of pore fluids. This is mainly due to the difficulties of extraction of moisture from unsaturated material with low water contents (typically 2-6 wt%) and since dilution methods can create artifacts. Using immiscible liquid displacement techniques it is now possible to directly investigate the geochemistry of moisture from unsaturated zone materials. Profiles up to 35m from Quaternary sediments from dryland areas of the African Sahel (Nigeria, Senegal) as well as Inner Mongolia, China are used to illustrate the breadth of information obtainable from vadose zone profiles. Using pH, major and trace elements and comparing with isotopic data, a better understanding is gained of timescales of water movement, aquifer recharge, environmental records and climate history as well as water-rock interaction and contaminant behaviour. The usefulness of tritium as residence time indicator has now expired following cessation of atmospheric thermonuclear testing and through radioactive decay. Providing the rainfall Cl, moisture contents and bulk densities of the sediments are known, then Cl accumulation can be substituted to estimate timescales. Profiles

  14. Hydrogeologic framework, arsenic distribution, and groundwater geochemistry of the glacial-sediment aquifer at the Auburn Road landfill superfund site, Londonderry, New Hampshire

    Science.gov (United States)

    Degnan, James R.; Harte, Philip T.

    2013-01-01

    been observed in the wetland, streams, and pond downgradient of the landfills. Piezometers were installed in some of these locations to confirm groundwater discharge, measure vertical-flow gradients, and to provide a way to sample the discharging groundwater. Understanding the movement of leachate in groundwater is complicated by the presence of preferential flow paths through aquifer materials with differing hydraulic properties; these preferential flow paths can affect rates of recharge, geochemical conditions, and contaminant fluxes. In areas adjacent to the three capped landfills, infiltration of precipitation containing oxygenated water through permeable deltaic sediments in the former gravel pit area causes increases in dissolved oxygen concentrations and decreases in arsenic concentrations. Layered deltaic sediments produce anisotropic hydraulic characteristics and zones of high hydraulic conductivity. The glacial-sediment aquifer also includes glaciolacustrine sediments that have low permeability and limit infiltration at the surface Discharge of leachate-affected groundwater may be limited in areas of organic muck on the bottom of Whispering Pines Pond because the muck may act as a semiconfining layer. Geophysical survey results were used to identify several areas with continuous beds of muck and an underlying highresistivity layer on top of a layer of low resistivity that may represent leachate-affected groundwater. The high-resistivity layer is likely groundwater associated with oxygenated recharge, which would cause arsenic to adsorb onto aquifer sediments and reduce concentrations of dissolved arsenic in groundwater. Surface and borehole geophysical data collected in 2011 were used to identify potentially high-permeability or contaminated zones in the aquifer (preferential flowpaths) as well as low-permeability zones that may promote contamination through back diffusion. Some groundwater in parts of the glacial-sediment aquifer where the leachate plumes

  15. Flow of groundwater from great depths into the near surface deposits - modelling of a local domain in northeast Uppland

    International Nuclear Information System (INIS)

    Holmen, Johan G.; Forsman, Jonas

    2005-01-01

    these areas do not vary much for different values of the permeability of the uppermost part of the flow medium or for the applied different values of groundwater recharge. Flow paths were released on-shore inside of the shore line (no paths were released below the sea) and at an approximate repository depth (i.e. 420 m), the flow paths will either discharge into the sea (i.e. 34%) or above the sea (i.e. 66%). Considering the discharge areas above the sea, nearly all of the flow paths from repository depth will discharge into lakes, and especially where a fracture zones intersects a lake. Considering a lake with a thick layer of low-permeable sediments at the base of the lake (a large flow-resistance), for such a situation nearly all flow paths discharges along the lake perimeter where no sediments occur. And for a situation in which a lake has sediments of small resistance along its base, for such a situation most flow paths discharge at the base of the lake through the lake sediments. Most flow routes from repository depths demonstrate short path lengths in the quaternary deposits. Only a small percentage (< 5%) of the flow paths demonstrate path lengths in the surface near material (in the uppermost 1.5 m of quaternary deposits) that are longer than about 50 m. This is because most flow paths from great depth flow towards lakes and other strong sinks, and reaches these areas from deep below and hence the surface near part of the flow paths will be short. Nevertheless, a small amount of flow paths (less than approximately 5% of all paths) demonstrate lengths between 50 m and 250 m in the quaternary deposits below lakes, that is however for a situation in which the resistances of the lake sediments are large. Outside of the lakes, the lengths of the studied flow paths in the quaternary deposits tend to be shorter and are not much influenced by the resistance of the lake sediments. For most flow paths from great depth, the total break through times depend very strongly

  16. Flow of groundwater from great depths into the near surface deposits - modelling of a local domain in northeast Uppland

    Energy Technology Data Exchange (ETDEWEB)

    Holmen, Johan G.; Forsman, Jonas [Golder Associates, Stockholm (Sweden)

    2005-01-15

    these areas do not vary much for different values of the permeability of the uppermost part of the flow medium or for the applied different values of groundwater recharge. Flow paths were released on-shore inside of the shore line (no paths were released below the sea) and at an approximate repository depth (i.e. 420 m), the flow paths will either discharge into the sea (i.e. 34%) or above the sea (i.e. 66%). Considering the discharge areas above the sea, nearly all of the flow paths from repository depth will discharge into lakes, and especially where a fracture zones intersects a lake. Considering a lake with a thick layer of low-permeable sediments at the base of the lake (a large flow-resistance), for such a situation nearly all flow paths discharges along the lake perimeter where no sediments occur. And for a situation in which a lake has sediments of small resistance along its base, for such a situation most flow paths discharge at the base of the lake through the lake sediments. Most flow routes from repository depths demonstrate short path lengths in the quaternary deposits. Only a small percentage (< 5%) of the flow paths demonstrate path lengths in the surface near material (in the uppermost 1.5 m of quaternary deposits) that are longer than about 50 m. This is because most flow paths from great depth flow towards lakes and other strong sinks, and reaches these areas from deep below and hence the surface near part of the flow paths will be short. Nevertheless, a small amount of flow paths (less than approximately 5% of all paths) demonstrate lengths between 50 m and 250 m in the quaternary deposits below lakes, that is however for a situation in which the resistances of the lake sediments are large. Outside of the lakes, the lengths of the studied flow paths in the quaternary deposits tend to be shorter and are not much influenced by the resistance of the lake sediments. For most flow paths from great depth, the total break through times depend very strongly

  17. Groundwater Flow and Radionuclide Transport in Fault Zones in Granitic Rock

    International Nuclear Information System (INIS)

    Geier, Joel Edward

    2004-12-01

    Fault zones are potential paths for release of radioactive nuclides from radioactive-waste repositories in granitic rock. This research considers detailed maps of en echelon fault zones at two sites in southern Sweden, as a basis for analyses of how their internal geometry can influence groundwater flow and transport of radioactive nuclides. Fracture intensity within these zones is anisotropic and correlated over scales of several meters along strike, corresponding to the length and spacing of the en echelon steps. Flow modeling indicates these properties lead to correlation of zone transmissivity over similar scales. Intensity of fractures in the damage zone adjoining en echelon segments decreases exponentially with distance. These fractures are linked to en echelon segments as a hierarchical pattern of branches. Echelon steps also show a hierarchical internal structure. These traits suggest a fractal increase in the amount of pore volume that solute can access by diffusive mass transfer, with increasing distance from en echelon segments. Consequences may include tailing of solute breakthrough curves, similar to that observed in underground tracer experiments at one of the mapping sites. The implications of echelon-zone architecture are evaluated by numerical simulation of flow and solute transport in 2-D network models, including deterministic models based directly on mapping data, and a statistical model. The simulations account for advection, diffusion-controlled mixing across streamlines within fractures and at intersections, and diffusion into both stagnant branch fractures and macroscopically unfractured matrix. The simulations show that secondary fractures contribute to retardation of solute, although their net effect is sensitive to assumptions regarding heterogeneity of transmissivity and transport aperture. Detailed results provide insight into the function of secondary fractures as an immobile domain affecting mass transfer on time scales relevant to

  18. Hanford Site Groundwater Monitoring for Fiscal Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2004-04-12

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon

  19. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    Science.gov (United States)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone

  20. Modeling of geochemical processes in the submarine discharge zone of hydrothermal solutions

    Directory of Open Access Journals (Sweden)

    С. М. Судариков

    2017-06-01

    Full Text Available The paper reviews the main methods and analyzes modeling results for geochemical processes in the submarine discharge zone of hydrothermal solutions of mid-ocean ridges. Initial data for modeling have been obtained during several marine expeditions, including Russian-French expedition SERPENTINE on the research vessel «Pourquoi Рas?» (2007. Results of field observations, laboratory experiments and theoretical developments are supported by the analysis of regression model of mixing between hydrothermal solutions and sea water. Verification of the model has been carried out and the quality of chemical analysis has been assessed; degree and character of participation of solution components in the hydrothermal process have been defined; the content of end members has been calculated basing on reverse forecasting of element concentration, depending on regression character; data for thermodynamic modeling have been prepared. Regression model of acid-base properties and chloridity of mineralizing thermal springs confirms adequacy of the model of double-diffusive convection for forming the composition of hydrothermal solutions.  Differentiation of solutions according to concentrations of chloride-ion, depending on temperature and pH indicator within this model, is associated with phase conversions and mixing of fluids from two convection cells, one of which is a zone of brine circulation. In order to carry out computer thermodynamic modeling, hydro-geochemical and physicochemical models of hydrothermal discharge zone have been created. Verification of the model has been carried out basing on changes of Mn concentration in the hydrothermal plume. Prevailing forms of Mn migration in the plume are Mn2+, MnCl+, MnCl2. Two zones have been identified in the geochemical structure of the plume: 1 high-temperature zone (350-100 °С with prevalence of chloride complexes – ascending plume; 2 low-temperature zone (100-2 °С, where predominant form of

  1. Impact of urbanization on hydrochemical evolution of groundwater and on unsaturated-zone gas composition in the coastal city of Tel Aviv, Israel

    Science.gov (United States)

    Zilberbrand, M.; Rosenthal, E.; Shachnai, E.

    2001-08-01

    The coastal city of Tel Aviv was founded at the beginning of the 20th century. The number of its inhabitants and its water consumption increased rapidly. This study analyses a 15-year record (1934-1948) of pre-industrial development of groundwater chemistry in the urban area. Archive data on concentrations of major ions, dissolved gases (CO 2 and O 2), organic matter, and pH were available for each half-year during the period of 1934-1948. The major factors causing changes in the chemistry of groundwater flowing in three sandy sub-aquifers have been seawater encroachment due to overpumping, and infiltration of effluents from pit-latrine collectors. Influence of these factors decreases with depth. Landward-penetrating seawater passed through clayey coastal sediments, interbedded among sands and calcareous sandstones, and spread into the Kurkar Group aquifer. This has led to exchange of sodium (dominant in seawater) with calcium adsorbed on clay particles, enriching groundwater with calcium. Intensity of cation exchange decreases inland and with depth. Infiltration of pit-latrine effluents has introduced large amounts of ammonium into the unsaturated zone. Its rapid oxidation in unsaturated sediments has caused massive nitrate production, accompanied by pore-water acidification. This process induces dissolution of vadose carbonate, resulting in enrichment of groundwater recharge in calcium. Anthropogenically induced dissolution of calcite in the unsaturated zone has been the major factor for the increase of Ca 2+ concentration in groundwater, accounting for about 80% of this increase. In the interface zone, an additional 20% of calcium has been supplied by cation exchange. Owing to pH increase caused by denitrification in the aquifer, Ca 2+-rich waters supersaturated with calcite could be formed, especially in the capillary fringe of the uppermost sub-aquifer, which could induce calcite precipitation and ultimately lead to the cementation of sandy aquifers. Urban

  2. Hydrochemical analysis of groundwater using multivariate statistical methods - The Volta region, Ghana

    Science.gov (United States)

    Banoeng-Yakubo, B.; Yidana, S.M.; Nti, E.

    2009-01-01

    Q and R-mode multivariate statistical analyses were applied to groundwater chemical data from boreholes and wells in the northern section of the Volta region Ghana. The objective was to determine the processes that affect the hydrochemistry and the variation of these processes in space among the three main geological terrains: the Buem formation, Voltaian System and the Togo series that underlie the area. The analyses revealed three zones in the groundwater flow system: recharge, intermediate and discharge regions. All three zones are clearly different with respect to all the major chemical parameters, with concentrations increasing from the perceived recharge areas through the intermediate regions to the discharge areas. R-mode HCA and factor analysis (using varimax rotation and Kaiser Criterion) were then applied to determine the significant sources of variation in the hydrochemistry. This study finds that groundwater hydrochemistry in the area is controlled by the weathering of silicate and carbonate minerals, as well as the chemistry of infiltrating precipitation. This study finds that the ??D and ??18O data from the area fall along the Global Meteoric Water Line (GMWL). An equation of regression derived for the relationship between ??D and ??18O bears very close semblance to the equation which describes the GMWL. On the basis of this, groundwater in the study area is probably meteoric and fresh. The apparently low salinities and sodicities of the groundwater seem to support this interpretation. The suitability of groundwater for domestic and irrigation purposes is related to its source, which determines its constitution. A plot of the sodium adsorption ratio (SAR) and salinity (EC) data on a semilog axis, suggests that groundwater serves good irrigation quality in the area. Sixty percent (60%), 20% and 20% of the 67 data points used in this study fall within the medium salinity - low sodicity (C2-S1), low salinity -low sodicity (C1-S1) and high salinity - low

  3. Uranium removal during low discharge in the Ganges-Brahmaputra mixing zone

    International Nuclear Information System (INIS)

    Carroll, J.; Moore, W.S.

    1993-01-01

    The Ganges-Brahmaputra river system supplies more dissolved uranium to the ocean than any other system in the world (Sarin et al., 1990; Sackett et al., 1973). However, there have been no investigations to determine whether riverine supplies of uranium are altered by geochemical reactions in the river-ocean mixing zone. In this study, uranium and salinity data were collected in the Ganges-Brahmaputra mixing zone during a period of low river discharge. The uranium distribution with salinity shows that in waters <12 ppt salinity, uranium activities are significantly lower than predicted from conservative mixing of river and seawater. This suggests that uranium is being removed within the mixing zone. The behavior of uranium in the Ganges-Brahmaputra is in sharp contrast to its behavior in the Amazon mixing zone where McKee et al. (1978) found uranium activities significantly higher than predicted from conservative mixing. The contrasting behaviors for uranium in these systems are due to the different locations where mixing between river and seawater occurs. For the Amazon, mixing takes place on the continental shelf whereas for the Ganges-Brahmaputra, mixing occurs within shoreline sedimentary environments. The physiochemical processes controlling uranium removal to sediment deposits in the Amazon are partly known. The authors discuss mechanisms which may be removing uranium to suspended and mangrove sediments in the Ganges-Brahmaputra

  4. Application of Bayesian geostatistics for evaluation of mass discharge uncertainty at contaminated sites

    Science.gov (United States)

    Troldborg, Mads; Nowak, Wolfgang; Lange, Ida V.; Santos, Marta C.; Binning, Philip J.; Bjerg, Poul L.

    2012-09-01

    Mass discharge estimates are increasingly being used when assessing risks of groundwater contamination and designing remedial systems at contaminated sites. Such estimates are, however, rather uncertain as they integrate uncertain spatial distributions of both concentration and groundwater flow. Here a geostatistical simulation method for quantifying the uncertainty of the mass discharge across a multilevel control plane is presented. The method accounts for (1) heterogeneity of both the flow field and the concentration distribution through Bayesian geostatistics, (2) measurement uncertainty, and (3) uncertain source zone and transport parameters. The method generates conditional realizations of the spatial flow and concentration distribution. An analytical macrodispersive transport solution is employed to simulate the mean concentration distribution, and a geostatistical model of the Box-Cox transformed concentration data is used to simulate observed deviations from this mean solution. By combining the flow and concentration realizations, a mass discharge probability distribution is obtained. The method has the advantage of avoiding the heavy computational burden of three-dimensional numerical flow and transport simulation coupled with geostatistical inversion. It may therefore be of practical relevance to practitioners compared to existing methods that are either too simple or computationally demanding. The method is demonstrated on a field site contaminated with chlorinated ethenes. For this site, we show that including a physically meaningful concentration trend and the cosimulation of hydraulic conductivity and hydraulic gradient across the transect helps constrain the mass discharge uncertainty. The number of sampling points required for accurate mass discharge estimation and the relative influence of different data types on mass discharge uncertainty is discussed.

  5. An Update of the Analytical Groundwater Modeling to Assess Water Resource Impacts at the Afton Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John J. [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Christopher B. [Argonne National Lab. (ANL), Argonne, IL (United States); Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    The purpose of this study is to update a one-dimensional analytical groundwater flow model to examine the influence of potential groundwater withdrawal in support of utility-scale solar energy development at the Afton Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program. This report describes the modeling for assessing the drawdown associated with SEZ groundwater pumping rates for a 20-year duration considering three categories of water demand (high, medium, and low) based on technology-specific considerations. The 2012 modeling effort published in the Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States (Solar PEIS; BLM and DOE 2012) has been refined based on additional information described below in an expanded hydrogeologic discussion.

  6. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui.

    Directory of Open Access Journals (Sweden)

    Daniel W Amato

    Full Text Available Generally unseen and infrequently measured, submarine groundwater discharge (SGD can transport potentially large loads of nutrients and other land-based contaminants to coastal ecosystems. To examine this linkage we employed algal bioassays, benthic community analysis, and geochemical methods to examine water quality and community parameters of nearshore reefs adjacent to a variety of potential, land-based nutrient sources on Maui. Three common reef algae, Acanthophora spicifera, Hypnea musciformis, and Ulva spp. were collected and/or deployed at six locations with SGD. Algal tissue nitrogen (N parameters (δ15N, N %, and C:N were compared with nutrient and δ15N-nitrate values of coastal groundwater and nearshore surface water at all locations. Benthic community composition was estimated for ten 10-m transects per location. Reefs adjacent to sugarcane farms had the greatest abundance of macroalgae, low species diversity, and the highest concentrations of N in algal tissues, coastal groundwater, and marine surface waters compared to locations with low anthropogenic impact. Based on δ15N values of algal tissues, we estimate ca. 0.31 km2 of Kahului Bay is impacted by effluent injected underground at the Kahului Wastewater Reclamation Facility (WRF; this region is barren of corals and almost entirely dominated by colonial zoanthids. Significant correlations among parameters of algal tissue N with adjacent surface and coastal groundwater N indicate that these bioassays provided a useful measure of nutrient source and loading. A conceptual model that uses Ulva spp. tissue δ15N and N % to identify potential N source(s and relative N loading is proposed for Hawai'i. These results indicate that SGD can be a significant transport pathway for land-based nutrients with important biogeochemical and ecological implications in tropical, oceanic islands.

  7. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui.

    Science.gov (United States)

    Amato, Daniel W; Bishop, James M; Glenn, Craig R; Dulai, Henrietta; Smith, Celia M

    2016-01-01

    Generally unseen and infrequently measured, submarine groundwater discharge (SGD) can transport potentially large loads of nutrients and other land-based contaminants to coastal ecosystems. To examine this linkage we employed algal bioassays, benthic community analysis, and geochemical methods to examine water quality and community parameters of nearshore reefs adjacent to a variety of potential, land-based nutrient sources on Maui. Three common reef algae, Acanthophora spicifera, Hypnea musciformis, and Ulva spp. were collected and/or deployed at six locations with SGD. Algal tissue nitrogen (N) parameters (δ15N, N %, and C:N) were compared with nutrient and δ15N-nitrate values of coastal groundwater and nearshore surface water at all locations. Benthic community composition was estimated for ten 10-m transects per location. Reefs adjacent to sugarcane farms had the greatest abundance of macroalgae, low species diversity, and the highest concentrations of N in algal tissues, coastal groundwater, and marine surface waters compared to locations with low anthropogenic impact. Based on δ15N values of algal tissues, we estimate ca. 0.31 km2 of Kahului Bay is impacted by effluent injected underground at the Kahului Wastewater Reclamation Facility (WRF); this region is barren of corals and almost entirely dominated by colonial zoanthids. Significant correlations among parameters of algal tissue N with adjacent surface and coastal groundwater N indicate that these bioassays provided a useful measure of nutrient source and loading. A conceptual model that uses Ulva spp. tissue δ15N and N % to identify potential N source(s) and relative N loading is proposed for Hawai'i. These results indicate that SGD can be a significant transport pathway for land-based nutrients with important biogeochemical and ecological implications in tropical, oceanic islands.

  8. The role of near-stream riparian zones in the hydrology of steep upland catchments

    Science.gov (United States)

    McDonnell, Jeffery J.; McGlynn, B.L.; Kendall, K.; Shanley, J.; Kendall, C.

    1998-01-01

    Surface and subsurface waters were monitored and sampled at various topographic positions in a 40.5-ha headwater catchment to test several hypotheses of runoff generation and stream chemical and isotopic evolution during snowmelt. Transmissivity feedback was observed on the hillslopes during the melt period. Groundwater levels and stream DOC were highly correlated with stream discharge. Hysteresis in the groundwater-streamflow relation suggests that localized water flux from the riparian areas controlled the rising limb and main peak response of the melt hydrograph, whilst hillslope drainage controlled the timing and volume of the falling limb. Lateral flow from upslope positions was detected in the riparian zone.

  9. Evaluating the Impact of Drought Stresses on Groundwater System in Bagh- Malek Plain by Discharge Pattern Changes

    Directory of Open Access Journals (Sweden)

    R. Lalehzari

    2016-02-01

    Full Text Available Introduction: Groundwater is the largest resource of water supplement and shortages of surface water supplies in drought conditions that requires an increase in groundwater discharge. Groundwater flow dependson the subsurface properties such as hydraulic gradient (water table gradient or head loss in artesian condition and hydrodynamic coefficients. The flow treatment is analyzed with an accurate estimation of effective parameters in groundwater equation. This function is obtained using the continuous equation. Inlet and outlet flows of a cell are equal to storage amounts in the continuous equation. Analytical solution of this equation is complex, so numerical methods are developed including finite element and finite difference methods. For example, Feflow is a groundwater modeling tool that makesuse of finite element method (Reynolds and Marimuthu, 2007. Modflow as a finite difference three-dimensional model simulated underground flow under steady and unsteady conditions in anisotropic and non-homogeneous porous media. Modflow is designed to simulate aquifer systems in which saturated-flow conditions exist, Darcy’s Law applies, the density of groundwater is constant, and the principal directions of horizontal hydraulic conductivity or transmissivity do not vary within the system. In Modflow, an aquifer system is replaced by a discretized domain consisting of an array of nodes and the associated finite difference blocks. Groundwater modeling and water table prediction by this model have the acceptable results, because many different informations of water resource system are applied. Many people and organizations have contributed to the development of an effective groundwater monitoring system, as well as experimental and modeling studies (Lalehzari et al., 2013. The objective of this paper is investigation of hydraulic and physical conditions. So, a numerical model has to be developed by PMWIN software for Bagh-i Malek aquifer to calculate

  10. Quantification of submarine groundwater discharge and its short-term dynamics by linking time-variant end-member mixing analysis and isotope mass balancing (222-Rn)

    Science.gov (United States)

    Petermann, Eric; Knöller, Kay; Stollberg, Reiner; Scholten, Jan; Rocha, Carlos; Weiß, Holger; Schubert, Michael

    2017-04-01

    Submarine groundwater discharge (SGD) plays a crucial role for the water quality of coastal waters due to associated fluxes of nutrients, organic compounds and/or heavy-metals. Thus, the quantification of SGD is essential for evaluating the vulnerability of coastal water bodies with regard to groundwater pollution as well as for understanding the matter cycles of the connected water bodies. Here, we present a scientific approach for quantifying discharge of fresh groundwater (GWf) and recirculated seawater (SWrec), including its short-term temporal dynamics, into the tide-affected Knysna estuary, South Africa. For a time-variant end-member mixing analysis we conducted time-series observations of radon (222Rn) and salinity within the estuary over two tidal cycles in combination with estimates of the related end-members for seawater, river water, GWf and SWrec. The mixing analysis was treated as constrained optimization problem for finding an end-member mixing ratio that simultaneously fits the observed data for radon and salinity best for every time-step. Uncertainty of each mixing ratio was quantified by Monte Carlo simulations of the optimization procedure considering uncertainty in end-member characterization. Results reveal the highest GWf and SWrec fraction in the estuary during peak low tide with averages of 0.8 % and 1.4 %, respectively. Further, we calculated a radon mass balance that revealed a daily radon flux of 4.8 * 108 Bq into the estuary equivalent to a GWf discharge of 29.000 m3/d (9.000-59.000 m3/d for 25th-75th percentile range) and a SWrec discharge of 80.000 m3/d (45.000-130.000 m3/d for 25th-75th percentile range). The uncertainty of SGD reflects the end-member uncertainty, i.e. the spatial heterogeneity of groundwater composition. The presented approach allows the calculation of mixing ratios of multiple uncertain end-members for time-series measurements of multiple parameters. Linking these results with a tracer mass balance allows conversion

  11. The role of groundwater in the effect of climatic warming on stream habitat of brook trout

    International Nuclear Information System (INIS)

    Meisner, J.D.

    1990-01-01

    Freshwater fisheries are linked to climate through the variables of water temperature, water quality and water quantity. These three ecosystem linkages provide a basis for assessments of potential impacts of climate change on fisheries resources. A characteristic of fisheries resources, whether it be the size or distribution of fish populations, or a measure of yield, which can be related to climate through one or more of these linkages, is a useful tool with which to forecast the effects of climate change. A stream population of brook trout is a coldwater fisheries resource that is linked to climate by groundwater. Stream dwelling brook trout at low altitudes rely heavily on groundwater discharge in summer to maintain low stream temperature. Groundwater temperature tracks mean annual air temperature due to the insulative effect of the lower troposphere on the surface of the earth. The effect of elevated groundwater temperature on the stream habitat of brook trout was investigated in two brook trout streams north of Toronto, Ontario, with an energy balance stream temperature model, calibrated to both streams to simulate maximum water temperature observed in the brook trout zones. Simulated maximum summer temperatures from the Goddard Institute for Space Studies scenario reduced the brook trout zones by up to 42%. 17 refs., 2 figs

  12. Pollution Status of Trace Metals in Groundwater Due to Industrail Activities in and Around Dhaka Export Processing Zone, Bangladesh

    Directory of Open Access Journals (Sweden)

    GOLAM AHMED

    2012-06-01

    Full Text Available Effluents from multiindustrail activities influence inland water system directly, which subsiquently affect groundwater quality and human health. Some previous reports indicated that inadequate treatment process of discharged effluent of Dhaka Export Processing Zone (DEPZ increased the concentrations of pollutants in surface water system and deteriorated total fishing and agricultural system around DEPZ and its connected area. Therefore, the present study was conducted to investigate wether the concentration of selective metals viz. Li, V, Cr, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Ag, Cd, Cs, Ba, Pb and U in two types of groundwater sources were either with in the permissible guidlines or influenced by DEPZ multi industrail on their levels of contamination. The concentrations of metals were determined using inductively Couples Plasma Mass Spectrometry (ICP-MS. The mean concentrations of the elements in both types of groundwater were in the levels of their permissible guidlines, except for Ni (12.91 µg/L, Ga (0.48µg/L, Sr (90.26 µg/L and Cs (0.07µg//Lin groundwater inside DEPZ, which were 1.30, 5.00, 1.50 and 1.40 times higher than the maximum permissible limit (MPL of 10 µg/L, 0.09 µg/L, 60 µg/L, and 0.05µg/L, respectively. The mean concentrations of Li (6.85 µg/L, Zn(268 µg/L, Ga (0.12 µg/L, Sr (131 µg/L and Cs (0.07 µg/L were 3.43, 1.34, 1.33, 2.18, 1.40 times higher then the MPL of 2 µg/L, 200 µg/L, 0.09 µg/L, 60 µg/L and 0.05 µg/L, respectively, in groundwater around DEPZ. Comparatively Zn and Sr possessed higher concentrations, and Cs and U possessed lower concentration in both types of groundwater sources. The elements were distributed in homogeneous and hetrogeneous manner among the source points for deep-tubewell (DTWS and shallow tubewell (STWs, respectively. The significant positive correlations were found between the elements viz., Co-V (0.85, Ni-Sr ((0.70, Co-Cd (0.86, As-Se (0.99, Cs-Zn (0.95, Li-U (0.,71, Zn-U (0

  13. Occurrences of dissolved trace metals (Cu, Cd, and Mn) in the Pearl River Estuary (China), a large river-groundwater-estuary system

    Science.gov (United States)

    Wang, Deli; Lin, Wenfang; Yang, Xiqian; Zhai, Weidong; Dai, Minhan; Arthur Chen, Chen-Tung

    2012-12-01

    This study for the first time examined dissolved metals (Cu, Cd, and Mn) together with dissolved oxygen and carbonate system in the whole Pearl River Estuary system, from the upper rivers to the groundwater discharges until the estuarine zone, and explored their potential impacts in the adjacent northern South China Sea (SCS) during May-August 2009. This river-groundwater-estuary system was generally characterized by low dissolved metal levels as a whole, whilst subject to severe perturbations locally. In particular, higher dissolved Cu and Cd occurred in the North River (as high as 60 nmol/L of Cu and 0.99 nmol/L of Cd), as a result of an anthropogenic source from mining activities there. Dissolved Cu levels were elevated in the upper estuary near the city of Guangzhou (Cu: ˜40 nmol/L), which could be attributable to sewage and industrial effluent discharges there. Elevated dissolved metal levels (Cu: ˜20-40 nmol/L; Cd: ˜0.2-0.8 nmol/L) also occurred in the groundwaters and parts of the middle and lower estuaries, which could be attributable to a series of geochemical reactions, e.g., chloride-induced desorption from the suspended sediments, oxidation of metal sulfides, and the partial dissolution of minerals. The high river discharge during our sampling period (May-August 2009) significantly diluted anthropogenic signals in the estuarine mixing zone. Of particular note was the high river discharge (which may reach 18.5 times as high as in the dry season) that transported anthropogenic signals (as indicated by dissolved Cu and Cd) into the adjacent shelf waters of the northern SCS, and might have led to the usually high phytoplankton productivity there (chlorophyll-a value >10 μg/L).

  14. Measuring the Thermal Conductivity of Sediments for the Estimation of Groundwater Discharge to Surface Waters with Temperature Probes

    Science.gov (United States)

    Duque, C.; Müller, S.; Sebok, E.; Engesgaard, P. K.

    2015-12-01

    Using temperature probes is a common exploratory method for studying groundwater-surface water interaction due to the ease for collecting measurements and the simplicity of the different analytical solutions. This approach requires to define the surface water temperature, the groundwater temperature and a set of parameters (density and specific capacity of water, and thermal conductivity of sediments) that can be easily extracted from tabulated values under the assumption that they are homogeneous in the study area. In the case of the thermal conductivity, it is common to apply a standard value of 1.84 Wm-1 C-1 corresponding to sand. Nevertheless the environments where this method is applied, like streambeds or lake/lagoons shores, are sedimentary depositional systems with high energy and biological activity that often lead to sediments dominated by organic matter or sharp changes in grain size modifying greatly the thermal conductivity values. In this study, the thermal conductivity was measured in situ along transects where vertical temperature profiles were collected in a coastal lagoon bed receiving groundwater discharge (Ringkøbing Fjord, Denmark). A set of 4 transects with 10-20 temperature profiles during 3 different seasons was analyzed together with more than 150 thermal conductivity measurements along the working transects and in experimental parcels of 1 m2 where the cm scale spatial variability of the thermal conductivity was assessed. The application of a literature-based bulk thermal conductivity of 1.84 Wm-1 C-1 instead of field data that ranged from 0.62 to 2.19 Wm-1 C-1, produced a mean flux overestimation of 2.33 cm d-1 that, considering the low fluxes of the study area, represents an increase of 89 % and up to a factor of 3 in the most extreme cases. The changes in thermal conductivity can alter the estimated fluxes hindering the detection of patterns in groundwater discharge and modifying the interpretation of the results.

  15. Effects of changes in pumping on regional groundwater-flow paths, 2005 and 2010, and areas contributing recharge to discharging wells, 1990–2010, in the vicinity of North Penn Area 7 Superfund site, Montgomery County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    2017-06-06

    A previously developed regional groundwater flow model was used to simulate the effects of changes in pumping rates on groundwater-flow paths and extent of recharge discharging to wells for a contaminated fractured bedrock aquifer in southeastern Pennsylvania. Groundwater in the vicinity of the North Penn Area 7 Superfund site, Montgomery County, Pennsylvania, was found to be contaminated with organic compounds, such as trichloroethylene (TCE), in 1979. At the time contamination was discovered, groundwater from the underlying fractured bedrock (shale) aquifer was the main source of supply for public drinking water and industrial use. As part of technical support to the U.S. Environmental Protection Agency (EPA) during the Remedial Investigation of the North Penn Area 7 Superfund site from 2000 to 2005, the U.S. Geological Survey (USGS) developed a model of regional groundwater flow to describe changes in groundwater flow and contaminant directions as a result of changes in pumping. Subsequently, large decreases in TCE concentrations (as much as 400 micrograms per liter) were measured in groundwater samples collected by the EPA from selected wells in 2010 compared to 2005‒06 concentrations.To provide insight on the fate of potentially contaminated groundwater during the period of generally decreasing pumping rates from 1990 to 2010, steady-state simulations were run using the previously developed groundwater-flow model for two conditions prior to extensive remediation, 1990 and 2000, two conditions subsequent to some remediation 2005 and 2010, and a No Pumping case, representing pre-development or cessation of pumping conditions. The model was used to (1) quantify the amount of recharge, including potentially contaminated recharge from sources near the land surface, that discharged to wells or streams and (2) delineate the areas contributing recharge that discharged to wells or streams for the five conditions.In all simulations, groundwater divides differed from

  16. Groundwater monitoring plan: 200 Areas treated effluent disposal facility (Project W-049H)

    International Nuclear Information System (INIS)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-04-01

    This groundwater monitoring plan provides information that supports the US Department of Energy's application (DOE-RL 1994) for waste water discharge permit No. WA-ST-4502 from the State of Washington, under the auspices of Washington Administrative Code 173-216. The monitoring plan has two functions: (1) to summarize the results of a 3-yr characterization of the current hydrogeology and groundwater quality of the discharge site and (2) to provide plans for evaluating the effects of the facility's operation on groundwater quality and document compliance with applicable groundwater quality standards. Three wells were drilled to define the stratigraphy, evaluate sediment characteristics, and establish a groundwater monitoring net work for the discharge facility. These wells monitor groundwater quality upgradient and downgradient in the uppermost aquifer. This report proposes plans for continuing the monitoring of groundwater quality and aquifer characteristics after waste water discharges begin

  17. Using 14C and 3H to understand groundwater flow and recharge in an aquifer window

    Science.gov (United States)

    Atkinson, A. P.; Cartwright, I.; Gilfedder, B. S.; Cendón, D. I.; Unland, N. P.; Hofmann, H.

    2014-12-01

    Knowledge of groundwater residence times and recharge locations is vital to the sustainable management of groundwater resources. Here we investigate groundwater residence times and patterns of recharge in the Gellibrand Valley, southeast Australia, where outcropping aquifer sediments of the Eastern View Formation form an "aquifer window" that may receive diffuse recharge from rainfall and recharge from the Gellibrand River. To determine recharge patterns and groundwater flow paths, environmental isotopes (3H, 14C, δ13C, δ18O, δ2H) are used in conjunction with groundwater geochemistry and continuous monitoring of groundwater elevation and electrical conductivity. The water table fluctuates by 0.9 to 3.7 m annually, implying recharge rates of 90 and 372 mm yr-1. However, residence times of shallow (11 to 29 m) groundwater determined by 14C are between 100 and 10 000 years, 3H activities are negligible in most of the groundwater, and groundwater electrical conductivity remains constant over the period of study. Deeper groundwater with older 14C ages has lower δ18O values than younger, shallower groundwater, which is consistent with it being derived from greater altitudes. The combined geochemistry data indicate that local recharge from precipitation within the valley occurs through the aquifer window, however much of the groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High. The Gellibrand Valley is a regional discharge zone with upward head gradients that limits local recharge to the upper 10 m of the aquifer. Additionally, the groundwater head gradients adjacent to the Gellibrand River are generally upwards, implying that it does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10

  18. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  19. Spatial distributions of biogeochemical reactions in freshwater-saltwater mixing zones of sandy beach aquifers

    Science.gov (United States)

    Kim, K. H.; Michael, H. A.; Ullman, W. J.; Cai, W. J.

    2017-12-01

    Beach aquifers host biogeochemically dynamic mixing zones between fresh and saline groundwaters of contrasting origins, histories, and compositions. Seawater, driven up the beachface by waves and tides, infiltrates into the sand and meets the seaward-discharging fresh groundwater, creating and maintaining a highly reactive intertidal circulation cell well-defined by salinity. Seawater supplies oxygen and reactive carbon to the circulation cell, supporting biogeochemical reactions within the cell that transform and attenuate dissolved nutrient fluxes from terrestrial sources. We investigated the spatial distribution of chemical reaction zones within the intertidal circulation cell at Cape Shores, Lewes, Delaware. Porewater samples were collected from multi-level wells along a beach-perpendicular transect. Samples were analyzed for particulate carbon and reactive solutes, and incubated to obtain rates of oxic respiration and denitrification. High rates of oxic respiration were observed higher on the beach, in the landward freshwater-saline water mixing zone, where dissolved oxygen availability was high. Denitrification was dominant in lower areas of the beach, below the intertidal discharge point. High respiration rates did not correlate with particulate carbon concentrations entrained within porewater, suggesting that dissolved organic carbon or immobile particulate carbon trapped within the sediment can contribute to and alter bulk reactivity. A better understanding of the sources and sinks of carbon within the beach will improve our ability to predict nutrient fluxes to estuaries and oceans, aiding the management of coastal environments and ecosystems.

  20. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater.

    Science.gov (United States)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev

    2017-02-15

    In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than -200mV. Perchlorate was reduced continuously from ∼1150mg/L at the inlet to ∼300mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10 5 to 10 7 copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Temporal hydrological and hydrochemical behaviour of the regional discharge area of a carbonate system - why we can not see fast responses?

    Science.gov (United States)

    Bodor, Petra; Eröss, Anita; Kovács, József; Mádl-Szönyi, Judit

    2016-04-01

    The subsurface part of the hydrologic cycle, the saturated groundwater flow can be mostly studied in regional discharge areas. In these regions the water has already spent geologically long time under the surface, therefore the upwelling water reflect the effect of the geometry and boundary conditions of the whole flow field, its geology and chemical processes. According to these conditions, the discharging waters can be characterized with different values and variability of physicochemical parameters (temperature, total dissolved solids, cations, anions, gas content etc.). This question has special interest in carbonate systems where the concept of regional groundwater flow was only introduced in the last few years. Hydrographs and chemographs are frequently used in karst studies to demonstrate the effect of variability of the system and to derive information for the nature of flow inside the karst (channel, fracture or matrix). Usually these graphs show abrupt changes after precipitation events, but this is typical for epigenic karsts. However, discharge areas, where hypogenic karsts developed, can behave differently due to their feeding flow systems. These systems and their effects are not so well studied yet. In this study we examined hydrographs and chemographs of the regional discharge area of a deep and thick carbonate range of Buda Thermal Karst and tried to understand those mechanisms which determine the hydrological and hydrochemical behaviour of the region. Here cold, lukewarm and also thermal waters discharge along the River Danube. The variability of physicochemical parameters (temperature, electric conductivity, pH, volume discharge, water level, dissolved CO2 and 222Rn, δ18O, δD) of the discharging water was studied to understand influencing mechanisms. We tried to understand the effect of precipitation (short and long term) and the effect of River Danube with geomathematical methods for the lukewarm components of the discharging water. Based on

  2. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    Science.gov (United States)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  3. Implementation of Solute Transport in the Vadose Zone into the `HYDRUS Package for MODFLOW'

    Science.gov (United States)

    Simunek, J.; Beegum, S.; Szymkiewicz, A.; Sudheer, K. P.

    2017-12-01

    The 'HYDRUS package for MODFLOW' was developed by Seo et al. (2007) and Twarakavi et al. (2008) to simultaneously evaluate transient water flow in both unsaturated and saturated zones. The package, which is based on the HYDRUS-1D model (Šimůnek et al., 2016) simulating unsaturated water flow in the vadose zone, was incorporated into MODFLOW (Harbaugh et al., 2000) simulating saturated groundwater flow. The HYDRUS package in the coupled model can be used to represent the effects of various unsaturated zone processes, including infiltration, evaporation, root water uptake, capillary rise, and recharge in homogeneous or layered soil profiles. The coupled model is effective in addressing spatially-variable saturated-unsaturated hydrological processes at the regional scale, allowing for complex layering in the unsaturated zone, spatially and temporarily variable water fluxes at the soil surface and in the root zone, and with alternating recharge and discharge fluxes (Twarakavi et al., 2008). One of the major limitations of the coupled model was that it could not be used to simulate at the same time solute transport. However, solute transport is highly dependent on water table fluctuations due to temporal and spatial variations in groundwater recharge. This is an important concern when the coupled model is used for analyzing groundwater contamination due to transport through the unsaturated zone. The objective of this study is to integrate the solute transport model (the solute transport part of HYDRUS-1D for the unsaturated zone and MT3DMS (Zheng and Wang, 1999; Zheng, 2009) for the saturated zone) into an existing coupled water flow model. The unsaturated zone component of the coupled model can consider solute transport involving many biogeochemical processes and reactions, including first-order degradation, volatilization, linear or nonlinear sorption, one-site kinetic sorption, two-site sorption, and two-kinetic sites sorption (Šimůnek and van Genuchten, 2008

  4. Evaluating Ecosystem Services for Reducing Groundwater Nitrate Contamination: Nitrate Attenuation in the Unsaturated and Saturated Zones

    Science.gov (United States)

    Wang, J.

    2013-12-01

    Nitrates are the most common type of groundwater contamination in agricultural regions. Environmental policies targeting nitrates have focused on input control (e.g., restricted fertilizer application), intermediate loads control (e.g., reduce nitrate leached from crop fields), and final loads control (e.g., reduce catchment nitrate loads). Nitrate loads can be affected by hydrological processes in both unsaturated and saturated zones. Although many of these processes have been extensively investigated in literature, they are commonly modeled as exogenous to farm management. A couple of recent studies by scientists from the Lawrence Livermore National Laboratory show that in some situations nitrate attenuation processes in the unsaturated/saturated zone, particularly denitrification, can be intensified by certain management practices to mitigate nitrate loads. Therefore, these nitrate attenuation processes can be regarded as a set of ecosystem services that farmers can take advantage of to reduce their cost of complying with environmental policies. In this paper, a representative California dairy farm is used as a case study to show how such ecosystem attenuation services can be framed within the farm owner's decision-making framework as an option for reducing groundwater nitrate contamination. I develop an integrated dynamic model, where the farmer maximizes discounted net farm profit over multiple periods subject to environmental regulations. The model consists of three submodels: animal-waste-crop, hydrologic, and economic model. In addition to common choice variables such as irrigation, fertilization, and waste disposal options, the farmer can also endogenously choose from three water sources: surface water, deep groundwater (old groundwater in the deep aquifer that is not affected by farm effluent in the short term), and shallow groundwater (drainage water that can be recycled via capture wells at the downstream end of the farm). The capture wells not only

  5. Model of hydrological behaviour of the anthropized semiarid wetland of Las Tablas de Daimiel National Park (Spain) based on surface water-groundwater interactions

    Science.gov (United States)

    Aguilera, H.; Castaño, S.; Moreno, L.; Jiménez-Hernández, M. E.; de la Losa, A.

    2013-05-01

    Las Tablas de Daimiel National Park (TDNP) in Spain is one of the most important semiarid wetlands of the Mediterranean area. The inversion of the regional groundwater flow, primarily due to overexploitation and inadequate aquifer management, has led to degradation. The system has turned from a groundwater discharge zone into a recharge zone, and has remained mostly dry since the 1980s. High heterogeneity and complexity, enhanced by anthropogenic management action, hampers prediction of the surface-groundwater system response to flooding events. This study analyses these interactions and provides empirical evidence to define a conceptual model of flooding-infiltration-groundwater dynamics through the application of a few simple analysis tools to basic hydrological data. Relevant surface water-groundwater interactions are mainly localized in the left (west) margin of TDNP, as confirmed by the fast responses to flooding observed in the hydrochemic, hydrodynamic and isotopic data. During drying periods, small artificial and/or low-flow natural floods are followed by infiltration of evaporated poor-quality ponding water into saline low-permeability layers. The results allow an improved understanding of the hydrological behaviour essential to support efficient management practices. The relative simplicity of the methodology allows for its application in other similar complex groundwater-linked wetlands where detailed knowledge of local geology is still absent.

  6. Vertical Hydraulic Conductivity of Unsaturated Zone by Infiltrometer Analysis of Shallow Groundwater Regime (KUISG

    Directory of Open Access Journals (Sweden)

    Arkan Radhi Ali

    2018-02-01

    Full Text Available A hydrogeologic model was developed and carried out in Taleaa district of 67km2 . The study adopted a determination of KUISG depends upon the double rings infiltrometer model. The tests were carried out in a part of Mesopotamian  Zone which is covered with quaternary deposits  . In general the groundwater levels are about one meter below ground surface.  Theoretically, the inclination angle of the saturated water phase plays an important role in the determination of KUISG. The experimental results prove that the angle of inclination of the saturated phase is identical to the angle of internal friction of the soil. This conclusion is supported by the comparison of the results that obtained from falling head test and infiltrometer measurements for estimating the hydraulic conductivitiy values for ten locations within the study area. The determination of vertical hydraulic conductivity by current infiltrometer model is constrained to only the shallow groundwater regime.7

  7. Characterisation of discharge areas of radionuclides originating from nuclear waste repositories

    International Nuclear Information System (INIS)

    Marklund, L.; Woerman, A.

    2008-01-01

    In this study, we investigate if there are certain landscape elements that will generally act as discharge areas for radio-nuclides leaking from a subsurface deposit of nuclear waste. We also characterize the typical properties that distinguish these areas from others. Understanding the processes controlling the clustering of discharge to certain areas is an additional topic of study. Landscape topography is the most important driving force for groundwater flow. Because groundwater is the main transporting agent for migrating radio-nuclides, the topography will determine the flow paths of leaking radionuclides. How topography and heterogeneities in the subsurface affect the discharge distribution of the radionuclides is the main scope of this study. An analytical and a numerical model are used. Conclusions are: Our results suggest that the varieties of landscape elements which have potential for receiving significant amounts of radio-nuclides are limited. To save recourses, the surficial radiological assessments should therefore be focused in these areas. Furthermore, the discharge areas of groundwater from repository depth have defining characteristics that distinguish them from discharge areas of shallower groundwater flow cells. Due to the similarities within deep groundwater discharge areas, one can make site-specific analyses of those areas, which have a broad applicability for migration of radio-nuclides originating from a nuclear waste repository (author)(tk)

  8. Groundwater sustainability and groundwater/surface-water interaction in arid Dunhuang Basin, northwest China

    Science.gov (United States)

    Lin, Jingjing; Ma, Rui; Hu, Yalu; Sun, Ziyong; Wang, Yanxin; McCarter, Colin P. R.

    2018-03-01

    The Dunhuang Basin, a typical inland basin in northwestern China, suffers a net loss of groundwater and the occasional disappearance of the Crescent Lake. Within this region, the groundwater/surface-water interactions are important for the sustainability of the groundwater resources. A three-dimensional transient groundwater flow model was established and calibrated using MODFLOW 2000, which was used to predict changes to these interactions once a water diversion project is completed. The simulated results indicate that introducing water from outside of the basin into the Shule and Danghe rivers could reverse the negative groundwater balance in the Basin. River-water/groundwater interactions control the groundwater hydrology, where river leakage to the groundwater in the Basin will increase from 3,114 × 104 m3/year in 2017 to 11,875 × 104 m3/year in 2021, and to 17,039 × 104 m3/year in 2036. In comparison, groundwater discharge to the rivers will decrease from 3277 × 104 m3/year in 2017 to 1857 × 104 m3/year in 2021, and to 510 × 104 m3/year by 2036; thus, the hydrology will switch from groundwater discharge to groundwater recharge after implementing the water diversion project. The simulation indicates that the increased net river infiltration due to the water diversion project will raise the water table and then effectively increasing the water level of the Crescent Lake, as the lake level is contiguous with the water table. However, the regional phreatic evaporation will be enhanced, which may intensify soil salinization in the Dunhuang Basin. These results can guide the water allocation scheme for the water diversion project to alleviate groundwater depletion and mitigate geo-environmental problem.

  9. CMI Remedy Selection for HE- and Barium-Contaminated Vadose Zone and Alluvium at LANL

    Science.gov (United States)

    Hickmott, D.; Reid, K.; Pietz, J.; Ware, D.

    2008-12-01

    A high explosives (HE) machining building outfall at Los Alamos National Laboratory's Technical Area 16 discharged millions of gallons of HE- and barium-contaminated water into the Canon de Valle watershed. The effluent contaminated surface soils, the alluvial aquifer, vadose zone waters, and deep-perched and regional groundwaters with HE and barium, frequently at levels greater than regulatory standards. Site characterization studies began in 1995 and included extensive monitoring of surface water, groundwater, soils, and subsurface solid media. Hydrogeologic and geophysical studies were conducted to help understand contaminant transport mechanisms and pathways. Results from the characterization studies were used to develop a site conceptual model. In 2000 the principal source area was removed. The ongoing Corrective Measure Study (CMS) and Corrective Measure Implementation (CMI) focus on residual vadose zone contamination and on the contaminated alluvial system. Regulators recently selected a CMI remedy that combined: 1) augmented source removal; 2) grouting of an HE- contaminated surge bed; 3) deployment of Stormwater Management System (SMS) stormfilters in contaminated springs; and 4) permeable reactive barriers (PRBs) in contaminated alluvium. The hydrogeologic conceptual model for the vadose zone and alluvial system as well as the status of the canyon as habitat for the Mexican Spotted Owl were key factors in selection of these minimal-environmental-impact remedies. The heterogeneous vadose zone, characterized by flow and contaminant transport in fractures and in surge beds, requires contaminant treatment at a point of discharge. The canyon PRB is being installed to capture water and contaminants prior to infiltration into the vadose zone. Pilot-scale testing of the SMS and lab-scale batch and column tests of a range of media suggest that granular activated carbon, zeolite, and gypsum may be effective media for removal of HE and/or barium from contaminated

  10. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast

    Science.gov (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.

    1998-01-01

    Existing data on base-flow and groundwater nitrate loads were compiled and analyzed to assess the significance of groundwater discharge as a source of the nitrate load to nontidal streams of the Chesapeake Bay watershed. These estimates were then related to hydrogeomorphic settings based on lithology and physiographic province to provide insight on the areal distribution of ground-water discharge. Base-flow nitrate load accounted for 26 to about 100 percent of total-flow nitrate load, with a median value of 56 percent, and it accounted for 17 to 80 percent of total-flow total-nitrogen load, with a median value of 48 percent. Hydrograph separations were conducted on continuous streamflow records from 276 gaging stations within the watershed. The values for base flow thus calculated were considered an estimate of ground-water discharge. The ratio of base flow to total flow provided an estimate of the relative importance of ground-water discharge within a basin. Base-flow nitrate loads, total-flow nitrate loads, and total-flow total-nitrogen loads were previously computed from water-quality and discharge measurements by use of a regression model. Base-flow nitrate loads were available from 78 stations, total-flow nitrate loads were available from 86 stations, and total-flow total-nitrogen loads were available for 48 stations. The percentage of base-flow nitrate load to total-flow nitrate load could be computed for 57 stations, whereas the percentage of base-flow nitrate load to totalflow total-nitrogen load could be computed for 36 stations. These loads were divided by the basin area to obtain yields, which were used to compare the nitrate discharge from basins of different sizes. The results indicate that ground-water discharge is a significant source of water and nitrate to the total streamflow and nitrate load. Base flow accounted for 16 to 92 percent of total streamflow at the 276 sampling sites, with a median value of 54 percent. It is estimated that of the 50

  11. Groundwater resource exploration in Salem district, Tamil Nadu ...

    Indian Academy of Sciences (India)

    Hence, proper assessment of groundwater potential and management practices are ..... Total. 8.33 3.67 5.58 12.50 11.50 17.00 5.83. Table 3. Relative weight matrix – thematic layers. ...... potential zones and zones of groundwater quality suit-.

  12. Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements

    International Nuclear Information System (INIS)

    Muskett, Reginald R; Romanovsky, Vladimir E

    2009-01-01

    The Arctic permafrost regions make up the largest area component of the cryosphere. Observations from the Gravity Recovery and Climate Experiment (GRACE) mission offer to provide a greater understanding of changes in water mass within permafrost regions. We investigate a GRACE monthly time series, snow water equivalent from the special scanning microwave imager (SSM/I), vegetation water content and soil moisture from the advanced microwave scanning radiometer for the Earth observation system (AMSR-E) and in situ discharge of the Lena, Yenisei, Ob', and Mackenzie watersheds. The GRACE water equivalent mass change responded to mass loading by snow accumulation in winter and mass unloading by runoff in spring-summer. Comparison of secular trends from GRACE to runoff suggests groundwater storage increased in the Lena and Yenisei watersheds, decreased in the Mackenzie watershed, and was unchanged in the Ob' watershed. We hypothesize that the groundwater storage changes are linked to the development of closed- and open-talik in the continuous permafrost zone and the decrease of permafrost lateral extent in the discontinuous permafrost zone of the watersheds.

  13. Integrated modelling for assessing the risk of groundwater contaminants to human health and surface water ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Rasmussen, Jes; Funder, Simon G.

    2010-01-01

    for evaluating the impact of a TCE groundwater plume, located in an area with protected drinking water interests, to human health and surface water ecosystems. This is accomplished by coupling the system dynamicsbased decision support system CARO-Plus to the aquatic ecosystem model AQUATOX via an analytical......The practical implementation of the European Water Framework Directive has resulted in an increased focus on the groundwater-surface water interaction zone. A gap exists with respect to preliminary assessment methodologies that are capable of evaluating and prioritising point sources...... volatilisation model for the stream. The model is tested on a Danish case study involving a 750 m long TCE groundwater plume discharging into a stream. The initial modelling results indicate that TCE contaminant plumes with μgL-1 concentrations entering surface water systems do not pose a significant risk...

  14. Hydrogeological characterization and assessment of groundwater ...

    Indian Academy of Sciences (India)

    In this perspective, assessment of groundwater quality in shallow aquifers in vicinity of the ... contributes about 60% of the total wastewater that gets discharged from ...... tern and effective groundwater management; Proc. Indian. Nat. Sci. Acad.

  15. Ecosystem-groundwater interactions under changing land uses: Linking water, salts, and carbon across central Argentina

    Science.gov (United States)

    Jobbagy, E. G.; Nosetto, M. D.; Santoni, C. S.; Jackson, R. B.

    2007-05-01

    Although most ecosystems display a one-way connection with groundwater based on the regulation of deep water drainage (recharge), this link can become reciprocal when the saturated zone is shallow and plants take up groundwater (discharge). In what context is the reciprocal link most likely? How is it affected by land use changes? Has it consequences on salt and carbon cycling? We examine these questions across a precipitation gradient in the Pampas and Espinal of Argentina focusing on three vegetation change situations (mean annual rainfall): afforestation of humid (900-1300 mm) and subhumid grassland (700-900 mm/yr of rainfall), annual cultivation of subhumid grasslands (700-800 mm/yr), and annual cultivation of semiarid forests (500-700 mm). Humid and subhumid grasslands have shallow (measurements. Groundwater contributions enhance carbon uptake in plantations compared to grasslands as suggested by aboveground biomass measurements and satellite vegetation indexes from sites with and without access to groundwater. Where rainfall is 15 m deep) and recharge under natural conditions is null. The establishment of crops, however, triggers the onset of recharge, as evidenced by vadose zones getting wetter and leached of atmospheric chloride. Cropping may cause water table raises leading to a two-way coupling of ecosystems and groundwater in the future, as it has been documented for similar settings in Australia and the Sahel. In the Pampas land use change interacts with groundwater consumption leading to higher carbon uptake (humid and subhumid grasslands) and salt accumulation (subhumid grasslands). In the Espinal (semiarid forest) land use change currently involves a one-way effect on groundwater recharge that may switch to a reciprocal connection if regional water table raises occur. Neglecting the role of groundwater in flat sedimentary plains can obscure our understanding of carbon and salt cycling and curtail our attempts to sustain soil and water resources under

  16. Groundwater movements around a repository

    International Nuclear Information System (INIS)

    Burgess, A.

    1977-10-01

    Based on regional models of groundwater flow, the regional hydraulic gradient at depth is equal to the regional topographic gradient. As a result, the equipotentials are near vertical. The permeability distribution with depth influences the groundwater flow patterns. A zone of sluggish flows, the quiescent zone is developed when the permeability decreases with depth. This feature is accentuated when horizontal anisotropy, with the horizontal permeability higher then the vertical permeability, is included. The presence of an inactive zone will be a prerequesite for a satisfactory repository site. The effect of an inclined discontinuity representing a singular geological feature such as a fault plane or shear zone has been modelled. The quiescent zone does not appear to be unduly disturbed by such a feature. However, meaningful quantitative predictions related to the flows in a typical singular feature cannot be made without more specific data on their hydraulic properties. Two dimensional analysis has been made for a site specific section of a candidate repository site at Forsmark, Sweden. The lateral extent of the model was defined by major tectonic features, assumed vertical. Potential gradients and pore velocities have been computed for a range of boundary conditions and assumed material properties. The potential gradients for the model with anisotropic permeability approach the average potential gradient between the boundaries. The result of this study of the initial groundwater conditions will be used as input data for the analyses of the thermomechanical perturbations of the groundwater regime. In the long term, the groundwater flow will return to the initial conditions. The residual effects of the repository on the flow will be discussed in part 2 of this report. (author)

  17. Identification and characterization of potential discharge areas for radionuclide transport by groundwater from a nuclear waste repository in Sweden.

    Science.gov (United States)

    Berglund, Sten; Bosson, Emma; Selroos, Jan-Olof; Sassner, Mona

    2013-05-01

    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.

  18. Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems

    Science.gov (United States)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2018-01-01

    Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.

  19. Contribution of groundwater to the discharge and quality of surface flow: example of the Garonne river upstream of its confluence with the Tarn river

    International Nuclear Information System (INIS)

    Danneville, L.

    1998-01-01

    Very few studies have been made of the contribution of groundwater to the discharge and quality of surface flow at regional scale, such as that of the catchment area of the Garonne river upstream of its confluence with the Tarn river (15.000 km 2 ). Three main types of groundwater reservoir exist in the area: karstic aquifers, alluvial aquifers, and colluvial and local aquifers that are still poorly understood. The contribution from the karstic aquifers to surface flow varies seasonally depending on the nature, hydraulic behaviour and elevation of the karst. Minor exchange occurs between the alluvial aquifers and rivers, mainly during flooding. The Garonne river, which has an average flow of 199 m 3 /s, is mainly replenished by the Salat and Ariege tributaries, regardless of the season. Study of the low-water stage using Maillet's formula has given a good estimate of the groundwater storage of certain tributaries, and the role played by the groundwater is demonstrated by correlation and spectrum analysis of discharge time series. For example, during 1985, the main storage was shown to be in the river basins of Ariege (142 million m 3 ), Salat (111 million m 3 ) and Ger (21 million m 3 ). The Ger, which is the smallest tributary, has the highest specific storage (224 I/m 2 ) and presents an important buffer effect related to numerous karstic springs. The total groundwater storage of the entire recharge area is estimated at 2.1-2.9 billion m 3 for 1993. It is the largest water storage of the basin, greater than the snow cover (371 million m 3 ) and the artificial storage for electric power plants, discharge buffering and irrigation. The groundwater contribution to the total flow of the Garonne river at the Portet gauging station has been estimated at 46-60% of total discharge in 1993 by extrapolating the low-water stage from the residual hydrograph (hydrograph without the influence of dam reservoirs and snow cover), Direct runoff is estimated at 34-48% and the snow

  20. Inactivation of Candida albicans by Corona Discharge: The Increase of Inhibition Zones Area After Far Subsequent Exposition

    Directory of Open Access Journals (Sweden)

    Vladyslava Fantova

    2013-01-01

    Full Text Available The cold atmospheric pressure plasma generated by the negative corona discharge has inhibition effect on the microorganism growth. This effect is well-known and it can be demonstrated on the surface of cultivation agar plates by the formation of inhibition zones. We exposed the cultures of Candida albicans to the negative corona discharge plasma in a special arrangement in this study: The equal doses of plasma were applied subsequently twice or four times on the same culture on one Petri dish, while the distance between exposed points was variable. Only small differences were observed in decontaminated zone areas for twice exposed agar at the shortest distance between exposed points (1.5 cm. In case of the four times exposed agars, we observed significant differences in inhibition zone areas, dependent not only on the exposition site distances, but also on the exposition order. The largest inhibition zone size was observed for the first exposition decreasing to the fourth one. To check relevancy of these dependencies, we presume to conduct further set of experiments with lower yeast concentration. In conclusion, significant difference in partial inhibition zone sizes appeared only when four expositions on one Petri dish were carried out, whereas no significant difference was observed for two subsequent expositions. The explanation of this effect may be the subject of subsequent remote exposition(s, when minute amounts of scattered active particles act on the previously exposed areas; the influence of diffused ozone may also take place.

  1. Impact of groundwater abstraction on physical habitat of brown trout (Salmo trutta) in a small Danish stream

    DEFF Research Database (Denmark)

    Olsen, M.; Bøgh, E.; Pedersen, Stig

    2009-01-01

    The purpose of this study was to assess the impact of groundwater abstraction on stream discharge and physical habitat conditions for brown trout (Salmo trutta) in a small Danish stream. Stream discharge was simulated using a lumped hydrological model (NAM) and a scenario was set up for stream...... discharge reference conditions. Stream physical habitat conditions (WUA) were simulated for four life stages of trout using a hydraulic habitat model (RHYHABSIM). The impact of groundwater abstraction on WUA for trout was assessed by combined simulations from the NAM-model and the RHYHABSIM-model. The model...... predicted that groundwater abstraction reduced median annual discharge by 37 % and mean annual 90th percentile discharge by 82 %. Summer discharge was relatively most affected by groundwater abstraction (66 % reduction of median discharge) and WUA was therefore particularly affected by groundwater...

  2. Statistical mapping of zones of focused groundwater/surface-water exchange using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Mwakanyamale, Kisa; Day-Lewis, Frederick D.; Slater, Lee D.

    2013-01-01

    Fiber-optic distributed temperature sensing (FO-DTS) increasingly is used to map zones of focused groundwater/surface-water exchange (GWSWE). Previous studies of GWSWE using FO-DTS involved identification of zones of focused GWSWE based on arbitrary cutoffs of FO-DTS time-series statistics (e.g., variance, cross-correlation between temperature and stage, or spectral power). New approaches are needed to extract more quantitative information from large, complex FO-DTS data sets while concurrently providing an assessment of uncertainty associated with mapping zones of focused GSWSE. Toward this end, we present a strategy combining discriminant analysis (DA) and spectral analysis (SA). We demonstrate the approach using field experimental data from a reach of the Columbia River adjacent to the Hanford 300 Area site. Results of the combined SA/DA approach are shown to be superior to previous results from qualitative interpretation of FO-DTS spectra alone.

  3. Identification of groundwater potential zones in the Machuca River in the Central Pacific of Costa Rica using a GIS-Multi-criteria analysis

    Science.gov (United States)

    Bonilla, J. P.; Stefan, C.

    2015-12-01

    Water supply systems in the Machuca River basin in the Central Pacific of Costa Rica are subject to fluctuations in their production capacity at the end of the dry season; especially in the lower part of the basin. The urban development - and water demand -- is expected to increase because of a newly build highway. In order to understand the actual water resources and to asses new ones, the identification of groundwater potential zones is done using a geographical information system (GIS) based on thematic raster using fixed score and weight computed by the multi influencing factor (MIF) technique. The thematic layers used in the analysis are lithology, slope, land-use, lineament, drainage, soil and rainfall. The results were compared with the results of the Modified Thornthwaite-Mather model used to perform the water balance on a monthly scale. The groundwater potential was divided into three categories: no suitable, suitable, and very suitable zones. The resulting map is a decision support tool for the planning and management of groundwater resources in the Machuca River basin.

  4. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China

    Science.gov (United States)

    Yang, Zhi; Zhou, Yangxiao; Wenninger, Jochen; Uhlenbrook, Stefan; Wang, Xusheng; Wan, Li

    2017-08-01

    The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.

  5. Estimating the Spatial Distribution of Groundwater Age Using Synoptic Surveys of Environmental Tracers in Streams

    Science.gov (United States)

    Gardner, W. P.

    2017-12-01

    A model which simulates tracer concentration in surface water as a function the age distribution of groundwater discharge is used to characterize groundwater flow systems at a variety of spatial scales. We develop the theory behind the model and demonstrate its application in several groundwater systems of local to regional scale. A 1-D stream transport model, which includes: advection, dispersion, gas exchange, first-order decay and groundwater inflow is coupled a lumped parameter model that calculates the concentration of environmental tracers in discharging groundwater as a function of the groundwater residence time distribution. The lumped parameters, which describe the residence time distribution, are allowed to vary spatially, and multiple environmental tracers can be simulated. This model allows us to calculate the longitudinal profile of tracer concentration in streams as a function of the spatially variable groundwater age distribution. By fitting model results to observations of stream chemistry and discharge, we can then estimate the spatial distribution of groundwater age. The volume of groundwater discharge to streams can be estimated using a subset of environmental tracers, applied tracers, synoptic stream gauging or other methods, and the age of groundwater then estimated using the previously calculated groundwater discharge and observed environmental tracer concentrations. Synoptic surveys of SF6, CFC's, 3H and 222Rn, along with measured stream discharge are used to estimate the groundwater inflow distribution and mean age for regional scale surveys of the Berland River in west-central Alberta. We find that groundwater entering the Berland has observable age, and that the age estimated using our stream survey is of similar order to limited samples from groundwater wells in the region. Our results show that the stream can be used as an easily accessible location to constrain the regional scale spatial distribution of groundwater age.

  6. Redox transformation and reductive immobilization of Cr(VI) in the Columbia River hyporheic zone sediments

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fen; Liu, Yuanyuan; Zachara, John M.; Bowden, Mark E.; Kennedy, David W.; Plymale, Andrew E.; Liu, Chongxuan,

    2017-12-01

    An experimental and modeling study was conducted to investigate the redox transformation and reductive immobilization of groundwater contaminant Cr in hyporheic zone (HZ) sediments from U.S. Department of Energy’s Hanford site, where groundwater Cr(VI) is migrating and discharging to the nearby Columbia River. Experimental results revealed that Cr(VI) can be reduced to immobile reduced Cr by the HZ sediments in the presence/absence of O2. Anaerobic pre-incubation of the sediments increased the effective rate of Cr reduction that was correlated with the increase in HCl-extractable Fe(II) content in the sediments. The reduced Cr was stable in exposure to O2 under field-relevant pH (~7.5) and Mn-containing (~0.02% w/w) conditions. The Cr(VI) reduction rate showed a multi-rate behavior, apparently reflecting the presence of reductants with different reactivity in the sediments. The results from this study indicated that the HZ sediments can reductively immobilize Cr and the sediment redox capacity can be recharged through microbial activities. The results implied that HZ can play a role as a natural permeable redox barrier for removing groundwater Cr before it discharges into a river system.

  7. Numerical simulation of groundwater flow at Puget Sound Naval Shipyard, Naval Base Kitsap, Bremerton, Washington

    Science.gov (United States)

    Jones, Joseph L.; Johnson, Kenneth H.; Frans, Lonna M.

    2016-08-18

    Information about groundwater-flow paths and locations where groundwater discharges at and near Puget Sound Naval Shipyard is necessary for understanding the potential migration of subsurface contaminants by groundwater at the shipyard. The design of some remediation alternatives would be aided by knowledge of whether groundwater flowing at specific locations beneath the shipyard will eventually discharge directly to Sinclair Inlet of Puget Sound, or if it will discharge to the drainage system of one of the six dry docks located in the shipyard. A 1997 numerical (finite difference) groundwater-flow model of the shipyard and surrounding area was constructed to help evaluate the potential for groundwater discharge to Puget Sound. That steady-state, multilayer numerical model with homogeneous hydraulic characteristics indicated that groundwater flowing beneath nearly all of the shipyard discharges to the dry-dock drainage systems, and only shallow groundwater flowing beneath the western end of the shipyard discharges directly to Sinclair Inlet.Updated information from a 2016 regional groundwater-flow model constructed for the greater Kitsap Peninsula was used to update the 1997 groundwater model of the Puget Sound Naval Shipyard. That information included a new interpretation of the hydrogeologic units underlying the area, as well as improved recharge estimates. Other updates to the 1997 model included finer discretization of the finite-difference model grid into more layers, rows, and columns, all with reduced dimensions. This updated Puget Sound Naval Shipyard model was calibrated to 2001–2005 measured water levels, and hydraulic characteristics of the model layers representing different hydrogeologic units were estimated with the aid of state-of-the-art parameter optimization techniques.The flow directions and discharge locations predicted by this updated model generally match the 1997 model despite refinements and other changes. In the updated model, most

  8. Consequences of Groundwater Development on Water Resources of Hawai`i

    Science.gov (United States)

    Rotzoll, K.; Izuka, S. K.; El-Kadi, A. I.

    2017-12-01

    The availability of fresh groundwater for human use is limited by whether the impacts of withdrawals are deemed acceptable by community stakeholders and water-resource managers. Quantifying the island-wide hydrologic impacts of withdrawal—saltwater intrusion, water-table decline, and reduction of groundwater discharge to streams, nearshore environments and downgradient groundwater bodies—is thus a key step for assessing fresh groundwater availability in Hawai`i. Groundwater-flow models of the individual islands of Kaua`i, O`ahu, and Maui were constructed using MODFLOW 2005 with the Seawater-Intrusion Package (SWI2). Consistent model construction among the islands, calibration, and analysis were streamlined using Python scripts. Results of simulating historical withdrawals from Hawai`i's volcanic aquifers show that the types and magnitudes of impacts that can limit fresh groundwater availability vary among each islands' unique hydrogeologic settings. In high-permeability freshwater-lens aquifers, saltwater intrusion and reductions in coastal groundwater discharge are the principal consequences of withdrawals that can limit groundwater availability. In dike-impounded groundwater and thickly saturated low-permeability aquifers, reduced groundwater discharge to streams, water-table decline, or reduced flows to adjacent freshwater-lens aquifers can limit fresh groundwater availability. The numerical models are used to quantify and delineate the spatial distribution of these impacts for the three islands. The models were also used to examine how anticipated changes in groundwater recharge and withdrawals will affect fresh groundwater availability in the future.

  9. Overview of groundwater management approaches at salinisation risk

    Science.gov (United States)

    Polemio, Maurizio; Zuffianò, Livia Emanuela

    2013-04-01

    All natural waters contain dissolved minerals from interactions with atmospheric and soil gases, mixing with other solutions, and/or interactions with the biosphere and lithosphere. In many cases, these processes result in natural waters containing solute or salinity above concentrations recommended for a specified use, which creates significant social and economic problems. Groundwater salinisation can be caused by natural phenomena and anthropogenic activities. For the former case, we can distinguish terrestrial and marine phenomena. Approximately 16% of the total area of continental earth is potentially involved in groundwater salinisation. Seawater intrusion can be considered to be the primary phenomenon to be studied in terms of groundwater salinisation. Three schematic approaches to the protection of groundwater via salinisation mitigation and/or groundwater salinity improvement are described based on the classifications of the primary salinisation sources and focusing on the effect of seawater intrusion. The complexity of these approaches generally increases due to difficulties caused by groundwater quality and quantity degradation and increased demand for quality water. In order from the lowest to the highest complexity, these approaches are the engineering approach, the discharge management approach, and the water and land management approach. The engineering approach is realised on the local or detailed scale with the purpose of controlling the salinisation, optimising the well discharge with specific technical solutions and/or completing works to improve the quality and/or quantity of the discharged fresh groundwater. The discharge management approach encompasses at least an entire coastal aquifer and defines rules concerning groundwater utilisation and well discharge. The water and land management approach should be applied on the regional scale. Briefly, this approach becomes necessary when one or more need creates an overall framework of high

  10. The nitrate time bomb: a numerical way to investigate nitrate storage and lag time in the unsaturated zone.

    Science.gov (United States)

    Wang, L; Butcher, A S; Stuart, M E; Gooddy, D C; Bloomfield, J P

    2013-10-01

    Nitrate pollution in groundwater, which is mainly from agricultural activities, remains an international problem. It threatens the environment, economics and human health. There is a rising trend in nitrate concentrations in many UK groundwater bodies. Research has shown it can take decades for leached nitrate from the soil to discharge into groundwater and surface water due to the 'store' of nitrate and its potentially long travel time in the unsaturated and saturated zones. However, this time lag is rarely considered in current water nitrate management and policy development. The aim of this study was to develop a catchment-scale integrated numerical method to investigate the nitrate lag time in the groundwater system, and the Eden Valley, UK, was selected as a case study area. The method involves three models, namely the nitrate time bomb-a process-based model to simulate the nitrate transport in the unsaturated zone (USZ), GISGroundwater--a GISGroundwater flow model, and N-FM--a model to simulate the nitrate transport in the saturated zone. This study answers the scientific questions of when the nitrate currently in the groundwater was loaded into the unsaturated zones and eventually reached the water table; is the rising groundwater nitrate concentration in the study area caused by historic nitrate load; what caused the uneven distribution of groundwater nitrate concentration in the study area; and whether the historic peak nitrate loading has reached the water table in the area. The groundwater nitrate in the area was mainly from the 1980s to 2000s, whilst the groundwater nitrate in most of the source protection zones leached into the system during 1940s-1970s; the large and spatially variable thickness of the USZ is one of the major reasons for unevenly distributed groundwater nitrate concentrations in the study area; the peak nitrate loading around 1983 has affected most of the study area. For areas around the Bowscar, Beacon Edge, Low Plains, Nord Vue

  11. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.

    Science.gov (United States)

    Essaid, Hedeff I; Caldwell, Rodney R

    2017-12-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  12. Validation on groundwater flow model including sea level change. Modeling on groundwater flow in coastal granite area

    International Nuclear Information System (INIS)

    Hasegawa, Takuma; Miyakawa, Kimio

    2009-01-01

    It is important to verify the groundwater flow model that reproduces pressure head, water chemistry, and groundwater age. However, water chemistry and groundwater age are considered to be influenced by historical events. In this study, sea level change during glacial-interglacial cycle was taken into account for simulating salinity and groundwater age at coastal granite area. As a result of simulation, salinity movement could not catch up with sea level changes, and mixing zone was formed below the fresh-water zone. This mixing zone was observed in the field measurement, and the observed salinities were agreed with simulated results including sea level change. The simulated residence time including sea level change is one-tenth of steady state. The reason is that the saline water was washed out during regression and modern sea-water was infiltrated during transgression. As mentioned before, considering sea level change are important to reproduce salinity and helium age at coastal area. (author)

  13. Simulation of groundwater flow pathlines and freshwater/saltwater transition zone movement, Manhasset Neck, Nassau County, New York

    Science.gov (United States)

    Misut, Paul; Aphale, Omkar

    2014-01-01

    A density-dependent groundwater flow and solute transport model of Manhasset Neck, Long Island, New York, was used to analyze (1) the effects of seasonal stress on the position of the freshwater/saltwater transition zone and (2) groundwater flowpaths. The following were used in the simulation: 182 transient stress periods, representing the historical record from 1920 to 2011, and 44 transient stress periods, representing future hypothetical conditions from 2011 to 2030. Simulated water-level and salinity (chloride concentration) values are compared with values from a previously developed two-stress-period (1905–1944 and 1945–2005) model. The 182-stress-period model produced salinity (chloride concentration) values that more accurately matched the observed salinity (chloride concentration) values in response to hydrologic stress than did the two-stress-period model, and salinity ranged from zero to about 3 parts per thousand (equivalent to zero to 1,660 milligrams per liter chloride). The 182-stress-period model produced improved calibration statistics of water-level measurements made throughout the study area than did the two-stress-period model, reducing the Lloyd aquifer root mean square error from 7.0 to 5.2 feet. Decreasing horizontal and vertical hydraulic conductivities (fixed anisotropy ratio) of the Lloyd and North Shore aquifers by 20 percent resulted in nearly doubling the simulated salinity(chloride concentration) increase at Port Washington observation well N12508. Groundwater flowpath analysis was completed for 24 production wells to delineate water source areas. The freshwater/saltwater transition zone moved toward and(or) away from wells during future hypothetical scenarios.

  14. Prediction of Groundwater Quality Improvement Down-Gradient of In Situ Permeable Treatment Barriers and Fully-Remediated Source Zones. ESTCP Cost and Performance Report

    National Research Council Canada - National Science Library

    Johnson, Paul C; Carlson, Pamela M; Dahlen, Paul

    2008-01-01

    In situ permeable treatment barriers (PTB) are designed so that contaminated groundwater flows through an engineered treatment zone within which contaminants are eliminated or the concentrations are significantly reduced...

  15. Measurements of HFC-134a and HCFC-22 in groundwater and unsaturated-zone air: implications for HFCs and HCFCs as dating tracers

    Science.gov (United States)

    Haase, Karl B.; Busenberg, Eurybiades; Plummer, Niel; Casile, Gerolamo; Sanford, Ward E.

    2014-01-01

    A new analytical method using gas chromatography with an atomic emission detector (GC–AED) was developed for measurement of ambient concentrations of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) in soil, air, and groundwater, with the goal of determining their utility as groundwater age tracers. The analytical detection limits of HCFC-22 (difluorochloromethane, CHClF2) and HFC-134a (1,2,2,2-tetrafluoroethane, C2H2F4) in 1 L groundwater samples are 4.3 × 10− 1 and 2.1 × 10− 1 pmol kg− 1, respectively, corresponding to equilibrium gas-phase mixing ratios of approximately 5–6 parts per trillion by volume (pptv). Under optimal conditions, post-1960 (HCFC-22) and post-1995 (HFC-134a) recharge could be identified using these tracers in stable, unmixed groundwater samples. Ambient concentrations of HCFC-22 and HFC-134a were measured in 50 groundwater samples from 27 locations in northern and western parts of Virginia, Tennessee, and North Carolina (USA), and 3 unsaturated-zone profiles were collected in northern Virginia. Mixing ratios of both HCFC-22 and HFC-134a decrease with depth in unsaturated-zone gas profiles with an accompanying increase in CO2 and loss of O2. Apparently, ambient concentrations of HCFC-22 and HFC-134a are readily consumed by methanotrophic bacteria under aerobic conditions in the unsaturated zone. The results of this study indicate that soils are a sink for these two greenhouse gases. These observations contradict the previously reported results from microcosm experiments that found that degradation was limited above-ambient HFC-134a. The groundwater HFC and HCFC concentrations were compared with concentrations of chlorofluorocarbons (CFCs, CFC-11, CFC-12, CFC-113) and sulfur hexafluoride (SF6). Nearly all samples had measured HCFC-22 or HFC-134a that were below concentrations predicted by the CFCs and SF6, with many samples showing a complete loss of HCFC-22 and HFC-134a. This study indicates that HCFC-22 and HFC-134

  16. Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode

    Science.gov (United States)

    Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.

    2017-12-01

    Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.

  17. Dynamic surface water-groundwater exchange and nitrogen transport in the riparian aquifer of a tidal river

    Science.gov (United States)

    Sawyer, A. H.; Barnes, R.; Wallace, C.; Knights, D.; Tight, D.; Bayer, M.

    2017-12-01

    Tides in coastal rivers can propagate tens to hundreds of kilometers inland and drive large daily changes in water and nitrogen exchange across the sediment-water interface. We use field observations and numerical models to illuminate hydrodynamic controls on nitrogen export from the riparian aquifer to a fresh, tidal reach of White Clay Creek (Delaware, USA). In the banks, an aerobic zone with high groundwater nitrate concentrations occurs near the fluctuating water table. Continuous depth-resolved measurements of redox potential suggest that this zone is relatively stable over tidal timescales but moves up or down in response to storms. The main source of dissolved oxygen is soil air that is imbibed in the zone of water table fluctuations, and the source of nitrate is likely nitrification of ammonium produced locally from the mineralization of organic matter in floodplain soils. Much of the nitrate is removed by denitrification along oscillating flow paths towards the channel. Within centimeters of the sediment-water interface, denitrification is limited by the mixing of groundwater with oxygen-rich river water. Our models predict that the benthic zones of tidal rivers play an important role in removing new nitrate inputs from discharging groundwater but may be less effective at removing nitrate from river water. Nitrate removal and production rates are expected to vary significantly along tidal rivers as permeability, organic matter content, tidal range vary. It is imperative that we understand nitrogen dynamics along tidal rivers and their role in nitrogen export to the coast.

  18. The Impact of Urban Development in the Arid Zone and its Management.

    Science.gov (United States)

    Gat, J. R.

    2002-05-01

    From the experience in humid and semi-arid settings, the immediate impact of urbanization on the hydrological system is the interference with the natural direct infiltration pathways, resulting in a decrease of groundwater recharge as well as the possibility of surface flooding. In contrast, in the arid environment the limited rain amounts and number of rain events makes the contribution of rain of marginal importance in the city's water balance. The major impact of urbanization in the arid zone is the continuous excess of discharge of treated or untreated sewage or water spills, originating from the import of water to the city's water supply. Their effect can be advantageous if properly channeled. On the other hand, the polluting potential of these water excesses as well as the possibility of mobilizing stored salinity in the downstream locations is of concern, if the natural drainage network and its remediation capacity becomes overloaded. Further, since the arid zone hydrological cycle depends naturally on a discontinuous and episodal groundwater recharge pattern, the new situation requires the re-assessment of the eco-hydrological patterns in the downstream location.

  19. State Waste Discharge Permit application, 183-N Backwash Discharge Pond

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE91NM-177 requires a series of permitting activities for liquid effluent discharges. Liquid effluents on the Hanford Site have been classified as Phase I, Phase II, and Miscellaneous Streams. The Consent Order No. DE91NM-177 establishes milestones for State Waste Discharge Permit application submittals for all Phase I and Phase II streams, as well as the following 11 Miscellaneous Streams as identified in Table 4 of the Consent Order No. DE91NM-177.

  20. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  1. Assessment of regional change in nitrate concentrations in groundwater in the Central Valley, California, USA, 1950s-2000s

    Science.gov (United States)

    Burow, Karen R.; Jurgens, Bryant C.; Belitz, Kenneth; Dubrovsky, Neil M.

    2013-01-01

    A regional assessment of multi-decadal changes in nitrate concentrations was done using historical data and a spatially stratified non-biased approach. Data were stratified into physiographic subregions on the basis of geomorphology and soils data to represent zones of historical recharge and discharge patterns in the basin. Data were also stratified by depth to represent a shallow zone generally representing domestic drinking-water supplies and a deep zone generally representing public drinking-water supplies. These stratifications were designed to characterize the regional extent of groundwater with common redox and age characteristics, two factors expected to influence changes in nitrate concentrations over time. Overall, increasing trends in nitrate concentrations and the proportion of nitrate concentrations above 5 mg/L were observed in the east fans subregion of the Central Valley. Whereas the west fans subregion has elevated nitrate concentrations, temporal trends were not detected, likely due to the heterogeneous nature of the water quality in this area and geologic sources of nitrate, combined with sparse and uneven data coverage. Generally low nitrate concentrations in the basin subregion are consistent with reduced geochemical conditions resulting from low permeability soils and higher organic content, reflecting the distal portions of alluvial fans and historical groundwater discharge areas. Very small increases in the shallow aquifer in the basin subregion may reflect downgradient movement of high nitrate groundwater from adjacent areas or overlying intensive agricultural inputs. Because of the general lack of regionally extensive long-term monitoring networks, the results from this study highlight the importance of placing studies of trends in water quality into regional context. Earlier work concluded that nitrate concentrations were steadily increasing over time in the eastern San Joaquin Valley, but clearly those trends do not apply to other

  2. The `Henry Problem' of `density-driven' groundwater flow versus Tothian `groundwater flow systems' with variable density: A review of the influential Biscayne aquifer data.

    Science.gov (United States)

    Weyer, K. U.

    2017-12-01

    Coastal groundwater flow investigations at the Biscayne Bay, south of Miami, Florida, gave rise to the concept of density-driven flow of seawater into coastal aquifers creating a saltwater wedge. Within that wedge, convection-driven return flow of seawater and a dispersion zone were assumed by Cooper et al. (1964) to be the cause of the Biscayne aquifer `sea water wedge'. This conclusion was based on the chloride distribution within the aquifer and on an analytical model concept assuming convection flow within a confined aquifer without taking non-chemical field data into consideration. This concept was later labelled the `Henry Problem', which any numerical variable density flow program must be able to simulate to be considered acceptable. Both, `density-driven flow' and Tothian `groundwater flow systems' (with or without variable density conditions) are driven by gravitation. The difference between the two are the boundary conditions. 'Density-driven flow' occurs under hydrostatic boundary conditions while Tothian `groundwater flow systems' occur under hydrodynamic boundary conditions. Revisiting the Cooper et al. (1964) publication with its record of piezometric field data (heads) showed that the so-called sea water wedge has been caused by discharging deep saline groundwater driven by gravitational flow and not by denser sea water. Density driven flow of seawater into the aquifer was not found reflected in the head measurements for low and high tide conditions which had been taken contemporaneously with the chloride measurements. These head measurements had not been included in the flow interpretation. The very same head measurements indicated a clear dividing line between shallow local fresh groundwater flow and saline deep groundwater flow without the existence of a dispersion zone or a convection cell. The Biscayne situation emphasizes the need for any chemical interpretation of flow pattern to be supported by head data as energy indicators of flow fields

  3. Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India

    Science.gov (United States)

    Thapa, Raju; Gupta, Srimanta; Gupta, Arindam; Reddy, D. V.; Kaur, Harjeet

    2018-05-01

    Dwarka River basin in Birbhum, West Bengal (India), is an agriculture-dominated area where groundwater plays a crucial role. The basin experiences seasonal water stress conditions with a scarcity of surface water. In the presented study, delineation of groundwater potential zones (GWPZs) is carried out using a geospatial multi-influencing factor technique. Geology, geomorphology, soil type, land use/land cover, rainfall, lineament and fault density, drainage density, slope, and elevation of the study area were considered for the delineation of GWPZs in the study area. About 9.3, 71.9 and 18.8% of the study area falls within good, moderate and poor groundwater potential zones, respectively. The potential groundwater yield data corroborate the outcome of the model, with maximum yield in the older floodplain and minimum yield in the hard-rock terrains in the western and south-western regions. Validation of the GWPZs using the yield of 148 wells shows very high accuracy of the model prediction, i.e., 89.1% on superimposition and 85.1 and 81.3% on success and prediction rates, respectively. Measurement of the seasonal water-table fluctuation with a multiplicative model of time series for predicting the short-term trend of the water table, followed by chi-square analysis between the predicted and observed water-table depth, indicates a trend of falling groundwater levels, with a 5% level of significance and a p-value of 0.233. The rainfall pattern for the last 3 years of the study shows a moderately positive correlation ( R 2 = 0.308) with the average water-table depth in the study area.

  4. Novel Insights Linking Ecological Health to Biogeochemical Hotspots across the Groundwater-Surface Water Interface in Mixed Land Use Stream Systems

    Science.gov (United States)

    McKnight, U. S.; Sonne, A. T.; Rasmussen, J. J.; Rønde, V.; Traunspurger, W.; Höss, S.; Bjerg, P. L.

    2017-12-01

    Increasing modifications in land use and water management have resulted in multiple stressors impacting freshwater ecosystems globally. Chemicals with the potential to impact aquatic habitats are still often evaluated individually for their adverse effects on ecosystem health. This may lead to critical underestimations of the combined impact caused by interactions occurring between stressors not typically evaluated together, e.g. xenobiotic groundwater pollutants and trace metals. To address this issue, we identified sources and levels of chemical stressors along a 16-km groundwater-fed stream corridor (Grindsted, Denmark), representative for a mixed land use stream system. Potential pollution sources included two contaminated sites (factory, landfill), aquaculture, wastewater/industrial discharges, and diffuse sources from agriculture and urban areas. Ecological status was determined by monitoring meiobenthic and macrobenthic invertebrate communities.The stream was substantially impaired by both geogenic and anthropogenic sources of metals throughout the investigated corridor, with concentrations close to or above threshold values for barium, copper, lead, nickel and zinc in the stream water, hyporheic zone and streambed sediment. The groundwater plume from the factory site caused elevated concentrations of chlorinated ethenes, benzene and pharmaceuticals in both the hyporheic zone and stream, persisting for several km downstream. Impaired ecological conditions, represented by a lower abundance of meiobenthic individuals, were found in zones where the groundwater plume discharges to the stream. The effect was only pronounced in areas characterized by high xenobiotic organic concentrations and elevated dissolved iron and arsenic levels - linked to the dissolution of iron hydroxides caused by the degradation of xenobiotic compounds in the plume. The results thus provide ecological evidence for the interaction of organic and inorganic chemical stressors, which may

  5. Groundwater Inputs to Rivers: Hydrological, Biogeochemical and Ecological Effects Inferred by Environmental Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Stellato, L. [Centre for Isotopic Research on Cultural and Environmental heritage (CIRCE), Seconda Universita degli Studi di Napoli, Caserta (Italy); Newman, B. D. [Isotope Hydrology Section, International Atomic Energy Agency, Vienna (Austria)

    2013-05-15

    In an effort to improve river management, numerous studies over the past two decades have supported the concept that river water and groundwater need to be considered together, as part of a hydrologic continuum. In particular, studies of the interface between surface water and groundwater (the hyporheic zone) have seen the tight collaboration of catchment hydrologists and stream ecologists in order to elucidate processes affecting stream functioning. Groundwater and surface waters interact at different spatial and temporal scales depending on system hydrology and geomorphology, which in turn influence nutrient cycling and in-stream ecology in relation to climatic, geologic, biotic and anthropogenic factors. In this paper, groundwater inputs to rivers are explored from two different and complementary perspectives: the hydrogeological, describing the generally acknowledged mechanisms of streamflow generation and the main factors controlling stream-aquifer interactions, and the ecologic, describing the processes occurring at the hyporheical and the riparian zones and their possible effects on stream functioning and on nutrient cycling, also taking into consideration the impact of human activities. Groundwater inflows to rivers can be important controls on hot moment/hot spot type biogeochemical behaviors. A description of the common methods used to assess these processes is provided emphasizing tracer methods (including physical, chemical and isotopic). In particular, naturally occurring isotopes are useful tools to identify stream discharge components, biogeochemical processes involved in nutrient cycling (such as N and P dynamics), nutrient sources and transport to rivers, and subsurface storage zones and residence times of hyporheic water. Several studies which have employed isotope techniques to clarify the processes occurring when groundwater enters the river,are reported in this chapter, with a view to highlighting both the advantages and limitations of these

  6. Understanding large scale groundwater flow in fractured crystalline rocks to aid in repository siting

    International Nuclear Information System (INIS)

    Davison, C.; Brown, A.; Gascoyne, M.; Stevenson, D.; Ophori, D.

    2000-01-01

    Atomic Energy of Canada Limited (AECL) conducted a ten-year long groundwater flow study of a 1050 km 2 region of fractured crystalline rock in southeastern Manitoba to illustrate how an understanding of large scale groundwater flow can be used to assist in selecting a hydraulically favourable location for the deep geological disposal of nuclear fuel waste. The study involved extensive field investigations that included the drilling testing, sampling and monitoring of twenty deep boreholes distributed at detailed study areas across the region. The surface and borehole geotechnical investigations were used to construct a conceptual model of the main litho-structural features that controlled groundwater flow through the crystalline rocks of the region. Eighty-three large fracture zones and other spatial domains of moderately fractured and sparsely fractured rocks were represented in a finite element model of the area to simulate regional groundwater flow. The groundwater flow model was calibrated to match the observed groundwater recharge rate and the hydraulic heads measured in the network of deep boreholes. Particle tracking was used to determine the pathways and travel times from different depths in the velocity field of the calibrated groundwater flow model. The results were used to identify locations in the regional flow field that maximize the time it takes for groundwater to travel to surface discharge areas through long, slow groundwater pathways. One of these locations was chosen as a good hypothetical location for situating a nuclear fuel waste disposal vault at 750 m depth. (authors)

  7. Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon

    Science.gov (United States)

    Meredith, K. T.; Han, L. F.; Hollins, S. E.; Cendón, D. I.; Jacobsen, G. E.; Baker, A.

    2016-09-01

    Estimating groundwater age is important for any groundwater resource assessment and radiocarbon (14C) dating of dissolved inorganic carbon (DIC) can provide this information. In semi-arid zone (i.e. water-limited environments), there are a multitude of reasons why 14C dating of groundwater and traditional correction models may not be directly transferable. Some include; (1) the complex hydrological responses of these systems that lead to a mixture of different ages in the aquifer(s), (2) the varied sources, origins and ages of organic matter in the unsaturated zone and (3) high evaporation rates. These all influence the evolution of DIC and are not easily accounted for in traditional correction models. In this study, we determined carbon isotope data for; DIC in water, carbonate minerals in the sediments, sediment organic matter, soil gas CO2 from the unsaturated zone, and vegetation samples. The samples were collected after an extended drought, and again after a flood event, to capture the evolution of DIC after varying hydrological regimes. A graphical method (Han et al., 2012) was applied for interpretation of the carbon geochemical and isotopic data. Simple forward mass-balance modelling was carried out on key geochemical processes involving carbon and agreed well with observed data. High values of DIC and δ13CDIC, and low 14CDIC could not be explained by a simple carbonate mineral-CO2 gas dissolution process. Instead it is suggested that during extended drought, water-sediment interaction leads to ion exchange processes within the top ∼10-20 m of the aquifer which promotes greater calcite dissolution in saline groundwater. This process was found to contribute more than half of the DIC, which is from a mostly 'dead' carbon source. DIC is also influenced by carbon exchange between DIC in water and carbonate minerals found in the top 2 m of the unsaturated zone. This process occurs because of repeated dissolution/precipitation of carbonate that is dependent on

  8. Magnetron sputtering system with an annual discharge zone and two cathode modules

    International Nuclear Information System (INIS)

    Savich, V. A.; Yasyunas, A. A.; Kovrigo, V. M.; Kotov, D. A.; Shiripov, V. Ya.

    2013-01-01

    In this article, general discharge characteristics of a cylindrical magnetron sputtering system with an annual sputtering zone and a high target usage coefficient designed for transparent conducting coatings are shown. Two coupled DC-cathodes are used to improve coating uniformity. Radial sputtered material fluxes are being created. The engineered magnetic system is extremely balanced (G-factor is much higher than 2) and thus provides maximal effective operating power higher than 6 kW. The effectiveness of a magnetic trap results in a fast work cycle (less than 1.5 min) and a high target material usage coefficient (higher than 40%). A multipole magnetic field with null magnetic flux density zones lower target’s surface is being created. There is an influence between cathode modules despite mutual magnetic isolation, so magnetic conductors-shunts are used to weaken it. The magnetron can be used to sputter both metals and conducting ceramics (including ITO). (authors)

  9. Scoping assessment of groundwater doses to biota at the Sellafield site, UK

    International Nuclear Information System (INIS)

    McDonald, P.; Gleizon, P.; Coleman, I.A.; Watts, S.J.; Batlle, L.V.; Smith, A.D.

    2008-01-01

    In the current climate of investigating the impact of discharges from the nuclear industry on non-human biota, much attention has been given to biota in marine and terrestrial environments in receipt of authorised discharges of liquid and gaseous effluent. Relatively little attention to date has been given to the exposure of biota to groundwater containing man-made radio-nuclides. This area of interest is growing especially in the field of nuclear waste repositories. A scoping assessment has been performed here to determine the impacts due to radiological contamination on organisms living within or coming into contact with groundwater at the Sellafield site, UK. The following potential exposure routes to biota were identified: 1) Organisms living within groundwater; 2) Groundwater discharges to the surface at beach springs (i.e. emerging above the low water line; 3) Groundwater discharges to nearby surface water bodies (e.g. rivers); 4) Groundwater discharges directly to the Irish Sea.. In order to evaluate impacts on organisms living within, contacting or ingesting groundwater, it was necessary to determine the activity concentration of radio-nuclides in the groundwater. For time periods up to 2120, modeling of contaminant release from in-ground inventories and transport in groundwater was carried out for this scoping study using a relatively simple assessment methodology with the MONDRIAN modeling suite. Screening assessments of radiological impacts upon wildlife have been performed for liquid discharges to groundwater from the Sellafield Ltd reprocessing plant at Sellafield, Cumbria. Impacts have been considered for biota at sites within reach of the groundwater flow network. Most calculated total weighted absorbed doses appear to be of no radiological significance whatsoever in relation to the new Environment Agency freshwater ecosystem trigger level (40 microGy h -1 ), thereby obviating the need to conduct further investigations. The one exception to this is

  10. The hyporheic zone and its functions: revision and research status in Neotropical regions

    Directory of Open Access Journals (Sweden)

    R Mugnai

    Full Text Available AbstractThe hyporheic zone (HZ, as the connecting ecotone between surface- and groundwater, is functionally part of both fluvial and groundwater ecosystems. Its hydrological, chemical, biological and metabolic features are specific of this zone, not belonging truly neither to surface- nor to groundwater. Exchanges of water, nutrients, and organic matter occur in response to variations in discharge and bed topography and porosity. Dynamic gradients exist at all scales and vary temporally. Across all scales, the functional significance of the HZ relates to its activity and connection with the surface stream. The HZ is a relatively rich environment and almost all invertebrate groups have colonized this habitat. This fauna, so-called hyporheos, is composed of species typical from interstitial environment, and also of benthic epigean and phreatic species. The hyporheic microbiocenose consists in bacteria, archaea, protozoa and fungi. The HZ provides several ecosystem services, playing a pivotal role in mediating exchange processes, including both matter and energy, between surface and subterranean ecosystems, functioning as regulator of water flow, benthic invertebrates refuge and place of storage, source and transformation of organic matter. The hyporheic zone is one of the most threatened aquatic environments, being strongly influenced by human activities, and the least protected by legislation worldwide. Its maintenance and conservation is compelling in order to preserve the ecological interconnectivity among the three spatial dimensions of the aquatic environment. Although several researchers addressed the importance of the hyporheic zone early, and most contemporary stream ecosystem models explicitly include it, very little is known about the HZ of Neotropical regions. From a biological standpoint, hyporheos fauna in Neotropical regions are still largely underestimated. This review focuses on a brief presentation of the hyporheic zone and its

  11. The hyporheic zone and its functions: revision and research status in Neotropical regions.

    Science.gov (United States)

    Mugnai, R; Messana, G; Di Lorenzo, T

    2015-08-01

    The hyporheic zone (HZ), as the connecting ecotone between surface- and groundwater, is functionally part of both fluvial and groundwater ecosystems. Its hydrological, chemical, biological and metabolic features are specific of this zone, not belonging truly neither to surface- nor to groundwater. Exchanges of water, nutrients, and organic matter occur in response to variations in discharge and bed topography and porosity. Dynamic gradients exist at all scales and vary temporally. Across all scales, the functional significance of the HZ relates to its activity and connection with the surface stream. The HZ is a relatively rich environment and almost all invertebrate groups have colonized this habitat. This fauna, so-called hyporheos, is composed of species typical from interstitial environment, and also of benthic epigean and phreatic species. The hyporheic microbiocenose consists in bacteria, archaea, protozoa and fungi. The HZ provides several ecosystem services, playing a pivotal role in mediating exchange processes, including both matter and energy, between surface and subterranean ecosystems, functioning as regulator of water flow, benthic invertebrates refuge and place of storage, source and transformation of organic matter. The hyporheic zone is one of the most threatened aquatic environments, being strongly influenced by human activities, and the least protected by legislation worldwide. Its maintenance and conservation is compelling in order to preserve the ecological interconnectivity among the three spatial dimensions of the aquatic environment. Although several researchers addressed the importance of the hyporheic zone early, and most contemporary stream ecosystem models explicitly include it, very little is known about the HZ of Neotropical regions. From a biological standpoint, hyporheos fauna in Neotropical regions are still largely underestimated. This review focuses on a brief presentation of the hyporheic zone and its functions and significance as

  12. Sea-water/groundwater interactions along a small catchment of the European Atlantic coast

    International Nuclear Information System (INIS)

    Einsiedl, Florian

    2012-01-01

    The geochemistry and isotopic composition of a karstic coastal aquifer in western Ireland has shed light on the effect of sea-water/groundwater interactions on the water quality of Ireland’s Atlantic coastal zone. The use of stable isotope data from the IAEA precipitation station in Valentia, located in SW Ireland has facilitated the characterization of groundwater recharge conditions in the western part of Ireland and suggests that groundwater is mostly replenished by the isotopically light winter precipitation. The dissolved SO 4 2- in the karstic groundwater that was collected during baseflow conditions with δ 34 S values between 4.6‰ and 18‰ may be composed of S stemming from three principal sources: SO 4 2- derived from precipitation which is composed of both sea-spray S (δ 34 S: 20‰) and an isotopically light anthropogenic source (δ 34 S: 1–5‰), SO 4 2- stemming from animal slurries (δ 34 S: ∼5‰), and intruding sea-water SO 4 2- (δ 34 S: 20.2‰). The isotopic composition of δ 18 O in dissolved groundwater SO 4 2- collected during baseflow conditions is interpreted as reflecting sea-water intrusion to the karstic coastal groundwater system. The highest δ 18 O values in dissolved groundwater SO 4 2- were in samples collected near the coast (4.8 ± 0.4‰) and the lowest (2 ± 0.5‰) were collected further inland. The δ 15 N and δ 18 O values of groundwater NO 3 - were between 3.4‰ and 11.4‰ and approximately 7.7‰, respectively, and reflect geochemical conditions in the aquifer that do not promote attenuation of NO 3 - through denitrification. As a result N loading to Kinvara Bay that is controlled by submarine groundwater discharge (SGD) was calculated as 5 tons/day on average compared to an estimated N-input that derives from precipitation of approximately 2.5 tons/a. SGD into the bay may result in near coastal sea-water quality changes. These results represent one of the first studies addressing the effect of groundwater

  13. Assessment of groundwater recharge and water fluxes of the Guarani Aquifer System, Brazil

    Science.gov (United States)

    Rabelo, Jorge Luiz; Wendland, Edson

    2009-11-01

    The groundwater recharge and water fluxes of the Guarani Aquifer System in the state of Sao Paulo in Brazil were assessed through a numeric model. The study area (6,748 km2) comprises Jacaré-Guaçú and Jacaré-Pepira River watersheds, tributaries of the Tietê River in the central region of the state. GIS based tools were used in the storage, processing and analysis of data. Main hydrologic phenomena were selected, leading to a groundwater conceptual model, taking into account the significant outcrops occurring in the study area. Six recharge zones were related to the geologic formation and structures of the semi-confined and phreatic aquifer. The model was calibrated against the baseflows and static water levels of the wells. The results emphasize the strong interaction of groundwater flows between watersheds and the groundwater inflow into the rivers. It has been concluded that lateral groundwater exchanges between basins, the deep discharges to the regional system, and well exploitation were not significant aquifer outflows when compared to the aquifer recharge. The results have shown that the inflows from the river into the aquifer are significant and have the utmost importance since the aquifer is potentially more vulnerable in these places.

  14. Application of Isotope techniques in the arid and semi-arid zone hydrology

    International Nuclear Information System (INIS)

    Gonfiantini, R.; Louvat, D.; Aranyossy, J.F.

    1993-01-01

    The paper presents a brief introduction on the scientific background of isotope hydrology,and after, explains the applications of environment isotope techniques in groundwater hydrology of the arid and semi-arid zones. It includes the study of aquifer recharge and discharge, identification of palaeorecharge, groundwater movement and age in unconfined and confined aquifers, and interconnections between aquifers. The contribution of isotopes is highlighted with many examples of field case studies, with emphasis on studies carried out with IAEA support. Finally, a short description of IAEA program on isotope hydrology is given, with a list of regional projects supported through the IAEA Technical Cooperation program, and of Coordinated Research Programs. The latter give the modern research trends in isotope application to hydrology and hydrosphere environmental studies. (author). 2 tabs., 25 figs., 69 refs

  15. Neural Network approach to assess the thermal affected zone around the injection well in a groundwater heat pump system

    Science.gov (United States)

    Lo Russo, Stefano; Taddia, Glenda; Verda, Vittorio

    2014-05-01

    The common use of well doublets for groundwater-sourced heating or cooling results in a thermal plume of colder or warmer re-injected groundwater known as the Thermal Affected Zone(TAZ). The plumes may be regarded either as a potential anthropogenic geothermal resource or as pollution, depending on downstream aquifer usage. A fundamental aspect in groundwater heat pump (GWHP) plant design is the correct evaluation of the thermally affected zone that develops around the injection well. Temperature anomalies are detected through numerical methods. Crucial elements in the process of thermal impact assessment are the sizes of installations, their position, the heating/cooling load of the building, and the temperature drop/increase imposed on the re-injected water flow. For multiple-well schemes, heterogeneous aquifers, or variable heating and cooling loads, numerical models that simulate groundwater and heat transport are needed. These tools should consider numerous scenarios obtained considering different heating/cooling loads, positions, and operating modes. Computational fluid dynamic (CFD) models are widely used in this field because they offer the opportunity to calculate the time evolution of the thermal plume produced by a heat pump, depending on the characteristics of the subsurface and the heat pump. Nevertheless, these models require large computational efforts, and therefore their use may be limited to a reasonable number of scenarios. Neural networks could represent an alternative to CFD for assessing the TAZ under different scenarios referring to a specific site. The use of neural networks is proposed to determine the time evolution of the groundwater temperature downstream of an installation as a function of the possible utilization profiles of the heat pump. The main advantage of neural network modeling is the possibility of evaluating a large number of scenarios in a very short time, which is very useful for the preliminary analysis of future multiple

  16. Effect of submarine groundwater discharge containing phosphate on coral calcification

    Science.gov (United States)

    Yasumoto, J.; Yasumoto, K.; Iijima, M.; Nozaki, M.; Asai, K.; Yasumoto, M. H.

    2017-12-01

    It is well known that the anthropogenic eutrophication enriched with various substances including phosphate in coastal waters has resulted in coral degradation. However, to the best of our knowledge, the phosphate threshold value to inhibit the coral calcification has been unclear, due to the unknown mechanisms involved in the inhibition of the calcification by phosphate. In island regions, groundwater is one of the most important clues to transport the nutrients contained in livestock or agricultural wastewaters. However, the actual conditions of coastal pollution with such nutrients have not been understood because of unperceived submarine groundwater discharge (SGD). In this study, to quantify of extremely rapid and localized SGD from Ryukyu limestone aquifer, we investigated the rate and concentration of phosphate of SGD using automated seepage mater in Yoron Island, which is located southern part of Japan. And, to elucidate the inhibition mechanisms for phosphate against coral calcification, we examined its effect on the bottom skeleton formation in primary polyps of Acropora digitifera by using the fluorescence derivatizing reagent having phosphate group (FITC-AA). As a result, the SGD was found to contain 1 to 2 µM of phosphate as much as the concentration in the coastal ground water under agricultural land. Moreover, the amount of phosphate contained in the surface layers of bottom calcareous sands close to the region of SGD were about 5 µmol/g. When the primary polyps were treated with 50 µM of FITC-AA, the bottom skeleton of the primary polyps showed the fluorescence from FITC-AA within a few minutes, suggesting the phosphate binding. Furthermore, when the polyps were treated with 10 µM of FITC-AA, irregular patterns of the elongated skeleton were observed. These results led us to conclude that phosphate is transported via a paracellular pathway to the subcalicoblastic extracellular calcifying medium. These results indicate that the phosphate adsorbed

  17. Using high-resolution in situ radon measurements to determine groundwater discharge at a remote location: Tonle Sap Lake, Cambodia

    International Nuclear Information System (INIS)

    Burnett, W.C.; Chanyotha, S.

    2013-01-01

    Tonle Sap Lake (Cambodia) is the largest freshwater lake in SE Asia, and is reported to have one of the highest freshwater fish productions anywhere. During the dry season (November-April) the lake drains through a tributary to the Mekong River. The flow in the connecting tributary completely reverses during the wet monsoon (May-October), adding huge volumes of water back to the lake, increasing its area about fourfold. We hypothesize that nutrients are at least partially delivered via groundwater discharge, especially during the draining portion of the annual flood cycle. We surveyed over 200 km in the northern section of the lake using a customized system that measures natural 222 Rn (radon), temperature, conductivity, GPS coordinates and water depth while underway. Results showed that there were portions of the lake with significant enrichments in radon, indicating likely groundwater inputs. These same areas were generally characterized by lower electrical conductivities. Samples collected from nearby wells also showed a general inverse relationship between radon and conductivity. Our data suggest that groundwater pathways are important, accounting for roughly 10-20 % of the freshwater flow of the Tonle Sap tributary (connection to the Mekong River), the largest single source of fresh water to the lake. Nutrient inputs from these inputs, because of higher concentrations in groundwater, will be correspondingly higher. (author)

  18. Geochemistry and the Understanding of Groundwater Systems

    Science.gov (United States)

    Glynn, P. D.; Plummer, L. N.; Weissmann, G. S.; Stute, M.

    2009-12-01

    Geochemical techniques and concepts have made major contributions to the understanding of groundwater systems. Advances continue to be made through (1) development of measurement and characterization techniques, (2) improvements in computer technology, networks and numerical modeling, (3) investigation of coupled geologic, hydrologic, geochemical and biologic processes, and (4) scaling of individual observations, processes or subsystem models into larger coherent model frameworks. Many applications benefit from progress in these areas, such as: (1) understanding paleoenvironments, in particular paleoclimate, through the use of groundwater archives, (2) assessing the sustainability (recharge and depletion) of groundwater resources, and (3) their vulnerability to contamination, (4) evaluating the capacity and consequences of subsurface waste isolation (e.g. geologic carbon sequestration, nuclear and chemical waste disposal), (5) assessing the potential for mitigation/transformation of anthropogenic contaminants in groundwater systems, and (6) understanding the effect of groundwater lag times in ecosystem-scale responses to natural events, land-use changes, human impacts, and remediation efforts. Obtaining “representative” groundwater samples is difficult and progress in obtaining “representative” samples, or interpreting them, requires new techniques in characterizing groundwater system heterogeneity. Better characterization and simulation of groundwater system heterogeneity (both physical and geochemical) is critical to interpreting the meaning of groundwater “ages”; to understanding and predicting groundwater flow, solute transport, and geochemical evolution; and to quantifying groundwater recharge and discharge processes. Research advances will also come from greater use and progress (1) in the application of environmental tracers to ground water dating and in the analysis of new geochemical tracers (e.g. compound specific isotopic analyses, noble gas

  19. Spatial variability analysis of combining the water quality and groundwater flow model to plan groundwater and surface water management in the Pingtung plain

    Science.gov (United States)

    Chen, Ching-Fang; Chen, Jui-Sheng; Jang, Cheng-Shin

    2014-05-01

    As a result of rapid economic growth in the Pingtung Plain, the use of groundwater resources has changed dramatically. The groundwater is quite rich in the Pingtung plain and the most important water sources. During the several decades, a substantial amount of groundwater has been pumped for the drinking, irrigation and aquaculture water supplies. However, because the sustainable use concept of groundwater resources is lack, excessive pumping of groundwater causes the occurrence of serious land subsidence and sea water intrusion. Thus, the management and conservation of groundwater resources in the Pingtung plain are considerably critical. This study aims to assess the conjunct use effect of groundwater and surface water in the Pingtung plain on recharge by reducing the amount of groundwater extraction. The groundwater quality variability and groundwater flow models are combined to spatially analyze potential zones of groundwater used for multi-purpose in the Pingtung Plain. First, multivariate indicator kriging (MVIK) is used to analyze spatial variability of groundwater quality based on drinking, aquaculture and irrigation water quality standards, and probabilistically delineate suitable zones in the study area. Then, the groundwater flow model, Processing MODFLOW (PMWIN), is adopted to simulate groundwater flow. The groundwater flow model must be conducted by the calibration and verification processes, and the regional groundwater recovery is discussed when specified water rights are replaced by surface water in the Pingtung plain. Finally, the most suitable zones of reducing groundwater use are determined for multi-purpose according to combining groundwater quality and quantity. The study results can establish a sound and low-impact management plan of groundwater resources utilization for the multi-purpose groundwater use, and prevent decreasing ground water tables, and the occurrence of land subsidence and sea water intrusion in the Pingtung plain.

  20. Identifying Stream/Aquifer Exchange by Temperature Gradient in a Guarani Aquifer System Outcrop Zone

    Science.gov (United States)

    Wendland, E.; Rosa, D. M. S.; Anache, J. A. A.; Lowry, C.; Lin, Y. F. F.

    2017-12-01

    Recharge of the Guarani Aquifer System (GAS) in South America is supposed to occur mainly in the outcrop zones, where the GAS appears as an unconfined aquifer (10% of the 1.2 Million km2 aquifer extension). Previous evaluations of recharge are based essentially on water balance estimates for the whole aquifer area or water table fluctuations in monitoring wells. To gain a more detailed understanding of the recharge mechanisms the present work aimed to study the stream aquifer interaction in a watershed (Ribeirão da Onça) at an outcrop zone. Two Parshall flumes were installed 1.3 km apart for discharge measurement in the stream. Along this distance an optic fiber cable was deployed to identify stretches with gaining and losing behavior. In order to estimate groundwater discharge in specific locations, 8 temperature sticks were set up along the stream reach to measure continuously the vertical temperature gradient. A temperature probe with 4 thermistors was also used to map the shallow streambed temperature gradient manually along the whole distance. The obtained results show a discharge difference of 250 m3/h between both flumes. Since the last significant rainfall (15 mm) in the watershed occurred 3 months ago, this value can be interpreted as the base flow contribution to the stream during the dry season. Given the temperature difference between groundwater ( 24oC) and surface water ( 17oC) the fiber-optic distributed temperature sensing (FO-DTS) allowed the identification of stretches with gaining behavior. Temperature gradients observed at the streambed varied between 0.67 and 14.33 oC/m. The study demonstrated that heat may be used as natural tracer even in tropical conditions, where the groundwater temperature is higher than the surface water temperature during the winter. The obtained results show that the discharge difference between both flumes can not be extrapolated without detailed analysis. Gaining and loosing stretches have to be identified on order

  1. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil)

    International Nuclear Information System (INIS)

    Roth, F.; Lessa, G.C.; Wild, C.; Kikuchi, R.K.P.; Naumann, M.S.

    2016-01-01

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ 13 C org and δ 15 N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6 km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality. - Highlights: •Pollution by untreated sewage discharge is evident at the outfall and in Salvador's coastal zone. •Seasonal wind- and tide-driven surface currents control advective transport of discharged sewage. •Water quality at Salvador's recreational beaches is impacted by a plume of untreated sewage.

  2. Groundwater Potential

    African Journals Online (AJOL)

    big timmy

    4Department of Geology, Ekiti State University, Ado-Ekiti, Nigeria. Corresponding ... integrated for the classification of the study area into different groundwater potential zones. .... table is mainly controlled by subsurface movement of water into ...

  3. Groundwater vulnerability maps for pesticides for Flanders

    Science.gov (United States)

    Dams, Jef; Joris, Ingeborg; Bronders, Jan; Van Looy, Stijn; Vanden Boer, Dirk; Heuvelmans, Griet; Seuntjens, Piet

    2017-04-01

    Pesticides are increasingly being detected in shallow groundwater and and are one of the main causes of the poor chemical status of phreatic groundwater bodies in Flanders. There is a need for groundwater vulnerability maps in order to design monitoring strategies and land-use strategies for sensitive areas such as drinking water capture zones. This research focuses on the development of generic vulnerability maps for pesticides for Flanders and a tool to calculate substance-specific vulnerability maps at the scale of Flanders and at the local scale. (1) The generic vulnerability maps are constructed using an index based method in which maps of the main contributing factors in soil and saturated zone to high concentrations of pesticides in groundwater are classified and overlain. Different weights are assigned to the contributing factors according to the type of pesticide (low/high mobility, low/high persistence). Factors that are taken into account are the organic matter content and texture of soil, depth of the unsaturated zone, organic carbon and redox potential of the phreatic groundwater and thickness and conductivity of the phreatic layer. (2) Secondly a tool is developed that calculates substance-specific vulnerability maps for Flanders using a hybrid approach where a process-based leaching model GeoPEARL is combined with vulnerability indices that account for dilution in the phreatic layer. The GeoPEARL model is parameterized for Flanders in 1434 unique combinations of soil properties, climate and groundwater depth. Leaching is calculated for a 20 year period for each 50 x 50 m gridcell in Flanders. (3) At the local scale finally, a fully process-based approach is applied combining GeoPEARL leaching calculations and flowline calculations of pesticide transport in the saturated zone to define critical zones in the capture zone of a receptor such as a drinking water well or a river segment. The three approaches are explained more in detail and illustrated

  4. Investigation of groundwater seepage from the Hanford shoreline of the Columbia River

    International Nuclear Information System (INIS)

    McCormack, W.D.; Carlile, J.M.V.

    1984-11-01

    Groundwater discharges to the Columbia River are evaluated by the Hanford Environmental Surveillance and Groundwater Surveillance Programs via monitoring of the Columbia River and Hanford groundwater. Both programs concluded that Hanford groundwater has not adversely affected Columbia River water quality. This report supplements the above programs by investigating the general characteristics of groundwater entering the Columbia River from the Hanford Site. Specific objectives of the investigation were to identify general shoreline areas where Hanford-related materials were entering the river, and to evaluate qualitatively the physical characteristics and relative magnitudes of those discharges. The study was conducted in two phases. Phase 1 involved visual inspection of Columbia River shoreline, within the Hanford Site, for indications of groundwater seepage. As a result of that inspection, 115 springs suspected of discharging groundwater were recorded. During Phase 2, water samples were collected from these springs and analyzed for Hanford-related materials known to be present in the groundwater. The specific materials used as indicators for the majority of samples were tritium or uranium and nitrate. The magnitude and distribution of concentrations measured in the spring samples were consistent with concentrations of these materials measured in groundwater near the sampled spring locations. Water samples were also collected from the Columbia River to investigate the localized effects of groundwater discharges occurring above and below river level. These samples were collected within 2 to 4 m of the Hanford shoreline and analyzed for tritium, nitrate, and uranium. Elevated concentrations were measured in river samples collected near areas where groundwater and spring concentrations were elevated. All concentrations were below applicable DOE Concentration Guides. 8 references, 6 figures, 7 tables

  5. A nested observation and model approach to non linear groundwater surface water interactions.

    Science.gov (United States)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.

    2009-04-01

    Surface water quality measurements in The Netherlands are scattered in time and space. Therefore, water quality status and its variations and trends are difficult to determine. In order to reach the water quality goals according to the European Water Framework Directive, we need to improve our understanding of the dynamics of surface water quality and the processes that affect it. In heavily drained lowland catchment groundwater influences the discharge towards the surface water network in many complex ways. Especially a strong seasonal contracting and expanding system of discharging ditches and streams affects discharge and solute transport. At a tube drained field site the tube drain flux and the combined flux of all other flow routes toward a stretch of 45 m of surface water have been measured for a year. Also the groundwater levels at various locations in the field and the discharge at two nested catchment scales have been monitored. The unique reaction of individual flow routes on rainfall events at the field site allowed us to separate the discharge at a 4 ha catchment and at a 6 km2 into flow route contributions. The results of this nested experimental setup combined with the results of a distributed hydrological model has lead to the formulation of a process model approach that focuses on the spatial variability of discharge generation driven by temporal and spatial variations in groundwater levels. The main idea of this approach is that discharge is not generated by catchment average storages or groundwater heads, but is mainly generated by points scale extremes i.e. extreme low permeability, extreme high groundwater heads or extreme low surface elevations, all leading to catchment discharge. We focused on describing the spatial extremes in point scale storages and this led to a simple and measurable expression that governs the non-linear groundwater surface water interaction. We will present the analysis of the field site data to demonstrate the potential

  6. Analysis of the geochemical gradient created by surface-groundwater interactions within riverbanks of the East River in Crested Butte, Colorado

    Science.gov (United States)

    Lunzer, J.; Williams, K. H.; Malenda, H. F.; Nararne-Sitchler, A.

    2016-12-01

    An improved understanding of the geochemical gradient created by the mixing of surface and groundwater of a river system will have considerable impact on our understanding of microorganisms, organic cycling and biogeochemical processes within these zones. In this study, the geochemical gradient in the hyporheic zone is described using a variety of geochemical properties. A system of shallow groundwater wells were installed in a series of transects along a stream bank. Each transect consists of several wells that progress away from the river bank in a perpendicular fashion. From these wells, temperature, conductivity and pH of water samples were obtained via hand pumping or bailing. These data show a clear geochemical gradient that displays a distinct zone in the subsurface where the geochemical conditions change from surface water dominated to groundwater dominated. For this study, the East River near Crested Butte, Colorado has been selected as the river of interest due the river being a relatively undisturbed floodplain. Additionally, the specific section chosen on the East River displays relatively high sinuosity meaning that these meandering sections will produce hyporheic zones that are more laterally expansive than what would be expected on a river of lower sinuosity. This increase in lateral extension of the hyporheic zone will make depicting the subtle changes in the geochemical gradient much easier than that of a river system in which the hyporheic zone is not as laterally extensive. Data has been and will be continued to be collected at different river discharges to evaluate the geochemical gradient at differing rates. Overall, this characterization of the geochemical gradient along stream banks will produce results that will aid in the further use of geochemical methods to classify and understand hyporheic exchange zones and the potential expansion of these techniques to river systems of differing geologic and geographic conditions.

  7. Redox transformation and reductive immobilization of Cr(VI) in the Columbia River hyporheic zone sediments

    Science.gov (United States)

    Xu, Fen; Liu, Yuanyuan; Zachara, John; Bowden, Mark; Kennedy, David; Plymale, Andrew E.; Liu, Chongxuan

    2017-12-01

    An experimental and modeling study was conducted to investigate the redox transformation and reductive immobilization of groundwater contaminant Cr in hyporheic zone (HZ) sediments from U.S. DOE's Hanford Site, where groundwater Cr(VI) is migrating and discharging to the nearby Columbia River. Experimental results revealed that Cr(VI) can be reduced and immobilized by the HZ sediments in the presence/absence of O2. Anaerobic pre-incubation of the sediments increased the effective rate of Cr reduction that was correlated with the increase in HCl-extractable Fe(II) content in the sediments. The reduced Cr was stable when exposed to O2 under field-relevant pH (7.5) with and without dissolved Mn(II), which might be oxidized to form Mn(III/IV) oxides that may oxidize reduced Cr. The Cr(VI) reduction rate showed a multi-rate behavior, apparently reflecting the presence of reductants with different reactivity in the sediments. The results from this study indicated that the HZ sediments can reductively immobilize Cr and the sediment redox capacity can be recharged through microbial activities. The results implied that HZ can play a role as a natural permeable redox barrier for removing groundwater Cr before it discharges into a river system.

  8. TECHNICAL BASIS FOR EVALUATING SURFACE BARRIERS TO PROTECT GROUNDWATER FROM DEEP VADOSE ZONE CONTAMINATION

    International Nuclear Information System (INIS)

    Fayer, J.M.; Freedman, V.L.; Ward, A.L.; Chronister, G.B.

    2010-01-01

    tasks to achieve those outcomes. Full understanding of contaminant behavior in the deep vadose zone is constrained by four key data gaps: limited access; limited data; limited time; and the lack of an accepted predictive capability for determining whether surface barriers can effectively isolate deep vadose zone contaminants. Activities designed to fill these data gaps need to have these outcomes: (1) common evaluation methodology that provides a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination; (2) deep vadose zone data that characterize the lithology, the spatial distribution of moisture and contaminants, the physical, chemical, and biological process that affect the mobility of each contaminant, and the impacts to the contaminants following placement of a surface barrier; (3) subsurface monitoring to provide subsurface characterization of initial conditions and changes that occur during and following remediation activities; and (4) field observations that span years to decades to validate the evaluation methodology. A set of six proposed tasks was identified to provide information needed to address the above outcomes. The proposed tasks are: (1) Evaluation Methodology - Develop common evaluation methodology that will provide a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination. (2) Case Studies - Conduct case studies to demonstrate the applicability ofthe common evaluation methodology and provide templates for subsequent use elsewhere. Three sites expected to have conditions that would yield valuable information and experience pertinent to deep vadose zone contamination were chosen to cover a range of conditions. The sites are BC Cribs and Trenches, U Plant Cribs, and the T Farm Interim Cover. (3) Subsurface Monitoring Technologies - Evaluate minimally invasive

  9. Discharge, water temperature, and water quality of Warm Mineral Springs, Sarasota County, Florida: A retrospective analysis

    Science.gov (United States)

    Metz, Patricia A.

    2016-09-27

    in inland areas, and upward flow toward the surface in coastal areas, such as at Warm Mineral Springs. Warm Mineral Springs is located in a discharge area. Changes in water use in the region have affected the potentiometric surface of the Upper Floridan aquifer. Historical increase in groundwater withdrawals resulted in a 10- to 20-foot regional decline in the potentiometric surface of the Upper Floridan aquifer by May 1975 relative to predevelopment levels and remained at approximately that level in May 2007 in the area of Warm Mineral Springs. Discharge measurements at Warm Mineral Springs (1942–2014) decreased from about 11–12 cubic feet per second in the 1940s to about 6–9 cubic feet per second in the 1970s and remained at about that level for the remainder of the period of record. Similarity of changes in regional water use and discharge at Warm Mineral Springs indicates that basin-scale changes to the groundwater system have affected discharge at Warm Mineral Springs. Water temperature had no significant trend in temperature over the period of record, 1943–2015, and outliers were identified in the data that might indicate inconsistencies in measurement methods or locations.Within the regional groundwater basin, Warm Mineral Springs is influenced by deep Upper Floridan aquifer flow paths that discharge toward the coast. Associated with these flow paths, the groundwater temperatures increase with depth and toward the coast. Multiple lines of evidence indicate that a source of warm groundwater to Warm Mineral Springs is likely the permeable zone of the Avon Park Formation within the Upper Floridan aquifer at a depth of about 1,400 to 1,600 feet, or deeper sources. The permeable zone contains saline groundwater with water temperatures of at least 95 degrees Fahrenheit.The water quality of Warm Mineral Springs, when compared with other springs in Florida had the highest temperature and the greatest mineralized content. Warm Mineral Springs water is

  10. Groundwater flow, nutrient, and stable isotope dynamics in the parafluvial-hyporheic zone of the regulated Lower Colorado River (Texas, USA) over the course of a small flood

    Science.gov (United States)

    Briody, Alyse C.; Cardenas, M. Bayani; Shuai, Pin; Knappett, Peter S. K.; Bennett, Philip C.

    2016-06-01

    Periodic releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River near Austin, Texas, USA. These daily pulses modulate fluid exchange and residence times in the hyporheic zone where biogeochemical reactions are typically pronounced. The effects of a small flood pulse under low-flow conditions on surface-water/groundwater exchange and biogeochemical processes were studied by monitoring and sampling from two dense transects of wells perpendicular to the river. The first transect recorded water levels and the second transect was used for water sample collection at three depths. Samples were collected from 12 wells every 2 h over a 24-h period which had a 16-cm flood pulse. Analyses included nutrients, carbon, major ions, and stable isotopes of water. The relatively small flood pulse did not cause significant mixing in the parafluvial zone. Under these conditions, the river and groundwater were decoupled, showed potentially minimal mixing at the interface, and did not exhibit any discernible denitrification of river-borne nitrate. The chemical patterns observed in the parafluvial zone can be explained by evaporation of groundwater with little mixing with river water. Thus, large pulses may be necessary in order for substantial hyporheic mixing and exchange to occur. The large regulated river under a low-flow and small flood pulse regime functioned mainly as a gaining river with little hydrologic connectivity beyond a narrow hyporheic zone.

  11. Effect of Groundwater Abstraction on Fen Ecosystems

    DEFF Research Database (Denmark)

    Johansen, Ole; Pedersen, Morten Lauge; Jensen, Jacob Birk

    2011-01-01

    within a distance of 1.5 km to a planned well field. In the river valley the interaction between groundwater and surface water is strongly affected by low permeable sediments. These sediments reduce the direct discharge to the river and have a large impact on the functioning and presence of the rich fen......Quantifying the effects of groundwater abstraction on fen ecosystems located in discharge areas can be complicated. The water level in fens is close to the terrain surface most of the year and it is controlled by a relatively constant groundwater exfiltration. It is difficult to measure...... the exfiltration fluxes and thus water level data is typically used to evaluate if the ecosystem is affected. The paper presents collected data and analysis from a case study, where the hydrological effect of groundwater abstraction on rich fens and springs in a Danish river valley has been studied. The natural...

  12. Pharmaceuticals as indictors of sewage-influenced groundwater

    Science.gov (United States)

    Müller, Beate; Scheytt, Traugott; Asbrand, Martin; de Casas, Andrea Mross

    2012-09-01

    A set of human pharmaceuticals enables identification of groundwater that is influenced by sewage and provides information on the time of recharge. As the consumption rates of the investigated pharmaceuticals have changed over time, so too has the composition of the sewage. At the study area, south of Berlin (Germany), irrigation was performed as a method of wastewater clean-up at sewage irrigation farms until the early 1990s. Today, treated wastewater is discharged into the surface-water-stream Nuthegraben. Groundwater and surface-water samples were analyzed for the pharmaceutical substances clofibric acid, bezafibrate, diclofenac, carbamazepine and primidone, the main ions and organic carbon. The pharmaceutical substances were detected at concentrations up to microgram-per-liter level in groundwater and surface-water samples from the Nuthegraben Lowland area and from the former irrigation farms. Concentrations detected in groundwater are generally much lower than in surface water and there is significant variation in the distribution of pharmaceutical concentrations in groundwater. Groundwater influenced by the irrigation of sewage water shows higher primidone and clofibric-acid concentrations. Groundwater influenced by recent discharge of treated sewage water into the surface water shows high carbamazepine concentrations while concentrations of primidone and clofibric acid are low.

  13. Vessel Sewage Discharges

    Science.gov (United States)

    Vessel sewage discharges are regulated under Section 312 of the Clean Water Act, which is jointly implemented by the EPA and Coast Guard. This homepage links to information on marine sanitation devices and no discharge zones.

  14. Approaches to hazard-oriented groundwater management based on multivariate analysis of groundwater quality

    OpenAIRE

    Page, Rebecca Mary

    2011-01-01

    Drinking water extracted near rivers in alluvial aquifers is subject to potential microbial contamination due to rapidly infiltrating river water during high discharge events. The heterogeneity of river-groundwater interaction and hydrogeological characteristics of the aquifer renders a complex pattern of groundwater quality. The quality of the extracted drinking water can be managed using decision support and HACCP (Hazard Analysis and Critical Control Point) systems, but the detection of po...

  15. Cross-site comparisons of concentration-discharge relationships reveal climate-driven chemostatic set points

    Science.gov (United States)

    Godsey, S.; Kirchner, J. W.

    2017-12-01

    Streamflow solute concentrations often vary predictably with flows, providing insight into processes controlling solute generation and export. Previous work by the authors showed that log-transformed concentration-discharge relationships of weathering-derived solutes in 59 headwater catchments had relatively low slopes, implying that these watersheds behaved almost like chemostats. That is, their rates of solute production and/or mobilization were nearly proportional to water fluxes, on both event and inter-annual time scales. Here we re-examine these findings using data from roughly 1000 catchments, ranging from ˜10 to >1,000,000 sq. km in drainage area, and spanning a wide range of lithologic and climatic settings.Concentration-discharge relationships among this much larger set of much larger catchments are broadly consistent with the chemostatic behavior described above. However, site-to-site variations in mean concentrations among these catchments are negatively correlated with long-term average precipitation and discharge, suggesting dilution of stream concentrations under long-term leaching of the critical zone. Thus, on event and inter-annual time scales, stream solute concentrations are chemostatically buffered by groundwater storage and fast chemical reactions (such as ion exchange), but on much longer time scales, the catchment's chemostatic "set point" is determined by climatically driven critical zone evolution. We present examples illustrating short-term and long-term controls on water quality consistent with variations in weather and climate, and discuss their implications.

  16. Groundwater simulation and management models for the upper Klamath Basin, Oregon and California

    Science.gov (United States)

    Gannett, Marshall W.; Wagner, Brian J.; Lite, Kenneth E.

    2012-01-01

    The upper Klamath Basin encompasses about 8,000 square miles, extending from the Cascade Range east to the Basin and Range geologic province in south-central Oregon and northern California. The geography of the basin is dominated by forested volcanic uplands separated by broad interior basins. Most of the interior basins once held broad shallow lakes and extensive wetlands, but most of these areas have been drained or otherwise modified and are now cultivated. Major parts of the interior basins are managed as wildlife refuges, primarily for migratory waterfowl. The permeable volcanic bedrock of the upper Klamath Basin hosts a substantial regional groundwater system that provides much of the flow to major streams and lakes that, in turn, provide water for wildlife habitat and are the principal source of irrigation water for the basin's agricultural economy. Increased allocation of surface water for endangered species in the past decade has resulted in increased groundwater pumping and growing interest in the use of groundwater for irrigation. The potential effects of increased groundwater pumping on groundwater levels and discharge to springs and streams has caused concern among groundwater users, wildlife and Tribal interests, and State and Federal resource managers. To provide information on the potential impacts of increased groundwater development and to aid in the development of a groundwater management strategy, the U.S. Geological Survey, in collaboration with the Oregon Water Resources Department and the Bureau of Reclamation, has developed a groundwater model that can simulate the response of the hydrologic system to these new stresses. The groundwater model was developed using the U.S. Geological Survey MODFLOW finite-difference modeling code and calibrated using inverse methods to transient conditions from 1989 through 2004 with quarterly stress periods. Groundwater recharge and agricultural and municipal pumping are specified for each stress period. All

  17. Predicting tile drainage discharge

    DEFF Research Database (Denmark)

    Iversen, Bo Vangsø; Kjærgaard, Charlotte; Petersen, Rasmus Jes

    used in the analysis. For the dynamic modelling, a simple linear reservoir model was used where different outlets in the model represented tile drain as well as groundwater discharge outputs. This modelling was based on daily measured tile drain discharge values. The statistical predictive model...... was based on a polynomial regression predicting yearly tile drain discharge values using site specific parameters such as soil type, catchment topography, etc. as predictors. Values of calibrated model parameters from the dynamic modelling were compared to the same site specific parameter as used...

  18. Nutrient inputs through submarine groundwater discharge in an embayment: A radon investigation in Daya Bay, China

    Science.gov (United States)

    Wang, Xuejing; Li, Hailong; Yang, Jinzhong; Zheng, Chunmiao; Zhang, Yan; An, An; Zhang, Meng; Xiao, Kai

    2017-08-01

    Daya Bay, a semi-closed bay of the South China Sea, is famous for its aquaculture, agriculture and tourism. Although routine environmental investigations in the bay have been conducted since the early 1980s, evaluations of submarine groundwater discharge (SGD), an important process in exchange between groundwater and coastal seawater, and its environmental impacts have never been reported. In this study, naturally occurring radon isotope (222Rn) was measured continuously at two sites (north-west and middle-east sites) and used as a tracer to estimate SGD and associated nutrient inputs into the bay. The SGD rates estimated based on the 222Rn mass balance model were, on average, 28.2 cm/d at north-west site and 30.9 cm/d at middle-east site. The large SGD rate at middle-east site may be due to the large tidal amplitude and the sandy component with high permeability in sediments. The SGD-driven nutrient fluxes, which were calculated as the product of SGD flux and the difference of nutrient concentrations between coastal groundwater and seawater, were 3.28 × 105 mol/d for dissolved nitrates (NO3-N), 5.84 × 103 mol/d for dissolved inorganic phosphorous (DIP), and 8.97 × 105 mol/d for reactive silicate (Si). These nutrient inputs are comparable to or even higher than those supplied by local rivers. In addition, these SGD-driven nutrients have a nitrogen-phosphorous ratio as high as ∼43, which may significantly affect the ecology of coastal waters and lead to frequent occurrence of harmful algal blooms.

  19. On elevated fluoride and boron concentrations in groundwaters associated with the Lake Saint-Martin impact structure, Manitoba

    International Nuclear Information System (INIS)

    Desbarats, Alexandre J.

    2009-01-01

    groundwaters. Thus, elevated F - and B concentrations observed in groundwaters of the Lake Saint-Martin area represent the geochemical signature of upwelling from a deep regional aquifer. The previously unsuspected discharge zone occurs within an isolated sub-crop of the aquifer formed as a result of structural uplift caused by the impact event.

  20. Contrasting patterns of groundwater evapotranspiration in grass and tree dominated riparian zones of a temperate agricultural catchment

    Science.gov (United States)

    Satchithanantham, Sanjayan; Wilson, Henry F.; Glenn, Aaron J.

    2017-06-01

    Consumptive use of shallow groundwater by phreatophytic vegetation is a significant part of the water budget in many regions, particularly in riparian areas. The influence of vegetation type on groundwater level fluctuations and evapotranspiration has rarely been quantified for contrasting plant communities concurrently although it has implications for downstream water yield and quality. Hourly groundwater evapotranspiration (ETG) rates were estimated for grass and tree riparian vegetation in southwestern Manitoba, Canada using two modified White methods. Groundwater table depth was monitored in four 21 m transects of five 3 m deep monitoring wells in the riparian zone of a stream reach including tree (Acer negundo; boxelder) and grass (Bromus inermis; smooth brome) dominated segments. The average depths to the groundwater table from the surface were 1.4 m and 1 m for the tree and grass segments, respectively, over the two-year study. During rain free periods of the growing season ETG was estimated for a total of 70 days in 2014 and 79 days in 2015 when diurnal fluctuations were present in groundwater level. Diurnal groundwater level fluctuations were observed during dry periods under both segments, however, ETG was significantly higher (p < 0.001) under trees compared to grass cover in 2014 (a wet year with 72% higher than normal growing season precipitation) and 2015 (a drier year with 15% higher than normal growing season precipitation). The two methods used to estimate ETG produced similar daily and seasonal values for the two segments. In 2014, total ETG was approximately 50% (148 mm) and 100% (282-285 mm) of reference evapotranspiration (ETref, 281 mm) for the grass and tree segments, respectively. In 2015, total ETG was approximately 40% (106-127 mm) and 120% (369-374 mm) of ETref (307 mm) for the grass and tree segments, respectively. Results from the study show the tree dominated portions of the stream reach consumed approximately 2.4 ML ha-1 yr-1 more

  1. Is nutrient contamination of groundwater causing eutrophication of groundwater-fed meadows?

    NARCIS (Netherlands)

    Pieterse, N.M.; Olde Venterink, H.; Schot, P.P.; Verkroost, A.W.M.

    2005-01-01

    There is an ongoing debate as to whether nutrient contamination of groundwater under agricultural fields may cause nutrient-enrichment and subsequent eutrophication in discharge areas. Often, there is only circumstantial evidence to support this supposition (proximity of agricultural fields,

  2. Physically-Based Assessment of Intrinsic Groundwater Resource Vulnerability in AN Urban Catchment

    Science.gov (United States)

    Graf, T.; Therrien, R.; Lemieux, J.; Molson, J. W.

    2013-12-01

    Several methods exist to assess intrinsic groundwater (re)source vulnerability for the purpose of sustainable groundwater management and protection. However, several methods are empirical and limited in their application to specific types of hydrogeological systems. Recent studies suggest that a physically-based approach could be better suited to provide a general, conceptual and operational basis for groundwater vulnerability assessment. A novel method for physically-based assessment of intrinsic aquifer vulnerability is currently under development and tested to explore the potential of an integrated modelling approach, combining groundwater travel time probability and future scenario modelling in conjunction with the fully integrated HydroGeoSphere model. To determine the intrinsic groundwater resource vulnerability, a fully coupled 2D surface water and 3D variably-saturated groundwater flow model in conjunction with a 3D geological model (GoCAD) has been developed for a case study of the Rivière Saint-Charles (Québec/Canada) regional scale, urban watershed. The model has been calibrated under transient flow conditions for the hydrogeological, variably-saturated subsurface system, coupled with the overland flow zone by taking into account monthly recharge variation and evapotranspiration. To better determine the intrinsic groundwater vulnerability, two independent approaches are considered and subsequently combined in a simple, holistic multi-criteria-decision analyse. Most data for the model comes from an extensive hydrogeological database for the watershed, whereas data gaps have been complemented via field tests and literature review. The subsurface is composed of nine hydrofacies, ranging from unconsolidated fluvioglacial sediments to low permeability bedrock. The overland flow zone is divided into five major zones (Urban, Rural, Forest, River and Lake) to simulate the differences in landuse, whereas the unsaturated zone is represented via the model

  3. The Vertical Flux Method (VFM) for regional estimates of temporally and spatially varying nitrate fluxes in unsaturated zone and groundwater

    Science.gov (United States)

    Green, C. T.; Liao, L.; Nolan, B. T.; Juckem, P. F.; Ransom, K.; Harter, T.

    2017-12-01

    Process-based modeling of regional NO3- fluxes to groundwater is critical for understanding and managing water quality. Measurements of atmospheric tracers of groundwater age and dissolved-gas indicators of denitrification progress have potential to improve estimates of NO3- reactive transport processes. This presentation introduces a regionalized version of a vertical flux method (VFM) that uses simple mathematical estimates of advective-dispersive reactive transport with regularization procedures to calibrate estimated tracer concentrations to observed equivalents. The calibrated VFM provides estimates of chemical, hydrologic and reaction parameters (source concentration time series, recharge, effective porosity, dispersivity, reaction rate coefficients) and derived values (e.g. mean unsaturated zone travel time, eventual depth of the NO3- front) for individual wells. Statistical learning methods are used to extrapolate parameters and predictions from wells to continuous areas. The regional VFM was applied to 473 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3-, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and triogiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with independent estimates. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams (2) fractions of N leached to groundwater have changed over time, with increasing fractions from manure and decreasing fractions from fertilizer, and (3) under current practices and conditions, 60% of the shallow aquifer will eventually be affected by NO3- contamination. Based on GIS coverages of variables related to soils, land use and hydrology, the VFM results at individual wells were extrapolated regionally using boosted regression trees, a statistical learning approach, that related

  4. An automated method to build groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs

    DEFF Research Database (Denmark)

    Marker, Pernille Aabye; Foged, N.; He, X.

    2015-01-01

    of electrical resistivity and clay fraction are classified into hydrostratigraphic zones using k-means clustering. Hydraulic conductivity values of the zones are estimated by hydrological calibration using hydraulic head and stream discharge observations. The method is applied to a Danish case study......Large-scale integrated hydrological models are important decision support tools in water resources management. The largest source of uncertainty in such models is the hydrostratigraphic model. Geometry and configuration of hydrogeological units are often poorly determined from hydrogeological data......-scale groundwater models. We present a novel method to automatically integrate large AEM data-sets and lithological information into large-scale hydrological models. Clay-fraction maps are produced by translating geophysical resistivity into clay-fraction values using lithological borehole information. Voxel models...

  5. Investigating the spatio-temporal variability in groundwater and surface water interactions: a multi-technique approach

    Science.gov (United States)

    Unland, N. P.; Cartwright, I.; Andersen, M. S.; Rau, G. C.; Reed, J.; Gilfedder, B. S.; Atkinson, A. P.; Hofmann, H.

    2013-09-01

    The interaction between groundwater and surface water along the Tambo and Nicholson rivers, southeast Australia, was investigated using 222Rn, Cl, differential flow gauging, head gradients, electrical conductivity (EC) and temperature profiles. Head gradients, temperature profiles, Cl concentrations and 222Rn activities all indicate higher groundwater fluxes to the Tambo River in areas of increased topographic variation where the potential to form large groundwater-surface water gradients is greater. Groundwater discharge to the Tambo River calculated by Cl mass balance was significantly lower (1.48 × 104 to 1.41 × 103 m3 day-1) than discharge estimated by 222Rn mass balance (5.35 × 105 to 9.56 × 103 m3 day-1) and differential flow gauging (5.41 × 105 to 6.30 × 103 m3 day-1) due to bank return waters. While groundwater sampling from the bank of the Tambo River was intended to account for changes in groundwater chemistry associated with bank infiltration, variations in bank infiltration between sample sites remain unaccounted for, limiting the use of Cl as an effective tracer. Groundwater discharge to both the Tambo and Nicholson rivers was the highest under high-flow conditions in the days to weeks following significant rainfall, indicating that the rivers are well connected to a groundwater system that is responsive to rainfall. Groundwater constituted the lowest proportion of river discharge during times of increased rainfall that followed dry periods, while groundwater constituted the highest proportion of river discharge under baseflow conditions (21.4% of the Tambo in April 2010 and 18.9% of the Nicholson in September 2010).

  6. Investigating the spatio-temporal variability in groundwater and surface water interactions: a multi-technical approach

    Science.gov (United States)

    Unland, N. P.; Cartwright, I.; Andersen, M. S.; Rau, G. C.; Reed, J.; Gilfedder, B. S.; Atkinson, A. P.; Hofmann, H.

    2013-03-01

    The interaction between groundwater and surface water along the Tambo and Nicholson Rivers, southeast Australia, was investigated using 222Rn, Cl, differential flow gauging, head gradients, electrical conductivity (EC) and temperature profiling. Head gradients, temperature profiles, Cl concentrations and 222Rn activities all indicate higher groundwater fluxes to the Tambo River in areas of increased topographic variation where the potential to form large groundwater-surface water gradients is greater. Groundwater discharge to the Tambo River calculated by Cl mass balance was significantly lower (1.48 × 104 to 1.41 × 103 m3 day-1) than discharge estimated by 222Rn mass balance (5.35 × 105 to 9.56 × 103 m3 day-1) and differential flow gauging (5.41 × 105 to 6.30 × 103 m3 day-1). While groundwater sampling from the bank of the Tambo River was intended to account for the variability in groundwater chemistry associated with river-bank interaction, the spatial variability under which these interactions occurs remained unaccounted for, limiting the use of Cl as an effective tracer. Groundwater discharge to both the Tambo and Nicholson Rivers was the highest under high flow conditions in the days to weeks following significant rainfall, indicating that the rivers are well connected to a groundwater system that is responsive to rainfall. Groundwater constituted the lowest proportion of river discharge during times of increased rainfall that followed dry periods, while groundwater constituted the highest proportion of river discharge under baseflow conditions (21.4% of the Tambo in April 2010 and 18.9% of the Nicholson in September 2010).

  7. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2009–11

    Science.gov (United States)

    Davis, Linda C.; Bartholomay, Roy C.; Rattray, Gordon W.

    2013-01-01

    Since 1952, wastewater discharged to infiltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer, multilevel monitoring system (MLMS), and perched groundwater wells in the USGS groundwater monitoring networks during 2009–11. Water in the ESRP aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March–May 2009 to March–May 2011, water levels in wells generally declined in the northern part of the INL. Water levels generally rose in the central and eastern parts of the INL. Detectable concentrations of radiochemical constituents in water samples from aquifer wells or MLMS equipped wells in the ESRP aquifer at the INL generally decreased or remained constant during 2009–11. Decreases in concentrations were attributed to radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In 2011, concentrations of tritium in groundwater from 50 of 127 aquifer wells were greater than or equal to the reporting level and ranged from 200±60 to 7,000±260 picocuries per liter. Tritium concentrations from one or more discrete zones from four wells equipped with MLMS were greater than or

  8. Groundwater geochemistry of Isla de Mona, Puerto Rico

    Science.gov (United States)

    Wicks, C.M.; Troester, J.W.

    1998-01-01

    In this study, we explore the differences between the hydrogeochemical processes observed in a setting that is open to input from the land surface and in a setting that is closed with respect to input from the land surface. The closed setting was a water-filled passage in a cave. Samples of groundwater and of a solid that appeared to be suspended in the relatively fresh region of saline-freshwater mixing zone were collected. The solid was determined to be aragonite. Based on the analyses of the composition and saturation state of the groundwater, the mixing of fresh and saline water and precipitation of aragonite are the controlling geochemical processes in this mixing zone. We found no evidence of sulfate reduction. Thus, this mixing zone is similar to that observed in Caleta Xel Ha, Quintana Roo, also a system that is closed with respect to input from the land surface. The open setting was an unconfined aquifer underlying the coastal plain along which four hand-dug wells are located. Two wells are at the downgradient ends of inferred flowpaths and one is along a flowpath. The composition of the groundwater in the downgradient wells is sulfide-rich and brackish. In contrast, at the well located along a flow line, the groundwater is oxygenated and brackish. All groundwater is oversaturated with respect to calcite, aragonite, and dolomite. The composition is attributed to mixing of fresh and saline groundwater, CO2 outgassing, and sulfate reduction. This mixing zone is geochemically similar to that observed in blue holes and cenotes.

  9. Groundwater management in coastal zones and on islands in crystalline bedrock areas of Sweden

    Science.gov (United States)

    Banzhaf, Stefan; Ekström, Linda Louise; Ljungkvist, Andreas; Granberg, Maria; Merisalu, Johanna; Pokorny, Sebastian; Barthel, Roland

    2017-04-01

    Groundwater problems in coastal regions are usually not associated with the sparsely populated shores of water-rich Scandinavia. However, the combination of geology and the specific conditions of water usage create challenges even there. Along the Swedish coast, much of the groundwater occurs in fractured bedrock or in relatively small, shallow, and isolated quaternary sedimentary formations. Those aquifers cannot provide water to larger permanent settlements and are thus neither useful for the public water supply nor have previously received much attention from water authorities or researchers. However, of the 450,000 private wells in Sweden, many are located in coastal areas or on islands, creating pressure on groundwater resources in summer months as periods with low or no natural groundwater recharge. In view of the increasing water demand, as well as the awareness of environmental impacts and climate change, Swedish municipalities now recognize groundwater usage in coastal areas is a major concern. Here, we present the results of an investigation on the "Koster" archipelago which forms a microcosm of coastal zone groundwater problems in Sweden. Koster's geology is dominated by fractured, crystalline bedrock with occasional shallow quaternary deposits in between. With around 300 permanent residents, and up to 6,000 summer guests in peak holiday season, the existing water supply based on 800 private wells is at its limit. Water availability forms an obstacle to future development and the current mode of operation is unsustainable. Therefore, the municipality must decide how to secure future water supply which involves complex legal problems, as well as social, cultural, economic, hydrogeological, and environmental questions. As there are no observation wells on the islands, we used approximately 220 of the 800 wells (65% dug and shallow, 35% drilled and up to 120m deep) for our monitoring. Additionally, water samples were collected by property owners on four

  10. Interactions of artificial lakes with groundwater applying an integrated MODFLOW solution

    Science.gov (United States)

    El-Zehairy, A. A.; Lubczynski, M. W.; Gurwin, J.

    2018-02-01

    Artificial lakes (reservoirs) are regulated water bodies with large stage fluctuations and different interactions with groundwater compared with natural lakes. A novel modelling study characterizing the dynamics of these interactions is presented for artificial Lake Turawa, Poland. The integrated surface-water/groundwater MODFLOW-NWT transient model, applying SFR7, UZF1 and LAK7 packages to account for variably-saturated flow and temporally variable lake area extent and volume, was calibrated throughout 5 years (1-year warm-up, 4-year simulation), applying daily lake stages, heads and discharges as control variables. The water budget results showed that, in contrast to natural lakes, the reservoir interactions with groundwater were primarily dependent on the balance between lake inflow and regulated outflow, while influences of precipitation and evapotranspiration played secondary roles. Also, the spatio-temporal lakebed-seepage pattern was different compared with natural lakes. The large and fast-changing stages had large influence on lakebed-seepage and water table depth and also influenced groundwater evapotranspiration and groundwater exfiltration, as their maxima coincided not with rainfall peaks but with highest stages. The mean lakebed-seepage ranged from 0.6 mm day-1 during lowest stages (lake-water gain) to 1.0 mm day-1 during highest stages (lake-water loss) with largest losses up to 4.6 mm day-1 in the peripheral zone. The lakebed-seepage of this study was generally low because of low lakebed leakance (0.0007-0.0015 day-1) and prevailing upward regional groundwater flow moderating it. This study discloses the complexity of artificial lake interactions with groundwater, while the proposed front-line modelling methodology can be applied to any reservoir, and also to natural lake interactions with groundwater.

  11. Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence

    Science.gov (United States)

    Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman

    2017-05-01

    Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.

  12. Groundwater balance in the Khor Arbaat basin, Red Sea State, eastern Sudan

    Science.gov (United States)

    Elsheikh, Abdalla E. M.; Zeielabdein, Khalid A. Elsayed; Babikir, Ibrahim A. A.

    2009-12-01

    The Khor Arbaat basin is the main source of potable water supply for the more than 750,000 inhabitants of Port Sudan, eastern Sudan. The variation in hydraulic conductivity and storage capacity is due to the heterogeneity of the sediments, which range from clay and silt to gravely sand and boulders. The water table rises during the summer and winter rainy seasons; it reaches its lowest level in the dry season. The storage capacity of the Khor Arbaat aquifer is estimated to be 21.75 × 106 m3. The annual recharge through the infiltration of flood water is about 1.93 × 106 m3. The groundwater recharge, calculated as underground inflow at the ‘upper gate’, is 1.33 × 105 m3/year. The total annual groundwater recharge is 2.06 × 106 m3. The annual discharge through underground outflow at the ‘lower gate’ (through which groundwater flows onto the coastal plain) is 3.29 × 105 m3/year. Groundwater discharge due to pumping from Khor Arbaat basin is 4.38 × 106 m3/year on average. The total annual groundwater discharge is about 4.7 × 106 m3. A deficit of 2.6 × 106 m3/year is calculated. Although the total annual discharge is twice the estimated annual recharge, additional groundwater flow from the fractured basement probably balances the annual groundwater budget since no decline is observed in the piezometric levels.

  13. Tool for assessment of process importance at the groundwater/surface water interface.

    Science.gov (United States)

    Palakodeti, Ravi C; LeBoeuf, Eugene J; Clarke, James H

    2009-10-01

    The groundwater/surface water interface (GWSWI) represents an important transition zone between groundwater and surface water environments that potentially changes the nature and flux of contaminants exchanged between the two systems. Identifying dominant and rate-limiting contaminant transformation processes is critically important for estimating contaminant fluxes and compositional changes across the GWSWI. A new, user-friendly, spreadsheet- and Visual Basic-based analytical screening tool that assists in evaluating the dominance of controlling kinetic processes across the GWSWI is presented. Based on contaminant properties, first-order processes that may play a significant role in solute transport/transformation are evaluated in terms of a ratio of process importance (P(i)) that relates the process rate to the rate of fluid transfer. Besides possessing several useful compilations of contaminant and process data, the screening tool also includes 1-D analytical models that assist users in evaluating contaminant transport across the GWSWI. The tool currently applies to 29 organics and 10 inorganics of interest within the context of the GWSWI. Application of the new screening tool is demonstrated through an evaluation of natural attenuation at a site with trichloroethylene and 1,1,2,2-tetrachloroethane contaminated groundwater discharging into wetlands.

  14. Investigation of Submarine Groundwater Discharge along the Tidal Reach of the Caloosahatchee River, Southwest Florida

    Science.gov (United States)

    Reich, Christopher D.

    2010-01-01

    The tidal reach of the Caloosahatchee River is an estuarine habitat that supports a diverse assemblage of biota including aquatic vegetation, shellfish, and finfish. The system has been highly modified by anthropogenic activity over the last 150 years (South Florida Water Management District (SFWMD), 2009). For example, the river was channelized and connected to Lake Okeechobee in 1881 (via canal C-43). Subsequently, three control structures (spillway and locks) were installed for flood protection (S-77 and S-78 in the 1930s) and for saltwater-intrusion prevention (S-79, W.P. Franklin Lock and Dam in 1966). The emplacement of these structures and their impact to natural water flow have been blamed for water-quality problems downstream within the estuary (Flaig and Capece, 1998; SFWMD, 2009). Doering and Chamberlain (1999) found that the operation of these control structures caused large and often rapid variations in salinity during various times of the year. Variable salinities could have deleterious impacts on the health of organisms in the Caloosahatchee River estuary. Flow restriction along the Caloosahatchee has also been linked to surface-water eutrophication problems (Doering and Chamberlain, 1999; SFWMD, 2009) and bottom-sediment contamination (Fernandez and others, 1999). Sources of nutrients (nitrogen and phosphorous) that cause eutrophication are primarily from residential sources and agriculture, though wastewater-treatment-plant discharges can also play a major role (SFWMD, 2009). The pathway for many of these nutrients is by land runoff and direct discharge from stormwater drains. An often overlooked source of nutrients and other chemical constituents is from submarine groundwater discharge (SGD). SGD can be either a diffuse or point source (for example, submarine springs) of nutrients and other chemical constituents to coastal waters (Valiela and others, 1990; Swarzenski and others, 2001; 2006; 2007; 2008). SGD can be composed of either fresh or

  15. Evidence for Submarine Groundwater Discharge into the Black Sea—Investigation of Two Dissimilar Geographical Settings

    Directory of Open Access Journals (Sweden)

    Michael Schubert

    2017-06-01

    Full Text Available The sustainable management of coastal marine environments requires a comprehensive understanding of the processes related to material transport from land to coastal sea. Besides surface water discharge (e.g., rivers and storm drains, submarine groundwater discharge (SGD plays a key role since it provides a major pathway for solute and particulate transport of contaminants and nutrients, both having considerable potential to cause deterioration of the overall ecological status of coastal environments. The aim of the presented study was the investigation of SGD in two exemplary and dissimilar areas at the Black Sea coast, one in the west (Romania and one in the east (Georgia. The approach included the assessment of the geological/geographical setting regarding the potential of SGD occurrence, the use of environmental tracer data (222Rn, δ18O, δ2H, salinity, and the evaluation of sea surface temperature patterns near the coastline using satellite data. Besides the individual site specific results, the study revealed that a combined evaluation of tracer data and satellite based information allows SGD localization with satisfying precision. A downscaling approach starting with large scale satellite data is generally recommended, continuing with medium scale tracer patterns and ending with local spot sampling.

  16. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    Science.gov (United States)

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  17. Influence of seasonal variations in sea level on the salinity regime of a coastal groundwater-fed wetland.

    Science.gov (United States)

    Wood, Cameron; Harrington, Glenn A

    2015-01-01

    Seasonal variations in sea level are often neglected in studies of coastal aquifers; however, they may have important controls on processes such as submarine groundwater discharge, sea water intrusion, and groundwater discharge to coastal springs and wetlands. We investigated seasonal variations in salinity in a groundwater-fed coastal wetland (the RAMSAR listed Piccaninnie Ponds in South Australia) and found that salinity peaked during winter, coincident with seasonal sea level peaks. Closer examination of salinity variations revealed a relationship between changes in sea level and changes in salinity, indicating that sea level-driven movement of the fresh water-sea water interface influences the salinity of discharging groundwater in the wetland. Moreover, the seasonal control of sea level on wetland salinity seems to override the influence of seasonal recharge. A two-dimensional variable density model helped validate this conceptual model of coastal groundwater discharge by showing that fluctuations in groundwater salinity in a coastal aquifer can be driven by a seasonal coastal boundary condition in spite of seasonal recharge/discharge dynamics. Because seasonal variations in sea level and coastal wetlands are ubiquitous throughout the world, these findings have important implications for monitoring and management of coastal groundwater-dependent ecosystems. © 2014, National Ground Water Association.

  18. Automatic generation of groundwater model hydrostratigraphy from AEM resistivity and boreholes

    DEFF Research Database (Denmark)

    Marker, Pernille Aabye; Foged, N.; Christiansen, A. V.

    2014-01-01

    distribution govern groundwater flow. The coupling between hydrological and geophysical parameters is managed using a translator function with spatially variable parameters followed by a 3D zonation. The translator function translates geophysical resistivities into clay fractions and is calibrated...... with observed lithological data. Principal components are computed for the translated clay fractions and geophysical resistivities. Zonation is carried out by k-means clustering on the principal components. The hydraulic parameters of the zones are determined in a hydrological model calibration using head...... and discharge observations. The method was applied to field data collected at a Danish field site. Our results show that a competitive hydrological model can be constructed from the AEM dataset using the automatic procedure outlined above....

  19. Hydrogeologic framework and selected components of the groundwater budget for the upper Umatilla River Basin, Oregon

    Science.gov (United States)

    Herrera, Nora B.; Ely, Kate; Mehta, Smita; Stonewall, Adam J.; Risley, John C.; Hinkle, Stephen R.; Conlon, Terrence D.

    2017-05-31

    Executive SummaryThis report presents a summary of the hydrogeology of the upper Umatilla River Basin, Oregon, based on characterization of the hydrogeologic framework, horizontal and vertical directions of groundwater flow, trends in groundwater levels, and components of the groundwater budget. The conceptual model of the groundwater flow system integrates available data and information on the groundwater resources of the upper Umatilla River Basin and provides insights regarding key hydrologic processes, such as the interaction between the groundwater and surface water systems and the hydrologic budget.The conceptual groundwater model developed for the study area divides the groundwater flow system into five hydrogeologic units: a sedimentary unit, three Columbia River basalt units, and a basement rock unit. The sedimentary unit, which is not widely used as a source of groundwater in the upper basin, is present primarily in the lowlands and consists of conglomerate, loess, silt and sand deposits, and recent alluvium. The Columbia River Basalt Group is a series of Miocene flood basalts that are present throughout the study area. The basalt is uplifted in the southeastern half of the study area, and either underlies the sedimentary unit, or is exposed at the surface. The interflow zones of the flood basalts are the primary aquifers in the study area. Beneath the flood basalts are basement rocks composed of Paleogene to Pre-Tertiary sedimentary, volcanic, igneous, and metamorphic rocks that are not used as a source of groundwater in the upper Umatilla River Basin.The major components of the groundwater budget in the upper Umatilla River Basin are (1) groundwater recharge, (2) groundwater discharge to surface water and wells, (3) subsurface flow into and out of the basin, and (4) changes in groundwater storage.Recharge from precipitation occurs primarily in the upland areas of the Blue Mountains. Mean annual recharge from infiltration of precipitation for the upper

  20. Discharge of 210Po and 210Pb in coastal groundwater to the ocean

    International Nuclear Information System (INIS)

    Kim, Intae; Kim, Tae-hoon; Kim, Guebuem

    2013-01-01

    The activities of 210 Po and 210 Pb were measured for the truly dissolved (<10 kDa) and colloidal (10 kDa - 0.45 ìm) phases in coastal ground water in 2010 and 2011. The sampling sites include the coast of a large tidal flat (Hampyeong Bay) and a volcanic island, Jeju, Korea, where submarine groundwater discharge (SGD) were reported to be higher than typical continental margins. The total dissolved fraction was separated into the colloidal and truly dissolved fractions using a tangential flow filtration (TFF) system (PLCGC Pellicon). The total 210 Po and 210 Pb activities in ground water were 1.0 - 18.2 dpm/100L (9.7±7.6 dpm/100L) an 2.9 - 29.1 dpm/100L (16.8±10.7 dpm/100L) in the Hampyeong Bay and Jeju Island samples, respectively. The total 210 Po and 210 Pb activities in groundwater were similar to or even slightly lower than those in the typical seawater. These lower activities seem to be due to the rapid adsorption of Po and Pb on to particles in the subterranean estuary. The proportions of the truly dissolved and colloidal phases were, respectively, 73±5% and 27±5% for 210 Po, and 60±5% and 40±5% for 210 Pb. This result is consistent with the earlier study that more than half of the some dissolved trace metals in coastal ground water are in the colloidal form. Thus, our result implies that the colloidal forms are important in controlling the behaviour of Po, Pb, and other trace metals in the subterranean estuary and SGD-associated fluxes to the ocean. (author)

  1. The role of bedrock groundwater in rainfall-runoff response at hillslope and catchment scales

    Science.gov (United States)

    Gabrielli, C. P.; McDonnell, J. J.; Jarvis, W. T.

    2012-07-01

    SummaryBedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Direct hydrometric measurements have been limited due to the logistical challenges associated with drilling through hard rock in steep, remote and often roadless terrain. We used a new portable bedrock drilling system to explore bedrock groundwater dynamics aimed at quantifying bedrock groundwater contributions to hillslope flow and catchment runoff. We present results from the Maimai M8 research catchment in New Zealand and Watershed 10 (WS10) at the H.J. Andrews Experimental Forest in Oregon, USA. Analysis of bedrock groundwater at Maimai, through a range of flow conditions, revealed that the bedrock water table remained below the soil-bedrock interface, indicating that the bedrock aquifer has minimal direct contributions to event-based hillslope runoff. However, the bedrock water table did respond significantly to storm events indicating that there is a direct connection between hillslope processes and the underlying bedrock aquifer. WS10 groundwater dynamics were dominated by fracture flow. A highly fractured and transmissive zone within the upper one meter of bedrock conducted rapid lateral subsurface stormflow and lateral discharge. The interaction of subsurface stormflow with bedrock storage directly influenced the measured hillslope response, solute transport and computed mean residence time. This research reveals bedrock groundwater to be an extremely dynamic component of the hillslope hydrological system and our comparative analysis illustrates the potential range of hydrological and geological controls on runoff generation in headwater catchments.

  2. Approaches to groundwater travel time

    International Nuclear Information System (INIS)

    Kaplan, P.; Klavetter, E.; Peters, R.

    1989-01-01

    One of the objectives of performance assessment for the Yucca Mountain Project is to estimate the groundwater travel time at Yucca Mountain, Nevada, to determine whether the site complies with the criteria specified in the Code of Federal Regulations, Title 10 CFR 60.113 (a). The numerical standard for performance in these criteria is based on the groundwater travel time along the fastest path of likely radionuclide transport from the disturbed zone to the accessible environment. The concept of groundwater travel time as proposed in the regulations, does not have a unique mathematical statement. The purpose of this paper is to discuss the ambiguities associated with the regulatory specification of groundwater travel time, two different interpretations of groundwater travel time, and the effect of the two interpretations on estimates of the groundwater travel time

  3. Evaluation of ground-water flow and solute transport in the Lompoc area, Santa Barbara County, California

    Science.gov (United States)

    Bright, Daniel J.; Nash, David B.; Martin, Peter

    1997-01-01

    Ground-water quality in the Lompoc area, especially in the Lompoc plain, is only marginally acceptable for most uses. Demand for ground water has increased for municipal use since the late 1950's and has continued to be high for irrigation on the Lompoc plain, the principal agricultural area in the Santa Ynez River basin. As use has increased, the quality of ground water has deteriorated in some areas of the Lompoc plain. The dissolved-solids concentration in the main zone of the upper aquifer beneath most of the central and western plains has increased from less than 1,000 milligrams per liter in the 1940's to greater than 2,000 milligrams per liter in the 1960's. Dissolved- solids concentration have remained relatively constant since the 1960's. A three-dimensional finite-difference model was used to simulate ground-water flow in the Lompoc area and a two-dimensional finite-element model was used to simulate solute transport to gain a better understanding of the ground-water system and to evaluate the effects of proposed management plans for the ground-water basin. The aquifer system was simulated in the flow model as four horizontal layers. In the area of the Lompoc plain, the layers represent the shallow, middle, and main zones of the upper aquifer, and the lower aquifer. For the Lompoc upland and Lompoc terrace, the four layers represent the lower aquifer. The solute transport model was used to simulate dissolved-solids transport in the main zone of the upper aquifer beneath the Lompoc plain. The flow and solute-transport models were calibrated to transient conditions for 1941-88. A steady-state simulation was made to provide initial conditions for the transient-state simulation by using long-term average (1941-88) recharge rates. Model- simulated hydraulic heads generally were within 5 feet of measured heads in the main zone for transient conditions. Model-simulated dissolved- solids concentrations for the main zone generally differed less than 200milligrams

  4. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    International Nuclear Information System (INIS)

    Jaquet, O.; Namar, R.; Jansson, P.

    2010-10-01

    The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the

  5. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, O.; Namar, R. (In2Earth Modelling Ltd (Switzerland)); Jansson, P. (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2010-10-15

    The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the

  6. A/M Area Vadose Zone Monitoring Plan (U)

    International Nuclear Information System (INIS)

    Kupar, J.; Jarosch, T.R.; Jackson, D.G. Jr.; Looney, B.B.; Jerome, K.M.; Riha, B.D.; Rossabi, J.; Van Pelt, R.S.

    1998-03-01

    Characterization and monitoring data from implementation and the first two and one half years of vadose zone remediation operations indicate that this activity has substantially improved the performance of the A/M Area Groundwater Corrective Action Program. During this period, vadose zone remediation removed approximately 225, 000 lbs (100,000 Kg) of chlorinated solvents (CVOCs) from the subsurface. Further, vadose zone remediation system operation increased the overall CVOC removal rate of the A/M Area Groundwater Corrective Action by 300% to 500% during this period versus the groundwater pump and treat system along. Various support activities have been performed to support operation and documentation of performance of the vadose zone remediation system. These activities address performance of existing systems (contaminant distributions, zone of influence, and process monitoring data), evaluation of suspect sources, evaluation of alternative/enhancement technologies, and initial development of remediation goals. In particular, the most recent A/M vadose zone remediation support activities (described in WSRC-RP-97-109) were completed and the results provide key documentation about system performance

  7. Groundwater-surface water interaction

    International Nuclear Information System (INIS)

    White, P.A.; Clausen, B.; Hunt, B.; Cameron, S.; Weir, J.J.

    2001-01-01

    This chapter discusses natural and modified interactions between groundwater and surface water. Theory on recharge to groundwater from rivers is introduced, and the relative importance of groundwater recharge from rivers is illustrated with an example from the Ngaruroro River, Hawke's Bay. Some of the techniques used to identify and measure recharge to groundwater from gravel-bed rivers will be outlined, with examples from the Ngaruroro River, where the recharge reach is relatively well defined, and from the Rakaia River, where it is poorly defined. Groundwater recharged from rivers can have characteristic chemical and isotopic signatures, as shown by Waimakariri River water in the Christchurch-West Melton groundwater system. The incorporation of groundwater-river interaction in a regional groundwater flow model is outlined for the Waimea Plains, and relationships between river scour and groundwater recharge are examined for the Waimakariri River. Springs are the result of natural discharge from groundwater systems and are important water sources. The interactions between groundwater systems, springs, and river flow for the Avon River in New Zealand will be outlined. The theory of depletion of stream flow by groundwater pumpage will be introduced with a case study from Canterbury, and salt-water intrusion into groundwater systems with examples from Nelson and Christchurch. The theory of artificial recharge to groundwater systems is introduced with a case study from Hawke's Bay. Wetlands are important to flora, and the relationship of the wetland environment to groundwater hydrology will be discussed, with an example from the South Taupo wetland. (author). 56 refs., 25 figs., 3 tabs

  8. Simulation of groundwater flow and interaction of groundwater and surface water on the Lac du Flambeau Reservation, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Fienen, Michael N.; Hunt, Randall J.

    2014-01-01

    The Lac du Flambeau Band of Lake Superior Chippewa and Indian Health Service are interested in improving the understanding of groundwater flow and groundwater/surface-water interaction on the Lac du Flambeau Reservation (Reservation) in southwest Vilas County and southeast Iron County, Wisconsin, with particular interest in an understanding of the potential for contamination of groundwater supply wells and the fate of wastewater that is infiltrated from treatment lagoons on the Reservation. This report describes the construction, calibration, and application of a regional groundwater flow model used to simulate the shallow groundwater flow system of the Reservation and water-quality results for groundwater and surface-water samples collected near a system of waste-water-treatment lagoons. Groundwater flows through a permeable glacial aquifer that ranges in thickness from 60 to more than 200 feet (ft). Seepage and drainage lakes are common in the area and influence groundwater flow patterns on the Reservation. A two-dimensional, steady-state analytic element groundwater flow model was constructed using the program GFLOW. The model was calibrated by matching target water levels and stream base flows through the use of the parameter-estimation program, PEST. Simulated results illustrate that groundwater flow within most of the Reservation is toward the Bear River and the chain of lakes that feed the Bear River. Results of analyses of groundwater and surface-water samples collected downgradient from the wastewater infiltration lagoons show elevated levels of ammonia and dissolved phosphorus. In addition, wastewater indicator chemicals detected in three downgradient wells and a small downgradient stream indicate that infiltrated wastewater is moving southwest of the lagoons toward Moss Lake. Potential effects of extended wet and dry periods (within historical ranges) were evaluated by adjusting precipitation and groundwater recharge in the model and comparing the

  9. Improving catchment discharge predictions by inferring flow route contributions from a nested-scale monitoring and model setup

    Science.gov (United States)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.; van Geer, F. C.; Torfs, P. J. J. F.; de Louw, P. G. B.

    2011-03-01

    Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for the estimation of flow route volumes and for predictions of catchment discharge. In order to relate field-site measurements to the catchment-scale an upscaling approach is introduced that assumes that scale differences in flow route fluxes originate from differences in the relationship between groundwater storage and the spatial structure of the groundwater table. This relationship is characterized by the Groundwater Depth Distribution (GDD) curve that relates spatial variation in groundwater depths to the average groundwater depth. The GDD-curve was measured for a single field site (0.009 km2) and simple process descriptions were applied to relate groundwater levels to flow route discharges. This parsimonious model could accurately describe observed storage, tube drain discharge, overland flow and groundwater flow simultaneously with Nash-Sutcliff coefficients exceeding 0.8. A probabilistic Monte Carlo approach was applied to upscale field-site measurements to catchment scales by inferring scale-specific GDD-curves from the hydrographs of two nested catchments (0.4 and 6.5 km2). The estimated contribution of tube drain effluent (a dominant source for nitrates) decreased with increasing scale from 76-79% at the field-site to 34-61% and 25-50% for both catchment scales. These results were validated by demonstrating that a model conditioned on nested-scale measurements improves simulations of nitrate loads and predictions of extreme discharges during validation periods compared to a model that was conditioned on catchment discharge only.

  10. Global synthesis of groundwater recharge in semiarid and arid regions

    Science.gov (United States)

    Scanlon, Bridget R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I.

    2006-01-01

    Global synthesis of the findings from ∼140 recharge study areas in semiarid and arid regions provides important information on recharge rates, controls, and processes, which are critical for sustainable water development. Water resource evaluation, dryland salinity assessment (Australia), and radioactive waste disposal (US) are among the primary goals of many of these recharge studies. The chloride mass balance (CMB) technique is widely used to estimate recharge. Average recharge rates estimated over large areas (40–374 000 km2) range from 0·2 to 35 mm year−1, representing 0·1–5% of long-term average annual precipitation. Extreme local variability in recharge, with rates up to ∼720 m year−1, results from focussed recharge beneath ephemeral streams and lakes and preferential flow mostly in fractured systems. System response to climate variability and land use/land cover (LU/LC) changes is archived in unsaturated zone tracer profiles and in groundwater level fluctuations. Inter-annual climate variability related to El Niño Southern Oscillation (ENSO) results in up to three times higher recharge in regions within the SW US during periods of frequent El Niños (1977–1998) relative to periods dominated by La Niñas (1941–1957). Enhanced recharge related to ENSO is also documented in Argentina. Climate variability at decadal to century scales recorded in chloride profiles in Africa results in recharge rates of 30 mm year−1 during the Sahel drought (1970–1986) to 150 mm year−1 during non-drought periods. Variations in climate at millennial scales in the SW US changed systems from recharge during the Pleistocene glacial period (≥10 000 years ago) to discharge during the Holocene semiarid period. LU/LC changes such as deforestation in Australia increased recharge up to about 2 orders of magnitude. Changes from natural grassland and shrublands to dryland (rain-fed) agriculture altered systems from discharge (evapotranspiration, ET) to recharge in

  11. Groundwater quality and hydrogeological characteristics of Malacca state in Malaysia

    Directory of Open Access Journals (Sweden)

    Shirazi Sharif Moniruzzaman

    2015-03-01

    Full Text Available Groundwater quality and aquifer productivity of Malacca catchment in Peninsular Malaysia are presented in this article. Pumping test data were collected from 210 shallow and 17 deep boreholes to get well inventory information. Data analysis confirmed that the aquifers consisting of schist, sand, limestone and volcanic rocks were the most productive aquifers for groundwater in Malacca state. GIS-based aquifer productivity map was generated based on bedrock and discharge capacity of the aquifers. Aquifer productivity map is classified into three classes, namely high, moderate and low based on discharge capacity. Groundwater potential of the study area is 35, 57 and 8% of low, moderate and high class respectively. Fifty two shallow and 14 deep aquifer groundwater samples were analyzed for water quality. In some cases, groundwater quality analysis indicated that the turbidity, total dissolved solids, iron, chloride and cadmium concentrations exceeded the limit of drinking water quality standards.

  12. Groundwater discharge in high-mountain watersheds: A valuable resource for downstream semi-arid zones. The case of the Bérchules River in Sierra Nevada (Southern Spain).

    Science.gov (United States)

    Jódar, Jorge; Cabrera, José Antonio; Martos-Rosillo, Sergio; Ruiz-Constán, Ana; González-Ramón, Antonio; Lambán, Luis Javier; Herrera, Christian; Custodio, Emilio

    2017-09-01

    Aquifers in permeable formations developed in high-mountain watersheds slow down the transfer of snowmelt to rivers, modifying rivers' flow pattern. To gain insight into the processes that control the hydrologic response of such systems the role played by groundwater in an alpine basin located at the southeastern part of the Iberian Peninsula is investigated. As data in these environments is generally scarce and its variability is high, simple lumped parameter hydrological models that consider the groundwater component and snow accumulation and melting are needed. Instead of using existing models that use many parameters, the Témez lumped hydrological model of common use in Spain and Ibero-American countries is selected and modified to consider snow to get a simplified tool to separate hydrograph components. The result is the TDD model (Témez-Degree Day) which is applied in a high mountain watershed with seasonal snow cover in Southern Spain to help in quantifying groundwater recharge and determining the groundwater contribution to the outflow. Average groundwater recharge is about 23% of the precipitation, and groundwater contribution to total outflow ranges between 70 and 97%. Direct surface runoff is 1% of precipitation. These values depend on the existence of snow. Results are consistent with those obtained with chloride atmospheric deposition mass balances by other authors. They highlight the important role of groundwater in high mountain areas, which is enhanced by seasonal snow cover. Results compare well with other areas. This effect is often neglected in water planning, but can be easily taken into account just by extending the water balance tool in use, or any other, following the procedure that has being developed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of recharge and discharge on delta2H and delta18O composition and chloride concentration of high arsenic/fluoride groundwater from the Datong Basin, northern China.

    Science.gov (United States)

    Xie, Xianjun; Wang, Yanxin; Su, Chunli; Duan, Mengyu

    2013-02-01

    To better understand the effects of recharge and discharge on the hydrogeochemistry of high levels of arsenic (As) and fluoride (F) in groundwater, environmental isotopic composition (delta2H and delta18O) and chloride (Cl) concentrations were analyzed in 29 groundwater samples collected from the Datong Basin. High arsenic groundwater samples (As > 50 micog/L) were found to be enriched in lighter isotopic composition that ranged from -92 to -78 per thousand for deuterium (delta2H) and from -12.5 to -9.9 per thousand for oxygen-18 (delta18O). High F-containing groundwater (F > 1 mg/L) was relatively enriched in heavier isotopic composition and varied from -90 to -57 per thousand and from -12.2 to -6.7 per thousand for delta2H and delta18O, respectively. High chloride concentrations and delta18O values were primarily measured in groundwater samples from the northern and southwestern portions of the study area, indicating the effect of evaporation on groundwater. The observation of relatively homogenized and low delta18O values and chloride concentrations in groundwater samples from central part of the Datong Basin might be a result of fast recharge by irrigation returns, which suggests that irrigation using arsenic-contaminated groundwater affected the occurrence of high arsenic-containing groundwater in the basin.

  14. Isotope hydrology of groundwaters in the Donana National Park and the associated zone of influence

    International Nuclear Information System (INIS)

    Plata, A.; Baonza, E.; Silgado, A.

    1984-01-01

    The authors describe a study, using environmental isotopes, of the groundwaters of a complex hydrological system formed by a free recharge zone with a multi-layer structure, a confined zone with connate waters trapped by the deposition of a thick clay layer in a coastal pool environment, and a series of both recent and ancient highly permeable dune formations. Attempts have been made, using tritium of thermonuclear origin, to determine the approximate average recharge rate during the last 28 years in the free aquifer zone. Despite the difficulties encountered, the value of 78 mm/a obtained, which is 13.2% of the average precipitation, is very similar to that obtained using conventional methods (approximately 84 mm/a). As was expected, there was no tritium in the confined zone. Carbon-14 was used to determine the reduced velocity of the underground stream and to confirm the network of streams deduced from conductivity measurements. The age-correction methods proposed by Tamers, Pearson, Mook and Fontes were compared. The differences in age between the last method and the first two are reasonable and can be explained by the isotopic interchange between the CaCO 3 of the rock formation and the gaseous CO 2 included in Fontes' model. On the other hand, the differences found with the Mook method are considerable, particularly for sample values below delta 13 C. The last model is more sensitive to changes in delta 13 C, and the interval of this parameter for which this model gives reasonable values of age is very small. In addition, the 14 C made it possible to determine the sedimentation velocity of clays in the swamp zone. The stable isotopes in the water confirmed the hypothesis that the underground waters in the confinement zone are a mixture of fresh water which has infiltrated into the recharge zone and of connate water trapped by the deposition of the clay layer. (author)

  15. Effects of Submarine Groundwater Discharge (SGD) on the Growth of the Lobe Coral Porites lobata in Maunalua Bay, Hawaii.

    Science.gov (United States)

    Lubarsky, K.

    2016-02-01

    Submarine groundwater discharge (SGD) constitutes a large percentage of the freshwater inputs onto coastal coral reefs on high islands such as the Hawaiian Islands, although the impact of SGD on coral reef health is currently understudied. In Maunalua Bay, on Oahu, Hawaii, SGD is discharged onto shallow reef flats from discrete seeps, creating natural gradients of water chemistry across the reef flat. We used this system to investigate rates of growth of the lobe coral Porites lobata across a gradient of SGD influence at two study sites within the bay, and to characterize the variation in water chemistry gradient over space and time due to SGD. SGD input at these sites is tidally modulated, and the groundwater itself is brackish and extremely nutrient-rich (mean=190 μM NO3- at the Black Point study site, mean=40 μM NO3- at Wailupe Beach Park), with distinct carbonate signatures at both study sites. Coral nubbins were placed across the gradient for 6 months, and growth was measured using three metrics: surface area (photo analysis), buoyant weight, and linear extension. Various chemical parameters, including pH, salinity, total alkalinity, nutrients, and chlorphyll were sampled at the same locations across the gradient over 24 hour periods in the spring and fall in order to capture spatial and temporal variation in water chemistry due to the SGD plume. Spatial patterns and temporal variation in water chemistry were correlated with the observed spatial patterns in coral growth across the SGD gradient.

  16. Application of Distributed Temperature Sensing for coupled mapping of sedimentation processes and spatio-temporal variability of groundwater discharge in soft-bedded streams

    DEFF Research Database (Denmark)

    Sebok, Eva; Duque, C; Engesgaard, Peter

    2015-01-01

    , maximum and mean streambed temperatures as well as the daily amplitude and standard deviation of temperatures. The identified potential high-discharge areas were mostly located near the channel banks, also showing temporal variability because of the scouring and redistribution of streambed sediments......The delineation of groundwater discharge areas based on Distributed Temperature Sensing (DTS) data of the streambed can be difficult in soft-bedded streams where sedimentation and scouring processes constantly change the position of the fibre optic cable relative to the streambed. Deposition...... variability in streambed temperatures between October 2011 and January 2012. Detailed monthly streambed elevation surveys were carried out to monitor the position of the fibre optic cable relative to the streambed and to quantify the effect of sedimentation processes on streambed temperatures. Based...

  17. Metallurgical Laboratory (HWMF) Groundwater Monitoring Report, Fourth Quarter 1994

    International Nuclear Information System (INIS)

    Chase, J.A.

    1995-03-01

    Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Units were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab Hazardous Waste Management Facility. This project began in July 1994 and is complete; however, analytical data from these wells are not yet available

  18. Cation exchange in a temporally fluctuating thin freshwater lens on top of saline groundwater

    NARCIS (Netherlands)

    Eeman, S.; Louw, de P.G.B.; Zee, van der S.E.A.T.M.

    2017-01-01

    In coastal-zone fields with a high groundwater level and sufficient rainfall, freshwater lenses are formed on top of saline or brackish groundwater. The fresh and the saline water meet at shallow depth, where a transition zone is found. This study investigates the mixing zone that is characterized

  19. Influence of Wetting and Mass Transfer Properties of Organic Chemical Mixtures in Vadose Zone Materials on Groundwater Contamination by Nonaqueous Phase Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Charles J Werth; Albert J Valocchi, Hongkyu Yoon

    2011-05-21

    Previous studies have found that organic acids, organic bases, and detergent-like chemicals change surface wettability. The wastewater and NAPL mixtures discharged at the Hanford site contain such chemicals, and their proportions likely change over time due to reaction-facilitated aging. The specific objectives of this work were to (1) determine the effect of organic chemical mixtures on surface wettability, (2) determine the effect of organic chemical mixtures on CCl4 volatilization rates from NAPL, and (3) accurately determine the migration, entrapment, and volatilization of organic chemical mixtures. Five tasks were proposed to achieve the project objectives. These are to (1) prepare representative batches of fresh and aged NAPL-wastewater mixtures, (2) to measure interfacial tension, contact angle, and capillary pressure-saturation profiles for the same mixtures, (3) to measure interphase mass transfer rates for the same mixtures using micromodels, (4) to measure multiphase flow and interphase mass transfer in large flow cell experiments, all using the same mixtures, and (5) to modify the multiphase flow simulator STOMP in order to account for updated P-S and interphase mass transfer relationships, and to simulate the impact of CCl4 in the vadose zone on groundwater contamination. Results and findings from these tasks and summarized in the attached final report.

  20. Assessment of village-wise groundwater draft for irrigation: a field-based study in hard-rock aquifers of central India

    Science.gov (United States)

    Ray, R. K.; Syed, T. H.; Saha, Dipankar; Sarkar, B. C.; Patre, A. K.

    2017-12-01

    Extracted groundwater, 90% of which is used for irrigated agriculture, is central to the socio-economic development of India. A lack of regulation or implementation of regulations, alongside unrecorded extraction, often leads to over exploitation of large-scale common-pool resources like groundwater. Inevitably, management of groundwater extraction (draft) for irrigation is critical for sustainability of aquifers and the society at large. However, existing assessments of groundwater draft, which are mostly available at large spatial scales, are inadequate for managing groundwater resources that are primarily exploited by stakeholders at much finer scales. This study presents an estimate, projection and analysis of fine-scale groundwater draft in the Seonath-Kharun interfluve of central India. Using field surveys of instantaneous discharge from irrigation wells and boreholes, annual groundwater draft for irrigation in this area is estimated to be 212 × 106 m3, most of which (89%) is withdrawn during non-monsoon season. However, the density of wells/boreholes, and consequent extraction of groundwater, is controlled by the existing hydrogeological conditions. Based on trends in the number of abstraction structures (1982-2011), groundwater draft for the year 2020 is projected to be approximately 307 × 106 m3; hence, groundwater draft for irrigation in the study area is predicted to increase by ˜44% within a span of 8 years. Central to the work presented here is the approach for estimation and prediction of groundwater draft at finer scales, which can be extended to critical groundwater zones of the country.

  1. Construction and calibration of a groundwater-flow model to assess groundwater availability in the uppermost principal aquifer systems of the Williston Basin, United States and Canada

    Science.gov (United States)

    Davis, Kyle W.; Long, Andrew J.

    2018-05-31

    Hills aquifer. The numerical model was constructed using a uniform grid with square cells that are about 1 mile (1,600 meters) on each side with a total of about 657,000 active cells.Model calibration was completed by linking Parameter ESTimation (PEST) software with MODFLOW–NWT. The PEST software uses statistical parameter estimation techniques to identify an optimum set of input parameters by adjusting individual model input parameters and assessing the differences, or residuals, between observed (measured or estimated) data and simulated values. Steady-state model calibration consisted of attempting to match mean simulated values to measured or estimated values of (1) hydraulic head, (2) hydraulic head differences between model layers, (3) stream infiltration, and (4) discharge to streams. Calibration of the transient model consisted of attempting to match simulated and measured temporally distributed values of hydraulic head changes, stream base flow, and groundwater discharge to artesian flowing wells. Hydraulic properties estimated through model calibration included hydraulic conductivity, vertical hydraulic conductivity, aquifer storage, and riverbed hydraulic conductivity in addition to groundwater recharge and well skin.The ability of the numerical model to accurately simulate groundwater flow in the Williston Basin was assessed primarily by its ability to match calibration targets for hydraulic head, stream base flow, and flowing well discharge. The steady-state model also was used to assess the simulated potentiometric surfaces in the upper Fort Union aquifer, the lower Fort Union aquifer, and the Fox Hills aquifer. Additionally, a previously estimated regional groundwater-flow budget was compared with the simulated steady-state groundwater-flow budget for the Williston Basin. The simulated potentiometric surfaces typically compared well with the estimated potentiometric surfaces based on measured hydraulic head data and indicated localized groundwater

  2. Hanford Site ground-water monitoring for 1994

    International Nuclear Information System (INIS)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  3. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  4. Stakeholder and expert-guided scenarios for agriculture and landscape development in a groundwater proction area

    DEFF Research Database (Denmark)

    Vejre, Henrik; Vesterager, Jens Peter; Kristensen, Lone Søderkvist

    2011-01-01

    Nitrate and pesticide leaching led to the designation of groundwater protection zones in Denmark. The protective measures in these zones often clash with local interests in agriculture. Scenarios were used to evaluate the development of a groundwater protection zone in a farming area. Stakeholders...

  5. Groundwater Hydrochemical Zoning in Inland Plains and its Genetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Liting Xing

    2018-06-01

    Full Text Available Pore water in inland plain areas, generally having poor water quality, contain complex hydrochemical properties. In order to examine groundwater chemical composition formation characteristics, groundwater in the Jiyang area of Lubei Plain was studied using stratified monitoring of drilling, analysis of water level and water quality, isotope analysis, ion ratio coefficient and isothermal adsorption experiments, hydrochemical characteristics, and analysis of variations in different shallow depths. Results show that: (1 Numerous hydrochemistry types are present in the diving. Along with the direction of groundwater flow, total dissolved solids (TDS of diving in the study area generally increases and the hydrochemical type changes from the HCO3 type to the HCO3·SO4 type, Cl·HCO3 type and the Cl·SO4 type. (2 Shallow brackish water and freshwater in the horizontal direction are alternately distributed, and shallow brackish water is distributed in the area between old channels, showing sporadic spots or bands, whose hydrochemistry type is predominantly Cl·SO4-Na·Mg·Ca. (3 Affected by the sedimentary environment, hydrodynamic conditions and other factors; diving, middle brackish water and deep freshwater are vertically deposited in the study area. The dynamics of middle brackish water quality are stable due to the sedimentary environment and clay deposits. The hydrochemistry types of middle brackish water are mainly Cl·SO4-Mg·Na and SO4·Cl-Na·Mg, while the deep confined water is dominated by HCO3. (4 The optimal adsorption isotherms of Na+, Ca2+ and Mg2+ in groundwater from clay, with a thickness raging from 6–112 m, conformed to the Henry equation and the Langmuir equation. The retardation of Na+, Ca2+ and Mg2+ in groundwater differed with differing depths of the clay deposit. The trend of change in retardation strength correlates strongly with the TDS of groundwater. Groundwater in the inland plain area is affected by complicated

  6. Simulation of groundwater and surface-water flow in the upper Deschutes Basin, Oregon

    Science.gov (United States)

    Gannett, Marshall W.; Lite, Kenneth E.; Risley, John C.; Pischel, Esther M.; La Marche, Jonathan L.

    2017-10-20

    streamflow in the upper Deschutes Basin comes directly from groundwater discharge. The integrated model provides additional insights about the components of streamflow including direct groundwater discharge to streams, interflow, groundwater discharge to the land surface (Dunnian flow), and direct runoff (Hortonian flow). The new model provides improved capability for exploring the timing and distribution of streamflow capture by wells, and the hydrologic response to changes in other external stresses such as canal operation, irrigation, and drought. Because the model uses basic meteorological data as the primary input; and simulates surface energy and moisture balances, groundwater recharge and flow, and all components of streamflow; it is well suited for exploring the hydrologic response to climate change, although no such simulations are included in this report.The model was developed as a tool for future application; however, example simulations are provided in this report. In the example simulations, the model is used to explore the influence of well location and geologic structure on stream capture by pumping wells. Wells were simulated at three locations within a 12-mi area close to known groundwater discharge areas and crossed by a regional fault zone. Simulations indicate that the magnitude and timing of stream capture from pumping is largely controlled by the geographic location of the wells, but that faults can have a large influence on the propagation of pumping stresses.

  7. Site scale groundwater flow in Haestholmen

    International Nuclear Information System (INIS)

    Loefman, J.

    1999-05-01

    Groundwater flow modelling on the site scale has been an essential part of site investigation work carried out at different locations since 1986. The objective of the modelling has been to provide results that characterise the groundwater flow conditions deep in the bedrock. The main result quantities can be used for evaluation of the investigation sites and of the preconditions for safe final disposal - of spent nuclear fuel. This study represents the groundwater flow modelling at Haestholmen, and it comprises the transient flow analysis taking into account the effects of density variations and the repository as well as the post-glacial land uplift. The analysis is performed by means of numerical finite element simulation of coupled and transient groundwater flow and solute transport carried out up to 10000 years into the future. This work provides also the results for the site-specific data needs for the block scale groundwater flow modelling at Haestholmen. Conceptually the fractured bedrock is divided into hydraulic units: the planar fracture zones and the remaining part of the bedrock. The equivalent-continuum (EC) model is applied so that each hydraulic unit is treated as a homogeneous and isotropic continuum with representative average characteristics. All the fracture zones are modelled explicitly and represented by two-dimensional finite elements. A site-specific simulation model for groundwater flow and solute transport is developed on the basis of the latest hydrogeological and hydrogeochemical field investigations at Haestholmen. The present topography together with a mathematical model describing the land uplift at the Haestholmen area are employed as a boundary condition at the surface of the model. The overall flow pattern is mostly controlled by the local variations in the topography and by the highly transmissive fracture zones. Near the surface the flow spreads out to offshore and to the lower areas of topography in all directions away from

  8. Impact of wastewater treatment plant discharge of lidocaine, tramadol, venlafaxine and their metabolites on the quality of surface waters and groundwater.

    Science.gov (United States)

    Rúa-Gómez, Paola C; Püttmann, Wilhelm

    2012-05-01

    The presence of the anesthetic lidocaine (LDC), the analgesic tramadol (TRA), the antidepressant venlafaxine (VEN) and the metabolites O-desmethyltramadol (ODT) and O-desmethylvenlafaxine (ODV) was investigated in wastewater treatment plant (WWTP) effluents, in surface waters and in groundwater. The analytes were detected in all effluent samples and in only 64% of the surface water samples. The mean concentrations of the analytes in effluent samples from WWTPs with wastewater from only households and hospitals were 107 (LDC), 757 (TRA), 122 (ODT), 160 (VEN) and 637 ng L(-1) (ODV), while the mean concentrations in effluents from WWTPs treating additionally wastewater from pharmaceutical industries as indirect dischargers were for some pharmaceuticals clearly higher. WWTP effluents were identified as important sources of the analyzed pharmaceuticals and their metabolites in surface waters. The concentrations of the compounds found in surface waters ranged from Infiltration of the target analytes into groundwater was not observed.

  9. On the use of mean groundwater age, life expectancy and capture probability for defining aquifer vulnerability and time-of-travel zones for source water protection.

    Science.gov (United States)

    Molson, J W; Frind, E O

    2012-01-01

    Protection and sustainability of water supply wells requires the assessment of vulnerability to contamination and the delineation of well capture zones. Capture zones, or more generally, time-of-travel zones corresponding to specific contaminant travel times, are most commonly delineated using advective particle tracking. More recently, the capture probability approach has been used in which a probability of capture of P=1 is assigned to the well and the growth of a probability-of-capture plume is tracked backward in time using an advective-dispersive transport model. This approach accounts for uncertainty due to local-scale heterogeneities through the use of macrodispersion. In this paper, we develop an alternative approach to capture zone delineation by applying the concept of mean life expectancy E (time remaining before being captured by the well), and we show how life expectancy E is related to capture probability P. Either approach can be used to delineate time-of-travel zones corresponding to specific travel times, as well as the ultimate capture zone. The related concept of mean groundwater age A (time since recharge) can also be applied in the context of defining the vulnerability of a pumped aquifer. In the same way as capture probability, mean life expectancy and groundwater age account for local-scale uncertainty or unresolved heterogeneities through macrodispersion, which standard particle tracking neglects. The approach is tested on 2D and 3D idealized systems, as well as on several watershed-scale well fields within the Regional Municipality of Waterloo, Ontario, Canada. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Approaches to groundwater travel time

    International Nuclear Information System (INIS)

    Kaplan, P.; Klavetter, E.; Peters, R.

    1989-01-01

    One of the objectives of performance assessment for the Yucca Mountain Project is to estimate the groundwater travel time at Yucca Mountain, Nevada, to determine whether the site complies with the criteria specified in the Code of Federal Regulations. The numerical standard for performance in these criteria is based on the groundwater travel time along the fastest path of likely radionuclide transport from the disturbed zone to the accessible environment. The concept of groundwater travel time, as proposed in the regulations, does not have a unique mathematical statement. The purpose of this paper is to discuss (1) the ambiguities associated with the regulatory specification of groundwater travel time, (2) two different interpretations of groundwater travel time, and (3) the effect of the two interpretations on estimates of the groundwater travel time. 3 refs., 2 figs., 2 tabs

  11. Hanford Site groundwater monitoring for Fiscal Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E. [eds.] [and others

    1998-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium`s ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level.

  12. Hanford Site groundwater monitoring for Fiscal Year 1997

    International Nuclear Information System (INIS)

    Hartman, M.J.; Dresel, P.E.

    1998-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium's ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level

  13. Effect of climate change on the irrigation and discharge scheme for winter wheat in Huaibei Plain, China

    Science.gov (United States)

    Zhu, Y.; Ren, L.; Lü, H.

    2017-12-01

    On the Huaibei Plain of Anhui Province, China, winter wheat (WW) is the most prominent crop. The study area belongs to transitional climate, with shallow water table. The original climate change is complex, in addition, global warming make the climate change more complex. The winter wheat growth period is from October to June, just during the rainless season, the WW growth always depends on part of irrigation water. Under such complex climate change, the rainfall varies during the growing seasons, and water table elevations also vary. Thus, water tables supply variable moisture change between soil water and groundwater, which impact the irrigation and discharge scheme for plant growth and yield. In Huaibei plain, the environmental pollution is very serious because of agricultural use of chemical fertilizer, pesticide, herbicide and etc. In order to protect river water and groundwater from pollution, the irrigation and discharge scheme should be estimated accurately. Therefore, determining the irrigation and discharge scheme for winter wheat under climate change is important for the plant growth management decision-making. Based on field observations and local weather data of 2004-2005 and 2005-2006, the numerical model HYDRUS-1D was validated and calibrated by comparing simulated and measured root-zone soil water contents. The validated model was used to estimate the irrigation and discharge scheme in 2010-2090 under the scenarios described by HadCM3 (1970 to 2000 climate states are taken as baselines) with winter wheat growth in an optimum state indicated by growth height and LAI.

  14. Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia).

    Science.gov (United States)

    Ortegón, Gloria Páez; Arboleda, Fernando Muñoz; Candela, Lucila; Tamoh, Karim; Valdes-Abellan, Javier

    2016-01-01

    Extensive application of vinasse, a subproduct from sugar cane plantations for bioethanol production, is currently taking place as a source of nutrients that forms part of agricultural management in different agroclimatic regions. Liquid vinasse composition is characterised by high variability of organic compounds and major ions, acid pH (4.7), high TDS concentration (117,416-599,400mgL(-1)) and elevated EC (14,350-64,099μScm(-1)). A large-scale sugar cane field application is taking place in Valle del Cauca (Colombia), where monitoring of soil, unsaturated zone and the aquifer underneath has been made since 2006 to evaluate possible impacts on three experimental plots. For this assessment, monitoring wells and piezometers were installed to determine groundwater flow and water samples were collected for chemical analysis. In the unsaturated zone, tensiometers were installed at different depths to determine flow patterns, while suction lysimeters were used for water sample chemical determinations. The findings show that in the sandy loam plot (Hacienda Real), the unsaturated zone is characterised by low water retention, showing a high transport capacity, while the other two plots of silty composition presented temporal saturation due to La Niña event (2010-2011). The strong La Niña effect on aquifer recharge which would dilute the infiltrated water during the monitoring period and, on the other hand dissolution of possible precipitated salts bringing them back into solution may occur. A slight increase in the concentration of major ions was observed in groundwater (~5% of TDS), which can be attributed to a combination of factors: vinasse dilution produced by water input and hydrochemical processes along with nutrient removal produced by sugar cane uptake. This fact may make the aquifer vulnerable to contamination. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Improving catchment discharge predictions by inferring flow route contributions from a nested-scale monitoring and model setup

    Directory of Open Access Journals (Sweden)

    Y. van der Velde

    2011-03-01

    Full Text Available Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for the estimation of flow route volumes and for predictions of catchment discharge. In order to relate field-site measurements to the catchment-scale an upscaling approach is introduced that assumes that scale differences in flow route fluxes originate from differences in the relationship between groundwater storage and the spatial structure of the groundwater table. This relationship is characterized by the Groundwater Depth Distribution (GDD curve that relates spatial variation in groundwater depths to the average groundwater depth. The GDD-curve was measured for a single field site (0.009 km2 and simple process descriptions were applied to relate groundwater levels to flow route discharges. This parsimonious model could accurately describe observed storage, tube drain discharge, overland flow and groundwater flow simultaneously with Nash-Sutcliff coefficients exceeding 0.8. A probabilistic Monte Carlo approach was applied to upscale field-site measurements to catchment scales by inferring scale-specific GDD-curves from the hydrographs of two nested catchments (0.4 and 6.5 km2. The estimated contribution of tube drain effluent (a dominant source for nitrates decreased with increasing scale from 76–79% at the field-site to 34–61% and 25–50% for both catchment scales. These results were validated by demonstrating that a model conditioned on nested-scale measurements improves simulations of nitrate loads and predictions of extreme discharges during validation periods compared to a model that was conditioned on catchment discharge only.

  16. The economic value of groundwater in Obama

    OpenAIRE

    Burnett, Kimberly; Wada, Christopher; Endo, Aiko; Taniguchi, Makoto

    2015-01-01

    Study region: Obama City has a population of 33,000 and is located in the central Wakasa district, in southwest Fukui Prefecture, Japan. Obama’s groundwater resources are supported by the Kitagawa (38 km2) and Miniamigawa (17 km2) river basins. Groundwater is used aboveground year round for commercial and domestic purposes and during winter months to melt snow. Submarine groundwater discharge along the coast supports a nearshore fishery in the region. Study focus: Results from a choice-bas...

  17. Seasonal change of residence time in spring water and groundwater at a mountainous headwater catchment

    Science.gov (United States)

    Nagano, Kosuke; Tsujimura, Maki; Onda, Yuichi; Iwagami, Sho; Sakakibara, Koichi; Sato, Yutaro

    2017-04-01

    Determination of water age in headwater is important to consider water pathway, source and storage in the catchment. Previous studies showed that groundwater residence time changes seasonally. These studies reported that mean residence time of water in dry season tends to be longer than that in rainy season, and it becomes shorter as precipitation and discharge amount increases. However, there are few studies to clarify factors causing seasonal change in mean residence time in spring water and groundwater based on observed data. Therefore, this study aims to reveal the relationship between mean residence time and groundwater flow system using SFconcentration in spring and 10 minutes interval hydrological data such as discharge volume, groundwater level and precipitation amount in a headwater catchment in Fukushima, Japan. The SF6 concentration data in spring water observed from April 2015 to November 2016 shows the mean residence time of springs ranged from zero to 14 years. We also observed a clear negative correlation between discharge rate and residence time in the spring. The residence time in shallow groundwater in rainy season was younger as compared with that in low rainfall period. Therefore, the shallow groundwater with young residence time seems to contribute to the spring in rainy season, causing shorter residence time. Additionally, the residence time of groundwater ranged from 3 to 5 years even in low rainfall period. The residence time in high groundwater table level in ridge was older as compared with that in low groundwater table level. These suggest that the contribution of groundwater with older age in the ridge becomes dominant in the low discharge.

  18. Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20).

    Science.gov (United States)

    Ramos, Débora Toledo; da Silva, Márcio Luis Busi; Chiaranda, Helen Simone; Alvarez, Pedro J J; Corseuil, Henry Xavier

    2013-06-01

    Field experiments were conducted to assess the potential for anaerobic biostimulation to enhance BTEX biodegradation under fermentative methanogenic conditions in groundwater impacted by a biodiesel blend (B20, consisting of 20 % v/v biodiesel and 80 % v/v diesel). B20 (100 L) was released at each of two plots through an area of 1 m(2) that was excavated down to the water table, 1.6 m below ground surface. One release was biostimulated with ammonium acetate, which was added weekly through injection wells near the source zone over 15 months. The other release was not biostimulated and served as a baseline control simulating natural attenuation. Ammonium acetate addition stimulated the development of strongly anaerobic conditions, as indicated by near-saturation methane concentrations. BTEX removal began within 8 months in the biostimulated source zone, but not in the natural attenuation control, where BTEX concentrations were still increasing (due to source dissolution) 2 years after the release. Phylogenetic analysis using quantitative PCR indicated an increase in concentration and relative abundance of Archaea (Crenarchaeota and Euryarchaeota), Geobacteraceae (Geobacter and Pelobacter spp.) and sulfate-reducing bacteria (Desulfovibrio, Desulfomicrobium, Desulfuromusa, and Desulfuromonas) in the biostimulated plot relative to the control. Apparently, biostimulation fortuitously enhanced the growth of putative anaerobic BTEX degraders and associated commensal microorganisms that consume acetate and H2, and enhance the thermodynamic feasibility of BTEX fermentation. This is the first field study to suggest that anaerobic-methanogenic biostimulation could enhance source zone bioremediation of groundwater aquifers impacted by biodiesel blends.

  19. An Investigation of Groundwater Flow on a Coastal Barrier using Multi Electrode Profiling

    DEFF Research Database (Denmark)

    Poulsen, Søren Erbs; Christensen, Steen; Rasmussen, Keld Rømer

    2008-01-01

    Preliminary geophysical and hydrogeological investigations indicate that multi-electrode profiling (MEP) can be used to monitor groundwater salinity on a coastal barrier where a shallow thin aquifer discharges to the North Sea. A monitoring system including five groups of piezometers and five MEP...... groundwater modeling we hope to be able to quantify how time varying recharge, tides, and storms hitting the barrier affect groundwater flow and discharge to the sea. At the conference we will present monitoring results from the winter and spring 2008....

  20. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Bumgarner, Johnathan R.; Stanton, Gregory P.; Teeple, Andrew; Thomas, Jonathan V.; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn

    2012-01-01

    A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers, which include the Pecos Valley, Igneous, Dockum, Rustler, and Capitan Reef aquifers, was developed as the second phase of a groundwater availability study in the Pecos County region in west Texas. The first phase of the study was to collect and compile groundwater, surface-water, water-quality, geophysical, and geologic data in the area. The third phase of the study involves a numerical groundwater-flow model of the Edwards-Trinity aquifer in order to simulate groundwater conditions based on various groundwater-withdrawal scenarios. Resource managers plan to use the results of the study to establish management strategies for the groundwater system. The hydrogeologic framework is composed of the hydrostratigraphy, structural features, and hydraulic properties of the groundwater system. Well and geophysical logs were interpreted to define the top and base surfaces of the Edwards-Trinity aquifer units. Elevations of the top and base of the Edwards-Trinity aquifer generally decrease from the southwestern part of the study area to the northeast. The thicknesses of the Edwards-Trinity aquifer units were calculated using the interpolated top and base surfaces of the hydrostratigraphic units. Some of the thinnest sections of the aquifer were in the eastern part of the study area and some of the thickest sections were in the Pecos, Monument Draw, and Belding-Coyanosa trough areas. Normal-fault zones, which formed as growth and collapse features as sediments were deposited along the margins of more resistant rocks and as overlying sediments collapsed into the voids created by the dissolution of Permian-age evaporite deposits, were delineated based on the interpretation of hydrostratigraphic cross sections. The lowest aquifer transmissivity values were measured in the eastern part of the study area; the highest transmissivity values were