WorldWideScience

Sample records for groundwater discharge zones

  1. Submarine Groundwater Discharge in the Coastal Zone

    Science.gov (United States)

    Bakti, Hendra

    2018-02-01

    Indonesia is one of the archipelagic countries that has the longest coastline in the world. Because it is located in the tropics, in general it has a very high rainfall. Each island has a different morphology which is composed of a variety of rocks with different hydrogeological properties. This natural condition allows for the presence of groundwater in different amount in each island. The difference in groundwater hydraulics gradients in aquifer continuous to the sea has triggered the discharge of groundwater to offshore known as submarine groundwater discharge (SGD). Its presence can be as seepage or submarine springs with components derived from land and sea and a mixture between them. The understanding of SGD phenomenon is very important because it can be useful as a source of clean water in coastal areas, affecting marine health, and improving marine environment.

  2. Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach.

    Science.gov (United States)

    Freitas, Juliana G; Rivett, Michael O; Roche, Rachel S; Durrant Neé Cleverly, Megan; Walker, Caroline; Tellam, John H

    2015-02-01

    The typically elevated natural attenuation capacity of riverbed-hyporheic zones is expected to decrease chlorinated hydrocarbon (CHC) groundwater plume discharges to river receptors through dechlorination reactions. The aim of this study was to assess physico-chemical processes controlling field-scale variation in riverbed-hyporheic zone dechlorination of a TCE groundwater plume discharge to an urban river reach. The 50-m long pool-riffle-glide reach of the River Tame in Birmingham (UK) studied is a heterogeneous high energy river environment. The shallow riverbed was instrumented with a detailed network of multilevel samplers. Freeze coring revealed a geologically heterogeneous and poorly sorted riverbed. A chlorine number reduction approach provided a quantitative indicator of CHC dechlorination. Three sub-reaches of contrasting behaviour were identified. Greatest dechlorination occurred in the riffle sub-reach that was characterised by hyporheic zone flows, moderate sulphate concentrations and pH, anaerobic conditions, low iron, but elevated manganese concentrations with evidence of sulphate reduction. Transient hyporheic zone flows allowing input to varying riverbed depths of organic matter are anticipated to be a key control. The glide sub-reach displayed negligible dechlorination attributed to the predominant groundwater baseflow discharge condition, absence of hyporheic zone, transition to more oxic conditions and elevated sulphate concentrations expected to locally inhibit dechlorination. The tail-of-pool-riffle sub-reach exhibited patchy dechlorination that was attributed to sub-reach complexities including significant flow bypass of a low permeability, high organic matter, silty unit of high dechlorination potential. A process-based conceptual model of reach-scale dechlorination variability was developed. Key findings of practitioner relevance were: riverbed-hyporheic zone CHC dechlorination may provide only a partial, somewhat patchy barrier to CHC

  3. Acid-base status of soils in groundwater discharge zones — relation to surface water acidification

    Science.gov (United States)

    Norrström, Ann Catrine

    1995-08-01

    Critical load calculations have suggested that groundwater at depth of 2 m in Sweden is very sensitive to acid load. As environmental isotope studies have shown that most of the runoff in streams has passed through the soil, there is a risk in the near future of accelerated acidification of surface waters. To assess the importance of the last soil horizon of contact before discharge, the upper 0-0.2m of soils in seven discharge zones were analysed for pools of base cations, acidity and base saturation. The sites were about 3-4 m 2 in size and selected from two catchments exposed to different levels of acid deposition. The soils in the seven sites had high concentrations of exchangeable base cations and consequently high base saturation. The high correlation ( r2 = 0.74) between base saturation in the soils of the discharge zones and mean pH of the runoff waters suggested that the discharge zone is important for surface water acidification. The high pool of exchangeable base cations will buffer initially against the acid load. As the cation exchange capacity (meq dm -3) and base saturation were lower in the sites from the catchment receiving lower deposition, these streams may be more vulnerable to acidification in the near future. The high concentration of base cations in non-exchangeable fractions may also buffer against acidification as it is likely that some of these pools will become exchangeable with time.

  4. 14C age reassessment of groundwater from the discharge zone due to cross-flow mixing in the deep confined aquifer

    Science.gov (United States)

    Mao, Xumei; Wang, Hua; Feng, Liang

    2018-05-01

    In a groundwater flow system, the age of groundwater should gradually increase from the recharge zone to the discharge zone within the same streamline. However, it is occasionally observed that the groundwater age becomes younger in the discharge zone in the piedmont alluvial plain, and the oldest age often appears in the middle of the plain. A new set of groundwater chemistry and isotopes was employed to reassess the groundwater 14C ages from the discharge zone in the North China Plain (NCP). Carbonate precipitation, organic matter oxidation and cross-flow mixing in the groundwater from the recharge zone to the discharge zone are recognized according to the corresponding changes of HCO3- (or DIC) and δ13C in the same streamline of the third aquifer of the NCP. The effects of carbonate precipitation and organic matter oxidation are calibrated with a 13C mixing model and DIC correction, but these corrected 14C ages seem unreasonable because they grow younger from the middle plain to the discharge zone in the NCP. The relationship of Cl- content and the recharge distance is used to estimate the expected Cl- content in the discharge zone, and ln(a14C)/Cl is proposed to correct the a14C in groundwater for the effect of cross-flow mixing. The 14C ages were reassessed with the corrected a14C due to the cross-flow mixing varying from 1.25 to 30.58 ka, and the groundwater becomes older gradually from the recharge zone to the discharge zone. The results suggest that the reassessed 14C ages are more reasonable for the groundwater from the discharge zone due to cross-flow mixing.

  5. Seasonal Arsenic Accumulation in Stream Sediments at a Groundwater Discharge Zone

    DEFF Research Database (Denmark)

    MacKay, Allison A.; Gan, Ping; Yu, Ran

    2014-01-01

    Seasonal changes in arsenic and iron accumulation rates were examined in the sediments of a brook that receives groundwater discharges of arsenic and reduced iron. Clean glass bead columns were deployed in sediments for known periods over the annual hydrologic cycle to monitor changes in arsenic...... and iron concentrations in bead coatings. The highest accumulation rates occurred during the dry summer period (July-October) when groundwater discharges were likely greatest at the sample locations. The intermediate flow period (October-March), With higher surface water: levels, was associated with losses...... of arsenic and iron from bead column coatings at. depths below 2-6 cm. Batch incubations indicated iron releases from solids to be induced by biological reduction of iron (oxy)hydroxide solids. Congruent arsenic releases during incubation were limited by the high arsenic sorption capacity (0.536 mg...

  6. Seasonal arsenic accumulation in stream sediments at a groundwater discharge zone.

    Science.gov (United States)

    MacKay, Allison A; Gan, Ping; Yu, Ran; Smets, Barth F

    2014-01-21

    Seasonal changes in arsenic and iron accumulation rates were examined in the sediments of a brook that receives groundwater discharges of arsenic and reduced iron. Clean glass bead columns were deployed in sediments for known periods over the annual hydrologic cycle to monitor changes in arsenic and iron concentrations in bead coatings. The highest accumulation rates occurred during the dry summer period (July-October) when groundwater discharges were likely greatest at the sample locations. The intermediate flow period (October-March), with higher surface water levels, was associated with losses of arsenic and iron from bead column coatings at depths below 2-6 cm. Batch incubations indicated iron releases from solids to be induced by biological reduction of iron (oxy)hydroxide solids. Congruent arsenic releases during incubation were limited by the high arsenic sorption capacity (0.536 mg(As)/mg(Fe)) of unreacted iron oxide solids. The flooded spring (March-June) with high surface water flows showed the lowest arsenic and iron accumulation rates in the sediments. Comparisons of accumulation rates across a shoreline transect were consistent with greater rates at regions exposed above surface water levels for longer times and greater losses at locations submerged below surface water. Iron (oxy)hydroxide solids in the shallowest sediments likely serve as a passive barrier to sorb arsenic released to pore water at depth by biological iron reduction.

  7. Quantifying submarine groundwater discharge in the coastal zone via multiple methods

    International Nuclear Information System (INIS)

    Burnett, W.C.; Aggarwal, P.K.; Aureli, A.; Bokuniewicz, H.; Cable, J.E.; Charette, M.A.; Kontar, E.; Krupa, S.; Kulkarni, K.M.; Loveless, A.; Moore, W.S.; Oberdorfer, J.A.; Oliveira, J.; Ozyurt, N.; Povinec, P.; Privitera, A.M.G.; Rajar, R.; Ramessur, R.T.; Scholten, J.; Stieglitz, T.; Taniguchi, M.; Turner, J.V.

    2006-01-01

    Submarine groundwater discharge (SGD) is now recognized as an important pathway between land and sea. As such, this flow may contribute to the biogeochemical and other marine budgets of near-shore waters. These discharges typically display significant spatial and temporal variability making assessments difficult. Groundwater seepage is patchy, diffuse, temporally variable, and may involve multiple aquifers. Thus, the measurement of its magnitude and associated chemical fluxes is a challenging enterprise. A joint project of UNESCO and the International Atomic Energy Agency (IAEA) has examined several methods of SGD assessment and carried out a series of five intercomparison experiments in different hydrogeologic environments (coastal plain, karst, glacial till, fractured crystalline rock, and volcanic terrains). This report reviews the scientific and management significance of SGD, measurement approaches, and the results of the intercomparison experiments. We conclude that while the process is essentially ubiquitous in coastal areas, the assessment of its magnitude at any one location is subject to enough variability that measurements should be made by a variety of techniques and over large enough spatial and temporal scales to capture the majority of these changing conditions. We feel that all the measurement techniques described here are valid although they each have their own advantages and disadvantages. It is recommended that multiple approaches be applied whenever possible. In addition, a continuing effort is required in order to capture long-period tidal fluctuations, storm effects, and seasonal variations

  8. Quantifying submarine groundwater discharge in the coastal zone via multiple methods

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, W.C. [Department of Oceanography, Florida State University, Tallahassee, FL 32306 (United States); Aggarwal, P.K.; Kulkarni, K.M. [Isotope Hydrology Section, International Atomic Energy Agency (Austria); Aureli, A. [Department Water Resources Management, University of Palermo, Catania (Italy); Bokuniewicz, H. [Marine Science Research Center, Stony Brook University (United States); Cable, J.E. [Department Oceanography, Louisiana State University (United States); Charette, M.A. [Department Marine Chemistry, Woods Hole Oceanographic Institution (United States); Kontar, E. [Shirshov Institute of Oceanology (Russian Federation); Krupa, S. [South Florida Water Management District (United States); Loveless, A. [University of Western Australia (Australia); Moore, W.S. [Department Geological Sciences, University of South Carolina (United States); Oberdorfer, J.A. [Department Geology, San Jose State University (United States); Oliveira, J. [Instituto de Pesquisas Energeticas e Nucleares (Brazil); Ozyurt, N. [Department Geological Engineering, Hacettepe (Turkey); Povinec, P.; Scholten, J. [Marine Environment Laboratory, International Atomic Energy Agency (Monaco); Privitera, A.M.G. [U.O. 4.17 of the G.N.D.C.I., National Research Council (Italy); Rajar, R. [Faculty of Civil and Geodetic Engineering, University of Ljubljana (Slovenia); Ramessur, R.T. [Department Chemistry, University of Mauritius (Mauritius); Stieglitz, T. [Mathematical and Physical Sciences, James Cook University (Australia); Taniguchi, M. [Research Institute for Humanity and Nature (Japan); Turner, J.V. [CSIRO, Land and Water, Perth (Australia)

    2006-08-31

    Submarine groundwater discharge (SGD) is now recognized as an important pathway between land and sea. As such, this flow may contribute to the biogeochemical and other marine budgets of near-shore waters. These discharges typically display significant spatial and temporal variability making assessments difficult. Groundwater seepage is patchy, diffuse, temporally variable, and may involve multiple aquifers. Thus, the measurement of its magnitude and associated chemical fluxes is a challenging enterprise. A joint project of UNESCO and the International Atomic Energy Agency (IAEA) has examined several methods of SGD assessment and carried out a series of five intercomparison experiments in different hydrogeologic environments (coastal plain, karst, glacial till, fractured crystalline rock, and volcanic terrains). This report reviews the scientific and management significance of SGD, measurement approaches, and the results of the intercomparison experiments. We conclude that while the process is essentially ubiquitous in coastal areas, the assessment of its magnitude at any one location is subject to enough variability that measurements should be made by a variety of techniques and over large enough spatial and temporal scales to capture the majority of these changing conditions. We feel that all the measurement techniques described here are valid although they each have their own advantages and disadvantages. It is recommended that multiple approaches be applied whenever possible. In addition, a continuing effort is required in order to capture long-period tidal fluctuations, storm effects, and seasonal variations. (author)

  9. Submarine groundwater discharge and nutrient addition to the coastal zone of the Godavari estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Rengarajan, R.; Sarma, V.V.S.S.

    .8 d during November 2011. Knowing the water age, the distribution of radium in the estuary, and the radium isotopic composition of groundwater enabled us to calculate SGD fluxes to the estuary. These fluxes (in units of 106 m3 d...

  10. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina)

    Science.gov (United States)

    Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.

    2014-01-01

    . Differences in microbial sulfate reduction, organic matter supply, and/or groundwater residence time likely contributed to this pattern. The contrasting features of the east and west sub-marsh zones highlight the need for multiple techniques for characterization of submarine groundwater discharge sources and the impact of biogeochemical processes on the delivery of nutrients and carbon to coastal areas via submarine groundwater discharge.

  11. ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 2. Groundwater contaminant mass discharge reduction

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Lange, Ida Vedel; Bjerg, Poul Løgstrup

    2012-01-01

    The impact of source mass depletion on the down-gradient contaminant mass discharge was monitored for a 19-month period as a part of a field demonstration of the ZVI-Clay soil mixing remediation technology. Groundwater samples were collected from conventional monitoring wells (120 samples) and a ...... down-gradient contaminant mass discharge reduction (76%) for the parent compound (PCE), while the overall reduction of chlorinated ethenes was smaller (21%)....

  12. Effects of groundwater withdrawals from the Hurricane Fault zone on discharge of saline water from Pah Tempe Springs, Washington County, Utah

    Science.gov (United States)

    Gardner, Philip M.

    2018-04-10

    Pah Tempe Springs, located in Washington County, Utah, contribute about 95,000 tons of dissolved solids annually along a 1,500-foot gaining reach of the Virgin River. The river gains more than 10 cubic feet per second along the reach as thermal, saline springwater discharges from dozens of orifices located along the riverbed and above the river on both banks. The spring complex discharges from fractured Permian Toroweap Limestone where the river crosses the north-south trending Hurricane Fault. The Bureau of Reclamation Colorado River Basin Salinity Control Program is evaluating the feasibility of capturing and desalinizing the discharge of Pah Tempe Springs to improve downstream water quality in the Virgin River. The most viable plan, identified by the Bureau of Reclamation in early studies, is to capture spring discharge by pumping thermal groundwater from within the Hurricane Fault footwall damage zone and to treat this water prior to returning it to the river.Three multiple-day interference tests were conducted between November 2013 and November 2014, wherein thermal groundwater was pumped from fractured carbonate rock in the fault damage zone at rates of up to 7 cubic feet per second. Pumping periods for these tests lasted approximately 66, 74, and 67 hours, respectively, and the tests occurred with controlled streamflows of approximately 2.0, 3.5, and 24.5 cubic feet per second, respectively, in the Virgin River upstream from the springs reach. Specific conductance, water temperature, and discharge were monitored continuously in the river (upstream and downstream of the springs reach) at selected individual springs, and in the pumping discharge during each of the tests. Water levels were monitored in three observation wells screened in the thermal system. Periodic stream and groundwater samples were analyzed for dissolved-solids concentration and the stable isotopes of oxygen and hydrogen. Additional discrete measurements of field parameters (specific

  13. Nuclear and isotopic techniques for the characterization of submarine groundwater discharge in coastal zones. Results of a coordinated research project 2001-2006

    International Nuclear Information System (INIS)

    2007-07-01

    Submarine groundwater discharge (SGD) is now recognized as an important pathway between land and sea. As such, this flow may contribute to the biogeochemical and other marine budgets of nearshore waters. These discharges typically display significant spatial and temporal variability, making direct assessments difficult. Groundwater seepage is patchy, diffuse, temporally variable, and may involve multiple aquifers. Thus, the measurement of its magnitude and associated chemical fluxes is a challenging enterprise. An initiative on SGD characterization was developed by the IAEA and UNESCO in 2000 as a 5-year plan to assess methodologies and importance of SGD for coastal zone management. The IAEA component included a Coordinated Research Project (CRP) on Nuclear and Isotopic Techniques for the Characterization of Submarine Groundwater Discharge (SGD) in Coastal Zones, carried out jointly by the IAEA's Isotope Hydrology Section in Vienna and the Marine Environment Laboratory in Monaco, together with 9 laboratories from 8 countries. In addition to the IAEA, the Intergovernmental Oceanographic Commission (IOC) and the International Hydrological Programme (IHP) have provided support. This overall effort originally grew from a project sponsored by the Scientific Committee on Ocean Research (SCOR) who established a Working Group (112) on SGD. The activities included joint meetings (Vienna 2000, 2002, and 2005; Syracuse, Italy, 2001; and Monaco 2004), sampling expeditions (Australia 2000; Sicily 2001 and 2002; New York 2002; Brazil 2003; and Mauritius 2005), joint analytical work, data evaluation, and preparation of joint publications. The objectives of the CRP included the improvement of capabilities for water resources and environmental management of coastal zones; application of recently developed nuclear and isotopic techniques suitable for quantitative estimation of various components of SGD; understanding of the influence of SGD on coastal processes and on groundwater

  14. What Controls Submarine Groundwater Discharge?

    Science.gov (United States)

    Martin, J. B.; Cable, J. E.; Cherrier, J.; Roy, M.; Smith, C. G.; Dorsett, A.

    2008-05-01

    Numerous processes have been implicated in controlling submarine groundwater discharge (SGD) to coastal zones since Ghyben, Herzberg and Dupuit developed models of fresh water discharge from coastal aquifers at the turn of the 19th century. Multiple empirical and modeling techniques have also been applied to these environments to measure the flow. By the mid-1950's, Cooper had demonstrated that dispersion across the fresh water-salt water boundary required salt water entrained into fresh water flow be balanced by recharge of salt water across the sediment-water interface seaward of the outflow face. Percolation of water into the beach face from wind and tidal wave run up and changes in pressure at the sediment-water interface with fluctuating tides have now been recognized, and observed, as processes driving seawater into the sediments. Within the past few years, variations in water table levels and the 1:40 amplification from density difference in fresh water and seawater have been implicated to pump salt water seasonally across the sediment- water interface. Salt water driven by waves, tides and seasonal water table fluctuations is now recognized as a component of SGD when it flows back to overlying surface waters. None of these processes are sufficiently large to provide measured volumes of SGD in Indian River Lagoon, Florida, however, because minimal tides and waves exist, flat topography and transmissive aquifers minimize fluctuations of the water table, and little water is entrained across the salt water-fresh water boundary. Nonetheless, the saline fraction of SGD represents more than 99% of the volume of total SGD in the Indian River Lagoon. This volume of saline SGD can be driven by the abundance of burrowing organisms in the lagoon, which pump sufficient amounts of water through the sediment- water interface. These bioirrigating organisms are ubiquitous at all water depths in sandy sediment and thus may provide one of the major sources of SGD world wide

  15. Redox Zonation and Oscillation in the Hyporheic Zone of the Ganges-Brahmaputra-Meghna Delta: Implications for the Fate of Groundwater Arsenic during Discharge

    Science.gov (United States)

    Jung, Hun Bok; Zheng, Yan; Rahman, Mohammad W.; Rahman, Mohammad M.; Ahmed, Kazi M.

    2015-01-01

    Riverbank sediment cores and pore waters, shallow well waters, seepage waters and river waters were collected along the Meghna Riverbank in Gazaria Upazila, Bangladesh in Jan. 2006 and Oct.-Nov. 2007 to investigate hydrogeochemical processes controlling the fate of groundwater As during discharge. Redox transition zones from suboxic (0-2 m depth) to reducing (2-5 m depth) then suboxic conditions (5-7 m depth) exist at sites with sandy surficial deposits, as evidenced by depth profiles of pore water (n=7) and sediment (n=11; diffuse reflectance, Fe(III)/Fe ratios and Fe(III) concentrations). The sediment As enrichment zone (up to ~700 mg kg−1) is associated with the suboxic zones mostly between 0-2 m depth and less frequently between 5-7 m depth. The As enriched zones consist of several 5 to 10 cm-thick dispersed layers and span a length of ~5-15 m horizontally from the river shore. Depth profiles of riverbank pore water deployed along a 32 m transect perpendicular to the river shore show elevated levels of dissolved Fe (11.6±11.7 mg L−1) and As (118±91 μg L−1, mostly as arsenite) between 2-5 m depth, but lower concentrations between 0-2 m depth (0.13±0.19 mg L−1 Fe, 1±1 μg L−1 As) and between 5-6 m depth (1.14±0.45 mg L−1 Fe, 28±17 μg L−1 As). Because it would take more than a few hundred years of steady groundwater discharge (~10 m yr−1) to accumulate hundreds of mg kg−1 of As in the riverbank sediment, it is concluded that groundwater As must have been naturally elevated prior to anthropogenic pumping of the aquifer since the 1970s. Not only does this lend unequivocal support to the argument that As occurrence in the Ganges-Brahmaputra-Meghna Delta groundwater is of geogenic origin, it also calls attention to the fate of this As enriched sediment as it may recycle As into the aquifer. PMID:26855475

  16. Groundwater Capture Zones

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Source water protection areas are delineated for each groundwater-based public water supply system using available geologic and hydrogeologic information to...

  17. Vessel Sewage Discharges: No-Discharge Zones (NDZs)

    Science.gov (United States)

    States may petition the EPA to establish areas, called no discharge zones (NDZs), where vessel sewage discharges are prohibited. This page describes how NDZs are designated, the types of designations, who enforces them, and how to comply.

  18. Groundwater Discharge along a Channelized Coastal Plain Stream

    Energy Technology Data Exchange (ETDEWEB)

    LaSage, Danita M [Ky Dept for natural resources, Div of Mine Permits; Sexton, Joshua L [JL Sexton and Son; Mukherjee, Abhijit [Univ of Tx, Jackson School of Geosciences, Bur of Econ. Geology; Fryar, Alan E [Univ of KY, Dept of Earth and Geoligical Sciences; Greb, Stephen F [Univ of KY, KY Geological Survey

    2015-10-01

    In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.

  19. Application of {sup 222} Rn as a tracer of groundwater discharge at the coastal zone of Ubatuba, Sao Paulo State, Brazil; Aplicacao de {sup 222} Rn como tracador da descarga de aguas subterraneas na regiao costeira de Ubatuba, Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Joselene de; Farias, Luciana A.; Mazzilli, Barbara P. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Dept. de Radiometria Ambiental]. E-mail: jolivei@net.ipen.br; Burnett, William C. [Florida State Univ., Tallahassee, FL (United States); Saraiva, Elisabete de S.B. e; Furtado, Valdenir V. [Sao Paulo Univ., SP (Brazil). Inst. Oceanografico. Dept. de Oceanografia Quimica e Geologica

    2002-07-01

    Submarine groundwater discharge (SGD) and recycled seawater can provide chemical constituents to coastal zone, representing an important material flux pathway from land to sea in some areas. Geochemical tracers, like {sup 222} Rn and {sup 226} Ra, are advantageous for regional-scale assessment of SGD, because their signals represent values integrated through the water column that removes small-scale variations. These radionuclides are usually enriched in groundwater compared to seawater, can be measured at very low concentrations and are conservative. This work reports preliminary results of a study carried out in a series of small embayements of Ubatuba, Sao Paulo State-Brazil, covering latitudes between 23 deg 26{sup '}S and 23 deg 46{sup '}S and longitudes between 45 deg02{sup '}W and 45 deg 11{sup '}W. The main aims of this research were to set up an analytical method to assess {sup 222} Rn and {sup 226} Ra activities in seawater samples and to apply the excess {sup 222} Rn inventories obtained to estimate the submarine groundwater discharge. Measurements made during 2001/2002 included {sup 222} Rn and {sup 226} Ra in seawater, {sup 222} Rn in sediment, seawater and sediment physical properties. (author)

  20. EPA Region 1 No Discharge Zones

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset details No Discharge Zones (NDZ) for New England. Boaters may not discharge waste into these areas. Boundaries were determined mostly by Federal...

  1. EPA Region 1 No Discharge Zones

    Science.gov (United States)

    This dataset details No Discharge Zones (NDZ) for New England. Boaters may not discharge waste into these areas. Boundaries were determined mostly by Federal Register Environmental Documents in coordination with Massachusetts Coastal Zone Management (MA CZM) and EPA Region 1 Office of Ecosystem Protection (OEP) staff.

  2. Chemistry of groundwater discharge inferred from longitudinal river sampling

    Science.gov (United States)

    Batlle-Aguilar, J.; Harrington, G. A.; Leblanc, M.; Welch, C.; Cook, P. G.

    2014-02-01

    We present an approach for identifying groundwater discharge chemistry and quantifying spatially distributed groundwater discharge into rivers based on longitudinal synoptic sampling and flow gauging of a river. The method is demonstrated using a 450 km reach of a tropical river in Australia. Results obtained from sampling for environmental tracers, major ions, and selected trace element chemistry were used to calibrate a steady state one-dimensional advective transport model of tracer distribution along the river. The model closely reproduced river discharge and environmental tracer and chemistry composition along the study length. It provided a detailed longitudinal profile of groundwater inflow chemistry and discharge rates, revealing that regional fractured mudstones in the central part of the catchment contributed up to 40% of all groundwater discharge. Detailed analysis of model calibration errors and modeled/measured groundwater ion ratios elucidated that groundwater discharging in the top of the catchment is a mixture of local groundwater and bank storage return flow, making the method potentially useful to differentiate between local and regional sourced groundwater discharge. As the error in tracer concentration induced by a flow event applies equally to any conservative tracer, we show that major ion ratios can still be resolved with minimal error when river samples are collected during transient flow conditions. The ability of the method to infer groundwater inflow chemistry from longitudinal river sampling is particularly attractive in remote areas where access to groundwater is limited or not possible, and for identification of actual fluxes of salts and/or specific contaminant sources.

  3. Estimating groundwater discharge into the ocean in the Yucatán Peninsula

    Science.gov (United States)

    Alvarez Rodriguez, G.; Gutierrez-Jurado, H. A.; Uuh-Sonda, J.

    2017-12-01

    The Yucatán peninsula is an emerged flat carbonate block abundant in soluble rocks. High permeability and dissolution of the rock, facilitates the development of channels, sinkholes and caves where underground rivers discharge into the ocean. There are no rivers or streams acting as a surface drainage system, all rainfall water entering the peninsula is discharged either as evapotranspiration (ET) or as underground runoff into the ocean. To date there are no estimates of the total groundwater discharge from the peninsula into the sea, and of the spatial distribution of recharge and discharge areas thereby hindering efforts to understand the dynamics of a complex hydrologic system. In this study, we estimate the discharge (Q) by solving the water balance equation (ΔS=PPT-ET-Q) using remote sensing products over a period of 12 years; the change in storage (ΔS) was retrieved from the satellite GRACE; precipitation (PPT) from the Tropical Rainfall Measuring Mission; and evapotranspiration (ET) from the Moderate Resolution Imaging Spectroradiometer. Results show that freshwater discharge via evapotranspiration can be a significant portion of the water budget depending on the climatic conditions throughout the year. We observe high recharge-discharge inter-annual variability in the center of the peninsula and some clearly defined recharge and discharge zones around the perimeter. On average the dryer north-east and wetter north-western parts of the peninsula act as recharge zones (where the influx of water is higher than the outflow), while the central-northern part of the peninsula corresponding to agricultural lands, acts as a discharge zone (outflow is higher than influx). The most southern region of the peninsula and the western mangroves are always discharge zones. Finally, our analyses reveal a number of highly subsidized zones, where precipitation levels are consistently lower than evapotranspiration, hence indicating the presence of groundwater dependent

  4. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    Directory of Open Access Journals (Sweden)

    D. K. Hare

    2017-11-01

    Full Text Available Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns

  5. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    Science.gov (United States)

    Hare, Danielle K.; Boutt, David F.; Clement, William P.; Hatch, Christine E.; Davenport, Glorianna; Hackman, Alex

    2017-11-01

    Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns may allow resource

  6. Groundwater flow and heterogeneous discharge into a seepage lake

    DEFF Research Database (Denmark)

    Kazmierczak, Jolanta; Müller, Sascha; Nilsson, B.

    2016-01-01

    with the lake remained under seemingly steady state conditions across seasons, a high spatial and temporal heterogeneity in the discharge to the lake was observed. The results showed that part of the groundwater flowing from the west passes beneath the lake and discharges at the eastern shore, where groundwater......Groundwater discharge into a seepage lake was investigated by combining flux measurements, hydrochemical tracers, geological information, and a telescopic modeling approach using first two-dimensional (2-D) regional then 2-D local flow and flow path models. Discharge measurements and hydrochemical...... tracers supplement each other. Discharge measurements yield flux estimates but rarely provide information about the origin and flow path of the water. Hydrochemical tracers may reveal the origin and flow path of the water but rarely provide any information about the flux. While aquifer interacting...

  7. Dilution and volatilization of groundwater contaminant discharges in streams

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Bjerg, Poul Løgstrup; Sonne, Anne Thobo

    2015-01-01

    measurement. The solution was successfully applied to published field data obtained in a large and a small Danish stream and provided valuable information on the risk posed by the groundwater contaminant plumes. The results provided by the dilution and volatilization model are very different to those obtained......An analytical solution to describe dilution and volatilization of a continuous groundwater contaminant plume into streams is developed for risk assessment. The location of groundwater plume discharge into the stream (discharge through the side versus bottom of the stream) and different...

  8. Groundwater discharge mapping by thermal infra-red imagery

    International Nuclear Information System (INIS)

    Brereton, N.R.

    1984-02-01

    An area around Altnabreac in northern Scotland has been studied as part of the UK programme of research into the feasibility of disposal of radioactive waste into geological formations. An essential prerequisite to being able to predict the behaviour, migratory pathways and travel times of radionuclides emanating from a waste repository is an understanding of the regional and near surface groundwater flow systems and groundwater geochemical evolution. The groundwater system at depth has been studied by means of boreholes but an understanding of the shallow groundwater flow, and its interaction with groundwater upwelling from depth, can be gained from studies of the spatial distribution and geochemistry of surface springs and discharges. A survey was carried out using the thermal infra-red linescan technique with the objective of locating all significant spring discharges over the study area. The terrain around Altnabreac is largely covered by superficial deposits which overlie weathered granite. The survey was carried out from a height of 275m at a spatial resolution of about 0.5m. About 280 line Km were covered but allowing for overlap between adjacent flight lines and some repeat coverage, the actual area surveyed was 68 sq Km. The most striking aspect of the results is the wide distribution of groundwater discharges in the Altnabreac area. An analysis of the data identified three general categories of spring and many of these springs were subsequently visited for verification and to allow samples to be collected for chemical analysis. The results from this survey indicates that the groundwater table is strongly influenced by local topography and that the majority of the spring discharges represent near surface recent groundwaters circulating within the superficial deposits and weathered granite

  9. Effect of an offshore sinkhole perforation in a coastal confined aquifer on submarine groundwater discharge

    Science.gov (United States)

    Fratesi, S.E.; Leonard, V.; Sanford, W.E.

    2007-01-01

    In order to explore submarine groundwater discharge in the vicinity of karst features that penetrate the confining layer of an offshore, partially confined aquifer, we constructed a three-dimensional groundwater model using the SUTRA (Saturated-Unsaturated TRAnsport) variable-density groundwater flow model. We ran a parameter sensitivity analysis, testing the effects of recharge rates, permeabilities of the aquifer and confining layer, and thickness of the confining layer. In all simulations, less than 20% of the freshwater recharge for the entire model exits through the sinkhole. Recirculated seawater usually accounts for 10-30% of the total outflow from the model. Often, the sinkhole lies seaward of the transition zone and acts as a recharge feature for recirculating seawater. The permeability ratio between aquifer and confining layer influences the configuration of the freshwater wedge the most; as confining layer permeability decreases, the wedge lengthens and the fraction of total discharge exiting through the sinkhole increases. Copyright ?? 2007 IAHS Press.

  10. Flow and discharge of groundwater from a snowmelt-affected sandy beach

    Science.gov (United States)

    Chaillou, G.; Lemay-Borduas, F.; Larocque, M.; Couturier, M.; Biehler, A.; Tommi-Morin, G.

    2018-02-01

    The study is based on a complex and unique data set of water stable isotopes (i.e., δ18O and δ2H), radon-222 activities (i.e., 222Rn) and groundwater levels to better understand the interaction of fresh groundwater and recirculated seawater in a snowmelt-affected subterranean estuary (STE) in a boreal region (Îles-de-la-Madeleine, Qc, Canada). By using a combination of hydrogeological and marine geochemical approaches, the objective was to analyze and quantify submarine groundwater discharge processes through a boreal beach after the snow melt period, in early June. The distribution of δ18O and δ2H in beach groundwater showed that inland fresh groundwater contributed between 97 and 30% of water masses presented within the STE. A time series of water table levels during the 16 days of the study indicated that tides propagated as a dynamic wave limiting the mass displacement of seawater within the STE. This up-and-down movement of the water table (∼10-30 cm) induced the vertical infiltration of seawater at the falling tide. At the front of the beach, a radon-based mass balance calculated with high-resolution 222Rn survey estimated total SGD of 3.1 m3/m/d at the discharge zone and a mean flow to 1.5 m3/m/d in the bay. The nearshore discharge agreed relatively well with Darcy fluxes calculated at the beach face. Fresh groundwater makes up more than 50% of the total discharge during the measuring campaign. These results indicate that beaches in boreal and cold regions could be important sources of freshwater originate and groundwater-borne solutes and contaminants to the marine environment after the snowmelt.

  11. Mapping Submarine Groundwater Discharge - how to investigate spatial discharge variability on coastal and beach scales

    Science.gov (United States)

    Stieglitz, T. C.; Burnett, W. C.; Rapaglia, J.

    2008-12-01

    Submarine groundwater discharge (SGD) is now increasingly recognized as an important component in the water balance, water quality and ecology of the coastal zone. A multitude of methods are currently employed to study SGD, ranging from point flux measurements with seepage meters to methods integrating over various spatial and temporal scales such as hydrological models, geophysical techniques or surface water tracer approaches. From studies in a large variety of hydrogeological settings, researchers in this field have come to expect that SGD is rarely uniformly distributed. Here we discuss the application of: (a) the mapping of subsurface electrical conductivity in a discharge zone on a beach; and (b) the large-scale mapping of radon in coastal surface water to improving our understanding of SGD and its spatial variability. On a beach scale, as part of intercomparison studies of a UNESCO/IAEA working group, mapping of subsurface electrical conductivity in a beach face have elucidated the non-uniform distribution of SGD associated with rock fractures, volcanic settings and man-made structures (e.g., piers, jetties). Variations in direct point measurements of SGD flux with seepage meters were linked to the subsurface conductivity distribution. We demonstrate how the combination of these two techniques may complement one another to better constrain SGD measurements. On kilometer to hundred kilometer scales, the spatial distribution and regional importance of SGD can be investigated by mapping relevant tracers in the coastal ocean. The radon isotope Rn-222 is a commonly used tracer for SGD investigations due to its significant enrichment in groundwater, and continuous mapping of this tracer, in combination with ocean water salinity, can be used to efficiently infer locations of SGD along a coastline on large scales. We use a surface-towed, continuously recording multi-detector setup installed on a moving vessel. This tool was used in various coastal environments, e

  12. Isotope Investigations of Groundwater Movement in a Coarse Gravel Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    Mali, N. [Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia); Kozar-Logar, J. [Jozef Stefan Institute, Ljubljana (Slovenia); Leis, A. [Institute of Water Resources Management, Hydrogeology and Geophysics, Joanneum Research Forschungsgesellschaft mbH, Graz (Austria)

    2013-07-15

    The unsaturated zone above an aquifer serves as a water reservoir which discharges water and possible pollution to the saturated zone. This paper presents the application of oxygen-18 and tritium isotope methods in the study of groundwater transport processes in the unsaturated zone of Selniska Dobrava coarse gravel aquifer. The Selniska Dobrava gravel aquifer is an important water resource for Maribor and its surroundings, therefore the determination of transport processes in the unsaturated zone is important regarding its protection. Groundwater flow characteristics were estimated using isotopes and based on experimental work in a lysimeter. Tritium investigation results were compared with the results of long term oxygen-18 isotope investigation. In this paper the analytical approach, results and interpretation of {delta}{sup 18}O and tritium measurements in the unsaturated zone are presented. (author)

  13. Decomposition of groundwater level fluctuations using transfer modelling in an area with shallow to deep unsaturated zones

    Science.gov (United States)

    Gehrels, J. C.; van Geer, F. C.; de Vries, J. J.

    1994-05-01

    Time series analysis of the fluctuations in shallow groundwater levels in the Netherlands lowlands have revealed a large-scale decline in head during recent decades as a result of an increase in land drainage and groundwater withdrawal. The situation is more ambiguous in large groundwater bodies located in the eastern part of the country, where the unsaturated zone increases from near zero along the edges to about 40 m in the centre of the area. As depth of the unsaturated zone increases, groundwater level reacts with an increasing delay to fluctuations in climate and influences of human activities. The aim of the present paper is to model groundwater level fluctuations in these areas using a linear stochastic transfer function model, relating groundwater levels to estimated precipitation excess, and to separate artificial components from the natural groundwater regime. In this way, the impact of groundwater withdrawal and the reclamation of a 1000 km 2 polder area on the groundwater levels in the adjoining higher ground could be assessed. It became evident that the linearity assumption of the transfer functions becomes a serious drawback in areas with the deepest groundwater levels, because of non-linear processes in the deep unsaturated zone and the non-synchronous arrival of recharge in the saturated zone. Comparison of the results from modelling the influence of reclamation with an analytical solution showed that the lowering of groundwater level is partly compensated by reduced discharge and therefore is less than expected.

  14. Tracing coastal and estuarine groundwater discharge sources in a complex faulted and fractured karst aquifer system

    Science.gov (United States)

    Lagomasino, D.; Price, R. M.

    2013-05-01

    Groundwater discharge can be an important input of water, nutrients and other constituents to coastal wetlands and adjacent marine areas, particularly in karst regions with little to no surface water flow. A combination of natural processes (e.g., sea-level rise and climate change) and anthropogenic pressures (e.g., urban growth and development) can alter the subterranean water flow to the coastline. For water management practices and environmental preservation to be better suited for the natural and human environment, a better understanding is needed of the hydrogeologic connectivity between the areas of fresh groundwater recharge and the coastal zone. The Yucatan peninsula has a unique tectonic and geologic history consisting of a Cretaceous impact crater, Miocene and Eocene tectonic plate movements, and multiple sea-level stands. These events have shaped many complex geologic formations and structures. The Sian Káan Biosphere Reserve (SKBR), a UNESCO World Heritage Site located along the Atlantic Ocean, overlaps two distinct hydrogeologic regions: the evaporate region to the south and south west, and the Holbox Fracture Zone to the north. These two regions create a complex network of layered, perched and fractured aquifers and an extensive groundwater cave network. The two regions are distinguished by bedrock mineralogical differences that can be used to trace shallow subsurface water from interior portions of the peninsula to the Bahia de la Ascension in the SKBR. The objective of this research was to use naturally occurring geochemical tracers (eg., Cl-, SO42-, HCO3-, K+, Mg2+, Na+, Ca2+ and stable isotopes of oxygen and hydrogen) to decipher the sources of groundwater flow through the coastal wetlands of the SKBR and into the Bahia de la Ascension. Surface water and groundwater samples were collected during two field campaigns in 2010 and 2012 within the coastal and estuarine waters of the SKBR. Additional water samples were collected at select cenotes along

  15. The discharge of nitrate-contaminated groundwater from developed shoreline to marsh-fringed estuary

    Science.gov (United States)

    Portnoy, J.W.; Nowicki, B.L.; Roman, C.T.; Urish, D.W.

    1998-01-01

    As residential development, on-site wastewater disposal, and groundwater contamination increase in the coastal zone, assessment of nutrient removal by soil and sedimentary processes becomes increasingly important. Nitrogen removal efficiency depends largely on the specific flow paths taken by groundwater as it discharges into nitrogen-limited estuarine waters. Shoreline salinity surveys, hydraulic studies, and thermal infrared imagery indicated that groundwater discharge into the Nauset Marsh estuary (Eastham, Massachusetts) occurred in high-velocity seeps immediately seaward of the upland-fringing salt marsh. Discharge was highly variable spatially and occurred through permeable, sandy sediments during low tide. Seepage chamber monitoring showed that dissolved inorganic nitrogen (principally nitrate) traversed nearly conservatively from the aquifer through shallow estuarine sediments to coastal waters at flux rates of 1–3 mmol m−2 h−1. A significant relationship between pore water NO3-N concentrations and NO3-N flux rates may provide a rapid method of estimating nitrogen loading from groundwater to the water column.

  16. Multi-scale evaluations of submarine groundwater discharge

    Directory of Open Access Journals (Sweden)

    M. Taniguchi

    2015-03-01

    Full Text Available Multi-scale evaluations of submarine groundwater discharge (SGD have been made in Saijo, Ehime Prefecture, Shikoku Island, Japan, by using seepage meters for point scale, 222Rn tracer for point and coastal scales, and a numerical groundwater model (SEAWAT for coastal and basin scales. Daily basis temporal changes in SGD are evaluated by continuous seepage meter and 222Rn mooring measurements, and depend on sea level changes. Spatial evaluations of SGD were also made by 222Rn along the coast in July 2010 and November 2011. The area with larger 222Rn concentration during both seasons agreed well with the area with larger SGD calculated by 3D groundwater numerical simulations.

  17. Groundwater and solute transport modeling at Hyporheic zone of upper part Citarum River

    Science.gov (United States)

    Iskandar, Irwan; Farazi, Hendy; Fadhilah, Rahmat; Purnandi, Cipto; Notosiswoyo, Sudarto

    2017-06-01

    Groundwater and surface water interaction is an interesting topic to be studied related to the water resources and environmental studies. The study of interaction between groundwater and river water at the Upper Part Citarum River aims to know the contribution of groundwater to the river or reversely and also solute transport of dissolved ions between them. Analysis of drill logs, vertical electrical sounding at the selected sections, measurement of dissolved ions, and groundwater modeling were applied to determine the flow and solute transport phenomena at the hyporheic zone. It showed the hyporheic zone dominated by silt and clay with hydraulic conductivity range from 10-4∼10-8 m/s. The groundwater flowing into the river with very low gradient and it shows that the Citarum River is a gaining stream. The groundwater modeling shows direct seepage of groundwater into the Citarum River is only 186 l/s, very small compared to the total discharge of the river. Total dissolved ions of the groundwater ranged from 200 to 480 ppm while the river water range from 200 to 2,000 ppm. Based on solute transport modeling it indicates dissolved ions dispersion of the Citarum River into groundwater may occur in some areas such as Bojongsoang-Dayeuh Kolot and Nanjung. This situation would increase the dissolved ions in groundwater in the region due to the contribution of the Citarum River. The results of the research can be a reference for further studies related to the mechanism of transport of the pollutants in the groundwater around the Citarum River.

  18. Characteristic groundwater level regimes in the capture zones of radial collector wells and importance of identification (Case study of Belgrade Groundwater Source

    Directory of Open Access Journals (Sweden)

    Božović Đorđije

    2016-01-01

    Full Text Available Assessment of the operating modes of radial collector wells reveals that the pumping levels in the well caissons are very low relative to the depth/elevation of the laterals, which is a common occurrence at Belgrade Groundwater Source. As a result, well discharge capacities vary over a broad range and groundwater levels in the capture zones differ even when the rate of discharge is the same. Five characteristic groundwater level regimes are identified and their origin is analyzed using representative wells as examples. The scope and type of background information needed to identify the groundwater level regime are presented and an interpretation approach is proposed for preliminary assessment of the aquifer potential at the well site for providing the needed amount of groundwater. [Projekat Ministarstva nauke Republike Srbije, br. OI176022, br. TR33039 i br. III43004

  19. Groundwater flow in a coastal peatland and its influence on submarine groundwater discharge

    Science.gov (United States)

    Ptak, T.; Ibenthal, M.; Janssen, M.; Massmann, G.; Lenartz, B.

    2017-12-01

    Coastal peatlands are characterized by intense interactions between land and sea, comprising both a submarine discharge of fresh groundwater and inundations of the peatland with seawater. Nutrients and salts can influence the biogeochemical processes both in the shallow marine sediments and in the peatland. The determination of flow direction and quantity of groundwater flow are therefore elementary. Submarine groundwater discharge (SGD) has been reported from several locations in the Baltic. The objective of this study is to quantify the exchange of fresh and brackish water across the shoreline in a coastal peatland in Northeastern Germany, and to assess the influence of a peat layer extending into the Baltic Sea. Below the peatland, a shallow fine sand aquifer differs in depth and is limited downwards by glacial till. Water level and electrical conductivity (EC) are permanently measured in different depths at eight locations in the peatland. First results indicate a general groundwater flow direction towards the sea. Electrical conductivity measurements suggest different permeabilities within the peat layer, depending on its thickness and degradation. Near the beach, EC fluctuates partially during storm events due to seawater intrusion and reverse discharge afterwards. The groundwater flow will be verified with a 3D model considering varying thicknesses of the aquifer. Permanent water level and electrical conductivity readings, meteorological data and hydraulic conductivity from slug tests and grain size analysis are the base for the calibration of the numerical model.

  20. Initial studies of submarine groundwater discharge in Mississippi coastal waters

    Science.gov (United States)

    Shiller, A. M.; Moore, W. S.; Joung, D. J.; Box, H.; Ho, P.; Whitmore, L. M.; Gilbert, M.; Anderson, H.

    2017-12-01

    Submarine groundwater discharge (SGD) is a critical component of coastal ecosystems, affecting biogeochemistry and productivity. The SGD flux and effect on the ecosystem of the Mississippi (MS) Bight has not previously been studied. We have determined Ba, δ18O of water, and Ra-isotopes, together with nutrients, chlorophyll, and dissolved oxygen (DO) during multiple cruises from fall 2015 to summer 2016. Water isotope distributions (δ18O) show that, although the MS River Delta bounds the western side of the Bight, nonetheless, Mobile Bay and other local rivers are the Bight's dominant freshwater sources. But elevated dissolved Ba and Ra isotopes cannot be explained by river input. Spatially, SGD in the MS Bight occurs over a wide area, with hot spots near the barrier islands (e.g., Chandeleurs, Horn and Dauphin Islands) and the mouth of Mobile Bay, probably in association with old buried river channels, or dredged ship channels. Based on their high concentrations in saline groundwaters sampled on the barrier islands, the elevated Ba and Ra in MS Bight water are likely due to SGD. In subsurface waters, long-lived Ra isotopes were negatively correlated with DO during spring and summer 2016, suggesting direct discharge of DO-depleted groundwater and/or accumulation of SGD-derived Ra and microbial DO consumption under strongly stratified conditions. Our ongoing study suggests that seasonal variability in flushing, water stratification, and SGD input play important roles in biological production and bottom water hypoxia in the MS Bight.

  1. Radon and radium isotopes trace groundwater discharge into the ocean

    International Nuclear Information System (INIS)

    Burnett, W.C.; Dulaiova, H.; Lambert, M.J.

    2002-01-01

    We construct a mass balance for radon to match inputs via groundwater discharge and diffusion from sediments with outputs via decay, atmospheric evasion, and mixing with offshore waters. The net change in inventory per unit time provides an estimate of the net flux after corrections are made for atmospheric loss. Minimum losses by mixing can be evaluated by use of observed negative net fluxes after other corrections are applied. After estimates for mixing are factored in, one can convert the derived total radon fluxes to water fluxes by dividing by the measured or estimated concentration of radon in the groundwater. This produced results comparable to more labour-intensive methods in recent intercomparison experiments

  2. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux in the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.

  3. Recharge and discharge calculations to characterize the groundwater hydrologic balance

    International Nuclear Information System (INIS)

    Liddle, R.G.

    1998-01-01

    Several methods are presented to quantify the ground water component of the hydrologic balance; including (1) hydrograph separation techniques, (2) water budget calculations, (3) spoil discharge techniques, and (4) underground mine inflow studies. Stream hydrograph analysis was used to calculate natural groundwater recharge and discharge rates. Yearly continuous discharge hydrographs were obtained for 16 watersheds in the Cumberland Plateau area of Tennessee. Baseflow was separated from storm runoff using computerized hydrograph analysis techniques developed by the USGS. The programs RECESS, RORA, and PART were used to develop master recession curves, calculate ground water recharge, and ground water discharge respectively. Station records ranged from 1 year of data to 60 years of data with areas of 0.67 to 402 square miles. Calculated recharge ranged from 7 to 28 inches of precipitation while ground water discharge ranged from 6 to 25 inches. Baseflow ranged from 36 to 69% of total flow. For sites with more than 4 years of data the median recharge was 20 inches/year and the 95% confidence interval for the median was 16.4 to 23.8 inches of recharge. Water budget calculations were also developed independently by a mining company in southern Tennessee. Results showed about 19 inches of recharge is available on a yearly basis. A third method used spoil water discharge measurements to calculate average recharge rate to the mine. Results showed 21.5 inches of recharge for this relatively flat area strip mine. In a further analysis it was shown that premining soil recharge rates of 19 inches consisted of about 17 inches of interflow and 2 inches of deep aquifer recharge while postmining recharge to the spoils had almost no interflow component. OSM also evaluated underground mine inflow data from northeast Tennessee and southeast Kentucky. This empirical data showed from 0.38 to 1.26 gallons per minute discharge per unit acreage of underground workings. This is the

  4. Groundwater Discharge to Upper Barataria Basin Driven by Mississippi River Stage

    Science.gov (United States)

    Cable, J. E.; Kim, J.; Johannesson, K. H.; Kolker, A.; Telfeyan, K.; Breaux, A.

    2017-12-01

    Groundwater flow into deltaic wetlands occurs despite the heterogeneous and anisotropic depositional environment of deltas. Along the Mississippi River this groundwater flow is augmented by the vast alluvial aquifer and the levees which confine the river to a zone much more narrow than the historical floodplain. The effect of the levees has been to force the river stage to as much as 10 m above the adjacent back-levee wetlands. Consequently, the head difference created by higher river stages can drive groundwater flow into these wetlands, especially during flood seasons. We measured Rn-222 in the surface waters of a bayou draining a bottomland hardwood swamp in the lower Mississippi River valley over a 14-month period. With a half-life of 3.83 days and its conservative geochemical behavior, Rn-222 is a well-known tracer for groundwater inputs in both fresh and marine environments. Transects from the mouth to the headwaters of the bayou were monitored for Rn-222 in real-time using Rad-7s on a semi-monthly basis. We found that Rn-222 decreased exponentially from the swamp at the headwaters to the mouth of the bayou. Using a mass balance approach, we calculated groundwater inputs to the bayou headwaters and compared these discharge estimates to variations in Mississippi River stage. Groundwater inputs to the Barataria Basin, Louisiana, represent a significant fraction of the freshwater budget of the basin. The flow appears to occur through the sandy Point Bar Aquifer that lies adjacent to the river and underlies many of the freshwater swamps of the Basin. Tracer measurements throughout the Basin in these swamp areas appear to confirm our hypothesis about the outlet for groundwater in this deltaic environment.

  5. Vadose zone monitoring plan using geophysical nuclear logging for radionuclides discharged to Hanford liquid waste disposal facilities

    International Nuclear Information System (INIS)

    Price, R.K.

    1995-11-01

    During plutonium production at Hanford, large quantities of hazardous and radioactive liquid effluent waste have been discharged to the subsurface (vadose zone). These discharges at over 330 liquid effluent disposal facilities (ie. cribs, ditches, and ponds) account for over 3,000,000 curies of radioactive waste released into the subsurface. It is estimated that 10% of the contaminants have reached the groundwater in many places. Continuing migration may further impact groundwater quality in the future. Through the RCRA Operational Monitoring Program, a Radionuclide Logging System (RLS) has been obtained by Hanford Technical Services (HTS) and enhanced to measure the distribution of contaminants and monitor radionuclide movement in existing groundwater and vadose zone boreholes. Approximately 100 wells are logged by HTS each year in this program. In some cases, movement has been observed years after discharges were terminated. A similar program is in place to monitor the vadose zone at the Tank Farms. This monitoring plan describes Hanford Programs for monitoring the movement of radioactive contamination in the vadose zone. Program background, drivers, and strategy are presented. The objective of this program is to ensure that DOE-RL is aware of any migration of contaminants in the vadose zone, such that groundwater can be protected and early actions can be taken as needed

  6. Seawater-groundwater exchange and nutrients carried by submarine groundwater discharge in different types of wetlands at Jiaozhou Bay, China

    Science.gov (United States)

    Qu, Wenjing; Li, Hailong; Huang, Hao; Zheng, Chunmiao; Wang, Chaoyue; Wang, Xuejing; Zhang, Yan

    2017-12-01

    In Jiaozhou Bay, there are four wetland types, including sandy beaches, mud flats, tidal marshes, and estuarine intertidal zones. Four typical transects representing each of the wetland types were selected to investigate the flow dynamics, seawater-groundwater exchange and nutrients carried by submarine groundwater discharge (SGD). Based on field measurements of groundwater heads and salinity along each transect, the SGD averaged over the observation period was estimated using generalized Darcy's law. The SGD along the four transects ranges from 3.6 × 10-3 to 7.6 cm/d with the maximum occurring at the sandy beach. The SGD rate has a good correlation with the hydraulic conductivities of the wetland sediments. There is a positive correlation between the ratio of NO3-N/DIN and SGD rates. The SGD-associated nutrient output rate ranges from 3.3 × 10-2 to 9.5 mmol/m2/d for DIN (dissolved inorganic nitrogen), and from 6.2 × 10-5 to 1.8 × 10-2 mmol/m2/d for DIP (dissolved inorganic phosphorus). Compared to the nutrients delivered by the river, nutrients carried by SGD provide a more important source for the phosphate-limited environment to plankton in Jiaozhou Bay.

  7. Seasonal variations in groundwater upwelling zones in a Danish lowland stream analyzed using Distributed Temperature Sensing (DTS)

    DEFF Research Database (Denmark)

    Matheswaran, Karthikeyan; Blemmer, Morten; Rosbjerg, Dan

    2014-01-01

    –night temperature difference were applied to three DTS datasets representing stream temperature responses to the variable meteorological and hydrological conditions prevailing in summer, winter and spring. The standard deviation criterion was useful to identify groundwater discharge zones in summer and spring......-term deployment covering variable meteorological and hydrological scenarios. Copyright © 2012 John Wiley & Sons, Ltd....

  8. Identifying Groundwater Discharge in the Merced River Basin, California Using Radon-222

    Science.gov (United States)

    Shaw, G. D.; Hudson, G. B.; Moran, J.; Conklin, M.

    2004-12-01

    Groundwater flow in fractured granite of the Sierra Nevada is poorly characterized, in particular, contributions of mountain block recharge are not known. Using a combination of water quality and isotopic analyses, groundwater inputs to the Upper Merced River were characterized. Between November 2003 and July 2004, monthly water quality samples were taken from Happy Isles to the inlet of Lake McClure, a 75 km reach. These samples demonstrated the expected dilution due to snowmelt in the spring. In the fall, the spatial profile matched the geology with anion concentrations increasing downstream of the transition from the Sierra Nevada batholith to the country rock, suggesting significant groundwater inputs. From July 19 to 21, 2004, radon-222 and other noble gases (He, Ne, Ar, Kr and Xe abundances and 3He/4He ratio) were measured along a 37 km reach of the Merced River, extending from the top of Yosemite Valley to the confluence of the South Fork of the Merced River. All radon samples were extracted into mineral oil immediately in the field and counted using liquid scintillation; noble gas samples were collected in copper tubes. Radon-222 activity varied from about 1 to 100 pCi/L (at collection time) indicating significant, spatially variable groundwater discharge into the Merced River. Two one-mile reaches of the Merced River were sampled for 222Rn on a fine scale. Large fracture sets in these two locations and previous temperature measurements suggested that groundwater discharge was higher relative to other locations along the river. Radon-222 activity was low upstream and downstream of large fractures observed in the bedrock; whereas, 222Rn activity was high at large fracture zones. Degassing is rapid downstream of fractures where no groundwater discharge is observed. For a representative groundwater end-member, radon-222 activity measured in Fern Spring, Yosemite Valley was about 1200 pCi/L. Excess 4He from U and Th decay is observed in samples with elevated

  9. Identification of groundwater prospective zones by using remote ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 114; Issue 5. Identification of groundwater prospective zones by using remote sensing and geoelectrical methods in Jharia and Raniganj coalfields, Dhanbad district, Jharkhand state. Basudeo Rai A Tiwari V S Dubey. Volume 114 Issue 5 October 2005 pp 515-522 ...

  10. Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.

    2014-01-01

    The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

  11. Strategies for implementing zero discharge in an industrial smelter : 1. Managing fluroide in groundwater

    Science.gov (United States)

    Stagnitti, F.; Salzman, S.; Thwaites, L.; Allinson, G.; Le Blanc, M.; Hill, J.; Doerr, S.; de Rooij, G.

    2003-04-01

    The Portland Aluminium smelter produces approximately 75 ML of process wastewater each year. This is combined with storm water runoff from the site to give an annual production of 715 ML. In common with many other smelters, this wastewater stream is currently discharged to the ocean. However, although the quality of the water Portland Aluminium discharges currently meets all Australian Environmental Protection Agency license requirements, this mode of release is unlikely to be acceptable in the near future, and alternative disposal options for the water are required. The Portland smelter has developed strategies which will enable it to achieve zero-discharge within 5 years. These strategies include separating process water from storm water, recycling storm water, construction of evaporation ponds to receive process water, irrigation of process water and storm water on lands within the site and maintenance of important wetland functions. The poster presents a summary of the management strategies currently being trialed and in particular focuses on modeling the spatial and temporal variations of fluoride found in the shallow groundwater and the implications of achieving zero-discharge. The poster also discusses the possible impacts on the distribution of fluoride and other solutes in the vadose zone by the irrigation of treated process water on blue-gum plantations. Computer simulations indicate that irrigation of process water (either treated or untreated) on the land poses no significant long-term threat to regional or surficial groundwater. However the impacts of increased solute transport through the vadose zone on changes in soil structure and nutrition require further investigation.

  12. Quantification of Groundwater Discharge in a Subalpine Stream Using Radon-222

    Directory of Open Access Journals (Sweden)

    Elizabeth Avery

    2018-01-01

    Full Text Available During the dry months of the water year in Mediterranean climates, groundwater influx is essential to perennial streams for sustaining ecosystem health and regulating water temperature. Predicted earlier peak flow due to climate change may result in decreased baseflow and the transformation of perennial streams to intermittent streams. In this study, naturally occurring radon-222 (222Rn was used as a tracer of groundwater influx to Martis Creek, a subalpine stream near Lake Tahoe, CA. Groundwater 222Rn is estimated based on measurements of 222Rn activity in nearby deep wells and springs. To determine the degassing constant (needed for quantification of water and gas flux, an extrinsic tracer, xenon (Xe, was introduced to the stream and monitored at eight downstream locations. The degassing constant for 222Rn is based on the degassing constant for Xe, and was determined to be 1.9–9.0 m/day. Applying a simple model in which stream 222Rn activity is a balance between the main 222Rn source (groundwater and sink (volatilization, the influx in reaches of the upstream portion of Martis Creek was calculated to be <1 to 15 m3/day/m, which cumulatively constitutes a significant portion of the stream discharge. Experiments constraining 222Rn emanation from hyporheic zone sediments suggest that this should be considered a maximum rate of influx. Groundwater influx is typically difficult to identify and quantify, and the method employed here is useful for identifying locations for focused stream flow measurements, for formulating a water budget, and for quantifying streamwater–groundwater interaction.

  13. Groundwater discharge in high-mountain watersheds: A valuable resource for downstream semi-arid zones. The case of the Bérchules River in Sierra Nevada (Southern Spain).

    Science.gov (United States)

    Jódar, Jorge; Cabrera, José Antonio; Martos-Rosillo, Sergio; Ruiz-Constán, Ana; González-Ramón, Antonio; Lambán, Luis Javier; Herrera, Christian; Custodio, Emilio

    2017-09-01

    Aquifers in permeable formations developed in high-mountain watersheds slow down the transfer of snowmelt to rivers, modifying rivers' flow pattern. To gain insight into the processes that control the hydrologic response of such systems the role played by groundwater in an alpine basin located at the southeastern part of the Iberian Peninsula is investigated. As data in these environments is generally scarce and its variability is high, simple lumped parameter hydrological models that consider the groundwater component and snow accumulation and melting are needed. Instead of using existing models that use many parameters, the Témez lumped hydrological model of common use in Spain and Ibero-American countries is selected and modified to consider snow to get a simplified tool to separate hydrograph components. The result is the TDD model (Témez-Degree Day) which is applied in a high mountain watershed with seasonal snow cover in Southern Spain to help in quantifying groundwater recharge and determining the groundwater contribution to the outflow. Average groundwater recharge is about 23% of the precipitation, and groundwater contribution to total outflow ranges between 70 and 97%. Direct surface runoff is 1% of precipitation. These values depend on the existence of snow. Results are consistent with those obtained with chloride atmospheric deposition mass balances by other authors. They highlight the important role of groundwater in high mountain areas, which is enhanced by seasonal snow cover. Results compare well with other areas. This effect is often neglected in water planning, but can be easily taken into account just by extending the water balance tool in use, or any other, following the procedure that has being developed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Delineation of submarine groundwater discharge (SGD) in a large-scaled reclaimed land

    Science.gov (United States)

    Lee, B.; Park, S.; Hwang, J.; Song, S.; Choi, J.; Nam, K.

    2010-12-01

    The Saemangeum reclaimed land in Korea is currently under construction for an eco-friendly multifunctional complex including agriculture, eco-tourism, business, and renewable energy industry. Regarding water supply for the reclaimed land, groundwater is the sustainable water resource and submarine groundwater discharge (SGD), subsurface fluids flowing from land to the sea, is considered as an alternative one. This study was conducted to identify SGD below a southeastern part of the reclaimed land and to delineate its pathway by investigating groundwater chemistry and electrical resistivity distribution of subsurface. Thirty four groundwater samples were collected from shallow agricultural wells placed along the past coast line (~5 km length) of the southeastern part in May and October, 2009. Field parameters including pH, EC, temperature, and ORP were measured using a portable multi-sensor and alkalinity by titration. They were analyzed for stable isotopes (δ18O and δ2H), cations (Na, K, Ca, Mg, Si, and NH4), anions (Cl, NO3, SO4, and PO4), and metals (Fe and Mn). Mean EC value was 1,163 µS/cm, corresponding to the appropriate crop growth because the criteria of crop yield is less 2,000 µS/cm. Stable isotopes results were plotted on the local meteoric water line, indicating lighter than those from sea water. It implied that the groundwater originated from inland precipitation and occurred as SGD along the coast line. From the groundwater compositions showing various water types including Na-HCO3, Ca-Cl, and Na-Cl, it could be concluded that small-scale SGD and seawater intrusion have great influences on the groundwater quality. From correlation analysis of EC-pH, Cl-HCO3, NO3-SO4, NO3-Cl, and (Fe, Mn)-NH4, spatial distributions of SGD were identified. A small catchment (0.2 km2) in the reclaimed land was selected to delineate a SGD flow path by two-dimensional electrical resistivity survey. The longitudinal and transverse lines were 760 and 275 m, respectively

  15. Groundwater discharge mapping at Altnabreac by thermal infrared linescan surveying

    International Nuclear Information System (INIS)

    Brereton, N.R.; Hall, D.H.

    1983-07-01

    A thermal infra-red linescan survey has been carried out of the area around Altnabreac, Caithness. The objectives of the survey were: to assess the applicability of the technique to the location of springs discharging from peat covered crystalline rocks; to provide the locations of springs for a subsequent geochemical sampling programme; and to gain clearer understanding of the ground water circulation patterns in the area. The number and distribution of springs located by the survey has proved to be far greater than had been previously anticipated and the capabilities of the technique have been clearly demonstrated. The results, together with other geochemical and hydrogeological data, indicate that the majority of the springs represent near surface recent groundwaters circulating within the moraine deposits and weathered granite. (author)

  16. Submarine groundwater discharge within a landslide scar at the French Mediterranean coast

    NARCIS (Netherlands)

    Oehler, Till; Mogollón, José M.; Moosdorf, Nils; Winkler, Andreas; Kopf, Achim; Pichler, Thomas

    2017-01-01

    Submarine groundwater discharge (SGD), the flow of fresh and saline groundwater from the seabed into the coastal ocean, has been intensively investigated in the recent years. This research has usually been restricted to shallow water and intertidal areas, whereas knowledge about groundwater seepage

  17. Submarine groundwater discharge into the coast revealed by water chemistry of man-made undersea liquefied petroleum gas cavern

    Science.gov (United States)

    Lee, Jin-Yong; Cho, Byung Wook

    2008-10-01

    SummaryThe occurrence of submarine groundwater discharge (SGD) as well as its supply of many nutrients and metals to coastal seawaters is now generally known. However, previous studies have focused on the chemical and radiological analysis of groundwater, surface seawater, shallow marine sediments and their pore waters, as well as the measurement of upward flow through the marine sediments, as end members of the discharge process. In this study, chemical and isotopic analysis results of marine subsurface waters are reported. These were obtained from deep boreholes of an undersea liquefied petroleum gas (LPG) storage cavern, located about 8 km off the western coast of Korea. The cavern is about 130-150 m below the sea bottom, which is covered by a 4.8-19.5 m silty clay stratum. An isotopic composition (δ 2H and δ 18O) of the marine subsurface waters falls on a mixing line between terrestrial groundwater and seawater. Vertical EC profiling at the cavern boreholes revealed the existence of a fresh water zone. An increase in the contents of ferrous iron and manganese and a decrease in levels of nitrate, bicarbonate and cavern seepage were recorded in August 2006, indicating a decreased submarine groundwater flux originating from land, mainly caused by an elevated cavern gas pressure. It is suggested in this study that the main source of fresh waters in the man-made undersea cavern is the submarine groundwater discharge mainly originating from the land.

  18. Comment on Origin of Groundwater Discharge at Fall River Springs

    Energy Technology Data Exchange (ETDEWEB)

    Rose, T

    2006-10-20

    I'm writing at the request of the Pit River Tribe to offer my professional opinion as a geochemist regarding the origin of groundwater discharge at the Fall River Springs, Shasta Co., California. In 1997, I conducted a study of the large volume cold springs associated with the Cascade Volcanoes in northern California, in collaboration with one of my colleagues. This work was published as a Lawrence Livermore National Laboratory report (Davisson and Rose, 1997). The Fall River Springs emerge from the distal end of the Giant Crater Lava Field, a laterally extensive basalt flow that stretches from the southern flank of Medicine Lake Volcano southward for a distance of 40 km. Both Medicine Lake Volcano and the Giant Crater Lava Field have virtually no surface water drainages. Precipitation that falls in these areas is inferred to seep into fractures in the rock, where it is carried down gradient under the force of gravity. Mean annual precipitation rates on Medicine Lake Volcano and the Giant Crater Lava field are adequate to account for the {approx}1200 ft{sup 3}/sec discharge of the Fall River Springs. To evaluate the origin of the springs using geochemical methods, water samples were collected from the Fall River Springs and the Medicine Lake highlands and analyzed for oxygen and hydrogen isotope ratios. The isotope ratios measured for a groundwater sample are diagnostic of the average composition of the precipitation from which the water was derived. The isotope ratios of rain and snow also vary systematically with elevation, such that groundwater derived from recharge at higher elevations can be distinguished from that which originated at lower elevations. The stable isotope data for the Fall River Springs are consistent with groundwater recharge on the Medicine Lake Volcano and adjacent lava field. Mass balance calculations suggest that approximately half of the Fall River Springs flow is derived from the volcanic edifice. Rose and Davisson (1996) showed

  19. The Role of Frozen Soil in Groundwater Discharge Predictions for Warming Alpine Watersheds

    Science.gov (United States)

    Evans, Sarah G.; Ge, Shemin; Voss, Clifford I.; Molotch, Noah P.

    2018-03-01

    Climate warming may alter the quantity and timing of groundwater discharge to streams in high alpine watersheds due to changes in the timing of the duration of seasonal freezing in the subsurface and snowmelt recharge. It is imperative to understand the effects of seasonal freezing and recharge on groundwater discharge to streams in warming alpine watersheds as streamflow originating from these watersheds is a critical water resource for downstream users. This study evaluates how climate warming may alter groundwater discharge due to changes in seasonally frozen ground and snowmelt using a 2-D coupled flow and heat transport model with freeze and thaw capabilities for variably saturated media. The model is applied to a representative snowmelt-dominated watershed in the Rocky Mountains of central Colorado, USA, with snowmelt time series reconstructed from a 12 year data set of hydrometeorological records and satellite-derived snow covered area. Model analyses indicate that the duration of seasonal freezing in the subsurface controls groundwater discharge to streams, while snowmelt timing controls groundwater discharge to hillslope faces. Climate warming causes changes to subsurface ice content and duration, rerouting groundwater flow paths but not altering the total magnitude of future groundwater discharge outside of the bounds of hydrologic parameter uncertainties. These findings suggest that frozen soil routines play an important role for predicting the future location of groundwater discharge in watersheds underlain by seasonally frozen ground.

  20. The role of frozen soil in groundwater discharge predictions for warming alpine watersheds

    Science.gov (United States)

    Evans, Sarah G.; Ge, Shemin; Voss, Clifford I.; Molotch, Noah P.

    2018-01-01

    Climate warming may alter the quantity and timing of groundwater discharge to streams in high alpine watersheds due to changes in the timing of the duration of seasonal freezing in the subsurface and snowmelt recharge. It is imperative to understand the effects of seasonal freezing and recharge on groundwater discharge to streams in warming alpine watersheds as streamflow originating from these watersheds is a critical water resource for downstream users. This study evaluates how climate warming may alter groundwater discharge due to changes in seasonally frozen ground and snowmelt using a 2‐D coupled flow and heat transport model with freeze and thaw capabilities for variably saturated media. The model is applied to a representative snowmelt‐dominated watershed in the Rocky Mountains of central Colorado, USA, with snowmelt time series reconstructed from a 12 year data set of hydrometeorological records and satellite‐derived snow covered area. Model analyses indicate that the duration of seasonal freezing in the subsurface controls groundwater discharge to streams, while snowmelt timing controls groundwater discharge to hillslope faces. Climate warming causes changes to subsurface ice content and duration, rerouting groundwater flow paths but not altering the total magnitude of future groundwater discharge outside of the bounds of hydrologic parameter uncertainties. These findings suggest that frozen soil routines play an important role for predicting the future location of groundwater discharge in watersheds underlain by seasonally frozen ground.

  1. Modelling groundwater discharge areas using only digital elevation models as input data

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars [Umeaa Univ. (Sweden). Dept. of Biology and Environmental Science

    2006-10-15

    Advanced geohydrological models require data on topography, soil distribution in three dimensions, vegetation, land use, bedrock fracture zones. To model present geohydrological conditions, these factors can be gathered with different techniques. If a future geohydrological condition is modelled in an area with positive shore displacement (say 5,000 or 10,000 years), some of these factors can be difficult to measure. This could include the development of wetlands and the filling of lakes. If the goal of the model is to predict distribution of groundwater recharge and discharge areas in the landscape, the most important factor is topography. The question is how much can topography alone explain the distribution of geohydrological objects in the landscape. A simplified description of the distribution of geohydrological objects in the landscape is that groundwater recharge areas occur at local elevation curvatures and discharge occurs in lakes, brooks, and low situated slopes. Areas in-between these make up discharge areas during wet periods and recharge areas during dry periods. A model that could predict this pattern only using topography data needs to be able to predict high ridges and future lakes and brooks. This study uses GIS software with four different functions using digital elevation models as input data, geomorphometrical parameters to predict landscape ridges, basin fill for predicting lakes, flow accumulations for predicting future waterways, and topographical wetness indexes for dividing in-between areas based on degree of wetness. An area between the village of and Forsmarks' Nuclear Power Plant has been used to calibrate the model. The area is within the SKB 10-metre Elevation Model (DEM) and has a high-resolution orienteering map for wetlands. Wetlands are assumed to be groundwater discharge areas. Five hundred points were randomly distributed across the wetlands. These are potential discharge points. Model parameters were chosen with the

  2. Modelling groundwater discharge areas using only digital elevation models as input data

    International Nuclear Information System (INIS)

    Brydsten, Lars

    2006-10-01

    Advanced geohydrological models require data on topography, soil distribution in three dimensions, vegetation, land use, bedrock fracture zones. To model present geohydrological conditions, these factors can be gathered with different techniques. If a future geohydrological condition is modelled in an area with positive shore displacement (say 5,000 or 10,000 years), some of these factors can be difficult to measure. This could include the development of wetlands and the filling of lakes. If the goal of the model is to predict distribution of groundwater recharge and discharge areas in the landscape, the most important factor is topography. The question is how much can topography alone explain the distribution of geohydrological objects in the landscape. A simplified description of the distribution of geohydrological objects in the landscape is that groundwater recharge areas occur at local elevation curvatures and discharge occurs in lakes, brooks, and low situated slopes. Areas in-between these make up discharge areas during wet periods and recharge areas during dry periods. A model that could predict this pattern only using topography data needs to be able to predict high ridges and future lakes and brooks. This study uses GIS software with four different functions using digital elevation models as input data, geomorphometrical parameters to predict landscape ridges, basin fill for predicting lakes, flow accumulations for predicting future waterways, and topographical wetness indexes for dividing in-between areas based on degree of wetness. An area between the village of and Forsmarks' Nuclear Power Plant has been used to calibrate the model. The area is within the SKB 10-metre Elevation Model (DEM) and has a high-resolution orienteering map for wetlands. Wetlands are assumed to be groundwater discharge areas. Five hundred points were randomly distributed across the wetlands. These are potential discharge points. Model parameters were chosen with the

  3. Groundwater/Vadose Zone Integration Project Management Plan

    International Nuclear Information System (INIS)

    Hughes, M. C.

    1999-01-01

    This Project Management Plan (PMP) defines the authorities, roles, and responsibilities of the US Department of Energy (DOE), Richland Operations Office (RL) and those contractor organizations participating in the Hanford Site' s Groundwater/Vadose Zone (GW/VZ) Integration Project. The PMP also describes the planning and control systems, business processes, and other management tools needed to properly and consistently conduct the Integration Project scope of work

  4. Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones

    Directory of Open Access Journals (Sweden)

    S. Peter

    2012-11-01

    Full Text Available For the design and the assessment of river restoration projects, it is important to know to what extent the elimination of reactive nitrogen (N can be improved in the riparian groundwater. We investigated the effectiveness of different riparian zones, characterized by a riparian vegetation succession, for nitrate (NO3 removal from infiltrating river water in a restored and a still channelized section of the river Thur, Switzerland. Functional genes of denitrification (nirS and nosZ were relatively abundant in groundwater from willow bush and mixed forest dominated zones, where oxygen concentrations remained low compared to the main channel and other riparian zones. After flood events, a substantial decline in NO3 concentration (> 50% was observed in the willow bush zone but not in the other riparian zones closer to the river. In addition, the characteristic enrichment of 15N and 18O in the residual NO3 pool (by up to 22‰ for δ15N and up to 12‰ for δ18O provides qualitative evidence that the willow bush and forest zones were sites of active denitrification and, to a lesser extent, NO3 removal by plant uptake. Particularly in the willow bush zone during a period of water table elevation after a flooding event, substantial input of organic carbon into the groundwater occurred, thereby fostering post-flood denitrification activity that reduced NO3 concentration with a rate of ~21 μmol N l−1 d−1. Nitrogen removal in the forest zone was not sensitive to flood pulses, and overall NO3 removal rates were lower (~6 μmol l−1 d−1. Hence, discharge-modulated vegetation–soil–groundwater coupling was found to be a key driver for riparian NO3 removal. We estimated that

  5. Nested-scale discharge and groundwater level monitoring to improve predictions of flow route discharges and nitrate loads

    Science.gov (United States)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.; van Geer, F. C.; Torfs, P. J. J. F.; de Louw, P. G. B.

    2010-10-01

    Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for predictions of catchment-scale discharge and nitrate loads. In order to relate field-site measurements to the catchment-scale an upscaling approach is introduced that assumes that scale differences in flow route fluxes originate from differences in the relationship between groundwater storage and the spatial structure of the groundwater table. This relationship is characterized by the Groundwater Depth Distribution (GDD) curve that relates spatial variation in groundwater depths to the average groundwater depth. The GDD-curve was measured for a single field site (0.009 km2) and simple process descriptions were applied to relate the groundwater levels to flow route discharges. This parsimonious model could accurately describe observed storage, tube drain discharge, overland flow and groundwater flow simultaneously with Nash-Sutcliff coefficients exceeding 0.8. A probabilistic Monte Carlo approach was applied to upscale field-site measurements to catchment scales by inferring scale-specific GDD-curves from hydrographs of two nested catchments (0.4 and 6.5 km2). The estimated contribution of tube drain effluent (a dominant source for nitrates) decreased with increasing scale from 76-79% at the field-site to 34-61% and 25-50% for both catchment scales. These results were validated by demonstrating that a model conditioned on nested-scale measurements simulates better nitrate loads and better predictions of extreme discharges during validation periods compared to a model that was conditioned on catchment discharge only.

  6. Persistence of uranium groundwater plumes: Contrasting mechanisms at two DOE sites in the groundwater-river interaction zone

    Science.gov (United States)

    Zachara, John M.; Long, Philip E.; Bargar, John; Davis, James A.; Fox, Patricia; Fredrickson, Jim K.; Freshley, Mark D.; Konopka, Allan E.; Liu, Chongxuan; McKinley, James P.; Rockhold, Mark L.; Williams, Kenneth H.; Yabusaki, Steve B.

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of

  7. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.

    Science.gov (United States)

    Zachara, John M; Long, Philip E; Bargar, John; Davis, James A; Fox, Patricia; Fredrickson, Jim K; Freshley, Mark D; Konopka, Allan E; Liu, Chongxuan; McKinley, James P; Rockhold, Mark L; Williams, Kenneth H; Yabusaki, Steve B

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of

  8. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring

    Science.gov (United States)

    Watlet, Arnaud; Kaufmann, Olivier; Triantafyllou, Antoine; Poulain, Amaël; Chambers, Jonathan E.; Meldrum, Philip I.; Wilkinson, Paul B.; Hallet, Vincent; Quinif, Yves; Van Ruymbeke, Michel; Van Camp, Michel

    2018-03-01

    Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL) site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT) monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets) and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1) upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2) deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3) a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of the sources of drip

  9. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring

    Directory of Open Access Journals (Sweden)

    A. Watlet

    2018-03-01

    Full Text Available Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1 upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2 deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3 a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of

  10. Effect of submarine groundwater discharge containing phosphate on coral calcification

    Science.gov (United States)

    Yasumoto, J.; Yasumoto, K.; Iijima, M.; Nozaki, M.; Asai, K.; Yasumoto, M. H.

    2017-12-01

    It is well known that the anthropogenic eutrophication enriched with various substances including phosphate in coastal waters has resulted in coral degradation. However, to the best of our knowledge, the phosphate threshold value to inhibit the coral calcification has been unclear, due to the unknown mechanisms involved in the inhibition of the calcification by phosphate. In island regions, groundwater is one of the most important clues to transport the nutrients contained in livestock or agricultural wastewaters. However, the actual conditions of coastal pollution with such nutrients have not been understood because of unperceived submarine groundwater discharge (SGD). In this study, to quantify of extremely rapid and localized SGD from Ryukyu limestone aquifer, we investigated the rate and concentration of phosphate of SGD using automated seepage mater in Yoron Island, which is located southern part of Japan. And, to elucidate the inhibition mechanisms for phosphate against coral calcification, we examined its effect on the bottom skeleton formation in primary polyps of Acropora digitifera by using the fluorescence derivatizing reagent having phosphate group (FITC-AA). As a result, the SGD was found to contain 1 to 2 µM of phosphate as much as the concentration in the coastal ground water under agricultural land. Moreover, the amount of phosphate contained in the surface layers of bottom calcareous sands close to the region of SGD were about 5 µmol/g. When the primary polyps were treated with 50 µM of FITC-AA, the bottom skeleton of the primary polyps showed the fluorescence from FITC-AA within a few minutes, suggesting the phosphate binding. Furthermore, when the polyps were treated with 10 µM of FITC-AA, irregular patterns of the elongated skeleton were observed. These results led us to conclude that phosphate is transported via a paracellular pathway to the subcalicoblastic extracellular calcifying medium. These results indicate that the phosphate adsorbed

  11. Assessment of groundwater recharge potential zone using GIS approach in Purworejo regency, Central Java province, Indonesia

    Science.gov (United States)

    Aryanto, Daniel Eko; Hardiman, Gagoek

    2018-02-01

    Floods and droughts in Purworejo regency are an indication of problems in groundwater management. The current development progress has led to land conversion which has an impact on the problem of water infiltration in Purworejo regency. This study aims to determine the distribution of groundwater recharge potential zones by using geographic information system as the basis for ground water management. The groundwater recharge potential zone is obtained by overlaying all the thematic maps that affect the groundwater infiltration. Each thematic map is weighted according to its effect on groundwater infiltration such as land-use - 25%, rainfall - 20%, litology - 20%, soil - 15%, slope - 10%, lineament - 5%, and river density - 5% to find groundwater recharge potential zones. The groundwater recharge potential zones thus obtained were divided into five categories, viz., very high, high, medium, low and very low zones. The results of this study may be useful for better groundwater planning and management.

  12. Estimates of Nutrient Loading by Ground-Water Discharge into the Lynch Cove Area of Hood Canal, Washington

    Science.gov (United States)

    Simonds, F. William; Swarzenski, Peter W.; Rosenberry, Donald O.; Reich, Christopher D.; Paulson, Anthony J.

    2008-01-01

    field investigations show that ground-water discharge into the Lynch Cove area of Hood Canal is highly dynamic and strongly affected by the large tidal range. In areas with a steep shoreline and steep hydraulic gradient, ground-water discharge is spatially concentrated in or near the intertidal zone, with increased discharge during low tide. Topographically flat areas with weak hydraulic gradients had more spatial variability, including larger areas of seawater recirculation and more widely dispersed discharge. Measured total-dissolved-nitrogen concentrations in ground water ranged from below detection limits to 2.29 milligrams per liter and the total load entering Lynch Cove was estimated to be approximately 98 ? 10.3 metric tons per year (MT/yr). This estimate is based on net freshwater seepage rates from Lee-type seepage meter measurements and can be compared to estimates derived from geochemical tracer mass balance estimates (radon and radium) of 231 to 749 MT/yr, and previous water-mass-balance estimates (14 to 47 MT/ yr). Uncertainty in these loading estimates is introduced by complex biogeochemical cycles of relevant nutrient species, the representativeness of measurement sites, and by energetic dynamics at the coastal aquifer-seawater interface caused by tidal forcing.

  13. Understanding the hydrologic impacts of wastewater treatment plant discharge to shallow groundwater: Before and after plant shutdown

    Science.gov (United States)

    Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.

    2016-01-01

    Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.

  14. Joint Calibration of Submarine Groundwater Discharge (SGD) with Tidal Pumping: Modeling Variable-density Groundwater Flow in Unconfined Coastal Aquifer of Apalachee Bay, Gulf of Mexico

    Science.gov (United States)

    Li, X.; Hu, B.; Burnett, W.; Santos, I.

    2008-05-01

    Submarine Groundwater Discharge (SGD) as an unseen phenomenon is now recognized as an important pathway between land and sea. These discharges typically display significant spatial and temporal variability making quantification difficult. Groundwater seepage is patchy, diffuse, and temporally variable, and thus makes the estimation of its magnitude and components is a challenging enterprise. A two-dimensional hydrogeological model is developed to the near-shore environment of an unconfined aquifer at a Florida coastal area in the northeastern Gulf of Mexico. Intense geological survey and slug tests are set to investigate the heterogeneity of this layered aquifer. By applying SEAWAT2000, considering the uncertainties caused by changes of boundary conditions, a series of variable-density-flow models incorporates the tidal-influenced seawater recirculation and the freshwater-saltwater mixing zone under the dynamics of tidal pattern, tidal amplitude and variation of water table. These are thought as the contributing factors of tidal pumping and hydraulic gradient which are the driven forces of SGD. A tidal-influenced mixing zone in the near-shore aquifer shows the importance of tidal mechanism to flow and salt transport in the process of submarine pore water exchange. Freshwater ratio in SGD is also analyzed through the comparison of Submarine Groundwater Recharge and freshwater inflow. The joint calibration with other methods (natural tracer model and seepage meter) is also discussed.

  15. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements

    International Nuclear Information System (INIS)

    Burnett, William C.; Dulaiova, Henrieta

    2003-01-01

    Submarine groundwater discharge (SGD) into the coastal zone has received increased attention in the last few years as it is now recognized that this process represents an important pathway for material transport. Assessing these material fluxes is difficult, as there is no simple means to gauge the water flux. To meet this challenge, we have explored the use of a continuous radon monitor to measure radon concentrations in coastal zone waters over time periods from hours to days. Changes in the radon inventories over time can be converted to fluxes after one makes allowances for tidal effects, losses to the atmosphere, and mixing with offshore waters. If one assumes that advective flow of radon-enriched groundwater (pore waters) represent the main input of 222 Rn in the coastal zone, the calculated radon fluxes may be converted to water fluxes by dividing by the estimated or measured 222 Rn pore water activity. We have also used short-lived radium isotopes ( 223 Ra and 224 Ra) to assess mixing between near-shore and offshore waters in the manner pioneered by . During an experiment in the coastal Gulf of Mexico, we showed that the mixing loss derived from the 223 Ra gradient agreed very favorably to the estimated range based on the calculated radon fluxes. This allowed an independent constraint on the mixing loss of radon--an important parameter in the mass balance approach. Groundwater discharge was also estimated independently by the radium isotopic approach and was within a factor of two of that determined by the continuous radon measurements and an automated seepage meter deployed at the same site

  16. Observations of nearshore groundwater discharge: Kahekili Beach Park submarine springs, Maui, Hawaii

    Science.gov (United States)

    Swarzenski, Peter W.; Dulai, H.; Kroeger, K.D.; Smith, C.G.; Dimova, N.; Storlazzi, C. D.; Prouty, N.G.; Gingerich, S.B.; Glenn, C. R.

    2016-01-01

    Study regionThe study region encompasses the nearshore, coastal waters off west Maui, Hawaii. Here abundant groundwater—that carries with it a strong land-based fingerprint—discharges into the coastal waters and over a coral reef.Study focusCoastal groundwater discharge is a ubiquitous hydrologic feature that has been shown to impact nearshore ecosystems and material budgets. A unique combined geochemical tracer and oceanographic time-series study addressed rates and oceanic forcings of submarine groundwater discharge at a submarine spring site off west Maui, Hawaii.New hydrological insights for the regionEstimates of submarine groundwater discharge were derived for a primary vent site and surrounding coastal waters off west Maui, Hawaii using an excess 222Rn (t1/2 = 3.8 d) mass balance model. Such estimates were complemented with a novel thoron (220Rn,t1/2 = 56 s) groundwater discharge tracer application, as well as oceanographic time series and thermal infrared imagery analyses. In combination, this suite of techniques provides new insight into the connectivity of the coastal aquifer with the near-shore ocean and examines the physical drivers of submarine groundwater discharge. Lastly, submarine groundwater discharge derived constituent concentrations were tabulated and compared to surrounding seawater concentrations. Such work has implications for the management of coastal aquifers and downstream nearshore ecosystems that respond to sustained constituent loadings via this submarine route.

  17. Analysis on groundwater evolution and interlayer oxidation zone position at the southern margin of Yilin basin

    International Nuclear Information System (INIS)

    Zhang Guanghui

    2007-01-01

    This paper discusses the development and evolution history of groundwater and its reworking to the interlayer oxidation zone, hydrogeochemical zonation of interlayer oxidation zone, mechanism of water-rock interaction and transportation pattern of uranium in the water in Yili Basin. It is suggested that groundwater is one of the important factors to control the development of interlayer oxidation zone and uranium mineralization. (authors)

  18. Focused groundwater discharge of phosphorus to a eutrophic seepage lake (Lake Væng, Denmark): implications for lake ecological state and restoration

    DEFF Research Database (Denmark)

    Kidmose, Jacob; Nilsson, Bertel; Engesgaard, Peter

    2013-01-01

    and borehole data. Discharge was found to be much focused and opposite to expected increase away from the shoreline. The average total phosphorus concentration in discharging groundwater sampled just beneath the lakebed was 0.162 mg TP/l and thereby well over freshwater ecological thresholds (0...... paths through the aquifer–lakebed interface either being overland flow through a seepage face, or focused in zones with very high discharge rates. In-lake springs have measured discharge of up to 7.45 m3 per m2 of lakebed per day. These findings were based on seepage meter measurements at 18 locations...

  19. Numerical and experimental investigations of submarine groundwater discharge to a coastal lagoon

    DEFF Research Database (Denmark)

    Haider, Kinza

    The main goal of this study is to understand and estimate the amount of submarine groundwater discharge into Ringkøbing Fjord from shallow and deep aquifer systems at the Eastern shoreline from Ringkøbing catchment in Western Denmark. In order to accomplish this objective, the study was initiated...... of the groundwater discharge occurred near the shoreline of the lagoon, but also off-shore discharge from deep confined aquifers system occurred at places where confining clay layers are eroded by buried valleys. The simulated fresh groundwater discharge was a non-negligible component, 59 % of recharge on the lagoon...... and 6 % of river input into the lagoon. This large-scale study was the motivation to conduct field investigation techniques in order to understand the dynamic processes in the near-shore environment. Field campaigns were conducted every two months in order to understand the seasonal groundwater...

  20. Observations of nearshore groundwater discharge: Kahekili Beach Park submarine springs, Maui, Hawaii

    Directory of Open Access Journals (Sweden)

    P.W. Swarzenski

    2017-06-01

    New hydrological insights for the region: Estimates of submarine groundwater discharge were derived for a primary vent site and surrounding coastal waters off west Maui, Hawaii using an excess 222Rn (t1/2 = 3.8 d mass balance model. Such estimates were complemented with a novel thoron (220Rn, t1/2 = 56 s groundwater discharge tracer application, as well as oceanographic time series and thermal infrared imagery analyses. In combination, this suite of techniques provides new insight into the connectivity of the coastal aquifer with the near-shore ocean and examines the physical drivers of submarine groundwater discharge. Lastly, submarine groundwater discharge derived constituent concentrations were tabulated and compared to surrounding seawater concentrations. Such work has implications for the management of coastal aquifers and downstream nearshore ecosystems that respond to sustained constituent loadings via this submarine route.

  1. Groundwater Discharge of Legacy Nitrogen to River Networks: Linking Regional Groundwater Models to Streambed Groundwater-Surface Water Exchange and Nitrogen Processing

    Science.gov (United States)

    Barclay, J. R.; Helton, A. M.; Briggs, M. A.; Starn, J. J.; Hunt, A.

    2017-12-01

    Despite years of management, excess nitrogen (N) is a pervasive problem in many aquatic ecosystems. More than half of surface water in the United States is derived from groundwater, and widespread N contamination in aquifers from decades of watershed N inputs suggest legacy N discharging from groundwater may contribute to contemporary N pollution problems in surface waters. Legacy N loads to streams and rivers are controlled by both regional scale flow paths and fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients that occur at stream bed interfaces. Adequately incorporating these disparate scales is a challenge, but it is essential to understanding legacy N transport and making informed management decisions. We developed a regional groundwater flow model for the Farmington River, a HUC-8 basin that drains to the Long Island Sound, a coastal estuary that suffers from elevated N loads despite decades of management, to understand broad patterns of regional transport. To evaluate and refine the regional model, we used thermal infrared imagery paired with vertical temperature profiling to estimate groundwater discharge at the streambed interface. We also analyzed discharging groundwater for multiple N species to quantify fine scale patterns of N loading and transformation via denitrification at the streambed interface. Integrating regional and local estimates of groundwater discharge of legacy N to river networks should improve our ability to predict spatiotemporal patterns of legacy N loading to and transformation within surface waters.

  2. Vadose Zone Nitrate Transport Dynamics Resulting from Agricultural Groundwater Banking

    Science.gov (United States)

    Murphy, N. P.; McLaughlin, S.; Dahlke, H. E.

    2017-12-01

    In recent years, California's increased reliance on groundwater resources to meet agricultural and municipal demands has resulted in significant overdraft and water quality issues. Agricultural groundwater banking (AGB) has emerged as a promising groundwater replenishment opportunity in California; AGB is a form of managed aquifer recharge where farmland is flooded during the winter using excess surface water in order to recharge the underlying groundwater. Suitable farmland that is connected to water delivery systems is available for AGB throughout the Central Valley. However, questions remain how AGB could be implemented on fertilized agricultural fields such that nitrate leaching from the root zone is minimized. Here, we present results from field and soil column studies that investigate the transport dynamics of nitrogen in the root and deeper vadose zone during flooding events. We are specifically interested in estimating how timing and duration of flooding events affect percolation rates, leaching and nitrification/denitrification processes in three soil types within the Central Valley. Laboratory and field measurements include nitrogen (NO3-, NH4+, NO2-, N2O), redox potentials, total organic carbon, dissolved oxygen, moisture content and EC. Soil cores are collected in the field before and after recharge events up to a depth of 4m, while other sensors monitor field conditions continuously. Preliminary results from the three field sites show that significant portions of the applied floodwater (12-62 cm) infiltrated below the root zone: 96.1% (Delhi), 88.6% (Modesto) and 76.8% (Orland). Analysis of the soil cores indicate that 70% of the residual nitrate was flushed from the sandy soil, while the fine sandy loam showed only a 5% loss and in some cores even an increase in soil nitrate (in the upper 20cm). Column experiments support these trends and indicate that increases in soil nitrate in the upper root zone might be due to organic nitrogen mineralization and

  3. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    Science.gov (United States)

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Mathew; Clark, Jordan F.

    2018-01-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  4. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    Science.gov (United States)

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Matthew; Clark, Jordan F.

    2018-02-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  5. Initial site characterisation of a dissolved hydrocarbon groundwater plume discharging to a surface water environment

    International Nuclear Information System (INIS)

    Westbrook, S.J.; Commonwealth Scientific and Industrial Research Organisation Land and Water, Wembley, WA; Davis, G.B.; Rayner, J.L.; Fisher, S.J.; Clement, T.P.

    2000-01-01

    Preliminary characterisation of a dissolved hydrocarbon groundwater plume flowing towards a tidally- and seasonally-forced estuarine system has been completed at a site in Perth, Western Australia. Installation and sampling of multiport boreholes enabled fine scale (0.5-m) vertical definition of hydrocarbon concentrations. Vertical electrical conductivity profiles from multiport and spear probe sampling into the river sediments indicated that two groundwater/river water interfaces or dispersion zones are present: (a) an upper dispersion zone between brackish river water and groundwater, and (b) a lower interface between groundwater and deeper saline water. On-line water level loggers show that near-shore groundwater levels are also strongly influence by tidal oscillation. Results from the initial site characterisation will be used to plan further investigations of contaminated groundwater/surface water interactions and the biodegradation processes occurring at the site

  6. Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error

    Science.gov (United States)

    Christensen, N. K.; Minsley, B. J.; Christensen, S.

    2017-02-01

    We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.

  7. Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error

    Science.gov (United States)

    Christensen, Nikolaj K; Minsley, Burke J.; Christensen, Steen

    2017-01-01

    We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.

  8. Geophysical and hydrogeological characterisation of the impacts of on-site wastewater treatment discharge to groundwater in a poorly productive bedrock aquifer

    International Nuclear Information System (INIS)

    Donohue, Shane; McCarthy, Valerie; Rafferty, Patrick; Orr, Alison; Flynn, Raymond

    2015-01-01

    Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100 m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar

  9. Geophysical and hydrogeological characterisation of the impacts of on-site wastewater treatment discharge to groundwater in a poorly productive bedrock aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, Shane [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland (United Kingdom); McCarthy, Valerie; Rafferty, Patrick [Department of Applied Sciences, Dundalk Institute of Technology, Dublin Road, Dundalk (Ireland); Orr, Alison; Flynn, Raymond [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland (United Kingdom)

    2015-08-01

    Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100 m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar

  10. Determining flow, recharge, and vadose zone drainage in an unconfined aquifer from groundwater strontium isotope measurements, Pasco Basin, WA

    International Nuclear Information System (INIS)

    2004-01-01

    Strontium isotope compositions (87Sr/86Sr) measured in groundwater samples from 273 wells in the Pasco Basin unconfined aquifer below the Hanford Site show large and systematic variations that provide constraints on groundwater recharge, weathering rates of the aquifer host rocks, communication between unconfined and deeper confined aquifers, and vadose zone-groundwater interaction. The impact of millions of cubic meters of wastewater discharged to the vadose zone (103-105 times higher than ambient drainage) shows up strikingly on maps of groundwater 87Sr/86Sr. Extensive access through the many groundwater monitoring wells at the site allows for an unprecedented opportunity to evaluate the strontium geochemistry of a major aquifer, hosted primarily in unconsolidated sediments, and relate it to both long term properties and recent disturbances. Groundwater 87Sr/86Sr increases systematically from 0.707 to 0.712 from west to east across the Hanford Site, in the general direction of groundwater flow, as a result of addition of Sr from the weathering of aquifer sediments and from diffuse drainage through the vadose zone. The lower 87Sr/86Sr groundwater reflects recharge waters that have acquired Sr from Columbia River Basalts. Based on a steady-state model of Sr reactive transport and drainage, there is an average natural drainage flux of 0-1.4 mm/yr near the western margin of the Hanford Site, and ambient drainage may be up to 30 mm/yr in the center of the site assuming an average bulk rock weathering rate of 10-7.5 g/g/yr

  11. Nested-scale discharge and groundwater level monitoring to improve predictions of flow route discharges and nitrate loads

    NARCIS (Netherlands)

    Velde, Y. van der; Rozemeijer, J.C.; Rooij, G.H.de; Geer, F.C. van; Torfs, P.J.J.F.; Louw, P.G.B. de

    2010-01-01

    Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for predictions of catchment-scale

  12. Radon as an indicator of submarine groundwater discharge in coastal regions

    International Nuclear Information System (INIS)

    Jacob, Noble; Shivanna, K.; Suresh Babu, D.S.

    2009-01-01

    This article reviews the various available methodologies to estimate submarine groundwater discharge (SGD) and demonstrates the utility of radon with a case study. An attempt has been made to identify the existence of submarine groundwater discharge (SGD) and semi-quantitatively estimate its rate in the coastal area of Vizhinjam, Thiruvananthapuram, Kerala. Natural 222 Rn (half-life = 3.8 days) was used as a tracer of SGD because of its conservative nature, short half-life, easiness in measurement and high abundance in groundwater. As in situ radon ( 222 Rn) monitoring study conducted in this region indicated comparatively higher 222 Rn activities (average 14.1±1.7 Bq/m 3 ) in the coastal waters revealing significant submarine groundwater discharge. The SGD may be a combination of fresh groundwater and recirculated seawater that is controlled by the hydraulic gradient in the adjacent aquifer and varying tidal conditions in the coastal waters. Using a transient 222 Rn mass balance model for the coastal waters, SGD rates were computed and the average value was found to be 10.9±6.1 cm/day. These estimates are comparable with those reported in the literature. In general, identification and estimation of submarine groundwater discharge is important in the Indian context because of the possibility of large amounts of groundwater loss through its long coastline, that can be judiciously exploited to cater to the present water requirements for drinking and irrigation purposes. (author)

  13. Identification of groundwater discharge in Cuddalore coast, Tamil Nadu using radium isotopes

    International Nuclear Information System (INIS)

    Diksha Chawla; Noble Jacob; Mohokar, H.V.

    2014-01-01

    For the optimal exploitation and management of coastal aquifers of Tamil Nadu, it is essential to evaluate the groundwater outflow into the sea also called as submarine groundwater discharge. In this study, radium isotopes ( 223,224 Ra) were employed to understand the groundwater discharge in coastal areas of Cuddalore district, Tamil Nadu. Sea water samples (100 L) were collected from various locations of Cuddalore coast in October 2011 and passed through Mn-impregnated acrylic fiber columns. These acrylic columns were analyzed for 223,224 Ra activities using radium delayed coincidence counter. The observed higher activities of 223,224 Ra excess (0.02 ± 0.001-3.28 ± 0.16 and 64 ± 3-380 ± 19 mBq/100 L respectively) indicate that groundwater discharge occurs in this coastal region. (author)

  14. Coastal Zone Hazards Related to Groundwater-Surface Water Interactions and Groundwater Flooding

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2009-12-01

    Worldwide, as many as half a million people have died in natural and man-made disasters since the turn of the 21st century (Wirtz, 2008). Further, natural and man-made hazards can lead to extreme financial losses (Elsner et al, 2009). Hazards, hydrological and geophysical risk analysis related to groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of its significance. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models (Geist and Parsons, 2006), and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health (Glantz, 2007). In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction. This paper proposes consideration of two case studies which are important and significant for future development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone (Zavialov, 2005). It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered

  15. Identification of discharge zones and quantification of contaminant mass discharges into a local stream from a landfill in a heterogeneous geologic setting

    DEFF Research Database (Denmark)

    Milosevic, Nemanja; Thomsen, Nanna Isbak; Juhler, R.K.

    2012-01-01

    Contaminants from Risby Landfill (Denmark) are expected to leach through the underlying geologic strata and eventually reach the local Risby Stream. Identification of the groundwater discharge zone was conducted systematically by an array of methods including studies on site geology and hydrogeol...... for landfill sites so the approaches and findings from Risby Landfill can be applied to other landfill sites. The study highlights that landfills may pose a risk to surface waters and future studies should be directed towards evaluation of both chemical and ecological risk....

  16. A Modified Water-Table Fluctuation Method to Characterize Regional Groundwater Discharge

    Directory of Open Access Journals (Sweden)

    Lihong Yang

    2018-04-01

    Full Text Available A modified Water-Table Fluctuation (WTF method is developed to quantitatively characterize the regional groundwater discharge patterns in stressed aquifers caused by intensive agricultural pumping. Two new parameters are defined to express the secondary information in the observed data. One is infiltration efficiency and the other is discharge modulus (recurring head loss due to aquifer discharge. An optimization procedure is involved to estimate these parameters, based on continuous groundwater head measurements and precipitation records. Using the defined parameters and precipitation time series, water level changes are calculated for individual wells with fidelity. The estimated parameters are then used to further address the characterization of infiltration and to better quantify the discharge at the regional scale. The advantage of this method is that it considers recharge and discharge simultaneously, whereas the general WTF methods mostly focus on recharge. In the case study, the infiltration efficiency reveals that the infiltration is regionally controlled by the intrinsic characteristics of the aquifer, and locally distorted by engineered hydraulic structures that alter surface water-groundwater interactions. The seasonality of groundwater discharge is characterized by the monthly discharge modulus. These results from individual wells are clustered into groups that are consistent with the local land use pattern and cropping structures.

  17. Sources of Magmatic Volatiles Discharging from Subduction Zone Volcanoes

    Science.gov (United States)

    Fischer, T.

    2001-05-01

    Subduction zones are locations of extensive element transfer from the Earth's mantle to the atmosphere and hydrosphere. This element transfer is significant because it can, in some fashion, instigate melt production in the mantle wedge. Aqueous fluids are thought to be the major agent of element transfer during the subduction zone process. Volatile discharges from passively degassing subduction zone volcanoes should in principle, provide some information on the ultimate source of magmatic volatiles in terms of the mantle, the crust and the subducting slab. The overall flux of volatiles from degassing volcanoes should be balanced by the amount of volatiles released from the mantle wedge, the slab and the crust. Kudryavy Volcano, Kurile Islands, has been passively degassing at 900C fumarole temperatures for at least 40 years. Extensive gas sampling at this basaltic andesite cone and application of CO2/3He, N2/3He systematics in combination with C and N- isotopes indicates that 80% of the CO2 and approximately 60% of the N 2 are contributed from a sedimentary source. The mantle wedge contribution for both volatiles is, with 12% and 17% less significant. Direct volatile flux measurements from the volcano using the COSPEC technique in combination with direct gas sampling allows for the calculation of the 3He flux from the volcano. Since 3He is mainly released from the astenospheric mantle, the amount of mantle supplying the 3He flux can be determined if initial He concentrations of the mantle melts are known. The non-mantle flux of CO2 and N2 can be calculated in similar fashion. The amount of non-mantle CO2 and N2 discharging from Kudryavy is balanced by the amount of CO2 and N2 subducted below Kudryavy assuming a zone of melting constrained by the average spacing of the volcanoes along the Kurile arc. The volatile budget for Kudryavy is balanced because the volatile flux from the volcano is relatively small (75 t/day (416 Mmol/a) SO2, 360 Mmol/a of non-mantle CO2 and

  18. Characterising and modelling groundwater discharge in anagricultural wetland on the French Atlantic coast

    Directory of Open Access Journals (Sweden)

    Ph. Weng

    2003-01-01

    Full Text Available Interaction between a wetland and its surrounding aquifer was studied in the Rochefort agricultural marsh (150 km2. Groundwater discharge in the marsh was measured with a network of nested piezometers. Hydrological modelling of the wetland showed that a water volume of 770,000 m3 yr–1 is discharging into the marsh, but that this water flux essentially takes place along the lateral borders of the wetland. However, this natural discharge volume represents only 20% of the artificial freshwater injected each year into the wetland to maintain the water level close to the soil surface. Understanding and quantifying the groundwater component in wetland hydrology is crucial for wetland management and conservation. Keywords: wetland, hydrology, groundwater, modelling, marsh

  19. Evapotranspiration Dynamics and Effects on Groundwater Recharge and Discharge at the Tuba City, Arizona, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-01

    The U.S. Department of Energy Office of Legacy Management is evaluating groundwater flow and contaminant transport at a former uranium mill site near Tuba City, Arizona. We estimated effects of temporal and spatial variability in evapotranspiration (ET) on recharge and discharge within a groundwater model domain (GMD) as part of this evaluation. We used remote sensing algorithms and precipitation (PPT) data to estimate ET and the ET/PPT ratios within the 3531 hectare GMD. For the period from 2000 to 2012, ET and PPT were nearly balanced (129 millimeters per year [mm yr-1] and 130 mm yr-1, respectively; ET/PPT = 0.99). However, seasonal and annual variability in ET and PPT were out of phase, and spatial variability in vegetation differentiated discharge and recharge areas within the GMD. Half of ET occurred during spring and early summer when PPT was low, and about 70% of PPT arriving in fall and winter was discharged as plant transpiration in the spring and summer period. Vegetation type and health had a significant effect on the site water balance. Plant cover and ET were significantly higher (1) during years of lighter compared to years of heavier grazing pressure, and (2) on rangeland protected from grazing compared to rangeland grazed by livestock. Heavy grazing increased groundwater recharge (PPT > ET over the 13-year period). Groundwater discharge (ET > PPT over the 13-year period) was highest in riparian phreatophyte communities but insignificant in desert phreatophyte communities impacted by heavy grazing. Grazing management in desert upland and phreatophyte communities may result in reduced groundwater recharge, increased groundwater discharge, and could be used to influence local groundwater flow.

  20. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    International Nuclear Information System (INIS)

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992

  1. Evidence of terrestrial discharge of deep groundwater on the Canadian Shield from helium in soil gases

    International Nuclear Information System (INIS)

    Gascoyne, M.; Sheppard, M.I.

    1993-01-01

    Assessment of the impact of deep geological disposal of nuclear fuel wastes at a site in the Canadian Shield requires knowledge of the location and size of areas of discharge of deep groundwater from the vicinity of the underground disposal vault. A strong He anomaly has been detected in soil gases in a 10 X 10 m area of wetland on the banks of Boggy Creek, near Lac du Bonnet, Manitoba. The area has He concentrations in near-surface soils as high as 360 nL·L -1 and is assumed to indicate discharge of He-rich groundwater through a permeable subsurface bedrock fracture. Elevated Cl - concentrations in groundwater and its use as a open-quotes deer lickclose quotes support this interpretation. A He flux density of ∼ 2.1 L·m -2 ·a -1 is determined from a depth profile of He concentrations at one location in the site. A total He flux of 270 L·a -1 is determined for the entire site, which corresponds to a deep groundwater discharge of about 26 000 L·a -1 . This estimate is comparable with He fluxes and calculated groundwater discharges for two other lake-bottom locations on the Canadian Shield. 26 refs., 6 figs., 1 tab

  2. Influence Of Groundwater Discharge On Arsenic Contamination In Sediments

    Science.gov (United States)

    A field investigation was conducted to evaluate the impact of a discharging arsenic plume on sediment contaminant characteristics at a site adjacent to a landfill in northeastern Massachusetts. Site characterization included assessment of the hydrologic and chemical samples coll...

  3. Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222

    Science.gov (United States)

    Dimova, N.T.; Burnett, W.C.

    2011-01-01

    In order to evaluate groundwater discharge into small lakes we constructed a model that is based on the budget of 222Rn (radon t1/2 5 3.8 d) as a tracer. The main assumptions in our model are that the lake's waters are wellmixed horizontally and vertically; the only significant 222Rn source is via groundwater discharge; and the only losses are due to decay and atmospheric evasion. In order to evaluate the groundwater-derived 222Rn flux, we monitored the 222Rn concentration in lake water over periods long enough (usually 1-3 d) to observe changes likely caused by variations in atmospheric exchange (primarily a function of wind speed and temperature). We then attempt to reproduce the observed record by accounting for decay and atmospheric losses and by estimating the total 222Rn input flux using an iterative approach. Our methodology was tested in two lakes in central Florida: one of which is thought to have significant groundwater inputs (Lake Haines) and another that is known not to have any groundwater inflows but requires daily groundwater augmentation from a deep aquifer (Round Lake). Model results were consistent with independent seepage meter data at both Lake Haines (positive seepage of ??? 1.6 ?? 104 m3 d-1 in Mar 2008) and at Round Lake (no net groundwater seepage). ?? 2011, by the American Society of Limnology and Oceanography, Inc.

  4. Arid-zone groundwater recharge and palaeorecharge: insights from the radioisotope chlorine-36

    International Nuclear Information System (INIS)

    Jacobson, G.; Wischusen, J.; Cresswell, R.; Fifield, K.

    1998-01-01

    AGSO's collaborative 'Western water' study of groundwater resources in Aboriginal lands in the southwest Northern Territory arid zone, has applied the radioisotope 36 CI and 14 C to investigate the sustainability of community water supplies drawn from shallow aquifers in the Papunya-Kintore-Yuendumu area. The 36 CI results have important implications for groundwater management throughout the arid zone, because substantial recharge occurs only during favourable, wet, interglacial climatic regimes. this has important implications for groundwater management in this area and elsewhere in central Australia, where most of the community water supplies depend on 'old' stored groundwater

  5. Numerical modeling for saturated-zone groundwater travel time analysis at Yucca Mountain

    International Nuclear Information System (INIS)

    Arnold, B.W.; Barr, G.E.

    1996-01-01

    A three-dimensional, site-scale numerical model of groundwater flow in the saturated zone at Yucca Mountain was constructed and linked to particle tracking simulations to produce an estimate of the distribution of groundwater travel times from the potential repository to the boundary of the accessible environment. This effort and associated modeling of groundwater travel times in the unsaturated zone were undertaken to aid in the evaluation of compliance of the site with 10CFR960. These regulations stipulate that pre-waste-emplacement groundwater travel time to the accessible environment shall exceed 1,000 years along any path of likely and significant radionuclide travel

  6. Groundwater discharge by evapotranspiration, flow of water in unsaturated soil, and stable isotope water sourcing in areas of sparse vegetation, Amargosa Desert, Nye County, Nevada

    Science.gov (United States)

    Moreo, Michael T.; Andraski, Brian J.; Garcia, C. Amanda

    2017-08-29

    This report documents methodology and results of a study to evaluate groundwater discharge by evapotranspiration (GWET) in sparsely vegetated areas of Amargosa Desert and improve understanding of hydrologic-continuum processes controlling groundwater discharge. Evapotranspiration and GWET rates were computed and characterized at three sites over 2 years using a combination of micrometeorological, unsaturated zone, and stable-isotope measurements. One site (Amargosa Flat Shallow [AFS]) was in a sparse and isolated area of saltgrass (Distichlis spicata) where the depth to groundwater was 3.8 meters (m). The second site (Amargosa Flat Deep [AFD]) was in a sparse cover of predominantly shadscale (Atriplex confertifolia) where the depth to groundwater was 5.3 m. The third site (Amargosa Desert Research Site [ADRS]), selected as a control site where GWET is assumed to be zero, was located in sparse vegetation dominated by creosote bush (Larrea tridentata) where the depth to groundwater was 110 m.Results indicated that capillary rise brought groundwater to within 0.9 m (at AFS) and 3 m (at AFD) of land surface, and that GWET rates were largely controlled by the slow but relatively persistent upward flow of water through the unsaturated zone in response to atmospheric-evaporative demands. Greater GWET at AFS (50 ± 20 millimeters per year [mm/yr]) than at AFD (16 ± 15 mm/yr) corresponded with its shallower depth to the capillary fringe and constantly higher soil-water content. The stable-isotope dataset for hydrogen (δ2H) and oxygen (δ18O) illustrated a broad range of plant-water-uptake scenarios. The AFS saltgrass and AFD shadscale responded to changing environmental conditions and their opportunistic water use included the time- and depth-variable uptake of unsaturated-zone water derived from a combination of groundwater and precipitation. These results can be used to estimate GWET in other areas of Amargosa Desert where hydrologic conditions are similar.

  7. Weekly variations of discharge and groundwater quality caused by intermittent water supply in an urbanized karst catchment

    Science.gov (United States)

    Grimmeisen, Felix; Zemann, Moritz; Goeppert, Nadine; Goldscheider, Nico

    2016-06-01

    Leaky sewerage and water distribution networks are an enormous problem throughout the world, specifically in developing countries and regions with water scarcity. Especially in many arid and semi-arid regions, intermittent water supply (IWS) is common practice to cope with water shortage. This study investigates the combined influence of urban activities, IWS and water losses on groundwater quality and discusses the implications for water management. In the city of As-Salt (Jordan), local water supply is mostly based on groundwater from the karst aquifer that underlies the city. Water is delivered to different supply zones for 24, 48 or 60 h each week with drinking water losses of around 50-60%. Fecal contamination in groundwater, mostly originating from the likewise leaky sewer system is a severe challenge for the local water supplier. In order to improve understanding of the local water cycle and contamination dynamics in the aquifer beneath the city, a down gradient spring and an observation well were chosen to identify contaminant occurrence and loads. Nitrate, Escherichia coli, spring discharge and the well water level were monitored for 2 years. Autocorrelation analyses of time series recorded during the dry season revealed weekly periodicity of spring discharge (45 ± 3.9 L s-1) and NO3-N concentrations (11.4 ± 0.8 mg L-1) along with weekly varying E. coli levels partly exceeding 2.420 MPN 100 mL-1. Cross-correlation analyses demonstrate a significant and inverse correlation of nitrate and discharge variations which points to a periodic dilution of contaminated groundwater by freshwater from the leaking IWS being the principal cause of the observed fluctuations. Contaminant inputs from leaking sewers appear to be rather constant. The results reveal the distinct impact of leaking clean IWS on the local groundwater and subsequently on the local water supply and therefore demonstrate the need for action regarding the mitigation of groundwater contamination and

  8. Is Groenvlei really fed by groundwater discharged from the Table ...

    African Journals Online (AJOL)

    2009-05-15

    May 15, 2009 ... Vankervelsvlei is a unique wetland located in the stabilised dunes east of Sedgefield. Groenvlei is one of a series of 5 brack- ish coastal lakes along the Southern Cape coast of South Africa, but is the only one disconnected from the sea. It has been hypothesised that discharge from the underlying Table ...

  9. Is Groenvlei really fed by groundwater discharged from the Table ...

    African Journals Online (AJOL)

    Vankervelsvlei is a unique wetland located in the stabilised dunes east of Sedgefield. Groenvlei is one of a series of 5 brackish coastal lakes along the Southern Cape coast of South Africa, but is the only one disconnected from the sea. It has been hypothesised that discharge from the underlying Table Mountain Group ...

  10. Phytoscreening for vinyl chloride in groundwater discharging to a stream

    DEFF Research Database (Denmark)

    Ottosen, Cecilie Bang; Rønde, Vinni Kampman; Trapp, Stefan

    2018-01-01

    and hence different uptake/loss scenarios. Vinyl chloride (VC) as well as cis-dichloroethylene (cis-DCE), trichloroethylene (TCE), and tetrachloroethylene (PCE) were detected in the trees, documenting that phytoscreening is a viable method to locate chlorinated ethene plumes, including VC, discharging...

  11. Empirical quantification of lacustrine groundwater discharge - different methods and their limitations

    Science.gov (United States)

    Meinikmann, K.; Nützmann, G.; Lewandowski, J.

    2015-03-01

    Groundwater discharge into lakes (lacustrine groundwater discharge, LGD) can be an important driver of lake eutrophication. Its quantification is difficult for several reasons, and thus often neglected in water and nutrient budgets of lakes. In the present case several methods were applied to determine the expansion of the subsurface catchment, to reveal areas of main LGD and to identify the variability of LGD intensity. Size and shape of the subsurface catchment served as a prerequisite in order to calculate long-term groundwater recharge and thus the overall amount of LGD. Isotopic composition of near-shore groundwater was investigated to validate the quality of catchment delineation in near-shore areas. Heat as a natural tracer for groundwater-surface water interactions was used to find spatial variations of LGD intensity. Via an analytical solution of the heat transport equation, LGD rates were calculated from temperature profiles of the lake bed. The method has some uncertainties, as can be found from the results of two measurement campaigns in different years. The present study reveals that a combination of several different methods is required for a reliable identification and quantification of LGD and groundwater-borne nutrient loads.

  12. Nitrate retention in a sand plains stream and the importance of groundwater discharge

    Science.gov (United States)

    Robert S. Stelzer; Damion R. Drover; Susan L. Eggert; Maureen A. Muldoon

    2011-01-01

    We measured net nitrate retention by mass balance in a 700-m upwelling reach of a third-order sand plains stream, Emmons Creek, from January 2007 to November 2008. Surface water and ground-water fluxes of nitrate were determined from continuous records of discharge and from nitrate concentrations based on weekly and biweekly sampling at three surface water stations and...

  13. Autonomous long-term gamma-spectrometric monitoring of submarine groundwater discharge trends in Hawaii

    Czech Academy of Sciences Publication Activity Database

    Dulai, H.; Kameník, Jan; Waters, C. A.; Kennedy, J.; Babinec, J.; Jolly, J.; Williamson, M.

    2016-01-01

    Roč. 307, č. 3 (2016), s. 1865-1870 ISSN 0236-5731. [10th International Conference on Methods and Applications of Radioanalytical Chemistry (MARC). Kailua Kona, 12.04.2015-17.04.2015] Institutional support: RVO:61389005 Keywords : submarine groundwater discharge * long-term SGD monitoring * underwater gammaspectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.282, year: 2016

  14. Groundwater discharge by evapotranspiration, Dixie Valley, west-central Nevada, March 2009-September 2011

    Science.gov (United States)

    Garcia, C. Amanda; Huntington, Jena M; Buto, Susan G.; Moreo, Michael T.; Smith, J. LaRue; Andraski, Brian J.

    2014-01-01

    With increasing population growth and land-use change, urban communities in the desert Southwest are progressively looking toward remote basins to supplement existing water supplies. Pending applications by Churchill County for groundwater appropriations from Dixie Valley, Nevada, a primarily undeveloped basin east of the Carson Desert, have prompted a reevaluation of the quantity of naturally discharging groundwater. The objective of this study was to develop a revised, independent estimate of groundwater discharge by evapotranspiration (ETg) from Dixie Valley using a combination of eddy-covariance evapotranspiration (ET) measurements and multispectral satellite imagery. Mean annual ETg was estimated during water years 2010 and 2011 at four eddy-covariance sites. Two sites were in phreatophytic shrubland dominated by greasewood, and two sites were on a playa. Estimates of total ET and ETg were supported with vegetation cover mapping, soil physics considerations, water‑level measurements from wells, and isotopic water sourcing analyses to allow partitioning of ETg into evaporation and transpiration components. Site-based ETg estimates were scaled to the basin level by combining remotely sensed imagery with field reconnaissance. Enhanced vegetation index and brightness temperature data were compared with mapped vegetation cover to partition Dixie Valley into five discharging ET units and compute basin-scale ETg. Evapotranspiration units were defined within a delineated groundwater discharge area and were partitioned as (1) playa lake, (2) playa, (3) sparse shrubland, (4) moderate-to-dense shrubland, and (5) grassland.

  15. Particle tracking for unsaturated-zone groundwater travel time analysis at Yucca Mountain

    International Nuclear Information System (INIS)

    Arnold, B.W.; Skinner, L.H.; Zieman, N.B.

    1995-01-01

    A particle tracking code developed to link numerical modeling of groundwater flow in the unsaturated zone to the analysis of groundwater travel times was used to produce preliminary estimates of the distribution of groundwater-travel time from a potential repository at Yucca Mountain, Nevada to the water table. Compliance with 10CFR960 requires the demonstration that pre-waste-emplacement groundwater travel time from the disturbed zone to the accessible environment is expected to exceed 1,000 years along any path of likely and significant radionuclide travel. The use of multiple particles and multiple realizations of the geology and parameter distributions in the unsaturated zone allows a probabilistic analysis of groundwater travel times that may be applied for evaluating compliance

  16. Identification of groundwater discharge in Cuddalore Coast, Tamil Nadu using radium isotopes

    International Nuclear Information System (INIS)

    Diksha; Jacob, Noble; Mohokar, H.V.

    2013-01-01

    For the optimal exploitation and management of coastal aquifers of Tamil Nadu, it is essential to evaluate the groundwater outflow into the sea. In this study, radium isotopes ( 223,224 Ra) were employed to understand the groundwater discharge in coastal areas of Cuddalore district, Tamil Nadu. Sea water samples (100 L) were collected from various locations of Cuddalore coast in October 2011 and passed through Mn-impregnated acrylic fiber columns. These acrylic columns were analyzed for 223,224 Ra activities using Radium Delayed Coincidence Counter (RaDeCC). The observed higher activities of 223,224 Ra (0-0.18 and 3.84-22.77 dpm/L respectively) indicate that groundwater discharge occurs in this coastal region. (author)

  17. Biogeochemical transport in the Loxahatchee River estuary, FL: The role of submarine groundwater discharge

    Science.gov (United States)

    Swarzenski, P.; Orem, B.; McPherson, B.; Baskaran, M.; Wan, Y.

    2005-05-01

    The distributions of dissolved organic carbon (DOC), silica, select trace elements (Mn, Fe, Ba, Sr, Co, V,) and a suite of naturally-occurring radionuclides in the U/Th decay series (222Rn, 223,224,226,228Ra, 238U) were studied during high and low discharge conditions in the Loxahatchee River estuary, Florida. The zero-salinity endmember of this still relatively pristine estuary may reflect not only river-borne constituents, but also those advected during active groundwater/surface-water discharge. During low discharge conditions, with the notable exception of Co, trace metals indicate nearly conservative mixing from a salinity of ~12 through the estuary (This statement contracdicts with what is said in p. 7). In contrast, of the trace metals studied, only Sr, Fe, U and V exhibited conservative estuarine mixing during high discharge. Dissolved organic carbon and Si concentrations were highest at zero salinities, and generally decreased with an increase in salinity during both discharge regimes, indicating removal of land-derived dissolved organic matter and silica in the estuary. Suspended particulate matter (SPM) concentrations were generally lowest ( 28 dpm L-1) at the freshwater endmember of the estuary, and appear to identify regions of the river most influenced by active submarine groundwater discharge (where is the data that show this?). Activities of four naturally-occurring isotopes of Ra (223,224,226,228Ra) in this estuary and select adjacent shallow groundwater wells indicate mean estuarine water mass residence times of less than 1 day; values in close agreement to those calculated by tidal prism and tidal period. A radium-based model for estimating submarine groundwater discharge to the Loxahatchee River estuary yielded an average of 1.03 V 3.84 x 105 m3 day-1, depending on river discharge stage as well as slight variations in the particular Ra models used. Such calculated flux estimates are in close agreement with results obtained from a 2-day

  18. Nitrates in Groundwater Discharges from the Azores Archipelago: Occurrence and Fluxes to Coastal Waters

    Directory of Open Access Journals (Sweden)

    J. Virgílio Cruz

    2017-02-01

    Full Text Available Groundwater discharge is an important vector of chemical fluxes to the ocean environment, and as the concentration of nutrients is often higher in discharging groundwater, the deterioration of water quality in the receiving environment can be the result. The main objective of the present paper is to estimate the total NO3 flux to coastal water bodies due to groundwater discharge in the volcanic Azores archipelago (Portugal. Therefore, 78 springs discharging from perched-water bodies have been monitored since 2003, corresponding to cold (mean = 14.9 °C and low mineralized (47.2–583 µS/cm groundwater from the sodium-bicarbonate to sodium-chloride water types. A set of 36 wells was also monitored, presenting groundwater with a higher mineralization. The nitrate content in springs range between 0.02 and 37.4 mg/L, and the most enriched samples are associated to the impact of agricultural activities. The total groundwater NO3 flux to the ocean is estimated in the range of 5.23 × 103 to 190.6 × 103 mol/km2/a (∑ = ~523 × 103 mol/km2/a, exceeding the total flux associated to surface runoff (∑ = ~281 × 103 mol/km2/a. In the majority of the islands, the estimated fluxes are higher than runoff fluxes, with the exception of Pico (47.2%, Corvo (46% and Faial (7.2%. The total N-NO3 flux estimated in the Azores (~118.9 × 103 mol/km2/a is in the lower range of estimates made in other volcanic islands.

  19. Groundwater Discharges to Rivers in the Western Canadian Oil Sands Region

    Science.gov (United States)

    Ellis, J.; Jasechko, S.

    2016-12-01

    Groundwater discharges into rivers impacts the movement and fate of nutrients and contaminants in the environment. Understanding groundwater-surface water interactions is especially important in the western Canadian oil sands, where groundwater contamination risks are elevated and baseline water chemistry data is lacking, leading to substantial uncertainties about anthropogenic influences on local river quality. High salinity groundwater springs sourced from deep aquifers, comprised of Pleistocene-aged glacial meltwater, are known to discharge into many rivers in the oil sands. Understanding connections between deep aquifers and surficial waterways is important in order to determine natural inputs into these rivers and to assess the potential for injected wastewater or oil extraction fluids to enter surface waters. While these springs have been identified, their spatial distribution along rivers has not been fully characterized. Here we present river chemistry data collected along a number of major river corridors in the Canadian oil sands region. We show that saline groundwater springs vary spatially along the course of these rivers and tend to be concentrated where the rivers incise Devonian- or Cretaceous-aged aquifers along an evaporite dissolution front. Our results suggest that water sourced from Devonian aquifers may travel through bitumen-bearing Cretaceous units and discharge into local rivers, implying a strong groundwater-surface water connection in specialized locations. These findings indicate that oil sands process-affected waters that are injected at depth have the potential to move through these aquifers and reach the rivers at the surface at some time in the future. Groundwater-surface water interactions remain key to understanding the risks oil sands activities pose to aquatic ecosystems and downstream communities.

  20. Using an autonomous Wave Glider to detect seawater anomalies related to submarine groundwater discharge - engineering challenge

    Science.gov (United States)

    Leibold, P.; Brueckmann, W.; Schmidt, M.; Balushi, H. A.; Abri, O. A.

    2017-12-01

    Coastal aquifer systems are amongst the most precious and vulnerable water resources worldwide. While differing in lateral and vertical extent they commonly show a complex interaction with the marine realm. Excessive groundwater extraction can cause saltwater intrusion from the sea into the aquifers, having a strongly negative impact on the groundwater quality. While the reverse pathway, the discharge of groundwater into the sea is well understood in principle, it's mechanisms and quantities not well constrained. We will present a project that combines onshore monitoring and modeling of groundwater in the coastal plain of Salalah, Oman with an offshore autonomous robotic monitoring system, the Liquid Robotics Wave Glider. Eventually, fluxes detected by the Wave Glider system and the onshore monitoring of groundwater will be combined into a 3-D flow model of the coastal and deeper aquifers. The main tool for offshore SGD investigation project is a Wave Glider, an autonomous vehicle based on a new propulsion technology. The Wave Glider is a low-cost satellite-connected marine craft, consisting of a combination of a sea-surface and an underwater component which is propelled by the conversion of ocean wave energy into forward thrust. While the wave energy propulsion system is purely mechanical, electrical energy for onboard computers, communication and sensors is provided by photovoltaic cells. For the project the SGD Wave Glider is being equipped with dedicated sensors to measure temperature, conductivity, Radon isotope (222Rn, 220Rn) activity concentration as well as other tracers of groundwater discharge. Dedicated software using this data input will eventually allow the Wave Glider to autonomously collect information and actively adapt its search pattern to hunt for spatial and temporal anomalies. Our presentation will focus on the engineering and operational challenges ofdetecting submarine groundwater discharges with the Wave Glider system in the Bay of Salalah

  1. Global land–ocean linkage: direct inputs of nitrogen to coastal waters via submarine groundwater discharge

    International Nuclear Information System (INIS)

    Beusen, A H W; Slomp, C P; Bouwman, A F

    2013-01-01

    The role of submarine groundwater discharge (SGD), the leakage of groundwater from aquifers into coastal waters, in coastal eutrophication has been demonstrated mostly for the North American and European coastlines, but poorly quantified in other regions. Here, we present the first spatially explicit global estimates of N inputs via SGD to coastal waters and show that it has increased from about 1.0 to 1.4 Tg of nitrate (NO 3 -N) per year over the second half of the 20th century. Since this increase is not accompanied by an equivalent increase of groundwater phosphorus (P) and silicon (Si), SGD transport of nitrate is an important factor for the development of harmful algal blooms in coastal waters. Groundwater fluxes of N are linked to areas with high runoff and intensive anthropogenic activity on land, with Southeast Asia, parts of North and Central America, and Europe being hot spots. (letter)

  2. Regional differences in climate change impacts on groundwater and stream discharge in Denmark

    DEFF Research Database (Denmark)

    Van Roosmalen, Lieke Petronella G; Christensen, Britt S.B.; Sonnenborg, Torben O.

    2007-01-01

    of the hydrological response to the simulated climate change is highly dependant on the geological setting of the model area. In the Jylland area, characterized by sandy top soils and large interconnected aquifers, groundwater recharge increases significantly, resulting in higher groundwater levels and increasing......Regional impact studies of the effects of future climate change are necessary because projected changes in meteorological variables vary regionally and different hydrological systems can react in various ways to the same changes. In this study the effects of climate change on groundwater recharge...... simulates changes in groundwater head, recharge, and discharge. Precipitation, temperature, and reference evapotranspiration increase for both the A2 and B2 scenarios. This results in a significant increase in mean annual net precipitation, but with decreased values in the summer months. The magnitude...

  3. Mapping of groundwater potential zones in the musi basin using remote sensing data and gis

    NARCIS (Netherlands)

    Ganapuram, Sreedhar; Vijaya Kumar, G.T.; Murali Krishna, I.V.; Kahya, Ercan; Demirel, M.C.

    2009-01-01

    The objective of this study is to explore the groundwater availability for agriculture in the Musi basin. Remote sensing data and geographic information system were used to locate potential zones for groundwater in the Musi basin. Various maps (i.e., base, hydrogeomorphological, geological,

  4. A Groundwater Model to Assess Water Resource Impacts at the Brenda Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); Bowen, Esther E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support utility-scale solar energy development at the Brenda Solar Energy Zone (SEZ), as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program.

  5. A Groundwater Model to Assess Water Resource Impacts at the Imperial East Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); O' Connor, Ben L. [Argonne National Lab. (ANL), Argonne, IL (United States); Tompson, Andrew F.B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support the utility-scale solar energy development at the Imperial East Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM) solar energy program.

  6. Discovery and characterization of submarine groundwater discharge in the Siberian Arctic seas: a case study in the Buor-Khaya Gulf, Laptev Sea

    Science.gov (United States)

    Charkin, Alexander N.; Rutgers van der Loeff, Michiel; Shakhova, Natalia E.; Gustafsson, Örjan; Dudarev, Oleg V.; Cherepnev, Maxim S.; Salyuk, Anatoly N.; Koshurnikov, Andrey V.; Spivak, Eduard A.; Gunar, Alexey Y.; Ruban, Alexey S.; Semiletov, Igor P.

    2017-10-01

    It has been suggested that increasing terrestrial water discharge to the Arctic Ocean may partly occur as submarine groundwater discharge (SGD), yet there are no direct observations of this phenomenon in the Arctic shelf seas. This study tests the hypothesis that SGD does exist in the Siberian Arctic Shelf seas, but its dynamics may be largely controlled by complicated geocryological conditions such as permafrost. The field-observational approach in the southeastern Laptev Sea used a combination of hydrological (temperature, salinity), geological (bottom sediment drilling, geoelectric surveys), and geochemical (224Ra, 223Ra, 228Ra, and 226Ra) techniques. Active SGD was documented in the vicinity of the Lena River delta with two different operational modes. In the first system, groundwater discharges through tectonogenic permafrost talik zones was registered in both winter and summer. The second SGD mechanism was cryogenic squeezing out of brine and water-soluble salts detected on the periphery of ice hummocks in the winter. The proposed mechanisms of groundwater transport and discharge in the Arctic land-shelf system is elaborated. Through salinity vs. 224Ra and 224Ra / 223Ra diagrams, the three main SGD-influenced water masses were identified and their end-member composition was constrained. Based on simple mass-balance box models, discharge rates at sites in the submarine permafrost talik zone were 1. 7 × 106 m3 d-1 or 19.9 m3 s-1, which is much higher than the April discharge of the Yana River. Further studies should apply these techniques on a broader scale with the objective of elucidating the relative importance of the SGD transport vector relative to surface freshwater discharge for both water balance and aquatic components such as dissolved organic carbon, carbon dioxide, methane, and nutrients.

  7. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer, E-mail: odahan@bgu.ac.il; Ronen, Zeev, E-mail: zeevrone@bgu.ac.il

    2017-02-15

    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10{sup 5} to 10{sup 7} copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  8. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    International Nuclear Information System (INIS)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev

    2017-01-01

    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10"5 to 10"7 copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  9. A 3-D numerical model of the influence of meanders on groundwater discharge to a gaining stream in an unconfined sandy aquifer

    DEFF Research Database (Denmark)

    Balbarini, Nicola; Boon, Wietse M.; Nicolajsen, Ellen

    2017-01-01

    Groundwater discharge to streams depends on stream morphology and groundwater flow direction, but are not always well understood. Here a 3-D groundwater flow model is employed to investigate the impact of meandering stream geometries on groundwater discharge to streams in an unconfined and homoge...

  10. Assessment of human activities impact on groundwater quality discharging into a reef lagoon

    Science.gov (United States)

    Rebolledo-Vieyra, M.; Hernandez, L.; Paytan, A.; Merino-Ibarra, M.; Lecossec, A.; Soto, M.

    2010-03-01

    The Eastern coast of the Yucatan Peninsula has the fastest growth rate in Mexico and groundwater is the only source of drinking water in the region. The consequences of the lack of proper infrastructure to collect and treat wastewater and the impact of human activities on the quality of groundwater are addressed. The groundwater in the coastal aquifer of Quintana Roo (SE Mexico) discharges directly into the ocean (Submarine Groundwater Discharges). In addition, the coral reef of the Eastern Yucatan Peninsula is part of the Mesoamerican Coral Reef System, one of the largest in the world. The interaction of the reef-lagoon hydraulics with the coastal aquifer of Puerto Morelos (NE Yucatan Peninsula), and a major input of NH4, SO4, SiO2, as a consequence of the use of septic tanks and the lack of modern wastewater treatment plants are presented. A conceptual model of the coastal aquifer was developed, in order to explain how the human activities are impacting directly on the groundwater quality that, potentially, will have a direct impact on the coral reef. The protection and conservation of coral reefs must be directly related with a policy of sound management of coastal aquifers and wastewater treatment.

  11. Tracing submarine groundwater discharge in the NE Gulf of Mexico by 222Rn

    International Nuclear Information System (INIS)

    Young, J.E.; Burnett, W.C.; Chanton, J.P.; Cable, P.H.; Corbett, D.R.

    1993-01-01

    Inputs of freshwater and dissolved components to the ocean by submarine groundwater discharge (SGD) have been largely neglected as source functions for biogeochemical budgets. In order to locate and quantify groundwater inputs, a tracing technique has been developed using 222 Rn, a member of the natural 238 U decay-series. Because 222 Rn has a short half-life (t 1/2 = 3.84 days), is an inert gas, is relatively easy to measure at low concentrations, and has concentrations in groundwater several orders of magnitude greater than seawater, it should make an excellent tracer. Excess 222 Rn concentrations far above ''normal'' ocean values were found in the bottom waters of the northeastern Gulf of Mexico, which suggests this region has significant groundwater discharge. After measuring high water column inventories of excess 222 Rn in this region, an advection/diffusion model was applied to evaluate potential benthic sources of radon. The model is designed to account for sediment diffusion of radon and includes a groundwater term for advective flow into the overlying water. Flow rates and concentrations are adjusted in the model to balance the large difference in the measured water column inventories and the inventory predicted by sediment diffusion alone. The vertical diffusive/advective transport determines the shape of the concentration gradient and fluxes at the sediment-water interface are calculate based on these terms. The authors work shows that SGD could account for as much as 95% of the radon inventory in these offshore waters

  12. [Relationship between groundwater quality index of nutrition element and organic matter in riparian zone and water quality in river].

    Science.gov (United States)

    Hua-Shan, Xu; Tong-Qian, Zhao; Hong-Q, Meng; Zong-Xue, Xu; Chao-Hon, Ma

    2011-04-01

    Riparian zone hydrology is dominated by shallow groundwater with complex interactions between groundwater and surface water. There are obvious relations of discharge and recharge between groundwater and surface water. Flood is an important hydrological incident that affects groundwater quality in riparian zone. By observing variations of physical and chemical groundwater indicators in riparian zone at the Kouma section of the Yellow River Wetland, especially those took place in the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between the groundwater quality in riparian zone and the flood water quality in the river is studied. Results show that there will be great risk of nitrogen, phosphorus, nitrate nitrogen and organic matter permeating into the groundwater if floodplain changes into farmland. As the special control unit of nitrogen pollution between rivers and artificial wetlands, dry fanning areas near the river play a very important role in nitrogen migration between river and groundwater. Farm manure as base fertilizer may he an important source of phosphorus leak and loss at the artificial wetlands. Phosphorus leaks into the groundwater and is transferred along the hydraulic gradient, especially during the period of regulation for water and sediment at the Xiaolangdi Reservoir. The land use types and farming systems of the riparian floodplain have a major impact on the nitrate nitrogen contents of the groundwater. Nitrogen can infiltrate and accumulate quickly at anaerobic conditions in the fish pond area, and the annual nitrogen achieves a relatively balanced state in lotus area. In those areas, the soil is flooded and at anaerobic condition in spring and summer, nitrogen infiltrates and denitrification significantly, but soil is not flooded and at aerobic condition in the autumn and winter, and during these time, a significant nitrogen nitrification process occurs. In the area between 50 m and 200 m from the river

  13. Tracking groundwater discharge to a large river using tracers and geophysics.

    Science.gov (United States)

    Harrington, Glenn A; Gardner, W Payton; Munday, Tim J

    2014-01-01

    Few studies have investigated large reaches of rivers in which multiple sources of groundwater are responsible for maintaining baseflow. This paper builds upon previous work undertaken along the Fitzroy River, one of the largest perennial river systems in north-western Australia. Synoptic regional-scale sampling of both river water and groundwater for a suite of environmental tracers ((4) He, (87) Sr/(86) Sr, (222) Rn and major ions), and subsequent modeling of tracer behavior in the river, has enabled definition and quantification of groundwater input from at least three different sources. We show unambiguous evidence of both shallow "local" groundwater, possibly recharged to alluvial aquifers beneath the adjacent floodplain during recent high-flow events, and old "regional" groundwater introduced via artesian flow from deep confined aquifers. We also invoke hyporheic exchange and either bank return flow or parafluvial flow to account for background (222) Rn activities and anomalous chloride trends along river reaches where there is no evidence of the local or regional groundwater inputs. Vertical conductivity sections acquired through an airborne electromagnetic (AEM) survey provide insights to the architecture of the aquifers associated with these sources and general groundwater quality characteristics. These data indicate fresh groundwater from about 300 m below ground preferentially discharging to the river, at locations consistent with those inferred from tracer data. The results demonstrate how sampling rivers for multiple environmental tracers of different types-including stable and radioactive isotopes, dissolved gases and major ions-can significantly improve conceptualization of groundwater-surface water interaction processes, particularly when coupled with geophysical techniques in complex hydrogeological settings. © 2013, National Ground Water Association.

  14. Tidal pumping as a driver of groundwater discharge to a back barrier salt marsh ecosystem

    Science.gov (United States)

    Carter, M. L.; Viso, R. F.; Peterson, R. N.; Hill, J. C.

    2013-12-01

    Submarine groundwater discharge (SGD) typically consists of both terrestrial groundwater and recirculated seawater and has been shown to be a significant pathway of dissolved substances to the coastal zone. The fresh and saline water mixture in the subsurface creates a salinity gradient that can impact biogeochemical processes. Located along the South Atlantic Bight, Georgia's coastline is an approximately 100-mile stretch of complex primary and secondary barrier islands resulting from geologic interactions driven by long-term sea level rise and retreat, accretion, seasonal tidal events, storm overwash, and wave driven erosion. Our study site is located in the Duplin River near Sapelo Island, GA and is part of the Georgia Coastal Ecosystems Long Term Ecosystem Research (GCE-LTER) program. This area is considered mesotidal (2-4m) and tidal pumping may be a dominating process in controlling SGD rates. The Duplin River is connected to the Atlantic Ocean through Doboy Sound to the south. To the north, the river terminates in extensive salt marsh and therefore has no overland freshwater input. Previous studies show a salinity gradient within the Duplin River indicating that SGD must be present as a source of brackish water. To place constraints on SGD processes, we employ a combination of geochemical and geophysical techniques to determine the magnitude of SGD in the Duplin River. Together these techniques permit a more complete understanding of the groundwater system. Three time series stations at the upper, mid and lower reaches of the Duplin River were deployed in June of 2013 to measure groundwater influences during daily and fortnightly tidal cycles. At each station, continuous radon-222 measurements were conducted at 30 minute intervals along with measurements of water level, temperature and conductivity using standard hydrological data loggers. During this period, eight time series resistivity profiles using a 56 electrode (110m long) cable were recorded to

  15. Artificial groundwater recharge zones mapping using remote sensing and GIS: a case study in Indian Punjab.

    Science.gov (United States)

    Singh, Amanpreet; Panda, S N; Kumar, K S; Sharma, Chandra Shekhar

    2013-07-01

    Artificial groundwater recharge plays a vital role in sustainable management of groundwater resources. The present study was carried out to identify the artificial groundwater recharge zones in Bist Doab basin of Indian Punjab using remote sensing and geographical information system (GIS) for augmenting groundwater resources. The study area has been facing severe water scarcity due to intensive agriculture for the past few years. The thematic layers considered in the present study are: geomorphology (2004), geology (2004), land use/land cover (2008), drainage density, slope, soil texture (2000), aquifer transmissivity, and specific yield. Different themes and related features were assigned proper weights based on their relative contribution to groundwater recharge. Normalized weights were computed using the Saaty's analytic hierarchy process. Thematic layers were integrated in ArcGIS for delineation of artificial groundwater recharge zones. The recharge map thus obtained was divided into four zones (poor, moderate, good, and very good) based on their influence to groundwater recharge. Results indicate that 15, 18, 37, and 30 % of the study area falls under "poor," "moderate," "good," and "very good" groundwater recharge zones, respectively. The highest recharge potential area is located towards western and parts of middle region because of high infiltration rates caused due to the distribution of flood plains, alluvial plain, and agricultural land. The least effective recharge potential is in the eastern and middle parts of the study area due to low infiltration rate. The results of the study can be used to formulate an efficient groundwater management plan for sustainable utilization of limited groundwater resources.

  16. Does localized recharge occur at a discharge area within the ground-water flow system of Yucca Mountain, Nevada?

    International Nuclear Information System (INIS)

    Czarnecki, J.B.; Kroitoru, L.; Ronen, D.; Magaritz, M.

    1992-01-01

    Studies done in 1984, at a central site on Franklin Lake playa (also known as Alkali Flat, a major discharge area of the ground-water flow system that includes Yucca Mountain, Nevada, the potential site of a high-level nuclear-waste repository) yield limited hydraulic-head and hydrochemical data from a 3-piezometer nest which indicated a slightly downward hydraulic gradient (-0.02) and decreasing concentration of dissolved solids with increasing depth. Hydraulic-head measurements in June, 1989 made at the piezometer nest showed a substantially larger downward gradient (-0.10) and a 0. 83-meter higher water level in the shallowest piezometer (3.29 meters deep), indicating the possibility of localized recharge. during the period of September-November, 1989, a multilevel sampler was used to obtain detailed hydrochemical profiles of the uppermost 1. 5 m of the saturated zone

  17. Fresh Versus Marine Submarine Groundwater Discharge: How 222Rn Might Help Distinguish These Two Sources

    Science.gov (United States)

    Smith, C. G.; Cable, J. E.; Martin, J. B.; Roy, M.

    2008-05-01

    Pore water distributions of 222Rn (t1/2 = 3.83 d), obtained during two sampling trips 9-12 May 2005 and 6-8 May 2006, are used to determine spatial and temporal variations of fluid discharge from a seepage face located along the mainland shoreline of Indian River Lagoon, Florida. Porewater samples were collected from a 30 m transect of multi-level piezometers and analyzed for 222Rn via liquid scintillation counting; the mean of triplicate measurements was used to represent the porewater 222Rn activities. Sediment samples were collected from five vibracores (0, 10, 17.5, 20, and 30 m offshore) and emanation rates of 222Rn (sediment supported) were determined using a standard cryogenic extraction technique. A conceptual 222Rn transport model and subsequent numerical model were developed based on the vertical distribution of dissolved and sediment-supported 222Rn and applicable processes occurring along the seepage face (e.g. advection, diffusion, and nonlocal exchange). The model was solved inversely with the addition of two Monte Carlo (MC) simulations to increase the statistical reliability of three parameters: fresh groundwater seepage velocity (v), irrigation intensity (α0), and irrigation attenuation (α1). The first MC simulation ensures that the Nelder-Mead minimization algorithm converges on a global minimum of the merit function and that the parameters estimates are consistent within this global minimum. The second MC simulation provides 90% confidence intervals on the parameter estimates using the measured 222Rn activity variance. Fresh groundwater seepage velocities obtained from the model decrease linearly with distance from the shoreline; seepage velocities range between 0.6 and 42.2 cm d-1. Based on this linear relationship, the terminus of the fresh groundwater seepage is approximately 25 m offshore and total fresh groundwater discharge for the May-2005 and May-2006 sampling trips are 1.16 and 1.45 m3 d-1 m-1 of shoreline, respectively. We hypothesize

  18. Quantification of groundwater recharge through application of pilot techniques in the unsaturated zone.

    Science.gov (United States)

    Kallioras, Andreas; Piepenbrink, Matthias; Schuth, Christoph; Pfletschinger, Heike; Dietrich, Peter; Koeniger, Franz; Rausch, Randolf

    2010-05-01

    Accurate determination of groundwater recharge is a key issue for the "smart mining" of groundwater resources. Groundwater recharge estimation techniques depend on the investigated hydrologic zone, and therefore main approaches are based on (a) unsaturated zone, (b) saturated zone and (c) surface water studies. This research contributes to the determination of groundwater recharge by investigating the infiltration of groundwater through the unsaturated zone. The investigations are conducted through the application of a combination of different pilot field as well as lab techniques. The field techniques include the installation of specially designed Time Domain Reflectometry (TDR) sensors, at different depths within the unsaturated zone for in-situ and continuous measurements of the volumetric pore water content. Additionally, the extraction of pore water -for analysis of its isotopic composition- from multilevel undisturbed soil samples through significant depths within the unsaturated zone column, enables the dating of the groundwater age through the determination of its isotopic composition. The in-situ investigation of the unsaturated zone is complemented by the determination of high resolution temperature profiles. The installation of the pilot TDR sensors is achieved by using direct push methods at significant depths within the unsaturated zone, providing continuous readings of the soil moisture content. The direct push methods are also ideal for multilevel sampling of undisturbed -without using any drilling fluids which affect the isotopic composition of the containing pore water- soil and consequent extraction of the included pore water for further isotopic determination. The pore water is extracted by applying the method of azeotropic distillation; a method which has the least isotopic fractionation effects on groundwater samples. The determination of different isotopic signals such as 18O, 2H, 3H, and 36Cl, aims to the investigation of groundwater transit

  19. Assessing submarine groundwater discharge (SGD) and nitrate fluxes in highly heterogeneous coastal karst aquifers: Challenges and solutions

    Science.gov (United States)

    Montiel, Daniel; Dimova, Natasha; Andreo, Bartolomé; Prieto, Jorge; García-Orellana, Jordi; Rodellas, Valentí

    2018-02-01

    Groundwater discharge in coastal karst aquifers worldwide represents a substantial part of the water budget and is a main pathway for nutrient transport to the sea. Groundwater discharge to the sea manifests under different forms, making its assessment very challenging particularly in highly heterogeneous coastal systems karst systems. In this study, we present a methodology approach to identify and quantify four forms of groundwater discharge in a mixed lithology system in southern Spain (Maro-Cerro Gordo) that includes an ecologically protected coastal area comprised of karstic marble. We found that groundwater discharge to the sea occurs via: (1) groundwater-fed creeks, (2) coastal springs, (3) diffuse groundwater seepage through seabed sediments, and (4) submarine springs. We used a multi-method approach combining tracer techniques (salinity, 224Ra, and 222Rn) and direct measurements (seepage meters and flowmeters) to evaluate the discharge. Groundwater discharge via submarine springs was the most difficult to assess due to their depth (up to 15 m) and extensive development of the springs conduits. We determined that the total groundwater discharge over the 16 km of shoreline of the study area was at least 11 ± 3 × 103 m3 d-1 for the four types of discharge assessed. Groundwater-derived nitrate (NO3-) fluxes to coastal waters over ∼3 km (or 20%) in a highly populated and farmed section of Maro-Cerro Gordo was 641 ± 166 mol d-1, or ∼75% of the total NO3- loading in the study area. We demonstrate in this study that a multi-method approach must be applied to assess all forms of SGD and derived nutrient fluxes to the sea in highly heterogeneous karst aquifer systems.

  20. Groundwater discharge to the Mississippi River and groundwater balances for the Interstate 94 Corridor surficial aquifer, Clearwater to Elk River, Minnesota, 2012–14

    Science.gov (United States)

    Smith, Erik A.; Lorenz, David L.; Kessler, Erich W.; Berg, Andrew M.; Sanocki, Chris A.

    2017-12-13

    The Interstate 94 Corridor has been identified as 1 of 16 Minnesota groundwater areas of concern because of its limited available groundwater resources. The U.S. Geological Survey, in cooperation with the Minnesota Department of Natural Resources, completed six seasonal and annual groundwater balances for parts of the Interstate 94 Corridor surficial aquifer to better understand its long-term (next several decades) sustainability. A high-precision Mississippi River groundwater discharge measurement of 5.23 cubic feet per second per mile was completed at low-flow conditions to better inform these groundwater balances. The recharge calculation methods RISE program and Soil-Water-Balance model were used to inform the groundwater balances. For the RISE-derived recharge estimates, the range was from 3.30 to 11.91 inches per year; for the SWB-derived recharge estimates, the range was from 5.23 to 17.06 inches per year.Calculated groundwater discharges ranged from 1.45 to 5.06 cubic feet per second per mile, a ratio of 27.7 to 96.4 percent of the measured groundwater discharge. Ratios of groundwater pumping to total recharge ranged from 8.6 to 97.2 percent, with the longer-term groundwater balances ranging from 12.9 to 19 percent. Overall, this study focused on the surficial aquifer system and its interactions with the Mississippi River. During the study period (October 1, 2012, through November 30, 2014), six synoptic measurements, along with continuous groundwater hydrographs, rainfall records, and a compilation of the pertinent irrigation data, establishes the framework for future groundwater modeling efforts.

  1. Delineation of groundwater potential zone: An AHP/ANP approach

    Indian Academy of Sciences (India)

    Groundwater; multi-criteria decision making; analytical network process. J. Earth Syst. ... than AHP for decision making. ... the themes and provide utility weights for the alter- natives ... theory that has been applied to classifying ETM+ image.

  2. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea

    Science.gov (United States)

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ13C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes.

  3. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea.

    Science.gov (United States)

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ(13)C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Numerical simulation studies of the groundwater discharge to streams from abandoned uranium mill tailings

    International Nuclear Information System (INIS)

    Abdul, A.S.; Gillham, R.W.

    1984-06-01

    This report presents an evaluation of the results of simulation studies of groundwater discharge to streams from abandoned uranium mill tailings and the effects of this discharge on the flux of contaminants to surface water systems. In particular, a discussion of the sensitivity of subsurface discharge to specific geometirc, climatic and hydrogeologic factors is presented. Simulations were carried out using a two-dimensional numerical finite-element unsaturated-saturated flow model. A total of twenty-six simulations were made. The first twenty-four of these considered a tailings medium with homogeneous and isotropic hydraulic properties and with textural properties similar to those of sandy geological materials. In addition, two simulations were carried out for tailings materials with hydraulic properties that are similar to those of silt-loam. The results indicated that the actual quantity of subsurface discharge depends on many factors including rainfall rate and duration, surface slope, and texture. However, for the medium-fine sand material, subsurface discharge was always a significant component of the total discharge. Within the context of uranium tailings management this implies that large quantities of contaminants from subsurface sources of medium-textured tailings can be expected to be discharged to streams during stormflow events. Therefore there is reason to suspect that untreated runoff from such tailings will contain significant concentrations of contaminants for long periods of time

  5. Evaluating the human impact on groundwater quality discharging into a coastal reef lagoon

    Science.gov (United States)

    Rebolledo-Vieyra, M.; Hernandez-Terrones, L.; Soto, M.; Lecossec, A.; Monroy-Rios, E.

    2008-12-01

    The Eastern coast of the Yucatan Peninsula has the fastest growth rate in Mexico and groundwater is the only source of drinking water in the region. The consequences of the lack of proper infrastructure to collect and treat wastewater and the impact of human activities on the quality of groundwater are addressed. The groundwater in the coastal aquifer of Quintana Roo (SE Mexico) discharges directly into the ocean. In addition, the coral reef of the Eastern Yucatan Peninsula is part of the Mesoamerican Coral Reef System, one of the largest in the world. The interaction of the reef-lagoon hydraulics with the coastal aquifer of Puerto Morelos (NE Yucatan Peninsula), and a major input of NH4, SO4, SiO2, as a consequence of the use of septic tanks and the lack of modern wastewater treatment plants are presented. No seasonal parameters differences were observed, suggesting that groundwater composition reaching the reef lagoon is not changing seasonally. A conceptual model of the coastal aquifer was developed, in order to explain how the human activities are impacting directly on the groundwater quality that, potentially, will have a direct impact on the coral reef. The protection and conservation of coral reefs must be directly related with a policy of sound management of coastal aquifers and wastewater treatment.

  6. Interpretation of environmental isotopic groundwater data. Arid and semi-arid zones

    International Nuclear Information System (INIS)

    Geyh, M.A.

    1980-01-01

    Various hydrodynamic aspects are discussed in order to show their implication for the hydrogeological interpretation of environmental isotope and hydrochemical groundwater data. Special attention is drawn to radiocarbon and tritium studies carried out in arid and semi-arid zones. An exponential model has been utilized to determine the mean residence time of the long-term water from springs in karst and crystalline regions. Hydrogeological parameters such as the porosity can be checked by this result. In addition, the exponential model offers the possibility of determining the initial 14 C content of spring water, which is sensitively dependent on the soil of the recharge area. A base-flow model has been introduced to interpret the 14 C and 3 H data of groundwater samples from older karst regions. Differences between pumped and drawn samples exist with respect to the groundwater budget. Owing to pumping, the old base flow is accelerated and becomes enriched in pumped groundwater in comparison to the short-term water. Radiocarbon ages of groundwater in alluvium may be dubious because of isotope exchange with the CO 2 in the root zone along the river bank. Under confined conditions 14 C groundwater ages are diminished if the hydraulic head of the confined aquifer is lower than that of the shallow one. This is due to the radiocarbon downwards transport by convection of shallow groundwater. The same effect occurs, though much faster, if the groundwater table is depleted by groundwater withdrawal. The decrease of the radiocarbon groundwater ages in time can be used to determine the hydraulic transmissibility coefficient of the aquitarde. According to the practical and theoretic results obtained the hydrodynamic aspects require at least the same attention for the interpretation of environmental isotope and hydrochemical data of groundwater as do hydrochemical and isotope fractionation processes. (author)

  7. Is groundwater discharge a significant source of carbon dioxide in North Creek, NSW, Australia?

    Science.gov (United States)

    Atkins, M. L.; Santos, I. R.; Ruiz-Halpern, S.

    2012-12-01

    Dissolved carbon dioxide is enriched in groundwater. However, the contribution of groundwater discharge as a source of CO2 to freshwater ecosystems, estuaries and coastal waters is poorly understood. CO2 evasion from waterbodies has been considered a significant contributor to the global carbon cycle. We assessed for radon (natural groundwater tracer), pCO2 and other parameters in the tidal North Creek in northern NSW, Australia. Once a natural wetland area, the floodplain has been extensively drained for agricultural and residential development. A 16km high resolution spatial survey revealed increasing radon (up to 17.3 dpm L-1) and pCO2 (up to 11151 μatm) concentration in the upstream direction. Allocated 24-h time series experiments were performed at two fixed sites downstream and upstream. Creek water was continuously pumped into a shower head equilibrator. A Licor-7000 and RAD7 monitor were connected in series in a closed air loop system incorporating the showerhead exchanger to measure pCO2 and radon at 10 minute intervals. Under normal hydrological conditions, radon (17.5 - 58.7 dpm L-1) and pCO2 (3031 - 14880 μatm) concentrations were high. Upstream measurements demonstrated a strong correlation between pCO2 and radon (r2 = 0.81, n = 142, p standard deviation and median flux for the three time series deployments were 167 mmol m-2 d-1, 44 mmol m-2 d-1 and 154 mmol m-2 d-1 respectively, rendering this aquatic system a major pathway of CO2 to the atmosphere. Our observations imply that groundwater discharge drove CO2 dynamics at the upstream site while mangrove respiration drove CO2 at the downstream site. Overall, groundwater discharge accounted for at least 32% of surface water in North Creek. Our observations demonstrate that groundwater seepage is an important factor driving CO2 supersaturation in this coastal creek. Groundwater should be accounted for in CO2 budgets in coastal waters.

  8. Time-Varying Networks of Inter-Ictal Discharging Reveal Epileptogenic Zone.

    Science.gov (United States)

    Zhang, Luyan; Liang, Yi; Li, Fali; Sun, Hongbin; Peng, Wenjing; Du, Peishan; Si, Yajing; Song, Limeng; Yu, Liang; Xu, Peng

    2017-01-01

    The neuronal synchronous discharging may cause an epileptic seizure. Currently, most of the studies conducted to investigate the mechanism of epilepsy are based on EEGs or functional magnetic resonance imaging (fMRI) recorded during the ictal discharging or the resting-state, and few studies have probed into the dynamic patterns during the inter-ictal discharging that are much easier to record in clinical applications. Here, we propose a time-varying network analysis based on adaptive directed transfer function to uncover the dynamic brain network patterns during the inter-ictal discharging. In addition, an algorithm based on the time-varying outflow of information derived from the network analysis is developed to detect the epileptogenic zone. The analysis performed revealed the time-varying network patterns during different stages of inter-ictal discharging; the epileptogenic zone was activated prior to the discharge onset then worked as the source to propagate the activity to other brain regions. Consistence between the epileptogenic zones detected by our proposed approach and the actual epileptogenic zones proved that time-varying network analysis could not only reveal the underlying neural mechanism of epilepsy, but also function as a useful tool in detecting the epileptogenic zone based on the EEGs in the inter-ictal discharging.

  9. Simple estimate of entrainment rate of pollutants from a coastal discharge into the surf zone.

    Science.gov (United States)

    Wong, Simon H C; Monismith, Stephen G; Boehm, Alexandria B

    2013-10-15

    Microbial pollutants from coastal discharges can increase illness risks for swimmers and cause beach advisories. There is presently no predictive model for estimating the entrainment of pollution from coastal discharges into the surf zone. We present a novel, quantitative framework for estimating surf zone entrainment of pollution at a wave-dominant open beach. Using physical arguments, we identify a dimensionless parameter equal to the quotient of the surf zone width l(sz) and the cross-flow length scale of the discharge la = M(j) (1/2)/U(sz), where M(j) is the discharge's momentum flux and U(sz) is a representative alongshore velocity in the surf zone. We conducted numerical modeling of a nonbuoyant discharge at an alongshore uniform beach with constant slope using a wave-resolving hydrodynamic model. Using results from 144 numerical experiments we develop an empirical relationship between the surf zone entrainment rate α and l(sz)/(la). The empirical relationship can reasonably explain seven measurements of surf zone entrainment at three diverse coastal discharges. This predictive relationship can be a useful tool in coastal water quality management and can be used to develop predictive beach water quality models.

  10. Recharge and discharge of near-surface groundwater in Forsmark. Comparison of classification methods

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent [Golder Associates AB, Uppsala (Sweden); Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Taeby (Sweden); Brydsten, Lars [Umeaa University, Dept. of Ecology and Environmental Science (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2007-03-15

    This report presents and compares data and models for identification of near-surface groundwater recharge and discharge (RD) areas in Forsmark. The general principles of groundwater recharge and discharge are demonstrated and applied to interpret hydrological and hydrogeological observations made in the Forsmark area. 'Continuous' RD classification methods considered in the study include topographical modelling, map overlays, and hydrological-hydrogeological flow modelling. 'Discrete' (point) methods include field-based and hydrochemistry-based RD classifications of groundwater monitoring well locations. The topographical RD modelling uses the digital elevation model as the only input. The map overlays use background maps of Quaternary deposits, soils, and ground- and field layers of the vegetation/land use map. Further, the hydrological-hydrogeological modelling is performed using the MIKE SHE-MIKE 11 software packages, taking into account e.g. topography, meteorology, hydrogeology, and geometry of watercourses and lakes. The best between-model agreement is found for the topography-based model and the MIKE SHE-MIKE 11 model. The agreement between the topographical model and the map overlays is less good. The agreement between the map overlays on the one hand, and the MIKE SHE and field-based RD classifications on the other, is thought to be less good, as inferred from the comparison made with the topography-based model. However, much improvement of the map overlays can likely be obtained, e.g. by using 'weights' and calibration (such exercises were outside the scope of the present study). For field-classified 'recharge wells', there is a good agreement to the hydrochemistry-based (Piper plot) well classification, but less good for the field-classified 'discharge wells'. In addition, the concentration of the age-dating parameter tritium shows low variability among recharge wells, but a large spread among discharge

  11. Recharge and discharge of near-surface groundwater in Forsmark. Comparison of classification methods

    International Nuclear Information System (INIS)

    Werner, Kent; Johansson, Per-Olof; Brydsten, Lars; Bosson, Emma; Berglund, Sten

    2007-03-01

    This report presents and compares data and models for identification of near-surface groundwater recharge and discharge (RD) areas in Forsmark. The general principles of groundwater recharge and discharge are demonstrated and applied to interpret hydrological and hydrogeological observations made in the Forsmark area. 'Continuous' RD classification methods considered in the study include topographical modelling, map overlays, and hydrological-hydrogeological flow modelling. 'Discrete' (point) methods include field-based and hydrochemistry-based RD classifications of groundwater monitoring well locations. The topographical RD modelling uses the digital elevation model as the only input. The map overlays use background maps of Quaternary deposits, soils, and ground- and field layers of the vegetation/land use map. Further, the hydrological-hydrogeological modelling is performed using the MIKE SHE-MIKE 11 software packages, taking into account e.g. topography, meteorology, hydrogeology, and geometry of watercourses and lakes. The best between-model agreement is found for the topography-based model and the MIKE SHE-MIKE 11 model. The agreement between the topographical model and the map overlays is less good. The agreement between the map overlays on the one hand, and the MIKE SHE and field-based RD classifications on the other, is thought to be less good, as inferred from the comparison made with the topography-based model. However, much improvement of the map overlays can likely be obtained, e.g. by using 'weights' and calibration (such exercises were outside the scope of the present study). For field-classified 'recharge wells', there is a good agreement to the hydrochemistry-based (Piper plot) well classification, but less good for the field-classified 'discharge wells'. In addition, the concentration of the age-dating parameter tritium shows low variability among recharge wells, but a large spread among discharge wells. The usefulness of hydrochemistry-based RD

  12. Groundwater monitoring and modelling of the “Vector” site for near-surface radioactive waste disposal in the Chornobyl exclusion zone

    Directory of Open Access Journals (Sweden)

    D. Bugai

    2017-12-01

    Full Text Available Results of purposeful groundwater monitoring and modelling studies are presented, which were carried out in order to better understand groundwater flow patterns from the “Vector” site for near-surface radioactive waste disposal and storage in the Chornobyl exclusion zone towards river network. Both data of observations at local-scale monitoring well network at “Vector” site carried out in 2015 - 2016 and modelling analyses using the regional groundwater flow model of Chornobyl exclusion zone suggest that the groundwater discharge contour for water originating from “Vector” site is Sakhan River, which is the tributary to Pripyat River. The respective groundwater travel time is estimated at 210 - 340 years. The travel times in subsurface for 90Sr, 137Cs, and transuranium radionuclides (Pu isotopes, 241Am are estimated respectively at thousands, tenths of thousands, hundreds of thousands – million of years. These results, as well as presented data of analyses of lithological properties of the geological deposits of the unsaturated zone at “Vector” site, provide evidence for good protection of surface water resources from radioactivity sources (e.g., radioactive wastes to be disposed in the near-sursface facilities at “Vector” site.

  13. Groundwater Hydrochemical Zoning in Inland Plains and its Genetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Liting Xing

    2018-06-01

    Full Text Available Pore water in inland plain areas, generally having poor water quality, contain complex hydrochemical properties. In order to examine groundwater chemical composition formation characteristics, groundwater in the Jiyang area of Lubei Plain was studied using stratified monitoring of drilling, analysis of water level and water quality, isotope analysis, ion ratio coefficient and isothermal adsorption experiments, hydrochemical characteristics, and analysis of variations in different shallow depths. Results show that: (1 Numerous hydrochemistry types are present in the diving. Along with the direction of groundwater flow, total dissolved solids (TDS of diving in the study area generally increases and the hydrochemical type changes from the HCO3 type to the HCO3·SO4 type, Cl·HCO3 type and the Cl·SO4 type. (2 Shallow brackish water and freshwater in the horizontal direction are alternately distributed, and shallow brackish water is distributed in the area between old channels, showing sporadic spots or bands, whose hydrochemistry type is predominantly Cl·SO4-Na·Mg·Ca. (3 Affected by the sedimentary environment, hydrodynamic conditions and other factors; diving, middle brackish water and deep freshwater are vertically deposited in the study area. The dynamics of middle brackish water quality are stable due to the sedimentary environment and clay deposits. The hydrochemistry types of middle brackish water are mainly Cl·SO4-Mg·Na and SO4·Cl-Na·Mg, while the deep confined water is dominated by HCO3. (4 The optimal adsorption isotherms of Na+, Ca2+ and Mg2+ in groundwater from clay, with a thickness raging from 6–112 m, conformed to the Henry equation and the Langmuir equation. The retardation of Na+, Ca2+ and Mg2+ in groundwater differed with differing depths of the clay deposit. The trend of change in retardation strength correlates strongly with the TDS of groundwater. Groundwater in the inland plain area is affected by complicated

  14. Radon as a natural geochemical tracer for study of groundwater discharge into lakes

    International Nuclear Information System (INIS)

    Schmidt, Axel

    2008-01-01

    In the presented work the suitability of the naturally occurring radioactive noble gas isotope radon-222 for qualitative and quantitative description of groundwater discharge into lakes was studied. Basis of these investigations was the development of two innovative techniques for the on-site determination of radon in water. In the ex-situ radon measurement procedure, water from the source concerned is taken up in an exchange cell used for this purpose. Inside this cell, the radon dissolved in water is transferred via diffusion into a closed counter-flow of air and subsequently detected by a radon-in-air monitor. Where the in-situ radon determination is concerned, a module composed of a semipermeable membrane is introduced into a water column. Subsequently, the radon dissolved in the water body diffuses through the membrane into the corresponding air flow, by means of which it is transferred into a radon-in-air monitor and is detected. Combination of the developed mobile radon extraction techniques with a suitable and portable radon monitor allow the detection of radon-222 with sufficient accuracy (smaller 20 %) in groundwater as well as in surface waters, i.e., within a broad range of concentrations. Radon-222 was subsequently used to characterize groundwater discharge into a meromictic and a dimictic lake, i.e. two types of lake basically distinct from each other with respect to their water circulation properties were investigated. The use of the noble gas isotope radon-222 as a geochemical tracer makes the application of on-site detection techniques possible and that this in turn permits a rapid, reliable, and cost-effective assessment of groundwater discharge rates into lake water bodies

  15. Radon as a natural geochemical tracer for study of groundwater discharge into lakes

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Axel

    2008-06-27

    In the presented work the suitability of the naturally occurring radioactive noble gas isotope radon-222 for qualitative and quantitative description of groundwater discharge into lakes was studied. Basis of these investigations was the development of two innovative techniques for the on-site determination of radon in water. In the ex-situ radon measurement procedure, water from the source concerned is taken up in an exchange cell used for this purpose. Inside this cell, the radon dissolved in water is transferred via diffusion into a closed counter-flow of air and subsequently detected by a radon-in-air monitor. Where the in-situ radon determination is concerned, a module composed of a semipermeable membrane is introduced into a water column. Subsequently, the radon dissolved in the water body diffuses through the membrane into the corresponding air flow, by means of which it is transferred into a radon-in-air monitor and is detected. Combination of the developed mobile radon extraction techniques with a suitable and portable radon monitor allow the detection of radon-222 with sufficient accuracy (smaller 20 %) in groundwater as well as in surface waters, i.e., within a broad range of concentrations. Radon-222 was subsequently used to characterize groundwater discharge into a meromictic and a dimictic lake, i.e. two types of lake basically distinct from each other with respect to their water circulation properties were investigated. The use of the noble gas isotope radon-222 as a geochemical tracer makes the application of on-site detection techniques possible and that this in turn permits a rapid, reliable, and cost-effective assessment of groundwater discharge rates into lake water bodies.

  16. Angra-1 NPP thermal influence on liquid effluent discharge zone

    International Nuclear Information System (INIS)

    Costa, Daniel de Araujo

    1996-01-01

    The Angra I Nuclear Power Plant makes use of sea-water to condense the steam generated in its secondary circuit. This water, collected from Itaorna bay, is then chlorinated and discharged, with higher temperature, in the Piraquara de Fora bay. Aiming the study of the marine ecosystem, submitted to the effects of the Nuclear Power Plant discharge water, the temperature, residual chlorine, flora and fauna are periodically monitored. Being sensitive to temperature variations and to chemical products, macroscopic algae are also bio-accumulators and primary producers, because of this, they are considered the main link in the food chain and therefore important bio-indicator. This paper shows the variation of species from the brown algae near the discharge of Angra I Nuclear Power Plant. (author)

  17. Submarine groundwater discharge as an integral environmental "currency" limiting population and development within the ecosphere of small islands

    Science.gov (United States)

    Coffey, Ruth

    Submarine groundwater discharge (SGD) from oceanic islands has been estimated to contribute over a third of the global SGD due to orographic precipitation, short aquifer pathways and poorly developed surface drainage. This seepage of groundwater across the sea floor connects land and coastal ocean resources, and is hereby proposed as a parameter to evaluate the interconnections between coastal environmental quality and coastal populations and development. Relatively few islands have been studied, but SGD is typically found to be an important, and often the only, source of nutrients to coastal waters. Freshwater and its pollutant load are delivered to the coastal zone via SGD with consequent impacts on tourism and fisheries thus linking the land-based and marine economic sectors. The characteristics of SGD were investigated on Barbados, Guam and Bimini, islands all of, at least partly, carbonate origin, This study evaluates the similarities and differences between these islands and assesses the applicability of using SGD as a parameter within a population--development--environment model. Model scenarios can be used to explore the integrated coastal impacts of wastewater treatment practices and changes in seasonal rainfall due to climate change. This study also presents novel analytical methods for SGD field data.

  18. Groundwater chemistry of shallow aquifers in the coastal zones of Cochin, India

    Digital Repository Service at National Institute of Oceanography (India)

    Laluraj, C.M.; Gopinath, G.; DineshKumar, P.K.

    Laluraj et al.: Groundwater chemistry of shallow aquifers - 133 - APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 3(1): 133-139. http://www.ecology.kee.hu ● ISSN 1589 1623  2005, Penkala Bt., Budapest, Hungary GROUNDWATER CHEMISTRY OF SHALLOW AQUIFERS... post monsoon (November 2003) in the coastal zones of Cochin. Laluraj et al.: Groundwater chemistry of shallow aquifers - 134 - APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 3(1): 133-139. http://www.ecology.kee.hu ● ISSN 1589 1623  2005, Penkala...

  19. Groundwater composition fluctuation within technogenic zones (case study: flooded coal mines in Primorsky Krai, Russia)

    Science.gov (United States)

    Tarasenko, I. A.; Zinkov, A. V.; Vakh, E. A.; Vetoshkina, A. V.; Strelnikova, A. B.

    2016-03-01

    The paper considers groundwater composition fluctuation within technogenic zones based on evidence from the flooded coal mines of Primorye. The authors have determined the regularities of hydrogeochemical processes, specified the groundwater composition fluctuation within the technogenic complexes located in the liquidated mine areas, and identified the equilibrium phases between the studied waters and specific secondary minerals. It has been proved that water within natural-technogenic complexes in the liquidated mine areas are saturated with silicates, carbonates, sulfates, oxides, and hydroxides, which should be taken into account when designing technologies for groundwater treatment.

  20. Characterization of the Spatial and Temporal Variations of Submarine Groundwater Discharge Using Electrical Resistivity and Seepage Measurements

    Science.gov (United States)

    Durand, Josephine Miryam Kalyanie

    Submarine groundwater discharge (SGD) encompasses all fluids crossing the sediment/ocean interface, regardless of their origin, composition or driving forces. SGD provides a pathway for terrestrial contaminants that can significantly impact coastal ecosystems. Overexploitation of groundwater resources can decrease SGD which favors seawater intrusion at depth. Understanding SGD is therefore crucial for water quality and resource management. Quantifying SGD is challenging due to its diffuse and heterogeneous nature, in addition to significant spatio-temporal variations at multiple scales. In this thesis, an integrated approach combining electrical resistivity (ER) surveys, conductivity and temperature point measurements, seepage rates using manual and ultrasonic seepage meters, and pore fluid salinities was used to characterize SGD spatio-temporal variations and their implications for contaminant transport at several locations on Long Island, NY. The influence of surficial sediments on SGD distribution was investigated in Stony Brook Harbor. A low-permeability mud layer, actively depositing in the harbor, limits SGD at the shoreline, prevents mixing with seawater and channels a significant volume of freshwater offshore. SGD measured at locations without mud is high and indicates significant mixing between porewater and seawater. A 2D steady-state density-difference numerical model of the harbor was developed using SEAWAT and was validated by our field observations. Temporal variations of SGD due to semi-diurnal tidal forcing were studied in West Neck Bay, Shelter Island, using a 12-hr time-lapse ER survey together with continuous salinity and seepage measurements in the intertidal zone. The observed dynamic patterns of groundwater flux and salinity distribution disagree with published standard transient state numerical models, suggesting the need for developing more specific models of non-homogeneous anisotropic aquifers. SGD distribution and composition were

  1. Radon concentration distributions in shallow and deep groundwater around the Tachikawa fault zone.

    Science.gov (United States)

    Tsunomori, Fumiaki; Shimodate, Tomoya; Ide, Tomoki; Tanaka, Hidemi

    2017-06-01

    Groundwater radon concentrations around the Tachikawa fault zone were surveyed. The radon concentrations in shallow groundwater samples around the Tachikawa fault segment are comparable to previous studies. The characteristics of the radon concentrations on both sides of the segment are considered to have changed in response to the decrease in groundwater recharge caused by urbanization on the eastern side of the segment. The radon concentrations in deep groundwater samples collected around the Naguri and the Tachikawa fault segments are the same as those of shallow groundwater samples. However, the radon concentrations in deep groundwater samples collected from the bedrock beside the Naguri and Tachikawa fault segments are markedly higher than the radon concentrations expected from the geology on the Kanto plane. This disparity can be explained by the development of fracture zones spreading on both sides of the two segments. The radon concentration distribution for deep groundwater samples from the Naguri and the Tachikawa fault segments suggests that a fault exists even at the southern part of the Tachikawa fault line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Identification of groundwater prospective zones by using remote ...

    Indian Academy of Sciences (India)

    remote sensing and geoelectrical methods in Jharia and. Raniganj coalfields, Dhanbad district, Jharkhand state. Basudeo Rai. 1,∗ ... are most promising for groundwater exploration and dug wells may be dug up to depths of. 30 ± 5 m. 1. ..... Gupta A 1980 Correlation of Landsat and airborne magnetic anomaly data of a part ...

  3. Integrated approach for identification of potential groundwater zones ...

    Indian Academy of Sciences (India)

    The population density of the area is 370 person per sq. km. .... The depth of bore wells on average ranges from 40 to 80m with a ..... draw down pumping test which showed optimum yield of ... izontally stratified earth; Geophysical Prospecting 19. 769–775. ... groundwater potential of India – an estimate based on injected ...

  4. The role of groundwater discharge fluxes on Si:P ratios in a major tributary to Lake Erie.

    Science.gov (United States)

    Maavara, Taylor; Slowinski, Stephanie; Rezanezhad, Fereidoun; Van Meter, Kimberly; Van Cappellen, Philippe

    2018-05-01

    Groundwater discharge can be a major source of nutrients to river systems. Although quantification of groundwater nitrate loading to streams is common, the dependence of surface water silicon (Si) and phosphorus (P) concentrations on groundwater sources has rarely been determined. Additionally, the ability of groundwater discharge to drive surface water Si:P ratios has not been contextualized relative to riverine inputs or in-stream transformations. In this study, we quantify the seasonal dynamics of Si and P cycles in the Grand River (GR) watershed, the largest Canadian watershed draining into Lake Erie, to test our hypothesis that regions of Si-rich groundwater discharge increase surface water Si:P ratios. Historically, both the GR and Lake Erie have been considered stoichiometrically P-limited, where the molar Si:P ratio is greater than the ~16:1 phytoplankton uptake ratio. However, recent trends suggest that eastern Lake Erie may be approaching Si-limitation. We sampled groundwater and surface water for dissolved and reactive particulate Si as well as total dissolved P for 12months within and downstream of a 50-km reach of high groundwater discharge. Our results indicate that groundwater Si:P ratios are lower than the corresponding surface water and that groundwater is a significant source of bioavailable P to surface water. Despite these observations, the watershed remains P-limited for the majority of the year, with localized periods of Si-limitation. We further find that groundwater Si:P ratios are a relatively minor driver of surface water Si:P, but that the magnitude of Si and P loads from groundwater represent a large proportion of the overall fluxes to Lake Erie. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Hydrological mediated denitrification in groundwater below a seasonal flooded restored riparian zone

    DEFF Research Database (Denmark)

    Jensen, Jannick Kolbjørn; Engesgaard, Peter; Johnsen, Anders R.

    2017-01-01

    nitrate removal in groundwater primarily by two mechanisms. First, by creating a stagnant flow zone beneath the flooded area thereby increasing the residence time and leaving more time for nitrate removal. Secondly, nitrate removal is increased by enhancing upward flow into the highly reactive organic......A restored riparian zone was characterized to understand the effects of flooding on subsurface hydrological flow paths and nitrate removal in groundwater. Field and laboratory investigations were combined with numerical modeling of dynamic flow and reactive nitrate transport. Flooding enhances...

  6. Measurement of submarine groundwater discharge using diverse methods in Coleroon Estuary, Tamil Nadu, India

    Science.gov (United States)

    Prakash, R.; Srinivasamoorthy, K.; Gopinath, S.; Saravanan, K.

    2018-03-01

    Submarine groundwater discharge (SGD) is described as submarine inflow of fresh and brackish groundwater from land into the sea. The release of sewages from point and non-point source pollutants from industries, agricultural and domestic activities gets discharged through groundwater to ocean creating natural disparity like decreasing flora fauna and phytoplankton blooms. Hence, to quantify fluxes of SGD in coastal regions is important. Quantification of SGD was attempted in Coleroon estuary, India, using three dissimilar methods like water budget, Darcy law and manual seepage meter. Three seepage meters were installed at two prominent litho units (alluvium and fluvio marine) at a distance of (0-14.7 km) away from Bay of Bengal. The water budget and Darcy law-quantified submarine seepage at a rate of 6.9 × 106 and 3.2 × 103 to 308.3 × 103 m3 year-1, respectively, and the seepage meter quantified seepage rate of 0.7024 m h-1 at an average. Larger seepage variations were isolated from three different techniques and the seepage rates were found to be influenced by hydrogeological characteristics of the litho units and distance from the coast.

  7. Surface and subsurface continuous gravimetric monitoring of groundwater recharge processes through the karst vadose zone at Rochefort Cave (Belgium)

    Science.gov (United States)

    Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Triantafyllou, A.; Delforge, D.; Quinif, Y.; Van Ruymbeke, M.; Kaufmann, O.

    2017-12-01

    Ground-based gravimetry is a non-invasive and integrated tool to characterize hydrological processes in complex environments such as karsts or volcanoes. A problem in ground-based gravity measurements however concerns the lack of sensitivity in the first meters below the topographical surface, added to limited infiltration below the gravimeter building (umbrella effect). Such limitations disappear when measuring underground. Coupling surface and subsurface gravity measurements therefore allow isolating hydrological signals occurring in the zone between the two gravimeters. We present a coupled surface/subsurface continuous gravimetric monitoring of 2 years at the Rochefort Cave Laboratory (Belgium). The gravity record includes surface measurements of a GWR superconducting gravimeter and subsurface measurements of a Micro-g LaCoste gPhone gravimeter, installed in a cave 35 m below the surface station. The recharge of karstic aquifers is extremely complex to model, mostly because karst hydrological systems are composed of strongly heterogeneous flows. Most of the problem comes from the inadequacy of conventional measuring tools to correctly sample such heterogeneous media, and particularly the existence of a duality of flow types infiltrating the vadose zone: from rapid flows via open conduits to slow seepage through porous matrix. Using the surface/subsurface gravity difference, we were able to identify a significant seasonal groundwater recharge within the karst vadose zone. Seasonal or perennial perched reservoirs have already been proven to exist in several karst areas due to the heterogeneity of the porosity and permeability gradient in karstified carbonated rocks. Our gravimetric experiment allows assessing more precisely the recharge processes of such reservoirs. The gravity variations were also compared with surface and in-cave hydrogeological monitoring (i.e. soil moisture, in-cave percolating water discharges, water levels of the saturated zone). Combined

  8. Submarine groundwater discharge to a small estuary estimated from radon and salinity measurements and a box model

    Directory of Open Access Journals (Sweden)

    J. Crusius

    2005-01-01

    Full Text Available Submarine groundwater discharge was quantified by a variety of methods for a 4-day period during the early summer of 2004, in Salt Pond, adjacent to Nauset Marsh, on Cape Cod, USA. Discharge estimates based on radon and salinity took advantage of the presence of the narrow channel connecting Salt Pond to Nauset Marsh, which allowed constructing whole-pond mass balances as water flowed in and out due to tidal fluctuations. The data suggest that less than one quarter of the discharge in the vicinity of Salt Pond happened within the pond itself, while three quarters or more of the discharge occurred immediately seaward of the pond, either in the channel or in adjacent regions of Nauset Marsh. Much of this discharge, which maintains high radon activities and low salinity, is carried into the pond during each incoming tide. A box model was used as an aid to understand both the rates and the locations of discharge in the vicinity of Salt Pond. The model achieves a reasonable fit to both the salinity and radon data assuming submarine groundwater discharge is fresh and that most of it occurs either in the channel or in adjacent regions of Nauset Marsh. Salinity and radon data, together with seepage meter results, do not rule out discharge of saline groundwater, but suggest either that the saline discharge is at most comparable in volume to the fresh discharge or that it is depleted in radon. The estimated rate of fresh groundwater discharge in the vicinity of Salt Pond is 3000-7000 m3 d-1. This groundwater flux estimated from the radon and salinity data is comparable to a value of 3200-4500 m3 d-1 predicted by a recent hydrologic model (Masterson, 2004; Colman and Masterson, 2004, although the model predicts this rate of discharge to the pond whereas our data suggest most of the groundwater bypasses the pond prior to discharge. Additional work is needed to determine if the measured rate of discharge is representative of the long-term average, and to

  9. Quantity and quality of groundwater discharge in a hypersaline lake environment

    Science.gov (United States)

    Anderson, R.B.; Naftz, D.L.; Day-Lewis, F. D.; Henderson, R.D.; Rosenberry, D.O.; Stolp, B.J.; Jewell, P.

    2014-01-01

    Geophysical and geochemical surveys were conducted to understand groundwater discharge to Great Salt Lake (GSL) and assess the potential significance of groundwater discharge as a source of selenium (Se). Continuous resistivity profiling (CRP) focusing below the sediment/water interface and fiber-optic distributed temperature sensing (FO-DTS) surveys were conducted along the south shore of GSL. FO-DTS surveys identified persistent cold-water temperature anomalies at 10 separate locations. Seepage measurements were conducted at 17 sites (mean seepage rate = 0.8 cm/day). High resistivity anomalies identified by the CRP survey were likely a mirabilite (Na2SO4·10H2O) salt layer acting as a semi-confining layer for the shallow groundwater below the south shore of the lake. Positive seepage rates measured along the near-shore areas of GSL indicate that a ∼1-m thick oolitic sand overlying the mirabilite layer is likely acting as a shallow, unconfined aquifer. Using the average seepage rate of 0.8 cm/day over an area of 1.6 km2, an annual Se mass loading to GSL of 23.5 kg was estimated. Determination of R/Ra values (calculated 3He/4He ratio over the present-day atmospheric 3He/4He ratio) 34S and δ18O isotopic values in samples of dissolved sulfate from the shallow groundwater below the mirabilite are almost identical to the isotopic signature of the mirabilite core material. The saturation index calculated for groundwater samples using PHREEQC indicates the water is at equilibrium with mirabilite. Water samples collected from GSL immediately off shore contained Se concentrations that were 3–4 times higher than other sampling sites >25 km offshore from the study site and may be originating from less saline groundwater seeps mixing with the more saline water from GSL. Additional evidence for mixing with near shore seeps is found in the δD and δ18O isotopic values and Br:Cl ratios. Geochemical modeling for a water sample collected in the vicinity of the study area

  10. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at a substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.

  11. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2012-15

    Science.gov (United States)

    Bartholomay, Roy C.; Maimer, Neil V.; Rattray, Gordon W.; Fisher, Jason C.

    2017-04-10

    Since 1952, wastewater discharged to in ltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater-monitoring networks at the INL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from the ESRP aquifer, multilevel monitoring system (MLMS) wells in the ESRP aquifer, and perched groundwater wells in the USGS groundwater monitoring networks during 2012-15.

  12. The predicted impacts to the groundwater and Columbia River from ammoniated water discharges to the 216-A-36B crib

    International Nuclear Information System (INIS)

    Buelt, J.L.; Conbere, W.; Freshley, M.D.; Hicks, R.J.; Kuhn, W.L.; Lamar, D.A.; Serne, R.J.; Smoot, J.L.

    1988-03-01

    Impact from past and potential future discharges of ammoniated water to the 216-A-36B crib have on groundwater and river concentrations of hazardous chemical constitutents are studied. Until August 1987, the 216-A-36B crib, located in the 200-East Area of the Hanford Site, accepted ammoniated water discharges. Although this study addresses known hazardous chemical constituents associated with such discharges, the primary concern is the discharge of NH 4 OH because of its microbiological conversion to NO 2 /sup /minus// and NO 3 /sup /minus//. As a result of fuel decladding operations, material balance calculations indicate that NH 4 OH has been discharged to the 216-A-36B crib in amounts that exceed reportable quantities under the Comprehensive Environmental Response, Compensation and Liability Act of 1980. Although flow to the crib is relatively constant, the estimated NH 4 OH discharge varies from negligible to a maximum of 10,000 g-molesh. Because these discharges are intermittent, the concentration delivered to the groundwater is a function of soil sorption, microbiological conversion rates of NH 4 + to NO 2 /sup /minus// and NO 3 /sup /minus//, and groundwater dispersion. This report provides results based on the assumptions of maximum, nominal, and discountinued NH 4 OH discharges to the crib. Consequently, the results show maximum and realistic estimates of NH 4 + , NO 2 /sup /minus// and NO 3 /sup /minus// concentrations in the groundwater

  13. A simple groundwater scheme in the TRIP river routing model: global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges

    Directory of Open Access Journals (Sweden)

    J.-P. Vergnes

    2012-10-01

    Full Text Available Groundwater is a non-negligible component of the global hydrological cycle, and its interaction with overlying unsaturated zones can influence water and energy fluxes between the land surface and the atmosphere. Despite its importance, groundwater is not yet represented in most climate models. In this paper, the simple groundwater scheme implemented in the Total Runoff Integrating Pathways (TRIP river routing model is applied in off-line mode at global scale using a 0.5° model resolution. The simulated river discharges are evaluated against a large dataset of about 3500 gauging stations compiled from the Global Data Runoff Center (GRDC and other sources, while the terrestrial water storage (TWS variations derived from the Gravity Recovery and Climate Experiment (GRACE satellite mission help to evaluate the simulated TWS. The forcing fields (surface runoff and deep drainage come from an independent simulation of the Interactions between Soil-Biosphere-Atmosphere (ISBA land surface model covering the period from 1950 to 2008. Results show that groundwater improves the efficiency scores for about 70% of the gauging stations and deteriorates them for 15%. The simulated TWS are also in better agreement with the GRACE estimates. These results are mainly explained by the lag introduced by the low-frequency variations of groundwater, which tend to shift and smooth the simulated river discharges and TWS. A sensitivity study on the global precipitation forcing used in ISBA to produce the forcing fields is also proposed. It shows that the groundwater scheme is not influenced by the uncertainties in precipitation data.

  14. Isotopes of carbon, nitrogen and oxygen reveal contributions of submarine groundwater and septic systems discharges to algal bloom in Boracay Island

    International Nuclear Information System (INIS)

    Sucgang, Raymond; Pabroa, Preciosa Corazon; Mendoza, Norman; Racho, Joseph Michael; Bautista, Angel; Morco, Ryan; Petrache, Christina; Castaneda, Soledad; Dela Rosa, Alumanda

    2014-01-01

    The study showed that critical areas in Boracay island were contaminated by coliform bacteria and blue green algae (cyanobacteria). The distribution of tritium, 18 O, 15 N and 13 C in seawater, biota and sediments in the inter tidal zone, helped to identify sites with septic sewage outflows and submarine groundwater discharge, SGD. Nitrates (from 0.0 to 2.3 parts per million, ppm) and nutrients were discovered in seawater, particularly in four identified sites in the bathing zone. Point sources of infiltrating plumes were exposed by anomalies in tritium and 18 O in sea water. Septic and canal outflows as well as land based run-offs and submarine groundwater discharge were the identified causes of nutrient enrichments in sites with eminent algal bloom. The isotope composition implied that algae acquire nutrients from septic contamination, while a number of corals assimilate inorganic fertilizer nutrients from land-based plumes and SGD. The elements identified in sediments and corals were related to the natural mineral matrix of calcareous beach zone materials, however, sporadic spikes of lead, chromium and zinc were detected in particular sites at certain depths. These element spikes proxy processes linked to anthropogenic pollution and or organic matter decomposition in the sediment-water interfaces. The practicality of applying isotope-based techniques in conjunction with other chemical methods for the tracking down of the sources of nutrient contamination in polluted systems in demonstrated by the study.(author)

  15. The application of isotope and geochemical techniques to reveal contributions of submarine groundwater and septic systems discharges to algal bloom in Boracay Island

    International Nuclear Information System (INIS)

    Sucgang, Raymond J.; Pabroa, Preciosa Corazon C.; Mendoza, Norman DS.; Racho, Joseph Michael D.; Bautista VII, Angel P.; Jimenez, Gloria R.; Cuyco, Danilo A.; Dawal, Carla S.; Petrache, Christina A.; Castaneda, Soledad S.; Dela Rosa, Alumanda M.

    2014-01-01

    The study shows that critical areas in Boracay island are contaminated by coliform bacteria and blue green algae (cyanobacteria). The distribution of tritium, 18 O, 15 N, and 13 C in seawater, biota and sediments in the intertidal zone, helped to identify sites with specific sewage outflows and submarine groundwater discharge, SGD, Nitrates (from, 0.0 to 2.3 parts per million, ppm) and nutrients were discovered in seawater, particularly in four identified sites in the bathing zone. Point sources of infiltrating plumes were exposed by anomalies in tritium and 18 O in sea water. Septic and canal outflows as well as land based run-offs and submarine groundwater discharge were the identified causes of nutrient enrichments in sites with eminent algal bloom. The isotope composition implied that algae acquire nutrients from septic contamination, while a number of corals assimilate inorganic fertilizer nutrients from land-based plumes and SGD. The elements identified in sediments and corals were related to the natural mineral matrix of calcareous beach zone materials; however, sporadic spikes of lead, chromium and zinc were detected in particular sites at certain depths. These element spikes proxy processes linked to anthropogenic pollution and or organic matter decomposition in the sediment-water interfaces. The practicality of applying isotope-based techniques in conjunction with other chemical methods for the tracking down of the sources of nutrient contamination in polluted systems is demonstrated by the study.

  16. Groundwater recharge and discharge scenarios for a nuclear waste repository in bedded salt

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Steinborn, T.L.; Thorson, L.D.

    1979-01-01

    Twelve potential scenarios have been identified whereby groundwater may enter or exit a nuclear waste repository in bedded salt. The 12 scenarios may be grouped into 4 categories or failure modes: dissolution, fracturing, voids, and penetration. Dissolution modes include breccia pipe and breccia blanket formation, and dissolution around boreholes. Fracture modes include flow through preexisting or new fractures and the effects of facies changes. Voids include interstitial voids (pores) and fluid inclusions. Penetration modes include shaft and borehole sealing failures, undetected boreholes, and new mines or wells constructed after repository decommissioning. The potential importance of thermal effects on groundwater flow patterns and on the recharge-discharge process is discussed. The appropriate levels of modeling effort, and the interaction between the adequacy of the geohydrologic data base and the warranted degree of model complexity are also discussed

  17. Developing a methodology for identifying action zones to protect and manage groundwater well fields

    Science.gov (United States)

    Bellier, Sandra; Viennot, Pascal; Ledoux, Emmanuel; Schott, Celine

    2013-04-01

    Implementation of a long term action plan to manage and protect well fields is a complex and very expensive process. In this context, the relevance and efficiency of such action plans on water quality should be evaluated. The objective of this study is to set up a methodology to identify relevant actions zones in which environmental changes may significantly impact the quantity or quality of pumped water. In the Seine-et-Marne department (France), under French environmental laws three sectors integrating numerous well-field pumping in Champigny's limestone aquifer are considered as priority. This aquifer, located at south-east of Paris, supplies more than one million people with drinking water. Catchments areas of these abstractions are very large (2000 km2) and their intrinsic vulnerability was established by a simple parametric approach that does not permit to consider the complexity of hydrosystem. Consequently, a methodology based on a distributed modeling of the process of the aquifer was developed. The basin is modeled using the hydrogeological model MODCOU, developed in MINES ParisTech since the 1980s. It simulates surface and groundwater flow in aquifer systems and allows to represent the local characteristics of the hydrosystem (aquifers communicating by leakage, rivers infiltration, supply from sinkholes and locally perched or dewatering aquifers). The model was calibrated by matching simulated river discharge hydrographs and piezometric heads with observed ones since the 1970s. Thanks to this modelling tool, a methodology based on the transfer of a theoretical tracer through the hydrosystem from the ground surface to the outlets was implemented to evaluate the spatial distribution of the contribution areas at contrasted, wet or dry recharge periods. The results show that the surface of areas contributing to supply most catchments is lower than 300 km2 and the major contributory zones are located along rivers. This finding illustrates the importance of

  18. Surface modification by preparation of buffer zone in glow-discharge plasma

    International Nuclear Information System (INIS)

    Cho, D.L.

    1986-01-01

    Reactive species, energetic particles, and uv radiation in the plasma created by a glow discharge strongly interact with solid surfaces under the influence of the plasma. As a result of the strong interaction, various physical and chemical reactions, unique and advantageous for the surface modification of solid materials, occur on the solid surfaces. The surface modification is carried out through formation of a thin buffering layer on the solid surface. The preparation of a buffer zone on solid surfaces for surface modification is described. Two kinds of a buffer zone are prepared by plasma polymerization, or simultaneous sputter deposition of electrode material with plasma polymerization: a transitional buffer zone and a graded buffer zone. Important factors for preparation of the buffer zone (pre-conditioning of a substrate surface, thin-film deposition, post-treatment of the film, magnetron discharge, energy input, geometry of a substrate and a plasma) are discussed

  19. Modeling of electrical confined-capillary-discharge where the discharge zone is extended by an additional pipe

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, E. [Propulsion Physics Laboratory, Soreq NRC, Yavne 81800 (Israel)], E-mail: eyal_we@soreq.gov.il; Zoler, D.; Wald, S. [Propulsion Physics Laboratory, Soreq NRC, Yavne 81800 (Israel); Elias, E. [Department of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2009-03-02

    Plasma injectors are a source of pulsed, high momentum and temperature fluid. This fluid can serve as a very efficient reactive mixing and accelerating agent in several applications including chemical waste decomposition and hard materials coating. It can also serve as an efficient medium for synthesis of nano-particles and their deposition on various substrates. In those applications tuning the momentum and the thermodynamic properties of the plasma jet is of paramount importance as the quality of the interaction strongly depends on them. This Letter proposes a method and a model that will allow additional tuning to the thermodynamic properties of the plasma jet by adding an extension to the discharge zone. A steady state model of processes taking place in a realistic confined capillary discharge system is presented. A comparison between this system and the parameters characterizing a discharge in a 'conventional' ablative system is presented. The results obtained indicate that the non-discharge zone may provide an additional degree of freedom to optimize the system's performance. It enhances the control of the plasma parameters that allows optimal and predictable momentum control over the plasma jet. The theoretical predictions for the plasma parameters agree well with experimentally obtained data.

  20. Detecting groundwater discharge dynamics from point-to-catchment scale in a lowland stream

    DEFF Research Database (Denmark)

    Poulsen, J. R.; Sebök, Éva; Duque, C.

    2015-01-01

    was quantified using differential gauging with an acoustic Doppler current profiler (ADCP). At the catchment scale (26–114 km2), runoff sources during main rain events were investigated by hydrograph separations based on electrical conductivity (EC) and stable isotopes 2H/1H. Clear differences in runoff sources...... response to precipitation events. This shows a large variability in groundwater discharge to the stream, despite the similar lowland characteristics of sub-catchments indicating the usefulness of environmental tracers for obtaining information about integrated catchment functioning during precipitation...

  1. Autonomous long-term gamma-spectrometric monitoring of submarine groundwater discharge trends in Hawaii

    International Nuclear Information System (INIS)

    Dulai, Henrietta; Waters, Ch.A.; Kennedy, Joseph; Kamenik, Jan; Academy of Sciences of the Czech Republic, Rez; Babinec, James; Jolly, James; Williamson, Mario

    2016-01-01

    We developed a fully autonomous underwater gamma-spectrometer for long-term coastal submarine groundwater discharge (SGD) monitoring. The instrument represents a significant improvement over previous submarine gamma-spectrometers in that it is very robust, has high sensitivity allowing high temporal resolution, and is completely autonomous. Here we describe the technical parameters of the new instrument as well as data collected over its 9-month deployment in Kiholo Bay, HI, USA. We also present methods to convert the measured activities to SGD rates. In Kiholo Bay, the derived SGD matched previous estimates but in addition it revealed previously undocumented short- and long-term patterns in SGD. (author)

  2. Aquifers and hyporheic zones: Towards an ecological understanding of groundwater

    Science.gov (United States)

    Hancock, Peter J.; Boulton, Andrew J.; Humphreys, William F.

    2005-03-01

    Ecological constraints in subsurface environments relate directly to groundwater flow, hydraulic conductivity, interstitial biogeochemistry, pore size, and hydrological linkages to adjacent aquifers and surface ecosystems. Groundwater ecology has evolved from a science describing the unique subterranean biota to its current form emphasising multidisciplinary studies that integrate hydrogeology and ecology. This multidisciplinary approach seeks to elucidate the function of groundwater ecosystems and their roles in maintaining subterranean and surface water quality. In aquifer-surface water ecotones, geochemical gradients and microbial biofilms mediate transformations of water chemistry. Subsurface fauna (stygofauna) graze biofilms, alter interstitial pore size through their movement, and physically transport material through the groundwater environment. Further, changes in their populations provide signals of declining water quality. Better integrating groundwater ecology, biogeochemistry, and hydrogeology will significantly advance our understanding of subterranean ecosystems, especially in terms of bioremediation of contaminated groundwaters, maintenance or improvement of surface water quality in groundwater-dependent ecosystems, and improved protection of groundwater habitats during the extraction of natural resources. Overall, this will lead to a better understanding of the implications of groundwater hydrology and aquifer geology to distributions of subsurface fauna and microbiota, ecological processes such as carbon cycling, and sustainable groundwater management. Les contraintes écologiques dans les environnements de subsurface sont en relation directe avec les écoulements des eaux souterraines, la conductivité hydraulique, la biogéochimie des milieux interstitiels, la taille des pores, et les liens hydrologiques avec les aquifères et les écosystèmes adjacents. L'écologie des eaux souterraines a évolué d'une science décrivant uniquement les

  3. Groundwater discharge and phosphorus dynamics in a flood-pulse system: Tonle Sap Lake, Cambodia

    Science.gov (United States)

    Burnett, William C.; Wattayakorn, Gullaya; Supcharoen, Ratsirin; Sioudom, Khamfeuane; Kum, Veasna; Chanyotha, Supitcha; Kritsananuwat, Rawiwan

    2017-06-01

    Tonle Sap Lake (Cambodia), a classic example of a "flood pulse" system, is the largest freshwater lake in SE Asia, and is reported to have one of the highest freshwater fish productions anywhere. During the dry season (November-April) the lake drains through a tributary to the Mekong River. The flow in the connecting tributary completely reverses during the wet monsoon (May-October), adding huge volumes of water back to the lake, increasing its area about six fold. The lake is likely phosphorus limited and we hypothesized that groundwater discharge, including recirculated lake water, may represent an important source of P and other nutrients. To address this question, we surveyed hundreds of kilometers of the lake for natural 222Rn (radon), temperature, conductivity, GPS coordinates and water depth. All major inorganic nutrients and phosphorus species were evaluated by systematic sampling throughout the lake. Results showed that there were radon hotspots, all at the boundaries between the permanent lake and the floodplain, indicating likely groundwater inputs. A radon mass balance model indicates that the groundwater flow to Tonle Sap Lake is approximately 10 km3/yr, about 25% as large as the floodwaters entering from the Mekong River during the wet monsoon. Our results suggest that the groundwater-derived dissolved inorganic phosphorus (DIP) contribution to Tonle Sap is more than 30% of the average inflows from all natural sources. Since the productivity of the lake appears to be phosphorus limited, this finding suggests that the role of groundwater is significant for Tonle Sap Lake and perhaps for other flood pulse systems worldwide.

  4. Underground mining of the lower 163 zone through groundwater drainage at the Eagle Point Mine

    International Nuclear Information System (INIS)

    Robson, D.M.; Bashir, R.; Thomson, J.; Klemmer, S.; Rigden, A.

    2010-01-01

    The Eagle Point Mine is part of the Cameco Rabbit Lake Operation. The mine produces uranium ore using the long-hole, vertical and horizontal retreat mining method. The majority of the mine workings are under Wollaston Lake and cementitious grouting is used as one of the water control measures. Historical groundwater table in the mining area was close to ground surface. The Lower 163 Zone encompasses an estimated 4.2 million pounds U_3O_8 geological resource that was not considered feasible to mine due to the expected groundwater flows in the area. Cross-hole testing was conducted to better understand the groundwater flow through various geologic units. A local depressurization test was conducted to assess the potential for lowering the water table. Following testing an active depressurization was conducted to lower the groundwater table below the planned mining areas. This resulted in safe and drier mining conditions and allowed for the successful extraction of the ore body. (author)

  5. The magnitude and origin of groundwater discharge to eastern U.S. and Gulf of Mexico coastal waters

    Science.gov (United States)

    Befus, Kevin; Kroeger, Kevin D.; Smith, Christopher G.; Swarzenski, Peter W.

    2017-01-01

    Fresh groundwater discharge to coastal environments contributes to the physical and chemical conditions of coastal waters, but the role of coastal groundwater at regional to continental scales remains poorly defined due to diverse hydrologic conditions and the difficulty of tracking coastal groundwater flow paths through heterogeneous subsurface materials. We use three-dimensional groundwater flow models for the first time to calculate the magnitude and source areas of groundwater discharge from unconfined aquifers to coastal waterbodies along the entire eastern U.S. We find that 27.1 km3/yr (22.8–30.5 km3/yr) of groundwater directly enters eastern U.S. and Gulf of Mexico coastal waters. The contributing recharge areas comprised ~175,000 km2 of U.S. land area, extending several kilometers inland. This result provides new information on the land area that can supply natural and anthropogenic constituents to coastal waters via groundwater discharge, thereby defining the subterranean domain potentially affecting coastal chemical budgets and ecosystem processes.

  6. Using radon-222 for tracing groundwater discharge into an open-pit lignite mining lake--a case study.

    Science.gov (United States)

    Schmidt, Axel; Schubert, Michael

    2007-12-01

    Groundwater discharge into an open pit lignite mining lake was investigated using radon-222 as a naturally occurring environmental tracer. The chosen study site was a meromictic lake, i.e., a water body that is divided horizontally into two separate layers--the upper mixolimnion (with seasonal mixing) and the lower monimolimnion (without seasonal mixing). For the estimation of groundwater discharge rates into the lake, a simple box model including all radon sinks and sources related to each layer was applied. Two field investigations were performed. During the October campaign, the total groundwater discharge into the lake was found to be 18.9 and 0.7 m(3) d(-1) for the mixolimnion and monimolimnion, respectively. During the December campaign, the groundwater discharge into the mixolimnion was 15.0 m(3) d(-1), whereas no discharge at all was observed into the monimolimnion. Based on the given water volumes, the residence time of lake water was 5.3 years for the monimolimnion and varies between 0.9 and 1.1 years for the mixolimnion. The investigation confirmed radon to be a useful environmental tracer for groundwater and surface water interactions in meromictic lake environments.

  7. Determination of protection zones for Dutch groundwater wells against virus contamination--uncertainty and sensitivity analysis.

    Science.gov (United States)

    Schijven, J F; Mülschlegel, J H C; Hassanizadeh, S M; Teunis, P F M; de Roda Husman, A M

    2006-09-01

    Protection zones of shallow unconfined aquifers in The Netherlands were calculated that allow protection against virus contamination to the level that the infection risk of 10(-4) per person per year is not exceeded with a 95% certainty. An uncertainty and a sensitivity analysis of the calculated protection zones were included. It was concluded that protection zones of 1 to 2 years travel time (206-418 m) are needed (6 to 12 times the currently applied travel time of 60 days). This will lead to enlargement of protection zones, encompassing 110 unconfined groundwater well systems that produce 3 x 10(8) m3 y(-1) of drinking water (38% of total Dutch production from groundwater). A smaller protection zone is possible if it can be shown that an aquifer has properties that lead to greater reduction of virus contamination, like more attachment. Deeper aquifers beneath aquitards of at least 2 years of vertical travel time are adequately protected because vertical flow in the aquitards is only 0.7 m per year. The most sensitive parameters are virus attachment and inactivation. The next most sensitive parameters are grain size of the sand, abstraction rate of groundwater, virus concentrations in raw sewage and consumption of unboiled drinking water. Research is recommended on additional protection by attachment and under unsaturated conditions.

  8. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques

    Directory of Open Access Journals (Sweden)

    N.S. Magesh

    2012-03-01

    Full Text Available Integration of remote sensing data and the geographical information system (GIS for the exploration of groundwater resources has become a breakthrough in the field of groundwater research, which assists in assessing, monitoring, and conserving groundwater resources. In the present paper, various groundwater potential zones for the assessment of groundwater availability in Theni district have been delineated using remote sensing and GIS techniques. Survey of India toposheets and IRS-1C satellite imageries are used to prepare various thematic layers viz. lithology, slope, land-use, lineament, drainage, soil, and rainfall were transformed to raster data using feature to raster converter tool in ArcGIS. The raster maps of these factors are allocated a fixed score and weight computed from multi influencing factor (MIF technique. Moreover, each weighted thematic layer is statistically computed to get the groundwater potential zones. The groundwater potential zones thus obtained were divided into four categories, viz., very poor, poor, good, and very good zones. The result depicts the groundwater potential zones in the study area and found to be helpful in better planning and management of groundwater resources.

  9. Estimation of nearshore groundwater discharge and its potential effects on a fringing coral reef

    International Nuclear Information System (INIS)

    Blanco, Ariel C.; Watanabe, Atsushi; Nadaoka, Kazuo; Motooka, Shunsuke; Herrera, Eugene C.; Yamamoto, Takahiro

    2011-01-01

    Research highlights: → We characterized SGD in a fringing coral reef using radon tracing. → End-member Rn and gas transfer rate significantly affect flux estimation accuracy. → Reef SGD is strongly influenced by tidal pumping and hydraulic gradient. → SGD elevated nitrate concentrations, which drastically increased nearshore Chl-a. → SGD significantly induced the proliferation of cyanobacteria in nearshore reef areas. - Abstract: Radon ( 222 Rn) measurements were conducted in Shiraho Reef (Okinawa, Japan) to investigate nearshore submarine groundwater discharge (SGD nearshore ) dynamics. Estimated average groundwater flux was 2-3 cm/h (maximum 7-8 cm/h). End-member radon concentration and gas transfer coefficient were identified as major factors influencing flux estimation accuracy. For the 7-km long reef, SGD nearshore was 0.39-0.58 m 3 /s, less than 30% of Todoroki River's baseflow discharge. SGD nearshore was spatially and temporally variable, reflecting the strong influence of subsurface geology, tidal pumping, groundwater recharge, and hydraulic gradient. SGD nearshore elevated nearshore nitrate concentrations (0.8-2.2 mg/l) to half of Todoroki River's baseflow NO 3 - N (2-4 mg/L). This increased nearshore Chl-a from 0.5-2 μg/l compared to the typically low Chl-a (<0.1-0.4 μg/l) in the moat. Diatoms and cyanobacteria concentrations exhibited an increasing trend. However, the percentage contributions of diatoms and cyanobacteria significantly decreased and increased, respectively. SGD may significantly induce the proliferation of cyanobacteria in nearshore reef areas.

  10. Radiotracer technique to study pollutant behavior in the vadose zone for groundwater protection

    International Nuclear Information System (INIS)

    Kulkarni, U.P.; Sinha, U.K.; Navada, S.V.; Datta, P.S.; Sud, Y.K.; Kulkarni, K.M.; Aggrawal, P.; )

    2004-01-01

    Pollutants are generated either by industrial or agricultural activity. Pollutants produced due to industrial activities fall into point source category and those generated from agricultural are grouped into extended source category. Under an International Atomic Energy Agency/Coordinated Research Program study, emphasis has been given on transport of pollutants, generated from agricultural activities, in particular, due to the application of fertilizer inputs to a variety of crops. Pollutants take entry through the vadose zone and ultimately join the saturated zone. Once groundwater is polluted it is rather difficult or impossible to take remedial measures for groundwater protection. Groundwater being an important natural resource, it is important to protect it from getting polluted. It is hence essential to have a clear understanding of the complex processes (physical, biological and chemical etc.) undergoing in the unsaturated zone. Radiotracers give good insight about the pollutant behavior in the vadose zone. Tritiated water and 60 Co (a gamma emitting tracer in the cyanide complex form) were used as tracers and were injected at 60 cm depth in the vadose zone of IARI farm for pollutant transport study. Tritium and 60 Co tracer displacements were measured by liquid scintillation and sodium iodide scintillation method respectively. It was found that the tritium tracer moved up to 2.4 meters in six months and part of the tritium tracer was exchanged with immobile water in the soil, as three distinct peaks were observed in tritium profile. 60 Co and tritium tracers were found to move with the same velocity in the vadose zone. These tracer studies indicate that the pollutants may reach the groundwater in about three years. (author)

  11. Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2011-12-01

    We report here some efforts and results in studying the imbalance in groundwater-surface water interactions and processes of groundwater-surface water interactions and groundwater flooding creating hazards in the coastal zones. Hazards, hydrological and geophysical risk analysis related to imbalance in groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of significance of imbalance in groundwater-surface water interactions. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models, and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health. In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction under conditions of imbalance in groundwater-surface water interactions. This paper proposes consideration of two case studies which are important and significant for future understanding of a concept of imbalance in groundwater-surface water interactions and development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone. It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due

  12. Deciphering groundwater potential zones in hard rock terrain using geospatial technology.

    Science.gov (United States)

    Dar, Imran A; Sankar, K; Dar, Mithas A

    2011-02-01

    Remote sensing and geographical information system (GIS) has become one of the leading tools in the field of groundwater research, which helps in assessing, monitoring, and conserving groundwater resources. This paper mainly deals with the integrated approach of remote sensing and GIS to delineate groundwater potential zones in hard rock terrain. Digitized vector maps pertaining to chosen parameters, viz. geomorphology, geology, land use/land cover, lineament, relief, and drainage, were converted to raster data using 23 m×23 m grid cell size. Moreover, curvature of the study area was also considered while manipulating the spatial data. The raster maps of these parameters were assigned to their respective theme weight and class weights. The individual theme weight was multiplied by its respective class weight and then all the raster thematic layers were aggregated in a linear combination equation in Arc Map GIS Raster Calculator module. Moreover, the weighted layers were statistically modeled to get the areal extent of groundwater prospects with respect to each thematic layer. The final result depicts the favorable prospective zones in the study area and can be helpful in better planning and management of groundwater resources especially in hard rock terrains.

  13. Groundwater quality for irrigation of deep aquifer in southwestern zone of Bangladesh

    Directory of Open Access Journals (Sweden)

    Mirza A.T.M. Tanvir Rahman

    2012-07-01

    Full Text Available In coastal regions of Bangladesh, sources of irrigation are rain, surface and groundwater. Due to rainfall anomaly andsaline contamination, it is important to identify deep groundwater that is eligible for irrigation. The main goal of the study wasto identify deep groundwater which is suitable for irrigation. Satkhira Sadar Upazila, at the southwestern coastal zone ofBangladesh, was the study area, which was divided into North, Center and South zones. Twenty samples of groundwaterwere analyzed for salinity (0.65-4.79 ppt, sodium absorption ratio (1.14-11.62, soluble sodium percentage (32.95-82.21, electricalconductivity (614-2082.11 μS/cm, magnesium adsorption ratio (21.96-26.97, Kelly’s ratio (0.48-4.62, total hardness(150.76-313.33 mg/l, permeability index (68.02-94.16 and residual sodium bi-carbonate (79.68-230.72 mg/l. Chemical constituentsand values were compared with national and international standards. Northern deep groundwater has the highest salinityand chemical concentrations. Salinity and other chemical concentrations show a decreasing trend towards the south. Lowchemical concentrations in the southern region indicate the best quality groundwater for irrigation.

  14. Qualitative zoning of groundwater for drinking purposes in Lenjan plain using GQI method through GIS

    Directory of Open Access Journals (Sweden)

    Amin Mohebbi Tafreshi

    2017-09-01

    Full Text Available Background: A new method has been presented specifically for zoning the quality of groundwater for drinking purposes; this method is the groundwater quality index (GQI method. The present research used the GQI method to qualitatively zoning of the Lenjan groundwater for drinking purposes. Methods: Three phases were applied in this research. In the first phase, working on the quality data of 38 wells within the studied plain, the raster map of quality concentration parameters, including pH, TDS, Cl, SO4, Ca, Mg, and Na parameters, was provided by interpolation using the kriging method in the ArcGIS software. In the second phase, the mentioned maps were standardized so that various bits of data can follow a common standard and scale. In the third phase, weight was applied to each standardized map, and ultimately the classification map for each parameter was drawn. The final GQI map was created by combining the mentioned classification maps. Results: The GQI values for Lenjan plain were rated from the minimum (67.48 to the maximum (90.05. The results showed an average to acceptable level of quality for drinking water. Conclusion: According to the final map, the central and southern parts of Lenjan plain, which have acceptable GQI rankings, are the best zones from which to use groundwater for drinking purposes.

  15. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui.

    Directory of Open Access Journals (Sweden)

    Daniel W Amato

    Full Text Available Generally unseen and infrequently measured, submarine groundwater discharge (SGD can transport potentially large loads of nutrients and other land-based contaminants to coastal ecosystems. To examine this linkage we employed algal bioassays, benthic community analysis, and geochemical methods to examine water quality and community parameters of nearshore reefs adjacent to a variety of potential, land-based nutrient sources on Maui. Three common reef algae, Acanthophora spicifera, Hypnea musciformis, and Ulva spp. were collected and/or deployed at six locations with SGD. Algal tissue nitrogen (N parameters (δ15N, N %, and C:N were compared with nutrient and δ15N-nitrate values of coastal groundwater and nearshore surface water at all locations. Benthic community composition was estimated for ten 10-m transects per location. Reefs adjacent to sugarcane farms had the greatest abundance of macroalgae, low species diversity, and the highest concentrations of N in algal tissues, coastal groundwater, and marine surface waters compared to locations with low anthropogenic impact. Based on δ15N values of algal tissues, we estimate ca. 0.31 km2 of Kahului Bay is impacted by effluent injected underground at the Kahului Wastewater Reclamation Facility (WRF; this region is barren of corals and almost entirely dominated by colonial zoanthids. Significant correlations among parameters of algal tissue N with adjacent surface and coastal groundwater N indicate that these bioassays provided a useful measure of nutrient source and loading. A conceptual model that uses Ulva spp. tissue δ15N and N % to identify potential N source(s and relative N loading is proposed for Hawai'i. These results indicate that SGD can be a significant transport pathway for land-based nutrients with important biogeochemical and ecological implications in tropical, oceanic islands.

  16. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui.

    Science.gov (United States)

    Amato, Daniel W; Bishop, James M; Glenn, Craig R; Dulai, Henrietta; Smith, Celia M

    2016-01-01

    Generally unseen and infrequently measured, submarine groundwater discharge (SGD) can transport potentially large loads of nutrients and other land-based contaminants to coastal ecosystems. To examine this linkage we employed algal bioassays, benthic community analysis, and geochemical methods to examine water quality and community parameters of nearshore reefs adjacent to a variety of potential, land-based nutrient sources on Maui. Three common reef algae, Acanthophora spicifera, Hypnea musciformis, and Ulva spp. were collected and/or deployed at six locations with SGD. Algal tissue nitrogen (N) parameters (δ15N, N %, and C:N) were compared with nutrient and δ15N-nitrate values of coastal groundwater and nearshore surface water at all locations. Benthic community composition was estimated for ten 10-m transects per location. Reefs adjacent to sugarcane farms had the greatest abundance of macroalgae, low species diversity, and the highest concentrations of N in algal tissues, coastal groundwater, and marine surface waters compared to locations with low anthropogenic impact. Based on δ15N values of algal tissues, we estimate ca. 0.31 km2 of Kahului Bay is impacted by effluent injected underground at the Kahului Wastewater Reclamation Facility (WRF); this region is barren of corals and almost entirely dominated by colonial zoanthids. Significant correlations among parameters of algal tissue N with adjacent surface and coastal groundwater N indicate that these bioassays provided a useful measure of nutrient source and loading. A conceptual model that uses Ulva spp. tissue δ15N and N % to identify potential N source(s) and relative N loading is proposed for Hawai'i. These results indicate that SGD can be a significant transport pathway for land-based nutrients with important biogeochemical and ecological implications in tropical, oceanic islands.

  17. Dissolved organic matter composition of winter flow in the Yukon River basin: Implications of permafrost thaw and increased groundwater discharge

    Science.gov (United States)

    O'Donnell, Jonathan A.; Aiken, George R.; Walvoord, Michelle Ann; Butler, Kenna D.

    2012-01-01

    Groundwater discharge to rivers has increased in recent decades across the circumpolar region and has been attributed to thawing permafrost in arctic and subarctic watersheds. Permafrost-driven changes in groundwater discharge will alter the flux of dissolved organic carbon (DOC) in rivers, yet little is known about the chemical composition and reactivity of dissolved organic matter (DOM) of groundwater in permafrost settings. Here, we characterize DOM composition of winter flow in 60 rivers and streams of the Yukon River basin to evaluate the biogeochemical consequences of enhanced groundwater discharge associated with permafrost thaw. DOC concentration of winter flow averaged 3.9 ± 0.5 mg C L−1, yet was highly variable across basins (ranging from 20 mg C L−1). In comparison to the summer-autumn period, DOM composition of winter flow had lower aromaticity (as indicated by specific ultraviolet absorbance at 254 nm, or SUVA254), lower hydrophobic acid content, and a higher proportion of hydrophilic compounds (HPI). Fluorescence spectroscopy and parallel factor analysis indicated enrichment of protein-like fluorophores in some, but not all, winter flow samples. The ratio of DOC to dissolved organic nitrogen, an indicator of DOM biodegradability, was positively correlated with SUVA254 and negatively correlated with the percentage of protein-like compounds. Using a simple two-pool mixing model, we evaluate possible changes in DOM during the summer-autumn period across a range of conditions reflecting possible increases in groundwater discharge. Across three watersheds, we consistently observed decreases in DOC concentration and SUVA254 and increases in HPI with increasing groundwater discharge. Spatial patterns in DOM composition of winter flow appear to reflect differences in the relative contributions of groundwater from suprapermafrost and subpermafrost aquifers across watersheds. Our findings call for more explicit consideration of DOC loss and stabilization

  18. Integration of ground-water and vadose-zone geochemistry to investigate hydrochemical evolution

    International Nuclear Information System (INIS)

    Fisher, R.S.; Mullican, W.F.

    1990-01-01

    This paper summarizes the results of an extensive groundwater-sampling program conducted in the Hueco Bolson and Diablo Plateau area of West Texas. The origin, hydrochemical evolution, and age of groundwater in arid lands of Trans-Pecos Texas were investigated by combining mineralogic analyses of soils and aquifer matrix, chemical analyses of readily soluble materials in soils and water extracted from the thick, unsaturated zone, and chemical and isotopic analyses of groundwater from three principal aquifers, the Diablo Plateau, Hueco Bolson, and Rio Grande alluvial aquifers. Repeated groundwater sampling over a 3-year period and quarterly sampling of selected wells revealed no significant short-term chemical or isotopic variability. Groundwater ages range from recent to nearly 28,000 years; the distribution of ages reflects relative permeability (transmissivity) of the aquifers. Most groundwaters evolve from calcium-bicarbonate to sodium-sulfate types because of carbonate and sulfate mineral dissolution coupled with exchange of aqueous calcium and magnesium for sodium on clay minerals. Water in the Rio Grande alluvial aquifer evolved to a sodium-chloride type as a result of extensive evapotranspiration on irrigated fields. The appendices list detailed results of field measurements of temperature, pH, Eh, dissolved oxygen, and major ion concentrations

  19. The evolution of redox conditions and groundwater geochemistry in recharge-discharge environments on the Canadian Shield

    International Nuclear Information System (INIS)

    Gascoyne, M.

    1996-10-01

    Groundwater composition evolves along flow paths from recharge to discharge in response to interactions with bedrock and fracture-filling minerals, and dissolution of soluble (Cl-rich) salts in the rock matrix. The groundwater redox potential changes from oxidizing to reducing conditions due, initially, to rapid consumption of dissolved oxygen by organics in the upper ∼100 m of bedrock and, subsequently, interaction with Fe (II)-containing minerals. Measured Eh values of groundwaters at depth in the granitic Lac du Bonnet batholith indicate that biotite and chlorite control groundwater redox potential. This is supported by other geochemical characteristics such as absence of CH 4 , H 2 S, H 2 , NO 3 , low concentrations of Fe (II), and abundance of SO 4 . Further evidence of evolution of redox conditions is given by variations in U concentration ranging from up to 1000 μg/L in dilute near-surface waters to <1 μg/L in some deep, saline groundwaters. Groundwaters at about 400 m depth in a recharge area on the Lac du Bonnet batholith contain significantly more U than groundwaters further along the flow path or near surface in discharge areas. Uranium concentration is found to be a useful and sensitive indicator of redox conditions. (author)

  20. Anisotropy of streambed sediments of contrasting geomorphological environments and its relation to groundwater discharge

    Science.gov (United States)

    Sebok, Eva; Duque, Carlos; Engesgaard, Peter; Bøgh, Eva

    2013-04-01

    As a main factor controlling surface water-groundwater exchange, spatial variability in streambed hydraulic conductivity and anisotropy is a key to understand groundwater discharge patterns to streams. Here we report on a field investigation in a soft-bedded stream, where horizontal and vertical streambed hydraulic conductivities were determined in order to, (i) detect spatial and seasonal variability in streambed hydraulic conductivity and anisotropy, (ii) relate this variability to channel morphology and different streambed sediments. The study was carried out at a field site located along Holtum stream in Western Denmark. The 5 m wide stream has a soft sandy streambed, an average discharge of 1000 l/s and an average depth of 0.7 m. Hydraulic tests were carried out in 8 transects across the stream with 5 test locations in each transect to study the spatial variability and streambed hydraulic anisotropy across the stream. Different geomorphological environments were compared by having two transects in a straight channel and six transects across a channel bend with a depositional and an erosional bank. Streambed horizontal hydraulic conductivity (Kh) 0.5 meters below the streambed was determined with slugtests in piezometers. At the same locations falling head tests were conducted in standpipes to calculate vertical hydraulic conductivity (Kv) on a 0.5 m long streambed material column some of which were later removed for grain size analysis. In order to account for any seasonal changes in the temperature-related fluid properties the falling head tests and slugtests were carried out in December 2011 and August 2012. Both the Kh and Kv values show greater variability in the summer dataset. During both seasons the shallow, depositional streambank displays the highest Kh values, while the erosional bank at the thalweg is characterised by lower Kh. Vertical streambed hydraulic conductivities do not show any spatial trend across the stream. Streambed anisotropy values of

  1. Response to recharge variation of thin rainwater lenses and their mixing zone with underlying saline groundwater

    Directory of Open Access Journals (Sweden)

    S. Eeman

    2012-10-01

    Full Text Available In coastal zones with saline groundwater, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not constant, which may adversely affect agricultural and natural vegetation if saline water reaches the root zone during the growing season. In this paper, we study the response of thin lenses and their mixing zone to variation of recharge. The recharge is varied using sinusoids with a range of amplitudes and frequencies. We vary lens characteristics by varying the Rayleigh number and Mass flux ratio of saline and fresh water, as these dominantly influence the thickness of thin lenses and their mixing zone. Numerical results show a linear relation between the normalised lens volume and the main lens and recharge characteristics, enabling an empirical approximation of the variation of lens thickness. Increase of the recharge amplitude causes increase and the increase of recharge frequency causes a decrease in the variation of lens thickness. The average lens thickness is not significantly influenced by these variations in recharge, contrary to the mixing zone thickness. The mixing zone thickness is compared to that of a Fickian mixing regime. A simple relation between the travelled distance of the centre of the mixing zone position due to variations in recharge and the mixing zone thickness is shown to be valid for both a sinusoidal recharge variation and actual records of daily recharge data. Starting from a step response function, convolution can be used to determine the effect of variable recharge in time. For a sinusoidal curve, we can determine delay of lens movement compared to the recharge curve as well as the lens amplitude, derived from the convolution integral. Together the proposed equations provide us with a first order approximation of lens

  2. Higher species richness and abundance of fish and benthic invertebrates around submarine groundwater discharge in Obama Bay, Japan

    OpenAIRE

    Tatsuya Utsunomiya; Masaki Hata; Ryo Sugimoto; Hisami Honda; Shiho Kobayashi; Yoji Miyata; Makoto Yamada; Osamu Tominaga; Jun Shoji; Makoto Taniguchi

    2017-01-01

    Study focus: There have been far more studies on how the variability in surface water discharge affects production of animal communities in aquatic ecosystems while less information has been accumulated on the mechanisms of how the groundwater supply works. Study region: Physical and biological surveys were conducted to test the hypothesis that high level of submarine ground water discharge enhances species richness, abundance and biomass of fishes and invertebrates in coastal waters of Ob...

  3. Regional variability of nitrate fluxes in the unsaturated zone and groundwater, Wisconsin, USA

    Science.gov (United States)

    Green, Christopher T.; Liao, Lixia; Nolan, Bernard T.; Juckem, Paul F.; Shope, Christopher L.; Tesoriero, Anthony J.; Jurgens, Bryant

    2018-01-01

    Process-based modeling of regional NO3− fluxes to groundwater is critical for understanding and managing water quality, but the complexity of NO3− reactive transport processes make implementation a challenge. This study introduces a regional vertical flux method (VFM) for efficient estimation of reactive transport of NO3− in the vadose zone and groundwater. The regional VFM was applied to 443 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3−, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and tritiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with estimates from previous studies. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams (2) since 1945 fractions of applied N leached to groundwater have increased for manure-N, possibly due to increased injection of liquid manure, and decreased for fertilizer-N, and (3) under current practices and conditions, approximately 60% of the shallow aquifer will eventually be affected by downward migration of NO3−, with denitrification protecting the remaining 40%. Recharge variability strongly affected the unsaturated zone lag times and the eventual depth of the NO3− front. Principal components regression demonstrated that VFM parameters and predictions were significantly correlated with hydrogeochemical landscape features. The diverse and sometimes conflicting aspects of N management (e.g. limiting N volatilization versus limiting N losses to groundwater) warrant continued development of large-scale holistic strategies to manage water quality and quantity.

  4. Regional Variability of Nitrate Fluxes in the Unsaturated Zone and Groundwater, Wisconsin, USA

    Science.gov (United States)

    Green, Christopher T.; Liao, Lixia; Nolan, Bernard T.; Juckem, Paul F.; Shope, Christopher L.; Tesoriero, Anthony J.; Jurgens, Bryant C.

    2018-01-01

    Process-based modeling of regional NO3- fluxes to groundwater is critical for understanding and managing water quality, but the complexity of NO3- reactive transport processes makes implementation a challenge. This study introduces a regional vertical flux method (VFM) for efficient estimation of reactive transport of NO3- in the vadose zone and groundwater. The regional VFM was applied to 443 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3-, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and tritiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with estimates from previous studies. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams, (2) since 1945 fractions of applied N leached to groundwater have increased for manure-N, possibly due to increased injection of liquid manure, and decreased for fertilizer-N, and (3) under current practices and conditions, approximately 60% of the shallow aquifer will eventually be affected by downward migration of NO3-, with denitrification protecting the remaining 40%. Recharge variability strongly affected the unsaturated zone lag times and the eventual depth of the NO3- front. Principal components regression demonstrated that VFM parameters and predictions were significantly correlated with hydrogeochemical landscape features. The diverse and sometimes conflicting aspects of N management (e.g., limiting N volatilization versus limiting N losses to groundwater) warrant continued development of large-scale holistic strategies to manage water quality and quantity.

  5. Nutrient inputs through submarine groundwater discharge in an embayment: A radon investigation in Daya Bay, China

    Science.gov (United States)

    Wang, Xuejing; Li, Hailong; Yang, Jinzhong; Zheng, Chunmiao; Zhang, Yan; An, An; Zhang, Meng; Xiao, Kai

    2017-08-01

    Daya Bay, a semi-closed bay of the South China Sea, is famous for its aquaculture, agriculture and tourism. Although routine environmental investigations in the bay have been conducted since the early 1980s, evaluations of submarine groundwater discharge (SGD), an important process in exchange between groundwater and coastal seawater, and its environmental impacts have never been reported. In this study, naturally occurring radon isotope (222Rn) was measured continuously at two sites (north-west and middle-east sites) and used as a tracer to estimate SGD and associated nutrient inputs into the bay. The SGD rates estimated based on the 222Rn mass balance model were, on average, 28.2 cm/d at north-west site and 30.9 cm/d at middle-east site. The large SGD rate at middle-east site may be due to the large tidal amplitude and the sandy component with high permeability in sediments. The SGD-driven nutrient fluxes, which were calculated as the product of SGD flux and the difference of nutrient concentrations between coastal groundwater and seawater, were 3.28 × 105 mol/d for dissolved nitrates (NO3-N), 5.84 × 103 mol/d for dissolved inorganic phosphorous (DIP), and 8.97 × 105 mol/d for reactive silicate (Si). These nutrient inputs are comparable to or even higher than those supplied by local rivers. In addition, these SGD-driven nutrients have a nitrogen-phosphorous ratio as high as ∼43, which may significantly affect the ecology of coastal waters and lead to frequent occurrence of harmful algal blooms.

  6. Locating Ground-Water Discharge in the Hanford Reach of the Columbia River

    International Nuclear Information System (INIS)

    Lee, D.R.; Geist, D.R.; Saldi, K.; Hartwig, D.; Cooper, T.

    1997-01-01

    A bottom-contacting probe for measuring electrical conductivity at the sediment-water interface was used to scan the bed of the Columbia River adjacent to the Hanford Site in southeast Washington State during a 10-day investigation. Four river-sections, each about a kilometer in length, were scanned for variations in electrical conductivity. The probe was towed along the riverbed at a speed of 1 m/s and is position was recorded using a Global Positioning System. The bottom tows revealed several areas of elevated electrical conductivity. Where these anomalies were relatively easy to access, piezometers were driven into the riverbed and porewater electrical conductivity ranged from 111 to 150 uS/cm. The piezometers, placed in electrical conductivity ''hotspots'' yielded chemical or isotopic data consistent with previous analyses of water taken from monitoring wells and visible shoreline seeps. Tritium, nitrate, and chromium exceeded water quality standards in some porewaters. The highest tritium and nitrate levels were found near the Old Hanford Townsite at 120,000 pCi/L (+ 5,880 pCi/L total propagated analytical uncertainty) and ug/L (+ 5,880 ug/L), respectively. The maximum chromium (total and hexavalent) levels were found near 100-H reactor area where unfiltered porewater total chromium was 1,900 ug/L (+ 798 ug/L) and hexavalent chromium was 20 ug/L. The electrical conductivity probe provided rapid, cost-effective reconnaissance for ground-water discharge areas when used in combination with conventional piezometers. It may be possible to obtain quantitative estimates of both natural and contaminated ground-water discharge in the Hanford Reach with more extensive surveys of river bottom

  7. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.

    Science.gov (United States)

    Chong, Andrea D; Mayer, K Ulrich

    2017-09-01

    Historical heavy use of chlorinated solvents in conjunction with improper disposal practices and accidental releases has resulted in widespread contamination of soils and groundwater in North America and worldwide. As a result, remediation of chlorinated solvents is required at many sites. For source zone treatment, common remediation strategies include in-situ chemical oxidation (ISCO) using potassium or sodium permanganate, and the enhancement of biodegradation by primary substrate addition. It is well known that these remediation methods tend to generate gas (carbon dioxide (CO 2 ) in the case of ISCO using permanganate, CO 2 and methane (CH 4 ) in the case of bioremediation). Vigorous gas generation in the presence of chlorinated solvents, which are categorized as volatile organic contaminants (VOCs), may cause gas exsolution, ebullition and stripping of the contaminants from the treatment zone. This process may lead to unintentional 'compartment transfer', whereby VOCs are transported away from the contaminated zone into overlying clean sediments and into the vadose zone. To this extent, benchtop column experiments were conducted to quantify the effect of gas generation during remediation of the common chlorinated solvent trichloroethylene (TCE/C 2 Cl 3 H). Both ISCO and enhanced bioremediation were considered as treatment methods. Results show that gas exsolution and ebullition occurs for both remediation technologies. Facilitated by ebullition, TCE was transported from the source zone into overlying clean groundwater and was subsequently released into the column headspace. For the case of enhanced bioremediation, the intermediate degradation product vinyl chloride (VC) was also stripped from the treatment zone. The concentrations measured in the headspace of the columns (TCE ∼300ppm in the ISCO column, TCE ∼500ppm and VC ∼1380ppm in the bioremediation column) indicate that substantial transfer of VOCs to the vadose zone is possible. These findings

  8. Preliminary study on acceptability of scope of thermal discharge mixing zone for nuclear power plant

    International Nuclear Information System (INIS)

    Liu Yongye; Yang Yang; Wang Liang; Chen Xiaoqiu; Liu Senlin

    2012-01-01

    Based on the situation that the existing domestic temperature control standards are not performable, the preliminary study on the acceptability of the mixing zone scope of thermal discharge for nuclear power plant was conducted in this paper, taking a coastal power station SNP as a case. The following preliminary conclusions could be drawn from the results of cluster analysis of the SNP site under different results of mathematical modeling and physical model test: 1) The influence intensity of ecological function of the SNP site seawater is small and the scope of thermal discharge mixing zone is acceptable under SNP-1 (Unit 1 and 2) operating condition; 2) the influence intensity of ecological function of the SNP site seawater is small and the scope of thermal discharge mixing zone is acceptable in spring under SNP-1 (Unit 1 and 2) and SNP-2 (Unit 3 and 4) operating condition, while the influence intensity of ecological function of the SNP site seawater is large and the scope of mixing zone is unacceptable in autumn under the same operating condition. (authors)

  9. Pollution Status of Trace Metals in Groundwater Due to Industrail Activities in and Around Dhaka Export Processing Zone, Bangladesh

    Directory of Open Access Journals (Sweden)

    GOLAM AHMED

    2012-06-01

    Full Text Available Effluents from multiindustrail activities influence inland water system directly, which subsiquently affect groundwater quality and human health. Some previous reports indicated that inadequate treatment process of discharged effluent of Dhaka Export Processing Zone (DEPZ increased the concentrations of pollutants in surface water system and deteriorated total fishing and agricultural system around DEPZ and its connected area. Therefore, the present study was conducted to investigate wether the concentration of selective metals viz. Li, V, Cr, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Ag, Cd, Cs, Ba, Pb and U in two types of groundwater sources were either with in the permissible guidlines or influenced by DEPZ multi industrail on their levels of contamination. The concentrations of metals were determined using inductively Couples Plasma Mass Spectrometry (ICP-MS. The mean concentrations of the elements in both types of groundwater were in the levels of their permissible guidlines, except for Ni (12.91 µg/L, Ga (0.48µg/L, Sr (90.26 µg/L and Cs (0.07µg//Lin groundwater inside DEPZ, which were 1.30, 5.00, 1.50 and 1.40 times higher than the maximum permissible limit (MPL of 10 µg/L, 0.09 µg/L, 60 µg/L, and 0.05µg/L, respectively. The mean concentrations of Li (6.85 µg/L, Zn(268 µg/L, Ga (0.12 µg/L, Sr (131 µg/L and Cs (0.07 µg/L were 3.43, 1.34, 1.33, 2.18, 1.40 times higher then the MPL of 2 µg/L, 200 µg/L, 0.09 µg/L, 60 µg/L and 0.05 µg/L, respectively, in groundwater around DEPZ. Comparatively Zn and Sr possessed higher concentrations, and Cs and U possessed lower concentration in both types of groundwater sources. The elements were distributed in homogeneous and hetrogeneous manner among the source points for deep-tubewell (DTWS and shallow tubewell (STWs, respectively. The significant positive correlations were found between the elements viz., Co-V (0.85, Ni-Sr ((0.70, Co-Cd (0.86, As-Se (0.99, Cs-Zn (0.95, Li-U (0.,71, Zn-U (0

  10. Submarine groundwater discharge in a subsiding coastal lowland: A {sup 226}Ra and {sup 222}Rn investigation in the Southern Venice lagoon

    Energy Technology Data Exchange (ETDEWEB)

    Gattacceca, Julie C., E-mail: jcg54@esc.cam.ac.uk [CEREGE, Aix-Marseille Universite, UMR 6635 CNRS-IRD-CDF, Europole Mediterraneen de l' Arbois, BP80, 13545 Aix en Provence (France); Mayer, Adriano [IDPA-CNR, Via Mario Bianco 9, 20131 Milano (Italy); Cucco, Andrea [Coastal Oceanography, CNR-IAMC, Oristano Unit, Loc. Sa MArdini, 09072 Oristano (Italy); Claude, Christelle; Radakovitch, Olivier; Vallet-Coulomb, Christine; Hamelin, Bruno [CEREGE, Aix-Marseille Universite, UMR 6635 CNRS-IRD-CDF, Europole Mediterraneen de l' Arbois, BP80, 13545 Aix en Provence (France)

    2011-05-15

    Highlights: > Occurence/magnitude of submarine groundwater discharge investigated in Venice lagoon (Italy) using {sup 226}Ra and {sup 222}Rn isotopic tracers. > Single box mass balance compared with multi boxes mass balance coupled with hydrodynamic model. > Groundwater flux accounts for 1% of lagoon hydrological balance (1-3 times surface runoff) and 30-50% of tracers inputs. > Necessary to assess this flux impact on nutrient budget in lagoon. - Abstract: Several recent studies have suggested that submarine groundwater discharge (SGD) occurs in the Venice lagoon with discharge rates on the same order or larger than the surface runoff, as demonstrated previously in several other coastal zones around the world. Here, the first set of {sup 222}Rn data, along with new {sup 226}Ra data are reported, in order to investigate the occurrence and magnitude of SGD specifically in the southern basin of the lagoon. The independent connection with the Adriatic Sea (at the Chioggia inlet), in addition to the relative isolation of the water body from the main lagoon, make this area an interesting case study. There is probably only minimal fresh groundwater flux to the lagoon because the surrounding aquifer is subsiding and mainly has a lower hydraulic head than seawater. The data show that the Ra and Rn activities are in slight excess in the lagoon compared to the open sea, with values on the same order as those observed in the northern and central basins. Taking into account the water exchange rate between the lagoon and adjacent seawater provided by previous hydrodynamic numerical modelling, it is shown that this excess cannot be supported at steady state by only riverine input and by diffusive release from the sediment interstitial water. High activities observed in groundwater samples collected from 16 piezometers tapping into the shallow aquifer over the coastal lowland substantiate that the excess radioactivity in the lagoon may indeed be due to the advection of groundwater

  11. Evidence for Submarine Groundwater Discharge into the Black Sea—Investigation of Two Dissimilar Geographical Settings

    Directory of Open Access Journals (Sweden)

    Michael Schubert

    2017-06-01

    Full Text Available The sustainable management of coastal marine environments requires a comprehensive understanding of the processes related to material transport from land to coastal sea. Besides surface water discharge (e.g., rivers and storm drains, submarine groundwater discharge (SGD plays a key role since it provides a major pathway for solute and particulate transport of contaminants and nutrients, both having considerable potential to cause deterioration of the overall ecological status of coastal environments. The aim of the presented study was the investigation of SGD in two exemplary and dissimilar areas at the Black Sea coast, one in the west (Romania and one in the east (Georgia. The approach included the assessment of the geological/geographical setting regarding the potential of SGD occurrence, the use of environmental tracer data (222Rn, δ18O, δ2H, salinity, and the evaluation of sea surface temperature patterns near the coastline using satellite data. Besides the individual site specific results, the study revealed that a combined evaluation of tracer data and satellite based information allows SGD localization with satisfying precision. A downscaling approach starting with large scale satellite data is generally recommended, continuing with medium scale tracer patterns and ending with local spot sampling.

  12. Investigation of Submarine Groundwater Discharge along the Tidal Reach of the Caloosahatchee River, Southwest Florida

    Science.gov (United States)

    Reich, Christopher D.

    2010-01-01

    The tidal reach of the Caloosahatchee River is an estuarine habitat that supports a diverse assemblage of biota including aquatic vegetation, shellfish, and finfish. The system has been highly modified by anthropogenic activity over the last 150 years (South Florida Water Management District (SFWMD), 2009). For example, the river was channelized and connected to Lake Okeechobee in 1881 (via canal C-43). Subsequently, three control structures (spillway and locks) were installed for flood protection (S-77 and S-78 in the 1930s) and for saltwater-intrusion prevention (S-79, W.P. Franklin Lock and Dam in 1966). The emplacement of these structures and their impact to natural water flow have been blamed for water-quality problems downstream within the estuary (Flaig and Capece, 1998; SFWMD, 2009). Doering and Chamberlain (1999) found that the operation of these control structures caused large and often rapid variations in salinity during various times of the year. Variable salinities could have deleterious impacts on the health of organisms in the Caloosahatchee River estuary. Flow restriction along the Caloosahatchee has also been linked to surface-water eutrophication problems (Doering and Chamberlain, 1999; SFWMD, 2009) and bottom-sediment contamination (Fernandez and others, 1999). Sources of nutrients (nitrogen and phosphorous) that cause eutrophication are primarily from residential sources and agriculture, though wastewater-treatment-plant discharges can also play a major role (SFWMD, 2009). The pathway for many of these nutrients is by land runoff and direct discharge from stormwater drains. An often overlooked source of nutrients and other chemical constituents is from submarine groundwater discharge (SGD). SGD can be either a diffuse or point source (for example, submarine springs) of nutrients and other chemical constituents to coastal waters (Valiela and others, 1990; Swarzenski and others, 2001; 2006; 2007; 2008). SGD can be composed of either fresh or

  13. Catchment tracers reveal discharge, recharge and sources of groundwater-borne pollutants in a novel lake modelling approach

    Directory of Open Access Journals (Sweden)

    E. Kristensen

    2018-02-01

    Full Text Available Groundwater-borne contaminants such as nutrients, dissolved organic carbon (DOC, coloured dissolved organic matter (CDOM and pesticides can have an impact the biological quality of lakes. The sources of pollutants can, however, be difficult to identify due to high heterogeneity in groundwater flow patterns. This study presents a novel approach for fast hydrological surveys of small groundwater-fed lakes using multiple groundwater-borne tracers. Water samples were collected from the lake and temporary groundwater wells, installed every 50 m within a distance of 5–45 m to the shore, were analysed for tracer concentrations of CDOM, DOC, total dissolved nitrogen (TDN, groundwater only, total nitrogen (TN, lake only, total dissolved phosphorus (TDP, groundwater only, total phosphorus (TP, lake only, δ18O ∕ δ16O isotope ratios and fluorescent dissolved organic matter (FDOM components derived from parallel factor analysis (PARAFAC. The isolation of groundwater recharge areas was based on δ18O measurements and areas with a high groundwater recharge rate were identified using a microbially influenced FDOM component. Groundwater discharge sites and the fractions of water delivered from the individual sites were isolated with the Community Assembly via Trait Selection model (CATS. The CATS model utilized tracer measurements of TDP, TDN, DOC and CDOM from the groundwater samples and related these to the tracer measurements of TN, TP, DOC and CDOM in the lake. A direct comparison between the lake and the inflowing groundwater was possible as degradation rates of the tracers in the lake were taken into account and related to a range of water retention times (WRTs of the lake (0.25–3.5 years in 0.25-year increments. These estimations showed that WRTs above 2 years required a higher tracer concentration of inflowing water than found in any of the groundwater wells around the lake. From the estimations of inflowing tracer concentration

  14. Catchment tracers reveal discharge, recharge and sources of groundwater-borne pollutants in a novel lake modelling approach

    Science.gov (United States)

    Kristensen, Emil; Madsen-Østerbye, Mikkel; Massicotte, Philippe; Pedersen, Ole; Markager, Stiig; Kragh, Theis

    2018-02-01

    Groundwater-borne contaminants such as nutrients, dissolved organic carbon (DOC), coloured dissolved organic matter (CDOM) and pesticides can have an impact the biological quality of lakes. The sources of pollutants can, however, be difficult to identify due to high heterogeneity in groundwater flow patterns. This study presents a novel approach for fast hydrological surveys of small groundwater-fed lakes using multiple groundwater-borne tracers. Water samples were collected from the lake and temporary groundwater wells, installed every 50 m within a distance of 5-45 m to the shore, were analysed for tracer concentrations of CDOM, DOC, total dissolved nitrogen (TDN, groundwater only), total nitrogen (TN, lake only), total dissolved phosphorus (TDP, groundwater only), total phosphorus (TP, lake only), δ18O / δ16O isotope ratios and fluorescent dissolved organic matter (FDOM) components derived from parallel factor analysis (PARAFAC). The isolation of groundwater recharge areas was based on δ18O measurements and areas with a high groundwater recharge rate were identified using a microbially influenced FDOM component. Groundwater discharge sites and the fractions of water delivered from the individual sites were isolated with the Community Assembly via Trait Selection model (CATS). The CATS model utilized tracer measurements of TDP, TDN, DOC and CDOM from the groundwater samples and related these to the tracer measurements of TN, TP, DOC and CDOM in the lake. A direct comparison between the lake and the inflowing groundwater was possible as degradation rates of the tracers in the lake were taken into account and related to a range of water retention times (WRTs) of the lake (0.25-3.5 years in 0.25-year increments). These estimations showed that WRTs above 2 years required a higher tracer concentration of inflowing water than found in any of the groundwater wells around the lake. From the estimations of inflowing tracer concentration, the CATS model isolated

  15. Analysis of groundwater discharge with a lumped-parameter model, using a case study from Tajikistan

    Science.gov (United States)

    Pozdniakov, S. P.; Shestakov, V. M.

    A lumped-parameter model of groundwater balance is proposed that permits an estimate of discharge variability in comparison with the variability of recharge, by taking into account the influence of aquifer parameters. Recharge-discharge relationships are analysed with the model for cases of deterministic and stochastic recharge time-series variations. The model is applied to study the temporal variability of groundwater discharge in a river valley in the territory of Tajikistan, an independent republic in Central Asia. Résumé Un modèle global de bilan d'eau souterraine a été développé pour estimer la variabilité de l'écoulement par rapport à celle de la recharge, en prenant en compte l'influence des paramètres de l'aquifère. Les relations entre recharge et écoulement sont analysées à l'aide du modèle pour des variations des chroniques de recharge soit déterministes, soit stochastiques. Le modèle est appliquéà l'étude de la variabilité temporelle de l'écoulement souterrain vers une rivière, dans le Tadjikistan, une république indépendante d'Asie centrale. Resumen Se propone un modelo de parámetros concentrados para realizar el balance de aguas subterráneas, el cual permite estimar la variabilidad en la descarga con respecto a la variabilidad en la recarga, en función de los parámetros que caracterizan el acuífero. Las relaciones entre recarga y descarga se analizan con el modelo para distintos casos de series temporales de recarga, tanto deterministas como estocásticas. El modelo se aplica al estudio de la variabilidad temporal de la descarga en un valle aluvial de Tadyikistán, una república independiente del Asia Central.

  16. Investigation of Submarine Groundwater Discharge and Preferential Groundwater Flow-paths in a Coastal Karst Area using towed Marine and Terrestrial Electrical Resistivity

    Science.gov (United States)

    O'connell, Y.; Daly, E.; Duffy, G.; Henry, T.

    2012-12-01

    Large volumes of groundwater, containing nutrients and contaminants enter the coastal waters of southern Galway Bay on the west coast of Ireland through submarine groundwater discharge (SGD). The SGD occurs through karstified Carboniferous limestone in a major karst region comprising the Burren and Gort Lowlands. The Carboniferous limestones have experienced extensive dissolution resulting in the development of an underground network of conduits and fissures that define a trimodal groundwater flow pattern across the region. Groundwater discharge to the sea in this area is exclusively intertidal and submarine. Storage in the karst is limited and typical winter rainfall conditions result in the karst system becoming saturated. Temporary lakes (turloughs) form in lowlying areas and act as large reservoirs which provide storage to enable the transmission of the large volumes of water in the system to the sea. Between 2010 and 2012, terrestrial and shallow marine geophysical surveying has been undertaken to investigate preferential groundwater flow-paths and SGD locations in order to quantify the groundwater-seawater interactions in this coastal karst system. A report into the groundwater system of this karst region following a major flood event proposed a conceptual conduit model defined by extensive water tracing, water level monitoring, hydrochemical sampling, geological mapping and drilling. Limited information about the dimensions of the conduits was known. Electrical resistivity tomography (ERT) profiling to depths of 100m below ground level, with multiple array configurations, has been carried out to investigate the modes of groundwater flow in to and out of both temporary and permanent freshwater lakes in the system. Towed dipole-dipole profiles have been recorded to investigate conduits beneath a permanent lake exhibiting a tidal influence despite its location 5.5 km from the seashore. The ERT data indicates significant variations in subsurface resistivities

  17. Climate change impact on groundwater levels in the Guarani Aquifer outcrop zone

    Science.gov (United States)

    Melo, D. D.; Wendland, E.

    2013-12-01

    The unsustainable use of groundwater in many countries might cause water availability restrictions in the future. Such issue is likely to worsen due to predicted climate changes for the incoming decades. As numerous studies suggest, aquifers recharge rates will be affected as a result of climate change. The Guarani Aquifer System (GAS) is one of the most important transboundary aquifer in the world, providing drinkable water for millions of people in four South American countries (Brazil, Argentina, Uruguay and Paraguay). Considering the GAS relevance and how its recharge rates might be altered by climatic conditions anomalies, the objective of this work is to assess possible climate changes impacts on groundwater levels in this aquifer outcrop zone. Global Climate Models' (GCM) outputs were used as inputs in a transient flux groundwater model created using the software SPA (Simulation of Process in Aquifers), enabling groundwater table fluctuation to be evaluated under distinct climatic scenarios. Six monitoring wells, located in a representative basin (Ribeirão da Onça basin) inside a GAS outcrop zone (ROB), provided water table measurements between 2004 and 2011 to calibrate the groundwater model. Using observed climatic data, a water budget method was applied to estimate recharge in different types of land uses. Statistically downscaled future climate scenarios were used as inputs for that same recharge model, which provided data for running SPA under those scenarios. The results show that most of the GCMs used here predict temperature arises over 275,15 K and major monthly rainfall mean changes to take place in the dry season. During wet seasons, those means might experience around 50% decrease. The transient model results indicate that water table variations, derived from around 70% of the climate scenarios, would vary below those measured between 2004 and 2011. Among the thirteen GCMs considered in this work, only four of them predicted more extreme

  18. Regional groundwater modeling of the saturated zone in the vicinity of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ahola, M.; Sagar, B.

    1992-10-01

    Results of groundwater modeling of the saturated zone in the vicinity of Yucca Mountain are presented. Both a regional (200 x 200 km) and subregional (50 x 50 km) model were used in the analyses. Simulations were conducted to determine the impact of various disruptive that might take place over the life span of a proposed Yucca Mountain geologic conditions repository on the groundwater flow field, as well as changes in the water-table elevations. These conditions included increases in precipitation and groundwater recharge within the regional model, changes in permeability of existing hydrogeologic barriers, a:nd the vertical intrusion of volcanic dikes at various orientations through the saturated zone. Based on the regional analysis, the rise in the water-table under Yucca Mountain due to various postulated conditions ranged from only a few meters to 275 meters. Results of the subregional model analysis, which was used to simulate intrusive dikes approximately 4 kilometers in length in the vicinity of Yucca Mountain, showed water-table rises ranging from a few meters to as much as 103 meters. Dikes oriented approximately north-south beneath Yucca Mountain produced the highest water-table rises. The conclusions drawn from this analysis are likely to change as more site-specific data become available and as the assumptions in the model are improved

  19. Resilience of Groundwater Impacted by Land Use and Climate Change in a Karst Aquifer, South China.

    Science.gov (United States)

    Guo, Fang; Jiang, Guanghui; Polk, Jason S; Huang, Xiufeng; Huang, Siyu

    2015-11-01

    Changes of groundwater flow and quality were investigated in a subtropical karst aquifer to determine the driving mechanism. Decreases in groundwater flow are more distinct in discharge zones than those in recharge and runoff zones. Long-term measurement of the represented regional groundwater outlet reveals that groundwater discharge decrease by nearly 50% during the dry season. The hydrochemistry of groundwater in the runoff and discharge zones is of poorer quality than in the recharge zone. Indications of intensive land resource exploitation and changes in land use patterns were attributed to changes in groundwater conditions since 1990, but the influence of climate change was likely from 2001, because the water temperature exhibited increasing trends at a mean rate of 0.02 °C/yr even though groundwater depth was high in the aquifer. These conclusions imply the need for further groundwater monitoring and reevaluation to understand the resilience of aquifer during urbanization and development.

  20. Discharge of 210Po and 210Pb in coastal groundwater to the ocean

    International Nuclear Information System (INIS)

    Kim, Intae; Kim, Tae-hoon; Kim, Guebuem

    2013-01-01

    The activities of 210 Po and 210 Pb were measured for the truly dissolved (<10 kDa) and colloidal (10 kDa - 0.45 ìm) phases in coastal ground water in 2010 and 2011. The sampling sites include the coast of a large tidal flat (Hampyeong Bay) and a volcanic island, Jeju, Korea, where submarine groundwater discharge (SGD) were reported to be higher than typical continental margins. The total dissolved fraction was separated into the colloidal and truly dissolved fractions using a tangential flow filtration (TFF) system (PLCGC Pellicon). The total 210 Po and 210 Pb activities in ground water were 1.0 - 18.2 dpm/100L (9.7±7.6 dpm/100L) an 2.9 - 29.1 dpm/100L (16.8±10.7 dpm/100L) in the Hampyeong Bay and Jeju Island samples, respectively. The total 210 Po and 210 Pb activities in groundwater were similar to or even slightly lower than those in the typical seawater. These lower activities seem to be due to the rapid adsorption of Po and Pb on to particles in the subterranean estuary. The proportions of the truly dissolved and colloidal phases were, respectively, 73±5% and 27±5% for 210 Po, and 60±5% and 40±5% for 210 Pb. This result is consistent with the earlier study that more than half of the some dissolved trace metals in coastal ground water are in the colloidal form. Thus, our result implies that the colloidal forms are important in controlling the behaviour of Po, Pb, and other trace metals in the subterranean estuary and SGD-associated fluxes to the ocean. (author)

  1. Delineation of groundwater development potential zones in parts of marginal Ganga Alluvial Plain in South Bihar, Eastern India.

    Science.gov (United States)

    Saha, Dipankar; Dhar, Y R; Vittala, S S

    2010-06-01

    A part of the Gangetic Alluvial Plain covering 2,228 km(2), in the state of Bihar, is studied for demarcating groundwater development potential zones. The area is mainly agrarian and experiencing intensive groundwater draft to the tune of 0.12 million cubic metre per square kilometres per year from the Quaternary marginal alluvial deposits, unconformably overlain northerly sloping Precambrian bedrock. Multiparametric data on groundwater comprising water level, hydraulic gradient (pre- and post-monsoon), aquifer thickness, permeability, suitability of groundwater for drinking and irrigation and groundwater resources vs. draft are spatially analysed and integrated on a Geographical Information System platform to generate thematic layers. By integrating these layers, three zones have been delineated based on groundwater development potential. It is inferred that about 48% of the area covering northern part has high development potential, while medium and low development potential category covers 41% of the area. Further increase in groundwater extraction is not recommended for an area of 173 km(2), affected by over-exploitation. The replenishable groundwater resource available for further extraction has been estimated. The development potential enhances towards north with increase in thickness of sediments. Local deviations are due to variation of-(1) cumulative thickness of aquifers, (2) deeper water level resulting from localised heavy groundwater extraction and (3) aquifer permeability.

  2. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques.

    Science.gov (United States)

    Thilagavathi, N; Subramani, T; Suresh, M; Karunanidhi, D

    2015-04-01

    This study proposes to introduce the remote sensing and geographic information system (GIS) techniques in mapping the groundwater potential zones. Remote sensing and GIS techniques have been used to map the groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India. Charnockites and fissile hornblende biotite gneiss are the major rock types in this region. Dunites and peridodites are the ultramafic rocks which cut across the foliation planes of the gneisses and are highly weathered. It comprises magnesite and chromite deposits which are excavated by five mining companies by adopting bench mining. The thickness of weathered and fracture zone varies from 2.2 to 50 m in gneissic formation and 5.8 to 55 m in charnockite. At the contacts of gneiss and charnockite, the thickness ranges from 9.0 to 90.8 m favoring good groundwater potential. The mine lease area is underlined by fractured and sheared hornblende biotite gneiss where groundwater potential is good. Water catchment tanks in this area of 5 km radius are small to moderate in size and are only seasonal. They remain dry during summer seasons. As perennial water resources are remote, the domestic and agricultural activities in this region depend mainly upon the groundwater resources. The mines are located in gently slope area, and accumulation of water is not observed except in mine pits even during the monsoon period. Therefore, it is essential to map the groundwater potential zones for proper management of the aquifer system. Satellite imageries were also used to extract lineaments, hydrogeomorphic landforms, drainage patterns, and land use, which are the major controlling factors for the occurrence of groundwater. Various thematic layers pertaining to groundwater existence such as geology, geomorphology, land use/land cover, lineament, lineament density, drainage, drainage density, slope, and soil were generated using GIS tools. By integrating all the above thematic layers based on the ranks and

  3. Vertical Hydraulic Conductivity of Unsaturated Zone by Infiltrometer Analysis of Shallow Groundwater Regime (KUISG

    Directory of Open Access Journals (Sweden)

    Arkan Radhi Ali

    2018-02-01

    Full Text Available A hydrogeologic model was developed and carried out in Taleaa district of 67km2 . The study adopted a determination of KUISG depends upon the double rings infiltrometer model. The tests were carried out in a part of Mesopotamian  Zone which is covered with quaternary deposits  . In general the groundwater levels are about one meter below ground surface.  Theoretically, the inclination angle of the saturated water phase plays an important role in the determination of KUISG. The experimental results prove that the angle of inclination of the saturated phase is identical to the angle of internal friction of the soil. This conclusion is supported by the comparison of the results that obtained from falling head test and infiltrometer measurements for estimating the hydraulic conductivitiy values for ten locations within the study area. The determination of vertical hydraulic conductivity by current infiltrometer model is constrained to only the shallow groundwater regime.7

  4. Marine electrical resistivity imaging of submarine groundwater discharge: Sensitivity analysis and application in Waquoit Bay, Massachusetts, USA

    Science.gov (United States)

    Henderson, Rory; Day-Lewis, Frederick D.; Abarca, Elena; Harvey, Charles F.; Karam, Hanan N.; Liu, Lanbo; Lane, John W.

    2010-01-01

    Electrical resistivity imaging has been used in coastal settings to characterize fresh submarine groundwater discharge and the position of the freshwater/salt-water interface because of the relation of bulk electrical conductivity to pore-fluid conductivity, which in turn is a function of salinity. Interpretation of tomograms for hydrologic processes is complicated by inversion artifacts, uncertainty associated with survey geometry limitations, measurement errors, and choice of regularization method. Variation of seawater over tidal cycles poses unique challenges for inversion. The capabilities and limitations of resistivity imaging are presented for characterizing the distribution of freshwater and saltwater beneath a beach. The experimental results provide new insight into fresh submarine groundwater discharge at Waquoit Bay National Estuarine Research Reserve, East Falmouth, Massachusetts (USA). Tomograms from the experimental data indicate that fresh submarine groundwater discharge may shut down at high tide, whereas temperature data indicate that the discharge continues throughout the tidal cycle. Sensitivity analysis and synthetic modeling provide insight into resolving power in the presence of a time-varying saline water layer. In general, vertical electrodes and cross-hole measurements improve the inversion results regardless of the tidal level, whereas the resolution of surface arrays is more sensitive to time-varying saline water layer.

  5. Assessing the impact of dairy waste lagoons on groundwater quality using a spatial analysis of vadose zone and groundwater information in a coastal phreatic aquifer.

    Science.gov (United States)

    Baram, S; Kurtzman, D; Ronen, Z; Peeters, A; Dahan, O

    2014-01-01

    Dairy waste lagoons are considered to be point sources of groundwater contamination by chloride (Cl(-)), different nitrogen-species and pathogens/microorganisms. The objective of this work is to introduce a methodology to assess the past and future impacts of such lagoons on regional groundwater quality. The method is based on a spatial statistical analysis of Cl(-) and total nitrogen (TN) concentration distributions in the saturated and the vadose (unsaturated) zones. The method provides quantitative data on the relation between the locations of dairy lagoons and the spatial variability in Cl(-) and TN concentrations in groundwater. The method was applied to the Beer-Tuvia region, Israel, where intensive dairy farming has been practiced for over 50 years above the local phreatic aquifer. Mass balance calculations accounted for the various groundwater recharge and abstraction sources and sinks in the entire region. The mass balances showed that despite the small surface area covered by the dairy lagoons in this region (0.8%), leachates from lagoons have contributed 6.0% and 12.6% of the total mass of Cl(-) and TN (mainly as NO3(-)-N) added to the aquifer. The chemical composition of the aquifer and vadose zone water suggested that irrigated agricultural activity in the region is the main contributor of Cl(-) and TN to the groundwater. A low spatial correlation between the Cl(-) and NO3(-)-N concentrations in the groundwater and the on-land location of the dairy farms strengthened this assumption, despite the dairy waste lagoon being a point source for groundwater contamination by Cl(-) and NO3(-)-N. Mass balance calculations, for the vadose zone of the entire region, indicated that drying of the lagoons would decrease the regional groundwater salinization process (11% of the total Cl(-) load is stored under lagoons). A more considerable reduction in the groundwater contamination by NO3(-)-N is expected (25% of the NO3(-)-N load is stored under lagoons). Results

  6. Delineation of a wellhead protection zone and determination of flowpaths from potential groundwater contaminant source areas at Camp Ripley, Little Falls, Minnesota.

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, J. J.; Environmental Science Division

    2006-12-22

    Groundwater at Camp Ripley, Minnesota, is recharged both on post and off site and discharged to rivers, wetlands, and pumping wells. The subsurface geologic materials have a wide range of permeabilities and are arranged in a complex fashion as a result of the region's multiple glacial advances. Correlation of individual glacial geologic units is difficult, even between nearby boreholes, because of the heterogeneities in the subsurface. This report documents the creation of a numerical model of groundwater flow for Camp Ripley and hydrologically related areas to the west and southwest. The model relies on a hydrogeological conceptual model built on the findings of a University of Minnesota-Duluth drilling and sampling program conducted in 2001. Because of the site's stratigraphic complexity, a geostatistical approach was taken to handle the uncertainty of the subsurface correlation. The U.S. Geological Survey's MODFLOW code was used to create the steady-state model, which includes input data from a variety of sources and is calibrated to water levels in monitoring wells across much of the site. This model was used for several applications. Wellhead protection zones were delineated for on-site production wells H, L, and N. The zones were determined on the basis of a probabilistic assessment of the groundwater captured by these wells; the assessment, in turn, had been based on multiple realizations of the study area's stratigraphy and groundwater flowfield. An additional application of the model was for estimating flowpaths and times of travel for groundwater at Camp Ripley's range areas and waste management facilities.

  7. Spatial and temporal variation of nutrients in groundwater and associated processes in the coastal zone of the Pearl River Delta, China

    Science.gov (United States)

    Chen, J.

    2017-12-01

    Rapid urbanization has occurred in the Pearl River Delta since 1980s, resulting in tremendous accumulation of population and material in an area of around 1.1x104 km2. Massive nutrients were released to the coastal zone either via the Pearl River or the aquifer, and effects of these nutrients on ecosystem and drinking water supply are a big public concern. Field campaigns to collect groundwater samples were implemented in rainy (April- September) and dry seasons (October - March) during the period of 2005-2016, and samples were analyzed for major ions, nutrients, multiple isotopes, N2O and microbiological DNA. Seasonal and spatial pattern of nutrients from the recharge to the discharge zone in two case study areas were identified and compared regarding relevant N transformation processes. Main sources of nutrients in groundwater and major mechanisms, e.g. denitrification, nitrification and etc., involved in these processes were raised by integrating microbiological, isotopic and geochemical evidences. Driven forces of the change in nutrients in the past 10 years were investigated based on statistical data, and total nutrient load in groundwater in the delta was estimated.

  8. Flow pathways in the evolving critical zone - insights from hydraulic groundwater theory

    Science.gov (United States)

    Harman, C. J.; Cosans, C.; Kim, M.

    2017-12-01

    The geochemical signatures of the evolving critical zone are delivered into streams via saturated lateral flow through hillslopes. Here we will draw on hydraulic groundwater theory and scaling arguments to obtain insights into the first-order controls on the transition from vertical infiltration to lateral flow in the critical zone. Hydraulic groundwater theory aims to provide a simplified description of unconfined, saturated groundwater flow in systems that are substantially larger in lateral than vertical extent. The theory rests on the Dupuit assumptions, which are often erroneously stated as including an assumption of exclusively lateral flow. In fact the full three-dimensional flow field can be approximated from these assumptions. Building on this theory, we examine how overall hillslope structure (slope, permeability, convergence/divergence etc.) determines the direction and magnitude of flow in the vicinity of weathering fronts in the critical zone, and how weathering products are delivered to the hillslope base. The results demonstrate that under certain conditions the mere presence of lateral flow will not disturb the lateral symmetry of reaction fronts along the hillslope. Furthermore, coupling to a simple reaction model with porosity/permeability feedback allows us to examine the implications for weathering front advance where saturated lateral flow occurs as a transient perched aquifer at the weathering front. The overall rate of weathering front advance is found to be primarily determined by the component of flow normal to the weathering front, and only significantly accelerated by the lateral component above the weathering front when parent rock permeability is very low.

  9. Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India.

    Science.gov (United States)

    Rashid, Mehnaz; Lone, Mahjoor Ahmad; Ahmed, Shakeel

    2012-08-01

    The increasing demand of water has brought tremendous pressure on groundwater resources in the regions were groundwater is prime source of water. The objective of this study was to explore groundwater potential zones in Maheshwaram watershed of Andhra Pradesh, India with semi-arid climatic condition and hard rock granitic terrain. GIS-based modelling was used to integrate remote sensing and geophysical data to delineate groundwater potential zones. In the present study, Indian Remote Sensing RESOURCESAT-1, Linear Imaging Self-Scanner (LISS-4) digital data, ASTER digital elevation model and vertical electrical sounding data along with other data sets were analysed to generate various thematic maps, viz., geomorphology, land use/land cover, geology, lineament density, soil, drainage density, slope, aquifer resistivity and aquifer thickness. Based on this integrated approach, the groundwater availability in the watershed was classified into four categories, viz. very good, good, moderate and poor. The results reveal that the modelling assessment method proposed in this study is an effective tool for deciphering groundwater potential zones for proper planning and management of groundwater resources in diverse hydrogeological terrains.

  10. Evaluation of the effective equivalent dose in the general public due to the discharge of uranium in groundwater

    International Nuclear Information System (INIS)

    Gordon, A.M.P.L.; Jacomino, V.M.F.

    1989-12-01

    Some facilities available at IPEN-CNEN/SP may discharge uranium in their liquid effluents. The uranium contents of these effluents are analyzed by photometry or fluorimetry, and according to the results obtained a decision is made, by the Environmental Monitoring Division, upon their discharge to the environment. In 1988 a total activity of 3.66x10 9 Bq of uranium was discharge in a volume of approximately 30 m 3 . The effective equivalent dose in the general public was evaluated by making a conservative assumption that all the liquid effluents containing uranium are discharged directly to the soil reaching the groundwater. The dose calculation was carried out by using a generic model which described the transport of radionuclides in the groundwater. In order to be conservative it was also assumed that the critical pathway is the direct in gestion of water through hypothetical wells around the Institute. Conservative assumptions were also made in the characterization of the local aquifer parameters such as vertical and longitudinal dispersivity, effective porosity of the soil, hydraulic conductivity etc., in roder to overestimate the effective equivalent dose. The result obtained, of 5.3x10 -10 mSv/a is far below the dose limit for the public adopted by the Radiological Protection Board. The derived limit for the discharge was also evaluated, using the same model, giving a result of 3.6x10 13 Bq/a. (author) [pt

  11. A hydrological budget (2002-2008) for a large subtropical wetland ecosystem indicates marine groundwater discharge accompanies diminished freshwater flow

    Science.gov (United States)

    Saha, Amartya K.; Moses, Christopher S.; Price, Rene M.; Engel, Victor; Smith, Thomas J.; Anderson, Gordon

    2012-01-01

    Water budget parameters are estimated for Shark River Slough (SRS), the main drainage within Everglades National Park (ENP) from 2002 to 2008. Inputs to the water budget include surface water inflows and precipitation while outputs consist of evapotranspiration, discharge to the Gulf of Mexico and seepage losses due to municipal wellfield extraction. The daily change in volume of SRS is equated to the difference between input and outputs yielding a residual term consisting of component errors and net groundwater exchange. Results predict significant net groundwater discharge to the SRS peaking in June and positively correlated with surface water salinity at the mangrove ecotone, lagging by 1 month. Precipitation, the largest input to the SRS, is offset by ET (the largest output); thereby highlighting the importance of increasing fresh water inflows into ENP for maintaining conditions in terrestrial, estuarine, and marine ecosystems of South Florida.

  12. Isotope hydrology of groundwaters in the Donana National Park and the associated zone of influence

    International Nuclear Information System (INIS)

    Plata, A.; Baonza, E.; Silgado, A.

    1984-01-01

    The authors describe a study, using environmental isotopes, of the groundwaters of a complex hydrological system formed by a free recharge zone with a multi-layer structure, a confined zone with connate waters trapped by the deposition of a thick clay layer in a coastal pool environment, and a series of both recent and ancient highly permeable dune formations. Attempts have been made, using tritium of thermonuclear origin, to determine the approximate average recharge rate during the last 28 years in the free aquifer zone. Despite the difficulties encountered, the value of 78 mm/a obtained, which is 13.2% of the average precipitation, is very similar to that obtained using conventional methods (approximately 84 mm/a). As was expected, there was no tritium in the confined zone. Carbon-14 was used to determine the reduced velocity of the underground stream and to confirm the network of streams deduced from conductivity measurements. The age-correction methods proposed by Tamers, Pearson, Mook and Fontes were compared. The differences in age between the last method and the first two are reasonable and can be explained by the isotopic interchange between the CaCO 3 of the rock formation and the gaseous CO 2 included in Fontes' model. On the other hand, the differences found with the Mook method are considerable, particularly for sample values below delta 13 C. The last model is more sensitive to changes in delta 13 C, and the interval of this parameter for which this model gives reasonable values of age is very small. In addition, the 14 C made it possible to determine the sedimentation velocity of clays in the swamp zone. The stable isotopes in the water confirmed the hypothesis that the underground waters in the confinement zone are a mixture of fresh water which has infiltrated into the recharge zone and of connate water trapped by the deposition of the clay layer. (author)

  13. Geochemical characterization of groundwater discharging from springs north of the Grand Canyon, Arizona, 2009–2016

    Science.gov (United States)

    Beisner, Kimberly R.; Tillman, Fred D.; Anderson, Jessica R.; Antweiler, Ronald C.; Bills, Donald J.

    2017-08-01

    A geochemical study was conducted on 37 springs discharging from the Toroweap Formation, Coconino Sandstone, Hermit Formation, Supai Group, and Redwall Limestone north of the Grand Canyon near areas of breccia-pipe uranium mining. Baseline concentrations were established for the elements As, B, Li, Se, SiO2, Sr, Tl, U, and V. Three springs exceeded U.S. Environmental Protection Agency drinking water standards: Fence Spring for arsenic, Pigeon Spring for selenium and uranium, and Willow (Hack) Spring for selenium. The majority of the spring sites had uranium values of less than 10 micrograms per liter (μg/L), but six springs discharging from all of the geologic units studied that are located stratigraphically above the Redwall Limestone had uranium values greater than 10 μg/L (Cottonwood [Tuckup], Grama, Pigeon, Rock, and Willow [Hack and Snake Gulch] Springs). The geochemical characteristics of these six springs with elevated uranium include Ca-Mg-SO4 water type, circumneutral pH, high specific conductance, correlation and multivariate associations between U, Mo, Sr, Se, Li, and Zn, low 87Sr/86Sr, low 234U/238U activity ratios (1.34–2.31), detectable tritium, and carbon isotopic interpretation indicating they may be a mixture of modern and pre-modern waters. Similar geochemical compositions of spring waters having elevated uranium concentrations are observed at sites located both near and away from sites of uranium-mining activities in the present study. Therefore, mining does not appear to explain the presence of elevated uranium concentrations in groundwater at the six springs noted above. The elevated uranium at the six previously mentioned springs may be influenced by iron mineralization associated with mineralized breccia pipe deposits. Six springs discharging from the Coconino Sandstone (Upper Jumpup, Little, Horse, and Slide Springs) and Redwall Limestone (Kanab and Side Canyon Springs) contained water with corrected radiocarbon ages as much as 9

  14. Quantification of leachate discharged to groundwater using the water balance method and the hydrologic evaluation of landfill performance (HELP) model.

    Science.gov (United States)

    Alslaibi, Tamer M; Abustan, Ismail; Mogheir, Yunes K; Afifi, Samir

    2013-01-01

    Landfills are a source of groundwater pollution in Gaza Strip. This study focused on Deir Al Balah landfill, which is a unique sanitary landfill site in Gaza Strip (i.e., it has a lining system and a leachate recirculation system). The objective of this article is to assess the generated leachate quantity and percolation to the groundwater aquifer at a specific site, using the approaches of (i) the hydrologic evaluation of landfill performance model (HELP) and (ii) the water balance method (WBM). The results show that when using the HELP model, the average volume of leachate discharged from Deir Al Balah landfill during the period 1997 to 2007 was around, 6800 m3/year. Meanwhile, the average volume of leachate percolated through the clay layer was 550 m3/year, which represents around 8% of the generated leachate. Meanwhile, the WBM indicated that the average volume of leachate discharged from Deir Al Balah landfill during the same period was around 7660 m3/year--about half of which comes from the moisture content of the waste, while the remainder comes from the infiltration of precipitation and re-circulated leachate. Therefore, the estimated quantity of leachate to groundwater by these two methods was very close. However, compared with the measured leachate quantity, these results were overestimated and indicated a dangerous threat to the groundwater aquifer, as there was no separation between municipal, hazardous and industrial wastes, in the area.

  15. Using Radon and Radium isotopes to trace submarine groundwater discharge in Yilan Plain, Taiwan

    Science.gov (United States)

    Huang, Chun-Kai; Su, Chih-Chieh

    2015-04-01

    The Yilan Plain which located in the northeast Taiwan was selected for submarine groundwater discharge (SGD) study. The geomorphic and climatic conditions induce lush rain drenched mountains and create abundant groundwater resource in the Yilan Plain. The annual precipitation in 2014 is 2025 mm with most of the precipitation concentrated on autumn (from September to November). In this study, radon and radium isotopes are used as tracers for SGD survey. The 224Ra (t1/2 =3.6 days) was measured by a delayed coincidence counter (RaDeCC). The 222Rn (t1/2 =3.8 days) was measured by RAD-7 equipped with RAD H2O and RAD AQUA system. The river-water samples were collected from the main stream of Lanyang River and its tributaries from upstream to river mouth. The spring-water samples were collected at 8 sites in April, July and October 2014. Ten surface seawater samples along the coastline of the Yilan Plain were collected in August 2014. Our results show the activities of 222Rn and 224Ra in springs ranging from 3400 to 30850 Bq/m3 and 0.02 to 0.29 Bq/m3, and there are no significant differences between wet and dry seasons. Unexpectedly, the springs are characterized with high 222Rn and low 224Ra activities. For river samples, the activities of 224Ra in downstream and river mouth (0.18 to 1.48 Bq/m3) are higher than upstream (0 to 0.3 Bq/m3). The average activity of 224Ra in downstream samples which collected in April (0.98 Bq/m3) has the highest value than other seasons (0.41-0.51 Bq/m3). In coastal seawater, the activities of 222Rn and 224Ra ranged from 0 to 366 Bq/m3 and 0.10 to 1.14 Bq/m3 in August 2014. In summary, this study points out in some coastal regions of the Yilan Plain, where without riverine input, have high 222Rn and 224Ra activities in seawater. We suggest the SGD plays an important role on land-sea exchange along the coastline of the Yilan Plain. Compare with the spring water samples, the 224Ra activities in coastal seawater are 3-4 times higher than

  16. Submarine groundwater discharge driven nitrogen fluxes to Long Island Sound, NY: Terrestrial vs. marine sources

    Science.gov (United States)

    Tamborski, J. J.; Cochran, J. K.; Bokuniewicz, H. J.

    2017-12-01

    Bottom-waters in Smithtown Bay (Long Island Sound, NY) are subject to hypoxic conditions every summer despite limited nutrient inputs from waste-water and riverine sources, while modeling estimates of groundwater inputs are thought to be insignificant. Terrestrial and marine fluxes of submarine groundwater discharge (SGD) were quantified to Smithtown Bay using mass balances of 222Rn, 224Ra, 226Ra and 228Ra during the spring and summer of 2014/2015, in order to track this seasonal transition period. Intertidal pore waters from a coastal bluff (terrestrial SGD) and from a barrier beach (marine SGD) displayed substantial differences in N concentrations and sources, traced using a multi-isotope approach (222Rn, Ra, δ15N-NO3-, δ18O-NO3-). NO3- in terrestrial SGD did not display any seasonality and was derived from residential septic systems and fertilizer. Marine SGD N concentrations varied month-to-month because of mixing between oxic seawater and hypoxic saline pore waters; N concentrations were greatest during the summer, when NO3- was derived from the remineralization of organic matter. Short-lived 222Rn and 224Ra SGD fluxes were used to determine remineralized N loads along tidal recirculation flow paths, while long-lived 228Ra was used to trace inputs of anthropogenic N in terrestrial SGD. 228Ra-derived terrestrial N load estimates were between 20 and 55% lower than 224Ra-derived estimates (excluding spring 2014); 228Ra may be a more appropriate tracer of terrestrial SGD N loads. Terrestrial SGD NO3- (derived from 228Ra) to Smithtown Bay varied from (1.40-12.8) ∗ 106 mol N y-1, with comparable marine SGD NO3- fluxes of (1.70-6.79) ∗ 106 mol N y-1 derived from 222Rn and 224Ra. Remineralized N loads were greater during the summer compared with spring, and these may be an important driver toward the onset of seasonal hypoxic conditions in Smithtown Bay and western Long Island Sound. Seawater recirculation through the coastal aquifer can rival the N load from

  17. Analysis of the different zones of glow discharge of ethyl alcohol (C2H6O)

    International Nuclear Information System (INIS)

    Torres, C; Reyes, P G; Mulia, J; Castillo, F; Martínez, H

    2014-01-01

    The aim of this work is to explore the emission spectroscopy of ethyl alcohol in some regions, also is determine the result elements of the glow discharge, the spectrums were observed in a range of 200 at 1100 nm in the different zones inside of the tube at different distances of 20 and 30 cm. The elements are: in anode region C 6 H 5 (483.02 nm), CHO (519.56 nm) and H 2 (560.47 nm), in the positive column CO 2 + (315.52 y 337.00 nm), O + (357.48 nm), CH + (380.61 nm) and CO + (399.73 nm); in the cathode region we observed O + (391.19 nm), CHOCHO (428.00 nm), CO + (471.12 nm) and H 2 (656.52 nm). C 6 H 5 , CHO y H 2 species occurring in all regions analyzed varying the glow discharge emission intensity.

  18. Arsenic transport in groundwater, surface water, and the hyporheic zone of a mine-influenced stream-aquifer system

    OpenAIRE

    Brown, Brendan

    2005-01-01

    We investigated the transport of dissolved arsenic in groundwater, surface water and the hyporheic zone in a stream-aquifer system influenced by an abandoned arsenopyrite mine. Mine tailing piles consisting of a host of arsenic-bearing minerals including arsenopyrite and scorodite remain adjacent to the stream and represent a continuous source of arsenic. Arsenic loads from the stream, springs, and groundwater were quantified at the study reach on nine dates from January to August 2005 and ...

  19. Submarine groundwater discharge at Kahana Bay, Oahu, 1997-2001: in situ CTD and water chemistry tracer data (NODC Accession 0011399)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Submarine groundwater discharge (SGD) is neither well understood nor commonly investigated in Hawaii, but it is recognized as a potential pollution source to coastal...

  20. Magnetron sputtering system with an annual discharge zone and two cathode modules

    International Nuclear Information System (INIS)

    Savich, V. A.; Yasyunas, A. A.; Kovrigo, V. M.; Kotov, D. A.; Shiripov, V. Ya.

    2013-01-01

    In this article, general discharge characteristics of a cylindrical magnetron sputtering system with an annual sputtering zone and a high target usage coefficient designed for transparent conducting coatings are shown. Two coupled DC-cathodes are used to improve coating uniformity. Radial sputtered material fluxes are being created. The engineered magnetic system is extremely balanced (G-factor is much higher than 2) and thus provides maximal effective operating power higher than 6 kW. The effectiveness of a magnetic trap results in a fast work cycle (less than 1.5 min) and a high target material usage coefficient (higher than 40%). A multipole magnetic field with null magnetic flux density zones lower target’s surface is being created. There is an influence between cathode modules despite mutual magnetic isolation, so magnetic conductors-shunts are used to weaken it. The magnetron can be used to sputter both metals and conducting ceramics (including ITO). (authors)

  1. Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling

    Science.gov (United States)

    Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.

    2016-01-01

    Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.

  2. Uranium removal during low discharge in the Ganges-Brahmaputra mixing zone

    International Nuclear Information System (INIS)

    Carroll, J.; Moore, W.S.

    1993-01-01

    The Ganges-Brahmaputra river system supplies more dissolved uranium to the ocean than any other system in the world (Sarin et al., 1990; Sackett et al., 1973). However, there have been no investigations to determine whether riverine supplies of uranium are altered by geochemical reactions in the river-ocean mixing zone. In this study, uranium and salinity data were collected in the Ganges-Brahmaputra mixing zone during a period of low river discharge. The uranium distribution with salinity shows that in waters <12 ppt salinity, uranium activities are significantly lower than predicted from conservative mixing of river and seawater. This suggests that uranium is being removed within the mixing zone. The behavior of uranium in the Ganges-Brahmaputra is in sharp contrast to its behavior in the Amazon mixing zone where McKee et al. (1978) found uranium activities significantly higher than predicted from conservative mixing. The contrasting behaviors for uranium in these systems are due to the different locations where mixing between river and seawater occurs. For the Amazon, mixing takes place on the continental shelf whereas for the Ganges-Brahmaputra, mixing occurs within shoreline sedimentary environments. The physiochemical processes controlling uranium removal to sediment deposits in the Amazon are partly known. The authors discuss mechanisms which may be removing uranium to suspended and mangrove sediments in the Ganges-Brahmaputra

  3. Application of remote sensing, GIS and MCA techniques for delineating groundwater prospect zones in Kashipur block, Purulia district, West Bengal

    Science.gov (United States)

    Nag, S. K.; Kundu, Anindita

    2018-03-01

    Demand of groundwater resources has increased manifold with population expansion as well as with the advent of modern civilization. Assessment, planning and management of groundwater resource are becoming crucial and extremely urgent in recent time. The study area belongs to Kashipur block, Purulia district, West Bengal. The area is characterized with dry climate and hard rock terrain. The objective of this study is to delineate groundwater potential zone for the assessment of groundwater availability using remote sensing, GIS and MCA techniques. Different thematic layers such as hydrogeomorphology, slope and lineament density maps have been transformed to raster data in TNT mips pro2012. To assign weights and ranks to different input factor maps, multi-influencing factor (MIF) technique has been used. The weights assigned to each factor have been computed statistically. Weighted index overlay modeling technique was used to develop a groundwater potential zone map with three weighted and scored parameters. Finally, the study area has been categorized into four distinct groundwater potential zones—excellent 1.5% (6.45 sq. km), good 53% (227.9 sq. km), moderate 45% (193.5 sq. km.) and poor 0.5% (2.15 sq. km). The outcome of the present study will help local authorities, researchers, decision makers and planners in formulating proper planning and management of groundwater resources in different hydrogeological situations.

  4. A practical assessment of aquifer discharge for regional groundwater demand by characterizing leaky confined aquifer overlain on a Mesozoic granitic gneiss basement

    Science.gov (United States)

    Shih, David Ching-Fang

    2018-04-01

    Due to increasing population worldwide, there is an urgent need to manage these important but diminishing groundwater resources efficiently to ensure their continued availability. The major innovative design of this study is to provide a practical assessment process for groundwater discharge under a regional demand by characterizing the nature of leaky confined aquifers overlain on a Mesozoic granitic gneiss basement which involves the important groundwater system in the Kinmen region (Taiwan, ROC) and the assessment of adoptable groundwater discharge in aquifer is needed. The storage coefficient presents an order of one in a thousand and hydraulic conductivity is approximately at the order of 1-8 m/d and 0.4-0.9 m/d for aquifer and aquitard respectively. Groundwater discharge and admissible number of pumping well is suggested considering scheduled maximum groundwater volume and head decline change for eastern and western studied area respectively. The safety subjected to the conservative issue is then addressed by the use of scheduled maximum groundwater volume. It reveals that the safety can be ensured using the indicator as scheduled maximum groundwater volume with predefined scenarios. The result can be utilized practically for developing management strategy of groundwater resources due to the applicability and novel of method.

  5. Prediction of groundwater flowing well zone at An-Najif Province, central Iraq using evidential belief functions model and GIS.

    Science.gov (United States)

    Al-Abadi, Alaa M; Pradhan, Biswajeet; Shahid, Shamsuddin

    2015-10-01

    The objective of this study is to delineate groundwater flowing well zone potential in An-Najif Province of Iraq in a data-driven evidential belief function model developed in a geographical information system (GIS) environment. An inventory map of 68 groundwater flowing wells was prepared through field survey. Seventy percent or 43 wells were used for training the evidential belief functions model and the reset 30 % or 19 wells were used for validation of the model. Seven groundwater conditioning factors mostly derived from RS were used, namely elevation, slope angle, curvature, topographic wetness index, stream power index, lithological units, and distance to the Euphrates River in this study. The relationship between training flowing well locations and the conditioning factors were investigated using evidential belief functions technique in a GIS environment. The integrated belief values were classified into five categories using natural break classification scheme to predict spatial zoning of groundwater flowing well, namely very low (0.17-0.34), low (0.34-0.46), moderate (0.46-0.58), high (0.58-0.80), and very high (0.80-0.99). The results show that very low and low zones cover 72 % (19,282 km(2)) of the study area mostly clustered in the central part, the moderate zone concentrated in the west part covers 13 % (3481 km(2)), and the high and very high zones extended over the northern part cover 15 % (3977 km(2)) of the study area. The vast spatial extension of very low and low zones indicates that groundwater flowing wells potential in the study area is low. The performance of the evidential belief functions spatial model was validated using the receiver operating characteristic curve. A success rate of 0.95 and a prediction rate of 0.94 were estimated from the area under relative operating characteristics curves, which indicate that the developed model has excellent capability to predict groundwater flowing well zones. The produced map of groundwater

  6. Identification and characterization of potential discharge areas for radionuclide transport by groundwater from a nuclear waste repository in Sweden.

    Science.gov (United States)

    Berglund, Sten; Bosson, Emma; Selroos, Jan-Olof; Sassner, Mona

    2013-05-01

    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.

  7. Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA

    Science.gov (United States)

    Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.

    2018-01-01

    Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3−) input functions by characterizing unsaturated zone NO3− transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous “vertical flux method” (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3− source concentration factor (which determines the local NO3− input concentration); unsaturated zone travel time; NO3− concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3− “extinction depth”, the eventual steady state depth of the NO3−front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 – 0.86 and 0.22 – 0.38, respectively, and predictions were compiled as maps of the above

  8. Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA

    Science.gov (United States)

    Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.

    2018-04-01

    Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3-) input functions by characterizing unsaturated zone NO3- transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous "vertical flux method" (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3- source concentration factor (which determines the local NO3- input concentration); unsaturated zone travel time; NO3- concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3- "extinction depth", the eventual steady state depth of the NO3- front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 - 0.86 and 0.22 - 0.38, respectively, and predictions were compiled as maps of the above response variables. Testing

  9. Modeling of geochemical processes in the submarine discharge zone of hydrothermal solutions

    Directory of Open Access Journals (Sweden)

    С. М. Судариков

    2017-06-01

    Full Text Available The paper reviews the main methods and analyzes modeling results for geochemical processes in the submarine discharge zone of hydrothermal solutions of mid-ocean ridges. Initial data for modeling have been obtained during several marine expeditions, including Russian-French expedition SERPENTINE on the research vessel «Pourquoi Рas?» (2007. Results of field observations, laboratory experiments and theoretical developments are supported by the analysis of regression model of mixing between hydrothermal solutions and sea water. Verification of the model has been carried out and the quality of chemical analysis has been assessed; degree and character of participation of solution components in the hydrothermal process have been defined; the content of end members has been calculated basing on reverse forecasting of element concentration, depending on regression character; data for thermodynamic modeling have been prepared. Regression model of acid-base properties and chloridity of mineralizing thermal springs confirms adequacy of the model of double-diffusive convection for forming the composition of hydrothermal solutions.  Differentiation of solutions according to concentrations of chloride-ion, depending on temperature and pH indicator within this model, is associated with phase conversions and mixing of fluids from two convection cells, one of which is a zone of brine circulation. In order to carry out computer thermodynamic modeling, hydro-geochemical and physicochemical models of hydrothermal discharge zone have been created. Verification of the model has been carried out basing on changes of Mn concentration in the hydrothermal plume. Prevailing forms of Mn migration in the plume are Mn2+, MnCl+, MnCl2. Two zones have been identified in the geochemical structure of the plume: 1 high-temperature zone (350-100 °С with prevalence of chloride complexes – ascending plume; 2 low-temperature zone (100-2 °С, where predominant form of

  10. Groundwater Flow and Radionuclide Transport in Fault Zones in Granitic Rock

    International Nuclear Information System (INIS)

    Geier, Joel Edward

    2004-12-01

    Fault zones are potential paths for release of radioactive nuclides from radioactive-waste repositories in granitic rock. This research considers detailed maps of en echelon fault zones at two sites in southern Sweden, as a basis for analyses of how their internal geometry can influence groundwater flow and transport of radioactive nuclides. Fracture intensity within these zones is anisotropic and correlated over scales of several meters along strike, corresponding to the length and spacing of the en echelon steps. Flow modeling indicates these properties lead to correlation of zone transmissivity over similar scales. Intensity of fractures in the damage zone adjoining en echelon segments decreases exponentially with distance. These fractures are linked to en echelon segments as a hierarchical pattern of branches. Echelon steps also show a hierarchical internal structure. These traits suggest a fractal increase in the amount of pore volume that solute can access by diffusive mass transfer, with increasing distance from en echelon segments. Consequences may include tailing of solute breakthrough curves, similar to that observed in underground tracer experiments at one of the mapping sites. The implications of echelon-zone architecture are evaluated by numerical simulation of flow and solute transport in 2-D network models, including deterministic models based directly on mapping data, and a statistical model. The simulations account for advection, diffusion-controlled mixing across streamlines within fractures and at intersections, and diffusion into both stagnant branch fractures and macroscopically unfractured matrix. The simulations show that secondary fractures contribute to retardation of solute, although their net effect is sensitive to assumptions regarding heterogeneity of transmissivity and transport aperture. Detailed results provide insight into the function of secondary fractures as an immobile domain affecting mass transfer on time scales relevant to

  11. Groundwater management in coastal zones and on islands in crystalline bedrock areas of Sweden

    Science.gov (United States)

    Banzhaf, Stefan; Ekström, Linda Louise; Ljungkvist, Andreas; Granberg, Maria; Merisalu, Johanna; Pokorny, Sebastian; Barthel, Roland

    2017-04-01

    Groundwater problems in coastal regions are usually not associated with the sparsely populated shores of water-rich Scandinavia. However, the combination of geology and the specific conditions of water usage create challenges even there. Along the Swedish coast, much of the groundwater occurs in fractured bedrock or in relatively small, shallow, and isolated quaternary sedimentary formations. Those aquifers cannot provide water to larger permanent settlements and are thus neither useful for the public water supply nor have previously received much attention from water authorities or researchers. However, of the 450,000 private wells in Sweden, many are located in coastal areas or on islands, creating pressure on groundwater resources in summer months as periods with low or no natural groundwater recharge. In view of the increasing water demand, as well as the awareness of environmental impacts and climate change, Swedish municipalities now recognize groundwater usage in coastal areas is a major concern. Here, we present the results of an investigation on the "Koster" archipelago which forms a microcosm of coastal zone groundwater problems in Sweden. Koster's geology is dominated by fractured, crystalline bedrock with occasional shallow quaternary deposits in between. With around 300 permanent residents, and up to 6,000 summer guests in peak holiday season, the existing water supply based on 800 private wells is at its limit. Water availability forms an obstacle to future development and the current mode of operation is unsustainable. Therefore, the municipality must decide how to secure future water supply which involves complex legal problems, as well as social, cultural, economic, hydrogeological, and environmental questions. As there are no observation wells on the islands, we used approximately 220 of the 800 wells (65% dug and shallow, 35% drilled and up to 120m deep) for our monitoring. Additionally, water samples were collected by property owners on four

  12. Impacts from oil and gas produced water discharges on the Gulf of Mexico hypoxic zone

    International Nuclear Information System (INIS)

    Parker, M.E.; Satterlee, K.; Veil, J.A.

    2006-01-01

    Shallow water areas of the Gulf of Mexico continental shelf experience low dissolved oxygen (hypoxia) each summer. The hypoxic zone is primarily caused by input of nutrients from the Mississippi and Atchafalaya Rivers. The nutrients stimulate the growth of phytoplankton, which leads to reduction of the oxygen concentration near the sea floor. During the renewal of an offshore discharge permit used by the oil and gas industry in the Gulf of Mexico, the U.S. Environmental Protection Agency (EPA) identified the need to assess the potential contribution from produced water discharges to the occurrence of hypoxia. The EPA permit required either that all platforms in the hypoxic zone submit produced water samples, or that industry perform a coordinated sampling program. This paper, based on a report submitted to EPA in August 2005 (1), describes the results of the joint industry sampling program and the use of those results to quantify the relative significance of produced water discharges in the context of other sources on the occurrence of hypoxia in the Gulf of Mexico. In the sampling program, 16 facilities were selected for multiple sampling - three times each at one month intervals-- and another 34 sites for onetime sampling. The goal of the sampling program was to quantify the sources and amount of oxygen demand associated with a variety of Gulf of Mexico produced waters. Data collected included direct oxygen demand measured by BOD5 (5-day biochemical oxygen demand) and TOC (total organic carbon) and indirect oxygen demand measured by nitrogen compounds (ammonia, nitrate, nitrate, and TKN (total Kjeldahl nitrogen)) and phosphorus (total phosphorus and orthophosphate). These data will serve as inputs to several available computer models currently in use for forecasting the occurrence of hypoxia in the Gulf of Mexico. The output of each model will be compared for consistency in their predictions and then a semi-quantitative estimate of the relative significance of

  13. TECHNICAL BASIS FOR EVALUATING SURFACE BARRIERS TO PROTECT GROUNDWATER FROM DEEP VADOSE ZONE CONTAMINATION

    International Nuclear Information System (INIS)

    Fayer, J.M.; Freedman, V.L.; Ward, A.L.; Chronister, G.B.

    2010-01-01

    tasks to achieve those outcomes. Full understanding of contaminant behavior in the deep vadose zone is constrained by four key data gaps: limited access; limited data; limited time; and the lack of an accepted predictive capability for determining whether surface barriers can effectively isolate deep vadose zone contaminants. Activities designed to fill these data gaps need to have these outcomes: (1) common evaluation methodology that provides a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination; (2) deep vadose zone data that characterize the lithology, the spatial distribution of moisture and contaminants, the physical, chemical, and biological process that affect the mobility of each contaminant, and the impacts to the contaminants following placement of a surface barrier; (3) subsurface monitoring to provide subsurface characterization of initial conditions and changes that occur during and following remediation activities; and (4) field observations that span years to decades to validate the evaluation methodology. A set of six proposed tasks was identified to provide information needed to address the above outcomes. The proposed tasks are: (1) Evaluation Methodology - Develop common evaluation methodology that will provide a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination. (2) Case Studies - Conduct case studies to demonstrate the applicability ofthe common evaluation methodology and provide templates for subsequent use elsewhere. Three sites expected to have conditions that would yield valuable information and experience pertinent to deep vadose zone contamination were chosen to cover a range of conditions. The sites are BC Cribs and Trenches, U Plant Cribs, and the T Farm Interim Cover. (3) Subsurface Monitoring Technologies - Evaluate minimally invasive

  14. An update of hydrologic conditions and distribution of selected constituents in water, Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2006-08

    Science.gov (United States)

    Davis, Linda C.

    2010-01-01

    Since 1952, radiochemical and chemical wastewater discharged to infiltration ponds (also called percolation ponds), evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched groundwater wells in the USGS groundwater monitoring networks during 2006-08. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2005 to March-May 2008, water levels in wells generally remained constant or rose slightly in the southwestern corner of the INL. Water levels declined in the central and northern parts of the INL. The declines ranged from about 1 to 3 feet in the central part of the INL, to as much as 9 feet in the northern part of the INL. Water levels in perched groundwater wells around the Advanced Test Reactor Complex (ATRC) also declined. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2006-08. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In April

  15. Evaluating Ecosystem Services for Reducing Groundwater Nitrate Contamination: Nitrate Attenuation in the Unsaturated and Saturated Zones

    Science.gov (United States)

    Wang, J.

    2013-12-01

    Nitrates are the most common type of groundwater contamination in agricultural regions. Environmental policies targeting nitrates have focused on input control (e.g., restricted fertilizer application), intermediate loads control (e.g., reduce nitrate leached from crop fields), and final loads control (e.g., reduce catchment nitrate loads). Nitrate loads can be affected by hydrological processes in both unsaturated and saturated zones. Although many of these processes have been extensively investigated in literature, they are commonly modeled as exogenous to farm management. A couple of recent studies by scientists from the Lawrence Livermore National Laboratory show that in some situations nitrate attenuation processes in the unsaturated/saturated zone, particularly denitrification, can be intensified by certain management practices to mitigate nitrate loads. Therefore, these nitrate attenuation processes can be regarded as a set of ecosystem services that farmers can take advantage of to reduce their cost of complying with environmental policies. In this paper, a representative California dairy farm is used as a case study to show how such ecosystem attenuation services can be framed within the farm owner's decision-making framework as an option for reducing groundwater nitrate contamination. I develop an integrated dynamic model, where the farmer maximizes discounted net farm profit over multiple periods subject to environmental regulations. The model consists of three submodels: animal-waste-crop, hydrologic, and economic model. In addition to common choice variables such as irrigation, fertilization, and waste disposal options, the farmer can also endogenously choose from three water sources: surface water, deep groundwater (old groundwater in the deep aquifer that is not affected by farm effluent in the short term), and shallow groundwater (drainage water that can be recycled via capture wells at the downstream end of the farm). The capture wells not only

  16. Effects of small-scale hydrogeologic heterogeneity on submarine groundwater discharge (SGD) dynamics in river dominated estuaries: example of Mobile Bay, Alabama

    Science.gov (United States)

    Montiel, D.; Dimova, N.

    2017-12-01

    Submarine groundwater discharge (SGD) is known to be an important pathway for nutrients and dissolved constituents in estuarine environments worldwide. Despite its limited contribution to the total fresh water flux to the ocean (5 - 10 %), SGD-derived material loadings can rival riverine inputs. Therefore, a good understanding of the coastal hydrogeology and subsequent SGD dynamics is crucial to further investigate constituent fluxes and its implications on small and large scale coastal ecosystems. We evaluated SGD in Mobile Bay (Alabama), the fourth largest estuary in the US, using a combination of radiotracer techniques (223Ra, 226Ra, and 222Rn), stable isotopes (δ 18O and δ 2H), geophysical surveys (continuous resistivity profiling (CRP) and electrical resistivity tomography (ERT)), and seepage meters during three consecutive years. A detailed examination of the entire shoreline of Mobile Bay using CRP, ERT imaging, and multiple sediment cores collection unveiled a heterogeneous (horizontal and vertical) distribution of the surficial coastal aquifer. This was reflected and confirmed by groundwater tracer measurements and direct measurements of SGD in the coastal zone. We found that SGD occurs mainly in the northeast section of Mobile Bay with a total flux that ranged between 0.9 and 13 × 105 m3 d-1 during dry and wet periods, which represents 0.4 - 2 % of the total fresh water inputs into the Bay. While total SGD is insignificant when accounting the whole water budget of Mobile Bay, we found that small-scale geology variations produce groundwater flow preferential pathways in particular areas where SGD inputs play an important role in the water and nutrient budgets.

  17. Using high-resolution in situ radon measurements to determine groundwater discharge at a remote location: Tonle Sap Lake, Cambodia

    International Nuclear Information System (INIS)

    Burnett, W.C.; Chanyotha, S.

    2013-01-01

    Tonle Sap Lake (Cambodia) is the largest freshwater lake in SE Asia, and is reported to have one of the highest freshwater fish productions anywhere. During the dry season (November-April) the lake drains through a tributary to the Mekong River. The flow in the connecting tributary completely reverses during the wet monsoon (May-October), adding huge volumes of water back to the lake, increasing its area about fourfold. We hypothesize that nutrients are at least partially delivered via groundwater discharge, especially during the draining portion of the annual flood cycle. We surveyed over 200 km in the northern section of the lake using a customized system that measures natural 222 Rn (radon), temperature, conductivity, GPS coordinates and water depth while underway. Results showed that there were portions of the lake with significant enrichments in radon, indicating likely groundwater inputs. These same areas were generally characterized by lower electrical conductivities. Samples collected from nearby wells also showed a general inverse relationship between radon and conductivity. Our data suggest that groundwater pathways are important, accounting for roughly 10-20 % of the freshwater flow of the Tonle Sap tributary (connection to the Mekong River), the largest single source of fresh water to the lake. Nutrient inputs from these inputs, because of higher concentrations in groundwater, will be correspondingly higher. (author)

  18. The interaction between the unsaturated zone, aquifer, and stream during a period of groundwater withdrawal

    DEFF Research Database (Denmark)

    Poulsen, Søren Erbs; Christensen, Steen; Rasmussen, Keld Rømer

    2011-01-01

    drainage responses to water-table drawdown. The responses can be sufficiently modeled by estimating the specific yield and five exponential time constants of a Moench/Boulton type model of delayed drainage. The average specific yield is thus estimated to 0.24 which is in agreement with previous small scale......; in the second case the estimate (0.17) is in better agreement with core and previous estimates (0.24). The analysis indicates that relatively fast drainage, and the existence of two drawdown dependent sources of groundwater recharge (the storage and the stream), complicates pumping test design to obtain unique...... parameter estimation. The analysis supports that an essential factor in parameter estimation by pumping test analysis for (at least some) unconfined aquifers is the use of a model that accounts for time-varying drainage from the vadose zone. Finally, when predicting stream depletion beyond 1. day of pumping...

  19. An isotopic view of water and nitrate transport through the vadose zone in Oregon's southern Willamette Valley's Groundwater Management Area

    Science.gov (United States)

    Brooks, J. R.; Pearlstein, S.; Hutchins, S.; Faulkner, B. R.; Rugh, W.; Willard, K.; Coulombe, R.; Compton, J.

    2017-12-01

    Groundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the USA. The southern Willamette Valley Groundwater Management Area (GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen (N) inputs to the GWMA comes from agricultural fertilizers, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding N transformations. In partnership with local farmers and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variable over time, lysimeter water isotopes were surprisingly consistent, more closely resembling long-term precipitation isotope means rather than recent precipitation isotopic signatures. However, some particularly large precipitation events with unique isotopic signatures revealed high spatial variability in transport, with some lysimeters showing greater proportions of recent precipitation inputs than others. In one installation where we have groundwater wells and lysimeters at multiple depths, nitrate/nitrite concentrations decreased with depth. N concentrations

  20. Approach for delineation of contributing areas and zones of transport to selected public-supply wells using a regional ground-water flow model, Palm Beach County, Florida

    Science.gov (United States)

    Renken, R.A.; Patterson, R.D.; Orzol, L.L.; Dixon, Joann

    2001-01-01

    ) leakance (29 percent); and inflow through the northern, western, and southern prescribed flux model boundaries (10 percent) represent the major inflow components. Principal outflow components in the Boca Raton well field area include well discharge (56 percent), river (canal) leakance (27 percent), and water that discharges along the coast (10 percent). A particle-tracking analysis using MODPATH was conducted to better understand well-field ground-water flow patterns and time of travel. MODTOOLS was used to construct zones-of-transport spatial data for municipal supply wells. Porosity estimates were uniformly increased to study the effect of porosity on zones of transport. Where porosity was increased, the size of the zones of transport were shown to decrease.

  1. Preliminary Analysis of the Role of Wetlands and Rivers in the Groundwater Discharge of the Guarani Aquifer System in NE Argentina

    International Nuclear Information System (INIS)

    Vives, L.; Rodriguez, L.; Manzano, M.; Valladares, A.; Agarwaal, P.; Araguas, L.

    2011-01-01

    The Guarani Aquifer System (GAS) is a transboundary aquifer occupying parts of Brazil, Uruguay, Paraguay and Argentina, covering some 1200000 km''2. The location and magnitude of recharge and the magnitude of regional discharges are uncertain. Regional groundwater flow modeling suggests that some discharge may occur through selected reaches of the Parana and Uruguay rivers and their tributaries, and perhaps, through the Ibera wetland system within Argentina. Preliminary findings of hydrochemical and isotopic sampling and analysis from surface water and groundwater in the Southern GAS region, studying the role of rivers and wetlands in the aquifer discharge and revising the conceptual model, are presented.

  2. Assessment of the impact of sea-level rise due to climate change on coastal groundwater discharge.

    Science.gov (United States)

    Masciopinto, Costantino; Liso, Isabella Serena

    2016-11-01

    An assessment of sea intrusion into coastal aquifers as a consequence of local sea-level rise (LSLR) due to climate change was carried out at Murgia and Salento in southern Italy. The interpolation of sea-level measurements at three tide-gauge stations was performed during the period of 2000 to 2014. The best fit of measurements shows an increasing rate of LSLR ranging from 4.4mm/y to 8.8mm/y, which will result in a maximum LSLR of approximately 2m during the 22nd century. The local rate of sea-level rise matches recent 21st and 22nd century projections of mean global sea-level rise determined by other researchers, which include increased melting rates of the Greenland and Antarctic ice sheets, the effect of ocean thermal expansion, the melting of glaciers and ice caps, and changes in the quantity of stored land water. Subsequently, Ghyben-Herzberg's equation for the freshwater/saltwater interface was rewritten in order to determine the decrease in groundwater discharge due to the maximum LSLR. Groundwater flow simulations and ArcGIS elaborations of digital elevation models of the coast provided input data for the Ghyben-Herzberg calculation under the assumption of head-controlled systems. The progression of seawater intrusion due to LSLR suggests an impressive depletion of available groundwater discharge during the 22nd century, perhaps as much as 16.1% of current groundwater pumping for potable water in Salento. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Measuring the Thermal Conductivity of Sediments for the Estimation of Groundwater Discharge to Surface Waters with Temperature Probes

    Science.gov (United States)

    Duque, C.; Müller, S.; Sebok, E.; Engesgaard, P. K.

    2015-12-01

    Using temperature probes is a common exploratory method for studying groundwater-surface water interaction due to the ease for collecting measurements and the simplicity of the different analytical solutions. This approach requires to define the surface water temperature, the groundwater temperature and a set of parameters (density and specific capacity of water, and thermal conductivity of sediments) that can be easily extracted from tabulated values under the assumption that they are homogeneous in the study area. In the case of the thermal conductivity, it is common to apply a standard value of 1.84 Wm-1 C-1 corresponding to sand. Nevertheless the environments where this method is applied, like streambeds or lake/lagoons shores, are sedimentary depositional systems with high energy and biological activity that often lead to sediments dominated by organic matter or sharp changes in grain size modifying greatly the thermal conductivity values. In this study, the thermal conductivity was measured in situ along transects where vertical temperature profiles were collected in a coastal lagoon bed receiving groundwater discharge (Ringkøbing Fjord, Denmark). A set of 4 transects with 10-20 temperature profiles during 3 different seasons was analyzed together with more than 150 thermal conductivity measurements along the working transects and in experimental parcels of 1 m2 where the cm scale spatial variability of the thermal conductivity was assessed. The application of a literature-based bulk thermal conductivity of 1.84 Wm-1 C-1 instead of field data that ranged from 0.62 to 2.19 Wm-1 C-1, produced a mean flux overestimation of 2.33 cm d-1 that, considering the low fluxes of the study area, represents an increase of 89 % and up to a factor of 3 in the most extreme cases. The changes in thermal conductivity can alter the estimated fluxes hindering the detection of patterns in groundwater discharge and modifying the interpretation of the results.

  4. Hydrogeomorphological approach to quantification of groundwater discharge to streams in South Africa

    CSIR Research Space (South Africa)

    Xu, Y

    2002-10-01

    Full Text Available surface water bodies is critical for the water resource manager to make a decision regarding the amount of groundwater allocation that can be licensed without causing a negative impact on aquatic ecosystems. Existing techniques of hydrograph...

  5. Critical zone structure controls concentration-discharge relationships and solute generation in forested tropical montane watersheds

    Science.gov (United States)

    Wymore, Adam S.; Brereton, Richard L.; Ibarra, Daniel E.; Maher, Kate; McDowell, William H.

    2017-07-01

    Concentration-discharge (C-Q) relationships are poorly known for tropical watersheds, even though the tropics contribute a disproportionate amount of solutes to the global ocean. The Luquillo Mountains in Puerto Rico offer an ideal environment to examine C-Q relationships across a heterogeneous tropical landscape. We use 10-30 years of weekly stream chemistry data across 10 watersheds to examine C-Q relationships for weathering products (SiO2(aq), Ca2+, Mg2+, and Na+) and biologically controlled solutes (dissolved organic carbon [DOC], dissolved organic nitrogen [DON], NH4+, NO3-, PO43-, K+, and SO42-). We analyze C-Q relationships using power law equations and a solute production model and use principal component analysis to test hypotheses regarding how the structure of the critical zone controls solute generation. Volcaniclastic watersheds had higher concentrations of weathering solutes and smaller tributaries were approximately threefold more efficient at generating these solutes than larger rivers. Lithology and vegetation explained a significant amount of variation in the theoretical maximum concentrations of weathering solutes (r2 = 0.43-0.48) and in the C-Q relationships of PO43- (r2 = 0.63) and SiO2(aq) (r2 = 0.47). However, the direction and magnitude of these relationships varied. Across watersheds, various forms of N and P displayed variable C-Q relationships, while DOC was consistently enriched with increasing discharge. Results suggest that PO43- may be a useful indicator of watershed function. Relationships between C-Q and landscape characteristics indicate the extent to which the structure and function of the Critical zone controls watershed solute fluxes.

  6. CORMIX2: An expert system for hydrodynamic mixing zone analysis of conventional and toxic multiport diffuser discharges

    International Nuclear Information System (INIS)

    Akar, P.J.; Jirka, G.H.

    1991-12-01

    One of the most important tasks in the management of water quality is the ability to achieve pollutant concentrations within regulated standards. The Cornell Mixing Zone Expert System (CORMIX) is a series of software systems for the analysis, prediction, and design of aqueous toxic or conventional pollutant discharges into watercourses, with emphasis on the geometry and dilution characteristics of the initial mixing zone. The present development, subsystem CORMIX2 is concerned with submerged multiport discharges into flowing water environments, such as rivers, lakes, estuaries, and coastal waters. It includes effects of ambient stratification, dynamic attachment of the plume to the bottom of the receiving water, and the limiting case of stagnant conditions

  7. Environmental isotope and geophysical techniques to identify groundwater potential zones in drought prone areas of Amravati District, Maharashtra, India

    International Nuclear Information System (INIS)

    Jacob, Noble

    2017-01-01

    The groundwater potential of Anjangaon village in Amaravati district of Maharashtra is generally poor and the water quality is saline in most of the places. Farmers dig open wells (up to 30 m depth) and drill bore wells (100-150 m depth) for domestic and irrigation purposes. Most of the wells failed and farmers are struggling for fresh water in this region. To evaluate the groundwater recharge and to identify the groundwater potential zones an environmental isotope and geophysical study was carried out. Water samples were collected from rain, springs, open wells, bore wells and detention tanks and measured for environmental isotopes such as "1"8O, "2H and "3H. Isotope results indicate that the groundwater is getting modern component of recharge from the rain as well as from the detention tanks. The percentage contributions from the detention tanks were estimated to be about 40 to 90 %. In the southern part of the Anjagaon village, an electrical resistivity survey of the geological formation was carried out and a groundwater potential zone was delineated at 45m depth. The farmers were asked to drill bore wells at the identified depth. The drilled five bore wells yielded perennial source of good quality water

  8. identification of hydrogeochemical processes in groundwater using

    African Journals Online (AJOL)

    PROF EKWUEME

    and the hydrochemical data was subjected to multivariate statistical analysis and conventional ... Groundwater flows through geological materials as it moves along ... using various conventional graphical methods and ...... from recharge zone to discharge zone, a bivariate plot of. Ca2+ + .... Handbook of Applied Hydrology,.

  9. Effects of Changes in Irrigation Practices and Aquifer Development on Groundwater Discharge to the Jobos Bay National Estuarine Research Reserve near Salinas, Puerto Rico

    Science.gov (United States)

    Kuniansky, Eve L.; Rodriguez, Jose M.

    2010-01-01

    Since 1990, about 75 acres of black mangroves have died in the Jobos Bay National Estuarine Research Reserve near Salinas, Puerto Rico. Although many factors can contribute to the mortality of mangroves, changes in irrigation practices, rainfall, and water use resulted in as much as 25 feet of drawdown in the potentiometric surface of the aquifer in the vicinity of the reserve between 1986 and 2002. To clarify the issue, the U.S. Geological Survey, in cooperation with the Puerto Rico Department of Natural and Environmental Resources, conducted a study to ascertain how aquifer development and changes in irrigation practices have affected groundwater levels and groundwater flow to the Mar Negro area of the reserve. Changes in groundwater flow to the mangrove swamp and bay from 1986 to 2004 were estimated in this study by developing and calibrating a numerical groundwater flow model. The transient simulations indicate that prior to 1994, high irrigation return flows more than offset the effect of reduced groundwater withdrawals. In this case, the simulated discharge to the coast in the modeled area was 19 million gallons per day. From 1994 through 2004, furrow irrigation was completely replaced by micro-drip irrigation, thus eliminating return flows and the simulated average coastal discharge was 7 million gallons per day, a reduction of 63 percent. The simulated average groundwater discharge to the coastal mangrove swamps in the reserve from 1986 to 1993 was 2 million gallons per day, compared to an average simulated discharge of 0.2 million gallons per day from 1994 to 2004. The average annual rainfall for each of these periods was 38 inches. The groundwater discharge to the coastal mangrove swamps in the Jobos Bay National Estuarine Research Reserve was estimated at about 0.5 million gallons per day for 2003-2004 because of higher than average annual rainfall during these 2 years. The groundwater flow model was used to test five alternatives for increasing

  10. Integration of In Situ Radon Modeling with High Resolution Aerial Remote Sensing for Mapping and Quantifying Local to Regional Flow and Transport of Submarine Groundwater Discharge from Coastal Aquifers

    Science.gov (United States)

    Glenn, C. R.; Kennedy, J. J.; Dulaiova, H.; Kelly, J. L.; Lucey, P. G.; Lee, E.; Fackrell, J.

    2015-12-01

    Submarine groundwater discharge (SGD) is a principal conduit for huge volumes of fresh groundwater loss and is a key transport mechanism for nutrient and contaminant pollution to coastal zones worldwide. However, the volumes and spatially and temporally variable nature of SGD is poorly known and requires rapid and high-resolution data acquisition at the scales in which it is commonly observed. Airborne thermal infrared (TIR) remote sensing, using high-altitude manned aircraft and low-altitude remote-controlled unmanned aerial vehicles (UAVs or "Drones") are uniquely qualified for this task, and applicable wherever 0.1°C temperature contrasts exist between discharging and receiving waters. We report on the use of these technologies in combination with in situ radon model studies of SGD volume and nutrient flux from three of the largest Hawaiian Islands. High altitude manned aircraft results produce regional (~300m wide x 100s km coastline) 0.5 to 3.2 m-resolution sea-surface temperature maps accurate to 0.7°C that show point-source and diffuse flow in exquisite detail. Using UAVs offers cost-effective advantages of higher spatial and temporal resolution and instantaneous deployments that can be coordinated simultaneously with any ground-based effort. We demonstrate how TIR-mapped groundwater discharge plume areas may be linearly and highly correlated to in situ groundwater fluxes. We also illustrate how in situ nutrient data may be incorporated into infrared imagery to produce nutrient distribution maps of regional worth. These results illustrate the potential for volumetric quantification and up-scaling of small- to regional-scale SGD. These methodologies provide a tremendous advantage for identifying and differentiating spring-fed, point-sourced, and/or diffuse groundwater discharge into oceans, estuaries, and streams. The integrative techniques are also important precursors for developing best-use and cost-effective strategies for otherwise time-consuming in

  11. Use of Interface Treatment to Reduce Emissions from Residuals in Lower Permeability Zones to Groundwater flowing Through More Permeable Zones (Invited)

    Science.gov (United States)

    Johnson, P.; Cavanagh, B.; Clifton, L.; Daniels, E.; Dahlen, P.

    2013-12-01

    Many soil and groundwater remediation technologies rely on fluid flow for contaminant extraction or reactant delivery (e.g., soil vapor extraction, pump and treat, in situ chemical oxidation, air sparging, enhanced bioremediation). Given that most unconsolidated and consolidated settings have permeability contrasts, the outcome is often preferential treatment of more permeable zones and ineffective treatment of the lower permeability zones. When this happens, post-treatment contaminant emissions from low permeability zone residuals can cause unacceptable long-term impacts to groundwater in the transmissive zones. As complete remediation of the impacted lower permeability zones may not be practicable with conventional technologies, one might explore options that lead to reduction of the contaminant emissions to acceptable levels, rather than full remediation of the lower permeability layers. This could be accomplished either by creating a sustained emission reaction/attenuation zone at the high-low permeability interface, or by creating a clean soil zone extending sufficiently far into the lower permeability layer to cause the necessary reduction in contaminant concentration gradient and diffusive emission. These options are explored in proof-of-concept laboratory-scale physical model experiments. The physical models are prepared with two layers of contrasting permeability and either dissolved matrix storage or nonaqueous phase liquid (NAPL) in the lower permeability layer. A dissolved oxidant is then delivered to the interface via flow across the higher permeability layer and changes in contaminant emissions from the low permeability zone are monitored before, during, and after oxidant delivery. The use of three oxidants (dissolved oxygen, hydrogen peroxide and sodium persulfate) for treatment of emissions from petroleum hydrocarbon residuals is examined.

  12. Effects of Submarine Groundwater Discharge (SGD) on the Growth of the Lobe Coral Porites lobata in Maunalua Bay, Hawaii.

    Science.gov (United States)

    Lubarsky, K.

    2016-02-01

    Submarine groundwater discharge (SGD) constitutes a large percentage of the freshwater inputs onto coastal coral reefs on high islands such as the Hawaiian Islands, although the impact of SGD on coral reef health is currently understudied. In Maunalua Bay, on Oahu, Hawaii, SGD is discharged onto shallow reef flats from discrete seeps, creating natural gradients of water chemistry across the reef flat. We used this system to investigate rates of growth of the lobe coral Porites lobata across a gradient of SGD influence at two study sites within the bay, and to characterize the variation in water chemistry gradient over space and time due to SGD. SGD input at these sites is tidally modulated, and the groundwater itself is brackish and extremely nutrient-rich (mean=190 μM NO3- at the Black Point study site, mean=40 μM NO3- at Wailupe Beach Park), with distinct carbonate signatures at both study sites. Coral nubbins were placed across the gradient for 6 months, and growth was measured using three metrics: surface area (photo analysis), buoyant weight, and linear extension. Various chemical parameters, including pH, salinity, total alkalinity, nutrients, and chlorphyll were sampled at the same locations across the gradient over 24 hour periods in the spring and fall in order to capture spatial and temporal variation in water chemistry due to the SGD plume. Spatial patterns and temporal variation in water chemistry were correlated with the observed spatial patterns in coral growth across the SGD gradient.

  13. Groundwater capture processes under a seasonal variation in natural recharge and discharge

    Science.gov (United States)

    Maddock, Thomas, III.; Vionnet, Leticia Beatriz

    "Capture" is the increase in recharge and the decrease in discharge that occurs when pumping is imposed on an aquifer system that was in a previous state of approximate dynamic equilibrium. Regional groundwater models are usually used to calculate capture in a two-step procedure. A steady-state solution provides an initial-head configuration, a set of flows through the boundaries for the modeled region, and the initial basis for the capture calculation. The transient solutions provide the total change in flows through the boundaries. A difference between the transient and steady-state solutions renders the capture calculation. When seasonality is a modeling issue, the use of a single initial hydraulic head and a single set of boundary flows leads to miscalculations of capture. Instead, an initial condition for each season should be used. This approach may be accomplished by determining steady oscillatory solutions, which vary through the seasons but repeat from year to year. A regional groundwater model previously developed for a portion of the San Pedro River basin, Arizona, USA, is modified to illustrate the effect that different initial conditions have on transient solutions and on capture calculations. Résumé Les "prélèvements" sont constitués par l'augmentation de la recharge et par la diminution de l'écoulement qui se produit lorsqu'un pompage est imposéà un système aquifère qui était auparavant dans un état proche de l'équilibre dynamique. Les modèles régionaux de nappe sont en général utilisés pour calculer les prélèvements dans une procédure à deux étapes. Une solution en régime permanent donne la configuration piézométrique initiale, un jeu de conditions aux limites pour la région modélisée et les données de base pour le calcul des prélèvements. Les solutions transitoires donnent les modifications globales des conditions aux limites. Lorsque des variations saisonnières sont produites en sortie du modèle, le recours à une

  14. Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: Implication of water balance in the Badain Jaran Desert, China

    Science.gov (United States)

    Luo, Xin; Jiao, Jiu Jimmy; Wang, Xu-sheng; Liu, Kun

    2016-03-01

    How lake systems are maintained and water is balanced in the lake areas in the Badain Jaran Desert (BJD), northeast of China have been debated for about a decade. In this study, continuous 222Rn measurement is used to quantify groundwater discharge into two representative fresh and brine water lakes in the desert using a steady-state mass-balance model. Two empirical equations are used to calculate atmospheric evasion loss crossing the water-air interface of the lakes. Groundwater discharge rates yielded from the radon mass balance model based on the two empirical equations are well correlated and of almost the same values, confirming the validity of the model. The fresh water and brine lakes have a daily averaged groundwater discharge rate of 7.6 ± 1.7 mm d-1 and 6.4 ± 1.8 mm d-1, respectively. The temporal fluctuations of groundwater discharge show similar patterns to those of the lake water level, suggesting that the lakes are recharged from nearby groundwater. Assuming that all the lakes have the same discharge rate as the two studied lakes, total groundwater discharge into all the lakes in the desert is estimated to be 1.59 × 105 m3 d-1. A conceptual model of water balance within a desert lake catchment is proposed to characterize water behaviors within the catchment. This study sheds lights on the water balance in the BJD and is of significance in sustainable regional water resource utilization in such an ecologically fragile area.

  15. An Update of the Analytical Groundwater Modeling to Assess Water Resource Impacts at the Afton Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John J. [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Christopher B. [Argonne National Lab. (ANL), Argonne, IL (United States); Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    The purpose of this study is to update a one-dimensional analytical groundwater flow model to examine the influence of potential groundwater withdrawal in support of utility-scale solar energy development at the Afton Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program. This report describes the modeling for assessing the drawdown associated with SEZ groundwater pumping rates for a 20-year duration considering three categories of water demand (high, medium, and low) based on technology-specific considerations. The 2012 modeling effort published in the Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States (Solar PEIS; BLM and DOE 2012) has been refined based on additional information described below in an expanded hydrogeologic discussion.

  16. Unsaturated-zone fast-path flow calculations for Yucca Mountain groundwater travel time analyses (GWTT-94)

    International Nuclear Information System (INIS)

    Arnold, B.W.; Altman, S.J.; Robey, T.H.

    1995-08-01

    Evaluation of groundwater travel time (GWTT) is required as part of the investigation of the suitability of Yucca Mountain as a potential high-level nuclear-waste repository site. The Nuclear Regulatory Commission's GWTT regulation is considered to be a measure of the intrinsic ability of the site to contain radionuclide releases from the repository. The work reported here is the first step in a program to provide an estimate of GWTT at the Yucca Mountain site in support of the DOE's Technical Site Suitability and as a component of a license application. Preliminary estimation of the GWTT distribution in the unsaturated zone was accomplished using a numerical model of the physical processes of groundwater flow in the fractured, porous medium of the bedrock. Based on prior investigations of groundwater flow at the site, fractures are thought to provide the fastest paths for groundwater flow; conditions that lead to flow in fractures were investigated and simulated. Uncertainty in the geologic interpretation of Yucca Mountain was incorporated through the use of geostatistical simulations, while variability of hydrogeologic parameters within each unit was accounted for by the random sampling of parameter probability density functions. The composite-porosity formulation of groundwater flow was employed to simulate flow in both the matrix and fracture domains. In this conceptualization, the occurrence of locally saturated conditions within the unsaturated zone is responsible for the initiation of fast-path flow through fractures. The results of the GWTT-94 study show that heterogeneity in the hydraulic properties of the model domain is an important factor in simulating local regions of high groundwater saturation. Capillary-pressure conditions at the surface boundary influence the extent of the local saturation simulated

  17. Review of ground-water flow and transport models in the unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Oster, C.A.

    1982-11-01

    Models of partially saturated flow and transport in porous media have application in the analysis of existing as well as future low-level radioactive waste facilities located above the water table. An extensive literature search along with telephone and mail correspondence with recognized leading experts in the field, was conducted to identify computer models suitable for studies of low-level radioactive waste facilities located in the unsaturated zone. Fifty-five existing models were identified as potentially useful. Ten of these models were selected for further examination. This report contains a statement of the ground-water flow-contaminant transport problem, a discussion of those methods used to reduce the physical problem to a computer model, a brief discussion about the data requirements of these models. The procedure used to select the ten codes for further discussion is given, along with a list of these models. Finally, the Appendices contain the data about the fifty-five codes examined. Specifically Appendix D contains the detailed discussion of each of the ten selected codes. Included in each discussion are such items which a potential user requires in determining whether the code is suitable for his applications. Appendix E contains brief summary information about each of the fifty-five codes. Included in the summaries are identification data, authors, pertinent references, and model type.

  18. Review of ground-water flow and transport models in the unsaturated zone

    International Nuclear Information System (INIS)

    Oster, C.A.

    1982-11-01

    Models of partially saturated flow and transport in porous media have application in the analysis of existing as well as future low-level radioactive waste facilities located above the water table. An extensive literature search along with telephone and mail correspondence with recognized leading experts in the field, was conducted to identify computer models suitable for studies of low-level radioactive waste facilities located in the unsaturated zone. Fifty-five existing models were identified as potentially useful. Ten of these models were selected for further examination. This report contains a statement of the ground-water flow-contaminant transport problem, a discussion of those methods used to reduce the physical problem to a computer model, a brief discussion about the data requirements of these models. The procedure used to select the ten codes for further discussion is given, along with a list of these models. Finally, the Appendices contain the data about the fifty-five codes examined. Specifically Appendix D contains the detailed discussion of each of the ten selected codes. Included in each discussion are such items which a potential user requires in determining whether the code is suitable for his applications. Appendix E contains brief summary information about each of the fifty-five codes. Included in the summaries are identification data, authors, pertinent references, and model type

  19. Time Lapse Electrical Resistivity to Connect Evapotranspiration and Groundwater Fluxes in the Critical Zone

    Science.gov (United States)

    Jarvis, S. K.; Harmon, R. E.; Barnard, H. R.; Randall, J.; Singha, K.

    2017-12-01

    The critical zone (CZ)—an open system extending from canopy top to the base of groundwater—is a highly dynamic and heterogeneous environment. In forested terrain, trees make up a large component of the CZ. This work aims to quantify the connection between vegetation and subsurface water storage at a hillslope scale within a forested watershed in the H.J. Andrews Experimental Forest, Oregon. To identify the mechanism(s) controlling the connection at the hillslope scale, we observe patterns in electrical conductivity using 2D-time lapse-DC resistivity. To compare inversions through time a representative error model was determined using L-curve criterion. Inverted data show high spatial variability in ground electrical conductivity and variation at both diel and seasonal timescales. These changes are most pronounced in areas corresponding to dense vegetation. The diel pattern in electrical conductivity is also observed in monitored sap flow sensors, water-level gauges, tensiometers, and sediment thermal probes. To quantify the temporal connection between these data over the course of the growing season a cross correlation analysis was conducted. Preliminary data show that over the course of the growing season transpiration becomes decoupled from both groundwater and soil moisture. Further decomposition of the inverted time lapse data will highlight spatial variability in electrical conductivity providing insight into the where, when, and how(s) of tree-modified subsurface storage.

  20. Les zones de rejet végétalisées Planted Discharge Area

    Directory of Open Access Journals (Sweden)

    BOUTIN, Catherine ; PROST-BOUCLE, Stéphanie

    2012-12-01

    Full Text Available Les zones de rejet végétalisées sont des espaces aménagés entre la station d’épuration et le milieu récepteur, censés contribuer à la réduction de l’impact des rejets sur le milieu naturel. Leur fort développement observé en France depuis une dizaine d’années souligne l’importance de lever les diverses incertitudes concernant la pertinence des objectifs visés et les limites réglementaires, afin d’encadrer concrètement la mise en œuvre de ces nouveaux ouvrages.Planted Discharge Areas (PDA are placed between the outlet of the WasteWater Treatment Plant (WWTP and the receiving body. They may receive treated wastewater, stromwater or the both. Today, the French Authorities don’t assign any efficiency requirements to a planted discharge areas. The expected objectives from such landscape laying-out are various: i reduction of the volumes discharged into the river, ii qualitative improvement of some parameters (nitrogen, phosphor, micro-polluting, faecal contamination, iii production of biomass, iv landscape integration and environmental benefits, … Mechanisms involved in a PDA are multiple and concern 3 compartments: free surface water, soil, vegetation. It’s necessary to analyse each of these compartments according to the local conditions and on-site measurements are necessary. The “soil” compartment is the most important and needs to be study (pedological, geological and hydrogeological properties before any construction of PDA.This article also presents the results of a national survey carried out in 2011. They confirm the explosion of the number of these systems over the last 5 years. This survey also underlines the diversity of the situations (WWTP capacity, area and hydraulic loads, design, expected objectives without allowing to establish a simple link between the various parameters. Today, it is not possible to assert that PDAs always have a beneficial effect regarding the protection of the surface

  1. Characterization of mean transit time at large springs in the Upper Colorado River Basin, USA: A tool for assessing groundwater discharge vulnerability

    Science.gov (United States)

    Solder, John; Stolp, Bernard J.; Heilweil, Victor M.; Susong, David D.

    2016-01-01

    Environmental tracers (noble gases, tritium, industrial gases, stable isotopes, and radio-carbon) and hydrogeology were interpreted to determine groundwater transit-time distribution and calculate mean transit time (MTT) with lumped parameter modeling at 19 large springs distributed throughout the Upper Colorado River Basin (UCRB), USA. The predictive value of the MTT to evaluate the pattern and timing of groundwater response to hydraulic stress (i.e., vulnerability) is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the springs range from 10 to 15,000 years and 90 % of the cumulative discharge-weighted travel-time distribution falls within the range of 2−10,000 years. Historical variability in discharge was assessed as the ratio of 10–90 % flow-exceedance (R 10/90%) and ranged from 2.8 to 1.1 for select springs with available discharge data. The lag-time (i.e., delay in discharge response to drought conditions) was determined by cross-correlation analysis and ranged from 0.5 to 6 years for the same select springs. Springs with shorter MTTs (<80 years) statistically correlate with larger discharge variations and faster responses to drought, indicating MTT can be used for estimating the relative magnitude and timing of groundwater response. Results indicate that groundwater discharge to streams in the UCRB will likely respond on the order of years to climate variation and increasing groundwater withdrawals.

  2. Evaluating the Impact of Drought Stresses on Groundwater System in Bagh- Malek Plain by Discharge Pattern Changes

    Directory of Open Access Journals (Sweden)

    R. Lalehzari

    2016-02-01

    Full Text Available Introduction: Groundwater is the largest resource of water supplement and shortages of surface water supplies in drought conditions that requires an increase in groundwater discharge. Groundwater flow dependson the subsurface properties such as hydraulic gradient (water table gradient or head loss in artesian condition and hydrodynamic coefficients. The flow treatment is analyzed with an accurate estimation of effective parameters in groundwater equation. This function is obtained using the continuous equation. Inlet and outlet flows of a cell are equal to storage amounts in the continuous equation. Analytical solution of this equation is complex, so numerical methods are developed including finite element and finite difference methods. For example, Feflow is a groundwater modeling tool that makesuse of finite element method (Reynolds and Marimuthu, 2007. Modflow as a finite difference three-dimensional model simulated underground flow under steady and unsteady conditions in anisotropic and non-homogeneous porous media. Modflow is designed to simulate aquifer systems in which saturated-flow conditions exist, Darcy’s Law applies, the density of groundwater is constant, and the principal directions of horizontal hydraulic conductivity or transmissivity do not vary within the system. In Modflow, an aquifer system is replaced by a discretized domain consisting of an array of nodes and the associated finite difference blocks. Groundwater modeling and water table prediction by this model have the acceptable results, because many different informations of water resource system are applied. Many people and organizations have contributed to the development of an effective groundwater monitoring system, as well as experimental and modeling studies (Lalehzari et al., 2013. The objective of this paper is investigation of hydraulic and physical conditions. So, a numerical model has to be developed by PMWIN software for Bagh-i Malek aquifer to calculate

  3. Semi-Permeable Paleochannels as Conduits for Submarine Groundwater Discharge to the Coast in Barataria Bay, Louisiana

    Science.gov (United States)

    Breaux, A.; Kolker, A.; Telfeyan, K.; Kim, J.; Johannesson, K. H.; Cable, J. E.

    2014-12-01

    Many studies have focused on hydrological and geochemical fluxes to the ocean from land to the ocean via submarine groundwater discharge (SGD), however few have assessed these contributions of SGD in deltaic settings. The Mississippi River delta is the largest delta in North America, and the magnitude of groundwater that discharges from the river into its delta is relatively unknown. Hydrological budgets indicate that there is a large magnitude of surface water lost in the Mississippi's delta as the river flows into the Gulf of Mexico. Recent evidence in our study indicates that paleochannels, or semi-permeable buried sandy bodies that were former distributaries of the river, allow for water to discharge out of the Mississippi's main channel and into its delta driven by a difference in hydraulic head between the river and the lower lying coastal embayments. Our study uses geophysical data, including sonar and resistivity methods, to detect the location of these paleochannels in Barataria Bay, a coastal bay located in the Mississippi Delta. High resolution CHIRP sonar data shows that these paleochannel features are ubiquitous in the Mississippi Delta, whereas resistivity data indicates that lower salinity water is found during high river flow in bays proximate to the river. Sediment core analysis is also used to characterize the area of study, as well as further understand the regional geology of the Mississippi Delta and estimate values of permeability and hydraulic conductivity of sediments taken from two locations in Barataria Bay. The geophysical and sediment core data will likewise be used to contextualize geochemical data collected in the field, which includes an assessment of major cations and anions, as well as in situ Rn-222 activities, a method that has been proven to be useful as a tracer of groundwater movement. The results may be useful in understanding the potential global magnitude of hydrological and geochemical fluxes of other large rivers with

  4. Three-dimensional modeling of nitrate-N transport in vadose zone: Roles of soil heterogeneity and groundwater flux

    Science.gov (United States)

    Akbariyeh, Simin; Bartelt-Hunt, Shannon; Snow, Daniel; Li, Xu; Tang, Zhenghong; Li, Yusong

    2018-04-01

    Contamination of groundwater from nitrogen fertilizers in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have considered a controlled field work to investigate the influence of soil heterogeneity and groundwater flow on nitrate-N distribution in both root zone and deep vadose zone. In this work, a numerical model was developed to simulate nitrate-N transport and transformation beneath a center pivot-irrigated corn field on Nebraska Management System Evaluation area over a three-year period. The model was based on a realistic three-dimensional sediment lithology, as well as carefully controlled irrigation and fertilizer application plans. In parallel, a homogeneous soil domain, containing the major sediment type of the site (i.e. sandy loam), was developed to conduct the same water flow and nitrate-N leaching simulations. Simulated nitrate-N concentrations were compared with the monitored nitrate-N concentrations in 10 multi-level sampling wells over a three-year period. Although soil heterogeneity was mainly observed from top soil to 3 m below the surface, heterogeneity controlled the spatial distribution of nitrate-N concentration. Soil heterogeneity, however, has minimal impact on the total mass of nitrate-N in the domain. In the deeper saturated zone, short-term variations of nitrate-N concentration correlated with the groundwater level fluctuations.

  5. Conceptual and numerical models of groundwater flow and solute transport in fracture zones: Application to the Aspo Island (Sweden)

    International Nuclear Information System (INIS)

    Molinero, J.; Samper, J.

    2003-01-01

    Several countries around the world are considering the final disposal of high-level radioactive waste in deep repositories located in fractured granite formations. Evaluating the long term safety of such repositories requires sound conceptual and numerical models which must consider simultaneously groundwater flow, solute transport and chemical and radiological processes. These models are being developed from data and knowledge gained from in situ experiments carried out at deep underground laboratories such as that of Aspo, Sweden, constructed in fractured granite. The Redox Zone Experiment is one of such experiments performed at Aspo in order to evaluate the effects of the construction of the access tunnel on the hydrogeological and hydrochemical conditions of a fracture zone intersected by the tunnel. Previous authors interpreted hydrochemical and isotopic data of this experiment using a mass-balance approach based on a qualitative description of groundwater flow conditions. Such an interpretation, however, is subject to uncertainties related to an over-simplified conceptualization of groundwater flow. Here we present numerical models of groundwater flow and solute transport for this fracture zone. The first model is based on previously published conceptual model. It presents noticeable un consistencies and fails to match simultaneously observed draw downs and chloride breakthrough curves. To overcome its limitations, a revised flow and transport model is presented which relies directly on available hydrodynamic and transport parameters, is based on the identification of appropriate flow and transport boundary conditions and uses, when needed, solute data extrapolated from nearby fracture zones. A significant quantitative improvement is achieved with the revised model because its results match simultaneously drawdown and chloride data. Other improvements are qualitative and include: ensuring consistency of hydrodynamic and hydrochemical data and avoiding

  6. A Low-Level Real-Time In Situ Monitoring System for Tritium in Groundwater and Vadose Zone

    Science.gov (United States)

    Santo, J. T.; Levitt, D. G.

    2002-12-01

    Tritium is a radioactive isotope of hydrogen produced as a by-product of the nuclear fuel cycle. It is also an integral part of the nuclear weapons industry and has been released into the environment through both the production and testing of nuclear weapons. There are many sites across the DOE complex where tritium has been released into the subsurface through the disposal of radioactive waste and at the Nevada Test Site, through the underground testing of nuclear weapons. Numerous DOE facilities have an on-going regulatory need to be able to monitor tritium concentrations in groundwater within deep hydrologic zones and in the shallower non-saturated vadose zone beneath waste disposal pits and shafts and other release sites. Typical access to groundwater is through deep monitoring wells and situated in remote locations. In response to this need, Science and Engineering Associates, Inc. (SEA) and its subcontractor, the University of Nevada Las Vegas (UNLV) Harry Reid Center (HRC) for Environmental Studies has conducted the applied research and engineering and produced a real time, in situ monitoring system for the detection and measurement of low levels of tritium in the groundwater and in the shallower vadose zone. The monitoring system has been deployed to measure tritium in both the vadose zone near a subsurface radioactive waste package and the groundwater in a deep hydrologic reservoir at the Nevada Test Site. The monitoring system has been designed to detect tritium in the subsurface below federal and/or state regulatory limits for safe drinking water and has been successfully demonstrated. The development effort is being funded through the U.S. Department of Energy, National Energy Technology Laboratory and the DOE Nevada Operations Office Advanced Monitoring Systems Initiative (AMSI).

  7. Frenkel defect absorption on dislocations and dislocation discharge rate. Modeling determination of the absorption zone

    International Nuclear Information System (INIS)

    Mikhlin, Eh.Ya.

    1988-01-01

    A situation connected with the fact that evaluations of dislocation discharge strength which somehow or other are based on the elasticity theory in the dislocation nucleus or near it, do not lead to results complying with experimental data, is discussed. Bases of the alternative approach to this problem consisting in direct investigation into the process of Frenkel defect absorption on dislocation by its computerized simulation at the microscopic level are also presented. Methods of investigation and results are described using α dislocation in iron-alpha as an example. The concept of zones of vacancy and interstitial atom absorption on dislocation is discussed. It is shown that a spontaneous transition, performed by any of these defects near a dislocation is not always identical to absorption and usually appears to be only a part of a multistage process leading to the defect disappearance. Potential relief characteristics for vacancy movement near the dislocation are found. An area wide enough in a transverse direction is found around the dislocation. Vacncies reaching this area can be easily transported to places of their disappearance. Therefore the vacancy entry to this area is equivalent to the absorption. the procedure of simulating the atomic structure of a crystallite containing a dislocation with a step is described. Positions from which these defects perform spontaneous transitions, reaching the disappearance places are found on the dislocation near the step

  8. Prediction of Groundwater Quality Improvement Down-Gradient of In Situ Permeable Treatment Barriers and Fully-Remediated Source Zones. ESTCP Cost and Performance Report

    National Research Council Canada - National Science Library

    Johnson, Paul C; Carlson, Pamela M; Dahlen, Paul

    2008-01-01

    In situ permeable treatment barriers (PTB) are designed so that contaminated groundwater flows through an engineered treatment zone within which contaminants are eliminated or the concentrations are significantly reduced...

  9. Discovery and characterization of submarine groundwater discharge in the Siberian Arctic seas: A case study in Buor-Khaya Gulf, Laptev Sea

    OpenAIRE

    Charkin, Alexander N.; Rutgers van der Loeff, Michiel; Shakhova, Natalia E.; Gustafsson, Örjan; Dudarev, Oleg V.; Cherepnev, Maxim S.; Salyuk, Anatoly N.; Koshurnikov, Andrey V.; Spivak, Eduard A.; Gunar, Alexey Y.; Semiletov, Igor P.

    2017-01-01

    It has been suggested that increasing freshwater discharge to the Arctic Ocean may also occur as submarine groundwater discharge (SGD), yet there are no direct observations of this phenomenon in the Arctic shelf seas. This study tests the hypothesis that SGD does exist in the Siberian-Arctic shelf seas but its dynamics may be largely controlled by complicated geocryological conditions such as permafrost. The field-observational approach in the southeast Laptev Sea used a combination of hydrol...

  10. Sandcastle Moats and Petunia Bed Holes. A Book about Groundwater.

    Science.gov (United States)

    Nickinson, Pat

    This book provides five instructional units on groundwater. Units included are: (1) "Where's the Groundwater?" (describing the concepts of a saturated zone, water table, hydrologic cycle, recharge and discharge, core of depression, subsidence, and saltwater intrusion); (2) "How Does It Travel?" (discussing porosity,…

  11. Monitoring physical properties of a submarine groundwater discharge source at Kalogria Bay, SW Peloponnissos, Greece

    Directory of Open Access Journals (Sweden)

    Papathanassiou E.

    2012-04-01

    Full Text Available An impressive SGD in Kalogria Bay (SW Peloponnissos was surveyed for the first time in 2006, revealing the existence of 2 major and 2 minor point sources of freshwater (salinity ~l-2; the discharge was ~ 1000 m3 h−1. The major point source was located in a karstic cavity at 25 m depth. In July 2009, and for a period of one year, the site was monitored intensively. During summer, the underwater discharge was not very strong, the water was flowing from many dispersed points, and salinity range was 20–36. During autumn and winter, flow velocity increased considerably (> 1 m s−1, and the SGDs discharged water of low salinity (< 2. Gradually, the smaller SGDs ceased their operation, and the major SGD emanated brackish water during spring and summer, thus hampering the possibilities of freshwater exploitation, in a touristic area which suffers from great aridity and water demand is high during summer.

  12. Ground-truthing electrical resistivity methods in support of submarine groundwater discharge studies: Examples from Hawaii, Washington, and California

    Science.gov (United States)

    Johnson, Cordell; Swarzenski, Peter W.; Richardson, Christina M.; Smith, Christopher G.; Kroeger, Kevin D.; Ganguli, Priya M.

    2015-01-01

    Submarine groundwater discharge (SGD) is an important conduit that links terrestrial and marine environments. SGD conveys both water and water-borne constituents into coastal waters, where these inflows may impact near-shore ecosystem health and sustainability. Multichannel electrical resistivity techniques have proven to be a powerful tool to examine scales and dynamics of SGD and SGD forcings. However, there are uncertainties both in data aquisition and data processing that must be addressed to maximize the effectiveness of this tool in estuarine or marine environments. These issues most often relate to discerning subtle nuances in the flow of electricity through variably saturated media that can also be highly conductive (i.e., seawater).

  13. Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, David; Roos, Gillian [Golder Associates Ltd., 2390 Argentia Road, Mississauga, ON L5N 5Z7 (Canada); Ferguson Jones, Andrea [MMM Group Ltd., 100 Commerce Valley Drive West, Thornhill, ON L3T 0A1 (Canada); Case, Glenn [AECL Port Hope Area Initiative Management Office, 115 Toronto Road, Port Hope, ON L1A 3S4 (Canada); Yule, Adam [Public Works and Government Services Canada, 4900 Yonge Street, 11th Floor, Toronto, ON, M2N 6A6 (Canada)

    2013-07-01

    The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSR have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground

  14. Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447

    International Nuclear Information System (INIS)

    Smyth, David; Roos, Gillian; Ferguson Jones, Andrea; Case, Glenn; Yule, Adam

    2013-01-01

    The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSR have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground surface

  15. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    International Nuclear Information System (INIS)

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith LaRue, J.; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation

  16. Electromagnetic exploration in high-salinity groundwater zones: case studies from volcanic and soft sedimentary sites in coastal Japan

    Science.gov (United States)

    Suzuki, Koichi; Kusano, Yukiko; Ochi, Ryota; Nishiyama, Nariaki; Tokunaga, Tomochika; Tanaka, Kazuhiro

    2017-01-01

    Estimating the spatial distribution of groundwater salinity in coastal plain regions is becoming increasingly important for site characterisation and the prediction of hydrogeological environmental conditions resulting from radioactive waste disposal and underground CO2 storage. In previous studies of the freshwater-saltwater interface, electromagnetic methods were used for sites characterised by unconsolidated deposits or Neocene soft sedimentary rocks. However, investigating the freshwater-saltwater interface in hard rock sites (e.g. igneous areas) is more complex, with the permeability of the rocks greatly influenced by fractures. In this study, we investigated the distribution of high-salinity groundwater at two volcanic rock sites and one sedimentary rock site, each characterised by different hydrogeological features. Our investigations included (1) applying the controlled source audio-frequency magnetotelluric (CSAMT) method and (2) conducting laboratory tests to measure the electrical properties of rock core samples. We interpreted the 2D resistivity sections by referring to previous data on geology and geochemistry of groundwater. At the Tokusa site, an area of inland volcanic rocks, low resistivity zones were detected along a fault running through volcanic rocks and shallow sediments. The results suggest that fluids rise through the Tokusa-Jifuku Fault to penetrate shallow sediments in a direction parallel to the river, and some fluids are diluted by rainwater. At the Oki site, a volcanic island on a continental shelf, four resistivity zones (in upward succession: low, high, low and high) were detected. The results suggest that these four zones were formed during a transgression-regression cycle caused by the last glacial period. At the Saijo site, located on a coastal plain composed of thick sediments, we observed a deep low resistivity zone, indicative of fossil seawater remnant from a transgression after the last glacial period. The current coastal

  17. Importance of including small-scale tile drain discharge in the calibration of a coupled groundwater-surface water catchment model

    DEFF Research Database (Denmark)

    Hansen, Anne Lausten; Refsgaard, Jens Christian; Christensen, Britt Stenhøj Baun

    2013-01-01

    the catchment. In this study, a coupled groundwater-surface water model based on the MIKE SHE code was developed for the 4.7 km2 Lillebæk catchment in Denmark, where tile drain flow is a major contributor to the stream discharge. The catchment model was calibrated in several steps by incrementally including...... the observation data into the calibration to see the effect on model performance of including diverse data types, especially tile drain discharge. For the Lillebæk catchment, measurements of hydraulic head, daily stream discharge, and daily tile drain discharge from five small (1–4 ha) drainage areas exist....... The results showed that including tile drain data in the calibration of the catchment model improved its general performance for hydraulic heads and stream discharges. However, the model failed to correctly describe the local-scale dynamics of the tile drain discharges, and, furthermore, including the drain...

  18. Field Evaluation Of Arsenic Transport Across The Ground-Water/Surface Water Interface: Ground-Water Discharge And Iron Oxide Precipitation

    Science.gov (United States)

    A field investigation was conducted to examine the distribution of arsenic in ground water, surface water, and sediments at a Superfund Site in the northeastern United States (see companion presentation by K. G. Scheckel et al). Ground-water discharge into the study area was cha...

  19. Inactivation of Candida albicans by Corona Discharge: The Increase of Inhibition Zones Area After Far Subsequent Exposition

    Directory of Open Access Journals (Sweden)

    Vladyslava Fantova

    2013-01-01

    Full Text Available The cold atmospheric pressure plasma generated by the negative corona discharge has inhibition effect on the microorganism growth. This effect is well-known and it can be demonstrated on the surface of cultivation agar plates by the formation of inhibition zones. We exposed the cultures of Candida albicans to the negative corona discharge plasma in a special arrangement in this study: The equal doses of plasma were applied subsequently twice or four times on the same culture on one Petri dish, while the distance between exposed points was variable. Only small differences were observed in decontaminated zone areas for twice exposed agar at the shortest distance between exposed points (1.5 cm. In case of the four times exposed agars, we observed significant differences in inhibition zone areas, dependent not only on the exposition site distances, but also on the exposition order. The largest inhibition zone size was observed for the first exposition decreasing to the fourth one. To check relevancy of these dependencies, we presume to conduct further set of experiments with lower yeast concentration. In conclusion, significant difference in partial inhibition zone sizes appeared only when four expositions on one Petri dish were carried out, whereas no significant difference was observed for two subsequent expositions. The explanation of this effect may be the subject of subsequent remote exposition(s, when minute amounts of scattered active particles act on the previously exposed areas; the influence of diffused ozone may also take place.

  20. Non-uniform groundwater discharge across a stream bed: Heat as a tracer

    DEFF Research Database (Denmark)

    Jensen, Jannick Kolbjørn; Engesgaard, Peter Knudegaard

    2011-01-01

    Time series analysis of conO nuous streambed temperature during a period of 47 d revealed that discharge to a stream is nonuniform, with strongly increasing verO cal fl uxes throughout the top 20 cm of the streambed–aquifer interface. An analyO cal soluO on to the transient heat transport equa...... near the streambed. Seepage meter measurements in the middle of the stream oO en resulted in highly variable fl ux esO - mates, which could have been caused by hyporheic fl ow due to the presence of a gravel layer. Discharge and recharge to the stream at the bank near the meadow was relaO vely steady...

  1. Seasonal changes in submarine groundwater discharge to coastal salt ponds estimated using 226Ra and 228Ra as tracers

    Science.gov (United States)

    Hougham, A.L.; Moran, S.B.; Masterson, J.P.; Kelly, R.P.

    2008-01-01

    Submarine groundwater discharge (SGD) to coastal southern Rhode Island was estimated from measurements of the naturally-occurring radioisotopes 226Ra (t1/2 = 1600??y) and 228Ra (t1/2 = 5.75??y). Surface water and porewater samples were collected quarterly in Winnapaug, Quonochontaug, Ninigret, Green Hill, and Pt. Judith-Potter Ponds, as well as nearly monthly in the surface water of Rhode Island Sound, from January 2002 to August 2003; additional porewater samples were collected in August 2005. Surface water activities ranged from 12-83??dpm 100??L- 1 (60??dpm = 1??Bq) and 21-256??dpm 100??L- 1 for 226Ra and 228Ra, respectively. Porewater 226Ra activities ranged from 16-736??dpm 100??L- 1 (2002-2003) and 95-815??dpm 100??L- 1 (2005), while porewater 228Ra activities ranged from 23-1265??dpm 100??L- 1. Combining these data with a simple box model provided average 226Ra-based submarine groundwater fluxes ranging from 11-159??L m- 2 d- 1 and average 228Ra-derived fluxes of 15-259??L m- 2 d- 1. Seasonal changes in Ra-derived SGD were apparent in all ponds as well as between ponds, with SGD values of 30-472??L m- 2 d- 1 (Winnapaug Pond), 6-20??L m- 2 d- 1 (Quonochontaug Pond), 36-273??L m- 2 d- 1 (Ninigret Pond), 29-76??L m- 2 d- 1 (Green Hill Pond), and 19-83??L m- 2 d- 1 (Pt. Judith-Potter Pond). These Ra-derived fluxes are up to two orders of magnitude higher than results predicted by a numerical model of groundwater flow, estimates of aquifer recharge for the study period, and values published in previous Ra-based SGD studies in Rhode Island. This disparity may result from differences in the type of flow (recirculated seawater versus fresh groundwater) determined using each technique, as well as variability in porewater Ra activity. ?? 2007 Elsevier B.V. All rights reserved.

  2. Mapping of road-salt-contaminated groundwater discharge and estimation of chloride load to a small stream in southern New Hampshire, USA

    Science.gov (United States)

    Harte, P.T.; Trowbridge, P.R.

    2010-01-01

    Concentrations of chloride in excess of State of New Hampshire water-quality standards (230 mg/l) have been measured in watersheds adjacent to an interstate highway (I-93) in southern New Hampshire. A proposed widening plan for I-93 has raised concerns over further increases in chloride. As part of this effort, road-salt-contaminated groundwater discharge was mapped with terrain electrical conductivity (EC) electromagnetic (EM) methods in the fall of 2006 to identify potential sources of chloride during base-flow conditions to a small stream, Policy Brook. Three different EM meters were used to measure different depths below the streambed (ranging from 0 to 3 m). Results from the three meters showed similar patterns and identified several reaches where high EC groundwater may have been discharging. Based on the delineation of high (up to 350 mmhos/m) apparent terrain EC, seven-streambed piezometers were installed to sample shallow groundwater. Locations with high specific conductance in shallow groundwater (up to 2630 mmhos/m) generally matched locations with high streambed (shallow subsurface) terrain EC. A regression equation was used to convert the terrain EC of the streambed to an equivalent chloride concentration in shallow groundwater unique for this site. Utilizing the regression equation and estimates of onedimensional Darcian flow through the streambed, a maximum potential groundwater chloride load was estimated at 188 Mg of chloride per year. Changes in chloride concentration in stream water during streamflow recessions showed a linear response that indicates the dominant process affecting chloride is advective flow of chloride-enriched groundwater discharge. Published in 2010 by John Wiley & Sons, Ltd.

  3. Statistical mapping of zones of focused groundwater/surface-water exchange using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Mwakanyamale, Kisa; Day-Lewis, Frederick D.; Slater, Lee D.

    2013-01-01

    Fiber-optic distributed temperature sensing (FO-DTS) increasingly is used to map zones of focused groundwater/surface-water exchange (GWSWE). Previous studies of GWSWE using FO-DTS involved identification of zones of focused GWSWE based on arbitrary cutoffs of FO-DTS time-series statistics (e.g., variance, cross-correlation between temperature and stage, or spectral power). New approaches are needed to extract more quantitative information from large, complex FO-DTS data sets while concurrently providing an assessment of uncertainty associated with mapping zones of focused GSWSE. Toward this end, we present a strategy combining discriminant analysis (DA) and spectral analysis (SA). We demonstrate the approach using field experimental data from a reach of the Columbia River adjacent to the Hanford 300 Area site. Results of the combined SA/DA approach are shown to be superior to previous results from qualitative interpretation of FO-DTS spectra alone.

  4. Characterizing multiple sources and interaction in the critical zone through Sr-isotope tracing of surface and groundwater

    Science.gov (United States)

    Negrel, Philippe; Pauwels, Hélène

    2017-04-01

    The Critical Zone (CZ) is the lithosphere-atmosphere boundary where complex physical, chemical and biological processes occurs and control the transfer and storage of water and chemical elements. This is the place where life-sustaining resources are, where nutrients are being released from the rocks. Because it is the place where we are living, this is a fragile zone, a critical zone as a perturbed natural ecosystem. Water resources in hard-rocks commonly involve different hydrogeological compartments such as overlying sediments, weathered rock, the weathered-fissured zone, and fractured bedrock. Streams, lakes and wetlands that drain such environments can drain groundwater, recharge groundwater, or do both. Groundwater resources in many countries are increasingly threatened by growing demand, wasteful use, and contamination. Surface water and shallow groundwater are particularly vulnerable to pollution, while deeper resources are more protected from contamination. Here, we first report on Sr isotope data as well as major ions, from shallow and deep groundwater in several granite and schist areas over France with intensive agriculture covering large parts of these catchments. In three granite and Brioverian 'schist' areas of the Armorican Massif, the range in Sr contents in groundwater from different catchments agrees with previous work on groundwater sampled from granites in France. The Sr content is well correlated with Mg and both are partly related to agricultural practices and water rock interaction. The relationship between Sr- isotope and Mg/Sr ratios allow defining the different end-members, mainly rain, agricultural practice and water-rock interaction. The data from the Armorican Massif and other surface and groundwater for catchment draining silicate bedrocks (300-450Ma) like the Hérault, Seine, Moselle, Garonne, Morvan, Margeride, Cantal, Pyrénées and Vosges are scattered between at least three geochemical signatures. These include fertilizer and

  5. Natural 222Rn and 220Rn indicate the impact of the Water–Sediment Regulation Scheme (WSRS) on submarine groundwater discharge in the Yellow River estuary, China

    International Nuclear Information System (INIS)

    Xu, Bochao; Xia, Dong; Burnett, William C.; Dimova, Natasha T.; Wang, Houjie; Zhang, Longjun; Gao, Maosheng; Jiang, Xueyan; Yu, Zhigang

    2014-01-01

    Highlights: • 220 Rn and 222 Rn were combined to locate intensive SGD sites. • Influence of WSRS to SGD was found for the first time. • SGD was a dominant nutrient pathway in the Yellow River estuary. - Abstract: Submarine groundwater discharge (SGD) in estuaries brings important influences to coastal ecosystems. In this study, we observed significant SGD in the Yellow River estuary, including a fresh component, during the Water–Sediment Regulation Scheme (WSRS) period. We used the 222 Rn and 220 Rn isotope pair to locate sites of significant SGD within the study area. Three apparent SGD locations were found during a non-WSRS period, one of which became much more pronounced, according to the remarkably elevated radon levels, during the WSRS. Increased river discharge (from 245 m 3 s −1 to 3560 m 3 s −1 ) and the elevated river water level (from 11 m to 13 m) during the WSRS led to a higher hydraulic head, enhancing groundwater discharge in the estuary. Our results suggest that high river discharge (>3000 m 3 s −1 ) might be necessary for elevated fresh submarine groundwater discharging (FSGD). Vertical profiles of salinity, DO and turbidity anomalies along the benthic boundary layer also indicated significant FSGD in the estuary during the WSRS. Nutrient concentrations had positive correlations with 222 Rn during a 24-h observation, which indicates that SGD is a dominant nutrient pathway in this area

  6. Recharge and Lateral Groundwater Flow Boundary Conditions for the Saturated Zone Site-Scale Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    B. Arnold; T. Corbet

    2001-12-18

    The purpose of the flow boundary conditions analysis is to provide specified-flux boundary conditions for the saturated zone (SZ) site-scale flow and transport model. This analysis is designed to use existing modeling and analysis results as the basis for estimated groundwater flow rates into the SZ site-scale model domain, both as recharge at the upper (water table) boundary and as underflow at the lateral boundaries. The objective is to provide consistency at the boundaries between the SZ site-scale flow model and other groundwater flow models. The scope of this analysis includes extraction of the volumetric groundwater flow rates simulated by the SZ regional-scale flow model to occur at the lateral boundaries of the SZ site-scale flow model and the internal qualification of the regional-scale model for use in this analysis model report (AMR). In addition, the scope includes compilation of information on the recharge boundary condition taken from three sources: (1) distributed recharge as taken from the SZ regional-scale flow model, (2) recharge below the area of the unsaturated zone (UZ) site-scale flow model, and (3) focused recharge along the Fortymile Wash channel.

  7. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater.

    Science.gov (United States)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev

    2017-02-15

    In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than -200mV. Perchlorate was reduced continuously from ∼1150mg/L at the inlet to ∼300mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10 5 to 10 7 copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil)

    International Nuclear Information System (INIS)

    Roth, F.; Lessa, G.C.; Wild, C.; Kikuchi, R.K.P.; Naumann, M.S.

    2016-01-01

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ 13 C org and δ 15 N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6 km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality. - Highlights: •Pollution by untreated sewage discharge is evident at the outfall and in Salvador's coastal zone. •Seasonal wind- and tide-driven surface currents control advective transport of discharged sewage. •Water quality at Salvador's recreational beaches is impacted by a plume of untreated sewage.

  9. Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: a case study from Birbhum district, West Bengal

    Science.gov (United States)

    Thapa, Raju; Gupta, Srimanta; Guin, Shirshendu; Kaur, Harjeet

    2017-11-01

    Remote sensing and GIS play a vital role in exploration and assessment of groundwater and has wide application in detection, monitoring, assessment, conservation and various other fields of groundwater-related studies. In this research work, delineation of groundwater potential zone in Birbhum district has been carried out. Various thematic layers viz. geology, geomorphology, soil type, elevation, lineament and fault density, slope, drainage density, land use/land cover, soil texture, and rainfall are digitized and transformed into raster data in ArcGIS 10.3 environment as input factors. Thereafter, multi-influencing factor (MIF) technique is employed where ranks and weights, assigned to each factor are computed statistically. Finally, groundwater potential zones are classified into four categories namely low, medium, high and very high zone. It is observed that 18.41% (836.86 km2) and 34.41% (1563.98 km2) of the study area falls under `low' and `medium' groundwater potential zone, respectively. Approximately 1601.19 km2 area accounting for 35.23% of the study area falls under `high' category and `very high' groundwater potential zone encompasses an area of 542.98 km2 accounting for 11.95% of the total study area. Finally, the model generated groundwater potential zones are validated with reported potential yield data of various wells in the study area. Success and prediction rate curve reveals an accuracy achievement of 83.03 and 78%, respectively. The outcome of the present research work will help the local authorities, researchers, decision makers and planners in formulating better planning and management of groundwater resources in the study area in future perspectives.

  10. Aquifer recharge with stormwater runoff in urban areas: Influence of vadose zone thickness on nutrient and bacterial transfers from the surface of infiltration basins to groundwater.

    Science.gov (United States)

    Voisin, Jérémy; Cournoyer, Benoit; Vienney, Antonin; Mermillod-Blondin, Florian

    2018-05-16

    Stormwater infiltration systems (SIS) have been built in urban areas to reduce the environmental impacts of stormwater runoff. Infiltration basins allow the transfer of stormwater runoff to aquifers but their abilities to retain contaminants depend on vadose zone properties. This study assessed the influence of vadose zone thickness (VZT) on the transfer of inorganic nutrients (PO 4 3- , NO 3 - , NH 4 + ), dissolved organic carbon (total -DOC- and biodegradable -BDOC-) and bacteria. A field experiment was conducted on three SIS with a thin vadose zone (zone (>10 m). Water samples were collected at three times during a rainy period of 10 days in each infiltration basin (stormwater runoff), in the aquifer impacted by infiltration (impacted groundwater) and in the same aquifer but upstream of the infiltration area (non-impacted groundwater). Inorganic nutrients, organic matter, and dissolved oxygen (DO) were measured on all water samples. Bacterial community structures were investigated on water samples through a next-generation sequencing (NGS) scheme of 16S rRNA gene amplicons (V5-V6). The concentrations of DO and phosphate measured in SIS-impacted groundwaters were significantly influenced by VZT due to distinct biogeochemical processes occurring in the vadose zone. DOC and BDOC were efficiently retained in the vadose zone, regardless of its thickness. Bacterial transfers to the aquifer were overall low, but data obtained on day 10 indicated a significant bacterial transfer in SIS with a thin vadose zone. Water transit time and water saturation of the vadose zone were found important parameters for bacterial transfers. Most bacterial taxa (>60%) from impacted groundwaters were not detected in stormwater runoff and in non-impacted groundwaters, indicating that groundwater bacterial communities were significantly modified by processes associated with infiltration (remobilization of bacteria from vadose zone and/or species sorting). Copyright © 2018 Elsevier B

  11. Contrasting patterns of groundwater evapotranspiration in grass and tree dominated riparian zones of a temperate agricultural catchment

    Science.gov (United States)

    Satchithanantham, Sanjayan; Wilson, Henry F.; Glenn, Aaron J.

    2017-06-01

    Consumptive use of shallow groundwater by phreatophytic vegetation is a significant part of the water budget in many regions, particularly in riparian areas. The influence of vegetation type on groundwater level fluctuations and evapotranspiration has rarely been quantified for contrasting plant communities concurrently although it has implications for downstream water yield and quality. Hourly groundwater evapotranspiration (ETG) rates were estimated for grass and tree riparian vegetation in southwestern Manitoba, Canada using two modified White methods. Groundwater table depth was monitored in four 21 m transects of five 3 m deep monitoring wells in the riparian zone of a stream reach including tree (Acer negundo; boxelder) and grass (Bromus inermis; smooth brome) dominated segments. The average depths to the groundwater table from the surface were 1.4 m and 1 m for the tree and grass segments, respectively, over the two-year study. During rain free periods of the growing season ETG was estimated for a total of 70 days in 2014 and 79 days in 2015 when diurnal fluctuations were present in groundwater level. Diurnal groundwater level fluctuations were observed during dry periods under both segments, however, ETG was significantly higher (p < 0.001) under trees compared to grass cover in 2014 (a wet year with 72% higher than normal growing season precipitation) and 2015 (a drier year with 15% higher than normal growing season precipitation). The two methods used to estimate ETG produced similar daily and seasonal values for the two segments. In 2014, total ETG was approximately 50% (148 mm) and 100% (282-285 mm) of reference evapotranspiration (ETref, 281 mm) for the grass and tree segments, respectively. In 2015, total ETG was approximately 40% (106-127 mm) and 120% (369-374 mm) of ETref (307 mm) for the grass and tree segments, respectively. Results from the study show the tree dominated portions of the stream reach consumed approximately 2.4 ML ha-1 yr-1 more

  12. Depth Stratification Leads to Distinct Zones of Manganese and Arsenic Contaminated Groundwater.

    Science.gov (United States)

    Ying, Samantha C; Schaefer, Michael V; Cock-Esteb, Alicea; Li, Jun; Fendorf, Scott

    2017-08-15

    Providing access to safe drinking water is a global challenge, for which groundwater is increasingly being used throughout the world. However, geogenic contaminants limit the suitability of groundwater for domestic purposes over large geographic areas across most continents. Geogenic contaminants in groundwater are often evaluated individually, but here we demonstrate the need to evaluate multiple contaminants to ensure that groundwater is safe for human consumption and agricultural usage. We compiled groundwater chemical data from three aquifer regions across the world that have been reported to have widespread As and Mn contamination including the Glacial Aquifer in the U.S., the Ganges-Brahmaputra-Mehta Basin within Bangladesh, and the Mekong Delta in Cambodia, along with newly sampled wells in the Yangtze River Basin of China. The proportion of contaminated wells increase by up to 40% in some cases when both As and Mn contaminants are considered. Wilcoxon rank-sum analysis indicates that Mn contamination consistently occurs at significantly shallower depths than As contaminated wells in all regions. Arsenic concentrations in groundwater are well predicted by redox indicators (Eh and dissolved oxygen) whereas Mn shows no significant relationship with either parameter. These findings illustrate that the number of safe wells may be drastically overestimated in some regions when Mn contamination is not taken into account and that depth may be used as a distinguishing variable in efforts to predict the presence of groundwater contaminants regionally.

  13. Ground-water geology of the coastal zone, Long Beach-Santa Ana area, California

    Science.gov (United States)

    Poland, J.F.; Piper, A.M.

    1956-01-01

    This paper is the first chapter of a comprehensive report on the ground-water features in the southern part of the coastal plain in Los Angeles and Orange Counties, Calif., with special reference to the effectiveness of the so-called coastal barrier--the Newport-Inglewood structural zone--in restraining landwar,-1 movement of saline water. The coastal plain in Los Angeles and Orange Counties, which covers some 775 square miles, sustains a large urban and rural population, diverse industries, and intensive agricultural developments. The aggregate ground-water withdrawal in 1945 was about 400,000 acre-feet a year, an average of about 360 million gallons a day. The dominant land-form elements are a central lowland plain with tongues extending to the coast, bordering highlands and foothills, and a succession of low hills and mesas aligned northwestward along the coastal edge of the central low- land plain. These low hills and mesas are the land-surface expression of geologic structure in the Newport-Inglewood zone. The highland areas that border the inland edge of the coastal plain are of moderate altitude and relief; most of the ridge crests range from 1,400 to 2,500 feet in altitude, but Santiago Peak in the Santa Ana Mountains attains a height of 5,680 feet above sea level. From these highlands the land surface descends across foothills and aggraded alluvial aprons to the central lowland, Downey Plain, here defined as the surface formed by alluvial aggradation during the post-Pleistocene time of rising base level. The Newport-Inglewood belt of hills and plains (mesas) has a maximum relief of some 500 feet but is widely underlain at a depth of about 30 feet by a surface of marine plantation. As initially formed in late Pleistocene time that surface was largely a featureless plain. Thus the present land-surface forms within the Newport-Inglewood belt measure the earth deformation that has occurred there since late Pleistocene time and so are pertinent with respect to

  14. The Vertical Flux Method (VFM) for regional estimates of temporally and spatially varying nitrate fluxes in unsaturated zone and groundwater

    Science.gov (United States)

    Green, C. T.; Liao, L.; Nolan, B. T.; Juckem, P. F.; Ransom, K.; Harter, T.

    2017-12-01

    Process-based modeling of regional NO3- fluxes to groundwater is critical for understanding and managing water quality. Measurements of atmospheric tracers of groundwater age and dissolved-gas indicators of denitrification progress have potential to improve estimates of NO3- reactive transport processes. This presentation introduces a regionalized version of a vertical flux method (VFM) that uses simple mathematical estimates of advective-dispersive reactive transport with regularization procedures to calibrate estimated tracer concentrations to observed equivalents. The calibrated VFM provides estimates of chemical, hydrologic and reaction parameters (source concentration time series, recharge, effective porosity, dispersivity, reaction rate coefficients) and derived values (e.g. mean unsaturated zone travel time, eventual depth of the NO3- front) for individual wells. Statistical learning methods are used to extrapolate parameters and predictions from wells to continuous areas. The regional VFM was applied to 473 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3-, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and triogiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with independent estimates. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams (2) fractions of N leached to groundwater have changed over time, with increasing fractions from manure and decreasing fractions from fertilizer, and (3) under current practices and conditions, 60% of the shallow aquifer will eventually be affected by NO3- contamination. Based on GIS coverages of variables related to soils, land use and hydrology, the VFM results at individual wells were extrapolated regionally using boosted regression trees, a statistical learning approach, that related

  15. In Situ Groundwater Denitrification in the Riparian Zone of a Short-Rotation Woody Crop Experimental Watershed

    Science.gov (United States)

    Jeffers, J. B.; Jackson, C. R.; Rau, B.; Pringle, C. M.; Matteson, C.

    2017-12-01

    The southeastern United States has potential to become a major producer of short rotation woody crops (SRWC) for the production of biofuels, but this will require converting to more intensive forest management practices that will increase nitrate (NO3-) loading and alter nitrogen cycling in nearby freshwater ecosystems. Water quality monitoring in an experimental short-rotation woody crop watershed in the Coastal Plain of South Carolina has shown increased concentrations of NO3- in groundwater but no evidence of increased NO3- in riparian groundwater or surface waters. Forested riparian areas established as streamside management zones (SMZ) are known to act as buffers to surface water bodies by mitigating nutrients. The objectives of this study were to quantify denitrification by measuring dinitrogen (N2) and nitrous oxide (N2O) concentrations along groundwater flow paths and analyze relationships between denitrification estimates, nutrients, and water chemistry parameters. A network of piezometers has been established in the Fourmile Experimental Watershed at the Department of Energy - Savannah River Site. Water samples were collected monthly and were analyzed for concentrations of nutrients (temperature, specific conductivity, dissolved oxygen, pH, dissolved organic carbon) and dissolved gases (N2, Ar, N2O). Preliminary data showed greater dissolved N2O concentrations than dissolved N2 concentrations in groundwater. The ratios of N2O to combined end products of denitrification (N2O / N2O+N2) ranged from 0.33 to 0.99. Mean N2O+N2 concentrations were greater in groundwater samples in the SRWC plot and along the SMZ boundary than along the ephemeral stream within the riparian zone. Correlations between water chemistry parameters and N2 concentrations are indicative of known biogeochemical driving factors of denitrification. Continued monthly sampling will be coupled with analysis of nutrient concentrations (NO3-, NH4+, TN) to help determine transport and processing

  16. Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand-bed stream

    Science.gov (United States)

    Rosenberry, Donald O.; Briggs, Martin A.; Delin, Geoffrey N.; Hare, Danielle K.

    2016-01-01

    Quantifying flow of groundwater through streambeds often is difficult due to the complexity of aquifer-scale heterogeneity combined with local-scale hyporheic exchange. We used fiber-optic distributed temperature sensing (FO-DTS), seepage meters, and vertical temperature profiling to locate, quantify, and monitor areas of focused groundwater discharge in a geomorphically simple sand-bed stream. This combined approach allowed us to rapidly focus efforts at locations where prodigious amounts of groundwater discharged to the Quashnet River on Cape Cod, Massachusetts, northeastern USA. FO-DTS detected numerous anomalously cold reaches one to several m long that persisted over two summers. Seepage meters positioned upstream, within, and downstream of 7 anomalously cold reaches indicated that rapid groundwater discharge occurred precisely where the bed was cold; median upward seepage was nearly 5 times faster than seepage measured in streambed areas not identified as cold. Vertical temperature profilers deployed next to 8 seepage meters provided diurnal-signal-based seepage estimates that compared remarkably well with seepage-meter values. Regression slope and R2 values both were near 1 for seepage ranging from 0.05 to 3.0 m d−1. Temperature-based seepage model accuracy was improved with thermal diffusivity determined locally from diurnal signals. Similar calculations provided values for streambed sediment scour and deposition at subdaily resolution. Seepage was strongly heterogeneous even along a sand-bed river that flows over a relatively uniform sand and fine-gravel aquifer. FO-DTS was an efficient method for detecting areas of rapid groundwater discharge, even in a strongly gaining river, that can then be quantified over time with inexpensive streambed thermal methods.

  17. Conceptual Models for Migration of Key Groundwater Contaminants Through the Vadose Zone and Into the Upper Unconfined Aquifer Below the B-Complex

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Keller, Jason M.; Thorne, Paul D.; Lanigan, David C.; Christensen, J. N.; Thomas, Gregory S.

    2010-07-01

    The B-Complex contains 3 major crib and trench disposal sites and 3 SST farms that have released nearly 346 mega-liters of waste liquids containing the following high groundwater risk drivers: ~14,000 kg of CN, 29,000 kg of Cr, 12,000 kg of U and 145 Ci of Tc-99. After a thorough review of available vadose zone sediment and pore water, groundwater plume, field gamma logging, field electrical resistivity studies, we developed conceptual models for which facilities have been the significant sources of the contaminants in the groundwater and estimated the masses of these contaminants remaining in the vadose zone and currently present in the groundwater in comparison to the totals released. This allowed us to make mass balance calculations on how consistent our knowledge is on the current deep vadose zone and groundwater distribution of contaminants. Strengths and weaknesses of the conceptual models are discussed as well as implications on future groundwater and deep vadose zone remediation alternatives. Our hypothesized conceptual models attribute the source of all of the cyanide and most of the Tc-99 currently in the groundwater to the BY cribs. The source of the uranium is the BX-102 tank overfill event and the source of most of the chromium is the B-7-A&B and B-8 cribs. Our mass balance estimates suggest that there are much larger masses of U, CN, and Tc remaining in the deep vadose zone within ~20 ft of the water table than is currently in the groundwater plumes below the B-Complex. This hypothesis needs to be carefully considered before future remediation efforts are chosen. The masses of these groundwater risk drivers in the the groundwater plumes have been increasing over the last decade and the groundwater plumes are migrating to the northwest towards the Gable Gap. The groundwater flow rate appears to flucuate in response to seasonal changes in hydraulic gradient. The flux of contaminants out of the deep vadose zone from the three proposed sources also

  18. Drivers of pCO2 dynamics in two contrasting coral reef lagoons: The influence of submarine groundwater discharge (Invited)

    Science.gov (United States)

    Cyronak, T.; Santos, I. R.; Erler, D.; Maher, D. T.; Eyre, B.

    2013-12-01

    The carbon chemistry of coral reef lagoons can be highly variable over short time scales. While much of the diel variability in seawater carbon chemistry is explained by biological processes, external sources such as river and groundwater seepage may deliver large amounts of organic and inorganic carbon to coral reefs and represent a poorly understood feedback to ocean acidification. Here, we assess the impact of submarine groundwater discharge (SGD) on pCO2 variability in two coral reef lagoons with distinct SGD driving mechanisms. Diel variability of pCO2 in the two ecosystems was explained by a combination of biological drivers and SGD inputs. In Rarotonga, a South Pacific volcanic island, SGD was driven primarily by a steep terrestrial hydraulic gradient, and the lagoon was influenced by the high pCO2 (5,501 μatm) of the fresh groundwater. In Heron Island, a Great Barrier Reef coral cay, SGD was dominated by seawater recirculation through sediments (i.e. tidal pumping) and pCO2 was mainly impacted through the stimulation of biological processes. The Rarotonga water column had a relatively higher average pCO2 (549 μatm) than Heron Island (471 μatm). However, pCO2 exhibited a greater diel range in Heron Island (778 μatm) than in Rarotonga (507 μatm). The Rarotonga lagoon received 31.2 mmol CO2 m-2 d-1 from SGD, while the Heron Island lagoon received 12.3 mmol CO2 m-2 d-1. Over the course of this study both systems were sources of CO2 to the atmosphere (3.00 to 9.67 mmol CO2 m-2 d-1), with SGD-derived CO2 contributing a large portion to the air-sea CO2 flux. The relationship between both water column pH and aragonite saturation state (ΩAr) and radon (222Rn) concentrations indicate that SGD may enhance the local acidification of some coral reef lagoons. Studies measuring the carbon chemistry of coral reefs (e.g. community metabolism, calcification rates) may need to consider SGD-derived CO2.

  19. Application of a hybrid multiscale approach to simulate hydrologic and biogeochemical processes in the river-groundwater interaction zone.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Yang, Xiaofan; Song, Xuehang; Song, Hyun-Seob; Hou, Zhangshuan; Chen, Xingyuan; Liu, Yuanyuan; Scheibe, Tim

    2017-03-01

    The groundwater-surface water interaction zone (GSIZ) plays an important role in riverine and watershed ecosystems as the exchange of waters of variable composition and temperature (hydrologic exchange flows) stimulate microbial activity and associated biogeochemical reactions. Variable temporal and spatial scales of hydrologic exchange flows, heterogeneity of the subsurface environment, and complexity of biogeochemical reaction networks in the GSIZ present challenges to incorporation of fundamental process representations and model parameterization across a range of spatial scales (e.g. from pore-scale to field scale). This paper presents a novel hybrid multiscale simulation approach that couples hydrologic-biogeochemical (HBGC) processes between two distinct length scales of interest.

  20. Application of a GIS-/remote sensing-based approach for predicting groundwater potential zones using a multi-criteria data mining methodology.

    Science.gov (United States)

    Mogaji, Kehinde Anthony; Lim, Hwee San

    2017-07-01

    This study integrates the application of Dempster-Shafer-driven evidential belief function (DS-EBF) methodology with remote sensing and geographic information system techniques to analyze surface and subsurface data sets for the spatial prediction of groundwater potential in Perak Province, Malaysia. The study used additional data obtained from the records of the groundwater yield rate of approximately 28 bore well locations. The processed surface and subsurface data produced sets of groundwater potential conditioning factors (GPCFs) from which multiple surface hydrologic and subsurface hydrogeologic parameter thematic maps were generated. The bore well location inventories were partitioned randomly into a ratio of 70% (19 wells) for model training to 30% (9 wells) for model testing. Application results of the DS-EBF relationship model algorithms of the surface- and subsurface-based GPCF thematic maps and the bore well locations produced two groundwater potential prediction (GPP) maps based on surface hydrologic and subsurface hydrogeologic characteristics which established that more than 60% of the study area falling within the moderate-high groundwater potential zones and less than 35% falling within the low potential zones. The estimated uncertainty values within the range of 0 to 17% for the predicted potential zones were quantified using the uncertainty algorithm of the model. The validation results of the GPP maps using relative operating characteristic curve method yielded 80 and 68% success rates and 89 and 53% prediction rates for the subsurface hydrogeologic factor (SUHF)- and surface hydrologic factor (SHF)-based GPP maps, respectively. The study results revealed that the SUHF-based GPP map accurately delineated groundwater potential zones better than the SHF-based GPP map. However, significant information on the low degree of uncertainty of the predicted potential zones established the suitability of the two GPP maps for future development of

  1. Submarine groundwater discharge as an important nutrient source influencing nutrient structure in coastal water of Daya Bay, China

    Science.gov (United States)

    Wang, Xuejing; Li, Hailong; Zheng, Chunmiao; Yang, Jinzhong; Zhang, Yan; Zhang, Meng; Qi, Zhanhui; Xiao, Kai; Zhang, Xiaolang

    2018-03-01

    As an important nutrient source for coastal waters, submarine groundwater discharge (SGD) has long been largely ignored in Daya Bay, China. In this study, we estimate the fluxes of SGD and associated nutrients into this region using a 224Ra mass balance model and assess the contribution/importance of nutrients by SGD, benthic sediments, local rivers, and atmospheric deposition. The results of 224Ra mass balance show that the estimated SGD ranges from (2.76 ± 1.43) × 106 m3/d to (1.03 ± 0.53) × 107 m3/d with an average of (6.32 ± 2.42) × 106 m3/d, about 16 times the total discharge rate of local rivers. The nutrient loading from SGD is estimated to be (1.05-1.99) × 105 mol/d for NO3-N, (4.04-12.16) × 103 mol/d for DIP, and (3.54-11.35) × 105 mol/d for Si. Among these considered nutrient sources, we find that SGD is the primary source for Si and NO3-N, contributing 68% and 42% of all considered sources, respectively. The atmospheric NO3-N flux is comparable to that from SGD. The local rivers are the most important source for DIP, contributing 75% of all considered sources. SGD with high N:P ratio (NO3-N/DIP) of 37.0 delivers not only a large quantity of nutrients, but also changes nutrient structure in coastal water. Based on a DIP budget, primary productivity is evaluated to be 54-73 mg C/m2 d, in which SGD accounts for approximately 30% of total production. This study indicates that SGD is a key source of nutrients to coastal waters and may cause an obvious change of primary production and nutrient structure in Daya Bay.

  2. Neural Network approach to assess the thermal affected zone around the injection well in a groundwater heat pump system

    Science.gov (United States)

    Lo Russo, Stefano; Taddia, Glenda; Verda, Vittorio

    2014-05-01

    The common use of well doublets for groundwater-sourced heating or cooling results in a thermal plume of colder or warmer re-injected groundwater known as the Thermal Affected Zone(TAZ). The plumes may be regarded either as a potential anthropogenic geothermal resource or as pollution, depending on downstream aquifer usage. A fundamental aspect in groundwater heat pump (GWHP) plant design is the correct evaluation of the thermally affected zone that develops around the injection well. Temperature anomalies are detected through numerical methods. Crucial elements in the process of thermal impact assessment are the sizes of installations, their position, the heating/cooling load of the building, and the temperature drop/increase imposed on the re-injected water flow. For multiple-well schemes, heterogeneous aquifers, or variable heating and cooling loads, numerical models that simulate groundwater and heat transport are needed. These tools should consider numerous scenarios obtained considering different heating/cooling loads, positions, and operating modes. Computational fluid dynamic (CFD) models are widely used in this field because they offer the opportunity to calculate the time evolution of the thermal plume produced by a heat pump, depending on the characteristics of the subsurface and the heat pump. Nevertheless, these models require large computational efforts, and therefore their use may be limited to a reasonable number of scenarios. Neural networks could represent an alternative to CFD for assessing the TAZ under different scenarios referring to a specific site. The use of neural networks is proposed to determine the time evolution of the groundwater temperature downstream of an installation as a function of the possible utilization profiles of the heat pump. The main advantage of neural network modeling is the possibility of evaluating a large number of scenarios in a very short time, which is very useful for the preliminary analysis of future multiple

  3. Influences of Dam Operations in Groundwater-Surface Water Mixing Zones: Towards Multiscale Understanding

    Science.gov (United States)

    Stegen, J.; Scheibe, T. D.; Chen, X.; Huang, M.; Arntzen, E.; Garayburu-Caruso, V. A.; Graham, E.; Johnson, T. C.; Strickland, C. E.

    2017-12-01

    The installation and operation of dams have myriad influences on ecosystems, from direct effects on hydrographs to indirect effects on marine biogeochemistry and terrestrial food webs. With > 50000 existing and > 3700 planned large dams world-wide there is a pressing need for holistic understanding of dam impacts. Such understanding is likely to reveal unrecognized opportunities to modify dam operations towards beneficial outcomes. One of the most dramatic influences of daily dam operations is the creation of `artificial intertidal zones' that emerge from short-term increases and decreases in discharge due to hydroelectric power demands; known as hydropeaking. There is a long history of studying the influences of hydropeaking on macrofauna such as fish and invertebrates, but only recently has significant attention been paid to the hydrobiogeochemical effects of hydropeaking. Our aim here is to develop an integrated conceptual model of the hydrobiogeochemical influences of hydropeaking. To do so we reviewed available literature focusing on hydrologic and/or biogeochemical influences of hydropeaking. Results from these studies were collated into a single conceptual model that integrates key physical (e.g., sediment transport, hydromorphology) and biological (e.g., timescale of microbiome response) processes. This conceptual model highlights non-intuitive impacts of hydropeaking, the presence of critical thresholds, and strong interactions among processes. When examined individually these features suggest context dependency, but when viewed through an integrated conceptual model, common themes emerge. We will further discuss a critical next step, which is the local to regional to global evaluation of this conceptual model, to enable multiscale understanding. We specifically propose a global `hydropeaking network' of researchers using common methods, data standards, and analysis techniques to quantify the hydrobiogeochemical effects of hydropeaking across biomes. We

  4. Influence of Wetting and Mass Transfer Properties of Organic Chemical Mixtures in Vadose Zone Materials on Groundwater Contamination by Nonaqueous Phase Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Charles J Werth; Albert J Valocchi, Hongkyu Yoon

    2011-05-21

    Previous studies have found that organic acids, organic bases, and detergent-like chemicals change surface wettability. The wastewater and NAPL mixtures discharged at the Hanford site contain such chemicals, and their proportions likely change over time due to reaction-facilitated aging. The specific objectives of this work were to (1) determine the effect of organic chemical mixtures on surface wettability, (2) determine the effect of organic chemical mixtures on CCl4 volatilization rates from NAPL, and (3) accurately determine the migration, entrapment, and volatilization of organic chemical mixtures. Five tasks were proposed to achieve the project objectives. These are to (1) prepare representative batches of fresh and aged NAPL-wastewater mixtures, (2) to measure interfacial tension, contact angle, and capillary pressure-saturation profiles for the same mixtures, (3) to measure interphase mass transfer rates for the same mixtures using micromodels, (4) to measure multiphase flow and interphase mass transfer in large flow cell experiments, all using the same mixtures, and (5) to modify the multiphase flow simulator STOMP in order to account for updated P-S and interphase mass transfer relationships, and to simulate the impact of CCl4 in the vadose zone on groundwater contamination. Results and findings from these tasks and summarized in the attached final report.

  5. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil)

    KAUST Repository

    Roth, Florian; Lessa, G.C.; Wild, C.; Kikuchi, R.K.P.; Naumann, M.S.

    2016-01-01

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ13Corg and δ15N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6 km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality.

  6. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil)

    KAUST Repository

    Roth, Florian

    2016-03-30

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ13Corg and δ15N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6 km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality.

  7. Simulation of groundwater flow pathlines and freshwater/saltwater transition zone movement, Manhasset Neck, Nassau County, New York

    Science.gov (United States)

    Misut, Paul; Aphale, Omkar

    2014-01-01

    A density-dependent groundwater flow and solute transport model of Manhasset Neck, Long Island, New York, was used to analyze (1) the effects of seasonal stress on the position of the freshwater/saltwater transition zone and (2) groundwater flowpaths. The following were used in the simulation: 182 transient stress periods, representing the historical record from 1920 to 2011, and 44 transient stress periods, representing future hypothetical conditions from 2011 to 2030. Simulated water-level and salinity (chloride concentration) values are compared with values from a previously developed two-stress-period (1905–1944 and 1945–2005) model. The 182-stress-period model produced salinity (chloride concentration) values that more accurately matched the observed salinity (chloride concentration) values in response to hydrologic stress than did the two-stress-period model, and salinity ranged from zero to about 3 parts per thousand (equivalent to zero to 1,660 milligrams per liter chloride). The 182-stress-period model produced improved calibration statistics of water-level measurements made throughout the study area than did the two-stress-period model, reducing the Lloyd aquifer root mean square error from 7.0 to 5.2 feet. Decreasing horizontal and vertical hydraulic conductivities (fixed anisotropy ratio) of the Lloyd and North Shore aquifers by 20 percent resulted in nearly doubling the simulated salinity(chloride concentration) increase at Port Washington observation well N12508. Groundwater flowpath analysis was completed for 24 production wells to delineate water source areas. The freshwater/saltwater transition zone moved toward and(or) away from wells during future hypothetical scenarios.

  8. Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia).

    Science.gov (United States)

    Ortegón, Gloria Páez; Arboleda, Fernando Muñoz; Candela, Lucila; Tamoh, Karim; Valdes-Abellan, Javier

    2016-01-01

    Extensive application of vinasse, a subproduct from sugar cane plantations for bioethanol production, is currently taking place as a source of nutrients that forms part of agricultural management in different agroclimatic regions. Liquid vinasse composition is characterised by high variability of organic compounds and major ions, acid pH (4.7), high TDS concentration (117,416-599,400mgL(-1)) and elevated EC (14,350-64,099μScm(-1)). A large-scale sugar cane field application is taking place in Valle del Cauca (Colombia), where monitoring of soil, unsaturated zone and the aquifer underneath has been made since 2006 to evaluate possible impacts on three experimental plots. For this assessment, monitoring wells and piezometers were installed to determine groundwater flow and water samples were collected for chemical analysis. In the unsaturated zone, tensiometers were installed at different depths to determine flow patterns, while suction lysimeters were used for water sample chemical determinations. The findings show that in the sandy loam plot (Hacienda Real), the unsaturated zone is characterised by low water retention, showing a high transport capacity, while the other two plots of silty composition presented temporal saturation due to La Niña event (2010-2011). The strong La Niña effect on aquifer recharge which would dilute the infiltrated water during the monitoring period and, on the other hand dissolution of possible precipitated salts bringing them back into solution may occur. A slight increase in the concentration of major ions was observed in groundwater (~5% of TDS), which can be attributed to a combination of factors: vinasse dilution produced by water input and hydrochemical processes along with nutrient removal produced by sugar cane uptake. This fact may make the aquifer vulnerable to contamination. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Remote sensing for assessing the zone of benefit where deep drains improve productivity of land affected by shallow saline groundwater.

    Science.gov (United States)

    Kobryn, H T; Lantzke, R; Bell, R; Admiraal, R

    2015-03-01

    The installation of deep drains is an engineering approach to remediate land salinised by the influence of shallow groundwater. It is a costly treatment and its economic viability is, in part, dependent on the lateral extent to which the drain increases biological productivity by lowering water tables and soil salinity (referred to as the drains' zone of benefit). Such zones may be determined by assessing the biological productivity response of adjacent vegetation over time. We tested a multi-temporal satellite remote sensing method to analyse temporal and spatial changes in vegetation condition surrounding deep drainage sites at five locations in the Western Australian wheatbelt affected by dryland salinity-Morawa, Pithara, Beacon, Narembeen and Dumbleyung. Vegetation condition as a surrogate for biological productivity was assessed by Normalised Difference Vegetation Index (NDVI) during the peak growing season. Analysis was at the site scale within a 1000 m buffer zone from the drains. There was clear evidence of NDVI increasing with elevation, slope and distance from the drain. After accounting for elevation, slope and distance from the drain, there was a significant increase in NDVI across the five locations after installation of deep drains. Changes in NDVI after drainage were broadly consistent with measured changes at each site in groundwater levels after installation of the deep drains. However, this study assessed the lateral extent of benefit for biological productivity and gave a measure of the area of benefit along the entire length of the drain. The method demonstrated the utility of spring NDVI images for rapid and relatively simple assessment of the change in site condition after implementation of drainage, but approaches for further improvement of the procedure were identified. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Quantity and quality of ground-water discharge to the South Platte River, Denver to Fort Lupton, Colorado, August 1992 through July 1993

    Science.gov (United States)

    McMahon, P.B.; Lull, K.J.; Dennehy, K.F.; Collins, J.A.

    1995-01-01

    Water-quality studies conducted by the Metro Wastewater Reclamation District have indicated that during low flow in segments of the South Platte River between Denver and Fort Lupton, concentrations of dissolved oxygen are less than minimum concen- trations set by the State of Colorado. Low dissolved-oxygen concentrations are observed in two reaches of the river-they are about 3.3 to 6.4 miles and 17 to 25 miles downstream from the Metro Waste- water Reclamation District effluent outfalls. Concentrations of dissolved oxygen recover between these two reaches. Studies conducted by the U.S. Geological Survey have indicated that ground-water discharge to the river may contribute to these low dissolved-oxygen concentrations. As a result, an assessment was made of the quantity and quality of ground-water discharge to the South Platte River from Denver to Fort Lupton. Measurements of surface- water and ground-water discharge and collections of surface water and ground water for water-quality analyses were made from August 1992 through January 1993 and in May and July 1993. The quantity of ground-water discharge to the South Platte River was determined indirectly by mass balance of surface-water inflows and outflows and directly by instantaneous measurements of ground-water discharge across the sediment/water interface in the river channel. The quality of surface water and ground water was determined by sampling and analysis of water from the river and monitoring wells screened in the alluvial aquifer adjacent to the river and by sampling and analysis of water from piezometers screened in sediments underlying the river channel. The ground-water flow system was subdivided into a large-area and a small-area flow system. The precise boundaries of the two flow systems are not known. However, the large-area flow system is considered to incorporate all alluvial sediments in hydrologic connection with the South Platte River. The small- area flow system is considered to incorporate

  11. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast

    Science.gov (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.

    1998-01-01

    Existing data on base-flow and groundwater nitrate loads were compiled and analyzed to assess the significance of groundwater discharge as a source of the nitrate load to nontidal streams of the Chesapeake Bay watershed. These estimates were then related to hydrogeomorphic settings based on lithology and physiographic province to provide insight on the areal distribution of ground-water discharge. Base-flow nitrate load accounted for 26 to about 100 percent of total-flow nitrate load, with a median value of 56 percent, and it accounted for 17 to 80 percent of total-flow total-nitrogen load, with a median value of 48 percent. Hydrograph separations were conducted on continuous streamflow records from 276 gaging stations within the watershed. The values for base flow thus calculated were considered an estimate of ground-water discharge. The ratio of base flow to total flow provided an estimate of the relative importance of ground-water discharge within a basin. Base-flow nitrate loads, total-flow nitrate loads, and total-flow total-nitrogen loads were previously computed from water-quality and discharge measurements by use of a regression model. Base-flow nitrate loads were available from 78 stations, total-flow nitrate loads were available from 86 stations, and total-flow total-nitrogen loads were available for 48 stations. The percentage of base-flow nitrate load to total-flow nitrate load could be computed for 57 stations, whereas the percentage of base-flow nitrate load to totalflow total-nitrogen load could be computed for 36 stations. These loads were divided by the basin area to obtain yields, which were used to compare the nitrate discharge from basins of different sizes. The results indicate that ground-water discharge is a significant source of water and nitrate to the total streamflow and nitrate load. Base flow accounted for 16 to 92 percent of total streamflow at the 276 sampling sites, with a median value of 54 percent. It is estimated that of the 50

  12. Mapping potential zones for groundwater recharge and its evaluation in arid environments using a GIS approach: Case study of North Gafsa Basin (Central Tunisia)

    Science.gov (United States)

    Mokadem, Naziha; Boughariou, Emna; Mudarra, Matías; Ben Brahim, Fatma; Andreo, Bartolome; Hamed, Younes; Bouri, Salem

    2018-05-01

    With the progressive evolution of industrial sector, agricultural, urbanization, population and drinking water supply, the water demand continuously increases which necessitates the planning of groundwater recharge particularly in arid and semi-arid regions. This paper gives a comprehensive review of various recharges studies in the North Gafsa basin (South Tunisia). This latter is characterized by a natural groundwater recharge that is deeply affected by the lack of precipitations. The aim of this study is to determine the recharge potential zones and to quantify (or estimate) the rainfall recharge of the shallow aquifers. The mapping of the potential recharge zones was established in North Gafsa basin, using geological and hydrological parameters such as slope, lithology, topography and stream network. Indeed, GIS provide tools to reclassify these input layers to produce the final map of groundwater potential zones of the study area. The final output map reveals two distinct zones representing moderate and low groundwater potential recharge. Recharge estimations were based on the four methods: (1) Chloride Method, (2) ERAS Method, (3) DGRE coefficient and (4) Fersi equations. Therefore, the overall results of the different methods demonstrate that the use of the DGRE method applying on the potential zones is more validated.

  13. The vadose zone as a geoindicator of environmental change and groundwater quality in water-scarce areas

    Science.gov (United States)

    Edmunds, W. M.; Baba Goni, I.; Gaye, C. B.; Jin, L.

    2013-12-01

    Inert and reactive tracers in moisture profiles provide considerable potential for the vadose zone to be used as an indicator of rapid environmental change. This indicator is particularly applicable in areas of water stress where long term (decade to century) scale records may be found in deep unsaturated zones in low rainfall areas and provide insights into recent recharge, climate variation and water-rock interactions which generate groundwater quality. Unsaturated zone Cl records obtained by elutriation of moisture are used widely for estimating recharge and water balance studies; isotope profiles (3H, δ2H, δ18O) from total water extraction procedures are used for investigation of residence times and hydrological processes. Apart from water taken using lysimeters, little work has been conducted directly on the geochemistry of pore fluids. This is mainly due to the difficulties of extraction of moisture from unsaturated material with low water contents (typically 2-6 wt%) and since dilution methods can create artifacts. Using immiscible liquid displacement techniques it is now possible to directly investigate the geochemistry of moisture from unsaturated zone materials. Profiles up to 35m from Quaternary sediments from dryland areas of the African Sahel (Nigeria, Senegal) as well as Inner Mongolia, China are used to illustrate the breadth of information obtainable from vadose zone profiles. Using pH, major and trace elements and comparing with isotopic data, a better understanding is gained of timescales of water movement, aquifer recharge, environmental records and climate history as well as water-rock interaction and contaminant behaviour. The usefulness of tritium as residence time indicator has now expired following cessation of atmospheric thermonuclear testing and through radioactive decay. Providing the rainfall Cl, moisture contents and bulk densities of the sediments are known, then Cl accumulation can be substituted to estimate timescales. Profiles

  14. Regional Hydrogeochemistry of a Modern Coastal Mixing Zone

    Science.gov (United States)

    Wicks, Carol M.; Herman, Janet S.

    1996-02-01

    In west central Florida, groundwater samples were collected along flow paths in the unconfined upper Floridan aquifer that cross the inland, freshwater recharge area and the coastal discharge area. A groundwater flow and solute transport model was used to evaluate groundwater flow and mixing of fresh and saline groundwater along a cross section of the unconfined upper Floridan aquifer. Results show that between 8% and 15% of the fresh and 30-31% of the saline groundwater penetrates to the depth in the flow system where contact with and dissolution of gypsum is likely. The deeply circulating fresh and saline groundwater returns to the near-surface environment discharging CaSO4-rich water to the coastal area where it mixes with fresh CaHCO3 groundwater, resulting in a prediction of calcite precipitation in the modern mixing zone.

  15. Nutrient input through submarine groundwater discharge in two major Chinese estuaries: the Pearl River Estuary and the Changjiang River Estuary

    Science.gov (United States)

    Liu, Jianan; Du, Jinzhou; Wu, Ying; Liu, Sumei

    2018-04-01

    In this study, we used a 224Ra mass balance model to evaluate the importance of submarine groundwater discharge (SGD) for the budgets of biogenic elements in two major Chinese estuaries: the Pearl River Estuary (PRE) and the Changjiang River Estuary (CRE). The apparent water age in the PRE was estimated to be 4.8 ± 1.1 days in the dry season and 1.8 ± 0.6 days in the wet season using a physical model based on the tidal prism. In the dry season, the water age in the CRE was estimated to be 11.7 ± 3.0 days using the 224Ra/223Ra activities ratios apparent age model. By applying the 224Ra mass balance model, we obtained calculations of the SGD flow in the PRE of (4.5-10) × 108 m3 d-1 (0.23-0.50 m3 m-2 d-1) and (1.2-2.7) × 108 m3 d-1 (0.06-0.14 m3 m-2 d-1) in the dry season and wet season, respectively, and the estimated SGD flux was (4.6-11) × 109 m3 d-1 (0.18-0.45 m3 m-2 d-1) in the dry season of the CRE. In comparison with the nutrient fluxes from the rivers, the SGD-derived nutrient fluxes may play a vital role in controlling the nutrient budgets and stoichiometry in the study areas. The large amount of dissolved inorganic nitrogen and phosphorus fluxes together with high N: P ratios into the PRE and CRE would potentially contribute to eutrophication and the occurrence of red tides along the adjacent waters.

  16. Vadose zone processes delay groundwater nitrate reduction response to BMP implementation as observed in paired cultivated vs. uncultivated potato rotation fields

    Science.gov (United States)

    Jiang, Y.; Nyiraneza, J.; Murray, B. J.; Chapman, S.; Malenica, A.; Parker, B.

    2017-12-01

    Nitrate leaching from crop production contributes to groundwater contamination and subsequent eutrophication of the receiving surface water. A study was conducted in a 7-ha potato-grain-forages rotation field in Prince Edward Island (PEI), Canada during 2011-2016 to link potato rotation practices and groundwater quality. The field consists of fine sandy loam soil and is underlain by 7-9 m of glacial till, which overlies the regional fractured ;red-bed; sandstone aquifer. The water table is generally located in overburden close to the bedrock interface. Field treatments included one field zone taken out of production in 2011 with the remaining zones kept under a conventional potato rotation. Agronomy data including crop tissue, soil, and tile-drain water quality were collected. Hydrogeology data including multilevel monitoring of groundwater nitrate and hydraulic head and data from rock coring for nitrate distribution in overburden and bedrock matrix were also collected. A significant amount of nitrate leached below the soil profile after potato plant kill (referred to as topkill) in 2011, most of it from fertilizer N. A high level of nitrate was also detected in the till vadose zone through coring in December 2012 and through multilevel groundwater sampling from January to May 2014 in both cultivated and uncultivated field zones. Groundwater nitrate concentrations increased for about 2.5 years after the overlying potato field was removed from production. Pressure-driven uniform flow processes dominate water and nitrate transport in the vadose zone, producing an apparently instant water table response but a delayed groundwater quality response to nitrate leaching events. These data suggest that the uniform flow dominated vadose zone in agricultural landscapes can cause the accumulation of a significant amount of nitrate originated from previous farming activities, and the long travel time of this legacy nitrate in the vadose zone can result in substantially delayed

  17. Delineating Groundwater Vulnerability and Protection Zone Mapping in Fractured Rock Masses: Focus on the DISCO Index

    Directory of Open Access Journals (Sweden)

    Helen Meerkhan

    2016-10-01

    Full Text Available Hard-rock catchments are considered to be source of valuable water resources for water supply to inhabitants and ecosystems. The present work aims to develop a groundwater vulnerability approach in the Caldas da Cavaca hydromineral system (Aguiar da Beira, Central Portugal in order to improve the hydrogeological conceptual site model. Different types of information were overlaid, generating several thematic maps to achieve an integrated framework of key sectors in the study site. Thus, a multi-technical approach was used, encompassing field and laboratory techniques, whereby different types of data were collected from fields such as geology, hydrogeology, applied geomorphology and geophysics and hydrogeomechanics, with the fundamental aim of applying the so-called DISCO index method. All of these techniques were successfully performed and an intrinsic groundwater vulnerability to contamination assessment, based on the multicriteria methodology of GOD-S, DRASTIC-Fm, SINTACS, SI and DISCO indexes, was delineated. Geographic Information Systems (GIS provided the basis on which to organize and integrate the databases and to produce all the thematic maps. This multi-technical approach highlights the importance of groundwater vulnerability to contamination mapping as a tool to support hydrogeological conceptualization, contributing to improving the decision-making process regarding water resources management and sustainability.

  18. Periphyton indicate effects of wastewater discharge in the near-coastal zone, Perth (Western Australia)

    Science.gov (United States)

    Cosgrove, Jeffrey; Walker, Di; Morrison, Peter; Hillman, Karen

    2004-10-01

    Periphyton communities on artificial substrata were successfully utilised as a biological indicator of the potential eutrophic effects of wastewater discharge into coastal waters off Perth, Western Australia. Biomass and percentage carbonate content measurements of periphyton communities grown in situ indicated that the periphyton primary production (organic weight) was enhanced in the vicinity of the discharge outlets, with a significant negative correlation between distance north of the northern outlet in Whitfords Lagoon and periphyton organic weight (OW) observed in autumn at a depth of 4 m ( r = -0.704, P relatively calm autumn season and substrata at depths of 2 m and 4 m. Thus, in favourable conditions phytoplankton and high relief reef communities are more likely to exhibit a eutrophic influence (in the form of enhanced primary production) of the treated wastewater discharge. Laboratory studies confirmed that treated wastewater, diluted 100-fold to estimate surface concentrations above the wastewater outfalls in the field, stimulates periphyton growth above levels recorded in unpolluted seawater ( F = 12.485; P = 0.0073).

  19. Simulating the effects of a beaver dam on regional groundwater flow through a wetland

    Directory of Open Access Journals (Sweden)

    Kathleen Feiner

    2015-09-01

    New hydrological insights for the region: The construction of a beaver dam resulted in minimal changes to regional groundwater flow paths at this site, which is attributed to a clay unit underlying the peat, disconnecting this wetland from regional groundwater flow. However, groundwater discharge from the wetland pond increased by 90%. Simulating a scenario with the numerical model in which the wetland is connected to regional groundwater flow results in a much larger impact on flow paths. In the absence of the clay layer, the simulated construction of a beaver dam causes a 70% increase in groundwater discharge from the wetland pond and increases the surface area of both the capture zone and the discharge zone by 30% and 80%, respectively.

  20. The influence of the unsaturated zone on the high fluoride contents in groundwater in the middle voltaian aquifers-the Gusghegu District, Northern Region

    International Nuclear Information System (INIS)

    Salifu, M.

    2012-01-01

    Elevated levels of fluoride have been reported to occur in some groundwater in the Gushegu district of the Northern region of Ghana leading to the closure of some boreholes in the area. Hydrochemical data from 21 water, soil and some rock samples were used to evaluate water quality, water types and to identify whether the unsaturated zone has influence on the elevated fluoride levels in groundwater as well as the processes that control fluoride level in the groundwater. Water samples were extracted from soil sample for flouride analysis using the cryogenic vacuum extraction set-up. Results of the water quality analysis showed that the groundwater in the study area were generally potable. A plot of Gibbs diagram revealed that rock weathering and rainfall were the major hydrogeochemical processes regulating the water chemistry of the study area. Two different water types were identified in the study area, namely: Na-HCO 3 - , which happened to be the major water type in the study area and Na-Ca-Mg-HCO 3 - water type. The fluoride concentration in the groundwater varied from 0.0 to 1.97 mg/L while that of the unsaturated zone ranged from 0.0 to 2.08 mg/L. The elevated fluoride levels in the groundwater strongly correlated with that of fluoride levels in the unsaturated zone (r 2 =0.76). Petrographic analysis of rock samples (siltstones) identified the minerals present to be muscovite, plagioclase feldspars, quartz, sericite and iron oxide. Other clay minerals such as montmorillonite, illite and chloride were identified. The elevated fluoride levels recorded in the groundwater may be due to leaching, as a result of the weathering and dissolution of muscovite, sericite as well as the presence of other clay minerals in the unsaturated zone. Application of phosphate fertilizers may also account for the the elevated fluoride concentrations recorded in the study area. Stable isotopic composition of the waters revealed that most of the groundwater were of meteoric origin

  1. Heterogeneity of groundwater storage properties in the critical zone of Irish metamorphic basement from geophysical surveys and petrographic analyses

    Science.gov (United States)

    Comte, Jean-Christophe; Cassidy, Rachel; Caulfield, John; Nitsche, Janka; Ofterdinger, Ulrich; Wilson, Christopher

    2016-04-01

    Weathered/fractured bedrock aquifers contain groundwater resources that are crucial in hard rock basement regions for rural water supply and maintaining river flow and ecosystem resilience. Groundwater storage in metamorphic rocks is subject to high spatial variations due to the large degree of heterogeneity in fracture occurrence and weathering patterns. Point measurements such as borehole testing are, in most cases, insufficient to characterise and quantify those storage variations because borehole sampling density is usually much lower than the scale of heterogeneities. A suite of geophysical and petrographic investigations was implemented in the weathered/fractured micaschist basement of Donegal, NW Ireland. Electrical Resistivity Tomography provided a high resolution 2D distribution of subsurface resistivities. Resistivity variations were transferred into storage properties (i.e. porosities) in the saturated critical zone of the aquifer through application of a petrophysical model derived from Archie's Law. The petrophysical model was calibrated using complementary borehole gamma logging and clay petrographic analysis at multi-depth well clusters distributed along a hillslope transect at the site. The resulting distribution of porosities shows large spatial variations along the studied transect. With depth, porosities rapidly decrease from about a few % in the uppermost, highly weathered basement to less than 0.5% in the deep unweathered basement, which is encountered at depths of between 10 and 50m below the ground surface. Along the hillslope, porosities decrease with distance from the river in the valley floor, ranging between 5% at the river to less than 1% at the top of the hill. Local traces of regional fault zones that intersect the transect are responsible for local increases in porosity in relation to deeper fracturing and weathering. Such degrees of spatial variation in porosity are expected to have a major impact on the modality of the response of

  2. Source zone remediation by ZVI-clay soil-mixing: Reduction of tetrachloroethene mass and mass discharge at a Danish DNAPL site

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Lange, Ida Vedel; Binning, Philip John

    2012-01-01

    The presence of chlorinated solvent source zones in the subsurface pose a continuous threat to groundwater quality. The remediation of Dense Non-Aqueous Phase Liquid (DNAPL) sites is especially challenging and the development of innovative remediation technologies is needed. Zero-valent iron (ZVI......) technologies have proven effective for remediation of chlorinated compounds. ZVI-Clay soil-mixing is a new remediation technology, which combines abiotic degradation (via ZVI addition) and immobilization (via soil-mixing and clay addition), whereby a great potential for reduction of both contaminant mass....... The concentrations of chlorinated ethenes were monitored via soil sampling at the source zone and groundwater sampling at a control plane with multilevel samplers covering the entire contaminated plume down-gradient (3 m) of the source zone. The results showed a significant mass depletion of PCE (2-3 orders...

  3. High Frequency Electromagnetic Impedance Imaging for Vadose Zone and Groundwater Characterization

    International Nuclear Information System (INIS)

    Newman, Greory A.; Alumbaugh, David L.; Hoversten, Michael; Nichols, Edward

    2003-01-01

    A geophysical experiment is described for characterizing the clastic dike systems, which are ubiquitous within the vadose zone at the Hanford Nuclear Reservation. because the dikes possess a significant electrical contrast from the insulating host medium, we have applied controlled source audio magnetotelluric (CSAMT) measurements to map their geometric extent and to further clarify if the dike complex acts as a conduit for contaminant transport within the vadose zone. Because of cost and weak natural field signal levels, we employed controlled field sourcing using the STRATGEM acquisition system. Use of artificial fields often goes with the assumption that the data required in the far-field of the transmitter

  4. Long term variations of chlorine-36 input signal to groundwater as recorded in deep unsaturated zones, south-east Australia

    International Nuclear Information System (INIS)

    Le Gal La Salle, C.; Herczeg, A.L.; Leaney, F.W.; Fifield, L.K.; Cresswell, R.G.; Kellet, J.

    1997-01-01

    The use of chlorine-36 is increasing in hydrology as its long half-life (3x10 5 a), allows useful long-term investigations into groundwater systems. Because chloride is very hydrophillic, the chlorine-36 signal should not be affected by geochemical processes in most aquatic systems. Nevertheless, over long periods of time, the chlorine-36 input to groundwater systems may vary due to factors such as: changes of production of chlorine-36 and/or changes of its distribution in the atmosphere. For instance the production of chlorine-36 might be governed by long-term terrestrial magnetic dipole strength variations as suggested for other radiogenic isotopes. Variations of the input signal of chlorine-36 should be recorded in pore waters of deep unsaturated zones. In this system, the time scale is approximated by the cumulative chloride content with depth assuming a constant input of chloride. Long-term records of chloride and chlorine-36 in two deep unsaturated-zone profiles, situated in the semi-arid Murray Basin in Australia, are presented. The two profiles record periods of approximately 20±1 to 27±2 ka and 100±5 to 220±10 ka respectively. The range of variation of the recorded time at each site is related to the estimated range of chloride deposition rate. The recharge rates are constant in both profiles with values approximating 0.4 and less than 0.1 mm.a -1 respectively. The linear relationship between chlorine-36 and stable chloride indicates that variations of chlorine-36 are governed by evapotranspiration, with a concentration factor of up to 2. Therefore the chlorine-36 is normalised to chloride to take account of the evapotranspiration process. In the soil profile at Kaniva, Western Victoria, 36 Cl/Cl'- ratio shows an increase of approximately 20% down profile. The second profile at Boree Plains, Wester, NSW, shows variations of 36 Cl/Cl'- ratio of 40% with a decreasing trend down profile. The input signal of chlorine-36/chloride is calculated by correction

  5. Metal discharges by Sinaloa Rivers to the coastal zone of NW Mexico.

    Science.gov (United States)

    Frías-Espericueta, M G; Mejía-Cruz, R; Osuna López, I; Muy-Rangel, M D; Rubio-Carrasco, W; Aguilar-Juárez, M; Voltolina, D

    2014-02-01

    The aim of this work was to survey the discharges of dissolved and particulate Cd, Cu, Fe, Mn, Pb and Zn of the eight main rivers of Sinaloa State to the Mexican coastal environment. Zn was the most abundant dissolved metal and Fe was the most abundant particulate (8.02-16.90 and 51.8-1,140.3 μg/L, respectively). Only particulate Mn had significantly (p = 0.028) higher values in summer-fall (rainy season), whereas the significantly (p = 0.036) higher values of dissolved Zn were observed in winter and spring. The highest annual total discharges to Sinaloa coastal waters were those of the rivers San Lorenzo and Piaxtla (>2 × 10(3) m.t.) and the lowest those of rivers Baluarte and El Fuerte (349 and 119 m.t., respectively). Pb concentrations may become of concern, because they are higher than the value recommended for the welfare of aquatic communities of natural waters.

  6. Redox zone II. Coupled modeling of groundwater flow, solute transport, chemical reactions and microbial processes in the Aespoe island

    Energy Technology Data Exchange (ETDEWEB)

    Samper, Javier; Molinero, Jorge; Changbing Yang; Guoxiang Zhang [Univ. Da Coruna (Spain)

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behaviour and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by Banwart et al. Later, Banwart presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by Molinero who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulphate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of Molinero and extends the preliminary microbial model of Zhang by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfaphe concentration, thus adding additional evidence for the possibility

  7. Redox zone II. Coupled modeling of groundwater flow, solute transport, chemical reactions and microbial processes in the Aespoe island

    International Nuclear Information System (INIS)

    Samper, Javier; Molinero, Jorge; Changbing Yang; Guoxiang Zhang

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behaviour and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by Banwart et al. Later, Banwart presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by Molinero who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulphate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of Molinero and extends the preliminary microbial model of Zhang by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfaphe concentration, thus adding additional evidence for the possibility

  8. Impact of radionuclide spatial variability on groundwater quality downstream from a shallow waste burial in the Chernobyl Exclusion Zone

    Science.gov (United States)

    Nguyen, H. L.; de Fouquet, C.; Courbet, C.; Simonucci, C. A.

    2016-12-01

    The effects of spatial variability of hydraulic parameters and initial groundwater plume localization on the possible extent of groundwater pollution plumes have already been broadly studied. However, only a few studies, such as Kjeldsen et al. (1995), take into account the effect of source term spatial variability. We explore this question with the 90Sr migration modeling from a shallow waste burial located in the Chernobyl Exclusion Zone to the underlying sand aquifer. Our work is based upon groundwater sampled once or twice a year since 1995 until 2015 from about 60 piezometers and more than 3,000 137Cs soil activity measurements. These measurements were taken in 1999 from one of the trenches dug after the explosion of the Chernobyl nuclear power plant, the so-called "T22 Trench", where radioactive waste was buried in 1987. The geostatistical analysis of 137Cs activity data in soils from Bugai et al. (2005) is first reconsidered to delimit the trench borders using georadar data as a covariable and to perform geostatistical simulations in order to evaluate the uncertainties of this inventory. 90Sr activity in soils is derived from 137Cs/154Eu and 90Sr/154Eu activity ratios in Chernobyl hot fuel particles (Bugai et al., 2003). Meanwhile, a coupled 1D non saturated/3D saturated transient transport model is constructed under the MELODIE software (IRSN, 2009). The previous 90Sr transport model developed by Bugai et al. (2012) did not take into account the effect of water table fluctuations highlighted by Van Meir et al. (2007) which may cause some discrepancies between model predictions and field observations. They are thus reproduced on a 1D vertical non saturated model. The equiprobable radionuclide localization maps produced by the geostatistical simulations are selected to illustrate different heterogeneities in the radionuclide inventory and are implemented in the 1D model. The obtained activity fluxes from all the 1D vertical models are then injected in a 3D

  9. Changes in the world rivers' discharge projected from an updated high resolution dataset of current and future climate zones

    Science.gov (United States)

    Santini, Monia; di Paola, Arianna

    2015-12-01

    In this paper, an updated global map of the current climate zoning and of its projections, according to the Köppen-Geiger classification, is first provided. The map at high horizontal resolution (0.5° × 0.5°), representative of the current (i.e. 1961-2005) conditions, is based on the Climate Research Unit dataset holding gridded series of historical observed temperature and precipitation, while projected conditions rely on the simulated series, for the same variables, by the General Circulation Model CMCC-CM. Modeled variables were corrected for their bias and then projections of climate zoning were generated for the medium term (2006-2050) and long term (2056-2100) future periods, under RCP 4.5 and RCP 8.5 emission scenarios. Results show that Equatorial and Arid climates will spread at the expenses of Snow and Polar climates, with the Warm Temperate experiencing more moderate increase. Maps of climate zones are valuable for a wide range of studies on climate change and its impacts, especially those regarding the water cycle that is strongly regulated by the combined conditions of precipitation and temperature. As example of large scale hydrological applications, in this work we tested and implemented a spatial statistical procedure, the geographically weighted regression among climate zones' surface and mean annual discharge (MAD) at hydrographic basin level, to quantify likely changes in MAD for the main world rivers monitored through the Global Runoff Data Center database. The selected river basins are representative of more than half of both global superficial freshwater resources and world's land area. Globally, a decrease in MAD is projected both in the medium term and long term, while spatial differences highlight how some areas require efforts to avoid consequences of amplified water scarcity, while other areas call for strategies to take the opportunity from the expected increase in water availability. Also the fluctuations of trends between the

  10. Contribution of groundwater to the discharge and quality of surface flow: example of the Garonne river upstream of its confluence with the Tarn river

    International Nuclear Information System (INIS)

    Danneville, L.

    1998-01-01

    Very few studies have been made of the contribution of groundwater to the discharge and quality of surface flow at regional scale, such as that of the catchment area of the Garonne river upstream of its confluence with the Tarn river (15.000 km 2 ). Three main types of groundwater reservoir exist in the area: karstic aquifers, alluvial aquifers, and colluvial and local aquifers that are still poorly understood. The contribution from the karstic aquifers to surface flow varies seasonally depending on the nature, hydraulic behaviour and elevation of the karst. Minor exchange occurs between the alluvial aquifers and rivers, mainly during flooding. The Garonne river, which has an average flow of 199 m 3 /s, is mainly replenished by the Salat and Ariege tributaries, regardless of the season. Study of the low-water stage using Maillet's formula has given a good estimate of the groundwater storage of certain tributaries, and the role played by the groundwater is demonstrated by correlation and spectrum analysis of discharge time series. For example, during 1985, the main storage was shown to be in the river basins of Ariege (142 million m 3 ), Salat (111 million m 3 ) and Ger (21 million m 3 ). The Ger, which is the smallest tributary, has the highest specific storage (224 I/m 2 ) and presents an important buffer effect related to numerous karstic springs. The total groundwater storage of the entire recharge area is estimated at 2.1-2.9 billion m 3 for 1993. It is the largest water storage of the basin, greater than the snow cover (371 million m 3 ) and the artificial storage for electric power plants, discharge buffering and irrigation. The groundwater contribution to the total flow of the Garonne river at the Portet gauging station has been estimated at 46-60% of total discharge in 1993 by extrapolating the low-water stage from the residual hydrograph (hydrograph without the influence of dam reservoirs and snow cover), Direct runoff is estimated at 34-48% and the snow

  11. Impact of wastewater treatment plant discharge of lidocaine, tramadol, venlafaxine and their metabolites on the quality of surface waters and groundwater.

    Science.gov (United States)

    Rúa-Gómez, Paola C; Püttmann, Wilhelm

    2012-05-01

    The presence of the anesthetic lidocaine (LDC), the analgesic tramadol (TRA), the antidepressant venlafaxine (VEN) and the metabolites O-desmethyltramadol (ODT) and O-desmethylvenlafaxine (ODV) was investigated in wastewater treatment plant (WWTP) effluents, in surface waters and in groundwater. The analytes were detected in all effluent samples and in only 64% of the surface water samples. The mean concentrations of the analytes in effluent samples from WWTPs with wastewater from only households and hospitals were 107 (LDC), 757 (TRA), 122 (ODT), 160 (VEN) and 637 ng L(-1) (ODV), while the mean concentrations in effluents from WWTPs treating additionally wastewater from pharmaceutical industries as indirect dischargers were for some pharmaceuticals clearly higher. WWTP effluents were identified as important sources of the analyzed pharmaceuticals and their metabolites in surface waters. The concentrations of the compounds found in surface waters ranged from Infiltration of the target analytes into groundwater was not observed.

  12. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    previous hypothesis that regional groundwater flow from the piedmont groundwater recharge zone predominantly discharges at the coastline may therefore be false. A more reliable alternative might be to conceptualize deep groundwater below the coastal plains a hydrodynamically stagnant zone, responding gradually to landscape and hydrological change on geologic timescales. This study brings a new and original understanding of the groundwater flow system in an important regional basin, in the context of its geometry and evolution over geological timescales. There are important implications for the sustainability of the ongoing high rates of groundwater extraction in the NCB.

  13. Groundwater Potential

    African Journals Online (AJOL)

    big timmy

    4Department of Geology, Ekiti State University, Ado-Ekiti, Nigeria. Corresponding ... integrated for the classification of the study area into different groundwater potential zones. .... table is mainly controlled by subsurface movement of water into ...

  14. Impacts and Policy Implications of Metals Effluent Discharge into Rivers within Industrial Zones: A Sub-Saharan Perspective from Ethiopia

    Science.gov (United States)

    Zinabu, E.; Kelderman, P.; van der Kwast, J.; Irvine, K.

    2018-04-01

    Kombolcha, a city in Ethiopia, exemplifies the challenges and problems of the sub-Saharan countries where industrialization is growing fast but monitoring resources are poor and information on pollution unknown. This study monitored metals Cr, Cu, Zn, and Pb concentrations in five factories' effluents, and in the effluent mixing zones of two rivers receiving discharges during the rainy seasons of 2013 and 2014. The results indicate that median concentrations of Cr in the tannery effluents and Zn in the steel processing effluents were as high as 26,600 and 155,750 µg/L, respectively, much exceeding both the USEPA and Ethiopian emission guidelines. Cu concentrations were low in all effluents. Pb concentrations were high in the tannery effluent, but did not exceed emission guidelines. As expected, no metal emission guidelines were exceeded for the brewery, textile and meat processing effluents. Median Cr and Zn concentrations in the Leyole river in the effluent mixing zones downstream of the tannery and steel processing plant increased by factors of 52 (2660 compared with 51 µg Cr/L) and 5 (520 compared with 110 µg Zn/L), respectively, compared with stations further upstream. This poses substantial ecological risks downstream. Comparison with emission guidelines indicates poor environmental management by industries and regulating institutions. Despite appropriate legislation, no clear measures have yet been taken to control industrial discharges, with apparent mismatch between environmental enforcement and investment policies. Effluent management, treatment technologies and operational capacity of environmental institutions were identified as key improvement areas to adopt progressive sustainable development.

  15. The use of unsaturated zone solutes and deuterium profiles in the study of groundwater recharge in the semi-arid zone of Nigeria

    International Nuclear Information System (INIS)

    Goni, I.B.; Edmunds, W.M.

    2001-01-01

    Two unsaturated zone profiles (MF and MG) in NE Nigeria have been sampled for inert tracers (Cl, Br, NO 3 and δ 2 H to investigate recharge rates and processes. The upper MF and MG profiles have sandy lithology, lower moisture content ( 2 H around -30 per mille. All these indicate that present day recharge is taking place. The lower section of the MF profile shows a distinct contrast with high moisture content (up to 27%), very high chloride (average 2892 mg/L) and relatively enriched deuterium (-12 per mille), indicating the effect of evaporative enrichment. This lower section corresponds to low permeability lacustrine deposits probably representing the former bed of Lake Chad where little or no infiltration has been occurring since the mid-Holocene when the lake extended over this area. The sand-covered areas of the Sahel of the NE Nigeria provide an important phreatic aquifer. An estimation of the amount of recharge using the unsaturated zone chloride mass balance gives significant rates of 14 mm/a and 22 mm/a for the upper MF and MG profiles respectively. These rates mainly span the period of the recent Sahel drought and even higher recharge rates may occur during wetter periods. These rates fall within the 14 mm/a to 53 mm/a range estimated for the Manga Grasslands area in the NE Nigeria obtained in an earlier study. From the water resource point of view, the region has potential for perennially-recharged groundwater resources that can sustain the present abstraction level which is mainly via dug wells. (author)

  16. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil).

    Science.gov (United States)

    Roth, F; Lessa, G C; Wild, C; Kikuchi, R K P; Naumann, M S

    2016-05-15

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ(13)Corg and δ(15)N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    Energy Technology Data Exchange (ETDEWEB)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M. [and others

    1996-12-31

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.

  18. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    International Nuclear Information System (INIS)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M.

    1996-01-01

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data

  19. Development of an autonomous device for long-term monitoring of radon in water as a tracer for submarine groundwater discharge

    International Nuclear Information System (INIS)

    Kamenik, Jan; Dulaiova, Henrieta; Babinec, James; Jolly, James; Williamson, Mario

    2015-01-01

    An autonomous SGD Sniffer was developed for long-term submarine groundwater discharge (SGD) monitoring. The device is equipped with a scintillation detector NaI(Tl) with a multichannel analyzer. The measurement is controlled by an embedded PC. The device is powered by batteries charged from photovoltaic panels and can be used in a remote area without any additional power source. The device detects gamma-lines from 214 Bi, a grand-grand daughter of 222 Rn. The gamma spectra are saved as text files and contain also basic diagnostic parameters for the analyzer and batteries. A script for batch processing of the spectra was developed for peak area determination. (author)

  20. Quantification of submarine groundwater discharge and its short-term dynamics by linking time-variant end-member mixing analysis and isotope mass balancing (222-Rn)

    Science.gov (United States)

    Petermann, Eric; Knöller, Kay; Stollberg, Reiner; Scholten, Jan; Rocha, Carlos; Weiß, Holger; Schubert, Michael

    2017-04-01

    Submarine groundwater discharge (SGD) plays a crucial role for the water quality of coastal waters due to associated fluxes of nutrients, organic compounds and/or heavy-metals. Thus, the quantification of SGD is essential for evaluating the vulnerability of coastal water bodies with regard to groundwater pollution as well as for understanding the matter cycles of the connected water bodies. Here, we present a scientific approach for quantifying discharge of fresh groundwater (GWf) and recirculated seawater (SWrec), including its short-term temporal dynamics, into the tide-affected Knysna estuary, South Africa. For a time-variant end-member mixing analysis we conducted time-series observations of radon (222Rn) and salinity within the estuary over two tidal cycles in combination with estimates of the related end-members for seawater, river water, GWf and SWrec. The mixing analysis was treated as constrained optimization problem for finding an end-member mixing ratio that simultaneously fits the observed data for radon and salinity best for every time-step. Uncertainty of each mixing ratio was quantified by Monte Carlo simulations of the optimization procedure considering uncertainty in end-member characterization. Results reveal the highest GWf and SWrec fraction in the estuary during peak low tide with averages of 0.8 % and 1.4 %, respectively. Further, we calculated a radon mass balance that revealed a daily radon flux of 4.8 * 108 Bq into the estuary equivalent to a GWf discharge of 29.000 m3/d (9.000-59.000 m3/d for 25th-75th percentile range) and a SWrec discharge of 80.000 m3/d (45.000-130.000 m3/d for 25th-75th percentile range). The uncertainty of SGD reflects the end-member uncertainty, i.e. the spatial heterogeneity of groundwater composition. The presented approach allows the calculation of mixing ratios of multiple uncertain end-members for time-series measurements of multiple parameters. Linking these results with a tracer mass balance allows conversion

  1. Locating Shallow Groundwater Discharge to Streams Near Concentrated Animal Feeding Operations Using Aerial Infrared Thermography: A Novel Potential Pollution Detection Method

    Science.gov (United States)

    Mapes, K. L.; Pricope, N. G.

    2017-12-01

    The Cape Fear River Basin (CFRB) has some of the highest densities of concentrated animal feeding operations (CAFO) in the United States (factoryfarmmap.org) and was recently named one of the country's most endangered rivers (americanrivers.org). There is high potential for CAFO land use to degrade stream water quality by introducing pollutants, primarily nitrates and fecal coliform, into sub-surface and surface waters. The regionally high water table in the Lower CFRB increases the risk of water quality degradation due to increased connectivity of ground- and surface water. The Lower CFRB is periodically subjected to frequent or intense hurricanes, which have been shown to exacerbate water quality issues associated with CAFOs. Additionally, the growing population in this region is placing more pressure on an already taxed water source and will continue to rely on the Cape Fear River for drinking water and wastewater discharge. While there are documented occurrences of groundwater contamination from CAFOs, we still have little understanding on how and where pollution may be entering streams by shallow sub-surface discharge. Shallow groundwater discharge to streams is becoming easier to detect using thermal infrared imaging cameras onboard unmanned aerial systems. The temperature differences between groundwater and stream water are easily distinguished in the resulting images. While this technology cannot directly measure water quality, it can locate areas of shallow groundwater discharge that can later be tested for pollutants using conventional methods. We will utilize a thermal infrared camera onboard a SenseFly eBee Plus to determine the feasibility of using this technology on a larger scale within the Lower CFRB as an inexpensive means of identifying sites of potential pollution input. Aerial surveys will be conducted in two sub-watersheds: one containing swine CAFO and a control that lacks swine CAFO. Information from this study can be integrated into

  2. Simulating the effects of a beaver dam on regional groundwater flow through a wetland

    OpenAIRE

    Kathleen Feiner; Christopher S. Lowry

    2015-01-01

    Study Focus: This research examines a wetland environment before and after the construction of a beaver dam to determine the hydrologic impacts on regional groundwater flow and quantify changes to the capture zone of a wetland pond. Increased hydraulic head behind a newly built beaver dam can cause shifts in the capture zone of a wetland pond. Changes in groundwater flux, and the extent of both the capture and discharge zones of this wetland were examined with the use of a groundwater flow mo...

  3. Uranium-isotope variations in groundwaters of the Floridan aquifer and boulder zone of South Florida

    International Nuclear Information System (INIS)

    Cowart, J.B.; Osmond, J.K.

    1978-01-01

    Water samples from four wells from the main Floridan aquifer (300-400 m below mean sea level) in southeast Florida exhibit 234 U/ 238 U activity ratios that are significantly lower than the secular equilibrium value of 1.00. Such anomalous values have been observed previously only in waters from sedimentary aquifers in the near-surface oxidizing environments. These four wells differ from six others, all producing from the same general horizon, in being located in cavernous highly transmissive zones

  4. Relating runoff generation mechanisms to concentration-discharge relationships in catchments with well-characterized Critical Zone structures and hydrologic dynamics

    Science.gov (United States)

    Hahm, W. J.; Wang, J.; Druhan, J. L.; Rempe, D.; Dietrich, W. E.

    2017-12-01

    Stream solute concentration-discharge (C-Q) relationships integrate catchment-scale hydrologic and geochemical processes, potentially yielding valuable information about runoff generation and weathering mechanisms. However, recent compilations have established that chemostasis—the condition where solute concentrations are invariant across large ranges of runoff—is observed in watersheds of diverse lithology, climate, and topography, suggesting an equifinality of the C-Q relationship independent of hydrologic process. Here we explore C-Q signals in contrasting catchments of the Eel River Critical Zone (CZ) Observatory in the Northern California Coast Ranges, where, unlike most watersheds where chemostasis has been observed, hillslope hydrologic processes are well characterized via years of intensive hydrologic monitoring. Our two catchments in the Franciscan Complex have radically different runoff generation mechanisms arising from differences in CZ structure: at Elder Creek (Coastal Belt), rain passes vertically as unsaturated flow through soil, saprolite, and a thick weathered rock zone before perching as groundwater on fresh bedrock and flowing laterally through fractures to generate streamflow, resulting in nearly chemostatic major cation behavior (power law C-Q slopes (B) ≈ 0 to -0.1). At Dry Creek (Central Belt), the thin (2 to 3 m) hydrologically active CZ completely saturates in most storm events, generating saturation overland flow across the landscape. New data from Dry Creek reveal log-log C-Q relationships for major cations that exhibit negative curvature, indicating a trend towards increasing dilution at higher flow rates and a possible C-Q signature of overland flow. High geomorphic channel drainage density (16.9 km/km2) results in short flow paths and, presumably, short water hillslope residence times at high runoff when overland flow dominates (> 50 mm d-1). Surprisingly, even at these high runoff rates, pure dilution does not occur (high

  5. Hydrogeophysical imaging of deposit heterogeneity and groundwater chemistry changes during DNAPL source zone bioremediation.

    Science.gov (United States)

    Chambers, J E; Wilkinson, P B; Wealthall, G P; Loke, M H; Dearden, R; Wilson, R; Allen, D; Ogilvy, R D

    2010-10-21

    Robust characterization and monitoring of dense nonaqueous phase liquid (DNAPL) source zones is essential for designing effective remediation strategies, and for assessing the efficacy of treatment. In this study high-resolution cross-hole electrical resistivity tomography (ERT) was evaluated as a means of monitoring a field-scale in-situ bioremediation experiment, in which emulsified vegetable oil (EVO) electron donor was injected into a trichloroethene source zone. Baseline ERT scans delineated the geometry of the interface between the contaminated alluvial aquifer and the underlying mudstone bedrock, and also the extent of drilling-induced physical heterogeneity. Time-lapse ERT images revealed major preferential flow pathways in the source and plume zones, which were corroborated by multiple lines of evidence, including geochemical monitoring and hydraulic testing using high density multilevel sampler arrays within the geophysical imaging planes. These pathways were shown to control the spatial distribution of the injected EVO, and a bicarbonate buffer introduced into the cell for pH control. Resistivity signatures were observed within the preferential flow pathways that were consistent with elevated chloride levels, providing tentative evidence from ERT of the biodegradation of chlorinated solvents. Copyright © 2010 S. Yamamoto. Published by Elsevier B.V. All rights reserved.

  6. Highly zone-dependent synthesis of different carbon nanostructures using plasma-enhanced arc discharge technique

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajesh, E-mail: rajeshbhu1@gmail.com [Yonsei University, Department of Materials Science & Engineering (Korea, Republic of); Singh, Rajesh Kumar, E-mail: rksbhu@gmail.com [Banaras Hindu University, Department of Applied Physics, Indian Institute of Technology (India); Dubey, Pawan Kumar [University of Allahabad, Nanotechnology Application Centre (India); Yadav, Ram Manohar [Rice University, Department of Materials Science and Nano Engineering (United States); Singh, Dinesh Pratap [Universidad de Santiago de Chile, Departamento de Física (Chile); Tiwari, R. S.; Srivastava, O. N. [Banaras Hindu University, Department of Physics (India)

    2015-01-15

    Three kinds of carbon nanostructures, i.e., graphene nanoflakes (GNFs), multi walled carbon nanotubes (MWCNTs), and spherical carbon nanoparticles (SCNPs) were comparatively investigated in one run experiment. These carbon nanostructures are located at specific location inside the direct current plasma-assisted arc discharge chamber. These carbon nanomaterials have been successfully synthesized using graphite as arcing electrodes at 400 torr in helium (He) atmosphere. The SCNPs were found in the deposits formed on the cathode holder, in which highly curled graphitic structure are found in majority. The diameter varies from 20 to 60 nm and it also appears that these particles are self-assembled to each other. The MWCNTs with the diameter of 10–30 nm were obtained which were present inside the swelling portion of cathode deposited. These MWCNTs have 14–18 graphitic layers with 3.59 Å interlayer spacing. The GNFs have average lateral sizes of 1–5 μm and few of them are stacked layers and shows crumpled like structure. The GNFs are more stable at low temperature (low mass loss) but SCNPs have low mass loss at high temperature.

  7. Preliminary Analysis of the Role of Wetlands and Rivers in the Groundwater Discharge of the Guarani Aquifer System in NE Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Vives, L., E-mail: lvives@faa.unicen.edu.ar [Instituto de Hidrologia de Llanuras, Universidad Nacional del Centro de la Provincia de Buenos Aires, Azul (Argentina); Rodriguez, L. [Centro de Estudios Hidroambientales, Facultad de Ingenieria y Ciencias Hidricas, Universidad Nacional del Litoral, Santa Fe (Argentina); Manzano, M. [Escuela de Ingenieria de Caminos y de Minas, Universidad Politecnica de Cartagena, Cartagena (Spain); Valladares, A. [Subsecretaria de Recursos Hidricos (Argentina); Aggarwal, P. K.; Araguas Araguas, L. [International Atomic Energy Angency, Vienna (Austria)

    2013-07-15

    The Guarani Aquifer System (GAS) is the largest aquifer in South America. Previous regional hydrochemical and isotopic studies suggested that discharge may occur at wetlands and reaches of the Parana and Uruguay Rivers. Preliminary findings of a project aimed at verifying the discharge hypothesis on the southern GAS region are presented. The hydrochemical- isotopic composition of 17 samples from surface and groundwater in that area were analysed. Some waters showed chemical facies and isotopic (stable isotope and carbon-14) signatures similar to the formerly identified as GAS+pre-GAS formations. Admixtures between modern and GAS+pre-GAS waters were found at depths between less than 100 m and 200 m. A 96 m deep well located near the Ibera lagoon showed chemical and isotopic composition indicating presence of GAS waters. The hydraulic gradient favours upward flow near the wetlands, but surface waters seem to originate from local recharge. Investigations continue, incorporating {sup 222}Rn and new sampling sites. (author)

  8. Application of Distributed Temperature Sensing for coupled mapping of sedimentation processes and spatio-temporal variability of groundwater discharge in soft-bedded streams

    DEFF Research Database (Denmark)

    Sebok, Eva; Duque, C; Engesgaard, Peter

    2015-01-01

    , maximum and mean streambed temperatures as well as the daily amplitude and standard deviation of temperatures. The identified potential high-discharge areas were mostly located near the channel banks, also showing temporal variability because of the scouring and redistribution of streambed sediments......The delineation of groundwater discharge areas based on Distributed Temperature Sensing (DTS) data of the streambed can be difficult in soft-bedded streams where sedimentation and scouring processes constantly change the position of the fibre optic cable relative to the streambed. Deposition...... variability in streambed temperatures between October 2011 and January 2012. Detailed monthly streambed elevation surveys were carried out to monitor the position of the fibre optic cable relative to the streambed and to quantify the effect of sedimentation processes on streambed temperatures. Based...

  9. Effects of Low-Permeability Layers in the Hyporheic Zone on Oxygen Consumption Under Losing and Gaining Groundwater Flow Conditions

    Science.gov (United States)

    Arnon, S.; Krause, S.; Gomez-Velez, J. D.; De Falco, N.

    2017-12-01

    Recent studies at the watershed scale have demonstrated the dominant role that river bedforms play in driving hyporheic exchange and constraining biogeochemical processes along river corridors. At the reach and bedform scales, modeling studies have shown that sediment heterogeneity significantly modifies hyporheic flow patterns within bedforms, resulting in spatially heterogeneous biogeochemical processes. In this work, we summarize a series of flume experiments to evaluate the effect that low-permeability layers, representative of structural heterogeneity, have on hyporheic exchange and oxygen consumption in sandy streambeds. In this case, we systematically changed the geometry of the heterogeneities, the surface channel flow driving the exchange, and groundwater fluxes (gaining/losing) modulating the exchange. The flume was packed with natural sediments, which were amended with compost to minimize carbon limitations. Structural heterogeneities were represented by continuous and discontinuous layers of clay material. Flow patterns were studied using dye imaging through the side walls. Oxygen distribution in the streambed was measured using planar optodes. The experimental observations revealed that the clay layer had a significant effect on flow patterns and oxygen distribution in the streambed under neutral and losing conditions. Under gaining conditions, the aerobic zone was limited to the upper sections of the bedform and thus was less influenced by the clay layers that were located at a depth of 1-3 cm below the water-sediment interface. We are currently analyzing the results with a numerical flow and transport model to quantify the reactions rates under the different flow conditions and spatial sediment structures. Our preliminary results enable us to show the importance of the coupling between flow conditions, local heterogeneity within the streambed and oxygen consumption along bed forms and are expected to improve our ability to model the effect of stream-groundwater

  10. Prevalence of pathogenic bacteria in surface and groundwater of urban and rural zones of El-Gaza generative, Egypt

    International Nuclear Information System (INIS)

    Abo-State, M.A.M.; El-Khatat, A.M.R.; El-Shahat, M.F.

    2005-01-01

    Thirty three water and soil samples, from the urban and rural zones of El-Giza, Egypt, were used to evaluate the microbiological quality of soil, surface and groundwater samples. Total aerobic bacterial count of groundwater ranged from 2 x10 4 to 1. 2 x 10 7 CFU/ml, which were B. cereus (1 x10 2 - 1 x10 4 CFU/ml), Enterobacteriacea (1 x 10 2 - 2 x 10 6 CFU/ml), E.Coli (0 - 9 x 10 4 CFU/ml), Pseudomonas (9 x 10 2 - 3 x 10 6 CFU/ml), total Staph. (0 - 5.6 x 10 3 CFU/ml) and Staph. aureus (0 - 5 x10 3 CFU/ml). Meanwhile, surface water contained total aerobic bacterial count in the range of 1 x 10 5 -9 x 10 6 CFU/ml, which where l x10 2 - 4 x 10 3 CFU/ml B. cereus, 3.9 x 10''3 -1.6 x 10 6 CFU/ml Enterobacteriacea, 1 x 10 2 - 2.9 x 10 4 CFU/ml Ent. faecalis, 5 x 10 2 - 1.1 x 10 5 CFU/ml E. coli, 4.9 x 10 4 - 1.1 x 10 4 CFU/ml Pseudomonas, 3 x 10 2 - 4 x 10 4 CFU/ml total Staph. and 1 x 10 -1 x 10 4 CFU/ml Staph. aureus. Salmonella was detected in almost all surface water samples except in one sample. No Ent. faecalis, total Staph. and Staph. aureus or Salmonella had been detected in soil samples except in one sample, which recorded 4 x10 3 CFU/ml Ent. faecalis. Inactivation of pathogenic bacteria by heat treatment revealed that heating of water for 5 minutes at 100 degree C (boiling) got rid completely of pathogens except the spore forming Bacilli which still persisted

  11. Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems

    Science.gov (United States)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2018-01-01

    Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.

  12. Groundwater flow, nutrient, and stable isotope dynamics in the parafluvial-hyporheic zone of the regulated Lower Colorado River (Texas, USA) over the course of a small flood

    Science.gov (United States)

    Briody, Alyse C.; Cardenas, M. Bayani; Shuai, Pin; Knappett, Peter S. K.; Bennett, Philip C.

    2016-06-01

    Periodic releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River near Austin, Texas, USA. These daily pulses modulate fluid exchange and residence times in the hyporheic zone where biogeochemical reactions are typically pronounced. The effects of a small flood pulse under low-flow conditions on surface-water/groundwater exchange and biogeochemical processes were studied by monitoring and sampling from two dense transects of wells perpendicular to the river. The first transect recorded water levels and the second transect was used for water sample collection at three depths. Samples were collected from 12 wells every 2 h over a 24-h period which had a 16-cm flood pulse. Analyses included nutrients, carbon, major ions, and stable isotopes of water. The relatively small flood pulse did not cause significant mixing in the parafluvial zone. Under these conditions, the river and groundwater were decoupled, showed potentially minimal mixing at the interface, and did not exhibit any discernible denitrification of river-borne nitrate. The chemical patterns observed in the parafluvial zone can be explained by evaporation of groundwater with little mixing with river water. Thus, large pulses may be necessary in order for substantial hyporheic mixing and exchange to occur. The large regulated river under a low-flow and small flood pulse regime functioned mainly as a gaining river with little hydrologic connectivity beyond a narrow hyporheic zone.

  13. Regional and Detailed Survey for Radon Activities in Soil-Gas and Groundwater in the Okchon Zone, Korea

    Science.gov (United States)

    Je, H.-K.; Chon, H.-T.

    2012-04-01

    The Okchon zone in Korea provides a typical example of natural geological materials enriched in potentially toxic elements including uranium which is parent nuclide for radon gas. For the purpose of radon radioactivity risk assessment, making the map of radon risk grade from Okchon zone, regional and detailed field surveys were carried out during 3 years. The study area is located in the central part of Korea, called the Okchon zone (about 5,100 km2), which occur in a 80km wide, northeast-trending belt that extends across the Korean Peninsula. The Okchon zone is underlain by metasedimentary rocks of unknown age that are composed mainly of black slate, phyllite, shale, and limestone. The three research areas (defined as Boeun, Chungju, and Nonsan) for detailed survey were selected from the results of regional survey. Results of detailed radon survey indicated a wide range of radon activities for soil-gases (148-1,843 pCi/L) and ground waters (23-5,540 pCi/L). About 15 percent of soil-gas samples exceeded 1,000 pCi/L and 84 percent of ground water samples exceeded the MCL (maximum contaminant level) of drinking water, 300 pCi/L, which proposed by U.S. Environmental Protection Agency in 1999. For detailed survey, radon activities of soil-gas and ground water were classified as bedrock geology, based on 1/50,000 geological map and field research. For soil-gas measurements, mean values of radon activity from black slate-shale (789 pCi/L) were highest among the other base rocks. And for groundwater measurements, mean value of radon activities were decreased in the order of granite (1,345 pCi/L) > black shale-slate (915 pCi/L) > metasediments (617 pCi/L). Result of indoor radon measurement from detailed survey areas showed that about 50% of houses exceeded the indoor guideline, 4 pCi/L. For the radon risk assessment in indoor environment showed that probability of lung cancer risk from the houses located on the granite base rock (3.0×10-2) was highest among the other

  14. An Isotopic view of water and nitrogen transport through the vadose zone in Oregon's southern Willamette Valley's Groundwater Management Area

    Science.gov (United States)

    Background/Question/MethodsGroundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nit...

  15. Ra Tracer-Based Study of Submarine Groundwater Discharge and Associated Nutrient Fluxes into the Bohai Sea, China: A Highly Human-Affected Marginal Sea

    Science.gov (United States)

    Liu, Jianan; Du, Jinzhou; Yi, Lixin

    2017-11-01

    Nutrient concentrations in coastal bays and estuaries are strongly influenced by not only riverine input but also submarine groundwater discharge (SGD). Here we estimate the SGD and the fluxes of the associated dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicon (DSi) into the Bohai Sea based on a 226Ra and 228Ra mass balance model. This procedure shows that in the Bohai Sea the average radium activities (dpm 100 L-1) are 42.8 ± 6.3 (226Ra) and 212 ± 41.7 (228Ra) for the surface water and 43.0 ± 6.1 (226Ra) and 216 ± 38.4 (228Ra) for the near-bottom water. According to the 228Ra/226Ra age model, the residence time in the Bohai Sea is calculated to be 1.7 ± 0.8 yrs. The mass balance of 226Ra and 228Ra suggests that the yearly SGD flux into the whole Bohai Sea is (2.0 ± 1.3) × 1011 m3 yr-1, of which the percentage of submarine fresh groundwater discharge (SFGD) to the total SGD is approximately (5.1 ± 4.1)%. However, the DIN and DSi fluxes from SFGD constitute 29% and 10%, respectively, of the total fluxes from the SGD. Moreover, nutrient loads, which exhibit high DIN/DIP from SGD, especially the SFGD, may substantially contribute to the nutrient supplies, resulting in the occurrence of red tide in the Bohai Sea.

  16. Salinization of the soil solution decreases the further accumulation of salt in the root zone of the halophyte Atriplex nummularia Lindl. growing above shallow saline groundwater.

    Science.gov (United States)

    Alharby, Hesham F; Colmer, Timothy D; Barrett-Lennard, Edward G

    2018-01-01

    Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na + and Cl - around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand-clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na + and Cl - concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P soil solution therefore had a feedback effect on further salinization within the root zone. © 2017 John Wiley & Sons Ltd.

  17. Bioassessment of the Effluents Discharged from Two Export Oriented Industrial Zones Located in Kelani River Basin, Sri Lanka Using Erythrocytic Responses of the Fish, Nile Tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Hemachandra, C K; Pathiratne, A

    2017-10-01

    Complex effluents originating from diverse industrial processes in industrial zones could pose cytotoxic/genotoxic hazards to biota in the receiving ecosystems which cannot be revealed by conventional monitoring methods. This study assessed potential cytotoxicity/genotoxicity of treated effluents of two industrial zones which are discharged into Kelani river, Sri Lanka combining erythrocytic abnormality tests and comet assay of the tropical model fish, Nile tilapia. Exposure of fish to the effluents induced erythrocytic DNA damage and deformed erythrocytes with serrated membranes, vacuolations, nuclear buds and micronuclei showing cytotoxic/genotoxic hazards in all cases. Occasional exceedance of industrial effluent discharge regulatory limits was noted for color and lead which may have contributed to the observed cytotoxicity/genotoxicity of effluents. The results demonstrate that fish erythrocytic responses could be used as effective bioanalytical tools for cytotoxic/genotoxic hazard assessments of complex effluents of industrial zones for optimization of the waste treatment process in order to reduce biological impacts.

  18. Coupling End-Member Mixing Analysis and Isotope Mass Balancing (222-Rn) for Differentiation of Fresh and Recirculated Submarine Groundwater Discharge Into Knysna Estuary, South Africa

    Science.gov (United States)

    Petermann, E.; Knöller, K.; Rocha, C.; Scholten, J.; Stollberg, R.; Weiß, H.; Schubert, M.

    2018-02-01

    Quantification of submarine groundwater discharge (SGD) is essential for evaluating the vulnerability of coastal water bodies to groundwater pollution and for understanding water body material cycles response due to potential discharge of nutrients, organic compounds, or heavy metals. Here we present an environmental tracer-based methodology for quantifying SGD into Knysna Estuary, South Africa. Both components of SGD, (1) fresh, terrestrial (FSGD) and (2) saline, recirculated (RSGD), were differentiated. We conducted an end-member mixing analysis for radon (222Rn) and salinity time series of estuary water over two tidal cycles to determine fractions of seawater, riverwater, FSGD, and RSGD. The mixing analysis was treated as a constrained optimization problem for finding the end-member mixing ratio that is producing the best fit to observations at every time step. Results revealed highest FSGD and RSGD fractions in the estuary during peak low tide. Over a 24 h time series, the portions of FSGD and RSGD in the estuary water were 0.2% and 0.8% near the estuary mouth and the FSGD/RSGD ratio was 1:3.3. We determined a median FSGD of 41,000 m³ d-1 (1.4 m³ d-1 per m shoreline) and a median RSGD of 135,000 m³ d-1 (4.5 m³ d-1 per m shoreline) which suggests that SGD exceeds river discharge by a factor of 1.0-2.1. By comparison to other sources, this implies that SGD is responsible for 28-73% of total DIN fluxes into Knysna Estuary.

  19. Radioactive waste isolation in arid zones

    International Nuclear Information System (INIS)

    Nativ, R.

    1991-01-01

    Arid zones are currently considered ideal sites for the isolation of radioactive and other hazardous wastes. Because arid zones have low precipitation, other hydrological features such as minimal surface water, low recharge rates, small hydraulic gradients, deep water table and lower water quality are also inferred. These premises have proved to be misleading in many circumstances, resulting in groundwater contamination by radionuclides. Case studies indicating surface water damages, occurrence of active recharge, groundwater flow and considerable discharge of potable water in arid and hyper-arid terrains, as well as the possibility of future climatic changes, require careful hydrological assessment of proposed sites in arid areas. (author)

  20. Integrating hydrogeophysics and hydrological tracers to characterise the spatial structure of groundwater storage in the critical zone of montane environments

    Science.gov (United States)

    Dick, J.; Tetzlaff, D.; Bradford, J.; Soulsby, C.

    2015-12-01

    It is increasingly recognised that groundwater (GW) in montane watersheds has a major influence on the distribution of vegetation communities and ecosystem function, as well as sustaining downstream river flows. In glaciated landscapes, complex and heterogenous drift deposits can have a dominant influence on GW stores and fluxes, and form a poorly understood component of the critical zone. Given the logistical problems and limitations of drilling observation wells in such terrain, hydrogeophysics has outstanding potential to help characterise aquifer structure and understand shallow GW in the critical zone of montane environments. We present the results of electrical resistivity tomography (ERT) surveys in an intensively monitored 3.2km2 watershed in the Scottish Highlands with a strong glacial past. We sought to characterise the structure and spatial organisation of GW stores in diverse quaternary drift deposits. This utilized distributed ERT transects that provided a basis for spatial interpolation using geostatistical methods and high resolution LiDAR surveys. Some transects coincided with shallow observation wells that were used to "ground-truth" the inversion of resistivity data. The surveys showed that the drifts covered around 70% of the catchment and varied from 5m deep on the hillslopes to 40m in the valleys. The water table was within 0.2m of the soil surface in the valley bottom areas and about 1.5m deep on steeper hillslopes. The water content of drifts inferred by the ERT surveys and characterisation of the aquifer properties showed highest water content in the peat (~80%) and basal till (20-30%), and low storage in moraine deposits (10%). Upscaling these estimates of inferred storage to the catchment scale indicated around ~2-3 m of GW storage, equivalent to around 4-6 years of effective precipitation. This generally compared well with independent storage estimates inferred from long-term stable isotope time series collected from the aquifers

  1. Effects of recharge and discharge on delta2H and delta18O composition and chloride concentration of high arsenic/fluoride groundwater from the Datong Basin, northern China.

    Science.gov (United States)

    Xie, Xianjun; Wang, Yanxin; Su, Chunli; Duan, Mengyu

    2013-02-01

    To better understand the effects of recharge and discharge on the hydrogeochemistry of high levels of arsenic (As) and fluoride (F) in groundwater, environmental isotopic composition (delta2H and delta18O) and chloride (Cl) concentrations were analyzed in 29 groundwater samples collected from the Datong Basin. High arsenic groundwater samples (As > 50 micog/L) were found to be enriched in lighter isotopic composition that ranged from -92 to -78 per thousand for deuterium (delta2H) and from -12.5 to -9.9 per thousand for oxygen-18 (delta18O). High F-containing groundwater (F > 1 mg/L) was relatively enriched in heavier isotopic composition and varied from -90 to -57 per thousand and from -12.2 to -6.7 per thousand for delta2H and delta18O, respectively. High chloride concentrations and delta18O values were primarily measured in groundwater samples from the northern and southwestern portions of the study area, indicating the effect of evaporation on groundwater. The observation of relatively homogenized and low delta18O values and chloride concentrations in groundwater samples from central part of the Datong Basin might be a result of fast recharge by irrigation returns, which suggests that irrigation using arsenic-contaminated groundwater affected the occurrence of high arsenic-containing groundwater in the basin.

  2. Effects of changes in pumping on regional groundwater-flow paths, 2005 and 2010, and areas contributing recharge to discharging wells, 1990–2010, in the vicinity of North Penn Area 7 Superfund site, Montgomery County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    2017-06-06

    A previously developed regional groundwater flow model was used to simulate the effects of changes in pumping rates on groundwater-flow paths and extent of recharge discharging to wells for a contaminated fractured bedrock aquifer in southeastern Pennsylvania. Groundwater in the vicinity of the North Penn Area 7 Superfund site, Montgomery County, Pennsylvania, was found to be contaminated with organic compounds, such as trichloroethylene (TCE), in 1979. At the time contamination was discovered, groundwater from the underlying fractured bedrock (shale) aquifer was the main source of supply for public drinking water and industrial use. As part of technical support to the U.S. Environmental Protection Agency (EPA) during the Remedial Investigation of the North Penn Area 7 Superfund site from 2000 to 2005, the U.S. Geological Survey (USGS) developed a model of regional groundwater flow to describe changes in groundwater flow and contaminant directions as a result of changes in pumping. Subsequently, large decreases in TCE concentrations (as much as 400 micrograms per liter) were measured in groundwater samples collected by the EPA from selected wells in 2010 compared to 2005‒06 concentrations.To provide insight on the fate of potentially contaminated groundwater during the period of generally decreasing pumping rates from 1990 to 2010, steady-state simulations were run using the previously developed groundwater-flow model for two conditions prior to extensive remediation, 1990 and 2000, two conditions subsequent to some remediation 2005 and 2010, and a No Pumping case, representing pre-development or cessation of pumping conditions. The model was used to (1) quantify the amount of recharge, including potentially contaminated recharge from sources near the land surface, that discharged to wells or streams and (2) delineate the areas contributing recharge that discharged to wells or streams for the five conditions.In all simulations, groundwater divides differed from

  3. Nutrients fluxes from groundwater discharge into Mangueira Lagoon (Rio Grande do Sul, Brazil); Fluxos de nutrientes associados as descargas de agua subterranea para a Lagoa Mangueira (Rio Grande do Sul, Brasil)

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Carlos F.F.; Niencheski, Luis F.H.; Attisano, Karina K.; Milani, Marcio R., E-mail: pgofcfa@furg.br [Instituto de Oceanografia, Universidade Federal do Rio Grande, Campus Carreiros, Rio Grande, RS (Brazil); Santos, Isaac R. [Department of Oceanography, Florida State University, Tallahassee, FL (United States); Milani, Idel C. [Departamento de Engenharia Hidrica, Centro de Desenvolvimento Tecnologico, Universidade Federal de Pelotas, Campus Porto, Pelotas, RS (Brazil)

    2012-07-01

    This study assesses the importance of groundwater discharge to dissolved nutrient levels in Mangueira Lagoon. A transect of an irrigation canal in the margin of Lagoon demonstrated a strong geochemical gradient due to high groundwater inputs in this area. Using {sup 222}Rn as a quantitative groundwater tracer, we observed that the flux of dissolved inorganic nitrogen (DIN), silicate and phosphate (1178 and 1977; 26190 and 35652; 167 and 188 mol d{sup -1} for winter and summer, respectively) can continually supply/sustain primary production. The irrigation canals act as an artificial underground tributary and represent a new source of nutrients to coastal lagoons. (author)

  4. SWB Groundwater Recharge Analysis, Catalina Island, California: Assessing Spatial and Temporal Recharge Patterns Within a Mediterranean Climate Zone

    Science.gov (United States)

    Harlow, J.

    2017-12-01

    Groundwater recharge quantification is a key parameter for sustainable groundwater management. Many recharge quantification techniques have been devised, each with advantages and disadvantages. A free, GIS based recharge quantification tool - the Soil Water Balance (SWB) model - was developed by the USGS to produce fine-tuned recharge constraints in watersheds and illuminate spatial and temporal dynamics of recharge. The subject of this research is to examine SWB within a Mediterranean climate zone, focusing on the Catalina Island, California. This project relied on publicly available online resources with the exception the geospatial processing software, ArcGIS. Daily climate station precipitation and temperature data was obtained from the Desert Research Institute for the years 2008-2014. Precipitation interpolations were performed with ArcGIS using the Natural Neighbor method. The USGS-National Map Viewer (NMV) website provided a 30-meter DEM - to interpolate high and low temperature ASCII grids using the Temperature Lapse Rate (TLR) method, to construct a D-8 flow direction grid for downhill redirection of soil-moisture saturated runoff toward non-saturated cells, and for aesthetic map creation. NMV also provided a modified Anderson land cover classification raster. The US Department of Agriculture-National Resource Conservation Service (NRCS) Web Soil Survey website provided shapefiles of soil water capacity and hydrologic soil groups. The Hargreaves and Samani method was implemented to determine evapotranspiration rates. The resulting SWB output data, in the form of ASCII grids are easily added to ArcGIS for quick visualization and data analysis (Figure 1). Calculated average recharge for 2008-2014 was 3537 inches/year, or 0.0174 acre feet/year. Recharge was 10.2% of the islands gross precipitation. The spatial distribution of the most significant recharge is in hotspots which dominate the residential hills above Avalon, followed by grassy/unvegetated areas

  5. Regional Survey of Structural Properties and Cementation Patterns of Fault Zones in the Northern Part of the Albuquerque Basin, New Mexico - Implications for Ground-Water Flow

    Science.gov (United States)

    Minor, Scott A.; Hudson, Mark R.

    2006-01-01

    Motivated by the need to document and evaluate the types and variability of fault zone properties that potentially affect aquifer systems in basins of the middle Rio Grande rift, we systematically characterized structural and cementation properties of exposed fault zones at 176 sites in the northern Albuquerque Basin. A statistical analysis of measurements and observations evaluated four aspects of the fault zones: (1) attitude and displacement, (2) cement, (3) lithology of the host rock or sediment, and (4) character and width of distinctive structural architectural components at the outcrop scale. Three structural architectural components of the fault zones were observed: (1) outer damage zones related to fault growth; these zones typically contain deformation bands, shear fractures, and open extensional fractures, which strike subparallel to the fault and may promote ground-water flow along the fault zone; (2) inner mixed zones composed of variably entrained, disrupted, and dismembered blocks of host sediment; and (3) central fault cores that accommodate most shear strain and in which persistent low- permeability clay-rich rocks likely impede the flow of water across the fault. The lithology of the host rock or sediment influences the structure of the fault zone and the width of its components. Different grain-size distributions and degrees of induration of the host materials produce differences in material strength that lead to variations in width, degree, and style of fracturing and other fault-related deformation. In addition, lithology of the host sediment appears to strongly control the distribution of cement in fault zones. Most faults strike north to north-northeast and dip 55? - 77? east or west, toward the basin center. Most faults exhibit normal slip, and many of these faults have been reactivated by normal-oblique and strike slip. Although measured fault displacements have a broad range, from 0.9 to 4,000 m, most are internal structure of, and cement

  6. Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India

    Science.gov (United States)

    Thapa, Raju; Gupta, Srimanta; Gupta, Arindam; Reddy, D. V.; Kaur, Harjeet

    2018-05-01

    Dwarka River basin in Birbhum, West Bengal (India), is an agriculture-dominated area where groundwater plays a crucial role. The basin experiences seasonal water stress conditions with a scarcity of surface water. In the presented study, delineation of groundwater potential zones (GWPZs) is carried out using a geospatial multi-influencing factor technique. Geology, geomorphology, soil type, land use/land cover, rainfall, lineament and fault density, drainage density, slope, and elevation of the study area were considered for the delineation of GWPZs in the study area. About 9.3, 71.9 and 18.8% of the study area falls within good, moderate and poor groundwater potential zones, respectively. The potential groundwater yield data corroborate the outcome of the model, with maximum yield in the older floodplain and minimum yield in the hard-rock terrains in the western and south-western regions. Validation of the GWPZs using the yield of 148 wells shows very high accuracy of the model prediction, i.e., 89.1% on superimposition and 85.1 and 81.3% on success and prediction rates, respectively. Measurement of the seasonal water-table fluctuation with a multiplicative model of time series for predicting the short-term trend of the water table, followed by chi-square analysis between the predicted and observed water-table depth, indicates a trend of falling groundwater levels, with a 5% level of significance and a p-value of 0.233. The rainfall pattern for the last 3 years of the study shows a moderately positive correlation ( R 2 = 0.308) with the average water-table depth in the study area.

  7. Inferring Groundwater Age in an Alluvial Aquifer from Tracer Concentrations in the Stream - Little Wind River, Wyoming

    Science.gov (United States)

    Goble, D.; Gardner, W. P.; Naftz, D. L.; Solder, J. E.

    2017-12-01

    We use environmental tracers: CFC's, SF6, and 222Rn measured in stream water to determine volume and mean age of groundwater discharging to the Little Wind River, near Riverton, Wyoming. Samples of 222Rn were collected every 200 m along a 2 km reach, surrounding a known groundwater discharge zone. Nearby groundwater wells, in-stream piezometers and seepage meters were sampled for 222Rn, CFC's and SF6. Tracer concentrations measured in groundwater and in-stream piezometers were used to estimate the mean age of the subsurface system. High resolution 222Rn samples were used to determine the location and volume of groundwater inflow using a model of instream transport that includes radioactive decay and gas exchange with the atmosphere. The age of groundwater entering the stream was then estimated from in-stream measured CFC and SF6 concentrations using a new coupled stream transport and lumped-parameter groundwater age model. Ages derived from in-stream measurements were then compared to the age of subsurface water measured in piezometers, seepage meters, and groundwater wells. We then asses the ability of groundwater age inferred from in-stream samples to provide constraint on the age of the subsurface discharge to the stream. The ability to asses groundwater age from in-stream samples can provide a convenient method to constrain the regional distribution of groundwater circulation rates when groundwater sampling is challenging or wells are not in place.

  8. The effect of Littorella uniflora on nutrients in a groundwater fed lake

    DEFF Research Database (Denmark)

    Ommen, Daniela Oliveira; Vinther, Hanne Fogh; Krüger, Laila

    into the lake; and a smaller recharge zone where water from the lake flows back into the aquifer. This variable groundwater pattern combined with only minor surface inlets and outlets provides good conditions for studying the interactions between groundwater and Littorella uniflora. Preliminary results from......Lake Hampen is a Lobelia lake situated high up in the Jutland ridge and which lies close to the groundwater boundary. This means that the groundwater flow between the aquifer and the lake is not constant. Lake Hampen has a large discharge zone where the groundwater flows from the aquifer......,49 to 0,88mg NO3-N L-1 in the recharge zone. There are also indications that the plants have the capability to effectively reduce high nitrate concentrations within the rhizosphere (reduction of 30 to 0,1mg NO3-N L-1 was observed)....

  9. Integration of GIS, Electromagnetic and Electrical Methods in the Delimitation of Groundwater Polluted by Effluent Discharge (Salamanca, Spain: A Case Study

    Directory of Open Access Journals (Sweden)

    Rubén Vidal Montes

    2017-11-01

    Full Text Available The present work envisages the possible geometry of a contaminated plume of groundwater near hospital facilities by combining GIS (Geographic Information System and geophysical methods. The rock underlying the soil and thin sedimentary cover of the study area is moderately fractured quartzite, which makes aquifers vulnerable to pollution. The GIS methodology is used to calculate the area that would be affected by the effluent source of residual water, based on algorithms that consider ground surface mapping (slopes, orientations, accumulated costs and cost per distance. Geophysical methods (electromagnetic induction and electric resistivity tomography use changes in the electrical conductivity or resistivity of the subsurface to determine the geometry of the discharge and the degree of contamination. The model presented would allow a preliminary investigation regarding potential corrective measures.

  10. Integration of GIS, Electromagnetic and Electrical Methods in the Delimitation of Groundwater Polluted by Effluent Discharge (Salamanca, Spain): A Case Study.

    Science.gov (United States)

    Montes, Rubén Vidal; Martínez-Graña, Antonio Miguel; Martínez Catalán, José Ramón; Arribas, Puy Ayarza; Sánchez San Román, Francisco Javier; Zazo, Caridad

    2017-11-10

    The present work envisages the possible geometry of a contaminated plume of groundwater near hospital facilities by combining GIS (Geographic Information System) and geophysical methods. The rock underlying the soil and thin sedimentary cover of the study area is moderately fractured quartzite, which makes aquifers vulnerable to pollution. The GIS methodology is used to calculate the area that would be affected by the effluent source of residual water, based on algorithms that consider ground surface mapping (slopes, orientations, accumulated costs and cost per distance). Geophysical methods (electromagnetic induction and electric resistivity tomography) use changes in the electrical conductivity or resistivity of the subsurface to determine the geometry of the discharge and the degree of contamination. The model presented would allow a preliminary investigation regarding potential corrective measures.

  11. Measurements of HFC-134a and HCFC-22 in groundwater and unsaturated-zone air: implications for HFCs and HCFCs as dating tracers

    Science.gov (United States)

    Haase, Karl B.; Busenberg, Eurybiades; Plummer, Niel; Casile, Gerolamo; Sanford, Ward E.

    2014-01-01

    A new analytical method using gas chromatography with an atomic emission detector (GC–AED) was developed for measurement of ambient concentrations of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) in soil, air, and groundwater, with the goal of determining their utility as groundwater age tracers. The analytical detection limits of HCFC-22 (difluorochloromethane, CHClF2) and HFC-134a (1,2,2,2-tetrafluoroethane, C2H2F4) in 1 L groundwater samples are 4.3 × 10− 1 and 2.1 × 10− 1 pmol kg− 1, respectively, corresponding to equilibrium gas-phase mixing ratios of approximately 5–6 parts per trillion by volume (pptv). Under optimal conditions, post-1960 (HCFC-22) and post-1995 (HFC-134a) recharge could be identified using these tracers in stable, unmixed groundwater samples. Ambient concentrations of HCFC-22 and HFC-134a were measured in 50 groundwater samples from 27 locations in northern and western parts of Virginia, Tennessee, and North Carolina (USA), and 3 unsaturated-zone profiles were collected in northern Virginia. Mixing ratios of both HCFC-22 and HFC-134a decrease with depth in unsaturated-zone gas profiles with an accompanying increase in CO2 and loss of O2. Apparently, ambient concentrations of HCFC-22 and HFC-134a are readily consumed by methanotrophic bacteria under aerobic conditions in the unsaturated zone. The results of this study indicate that soils are a sink for these two greenhouse gases. These observations contradict the previously reported results from microcosm experiments that found that degradation was limited above-ambient HFC-134a. The groundwater HFC and HCFC concentrations were compared with concentrations of chlorofluorocarbons (CFCs, CFC-11, CFC-12, CFC-113) and sulfur hexafluoride (SF6). Nearly all samples had measured HCFC-22 or HFC-134a that were below concentrations predicted by the CFCs and SF6, with many samples showing a complete loss of HCFC-22 and HFC-134a. This study indicates that HCFC-22 and HFC-134

  12. On the use of mean groundwater age, life expectancy and capture probability for defining aquifer vulnerability and time-of-travel zones for source water protection.

    Science.gov (United States)

    Molson, J W; Frind, E O

    2012-01-01

    Protection and sustainability of water supply wells requires the assessment of vulnerability to contamination and the delineation of well capture zones. Capture zones, or more generally, time-of-travel zones corresponding to specific contaminant travel times, are most commonly delineated using advective particle tracking. More recently, the capture probability approach has been used in which a probability of capture of P=1 is assigned to the well and the growth of a probability-of-capture plume is tracked backward in time using an advective-dispersive transport model. This approach accounts for uncertainty due to local-scale heterogeneities through the use of macrodispersion. In this paper, we develop an alternative approach to capture zone delineation by applying the concept of mean life expectancy E (time remaining before being captured by the well), and we show how life expectancy E is related to capture probability P. Either approach can be used to delineate time-of-travel zones corresponding to specific travel times, as well as the ultimate capture zone. The related concept of mean groundwater age A (time since recharge) can also be applied in the context of defining the vulnerability of a pumped aquifer. In the same way as capture probability, mean life expectancy and groundwater age account for local-scale uncertainty or unresolved heterogeneities through macrodispersion, which standard particle tracking neglects. The approach is tested on 2D and 3D idealized systems, as well as on several watershed-scale well fields within the Regional Municipality of Waterloo, Ontario, Canada. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon

    Science.gov (United States)

    Meredith, K. T.; Han, L. F.; Hollins, S. E.; Cendón, D. I.; Jacobsen, G. E.; Baker, A.

    2016-09-01

    Estimating groundwater age is important for any groundwater resource assessment and radiocarbon (14C) dating of dissolved inorganic carbon (DIC) can provide this information. In semi-arid zone (i.e. water-limited environments), there are a multitude of reasons why 14C dating of groundwater and traditional correction models may not be directly transferable. Some include; (1) the complex hydrological responses of these systems that lead to a mixture of different ages in the aquifer(s), (2) the varied sources, origins and ages of organic matter in the unsaturated zone and (3) high evaporation rates. These all influence the evolution of DIC and are not easily accounted for in traditional correction models. In this study, we determined carbon isotope data for; DIC in water, carbonate minerals in the sediments, sediment organic matter, soil gas CO2 from the unsaturated zone, and vegetation samples. The samples were collected after an extended drought, and again after a flood event, to capture the evolution of DIC after varying hydrological regimes. A graphical method (Han et al., 2012) was applied for interpretation of the carbon geochemical and isotopic data. Simple forward mass-balance modelling was carried out on key geochemical processes involving carbon and agreed well with observed data. High values of DIC and δ13CDIC, and low 14CDIC could not be explained by a simple carbonate mineral-CO2 gas dissolution process. Instead it is suggested that during extended drought, water-sediment interaction leads to ion exchange processes within the top ∼10-20 m of the aquifer which promotes greater calcite dissolution in saline groundwater. This process was found to contribute more than half of the DIC, which is from a mostly 'dead' carbon source. DIC is also influenced by carbon exchange between DIC in water and carbonate minerals found in the top 2 m of the unsaturated zone. This process occurs because of repeated dissolution/precipitation of carbonate that is dependent on

  14. Identification of groundwater potential zones in the Machuca River in the Central Pacific of Costa Rica using a GIS-Multi-criteria analysis

    Science.gov (United States)

    Bonilla, J. P.; Stefan, C.

    2015-12-01

    Water supply systems in the Machuca River basin in the Central Pacific of Costa Rica are subject to fluctuations in their production capacity at the end of the dry season; especially in the lower part of the basin. The urban development - and water demand -- is expected to increase because of a newly build highway. In order to understand the actual water resources and to asses new ones, the identification of groundwater potential zones is done using a geographical information system (GIS) based on thematic raster using fixed score and weight computed by the multi influencing factor (MIF) technique. The thematic layers used in the analysis are lithology, slope, land-use, lineament, drainage, soil and rainfall. The results were compared with the results of the Modified Thornthwaite-Mather model used to perform the water balance on a monthly scale. The groundwater potential was divided into three categories: no suitable, suitable, and very suitable zones. The resulting map is a decision support tool for the planning and management of groundwater resources in the Machuca River basin.

  15. Compilation of data to estimate groundwater migration potential for constituents in active liquid discharges at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Ames, L.L.; Serne, R.J.

    1991-03-01

    A preliminary characterization of the constituents present in the 33 liquid waste streams at the US Department of Energy's Hanford Site has been completed by Westinghouse Hanford Company. In addition, Westinghouse Hanford has summarized the soil characteristics based on drill logs collected at each site that receives these liquid wastes. Literature searches were conducted and available Hanford-specific data were tabulated and reviewed. General literature on organic chemicals present in the liquid waste streams was also reviewed. Using all of this information, Pacific Northwest Laboratory has developed a best estimate of the transport characteristics (water solubility and soil adsorption properties) for those radionuclides and inorganic and organic chemicals identified in the various waste streams. We assume that the potential for transport is qualified through the four geochemical parameters: solubility, distribution coefficient, persistence (radiogenic or biochemical half-life), and volatility. Summary tables of these parameters are presented for more than 50 inorganic and radioactive species and more than 50 organic compounds identified in the liquid waste streams. Brief descriptions of the chemical characteristics of Hanford sediments, solubility, and adsorption processes, and of how geochemical parameters are used to estimate migration in groundwater-sediment environments are also presented. Groundwater monitoring data are tabulated for wells neighboring the facilities that receive the liquid wastes. 91 refs., 16 figs., 23 tabs.

  16. Compilation of data to estimate groundwater migration potential for constituents in active liquid discharges at the Hanford Site

    International Nuclear Information System (INIS)

    Ames, L.L.; Serne, R.J.

    1991-03-01

    A preliminary characterization of the constituents present in the 33 liquid waste streams at the US Department of Energy's Hanford Site has been completed by Westinghouse Hanford Company. In addition, Westinghouse Hanford has summarized the soil characteristics based on drill logs collected at each site that receives these liquid wastes. Literature searches were conducted and available Hanford-specific data were tabulated and reviewed. General literature on organic chemicals present in the liquid waste streams was also reviewed. Using all of this information, Pacific Northwest Laboratory has developed a best estimate of the transport characteristics (water solubility and soil adsorption properties) for those radionuclides and inorganic and organic chemicals identified in the various waste streams. We assume that the potential for transport is qualified through the four geochemical parameters: solubility, distribution coefficient, persistence (radiogenic or biochemical half-life), and volatility. Summary tables of these parameters are presented for more than 50 inorganic and radioactive species and more than 50 organic compounds identified in the liquid waste streams. Brief descriptions of the chemical characteristics of Hanford sediments, solubility, and adsorption processes, and of how geochemical parameters are used to estimate migration in groundwater-sediment environments are also presented. Groundwater monitoring data are tabulated for wells neighboring the facilities that receive the liquid wastes. 91 refs., 16 figs., 23 tabs

  17. Integration of Remote Sensing and other public GIS data source to identify suitable zones for groundwater exploitation by manual drilling

    Science.gov (United States)

    Fussi, Fabio; Fava, Francesco; Di Mauro, Biagio; Bonomi, Tullia; Fumagalli, Letizia; DI Leo, Margherita; Hamidou Kane, Cheik; Faye, Gayane; Niang, Magatte; Wade, Souleye; Hamidou, Barry; Colombo, Roberto

    2015-04-01

    digital elevation models available (ASTER GDEM and SRTM). These variables have been combined using multivariate statistical methods (e.g. regression and classification trees) in order to study their relationship with hydrogeological parameters of shallow layers (namely thickness of porous aquifer, hydraulic conductivity and depth of water table) and estimate the suitability for manual drilling. Direct hydrogeological data in selected points obtained from semiautomatic analysis of stratigraphic borehole logs have been used in the definition and validation of the model. The results obtained demonstrate the potential of the proposed methodological approach to improve the estimation of manual drilling suitability using public data, widely available worldwide. Therefore, it has considerable potential to be replicated in other countries with limited costs. Furthermore, the maps of suitable zones for manual drilling produced in this research can help the promotion of this technique in Senegal and Guinea by different national and international organizations involved in water supply programs. This research is part of a larger project financed by NERC (National Environment Research Council, UK) in the framework of the program UPGRO (Unlocking the Potential of Groundwater for the Poors), with the collaboration of different partners from Italy, Senegal and Guinea.

  18. Relations between total phosphorus and orthophosphorus concentrations and rainfall, surface-water discharge, and groundwater levels in Big Cypress Seminole Indian Reservation, Florida, 2014–16

    Science.gov (United States)

    McBride, W. Scott; Sifuentes, Dorothy F.

    2018-02-06

    The Seminole Tribe of Florida (the Tribe) is partnering with the U.S. Environmental Protection Agency to develop a numeric phosphorus criterion for the 52,000-acre Big Cypress Seminole Indian Reservation (BCSIR), which is located downgradient of the Everglades Agricultural Area, and of other public and private lands, in southeastern Hendry County and northwestern Broward County in southern Florida. The U.S. Geological Survey (USGS), in cooperation with the Tribe, used water-quality data collected between October 2014 and September 2016 by the Tribe and the South Florida Water Management District (SFWMD), along with data from rainfall gages, surface-water stage and discharge gages, and groundwater monitoring wells, to (1) examine the relations between local hydrology and measured total phosphorus (TP) and orthophosphorus (OP) concentrations and (2) identify explanatory variables for TP concentrations. Of particular concern were conditions when TP exceeded 10 parts per billion (ppb) (0.01 milligram per liter [mg/L]) given that the State of Florida and the Miccosukee Tribe of Indians Alligator Alley Reservation (located downstream of the BCSIR) have adopted a 10-ppb maximum TP criterion for surface waters.From October 2014 to September 2016, the Tribe collected 47–52 samples at each of nine water-quality sites for analysis of TP and OP, except at one site where 28 samples were collected. For all sites sampled, concentrations of TP (as phosphorus [P]) ranged from less than 0.002 mg/L (2 ppb) to a maximum of nearly 0.50 mg/L (500 ppb), whereas concentrations of OP (as P), the reactive form of inorganic phosphorus readily absorbed by plants and (or) abiotically absorbed, ranged from less than 0.003 mg/L (3 ppb) to a maximum of 0.24 mg/L (240 ppb). The median and interquartile ranges of concentrations of TP and OP in the samples collected in 2014–16 by the Tribe were similar to the median and interquartile ranges of concentrations in samples collected by the SFWMD at

  19. ZONASI POTENSI PENCEMARAN AIR TANAH PADA TERAS SUNGAI CODE YOGYAKARTA (Zoning The Potential Groundwater Pollution at Code River Terrace, Yogyakarta

    Directory of Open Access Journals (Sweden)

    Frista Yorhanita

    2001-08-01

    Full Text Available ABSTRAK Tujuan penelitian ini ialah untuk membuktikan bahwa biomassa Fusarium sp dapat mereduksi Cr(VI, dan biomassa Aspergillus niger dapat digunakan untuk mengambil ion krom dari larutan. Fusarium.sp ditumbuhkan pada media cair kentang dekftosa cair, ditambah K2Cr2O7 atau sludge limbah penyamakan kulit. Selanjutnya diamati perubahan warnanya, bila terjadi perubahan warna dan oranye ke ungu atau tak berwarna maka telah terjadi reduksi krom valensi VI menjadi krom valensi Ill. Aspergillus niger ditumbuhkan pada media Potato dectrose agar (PDA padat, dipindahkan ke media cair yang bensi bakto pepton, bakto dektrose dan srukronutrien. Produksi biomassa dilakukan pada labu erlenmeyer; setelah 5 hari dipanen dan dibuat bubuk. Bubuk ini digunakan untuk mengambil krom dari larutan. Hasil penelitian menunjukkan bahwa biomassa Fusarium sp dapat digunakan untuk mengambil krom dan larutan yang.mengandung KrCrrO, atau sludge limbah penyamakan kulit. Waktu inkubasi yang lebih lama meningkatkan absorbsi krom oleh biomassa Fascrium sp. Fusarium sp mampu mereduksi Cr(VI menjadi Cr(Iii. Biomassa Aspergillus niger dapat digunakan untuk mengambil krom dari larutan. Hasil terbaik diperoleh pada konsentrasi awal 100 mg/I, pada pH 2,0, berat biomassa 0,1 g, dan waktu kontak 12 jam, yaitu 96,23% untuk Cr(II| dan96,3 % untuk Cr(VI. Fusarium sp. dan A. niger dapat digunakan sebagai bioremediator dalam penanganan limbah penyamakan kulit secara biologi.   ABSTRACT The study area of this research was parts of the code river terraces, Yogyakarta. The aims of this research were as follows: (1 to determine the part of the code river terrace which has potential groundwater pollution; (2 to assess the natural physical factors (aquifer materials, depth of groundwater table, and the groundwater flow distance and the non-natural physical factors of environmental sanitation (houses density, population density, horizontal distance between pollution source and well, and the number

  20. Influence of the tension-saturated zone on contaminant migration in shallow water-table regimes

    International Nuclear Information System (INIS)

    Gillham, R.W.

    1982-01-01

    Groundwater discharge represents a major pathway for the return to the biosphere of contaminants that are released to the subsurface environment. An understanding of the transport processes in groundwater discharge zones is therefore an important consideration in pathway analyses associated with the environmental assessment of proposed waste-management facilities. Shallow water tables are a common characteristic of groundwater discharge zones, particularly in humid climatic regions. In this paper, the results of field tests, laboratory tests and numerical simulations are used to show that under shallow water-table conditions, the zone of tension saturation can result in a rapid and highly disproportionate water-table response to precipitation. It is further shown that this response can result in complex migration patterns that would not be predicted by the classical approaches to solute transport modelling and that the response could result in large and highly transient inputs to surface water

  1. Impact of urbanization on hydrochemical evolution of groundwater and on unsaturated-zone gas composition in the coastal city of Tel Aviv, Israel

    Science.gov (United States)

    Zilberbrand, M.; Rosenthal, E.; Shachnai, E.

    2001-08-01

    The coastal city of Tel Aviv was founded at the beginning of the 20th century. The number of its inhabitants and its water consumption increased rapidly. This study analyses a 15-year record (1934-1948) of pre-industrial development of groundwater chemistry in the urban area. Archive data on concentrations of major ions, dissolved gases (CO 2 and O 2), organic matter, and pH were available for each half-year during the period of 1934-1948. The major factors causing changes in the chemistry of groundwater flowing in three sandy sub-aquifers have been seawater encroachment due to overpumping, and infiltration of effluents from pit-latrine collectors. Influence of these factors decreases with depth. Landward-penetrating seawater passed through clayey coastal sediments, interbedded among sands and calcareous sandstones, and spread into the Kurkar Group aquifer. This has led to exchange of sodium (dominant in seawater) with calcium adsorbed on clay particles, enriching groundwater with calcium. Intensity of cation exchange decreases inland and with depth. Infiltration of pit-latrine effluents has introduced large amounts of ammonium into the unsaturated zone. Its rapid oxidation in unsaturated sediments has caused massive nitrate production, accompanied by pore-water acidification. This process induces dissolution of vadose carbonate, resulting in enrichment of groundwater recharge in calcium. Anthropogenically induced dissolution of calcite in the unsaturated zone has been the major factor for the increase of Ca 2+ concentration in groundwater, accounting for about 80% of this increase. In the interface zone, an additional 20% of calcium has been supplied by cation exchange. Owing to pH increase caused by denitrification in the aquifer, Ca 2+-rich waters supersaturated with calcite could be formed, especially in the capillary fringe of the uppermost sub-aquifer, which could induce calcite precipitation and ultimately lead to the cementation of sandy aquifers. Urban

  2. Application of isotopes to the assessment of pollutant behaviour in the unsaturated zone for groundwater protection. Final report of a coordinated research project 2004-2005

    International Nuclear Information System (INIS)

    2009-05-01

    A coordinated research project (CRP) was conducted by the IAEA with the purpose of studying what isotopic and other ancillary data are required to help understand migration of potential contaminants through the unsaturated zone (UZ) into the underlying groundwater. To this end, research projects were conducted in ten countries to study recharge and infiltration processes, as well as contaminant migration in a wide variety of UZ environments. This publication contains the reports of these ten projects and a summary of the accomplishments of the individual projects. The IAEA-TECDOC reviews the usefulness and current status of application of the combined use of isotope and other hydrogeochemical tools for the assessment of flow and transport processes in the UZ. A number of isotope and hydrochemical tools have been used to simultaneously study groundwater recharge and transport of pollutants in the UZ. This information is relevant for assessing the vulnerability of groundwater to contamination. The ten projects covered climates ranging from humid to arid, and water table depths from the near surface to over 600 m. The studies included measuring movement of water, solutes, and gases through the UZ using an assortment of isotope and geochemical tracers and approaches. Contaminant issues have been studied at most of the ten sites and the UZ was found to be very effective in protecting groundwater from most heavy metal contaminants. The publication is expected to be of interest to hydrologists, hydrogeologists and soil scientists dealing with pollution aspects and protection of groundwater resources, as well as counterparts of TC projects in Member States

  3. Abacus to determine soils salinity in presence of saline groundwater in arid zones case of the region of Ouargla

    Science.gov (United States)

    Fergougui, Myriam Marie El; Benyamina, Hind; Boutoutaou, Djamel

    2018-05-01

    In order to remedy the limit of salt intake to the soil surface, it is necessary to study the causes of the soil salinity and find the origin of these salts. The arid areas in the region of Ouargla lie on excessively mineralized groundwater whose level is near the soil surface (0 - 1.5 m). The topography and absence of a reliable drainage system led to the rise of the groundwater beside the arid climatic conditions contributed to the salinization and hydromorphy of the soils. The progress and stabilization of cultures yields in these areas can only occur if the groundwater is maintained (drained) to a depth of 1.6 m. The results of works done to the determination of soil salinity depend mainly on the groundwater's salinity, its depth and the climate.

  4. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2009–11

    Science.gov (United States)

    Davis, Linda C.; Bartholomay, Roy C.; Rattray, Gordon W.

    2013-01-01

    Since 1952, wastewater discharged to infiltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer, multilevel monitoring system (MLMS), and perched groundwater wells in the USGS groundwater monitoring networks during 2009–11. Water in the ESRP aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March–May 2009 to March–May 2011, water levels in wells generally declined in the northern part of the INL. Water levels generally rose in the central and eastern parts of the INL. Detectable concentrations of radiochemical constituents in water samples from aquifer wells or MLMS equipped wells in the ESRP aquifer at the INL generally decreased or remained constant during 2009–11. Decreases in concentrations were attributed to radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In 2011, concentrations of tritium in groundwater from 50 of 127 aquifer wells were greater than or equal to the reporting level and ranged from 200±60 to 7,000±260 picocuries per liter. Tritium concentrations from one or more discrete zones from four wells equipped with MLMS were greater than or

  5. Simulations of groundwater flow and particle-tracking analysis in the zone of contribution to a public-supply well in San Antonio, Texas

    Science.gov (United States)

    Lindgren, Richard L.; Houston, Natalie A.; Musgrove, MaryLynn; Fahlquist, Lynne S.; Kauffman, Leon J.

    2011-01-01

    In 2006, a public-supply well in San Antonio, Texas, was selected for intensive study to assess the vulnerability of public-supply wells in the Edwards aquifer to contamination by a variety of compounds. A local-scale, steady-state, three-dimensional numerical groundwater-flow model was developed and used in this study to evaluate the movement of water and solutes from recharge areas to the selected public-supply well. Particle tracking was used to compute flow paths and advective traveltimes throughout the model area and to delineate the areas contributing recharge and zone of contribution for the selected public-supply well.

  6. Angina - discharge

    Science.gov (United States)

    Chest pain - discharge; Stable angina - discharge; Chronic angina - discharge; Variant angina - discharge; Angina pectoris - discharge; Accelerating angina - discharge; New-onset angina - discharge; Angina-unstable - discharge; ...

  7. Groundwater age determination using 85Kr and multiple age tracers (SF6, CFCs, and 3H to elucidate regional groundwater flow systems

    Directory of Open Access Journals (Sweden)

    Makoto Kagabu

    2017-08-01

    New hydrological insights for the region: The groundwater ages could not be estimated using CFCs or SF6, particularly in the urban areas because of artificial additions to the concentration over almost the entire study area. However, even in these regional circumstances, apparent ages of approximately 16, 36, and not less than 55 years were obtained for three locations on the A–A’ line (recharge area, discharge area, and stagnant zone of groundwater, respectively from 85Kr measurements. This trend was also supported by lumped parameter model analysis using a time series of 3H observations. In contrast, along the B–B’ line, the groundwater age of not less than 55 years at three locations, including the recharge to discharge area, where CFCs and SF6 were not detected, implies old groundwater: this is also the area in which denitrification occurs. In the C area, very young groundwater was obtained from shallow water and older groundwater was detected at greater depths, as supported by the long-term fluctuations of the NO3−–N concentration in the groundwater. The results of this study can be effectively used as a “time axis” for sustainable groundwater use and protection of groundwater quality in the study area, where groundwater accounts for almost 100% of the drinking water resources.

  8. Application of an eddy correlation system for the estimation of oxygen benthic fluxes in coastal permeable sediments impacted by submarine groundwater discharge

    Science.gov (United States)

    Donis, D.; Janssen, F.; Böttcher, M.; McGinnis, D.; Holtappels, M.; Wenzhöfer, F.

    2012-04-01

    Measurements of solute exchange across the sediment-water interface are crucial for marine environment monitoring. This interface has fundamental filter functions for the mass exchange between the seafloor and the water column. Being a non-invasive technique, the eddy correlation method, is probably the most accurate measurement for benthic fluxes. It does not interfere with local hydrodynamics and integrates over large areas, showing considerable advantages compared to traditional methods, i.e., microprofiles and benthic chambers. One of the most important exchange processes across the sediment-water interface is flux of oxygen, which is a predominant control factor for the biogeochemical activity in the sediment, carbon processing and the composition of benthic communities. The eddy correlation method performs simultaneous recordings of vertical velocities and oxygen concentrations at a specific distance to the seafloor and is becoming a standard method for resolving dissolved oxygen fluxes in aquatic systems. However, data treatment and interpretation, especially in shallow environments, is still challenging. One major concern in eddy correlation studies of coastal environments is how to consider surface wave motions that can dominate the turbulence range and that may bias flux calculations. A critical part of the data treatment thus is the removal of wave biases from the vertical velocity component, by separating the wave frequency oscillations (due to a tilted or miss-aligned sensor) from those containing meaningful flux contributions. Here we present in situ benthic oxygen exchange rates as determined by an eddy correlation system (ECS) and simultaneously deployed stirred benthic chambers. The study was carried out in a coastal ecosystem of the southern Baltic Sea that was impacted by low salinity groundwater discharge (Hel peninsula, Poland). Oxygen fluxes determined with ECS compared well with results from benthic chambers. Flux data and seepage rates are

  9. Numerical investigation on the implications of spring temperature and discharge rate with respect to the geothermal background in a fault zone

    Science.gov (United States)

    Jiang, Zhenjiao; Xu, Tianfu; Mariethoz, Gregoire

    2018-04-01

    Geothermal springs are some of the most obvious indicators of the existence of high-temperature geothermal resources in the subsurface. However, geothermal springs can also occur in areas of low average subsurface temperatures, which makes it difficult to assess exploitable zones. To address this problem, this study quantitatively analyzes the conditions associated with the formation of geothermal springs in fault zones, and numerically investigates the implications that outflow temperature and discharge rate from geothermal springs have on the geothermal background in the subsurface. It is concluded that the temperature of geothermal springs in fault zones is mainly controlled by the recharge rate from the country rock and the hydraulic conductivity in the fault damage zone. Importantly, the topography of the fault trace on the land surface plays an important role in determining the thermal temperature. In fault zones with a permeability higher than 1 mD and a lateral recharge rate from the country rock higher than 1 m3/day, convection plays a dominant role in the heat transport rather than thermal conduction. The geothermal springs do not necessarily occur in the place having an abnormal geothermal background (with the temperature at certain depth exceeding the temperature inferred by the global average continental geothermal gradient of 30 °C/km). Assuming a constant temperature (90 °C here, to represent a normal geothermal background in the subsurface at a depth of 3,000 m), the conditions required for the occurrence of geothermal springs were quantitatively determined.

  10. Environmental risk of climate change and groundwater abstraction on stream ecological conditions

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige; Bøgh, Eva; Jensen, Niels H.

    with DAISY, a one dimensional crop model describing soil water dynamics in the root zone, and MIKE SHE, a distributed groundwater-surface water model. The relative and combined impacts on low flows, groundwater levels, and nitrate leaching are quantified and compared to assess the water resource sensitivity...... and risk to stream ecological conditions. We find low flow and annual discharge to be most impacted by scenarios of climate change, with high variation across climate models (+/- 40% change). Doubling of current groundwater abstraction rates reduces annual discharge by approximately 20%, with higher...... flows and groundwater levels are of interest, as they relate to aquatic habitat and nitrate leaching, respectively. This study evaluates the risk to stream ecological conditions for a lowland Danish catchment under multiple scenarios of climate change and groundwater abstraction. Projections of future...

  11. Use of induced polarization to characterize the hydrogeologic framework of the zone of surface‐water/groundwater exchange at the Hanford 300 Area, WA

    Science.gov (United States)

    Slater, Lee; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Mwakanyamale, Kisa; Lane, John W.; Ward, Andy; Versteeg, Roelof J.

    2010-01-01

    An extensive continuous waterborne electrical imaging (CWEI) survey was conducted along the Columbia River corridor adjacent to the U.S. Department of Energy (DOE) Hanford 300 Area, WA, in order to improve the conceptual model for exchange between surface water and U‐contaminated groundwater. The primary objective was to determine spatial variability in the depth to the Hanford‐Ringold (H‐R) contact, an important lithologic boundary that limits vertical transport of groundwater along the river corridor. Resistivity and induced polarization (IP) measurements were performed along six survey lines parallel to the shore (each greater than 2.5 km in length), with a measurement recorded every 0.5–3.0 m depending on survey speed, resulting in approximately 65,000 measurements. The H‐R contact was clearly resolved in images of the normalized chargeability along the river corridor due to the large contrast in surface area (hence polarizability) of the granular material between the two lithologic units. Cross sections of the lithologic structure along the river corridor reveal a large variation in the thickness of the overlying Hanford unit (the aquifer through which contaminated groundwater discharges to the river) and clearly identify locations along the river corridor where the underlying Ringold unit is exposed to the riverbed. Knowing the distribution of the Hanford and Ringold units along the river corridor substantially improves the conceptual model for the hydrogeologic framework regulating U exchange between groundwater and Columbia River water relative to current models based on projections of data from boreholes on land into the river.

  12. 75 FR 53914 - Marine Sanitation Devices (MSDs): Proposed Regulation To Establish a No Discharge Zone (NDZ) for...

    Science.gov (United States)

    2010-09-02

    ... destination for tourists. Coastal tourism and recreation generate more than $10 billion per year in wages and... discharged instantaneously but at a moderate rate when the ship is en route and proceeding at a speed of at...

  13. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: A potential source of geogenic Cr(VI) to groundwater

    International Nuclear Information System (INIS)

    Mills, Christopher T.; Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J.

    2011-01-01

    g kg -1 , representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a very small fraction of the total solid phase Cr, they are a potentially important source for Cr(VI) to groundwater. Enhanced groundwater recharge through the vadose zone due to irrigation could carry Cr(VI) from the vadose zone to the groundwater and may be the mechanism responsible for the correlation observed between elevated Cr(VI) and NO 3 - concentrations in previously published data for valley groundwaters. Incubation of a valley subsoil showed a Cr(VI) production rate of 24 μg kg -1 a -1 suggesting that field Cr(VI) concentrations could be regenerated annually. Increased Cr(VI) production rates in H + -amended soil incubations indicate that soil acidification processes such as nitrification of ammonium in fertilizers could potentially increase the occurrence of geogenic Cr(VI) in groundwater. Thus, despite the natural origin of the Cr, Cr(VI) generation in the Sacramento Valley soils and sediments has the potential to be influenced by human activities.

  14. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: a potential source of geogenic Cr(VI) to groundwater

    Science.gov (United States)

    Mills, Christopher T.; Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J.

    2011-01-01

    Concentrations of geogenic Cr(VI) in groundwater that exceed the World Health Organization’s maximum contaminant level for drinking water (50 μg L−1) occur in several locations globally. The major mechanism for mobilization of this Cr(VI) at these sites is the weathering of Cr(III) from ultramafic rocks and its subsequent oxidation on Mn oxides. This process may be occurring in the southern Sacramento Valley of California where Cr(VI) concentrations in groundwater can approach or exceed 50 μg L−1. To characterize Cr geochemistry in the area, samples from several soil auger cores (approximately 4 m deep) and drill cores (approximately 25 m deep) were analyzed for total concentrations of 44 major, minor and trace elements, Cr associated with labile Mn and Fe oxides, and Cr(VI). Total concentrations of Cr in these samples ranged from 140 to 2220 mg per kg soil. Between 9 and 70 mg per kg soil was released by selective extractions that target Fe oxides, but essentially no Cr was associated with the abundant reactive Mn oxides (up to ~1000 mg hydroxylamine-reducible Mn per kg soil was present). Both borehole magnetic susceptibility surveys performed at some of the drill core sites and relative differences between Cr released in a 4-acid digestion versus total Cr (lithium metaborate fusion digestion) suggest that the majority of total Cr in the samples is present in refractory chromite minerals transported from ultramafic exposures in the Coast Range Mountains. Chromium(VI) in the samples studied ranged from 0 to 42 μg kg−1, representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a

  15. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: A potential source of geogenic Cr(VI) to groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Christopher T., E-mail: cmills@usgs.gov [United States Geological Survey, Crustal Geophysics and Geochemistry Science Center, Denver Federal Center, MS 964D, Denver, CO 80225 (United States); Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J. [United States Geological Survey, Crustal Geophysics and Geochemistry Science Center, Denver Federal Center, MS 964D, Denver, CO 80225 (United States)

    2011-08-15

    from 0 to 42 {mu}g kg{sup -1}, representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a very small fraction of the total solid phase Cr, they are a potentially important source for Cr(VI) to groundwater. Enhanced groundwater recharge through the vadose zone due to irrigation could carry Cr(VI) from the vadose zone to the groundwater and may be the mechanism responsible for the correlation observed between elevated Cr(VI) and NO{sub 3}{sup -} concentrations in previously published data for valley groundwaters. Incubation of a valley subsoil showed a Cr(VI) production rate of 24 {mu}g kg{sup -1} a{sup -1} suggesting that field Cr(VI) concentrations could be regenerated annually. Increased Cr(VI) production rates in H{sup +}-amended soil incubations indicate that soil acidification processes such as nitrification of ammonium in fertilizers could potentially increase the occurrence of geogenic Cr(VI) in groundwater. Thus, despite the natural origin of the Cr, Cr(VI) generation in the Sacramento Valley soils and sediments has the potential to be influenced by human activities.

  16. Small-scale spatial variability of phenoxy acid mineralization potentials in transition zones with a multidisciplinary approach

    DEFF Research Database (Denmark)

    Pazarbasi, Meric Batioglu

    The phenoxy acid group of herbicides is widely used to control broadleaf weeds, and it contaminates groundwater and surface water by leaching from agricultural soil or landfills. Due to the distinct vertical and horizontal gradients in nutrients and hydrologic exchange in transition zones...... in two transition zones, (1) the interfaces of unsaturated and saturated zones and (2) groundwater and surface water. Small-scale spatial variability of phenoxy acids was previously shown in topsoil; however, such small-scale studies are scarce in subsurface environments. We therefore studied the factors...... classes in the different mineralization potentials of discharge zones. Understanding of the natural attenuation potential of groundwater-surface water transition zones is important for stream water protection. In landfill-impacted groundwater-surface water interface, we further analyzed bacterial...

  17. A hybrid machine learning model to estimate nitrate contamination of production zone groundwater in the Central Valley, California

    Science.gov (United States)

    Ransom, K.; Nolan, B. T.; Faunt, C. C.; Bell, A.; Gronberg, J.; Traum, J.; Wheeler, D. C.; Rosecrans, C.; Belitz, K.; Eberts, S.; Harter, T.

    2016-12-01

    A hybrid, non-linear, machine learning statistical model was developed within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface in the Central Valley, California. A database of 213 predictor variables representing well characteristics, historical and current field and county scale nitrogen mass balance, historical and current landuse, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6,000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The machine learning method, gradient boosting machine (GBM) was used to screen predictor variables and rank them in order of importance in relation to the groundwater nitrate measurements. The top five most important predictor variables included oxidation/reduction characteristics, historical field scale nitrogen mass balance, climate, and depth to 60 year old water. Twenty-two variables were selected for the final model and final model errors for log-transformed hold-out data were R squared of 0.45 and root mean square error (RMSE) of 1.124. Modeled mean groundwater age was tested separately for error improvement in the model and when included decreased model RMSE by 0.5% compared to the same model without age and by 0.20% compared to the model with all 213 variables. 1D and 2D partial plots were examined to determine how variables behave individually and interact in the model. Some variables behaved as expected: log nitrate decreased with increasing probability of anoxic conditions and depth to 60 year old water, generally decreased with increasing natural landuse surrounding wells and increasing mean groundwater age, generally increased with increased minimum depth to high water table and with increased base flow index value. Other variables exhibited much more erratic or noisy behavior in

  18. Data-Driven Approach for Analyzing Hydrogeology and Groundwater Quality Across Multiple Scales.

    Science.gov (United States)

    Curtis, Zachary K; Li, Shu-Guang; Liao, Hua-Sheng; Lusch, David

    2017-08-29

    Recent trends of assimilating water well records into statewide databases provide a new opportunity for evaluating spatial dynamics of groundwater quality and quantity. However, these datasets are scarcely rigorously analyzed to address larger scientific problems because they are of lower quality and massive. We develop an approach for utilizing well databases to analyze physical and geochemical aspects of groundwater systems, and apply it to a multiscale investigation of the sources and dynamics of chloride (Cl - ) in the near-surface groundwater of the Lower Peninsula of Michigan. Nearly 500,000 static water levels (SWLs) were critically evaluated, extracted, and analyzed to delineate long-term, average groundwater flow patterns using a nonstationary kriging technique at the basin-scale (i.e., across the entire peninsula). Two regions identified as major basin-scale discharge zones-the Michigan and Saginaw Lowlands-were further analyzed with regional- and local-scale SWL models. Groundwater valleys ("discharge" zones) and mounds ("recharge" zones) were identified for all models, and the proportions of wells with elevated Cl - concentrations in each zone were calculated, visualized, and compared. Concentrations in discharge zones, where groundwater is expected to flow primarily upwards, are consistently and significantly higher than those in recharge zones. A synoptic sampling campaign in the Michigan Lowlands revealed concentrations generally increase with depth, a trend noted in previous studies of the Saginaw Lowlands. These strong, consistent SWL and Cl - distribution patterns across multiple scales suggest that a deep source (i.e., Michigan brines) is the primary cause for the elevated chloride concentrations observed in discharge areas across the peninsula. © 2017, National Ground Water Association.

  19. ECO Update / Groundwater Foum Issue Paper: Evaluating Ground-Water/Surface-Water Transition Zones in Ecological Risk Assessments

    Science.gov (United States)

    This ECO Update builds on the standard approach to ERA (U.S. EPA 1997), by providing a framework for incorporating groundwater/surface-water (GW/SW) interactions into existing ERAs (see U.S. EPA 1997 and 2001a for an introduction to ecological risk....

  20. Water quality, discharge, and groundwater levels in the Palomas, Mesilla, and Hueco Basins in New Mexico and Texas from below Caballo Reservoir, New Mexico, to Fort Quitman, Texas, 1889-2013

    Science.gov (United States)

    McKean, Sarah E.; Matherne, Anne Marie; Thomas, Nicole

    2014-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, compiled data from various sources to develop a dataset that can be used to conduct an assessment of the total dissolved solids in surface water and groundwater of the Palomas, Mesilla, and Hueco Basins in New Mexico and Texas, from below Caballo Reservoir, N. Mex., to Fort Quitman, Tex. Data include continuous surface-water discharge records at various locations on the Rio Grande; surface-water-quality data for the Rio Grande collected at selected locations in the Palomas, Mesilla, and Hueco Basins; groundwater levels and groundwater-quality data collected from selected wells in the Palomas and Mesilla Basins; and data from several seepage investigations conducted on the Rio Grande and selected drains in the Mesilla Basin.

  1. Using 14C and 3H to understand groundwater flow and recharge in an aquifer window

    Science.gov (United States)

    Atkinson, A. P.; Cartwright, I.; Gilfedder, B. S.; Cendón, D. I.; Unland, N. P.; Hofmann, H.

    2014-12-01

    Knowledge of groundwater residence times and recharge locations is vital to the sustainable management of groundwater resources. Here we investigate groundwater residence times and patterns of recharge in the Gellibrand Valley, southeast Australia, where outcropping aquifer sediments of the Eastern View Formation form an "aquifer window" that may receive diffuse recharge from rainfall and recharge from the Gellibrand River. To determine recharge patterns and groundwater flow paths, environmental isotopes (3H, 14C, δ13C, δ18O, δ2H) are used in conjunction with groundwater geochemistry and continuous monitoring of groundwater elevation and electrical conductivity. The water table fluctuates by 0.9 to 3.7 m annually, implying recharge rates of 90 and 372 mm yr-1. However, residence times of shallow (11 to 29 m) groundwater determined by 14C are between 100 and 10 000 years, 3H activities are negligible in most of the groundwater, and groundwater electrical conductivity remains constant over the period of study. Deeper groundwater with older 14C ages has lower δ18O values than younger, shallower groundwater, which is consistent with it being derived from greater altitudes. The combined geochemistry data indicate that local recharge from precipitation within the valley occurs through the aquifer window, however much of the groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High. The Gellibrand Valley is a regional discharge zone with upward head gradients that limits local recharge to the upper 10 m of the aquifer. Additionally, the groundwater head gradients adjacent to the Gellibrand River are generally upwards, implying that it does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10

  2. Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20).

    Science.gov (United States)

    Ramos, Débora Toledo; da Silva, Márcio Luis Busi; Chiaranda, Helen Simone; Alvarez, Pedro J J; Corseuil, Henry Xavier

    2013-06-01

    Field experiments were conducted to assess the potential for anaerobic biostimulation to enhance BTEX biodegradation under fermentative methanogenic conditions in groundwater impacted by a biodiesel blend (B20, consisting of 20 % v/v biodiesel and 80 % v/v diesel). B20 (100 L) was released at each of two plots through an area of 1 m(2) that was excavated down to the water table, 1.6 m below ground surface. One release was biostimulated with ammonium acetate, which was added weekly through injection wells near the source zone over 15 months. The other release was not biostimulated and served as a baseline control simulating natural attenuation. Ammonium acetate addition stimulated the development of strongly anaerobic conditions, as indicated by near-saturation methane concentrations. BTEX removal began within 8 months in the biostimulated source zone, but not in the natural attenuation control, where BTEX concentrations were still increasing (due to source dissolution) 2 years after the release. Phylogenetic analysis using quantitative PCR indicated an increase in concentration and relative abundance of Archaea (Crenarchaeota and Euryarchaeota), Geobacteraceae (Geobacter and Pelobacter spp.) and sulfate-reducing bacteria (Desulfovibrio, Desulfomicrobium, Desulfuromusa, and Desulfuromonas) in the biostimulated plot relative to the control. Apparently, biostimulation fortuitously enhanced the growth of putative anaerobic BTEX degraders and associated commensal microorganisms that consume acetate and H2, and enhance the thermodynamic feasibility of BTEX fermentation. This is the first field study to suggest that anaerobic-methanogenic biostimulation could enhance source zone bioremediation of groundwater aquifers impacted by biodiesel blends.

  3. Vessel Sewage Discharges

    Science.gov (United States)

    Vessel sewage discharges are regulated under Section 312 of the Clean Water Act, which is jointly implemented by the EPA and Coast Guard. This homepage links to information on marine sanitation devices and no discharge zones.

  4. Radon as a groundwater tracer in Forsmark and Laxemar

    International Nuclear Information System (INIS)

    Grolander, Sara

    2009-10-01

    Radon concentrations were measured in different water types in Forsmark and Laxemar during the site investigation and within this study. From these measurements it can be concluded that large differences between surface water, near surface groundwater and deep groundwater can be found in both Laxemar and Forsmark. The differences in radon concentrations between different water types are used in this study to detect interactions between surface water, near surface water and deep groundwater. From the radon measurements it can also be concluded that radon concentration in deep groundwater varies largely with depth. These variations with depth are probably caused by groundwater flow in conductive fracture zones in the bedrock. The focus of this study has been the radon concentration of near surface groundwater and the interaction between near surface groundwater and deep groundwater. Radon measurements have been done using the RAD-7 radon detector within this study. It could be concluded that RAD-7 is a good technique for radon measurements and also easy to use in field. The radon concentrations measured in near surface groundwater in Laxemar within this study were low and homogenous. The variation in radon concentration has been analyses and compared to other parameters. Since the hypothesis of this study has been that there are differences in radon concentrations between recharging and discharging groundwater, the most important parameter to consider is the recharge/discharge field classification of the wells. No correlation between the recharge/discharge classifications of wells and the radon concentrations were found. The lack of correlation between groundwater flow patterns and radon concentration means that it is not possible to detect flow patterns in near surface groundwater using radon as a tracer in the Laxemar area. The lack of correlation can be caused by the fact that there are just a few wells located in areas classified as recharge area. It can also be

  5. Improving the inverse modeling of a trace isotope: how precisely can radium-228 fluxes toward the ocean and submarine groundwater discharge be estimated?

    Science.gov (United States)

    Le Gland, Guillaume; Mémery, Laurent; Aumont, Olivier; Resplandy, Laure

    2017-07-01

    Radium-228 (228Ra), an almost conservative trace isotope in the ocean, supplied from the continental shelves and removed by a known radioactive decay (T1/2 = 5. 75 years), can be used as a proxy to constrain shelf fluxes of other trace elements, such as nutrients, iron, or rare earth elements. In this study, we perform inverse modeling of a global 228Ra dataset (including GEOSECS, TTO and GEOTRACES programs, and, for the first time, data from the Arctic and around the Kerguelen Islands) to compute the total 228Ra fluxes toward the ocean, using the ocean circulation obtained from the NEMO 3.6 model with a 2° resolution. We optimized the inverse calculation (source regions, cost function) and find a global estimate of the 228Ra fluxes of 8.01-8. 49 × 1023 atoms yr-1, more precise and around 20 % lower than previous estimates. The largest fluxes are in the western North Atlantic, the western Pacific and the Indian Ocean, with roughly two-thirds in the Indo-Pacific Basin. An estimate in the Arctic Ocean is provided for the first time (0.43-0.50 × 1023 atoms yr-1). Local misfits between model and data in the Arctic, the Gulf Stream and the Kuroshio regions could result from flaws of the ocean circulation in these regions (resolution, atmospheric forcing). As radium is enriched in groundwater, a large part of the 228Ra shelf sources comes from submarine groundwater discharge (SGD), a major but poorly known pathway for terrestrial mineral elements, including nutrients, to the ocean. In contrast to the 228Ra budget, the global estimate of SGD is rather unconstrained, between 1.3 and 14. 7 × 1013 m3 yr-1, due to high uncertainties on the other sources of 228Ra, especially diffusion from continental shelf sediments. Better precision on SGD cannot be reached by inverse modeling until a proper way to separate the contributions of SGD and diffusive release from s