Sample records for groundwater discharge rates

  1. Combined geophysical and geochemical tracer techniques to assess rates and impact of submarine groundwater discharge into Tampa Bay, Florida (United States)

    Swarzenski, P. W.; Baskaran, M.; Reich, C.; Greenwood, J.


    It is now widely accepted that water and constituent transport by submarine groundwater discharge (SGD) can be ecologically important within some coastal environments. However, the nature of this discharge, which can exhibit tremendously temporal and spatial heterogeneity, renders SGD most often difficult to identify and quantify. U/Th series geochemical tracers and new geophysical tools have been developed that now can yield system-wide information on SGD rates and processes. The objective of this study was to apply naturally- occurring Ra and Rn isotopes to derive SGD rates bay wide, and then examine to the geologic controls on SGD in this system with streaming and time series resistivity measurements. Submarine groundwater discharge rates calculated using a mass balance of excess Ra-226 ranged from 2 to 14 L per square-m per d. When extrapolated to the total shoreline length of the bay, such SGD rates ranged from 2 to 10 cubic-m per d per m of shoreline. High-resolution time series and streaming resistivity measurements confirm that SGD within Tampa Bay can be separated into a near-shore and mid-bay component that involve different water masses and unique mixing processes. SGD-derived nutrient loading estimates in Tampa bay will be compared to similar riverine estimates.

  2. From submarine to lacustrine groundwater discharge (United States)

    Lewandowski, Jörg; Meinikmann, Karin; Pöschke, Franziska; Nützmann, Gunnar; Rosenberry, Donald O.


    Submarine groundwater discharge (SGD) and its role in marine nutrient cycling are well known since the last decade. The freshwater equivalent, lacustrine groundwater discharge (LGD), is often still disregarded, although first reports of LGD are more than 50 years old. We identify nine different reasons why groundwater has long been disregarded in both freshwater and marine environments such as invisibility of groundwater discharge, the size of the interface and its difficult accessibility. Although there are some fundamental differences in the hydrology of SGD and LGD, caused primarily by seawater recirculation that occurs only in cases of SGD, there are also a lot of similarities such as a focusing of discharge to near-shore areas. Nutrient concentrations in groundwater near the groundwater–surface water interface might be anthropogenically enriched. Due to spatial heterogeneity of aquifer characteristics and biogeochemical processes, the quantification of groundwater-borne nutrient loads is challenging. Both nitrogen and phosphorus might be mobile in near-shore aquifers and in a lot of case studies large groundwater-borne nutrient loads have been reported.

  3. Eddy correlation measurements of submarine groundwater discharge (United States)

    Crusius, J.; Berg, P.; Koopmans, D.J.; Erban, L.


    This paper presents a new, non-invasive means of quantifying groundwater discharge into marine waters using an eddy correlation approach. The method takes advantage of the fact that, in virtually all aquatic environments, the dominant mode of vertical transport near the sediment-water interface is turbulent mixing. The technique thus relies on measuring simultaneously the fluctuating vertical velocity using an acoustic Doppler velocimeter and the fluctuating salinity and/or temperature using rapid-response conductivity and/or temperature sensors. The measurements are typically done at a height of 5-15??cm above the sediment surface, at a frequency of 16 to 64??Hz, and for a period of 15 to 60??min. If the groundwater salinity and/or temperature differ from that of the water column, the groundwater specific discharge (cm d- 1) can be quantified from either a heat or salt balance. Groundwater discharge was estimated with this new approach in Salt Pond, a small estuary on Cape Cod (MA, USA). Estimates agreed well with previous estimates of discharge measured using seepage meters and 222Rn as a tracer. The eddy correlation technique has several desirable characteristics: 1) discharge is quantified under in-situ hydrodynamic conditions; 2) salinity and temperature can serve as two semi-independent tracers of discharge; 3) discharge can be quantified at high temporal resolution, and 4) long-term records of discharge may be possible, due to the low power requirements of the instrumentation. ?? 2007 Elsevier B.V. All rights reserved.

  4. Carbon-14 as a tracer of groundwater discharge to streams (United States)

    Bourke, Sarah; Harrington, Glenn; Cook, Peter; Post, Vincent; Dogramaci, Shawan


    The provenance of groundwater discharge to a stream can be determined by measuring the response of multiple groundwater age tracers within the stream across the discharge zone. The sampling interval required to detect groundwater discharge is limited by the rate of equilibration with the atmosphere downstream of the discharge zone, which is determined by the gas transfer velocity. Carbon-14 (14C) equilibration is driven by CO2 exchange, which is a small component of the dissolved inorganic carbon in most stream systems, and therefore the rate of equilibration is slower than for other gaseous age tracers. In this paper we use a step-wise approach to develop and demonstrate the use of 14C as a tracer in streams receiving groundwater discharge. Excess carbon dioxide (CO2) in the emerging groundwater degasses until equilibrium with atmospheric CO2 is reached; increasing pH and enriching the residual 14C by fractionation. In addition, the 14C gradient between groundwater and the atmosphere drives a slower process of isotopic equilibration. We have measured the rates of this chemical and isotopic equilibration experimentally by exposing 250 L of old groundwater to the atmosphere in an evaporation pan. Chemical equilibrium was achieved within 2 days, during which the 14C increased from 6 to 16 pMC. The influence of fractionation during the initial CO2 degassing on isotopic equilibrium rates was negligible. Isotopic equilibrium took over 2 months, with 14C in the evaporation pan increasing to 108 pMC over 71 days. This increase in 14C was simulated using a mass balance model with an effective 14C gas transfer velocity of 0.013 m d-1. Field testing of the method was conducted at two sites. Firstly, we measured the evolution of 14C in dewatering discharge as it flows along an ephemeral creek channel in the Pilbara, Western Australia. Measured 14C increased from 11 to 31 pMC along the 10km reach, which corresponds to a travel time of about 2 days. The measured increase was


    Institute of Scientific and Technical Information of China (English)

    LI Yong; WANG Chao


    A simple estimation model of groundwater discharge and nutrient flux from nearshore unconfined aquifer to lake was studied. It was supposed that the aquifer was permeable isotropic homogeneously and its thickness approximated to the depth of lake. Distribution of the hydraulic gradient and the specific discharge along the transect of the discharge zone were discussed. Results show that the groundwater discharge patterns vary with the inclination angle of lakeshore bottom. For a shallow lake with gentle slope bottom, the rate of discharge of groundwater to lake is not constant across a discharge zone, but the discharge is concentrated in a narrow portion of the littoral zone where the Dupuit assumptions are invalid. The width of the discharge zone is correlative with aquifer thickness and slope of the lake bottom. The distribution functions of hydraulic gradient and groundwater discharge rates accord exponentially with offshore distance.

  6. Submarine ground-water discharge: nutrient loading and nitrogen transformations (United States)

    Kroeger, Kevin D.; Swarzenski, Peter W.; Crusius, John; Bratton, John F.; Charette, Matthew A.


    samples across the salinity gradients of coastal aquifers. In addition, locating and quantifying rates of submarine ground-water discharge remains a challenge due to the diffuse and spatially and temporally heterogeneous nature of discharge. As a result, with regard to the study of biogeochemical cycles and chemical loads to coastal waters, the seepage face and subterranean estuary are relatively new and under-studied zones in the aquatic cascade from watershed to sea. Processes occurring in those zones must be understood and considered for proper modeling and management of coastal water resources.

  7. Groundwater flow and heterogeneous discharge into a seepage lake

    DEFF Research Database (Denmark)

    Kazmierczak, Jolanta; Müller, Sascha; Nilsson, B.


    Groundwater discharge into a seepage lake was investigated by combining flux measurements, hydrochemical tracers, geological information, and a telescopic modeling approach using first two-dimensional (2-D) regional then 2-D local flow and flow path models. Discharge measurements and hydrochemical...... with the lake remained under seemingly steady state conditions across seasons, a high spatial and temporal heterogeneity in the discharge to the lake was observed. The results showed that part of the groundwater flowing from the west passes beneath the lake and discharges at the eastern shore, where groundwater...... springs and high discharge zones (HDZs) are observed at the lake bottom and at seepage faces adjacent to the lake. In the 2-D cross section, surface runoff from the seepage faces delivers 64% of the total groundwater inputs to the lake, and a 2 m wide offshore HDZ delivers 13%. Presence of HDZs may...

  8. Evaporation from groundwater discharge playas, Estancia Basin, central New Mexico (United States)

    Menking, Kirsten M.; Anderson, Roger Y.; Brunsell, Nathaniel A.; Allen, Bruce D.; Ellwein, Amy L.; Loveland, Thomas A.; Hostetler, Steven W.


    Bowen ratio meteorological stations have been deployed to measure rates of evaporation from groundwater discharge playas and from an adjacent vegetated bench in the Estancia Basin, in central New Mexico. The playas are remnants of late Pleistocene pluvial Lake Estancia and are discharge areas for groundwater originating as precipitation in the adjacent Manzano Mts. They also accumulate water during local precipitation events. Evaporation is calculated from measured values of net radiation, soil heat flux, atmospheric temperature, and relative humidity. Evaporation rates are strongly dependent on the presence or absence of standing water in the playas, with rates increasing more than 600% after individual rainstorms. Evaporation at site E-12, in the southeastern part of the playa complex, measured 74 cm over a yearlong period from mid-1997 through mid-1998. This value compares favorably to earlier estimates from northern Estancia playas, but is nearly three times greater than evaporation at a similar playa in western Utah. Differences in geographical position, salt crust composition, and physical properties may explain some of the difference in evaporation rates in these two geographic regions.

  9. Observations of nearshore groundwater discharge: Kahekili Beach Park submarine springs, Maui, Hawaii (United States)

    Swarzenski, Peter W.; Dulai, H.; Kroeger, K.D.; Smith, C.G.; Dimova, N.; Storlazzi, C. D.; Prouty, N.G.; Gingerich, S.B.; Glenn, C. R.


    Study regionThe study region encompasses the nearshore, coastal waters off west Maui, Hawaii. Here abundant groundwater—that carries with it a strong land-based fingerprint—discharges into the coastal waters and over a coral reef.Study focusCoastal groundwater discharge is a ubiquitous hydrologic feature that has been shown to impact nearshore ecosystems and material budgets. A unique combined geochemical tracer and oceanographic time-series study addressed rates and oceanic forcings of submarine groundwater discharge at a submarine spring site off west Maui, Hawaii.New hydrological insights for the regionEstimates of submarine groundwater discharge were derived for a primary vent site and surrounding coastal waters off west Maui, Hawaii using an excess 222Rn (t1/2 = 3.8 d) mass balance model. Such estimates were complemented with a novel thoron (220Rn,t1/2 = 56 s) groundwater discharge tracer application, as well as oceanographic time series and thermal infrared imagery analyses. In combination, this suite of techniques provides new insight into the connectivity of the coastal aquifer with the near-shore ocean and examines the physical drivers of submarine groundwater discharge. Lastly, submarine groundwater discharge derived constituent concentrations were tabulated and compared to surrounding seawater concentrations. Such work has implications for the management of coastal aquifers and downstream nearshore ecosystems that respond to sustained constituent loadings via this submarine route.

  10. Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge

    Directory of Open Access Journals (Sweden)

    C. Tecklenburg


    Full Text Available Lacustrine groundwater discharge (LGD can significantly affect lake water balances and lake water quality. However, quantifying LGD and its spatial patterns is challenging because of the large spatial extent of the aquifer–lake interface and pronounced spatial variability. This is the first experimental study to specifically study these larger-scale patterns with sufficient spatial resolution to systematically investigate how landscape and local characteristics affect the spatial variability in LGD. We measured vertical temperature profiles around a 0.49 km2 lake in northeastern Germany with a needle thermistor, which has the advantage of allowing for rapid (manual measurements and thus, when used in a survey, high spatial coverage and resolution. Groundwater inflow rates were then estimated using the heat transport equation. These near-shore temperature profiles were complemented with sediment temperature measurements with a fibre-optic cable along six transects from shoreline to shoreline and radon measurements of lake water samples to qualitatively identify LGD patterns in the offshore part of the lake. As the hydrogeology of the catchment is sufficiently homogeneous (sandy sediments of a glacial outwash plain; no bedrock control to avoid patterns being dominated by geological discontinuities, we were able to test the common assumptions that spatial patterns of LGD are mainly controlled by sediment characteristics and the groundwater flow field. We also tested the assumption that topographic gradients can be used as a proxy for gradients of the groundwater flow field. Thanks to the extensive data set, these tests could be carried out in a nested design, considering both small- and large-scale variability in LGD. We found that LGD was concentrated in the near-shore area, but alongshore variability was high, with specific regions of higher rates and higher spatial variability. Median inflow rates were 44 L m−2 d−1 with

  11. Dilution and volatilization of groundwater contaminant discharges in streams

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Bjerg, Poul Løgstrup; Sonne, Anne Thobo;


    An analytical solution to describe dilution and volatilization of a continuous groundwater contaminant plume into streams is developed for risk assessment. The location of groundwater plume discharge into the stream (discharge through the side versus bottom of the stream) and different...... distributions of the contaminant plume concentration (Gaussian, homogeneous or heterogeneous distribution) are considered. The model considering the plume discharged through the bank of the river, with a uniform concentration distribution was the most appropriate for risk assessment due to its simplicity...... and limited data requirements. The dilution and volatilization model is able to predict the entire concentration field, and thus the mixing zone, maximum concentration and fully mixed concentration in the stream. It can also be used to identify groundwater discharge zones from in-stream concentration...

  12. Nearshore morphology, benthic structure, hydrodynamics, and coastal groundwater discharge near Kahekili Beach Park, Maui, Hawaii (United States)

    Swarzenski, Peter W.; Storlazzi, Curt D.; Presto, M. Katherine; Gibbs, Ann E.; Smith, Christopher G.; Dimova, Natasha T.; Dailer, Meghan L.; Logan, Joshua B.


    This report presents a brief summary of recent fieldwork conducted off Kahekili Beach Park, Maui, Hawaii, the site of the newly established U.S. Coral Reef Task Force priority study area at Kaanapali and the Hawaii Department of Land and Natural Resources, Division of Aquatic Resources, Kahekili Herbivore Fisheries Management Area (HFMA). The goals of this fieldwork are to provide new baseline information to help guide future studies and to provide first insights into rates and drivers of coastal groundwater discharge and associated constituent loadings into the priority study area's coastal waters. This study presents the first swath acoustic mapping information, in situ oceanographic instrument measurements, and coastal groundwater discharge estimates at this site based on the submarine groundwater discharge tracer radon-222 (222Rn). Coastal groundwater discharge rates ranged from about 22 to 50 centimeters per day, depending on proximity of the sampling mooring to the primary discharge vent. The water chemistry of the discharging groundwater was at times dramatically different than ambient seawater. For example, at the primary vent site at Kahekili, the concentrations of total dissolved nitrogen (TDN), dissolved silicate (DSi), and total dissolved phosphorus (TDP) in the discharging groundwater were 43.75 micromolar (μM), 583.49 μM, and 12.04 μM, respectively. These data extend our basic understanding of the morphology, benthic structure, and oceanographic setting of this vent site and provide a first estimate of the magnitude and physical forcings of submarine groundwater discharge and associated trace metals and nutrient loads here.

  13. Groundwater Discharge along a Channelized Coastal Plain Stream

    Energy Technology Data Exchange (ETDEWEB)

    LaSage, Danita M [Ky Dept for natural resources, Div of Mine Permits; Sexton, Joshua L [JL Sexton and Son; Mukherjee, Abhijit [Univ of Tx, Jackson School of Geosciences, Bur of Econ. Geology; Fryar, Alan E [Univ of KY, Dept of Earth and Geoligical Sciences; Greb, Stephen F [Univ of KY, KY Geological Survey


    In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.

  14. Dilution and volatilization of groundwater contaminant discharges in streams (United States)

    Aisopou, Angeliki; Bjerg, Poul L.; Sonne, Anne T.; Balbarini, Nicola; Rosenberg, Louise; Binning, Philip J.


    An analytical solution to describe dilution and volatilization of a continuous groundwater contaminant plume into streams is developed for risk assessment. The location of groundwater plume discharge into the stream (discharge through the side versus bottom of the stream) and different distributions of the contaminant plume concentration (Gaussian, homogeneous or heterogeneous distribution) are considered. The model considering the plume discharged through the bank of the river, with a uniform concentration distribution was the most appropriate for risk assessment due to its simplicity and limited data requirements. The dilution and volatilization model is able to predict the entire concentration field, and thus the mixing zone, maximum concentration and fully mixed concentration in the stream. It can also be used to identify groundwater discharge zones from in-stream concentration measurement. The solution was successfully applied to published field data obtained in a large and a small Danish stream and provided valuable information on the risk posed by the groundwater contaminant plumes. The results provided by the dilution and volatilization model are very different to those obtained with existing point source models, with a distributed source leading to a larger mixing length and different concentration field. The dilution model can also provide recommendations for sampling locations and the size of impact zones in streams. This is of interest for regulators, for example when developing guidelines for the implementation of the European Water Framework Directive.

  15. Seasonal Arsenic Accumulation in Stream Sediments at a Groundwater Discharge Zone

    DEFF Research Database (Denmark)

    MacKay, Allison A.; Gan, Ping; Yu, Ran


    Seasonal changes in arsenic and iron accumulation rates were examined in the sediments of a brook that receives groundwater discharges of arsenic and reduced iron. Clean glass bead columns were deployed in sediments for known periods over the annual hydrologic cycle to monitor changes in arsenic ...

  16. Detecting small groundwater discharge springs using handheld thermal infrared imagery. (United States)

    Röper, Tania; Greskowiak, Janek; Massmann, Gudrun


    Ground-based handheld thermal infrared imagery was used for the detection of small-scale groundwater springs at the northwestern beach of Spiekeroog Island (northwest Germany). The surveys and in situ measurements of electric conductivity were carried out from shortly before to shortly after low tide along the low water line. Several brackish groundwater discharge springs with a diameter of 1-2 cm were observed along the beach at a distance of 2-3 m above the low water line. The high fresh water portion in the discharging water derives from the fresh water lens in the center of the island. During cold weather, the springs were identified by a significantly increased temperature (3-5 °C higher) and a lower electric conductivity (30 mS/cm). During warmer weather conditions, an inverse temperature contrast was observed. The measurements confirm the applicability of thermal imagery for the detection of small-scale groundwater discharge locations as an extension to the established method of aerial thermal scans and prove the existence of submarine groundwater seeps in porous systems. A ground-based handheld thermal infrared imagery survey enables a precise installation of sampling devices as, for example, seepage meters. © 2013, National Ground Water Association.

  17. Groundwater Discharge into Intermittently Closed and Open Lakes and/or Lagoons (ICOLLs) via Radon-222 (United States)

    Sadat-Noori, M.; Santos, I. R.; Tait, D. R.; McMahon, A.; Kadel, S.; Maher, D. T.


    Intermittently Closed and Open Lakes and Lagoons (ICOLLs) are brackish coastal water bodies with an intermittent connection to the ocean that is closed periodically due to the accumulation of marine sediment forming an entrance berm. ICOLLs have dynamic coastal systems that may be vulnerable to minor changes in catchment hydrology. However, little is known regarding the impacts of groundwater on the hydrological cycles of ICOLLs. The relative contribution of rainfall versus groundwater discharge in two ICOLLs (Welsby, and Mermaid Lagoon) and a nearby wetland (South Welsby Lagoon) located on Bribie Island (Australia) were investigated using radon (222Rn) as natural geochemical groundwater tracer. Four seasonal surveys were undertaken to quantify the temporal and spatial groundwater dynamics of the ICOLLs. Radon contour maps revealed temporal and spatial changes over the study period. The estimated groundwater discharge rates from a radon-mass balance were 3.4±3.1, 7.3±9.8 and 2.6±3.8 cm d-1 in Weslby, South Weslby and Mermaid Lagoons, respectively. These values are at least 8-fold greater than rainfall (1420 mm per year, or 0.4 cm d-1). Assuming very minor surface water flows (not perceived during field surveys), this demonstrates that these systems are groundwater-dominated and their hydrology can be influenced by regional changes in groundwater level.

  18. Submarine groundwater discharge to a small estuary estimated from radon and salinity measurements and a box model

    Directory of Open Access Journals (Sweden)

    J. Crusius


    Full Text Available Submarine groundwater discharge was quantified by a variety of methods for a 4-day period during the early summer of 2004, in Salt Pond, adjacent to Nauset Marsh, on Cape Cod, USA. Discharge estimates based on radon and salinity took advantage of the presence of the narrow channel connecting Salt Pond to Nauset Marsh, which allowed constructing whole-pond mass balances as water flowed in and out due to tidal fluctuations. The data suggest that less than one quarter of the discharge in the vicinity of Salt Pond happened within the pond itself, while three quarters or more of the discharge occurred immediately seaward of the pond, either in the channel or in adjacent regions of Nauset Marsh. Much of this discharge, which maintains high radon activities and low salinity, is carried into the pond during each incoming tide. A box model was used as an aid to understand both the rates and the locations of discharge in the vicinity of Salt Pond. The model achieves a reasonable fit to both the salinity and radon data assuming submarine groundwater discharge is fresh and that most of it occurs either in the channel or in adjacent regions of Nauset Marsh. Salinity and radon data, together with seepage meter results, do not rule out discharge of saline groundwater, but suggest either that the saline discharge is at most comparable in volume to the fresh discharge or that it is depleted in radon. The estimated rate of fresh groundwater discharge in the vicinity of Salt Pond is 3000-7000 m3 d-1. This groundwater flux estimated from the radon and salinity data is comparable to a value of 3200-4500 m3 d-1 predicted by a recent hydrologic model (Masterson, 2004; Colman and Masterson, 2004, although the model predicts this rate of discharge to the pond whereas our data suggest most of the groundwater bypasses the pond prior to discharge. Additional work is needed to determine if the measured rate of discharge is representative of the long-term average, and to

  19. Reactive transport modeling of biogeochemical dynamics in subterranean estuaries: Implications for submarine groundwater discharge of nutrients

    NARCIS (Netherlands)

    Spiteri, C.


    The quality of groundwater, in particular in coastal areas, is increasingly deteriorating due to the input of nutrients (NO3-, NH4+ and PO4) from septic systems and agricultural leaching. The discharge of groundwater to coastal waters, termed submarine groundwater discharge (SGD), is now recognized

  20. Sawdust discharge rate from aerated hoppers

    Institute of Scientific and Technical Information of China (English)

    Pan Chen; Zhulin Yuan; Chien-Song Chyang; Fu-Xiong Zhuan


    This paper presents a numerical and experimental study of the discharge rate of sawdust from an aerated hopper as an important parameter in many industrial processes involving the handling of other granular materials. Numerical experiments are conducted by means of an Eulerian-Eulerian approach coupled with the kinetic theory of granular flow (KTGF). Emphasis is given to the effects of particle size, hopper outlet width, hopper half angle, aeration height and air flow rate. The results show that the discharge rate is significantly affected by hopper outlet width, particle size and air flow rate, but is not sensitive to the hopper half angle and aeration height: increasing hopper outlet width or air flow rate increases discharge rate, while increasing particle size decreases discharge rate. Close agreement between numerical predictions and experimental results is obtained.

  1. Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities (United States)

    Sawyer, Audrey H.; David, Cédric H.; Famiglietti, James S.


    Submarine groundwater discharge (SGD) delivers water and dissolved chemicals from continents to oceans, and its spatial distribution affects coastal water quality. Unlike rivers, SGD is broadly distributed and relatively difficult to measure, especially at continental scales. We present spatially resolved estimates of fresh (land-derived) SGD for the contiguous United States based on historical climate records and high-resolution hydrographic data. Climate controls regional patterns in fresh SGD, while coastal drainage geometry imparts strong local variability. Because the recharge zones that contribute fresh SGD are densely populated, the quality and quantity of fresh SGD are both vulnerable to anthropogenic disturbance. Our analysis unveils hot spots for contaminant discharge to marine waters and saltwater intrusion into coastal aquifers.

  2. Submarine Groundwater Discharge into Tolo Harbor, Hong Kong, China (United States)

    Jiao, J. J.


    Tolo Harbor is an elongate and semi-enclosed bay in igneous rock areas in northeastern Hong Kong. It has an area of about 50 km2 and the groundwater catchment behind the harbor has an area of 160 km2, which is well-defined by ridges that reach a maximum elevation of 957 m above sea level. Over the last two decades, about half of the algal blooms reported in Hong Kong waters occurred in the harbor. Rivers and sewage are recognized as two key sources of nutrients. It is speculated that this harbor may have relatively high submarine groundwater discharge (SGD) due to its special topographical and hydrogeological setting and that the SGD may be another source of nutrients to the harbor. A research project is conduced to quantify the SGD into Tolo Harbor and to estimate the nutrient flux into the harbor through this pathway. The geochemical tracers of radon (222Rn) and radium (223Ra, 224Ra, 226Ra, and 228Ra) in groundwater and seawater are measured over the harbor and a seepage meter is deployed for direct and continuous SGD measurement for 72 hours. The study shows that the geochemical tracers fluctuate temporally in anti-phase with tidal height and that there is general trend for the geochemical tracers to decrease with distance offshore. Three sites with relatively high SGD are identified. The residence time estimated from 224Ra is around 30 days, which correlates well with previous studies. The flux of SGD to the harbor is estimated by three different approaches including radium and radon budget analyses and seepage meter. Finally, nutrient flux to the harbor through SGD is estimated, which shows that the nutrient loading through this pathway is significant. It is suggested that current practice for the management of algal blooms in Hong Kong, in which nutrient loading through SGD is ignored, should be reviewed and the control measures of groundwater contamination are obviously required.

  3. Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin (United States)

    Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.


    The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

  4. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge occurs...

  5. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge...

  6. Nutrient Subsidies to Hanalei Bay, Kauai, HI From Submarine Groundwater Discharge (United States)

    Knee, K.; Santoro, A.; Street, J.; Boehm, A.; Berg, C.; Paytan, A.


    Submarine groundwater discharge (SGD) has been shown to be a potentially important source of freshwater, nutrients, and pollutants to many coastal areas, including some locations in Hawaii. This study investigated the importance of SGD in Hanalei Bay, a northward-opening, half-moon shaped bay approximately 2 km in diameter, located on the northern shore of the island of Kauai. High fecal indicator bacteria (FIB) counts at Hanalei beaches sparked concern that nutrients and/or bacteria might be leaching into groundwater from septic systems and cesspools and making their way to the coastal ocean. Sampling was conducted in March and June 2005 at 3 local beaches, 3 streams, the Hanalei River, several groundwater pits, and the open bay. Radium was used as a groundwater tracer. Salinity, water temperature, nitrate, nitrite, ammonium, phosphate, silicate, total coliform, Enterococcus, and E. coli were measured. The ratio of 223Ra (half life = 11.4 days) to 224Ra (half life = 3.66 days) was relatively constant across samples from groundwater and the bay, indicating that the residence time of water in the bay was less than one day during the study period. Groundwater had lower concentrations of all FIB than the Hanalei River, the streams, or the bay, indicating that SGD was not contributing bacteria directly to the coastal zone over the course of this study. However, E. coli was detected at relative high levels in groundwater seaward of a cesspool, suggesting that during periods of high discharge, SGD could transport fecal bacteria to the bay. Concentrations of all nutrients were higher in groundwater than in Hanalei Bay, and nitrate concentrations were higher in groundwater than in the Hanalei River or the streams. Additionally, nitrate concentrations in groundwater and in Hanalei Bay were coupled with radium activities, suggesting a common source, most likely SGD. Mass balance calculations, based on residence times of 2 and 6 hours for the surf zone, indicate that the SGD

  7. Contribution of seawater recirculation to submarine groundwater discharge and related nutrient fluxes in two tropical bays (United States)

    Vautier, Camille; Dulaiova, Henrietta


    Hawaiian coastal waters suffer from excess terrestrial nutrient loading, most of which comes from submarine groundwater discharge (SGD). This study quantifies and distinguishes the role of the fresh terrestrial and tidally pumped salt water components of SGD into the nearshore zone of two reefs on the island of Oahu: Maunalua Bay and Kāneohe Bay. The two components of SGD are characterized using isotopic techniques, and the study mainly focuses on the less understood recirculation component. A two-step approach is implemented: first, a conceptual model of groundwater circulation is established; second, nutrient fluxes associated with seawater recirculation are quantified. Groundwater circulation through the beach berm is quantified and characterized using 222Rn and 224Ra activity measurements. Nutrient fluxes are obtained by coupling nutrient concentration measurements and discharge estimates. The isotopic signatures inform us about the influence of the tidal cycle on groundwater circulation. 222Rn, 224Ra, and δ18O isotopes are used to derive apparent ages of the infiltrated seawater and allow us to quantify recirculation rates. The method is also complemented with the use of silicate concentration as tracers of the recirculation process. The trends in apparent ages observed in pore water in Maunalua match previously published conceptual groundwater circulation models and show a sequentially aging pore water circulation loop. However, the ages obtained in Kāneohe suggest a different tidal pumping dynamic that lacks a circulation loop, perhaps resulting from the absence of freshwater discharge. Derived nutrient fluxes show that the autochthonous production of inorganic nitrogen and phosphorus that occurs during seawater recirculation has a significant impact on nutrient cycles in the nearshore areas of the bays. This result suggests that seawater recirculation should be taken into account in biogeochemical studies of coastal areas.

  8. Interaction between shallow groundwater, saline surface water and nutrient discharge in a seasonal estuary: the Swan-Canning system (United States)

    Linderfelt, William R.; Turner, Jeffrey V.


    The Swan and Canning Rivers converge to form an estuary that is seasonally forced by wet winter and dry summer conditions. The estuary is also tidally forced due to its contact with the Indian Ocean. The perception that the occurrence of nuisance algal blooms has increased in frequency and severity in recent years has prompted the present investigation into the interaction of the shallow groundwater system with the Swan-Canning Estuary. The extent to which this interaction contributes to nutrient delivery to the river is a focus of the work.Groundwater interaction with the upper reaches of the Swan River is shown to occur at three length scales: (i) the scale of the river-bed sediments (i.e. 1000 m). Two-dimensional groundwater flow modelling in plan covering the regionally advected groundwater flow domain of the upper Swan River Estuary from the Causeway to Guildford shows that there is a net groundwater discharge to the Swan River of groundwater discharge of about 80 000 m3/day, or about 29 million m3/year. Between 1987 and 1996, the average surface tributary inflow to the Swan River was about 460 million m3/year. Thus groundwater discharge contributed approximately 6% of the total annual river flow. This percentage is clearly small in comparison to the total river flow. However, in the six months from November to April in summer, tributary flow into the Swan River declines sharply to an average total of approximately 12 million m3. Groundwater discharge during this six-month period is approximately 14 million m3 or about 55% of the surface tributary flow, and thus groundwater is a significant component of the total inflow to the Swan-Canning Estuary during this period. Nutrient concentrations, particularly ammonium, within the sediment pore fluids underlying the river are very high relative to concentrations in the river, such that groundwater discharge rates of this magnitude are capable of introducing significant nutrient loadings to the river. The nitrogen

  9. Investigation of discharge-area groundwaters for recharge source characterization on different scales: the case of Jinan in northern China (United States)

    Wang, Jiale; Jin, Menggui; Lu, Guoping; Zhang, Dele; Kang, Fengxin; Jia, Baojie


    Discharge-area groundwater in Jinan, a typical karst region in northern China, was investigated by studying both the hydrological and chemical processes evolving from the recharge in mountainous terrains to the karst-spring outflows in the metropolitan area. Large-scale exploitation of karst groundwater has led to a disturbing trend in the ever-decreasing spring outflow rates and groundwater level. There is insufficient information about the Jinan karst aquifers, which provide the main water sources to meet human demand and to sustain spring outflow. The coupling of hydrological and chemical processes quantifies the flow system through aqueous chemistry characterization of the water sources. This approach is used to study the groundwater flow discharges in different locations and geological settings. The potentiometric data indicated limited vertical connectivity between distinct hydrogeological units and alteration of the recharge regime by the faults and by artificial exploitation. Shallow groundwater primarily belongs to the local flow system, with high nitrate concentration and enriched stable isotopic contents. Thermal groundwater has high concentrations of chloride and total dissolved solids, derived from a regional flow system with the highest recharge altitudes and long residence time. Non-thermal karst water may be attributed to the intermediate flow system, with uniform HCO3-Ca(Mg) facies and low nitrate concentration. This work highlighted discharge as a fingerprint of groundwater flow conditions and provides a better insight into the hydrogeological system.

  10. Estimation of Shallow Groundwater Discharge and Nutrient Load into a River (United States)

    Ying Ouyang


    Pollution of rivers with excess nutrients due to groundwater discharge, storm water runoff, surface loading,and atmospheric deposition is an increasing environmental concern worldwide. While the storm water runoff and surface loading of nutrients into many rivers have been explored in great detailed, the groundwater discharge of nutrients into the rivers has not yet...

  11. Using radon-222 for tracing groundwater discharge into an open-pit lignite mining lake--a case study. (United States)

    Schmidt, Axel; Schubert, Michael


    Groundwater discharge into an open pit lignite mining lake was investigated using radon-222 as a naturally occurring environmental tracer. The chosen study site was a meromictic lake, i.e., a water body that is divided horizontally into two separate layers--the upper mixolimnion (with seasonal mixing) and the lower monimolimnion (without seasonal mixing). For the estimation of groundwater discharge rates into the lake, a simple box model including all radon sinks and sources related to each layer was applied. Two field investigations were performed. During the October campaign, the total groundwater discharge into the lake was found to be 18.9 and 0.7 m(3) d(-1) for the mixolimnion and monimolimnion, respectively. During the December campaign, the groundwater discharge into the mixolimnion was 15.0 m(3) d(-1), whereas no discharge at all was observed into the monimolimnion. Based on the given water volumes, the residence time of lake water was 5.3 years for the monimolimnion and varies between 0.9 and 1.1 years for the mixolimnion. The investigation confirmed radon to be a useful environmental tracer for groundwater and surface water interactions in meromictic lake environments.

  12. A novel approach for direct estimation of fresh groundwater discharge to an estuary (United States)

    Ganju, Neil K.


    Coastal groundwater discharge is an important source of freshwater and nutrients to coastal and estuarine systems. Directly quantifying the spatially integrated discharge of fresh groundwater over a coastline is difficult due to spatial variability and limited observational methods. In this study, I applied a novel approach to estimate net freshwater discharge from a groundwater-fed tidal creek over a spring-neap cycle, with high temporal resolution. Acoustic velocity instruments measured tidal water fluxes while other sensors measured vertical and lateral salinity to estimate cross-sectionally averaged salinity. These measurements were used in a time-dependent version of Knudsen's salt balance calculation to estimate the fresh groundwater contribution to the tidal creek. The time-series of fresh groundwater discharge shows the dependence of fresh groundwater discharge on tidal pumping, and the large difference between monthly mean discharge and instantaneous discharge over shorter timescales. The approach developed here can be implemented over timescales from days to years, in any size estuary with dominant groundwater inputs and well-defined cross-sections. The approach also directly links delivery of groundwater from the watershed with fluxes to the coastal environment. Copyright. Published in 2011 by the American Geophysical Union.

  13. Hurricanes, submarine groundwater discharge, and Florida's red tides (United States)

    Hu, Chuanmin; Muller-Karger, Frank E.; Swarzenski, Peter W.


    A Karenia brevis Harmful Algal Bloom affected coastal waters shallower than 50 m off west-central Florida from January 2005 through January 2006, showing a sustained anomaly of ~1 mg chlorophyll m-3 over an area of up to 67,500 km2. Red tides occur in the same area (approximately 26-29°N, 82-83°W) almost every year, but the intense 2005 bloom led to a widespread hypoxic zone (dissolved oxygen marine mammals. Runoff alone provided insufficient nitrogen to support this bloom. We pose the hypothesis that submarine groundwater discharge (SGD) provides the missing nutrients, and indeed can trigger and support the recurrent red tides off west-central Florida. SGD inputs of dissolved inorganic nitrogen (DIN) in Tampa Bay alone are ~35% of that discharged by all central Florida rivers draining west combined. We propose that the unusual number of hurricanes in 2004 resulted in high runoff, and in higher than normal SGD emerging along the west Florida coast throughout 2005, initiating and fueling the persistent HAB. This mechanism may also explain recurrent red tides in other coastal regions of the Gulf of Mexico.

  14. Numerical and experimental investigations of submarine groundwater discharge to a coastal lagoon

    DEFF Research Database (Denmark)

    Haider, Kinza

    The main goal of this study is to understand and estimate the amount of submarine groundwater discharge into Ringkøbing Fjord from shallow and deep aquifer systems at the Eastern shoreline from Ringkøbing catchment in Western Denmark. In order to accomplish this objective, the study was initiated...... of the groundwater discharge occurred near the shoreline of the lagoon, but also off-shore discharge from deep confined aquifers system occurred at places where confining clay layers are eroded by buried valleys. The simulated fresh groundwater discharge was a non-negligible component, 59 % of recharge on the lagoon...... discharge pattern and brackish water – freshwater interface movement on the same transects. Groundwater discharge distribution showed a non-exponential pattern from shoreline to offshore with a small peak around the shoreline and two larger peaks farther offshore, contrary to existing literature...

  15. Granular discharge rate for submerged hoppers

    Directory of Open Access Journals (Sweden)

    T. J. Wilson


    Full Text Available The discharge of spherical grains from a hole in the bottom of a right circular cylinder is measured with the entire system underwater. We find that the discharge rate depends on filling height, in contrast to the well-known case of dry non-cohesive grains. It is further surprising that the rate increases up to about twenty five percent, as the hopper empties and the granular pressure head decreases. For deep filling, where the discharge rate is constant, we measure the behavior as a function of both grain and hole diameters. The discharge rate scale is set by the product of hole area and the terminal falling speed of isolated grains. But there is a small-hole cutoff of about two and half grain diameters, which is larger than the analogous cutoff in the Beverloo equation for dry grains. Received: 11 September 2014, Accepted: 10 October 2014; Reviewed by: L. Staron, CNRS, Universite Pierre et Marie Curie, Institut Le Rond d'Alembert, Paris, France; Edited by: L. A. Pugnaloni; DOI: Cite as: T J Wilson, C R Pfeifer, N Meysingier, D J Durian, Papers in Physics 6, 060009 (2014

  16. Prediction of diffuse sulfate emissions from a former mining district and associated groundwater discharges to surface waters (United States)

    Graupner, Bastian J.; Koch, Christian; Prommer, Henning


    Rivers draining mining districts are often affected by the diffuse input of polluted groundwaters. The severity and longevity of the impact depends on a wide range of factors such as the source terms, the hydraulic regime, the distance between pollutant sources and discharge points and the dilution by discharge from upstream river reaches. In this study a deterministic multi-mine life-cycle model was developed. It is used to characterize pollutant sources and to quantify the resulting current and future effects on both groundwater and river water quality. Thereby sulfate acts as proxy for mining-related impacts. The model application to the Lausitz mining district (Germany) shows that the most important factors controlling concentrations and discharge of sulfate are mixing/dilution with ambient groundwater and the rates of biological sulfate reduction during subsurface transport. In contrast, future impacts originating from the unsaturated zones of the mining dumps showed to be of little importance due to the high age of the mining dumps and the associated depletion in reactive iron-sulfides. The simulations indicate that currently the groundwater borne diffuse input of sulfate into the rivers Kleine Spree and Spree is ∼2200 t/years. Our predictions suggest a future increase to ∼11,000 t/years within the next 40 years. Depending on river discharge rates this represents an increase in sulfate concentration of 40-300 mg/L. A trend reversal for the surface water discharge is not expected before 2050.

  17. Submarine groundwater discharge to a small estuary estimated from radon and salinity measurements and a box model

    Directory of Open Access Journals (Sweden)

    J. A. Colman


    Full Text Available Submarine groundwater discharge was quantified by a variety of methods in Salt Pond, adjacent to Nauset Marsh on Cape Cod, USA. Discharge estimates based on radon and salinity took advantage of the presence of the narrow channel connecting Salt Pond to Nauset Marsh, which allowed constructing whole-pond mass balances as water flowed in and out due to tidal fluctuations. A box model was used to estimate discharge separately to Salt Pond and to the channel by simulating the timing and magnitude of variations in the radon and salinity data in the channel. Discharge to the pond is estimated to be 2200±1100 m3d-1, while discharge to the channel is estimated to be 300±150 m3d-1, for a total discharge of 2500±1250 m3d-1 to the Salt Pond system. This translates to an average groundwater flow velocity of 3±1.5 cm d-1 Seepage meter flow estimates are broadly consistent with this figure, provided discharge is confined to shallow sediments (water depth 3d-1 predicted by a recent hydrologic model (Masterson, 2004; Colman and Masterson, 2004. Additional work is needed to determine if the measured rate of discharge is representative of the long-term average, and to determine the rate of groundwater discharge seaward of Salt Pond. Data also suggest a TDN flux from groundwater to Salt Pond of ~2.6 mmol m-2d-1, a figure comparable to fluxes observed in other eutrophic settings.

  18. Using the radium quartet to quantify submarine groundwater discharge and porewater exchange (United States)

    Rodellas, Valentí; Garcia-Orellana, Jordi; Trezzi, Giada; Masqué, Pere; Stieglitz, Thomas C.; Bokuniewicz, Henry; Cochran, J. Kirk; Berdalet, Elisa


    The specific ingrowth rates of different radium isotopes make them valuable tracers to distinguish processes occurring at different temporal scales. Here we demonstrate the use of the radium quartet (223Ra, 224Ra, 226Ra and 228Ra) to differentiate flows of submarine groundwater discharge and porewater exchange to a coastal embayment (Alfacs Bay, NW Mediterranean Sea), based on the assumption that these processes occur on different time scales. In order to evaluate the seasonal dynamics of groundwater and porewater inputs to the bay, we conducted three seasonal samplings at Alfacs Bay, during which samples for Ra isotopes were collected from bay waters, groundwater springs, porewaters and irrigation channels. Activities of short-lived Ra isotopes in the bay showed a strong seasonality, (e.g. average 224Ra activities in summer (∼32 dpm 100 L-1) up to 4 times higher than in winter (∼8 dpm 100 L-1)). In contrast, the activities of the long-lived Ra isotopes were fairly constant throughout the year (e.g. activities of 226Ra were ∼16 and ∼14 dpm 100 L-1 in summer and winter, respectively). The relatively short exposure to sediments of recirculation fluxes resulted in porewaters significantly enriched in short-lived Ra isotopes relative to the long-lived ones (e.g. 224Ra = 1100-1300 dpm 100 L-1; 226Ra = 17-99 dpm 100 L-1), whereas coastal groundwaters were enriched in all the Ra isotopes (e.g. 224Ra = 120-150 dpm 100 L-1; 226Ra = 200-400 dpm 100 L-1). The distinct signatures of different sources allowed us to construct seasonal Ra mass balances to estimate both groundwater discharge, which ranges from (40 ± 60)·103 m3·d-1 in summer to (310 ± 200)·103 m3·d-1 in winter, and porewater exchange fluxes, ranging from (1200 ± 120)·103 m3·d-1 in summer to (270 ± 40)·103 m3·d-1 in winter. Whereas the seasonal variability of groundwater inputs is likely governed by the terrestrial hydraulic gradient, a qualitative evaluation of the drivers of porewater exchange

  19. Quantity and quality of groundwater discharge in a hypersaline lake environment (United States)

    Anderson, R.B.; Naftz, D.L.; Day-Lewis, F. D.; Henderson, R.D.; Rosenberry, D.O.; Stolp, B.J.; Jewell, P.


    Geophysical and geochemical surveys were conducted to understand groundwater discharge to Great Salt Lake (GSL) and assess the potential significance of groundwater discharge as a source of selenium (Se). Continuous resistivity profiling (CRP) focusing below the sediment/water interface and fiber-optic distributed temperature sensing (FO-DTS) surveys were conducted along the south shore of GSL. FO-DTS surveys identified persistent cold-water temperature anomalies at 10 separate locations. Seepage measurements were conducted at 17 sites (mean seepage rate = 0.8 cm/day). High resistivity anomalies identified by the CRP survey were likely a mirabilite (Na2SO4·10H2O) salt layer acting as a semi-confining layer for the shallow groundwater below the south shore of the lake. Positive seepage rates measured along the near-shore areas of GSL indicate that a ∼1-m thick oolitic sand overlying the mirabilite layer is likely acting as a shallow, unconfined aquifer. Using the average seepage rate of 0.8 cm/day over an area of 1.6 km2, an annual Se mass loading to GSL of 23.5 kg was estimated. Determination of R/Ra values (calculated 3He/4He ratio over the present-day atmospheric 3He/4He ratio) 34S and δ18O isotopic values in samples of dissolved sulfate from the shallow groundwater below the mirabilite are almost identical to the isotopic signature of the mirabilite core material. The saturation index calculated for groundwater samples using PHREEQC indicates the water is at equilibrium with mirabilite. Water samples collected from GSL immediately off shore contained Se concentrations that were 3–4 times higher than other sampling sites >25 km offshore from the study site and may be originating from less saline groundwater seeps mixing with the more saline water from GSL. Additional evidence for mixing with near shore seeps is found in the δD and δ18O isotopic values and Br:Cl ratios. Geochemical modeling for a water sample collected in the vicinity of the study area

  20. Radon as a natural geochemical tracer for study of groundwater discharge into lakes

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Axel


    In the presented work the suitability of the naturally occurring radioactive noble gas isotope radon-222 for qualitative and quantitative description of groundwater discharge into lakes was studied. Basis of these investigations was the development of two innovative techniques for the on-site determination of radon in water. In the ex-situ radon measurement procedure, water from the source concerned is taken up in an exchange cell used for this purpose. Inside this cell, the radon dissolved in water is transferred via diffusion into a closed counter-flow of air and subsequently detected by a radon-in-air monitor. Where the in-situ radon determination is concerned, a module composed of a semipermeable membrane is introduced into a water column. Subsequently, the radon dissolved in the water body diffuses through the membrane into the corresponding air flow, by means of which it is transferred into a radon-in-air monitor and is detected. Combination of the developed mobile radon extraction techniques with a suitable and portable radon monitor allow the detection of radon-222 with sufficient accuracy (smaller 20 %) in groundwater as well as in surface waters, i.e., within a broad range of concentrations. Radon-222 was subsequently used to characterize groundwater discharge into a meromictic and a dimictic lake, i.e. two types of lake basically distinct from each other with respect to their water circulation properties were investigated. The use of the noble gas isotope radon-222 as a geochemical tracer makes the application of on-site detection techniques possible and that this in turn permits a rapid, reliable, and cost-effective assessment of groundwater discharge rates into lake water bodies.

  1. Numerical and experimental investigations of submarine groundwater discharge to a coastal lagoon

    DEFF Research Database (Denmark)

    Haider, Kinza

    The main goal of this study is to understand and estimate the amount of submarine groundwater discharge into Ringkøbing Fjord from shallow and deep aquifer systems at the Eastern shoreline from Ringkøbing catchment in Western Denmark. In order to accomplish this objective, the study was initiated...... using an existing large-scale airborne geophysical survey and hydrogeological data from the boreholes in the study area. This data helped in locating zones of groundwater discharge as well estimating complex salinity distribution under the sediment bed along with information about geology under lagoon...... of the groundwater discharge occurred near the shoreline of the lagoon, but also off-shore discharge from deep confined aquifers system occurred at places where confining clay layers are eroded by buried valleys. The simulated fresh groundwater discharge was a non-negligible component, 59 % of recharge on the lagoon...

  2. Using multiple environmental methods to estimate groundwater discharge into an arid lake (Dakebo Lake, Inner Mongolia, China) (United States)

    Su, Xiaosi; Cui, Geng; Du, Shanghai; Yuan, Wenzhen; Wang, Huang


    It is important to have both a qualitative and quantitative understanding of the hydraulic exchange between groundwater and surface water to support the development of effective management plans for sustainable use of water resources. Groundwater is a major source of surface-water recharge and plays an important role in maintaining the integrity of ecosystems, especially within wetlands in semi-arid regions. The Ordos Desert Plateau of Inner Mongolia (China) is a vulnerable ecosystem that suffers from an extreme lack of water. The hydraulic exchange between groundwater and lake water in Dakebo Lake (the largest of hundreds of lakes on the Ordos Desert Plateau) was evaluated using multiple environmental methods. Continuous monitoring of the groundwater and lake-water levels indicated that the lake was recharged vertically by groundwater. Application of hydrodynamic and temperature tracing methods to the western side of the lake indicated that the rate of groundwater discharge to the lake was about 2 × 10-6 to 3 × 10-6 m/s in spring, summer, and autumn, but that there was no recharge in winter because the hypolentic zone (HZ) was frozen. Mixing ratios of groundwater and lake water in the HZ, estimated from the 18O and 2H ratios, showed that there were spatial variations in the hydrodynamic exchange between groundwater and lake water within the HZ.

  3. Geodatabase of Groundwater Discharge Estimates to Streams in the Upper Colorado River Basin (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey (USGS) as part of the Department of Interior WaterSmart Program compiled published estimates of groundwater discharge to streams in the...

  4. Submarine groundwater discharge and nutrient addition to the coastal zone of the Godavari estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Rengarajan, R.; Sarma, V.V.S.S.

    Submarine groundwater discharge (SGD) represents a significant pathway of materials between land and sea, especially as it supplies nutrients, carbon and trace metals to coastal waters. To estimate SGD fluxes to the Godavari estuary, India, we used...

  5. The typological approach to submarine groundwater discharge (SGD) (United States)

    Bokuniewicz, H.; Buddemeier, R.; Maxwell, B.; Smith, C.


    Coastal zone managers need to factor submarine groundwater discharge (SGD) in their integration. SGD provides a pathway for the transfer of freshwater, and its dissolved chemical burden, from the land to the coastal ocean. SGD reduces salinities and provides nutrients to specialized coastal habitats. It also can be a pollutant source, often undetected, causing eutrophication and triggering nuisance algal blooms. Despite its importance, SGD remains somewhat of a mystery in most places because it is usually unseen and difficult to measure. SGD has been directly measured at only about a hundred sites worldwide. A typology generated by the Land-Ocean Interaction in the Coastal Zone (LOICZ) Project is one of the few tools globally available to coastal resource managers for identifying areas in their jurisdiction where SGD may be a confounding process. (LOICZ is a core project of the International Geosphere/Biosphere Programme.) Of the hundreds of globally distributed parameters in the LOICZ typology, a SGD subset of potentially relevant parameters may be culled. A quantitative combination of the relevant hydrological parameters can serve as a proxy for the SGD conditions not directly measured. Web-LOICZ View, geospatial software then provides an automated approach to clustering these data into groups of locations that have similar characteristics. It permits selection of variables, of the number of clusters desired, and of the clustering criteria, and provides means of testing predictive results against independent variables. Information on the occurrence of a variety of SGD indicators can then be incorporated into regional clustering analysis. With such tools, coastal managers can focus attention on the most likely sites of SGD in their jurisdiction and design the necessary measurement and modeling programs needed for integrated management.

  6. Numerical and experimental investigations of submarine groundwater discharge to a coastal lagoon

    DEFF Research Database (Denmark)

    Haider, Kinza

    to closely observe the dynamics and factors that affect the temporal and spatial distribution of groundwater discharge and brackish water – freshwater interface, small-scale numerical modeling was carried out using the new hydrogeological data obtained from these field campaigns. The salinity data from....... The salinity distribution indicated no significant interface movement seasonally but the groundwater discharge showed more temporal changes. The conceptual model constructed from the observed data gave a range from 66 - 388 ld-1 per meter of shore of freshwater discharge in a 20 meters wide fringe. In order...... interface between the seasons but the groundwater discharge varied considerably being highest during winter and lowest during summer, which was also observed in field investigations. Surficial mixing zone in the discharge zone also showed seasonal changes. However the spatial distribution of simulated...

  7. Global assessments of submarine groundwater discharge and groundwater resources under the pressures of humanity and climate change (United States)

    Taniguchi, M.; Burnett, W. C.; Aureli, A.


    We report here the global-scale assessment of both fresh and saline groundwater discharges based solely on observational data. Prior estimates have been limited to various water balance and hydrodynamic modeling calculations and range over orders of magnitude. Our observations suggest the global volumes of fresh groundwater discharge and recirculated seawater per unit shoreline length depending on the distance from the shoreline, precipitation, and seawater depth. On a world-wide scale, these flows are compared with the global river discharge. We show via automated measurements that precipitation and wave pumping are important controls of terrestrial (fresh) and marine-induced (recirculated seawater) subterranean flows, respectively. The Groundwater Resources Assessment under the Pressures of Humanity and Climate Changes (GRAPHIC) Project, an initiative of UNESCO International Hydrological Programme (IHP), seeks to improve the understanding and management of groundwater as a vital contributor to the global water cycle, ecosystems and communities, under changing climatic and anthropomorphic regimes. GRAPHIC focuses on variations of the flows, stocks, and quality of groundwater recharge, discharge and storage and on groundwater-related management and policy ( This GRAPHIC project will deal with groundwater resources assessment and future forecasting under the various pressures of humanity and climate changes. The structure of the GRAPHIC project has been divided into; (A) Subjects; thematic, cross-region issues, (B) Methods; methodological approaches (1:Database and Monitoring, 2:Satelite GRACE (Gravity Recovery and Climate Experiment), 3:Modeling and Simulation, 4:Paleohydrology), and (C) Regions; representative geographical areas, where pilot studies will be made.

  8. The importance of groundwater discharge for plant species number in riparian zones. (United States)

    Jansson, Roland; Laudon, Hjalmar; Johansson, Eva; Augspurger, Clemens


    Riparian zones are hotspots of plant species richness in temperate and boreal biomes. The phenomenon is believed to be caused primarily by river-related processes, and upland influences on riparian zones have received relatively little attention. We investigated the importance of discharge of groundwater derived from uplands on riparian patterns in vascular plant species composition. We found that groundwater discharge areas in riparian zones were 36-209% more species rich than non-discharge areas, depending on spatial scale (1-50 m wide transects from annual high-water levels to summer low-water levels) and river (one free-flowing and one regulated). Higher nitrogen availability and less drought stress during low river stages are suggested as the major causes for the higher species diversity in discharge areas. Riparian zones lacking groundwater discharge lost more species following water-level regulation than did discharge areas. This indicates that groundwater discharge areas are more resistant to regulation because both individual plants and plant populations may grow larger in discharge areas. These results demonstrate that riparian zones are controlled by water and nutrient input from upland parts of catchments in ways that have been overlooked despite more than three decades of research into linkages between stream ecosystems and their valleys.

  9. Regional differences in climate change impacts on groundwater and stream discharge in Denmark

    DEFF Research Database (Denmark)

    Van Roosmalen, Lieke Petronella G; Christensen, Britt S.B.; Sonnenborg, Torben O.


    groundwater-river interaction. On Sjaelland, where the topsoil is dominated by low-permeability soils and the aquifers are protected by thick clay layers of regional extent, only minor changes in groundwater levels are predicted. The primary effect in this area is the change in stream discharge, caused...... of the hydrological response to the simulated climate change is highly dependant on the geological setting of the model area. In the Jylland area, characterized by sandy top soils and large interconnected aquifers, groundwater recharge increases significantly, resulting in higher groundwater levels and increasing...

  10. Potential effects of groundwater pumping on water levels, phreatophytes, and spring discharges in Spring and Snake Valleys, White Pine County, Nevada, and adjacent areas in Nevada and Utah (United States)

    Halford, Keith J.; Plume, Russell W.


    Assessing hydrologic effects of developing groundwater supplies in Snake Valley required numerical, groundwater-flow models to estimate the timing and magnitude of capture from streams, springs, wetlands, and phreatophytes. Estimating general water-table decline also required groundwater simulation. The hydraulic conductivity of basin fill and transmissivity of basement-rock distributions in Spring and Snake Valleys were refined by calibrating a steady state, three-dimensional, MODFLOW model of the carbonate-rock province to predevelopment conditions. Hydraulic properties and boundary conditions were defined primarily from the Regional Aquifer-System Analysis (RASA) model except in Spring and Snake Valleys. This locally refined model was referred to as the Great Basin National Park calibration (GBNP-C) model. Groundwater discharges from phreatophyte areas and springs in Spring and Snake Valleys were simulated as specified discharges in the GBNP-C model. These discharges equaled mapped rates and measured discharges, respectively. Recharge, hydraulic conductivity, and transmissivity were distributed throughout Spring and Snake Valleys with pilot points and interpolated to model cells with kriging in geologically similar areas. Transmissivity of the basement rocks was estimated because thickness is correlated poorly with transmissivity. Transmissivity estimates were constrained by aquifer-test results in basin-fill and carbonate-rock aquifers. Recharge, hydraulic conductivity, and transmissivity distributions of the GBNP-C model were estimated by minimizing a weighted composite, sum-of-squares objective function that included measurement and Tikhonov regularization observations. Tikhonov regularization observations were equations that defined preferred relations between the pilot points. Measured water levels, water levels that were simulated with RASA, depth-to-water beneath distributed groundwater and spring discharges, land-surface altitudes, spring discharge at

  11. Estimates of ground-water discharge as determined from measurements of evapotranspiration, Ash Meadows area, Nye County, Nevada (United States)

    Laczniak, R.J.; DeMeo, G.A.; Reiner, S.R.; Smith, Jody L.; Nylund, W.E.


    Ash Meadows is one of the major discharge areas within the regional Death Valley ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Ash Meadows is replenished from inflow derived from an extensive recharge area that includes the eastern part of the Nevada Test Site (NTS). Currently, contaminants introduced into the subsurface by past nuclear testing at NTS are the subject of study by the U.S. Department of Energy's Environmental Restoration Program. The transport of any contaminant in contact with ground water is controlled in part by the rate and direction of ground-water flow, which itself depends on the location and quantity of ground water discharging from the flow system. To best evaluate any potential risk associated with these test-generated contaminants, studies were undertaken to accurately quantify discharge from areas downgradient from the NTS. This report presents results of a study to refine the estimate of ground-water discharge at Ash Meadows. The study estimates ground-water discharge from the Ash Meadows area through a rigorous quantification of evapotranspiration (ET). To accomplish this objective, the study identifies areas of ongoing ground-water ET, delineates unique areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computes ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite images recorded in 1992 identified seven unique units representing areas of ground-water ET. The total area classified encompasses about 10,350 acres dominated primarily by lush desert vegetation. Each unique area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes. The ET units identified range from sparse grasslands to open water. Annual ET rates are computed by energy-budget methods from micrometeorological measurements made at 10 sites within six

  12. The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in Alberta/Canada estimated from a radon mass balance

    Directory of Open Access Journals (Sweden)

    A. Schmidt


    Full Text Available Radon-222, a naturally-occurring radioisotope with a half-life of 3.8 days, was used to estimate groundwater discharge to small lakes in wetland-dominated basins in the vicinity of Fort McMurray, Canada. This region is under significant water development pressure including both oil sands mining and in situ extraction. Field investigations were carried out in March and July 2008 to measure radon-222 distributions in the water column of two lakes as a tracer of groundwater discharge. Radon concentrations in these lakes ranged from 0.5 to 72 Bq/m3, while radon concentrations in groundwaters ranged between 2000 and 8000 Bq/m3. A radon mass balance, used in comparison with stable isotope mass balance, suggested that the two lakes under investigation had quite different proportions of annual groundwater inflow (from 0.5% to about 14% of the total annual water inflow. Lower discharge rates were attributed to a larger drainage area/lake area ratio which promotes greater surface connectivity. Interannual variability in groundwater proportions is expected despite an implied seasonal constancy in groundwater discharge rates. Our results demonstrate that a combination of stable isotope and radon mass balance approaches provides information on flowpath partitioning that is useful for evaluating surface-groundwater connectivity and acid sensitivity of individual water bodies of interest in the Alberta Oil Sands Region.

  13. Groundwater discharge dynamics from point to catchment scale in a lowland stream: Combining hydraulic and tracer methods

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang; Sebok, Eva; Duque, Carlos


    nutrient or pollutant transport zones from nearby agricultural fields. VTP measurements confirmed high groundwater fluxes in discharge areas indicated by DTS and ADCP, and this coupling of ADCP, DTS and VTP proposes a novel field methodology to detect areas of concentrated groundwater discharge with higher......Detecting, quantifying and understanding groundwater discharge to streams are crucial for the assessment of water, nutrient and contaminant exchange at the groundwater–surface water interface. In lowland agricultural catchments with significant groundwater discharge this is of particular importance...... because of the risk of excess leaching of nutrients to streams. Here we aim to combine hydraulic and tracer methods from point-to-catchment scale to assess the temporal and spatial variability of groundwater discharge in a lowland, groundwater gaining stream in Denmark. At the point-scale, groundwater...

  14. Airborne Thermal Remote Sensing for Estimation of Groundwater Discharge to a River. (United States)

    Liu, Chuankun; Liu, Jie; Hu, Yue; Wang, Heshun; Zheng, Chunmiao


    Traditional methods for studying surface water and groundwater interactions have usually been limited to point measurements, such as geochemical sampling and seepage measurement. A new methodology is presented for quantifying groundwater discharge to a river, by using river surface temperature data obtained from airborne thermal infrared remote sensing technology. The Hot Spot Analysis toolkit in ArcGIS was used to calculate the percentage of groundwater discharge to a river relative to the total flow of the river. This methodology was evaluated in the midstream of the Heihe River in the arid and semiarid northwest China. The results show that the percentage of groundwater discharge relative to the total streamflow was as high as 28%, which is in good agreement with the results from previous geochemical studies. The data analysis methodology used in this study is based on the assumption that the river water is fully mixed except in the areas of extremely low flow velocity, which could lead to underestimation of the amount of groundwater discharge. Despite this limitation, this remote sensing-based approach provides an efficient means of quantifying the surface water and groundwater interactions on a regional scale.

  15. Groundwater uptake of forest and agricultural land covers in regions of recharge and discharge

    Directory of Open Access Journals (Sweden)

    Móricz N


    Full Text Available Groundwater uptake of vegetation in discharge regions is known to play an important role, e.g., in the Hungarian Great Plain. Nevertheless, only little detailed monitoring of water table fluctuations and groundwater uptake (ETgw were reported under varying hydrologic conditions and vegetation cover. In this study, results of water table monitoring under forest plantations and adjacent corn plots in discharge and recharge regions were analyzed to gain better understanding of the relation of vegetation cover to groundwater uptake. A poplar (Populus tremula plantation and adjacent corn field plot were surveyed in a local discharge area, while a black locust (Robinia pseudoacacia plantation and adjacent corn field plot were analyzed in a recharge area. The water table under the poplar plantation displayed a night-time recovery in the discharge region, indicating significant groundwater supply. In this case an empirical version of the water table fluctuation method was used for calculating the ETgw that included the groundwater supply. The mean ETgw of the poplar plantation was 3.6 mm day-1, whereas no water table fluctuation was observed at the nearby corn plot. Naturally, the root system of the poplar was able to tap the groundwater in depths of 3.0-3.3 m while the shallower roots of the corn did not reach the groundwater reservoir in depths of 2.7-2.8 m. In the recharge zone the water table under the black locust plantation showed step-like changes referring to the lack of groundwater supply. The mean ETgw was 0.7 mm day-1 (groundwater depths of 3.0-3.2 m and similarly no ETgw was detected at the adjacent corn plot with groundwater depths between 3.2 and 3.4 m. The low ETgw of the young black locust plantation was due to the lack of groundwater supply in recharge area, but also the shallow root system might have played a role. Our results suggest that considerations should be given to local estimations of ETgw from water table measurements that

  16. Characterising and modelling groundwater discharge in anagricultural wetland on the French Atlantic coast

    Directory of Open Access Journals (Sweden)

    Ph. Weng


    Full Text Available Interaction between a wetland and its surrounding aquifer was studied in the Rochefort agricultural marsh (150 km2. Groundwater discharge in the marsh was measured with a network of nested piezometers. Hydrological modelling of the wetland showed that a water volume of 770,000 m3 yr–1 is discharging into the marsh, but that this water flux essentially takes place along the lateral borders of the wetland. However, this natural discharge volume represents only 20% of the artificial freshwater injected each year into the wetland to maintain the water level close to the soil surface. Understanding and quantifying the groundwater component in wetland hydrology is crucial for wetland management and conservation. Keywords: wetland, hydrology, groundwater, modelling, marsh

  17. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    Energy Technology Data Exchange (ETDEWEB)

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.


    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992.

  18. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina) (United States)

    Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.


    Multiple techniques, including thermal infrared aerial remote sensing, geophysical and geological data, geochemical characterization and radium isotopes, were used to evaluate the role of groundwater as a source of dissolved nutrients, carbon, and trace gases to the Okatee River estuary, South Carolina. Thermal infrared aerial remote sensing surveys illustrated the presence of multiple submarine groundwater discharge sites in Okatee headwaters. Significant relationships were observed between groundwater geochemical constituents and 226Ra activity in groundwater with higher 226Ra activity correlated to higher concentrations of organics, dissolved inorganic carbon, nutrients, and trace gases to the Okatee system. A system-level radium mass balance confirmed a substantial submarine groundwater discharge contribution of these constituents to the Okatee River. Diffusive benthic flux measurements and potential denitrification rate assays tracked the fate of constituents in creek bank sediments. Diffusive benthic fluxes were substantially lower than calculated radium-based submarine groundwater discharge inputs, showing that advection of groundwater-derived nutrients dominated fluxes in the system. While a considerable potential for denitrification in tidal creek bank sediments was noted, in situ denitrification rates were nitrate-limited, making intertidal sediments an inefficient nitrogen sink in this system. Groundwater geochemical data indicated significant differences in groundwater chemical composition and radium activity ratios between the eastern and western sides of the river; these likely arose from the distinct hydrological regimes observed in each area. Groundwater from the western side of the Okatee headwaters was characterized by higher concentrations of dissolved organic and inorganic carbon, dissolved organic nitrogen, inorganic nutrients and reduced metabolites and trace gases, i.e. methane and nitrous oxide, than groundwater from the eastern side

  19. Evapotranspiration Dynamics and Effects on Groundwater Recharge and Discharge at the Tuba City, Arizona, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    None, None


    The U.S. Department of Energy Office of Legacy Management is evaluating groundwater flow and contaminant transport at a former uranium mill site near Tuba City, Arizona. We estimated effects of temporal and spatial variability in evapotranspiration (ET) on recharge and discharge within a groundwater model domain (GMD) as part of this evaluation. We used remote sensing algorithms and precipitation (PPT) data to estimate ET and the ET/PPT ratios within the 3531 hectare GMD. For the period from 2000 to 2012, ET and PPT were nearly balanced (129 millimeters per year [mm yr-1] and 130 mm yr-1, respectively; ET/PPT = 0.99). However, seasonal and annual variability in ET and PPT were out of phase, and spatial variability in vegetation differentiated discharge and recharge areas within the GMD. Half of ET occurred during spring and early summer when PPT was low, and about 70% of PPT arriving in fall and winter was discharged as plant transpiration in the spring and summer period. Vegetation type and health had a significant effect on the site water balance. Plant cover and ET were significantly higher (1) during years of lighter compared to years of heavier grazing pressure, and (2) on rangeland protected from grazing compared to rangeland grazed by livestock. Heavy grazing increased groundwater recharge (PPT > ET over the 13-year period). Groundwater discharge (ET > PPT over the 13-year period) was highest in riparian phreatophyte communities but insignificant in desert phreatophyte communities impacted by heavy grazing. Grazing management in desert upland and phreatophyte communities may result in reduced groundwater recharge, increased groundwater discharge, and could be used to influence local groundwater flow.

  20. Nutrient inputs through submarine groundwater discharge in an embayment: A radon investigation in Daya Bay, China (United States)

    Wang, Xuejing; Li, Hailong; Yang, Jinzhong; Zheng, Chunmiao; Zhang, Yan; An, An; Zhang, Meng; Xiao, Kai


    Daya Bay, a semi-closed bay of the South China Sea, is famous for its aquaculture, agriculture and tourism. Although routine environmental investigations in the bay have been conducted since the early 1980s, evaluations of submarine groundwater discharge (SGD), an important process in exchange between groundwater and coastal seawater, and its environmental impacts have never been reported. In this study, naturally occurring radon isotope (222Rn) was measured continuously at two sites (north-west and middle-east sites) and used as a tracer to estimate SGD and associated nutrient inputs into the bay. The SGD rates estimated based on the 222Rn mass balance model were, on average, 28.2 cm/d at north-west site and 30.9 cm/d at middle-east site. The large SGD rate at middle-east site may be due to the large tidal amplitude and the sandy component with high permeability in sediments. The SGD-driven nutrient fluxes, which were calculated as the product of SGD flux and the difference of nutrient concentrations between coastal groundwater and seawater, were 3.28 × 105 mol/d for dissolved nitrates (NO3-N), 5.84 × 103 mol/d for dissolved inorganic phosphorous (DIP), and 8.97 × 105 mol/d for reactive silicate (Si). These nutrient inputs are comparable to or even higher than those supplied by local rivers. In addition, these SGD-driven nutrients have a nitrogen-phosphorous ratio as high as ∼43, which may significantly affect the ecology of coastal waters and lead to frequent occurrence of harmful algal blooms.

  1. Mean Transit Time as a Predictor of Groundwater Discharge Response in the Upper Colorado River Basin (United States)

    Solder, J. E.; Heilweil, V. M.; Stolp, B. J.; Susong, D.


    The Colorado River and its tributaries support 40 million municipal water users and 5.5 million acres of agriculture in the south western United States (U.S. Bureau of Reclamation, 2012). Recent estimates by Rumsey et al. (2015) suggest that a significant portion (about 50 percent) of surface water flow in the Upper Colorado River Basin (UCRB) is sustained by groundwater discharge to streams. Predicted climate variation (Cook et al., 2015) and increased water demand (U.S. Bureau of Reclamation, 2012) within the UCRB suggest future decreases in groundwater discharge, however transient groundwater responses are not well understood. In this study we calculate groundwater mean transit time (MTT) and transit time distribution (TTD) as predictors of the pattern and timing of groundwater response to hydraulic stress. Samples from nineteen large springs within the UCRB were analyzed for environmental tracers to determine MTT and TTD. The predictive value of the MTT is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the 19 springs range from 10 to 15,000 years with a flow-weighted average of 1,650 years. The composite TTD of the 19 springs suggest that flowpaths representing 45 percent of their combined discharge have transit times greater than 100 years. However, spring discharge records indicate that flow responds to drought on much shorter (0.5 - 6 year) time scales, indicative of a hydraulic pressure response. Springs with shorter MTTs ( 100) also show a hydraulic pressure response. While not fully representative of the UCRB, results from the 19 springs indicate that groundwater discharge responds to climate variation and water-demand imbalances over a relatively short time period of years.

  2. Quantification of the Beauce's Groundwater contribution to the Loire River discharge using satellite infrared imagery

    Directory of Open Access Journals (Sweden)

    E. Lalot


    Full Text Available Seven Landsat Thermal InfraRed (TIR images, taken over the period 2000–2010, were used to establish longitudinal temperature profiles of the middle Loire River, where it flows above the Beauce aquifer. Results showed that 75% of the temperature differences, between in situ observations and TIR image based estimations, remained within the ±1 °C interval. The groundwater discharge along the River course was quantified for each identified groundwater catchment areas using a heat budget based on the Loire River temperature variations, estimated from the TIR images. The main discharge area of the Beauce aquifer into the Loire River was located between river kilometers 630 and 650. This result confirms what was obtained using a groundwater budget and spatially locates groundwater input within the Middle sector of the Loire River. According to the heat budgets, groundwater discharge is higher during winter period (13.5 m3 s−1 than during summer (5.3 m3 s−1. Groundwater input is also higher during the flow recession periods of the Loire River.

  3. Evaporative groundwater discharge in humid plains: The role of climate, vegetation, and farmers (Invited) (United States)

    Jobbagy, E. G.; Nosetto, M. D.; Contreras Lopez, S.; Jackson, R. B.; Calderon, S. D.


    Evaporative groundwater discharge is, in most landscapes, restricted to riparian zones or depressions, yet, it can be a widespread hydrological feature of flat sedimentary regions with (sub)humid climate. We explored the interactive effects of climate, vegetation, and human decisions controlling evaporative discharge from shallow groundwater through (a) a conceptual model describing groundwater discharge vs. depth functions and their interaction with ecosystems attributes (b) field evaluations of the model in agricultural systems of the Pampas (Argentina), (c) numerical simulations under contrasting land uses and farming behaviours. (a) Although groundwater discharge (transpiration + soil evaporation + surface water evaporation) is assumed to increases as water tables raise, we propose that transpiration, the dominant evaporative water flux in humid climates, has an “optimum” response to water table depth. Groundwater transpiration declines when water tables are too deep to be accessed by roots or shallow enough to create anoxic conditions that inhibit plant activity. This behaviour would yield two attraction domains under fluctuating water table conditions: a stable one below the “optimum” zone, where water table raise enhances transpiration and prevents further elevation; and an unstable one above the “optimum” zone, where it inhibits transpiration, favouring further elevation until surface water evaporation regulates the system. Groundwater level vs. discharge functions vary with biotic attributes such as rooting depth, waterlogging tolerance of plants, leaf area and canopy roughness, and soil surface coverage; in interaction with soil properties and climate. (b) Two years of measurements of productivity, remote sensing of evapotranspiration, and frequent water table level/salinity records across topographic gradients in a sandy landscape, confirmed the “optimum” model proposed above. (c) We developed a simple 1-D code that captured the

  4. Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222 (United States)

    Dimova, N.T.; Burnett, W.C.


    In order to evaluate groundwater discharge into small lakes we constructed a model that is based on the budget of 222Rn (radon t1/2 5 3.8 d) as a tracer. The main assumptions in our model are that the lake's waters are wellmixed horizontally and vertically; the only significant 222Rn source is via groundwater discharge; and the only losses are due to decay and atmospheric evasion. In order to evaluate the groundwater-derived 222Rn flux, we monitored the 222Rn concentration in lake water over periods long enough (usually 1-3 d) to observe changes likely caused by variations in atmospheric exchange (primarily a function of wind speed and temperature). We then attempt to reproduce the observed record by accounting for decay and atmospheric losses and by estimating the total 222Rn input flux using an iterative approach. Our methodology was tested in two lakes in central Florida: one of which is thought to have significant groundwater inputs (Lake Haines) and another that is known not to have any groundwater inflows but requires daily groundwater augmentation from a deep aquifer (Round Lake). Model results were consistent with independent seepage meter data at both Lake Haines (positive seepage of ??? 1.6 ?? 104 m3 d-1 in Mar 2008) and at Round Lake (no net groundwater seepage). ?? 2011, by the American Society of Limnology and Oceanography, Inc.

  5. Influence Of Groundwater Discharge On Arsenic Contamination In Sediments (United States)

    A field investigation was conducted to evaluate the impact of a discharging arsenic plume on sediment contaminant characteristics at a site adjacent to a landfill in northeastern Massachusetts. Site characterization included assessment of the hydrologic and chemical samples coll...

  6. Mercury speciation and transport via submarine groundwater discharge at a southern California coastal lagoon system (United States)

    Ganguli, P.M.; Conaway, C.H.; Swarzenski, P.W.; Izbicki, J.A.; Flegal, A.R.


    We measured total mercury (Hg T) and monomethylmercury (MMHg) concentrations in coastal groundwater and seawater over a range of tidal conditions near Malibu Lagoon, California, and used 222Rn-derived estimates of submarine groundwater discharge (SGD) to assess the flux of mercury species to nearshore seawater. We infer a groundwater-seawater mixing scenario based on salinity and temperature trends and suggest that increased groundwater discharge to the ocean during low tide transported mercury offshore. Unfiltered Hg T (U-Hg T) concentrations in groundwater (2.2-5.9 pM) and seawater (3.3-5.2 pM) decreased during a falling tide, with groundwater U-Hg T concentrations typically lower than seawater concentrations. Despite the low Hg T in groundwater, bioaccumulative MMHg was produced in onshore sediment as evidenced by elevated MMHg concentrations in groundwater (0.2-1 pM) relative to seawater (???0.1 pM) throughout most of the tidal cycle. During low tide, groundwater appeared to transport MMHg to the coast, resulting in a 5-fold increase in seawater MMHg (from 0.1 to 0.5 pM). Similarly, filtered Hg T (F-Hg T) concentrations in seawater increased approximately 7-fold during low tide (from 0.5 to 3.6 pM). These elevated seawater F-Hg T concentrations exceeded those in filtered and unfiltered groundwater during low tide, but were similar to seawater U-Hg T concentrations, suggesting that enhanced SGD altered mercury partitioning and/or solubilization dynamics in coastal waters. Finally, we estimate that the SGD Hg T and MMHg fluxes to seawater were 0.41 and 0.15 nmol m -2 d -1, respectively - comparable in magnitude to atmospheric and benthic fluxes in similar environments. ?? 2012 American Chemical Society.

  7. Influence of Four Factors on Discharge Capacity and Self-Discharge Rate of Iron Electrode

    Institute of Scientific and Technical Information of China (English)

    Dongfeng LIN; Shihai YE; Rong CAI; Deying SONG; Panwen SHEN


    Ni-Fe rechargeable batteries possess the advantages of long cycle life, high theoretical specific energy, abundant raw material,Iow price and environmental friendship. It has a wide applied perspective. The advantages, disadvantages and preparation methods of iron electrodes were summarized. The influence of four factors on discharge capacity and self-discharge rate of iron electrode were discussed by means of orthogonal experiments, galvanostatic charges and discharges. The influences of graphite on the discharge capacity and self-discharge rate of iron electrode were the most remarkable, the most unapparent influences on the discharge capacity and self-discharge rate were HPMC (hydroxy propoxy methoxy cellulose) and sodium sulphide, respectively. The aim of the present research was to study the effects of graphite, HPMC and iron powder added in the electrodes, sodium sulphide added in the electrolytes on the discharge capacity and self-discharge rate of iron electrodes.The largest discharge capacity of the iron electrodes was 488.5 mAh/g-Fe at 66.4 mA/g-Fe in the first ten cycles, and the average self-discharge rate was 0.367% per hour.

  8. Groundwater discharge by evapotranspiration, Dixie Valley, west-central Nevada, March 2009-September 2011 (United States)

    Garcia, C. Amanda; Huntington, Jena M; Buto, Susan G.; Moreo, Michael T.; Smith, J. LaRue; Andraski, Brian J.


    With increasing population growth and land-use change, urban communities in the desert Southwest are progressively looking toward remote basins to supplement existing water supplies. Pending applications by Churchill County for groundwater appropriations from Dixie Valley, Nevada, a primarily undeveloped basin east of the Carson Desert, have prompted a reevaluation of the quantity of naturally discharging groundwater. The objective of this study was to develop a revised, independent estimate of groundwater discharge by evapotranspiration (ETg) from Dixie Valley using a combination of eddy-covariance evapotranspiration (ET) measurements and multispectral satellite imagery. Mean annual ETg was estimated during water years 2010 and 2011 at four eddy-covariance sites. Two sites were in phreatophytic shrubland dominated by greasewood, and two sites were on a playa. Estimates of total ET and ETg were supported with vegetation cover mapping, soil physics considerations, water‑level measurements from wells, and isotopic water sourcing analyses to allow partitioning of ETg into evaporation and transpiration components. Site-based ETg estimates were scaled to the basin level by combining remotely sensed imagery with field reconnaissance. Enhanced vegetation index and brightness temperature data were compared with mapped vegetation cover to partition Dixie Valley into five discharging ET units and compute basin-scale ETg. Evapotranspiration units were defined within a delineated groundwater discharge area and were partitioned as (1) playa lake, (2) playa, (3) sparse shrubland, (4) moderate-to-dense shrubland, and (5) grassland.

  9. Nitrate retention in a sand plains stream and the importance of groundwater discharge (United States)

    Robert S. Stelzer; Damion R. Drover; Susan L. Eggert; Maureen A. Muldoon


    We measured net nitrate retention by mass balance in a 700-m upwelling reach of a third-order sand plains stream, Emmons Creek, from January 2007 to November 2008. Surface water and ground-water fluxes of nitrate were determined from continuous records of discharge and from nitrate concentrations based on weekly and biweekly sampling at three surface water stations and...

  10. Natural Attenuation of Chlorinated Solvent Ground-Water Plumes Discharging into Wetlands (United States)


    ground water in highly saline wetlands (Swanson et al., 1984), and the distribution of marsh marigold (Caltha palustris L.) has been used to map...seeps and springs next to a lake and in wetlands in Minnesota (Rosenberry et al., 2000). Marsh marigold favors ground-water discharge areas across the

  11. Estimation of methane concentrations and loads in groundwater discharge to Sugar Run, Lycoming County, Pennsylvania (United States)

    Heilweil, Victor M.; Risser, Dennis W.; Conger, Randall W.; Grieve, Paul L.; Hynek, Scott A.


    A stream-sampling study was conducted to estimate methane concentrations and loads in groundwater discharge to a small stream in an active shale-gas development area of northeastern Pennsylvania. Grab samples collected from 15 streams in Bradford, Lycoming, Susquehanna, and Tioga Counties, Pa., during a reconnaissance survey in May and June 2013 contained dissolved methane concentrations ranging from less than the minimum reporting limit (1.0) to 68.5 micrograms per liter (µg/L). The stream-reach mass-balance method of estimating concentrations and loads of methane in groundwater discharge was applied to a 4-kilometer (km) reach of Sugar Run in Lycoming County, one of the four streams with methane concentrations greater than or equal to 5 µg/L. Three synoptic surveys of stream discharge and methane concentrations were conducted during base-flow periods in May, June, and November 2013. Stream discharge at the lower end of the reach was about 0.10, 0.04, and 0.02 cubic meters per second, respectively, and peak stream methane concentrations were about 20, 67, and 29 µg/L. In order to refine estimated amounts of groundwater discharge and locations where groundwater with methane discharges to the stream, the lower part of the study reach was targeted more precisely during the successive studies, with approximate spacing between stream sampling sites of 800 meters (m), 400 m, and 200 m, in May, June, and November, respectively. Samples collected from shallow piezometers and a seep near the location of the peak methane concentration measured in streamwater had groundwater methane concentrations of 2,300 to 4,600 µg/L. These field data, combined with one-dimensional stream-methane transport modeling, indicate groundwater methane loads of 1.8 ±0.8, 0.7 ±0.3, and 0.7 ±0.2 kilograms per day, respectively, discharging to Sugar Run. Estimated groundwater methane concentrations, based on the transport modeling, ranged from 100 to 3,200 µg/L. Although total methane load

  12. Quantification of Submarine Groundwater Discharge Using a Radon (222-Rn) Mass Balance and Hydrogeological Modelling (United States)

    Petermann, Eric; Stollberg, Reiner; Scholten, Jan; Knöller, Kay; Schubert, Michael


    Apart from river and surface water runoff subsurface discharge of groundwater plays a key role in coastal water and matter budgets. Two major forms of submarine groundwater discharge (SGD) can be distinguished: (i) pure freshwater discharge from continental aquifers that are connected to the coastal sea driven by a positive hydraulic gradient (fresh SGD) and (ii) re-circulation of seawater that has penetrated permeable coastal sediments (re-circulated SGD), e.g. driven by tidal pumping. The localization of SGD zones and the quantification of SGD fluxes is of high interest for coastal water management due to potential threats related to SGD, namely (i) the detrimental impact of discharging nutrient- or contaminant-laden groundwater on coastal seawater quality, an aspect that is of relevance along coastlines which are impacted by agriculture, industry or intense urbanization, and (ii) the loss of freshwater to the ocean, an issue that is of major relevance in all coastal areas with (seasonally) limited freshwater availability. In this work, we discuss estimates for the total (fresh + re-circulated) SGD fluxes derived from a mass balance of the radioactive noble gas radon (222-Rn) with estimates of fresh SGD fluxes derived by hydrogeological modelling. The precision of the mass balance results depends on the adequate determination of the mass balance source and sink terms. These terms are calculated based on field observations of environmental tracers (salinity, δ18O, 222-Rn, 223-Ra, 224-Ra, 226-Ra) in seawater and porewater, as well as on meteorological data. The numerical hydrogeological model estimates groundwater flow based on groundwater monitoring data, river flow data, groundwater recharge estimates, tidal dynamics, and density effects along the freshwater/seawater interface. We compare these two independent methodological approaches of SGD flux estimation, discuss results regarding their relevance for the regional water balance and reason the implications of

  13. Groundwater Discharges to Rivers in the Western Canadian Oil Sands Region (United States)

    Ellis, J.; Jasechko, S.


    Groundwater discharges into rivers impacts the movement and fate of nutrients and contaminants in the environment. Understanding groundwater-surface water interactions is especially important in the western Canadian oil sands, where groundwater contamination risks are elevated and baseline water chemistry data is lacking, leading to substantial uncertainties about anthropogenic influences on local river quality. High salinity groundwater springs sourced from deep aquifers, comprised of Pleistocene-aged glacial meltwater, are known to discharge into many rivers in the oil sands. Understanding connections between deep aquifers and surficial waterways is important in order to determine natural inputs into these rivers and to assess the potential for injected wastewater or oil extraction fluids to enter surface waters. While these springs have been identified, their spatial distribution along rivers has not been fully characterized. Here we present river chemistry data collected along a number of major river corridors in the Canadian oil sands region. We show that saline groundwater springs vary spatially along the course of these rivers and tend to be concentrated where the rivers incise Devonian- or Cretaceous-aged aquifers along an evaporite dissolution front. Our results suggest that water sourced from Devonian aquifers may travel through bitumen-bearing Cretaceous units and discharge into local rivers, implying a strong groundwater-surface water connection in specialized locations. These findings indicate that oil sands process-affected waters that are injected at depth have the potential to move through these aquifers and reach the rivers at the surface at some time in the future. Groundwater-surface water interactions remain key to understanding the risks oil sands activities pose to aquatic ecosystems and downstream communities.

  14. Regional differences in climate change impacts on groundwater and stream discharge in Denmark

    DEFF Research Database (Denmark)

    Van Roosmalen, Lieke Petronella G; Christensen, Britt S.B.; Sonnenborg, Torben O.


    Regional impact studies of the effects of future climate change are necessary because projected changes in meteorological variables vary regionally and different hydrological systems can react in various ways to the same changes. In this study the effects of climate change on groundwater recharge...... simulates changes in groundwater head, recharge, and discharge. Precipitation, temperature, and reference evapotranspiration increase for both the A2 and B2 scenarios. This results in a significant increase in mean annual net precipitation, but with decreased values in the summer months. The magnitude...... of the hydrological response to the simulated climate change is highly dependant on the geological setting of the model area. In the Jylland area, characterized by sandy top soils and large interconnected aquifers, groundwater recharge increases significantly, resulting in higher groundwater levels and increasing...

  15. Karst groundwater budget and discharge regime of Banja Spring near Petnica

    Directory of Open Access Journals (Sweden)

    Ristić-Vakanjac Vesna


    Full Text Available Detailed hydrological and hydrogeological assessments of karst spring discharge require information about the groundwater regime in the study area/watershed. However, groundwater regime monitoring is often organized locally and sporadically, as required for specific studies or projects, and seldom lasts longer than one year. On the other hand, if time series of quantitative parameters are shorter than 15 years, the watershed is considered to be ungauged. As a result, discharge regime and karst aquifer budget assessments of ungauged watersheds can be misleading. To minimize water budget assessment errors, available time series need to be extended as far as possible. Regression models are commonly used to extend, simulate or fill gaps in existing time series. The paper presents an application of multiple linear regression to extend the existing time series of mean monthly discharges of Banja Spring (at Petnica, western Serbia, in order to cover the entire study period (1960-2006.

  16. Estimation of submarine groundwater discharge from bulk ground electrical conductivity measurements (United States)

    Stieglitz, Thomas; Rapaglia, John; Bokuniewicz, Henry


    The utility of bulk ground conductivity (BGC) measurements in the estimation of submarine groundwater discharge (SGD) was investigated at four sites covering a range of hydrogeological settings, namely Cockburn Sound (Australia); Shelter Island (USA); Ubatuba Bay (Brazil) and Flic-en-Flac Bay (Mauritius). At each of the sites, BGC was surveyed in the intertidal zone, and seepage meters were used for direct measurements of SGD flow rates. In the presence of detectable salinity gradients in the sediment, a negative correlation between SGD and BGC was recorded. The correlation is site-specific and is dependent on both the type of sediment and the mixing processes. For example, at Shelter Island the maximum mean flow rates were 65 cm d-1 at a BGC of ˜0 mS cm-1 while at Mauritius maximum mean flow rates were 364 cm d-1 at a BGC of ˜0 mS cm-1. BGC measurements are used to estimate SGD over a large scale, and to separate its fresh and saline components. Extrapolating BGC measurements throughout the study sites yields a total discharge of 2.91, 1.59, 7.16, and 25.4 103 m3 d-1 km-1 of shoreline with a freshwater fraction of 41, 24, 29, and 63% at Cockburn Sound, Shelter Island, Ubatuba Bay, and Flic-en-Flac Bay respectively. The results demonstrate that ground conductivity is a useful tracer to survey and separate freshwater and recirculated seawater component of SGD. The presented investigation is a subset within a series of experiments designed to compare different methods to investigate SGD co-organized and carried out by SCOR, LOICZ, IOC and IAEA.

  17. Assessing the role of submarine groundwater discharge as a source of Sr to the Mediterranean Sea (United States)

    Trezzi, Giada; Garcia-Orellana, Jordi; Rodellas, Valentí; Masqué, Pere; Garcia-Solsona, Ester; Andersson, Per S.


    Submarine groundwater discharge (SGD) has been identified as an important source of Sr to the ocean and the SGD-driven Sr flux to the global ocean has been recently re-evaluated (Beck et al., 2013). However, the uncertainty of this value is still high because of the uncertainties related to the determination of SGD flow rates and the paucity of 87Sr/86Sr data in SGD end-members. As carbonates have high Sr concentrations and are subjected to intense heightened weathering, they might significantly influence the SGD input of Sr to the ocean. Here we present data on Sr concentrations and 87Sr/86Sr ratios in three carbonate dominated sites of the western area of the Mediterranean Sea, a semi-enclosed basin characterized by abundant coastal carbonates. The 87Sr/86Sr ratios in groundwater were lower compared to modern seawater (∼0.70916), as expected for areas dominated by carbonate lithologies. Concentrations of Sr and 87Sr/86Sr ratios in groundwater showed conservative mixing in the studied subterranean estuaries. By using SGD flow rates reported in the literature for the study areas, a flow-weighted fresh SGD end-member characterized by a Sr concentration of 27-30 μM and a 87Sr/86Sr ratio of 0.707834-0.708020 was calculated for the eastern coast of the Iberian Peninsula. Integrating these Sr data with literature data (i.e. values of Sr concentration and 87Sr/86Sr ratio from other lithologies as well as SGD flow rates), we also calculated the fresh SGD-driven Sr flux to the entire Mediterranean Sea, obtaining a value of (0.34-0.83)·109 mol y-1, with a 87Sr/86Sr of 0.7081-0.7086. Thus, for the entire Mediterranean basin, SGD is globally a source of Sr less radiogenic compared to seawater. The SGD Sr flux to the Mediterranean Sea represents 5-6% of the SGD Sr flux to the global ocean and the Mediterranean SGD end-member has higher Sr concentration (5-12 μM) than the global SGD end-member (2.9 μM). This confirms the significant role of carbonate lithologies on SGD

  18. Significant Groundwater Discharge of Nutrients to Western Long Island Sound Inferred From Radioisotope, Nutrient and Organic Geochemical Tracers (United States)

    Crusius, J.; Kroeger, K. D.; Zhang, P.; Zhao, S.; Bratton, J. F.; Bokuniewicz, H.; Coffey, R.; Green, A.; Baldwin, S.; Erban, L.; Casso, M.


    Western Long Island Sound suffers from seasonal oxygen depletion due to both nutrient loading in this heavily populated region as well as restricted circulation of the Sound. The role played by groundwater in delivering nutrients to the Sound is not well understood, which served as motivation for the sampling we initiated in May, 2008. Work was carried out in both Manhasset Bay, a portion of which is sewered, and Northport Harbor, which is largely unsewered. There is clear evidence of discharge of groundwater to each embayment, as reflected in surface-water Rn-222 time series, seepage meter and high-resolution piezometer transects installed perpendicular to shore). Seepage rates were as high as 32 cm/day and modulated by the tide. Initial data reveal variable groundwater total DIN concentrations, spanning similar concentration ranges (as high as 500 uM), in the sewered and unsewered locations. Concentrations of organic geochemical tracers of sewage (including caffeine and imidacloprid) are high in samples with high nutrient concentrations and also span comparable ranges in sewered and unsewered locations. A preliminary interpretation of these results would suggest that most of the nutrient flux from groundwater is from wastewater in both the sewered and unsewered settings (rather than from fertilizer application, atmospheric deposition, etc.), implying that the sewering is not very effective. If this result is verified with additional sampling this fall, it would suggest that wastewater-influenced groundwater discharge is indeed a prominent source of nutrients to western Long Island Sound which in turn contributes to eutrophication and oxygen depletion.

  19. Demonstration of Virus in Groundwater after Effluent Discharge onto Soil (United States)

    Wellings, Flora Mae; Lewis, Arthur L.; Mountain, Carrol W.; Pierce, L. Virginia


    The survival of virus present in secondary effluents discharged into a cypress dome was studied. Isolations were made from concentrates of water drawn from 10-foot (304.80 cm) deep wells. Data presented show vertical and lateral virus movement as well as survival within the dome for 28 days during a period of heavy rains when no effluent was being applied. Due to the inefficiency of virus concentration procedures, it is proposed that much of the virus present was probably not demonstrated. A rapid, relatively inexpensive concentration technique for sewage influents and effluents is discussed. PMID:168809

  20. Groundwater and nutrient discharge through karstic coastal springs (Castelló, Spain

    Directory of Open Access Journals (Sweden)

    M. Mejías


    Full Text Available Discharge of groundwater and associated chemical compounds into coastal karstic regions, which are abundant in the Mediterranean basin, is envisaged to be significant. In this study, we evaluate the groundwater discharge and its nutrient load to the open karstic site of Badum (Castelló, East Spain. Salinity profiles evidenced that groundwater discharge from coastal brackish springs causes a buoyant fresher layer, as identified with thermal infrared images. Chemical tracers (radium isotopes, dissolved inorganic silicate and seawater major elements have been used to determine a brackish groundwater proportion in coastal waters of 36% in October 2006 and 44% in June 2007. Based on a radium-derived residence time of 2.7 days in October 2006 and 2.0 days in June 2007, total SGD fluxes have been estimated in 71 500 and 187 000 m3 d−1, respectively, with fresh-SGD contributions representing 71% and 85%. The calculated SGD-associated nutrient fluxes, most likely of natural origin, were 1500 and 8300 μmol m−2 d−1 of DIN and 19 and 40 μmol m−2 d−1 of DIP in October 2006 and June 2007, respectively. These inputs may actually lead to or enhance P limitation, thereby altering the structure of biological communities in the area.

  1. Groundwater and nutrient discharge through karstic coastal springs (Castelló, Spain

    Directory of Open Access Journals (Sweden)

    E. Garcia-Solsona


    Full Text Available Discharge of groundwater and associated chemical compounds into coastal karstic regions, which are abundant in the Mediterranean basin, is envisaged to be significant. In this study, we evaluate the groundwater discharge and its nutrient load to the open karstic site of Badum (Castelló, East Spain. Salinity profiles evidenced that groundwater discharge from coastal brackish springs causes a buoyant fresher layer, as identified with thermal infrared images. Chemical tracers (radium isotopes, dissolved inorganic silicate and seawater major elements have been used to determine a brackish groundwater proportion in coastal waters of 36% in October 2006 and 44% in June 2007. Based on a radium-derived residence time of 2.7 days in October 2006 and 2.0 days in June 2007, total SGD fluxes have been estimated in 71 500 and 187 000 m3 d−1, respectively, with fresh-SGD contributions representing 71% and 85%. The calculated SGD-associated nutrient fluxes, most likely of natural origin, were 1500 and 8300 μmol m−2 d−1 of DIN and 19 and 40 μmol m−2 d−1 of DIP in October 2006 and June 2007, respectively. These inputs may actually lead to or enhance P limitation, thereby altering the structure of biological communities in the area.

  2. Assessment of the impact of sea-level rise due to climate change on coastal groundwater discharge. (United States)

    Masciopinto, Costantino; Liso, Isabella Serena


    An assessment of sea intrusion into coastal aquifers as a consequence of local sea-level rise (LSLR) due to climate change was carried out at Murgia and Salento in southern Italy. The interpolation of sea-level measurements at three tide-gauge stations was performed during the period of 2000 to 2014. The best fit of measurements shows an increasing rate of LSLR ranging from 4.4mm/y to 8.8mm/y, which will result in a maximum LSLR of approximately 2m during the 22nd century. The local rate of sea-level rise matches recent 21st and 22nd century projections of mean global sea-level rise determined by other researchers, which include increased melting rates of the Greenland and Antarctic ice sheets, the effect of ocean thermal expansion, the melting of glaciers and ice caps, and changes in the quantity of stored land water. Subsequently, Ghyben-Herzberg's equation for the freshwater/saltwater interface was rewritten in order to determine the decrease in groundwater discharge due to the maximum LSLR. Groundwater flow simulations and ArcGIS elaborations of digital elevation models of the coast provided input data for the Ghyben-Herzberg calculation under the assumption of head-controlled systems. The progression of seawater intrusion due to LSLR suggests an impressive depletion of available groundwater discharge during the 22nd century, perhaps as much as 16.1% of current groundwater pumping for potable water in Salento. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Tracking groundwater discharge to a large river using tracers and geophysics. (United States)

    Harrington, Glenn A; Gardner, W Payton; Munday, Tim J


    Few studies have investigated large reaches of rivers in which multiple sources of groundwater are responsible for maintaining baseflow. This paper builds upon previous work undertaken along the Fitzroy River, one of the largest perennial river systems in north-western Australia. Synoptic regional-scale sampling of both river water and groundwater for a suite of environmental tracers ((4) He, (87) Sr/(86) Sr, (222) Rn and major ions), and subsequent modeling of tracer behavior in the river, has enabled definition and quantification of groundwater input from at least three different sources. We show unambiguous evidence of both shallow "local" groundwater, possibly recharged to alluvial aquifers beneath the adjacent floodplain during recent high-flow events, and old "regional" groundwater introduced via artesian flow from deep confined aquifers. We also invoke hyporheic exchange and either bank return flow or parafluvial flow to account for background (222) Rn activities and anomalous chloride trends along river reaches where there is no evidence of the local or regional groundwater inputs. Vertical conductivity sections acquired through an airborne electromagnetic (AEM) survey provide insights to the architecture of the aquifers associated with these sources and general groundwater quality characteristics. These data indicate fresh groundwater from about 300 m below ground preferentially discharging to the river, at locations consistent with those inferred from tracer data. The results demonstrate how sampling rivers for multiple environmental tracers of different types-including stable and radioactive isotopes, dissolved gases and major ions-can significantly improve conceptualization of groundwater-surface water interaction processes, particularly when coupled with geophysical techniques in complex hydrogeological settings.

  4. Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux. (United States)

    Wang, Xuejing; Li, Hailong; Jiao, Jiu Jimmy; Barry, D A; Li, Ling; Luo, Xin; Wang, Chaoyue; Wan, Li; Wang, Xusheng; Jiang, Xiaowei; Ma, Qian; Qu, Wenjing


    Near- and off-shore fresh groundwater resources become increasingly important with the social and economic development in coastal areas. Although large scale (hundreds of km) submarine groundwater discharge (SGD) to the ocean has been shown to be of the same magnitude order as river discharge, submarine fresh groundwater discharge (SFGD) with magnitude comparable to large river discharge is never reported. Here, we proposed a method coupling mass-balance models of water, salt and radium isotopes based on field data of (223)Ra, (226)Ra and salinity to estimate the SFGD, SGD. By applying the method in Laizhou Bay (a water area of ~6000 km(2)), we showed that the SFGD and SGD are 0.57 ~ 0.88 times and 7.35 ~ 8.57 times the annual Yellow River flux in August 2012, respectively. The estimate of SFGD ranges from 4.12 × 10(7) m(3)/d to 6.36 × 10(7) m(3)/d, while SGD ranges from 5.32 × 10(8) m(3)/d to 6.20 × 10(8) m(3)/d. The proportion of the Yellow River input into Laizhou Bay was less than 14% of the total in August 2012. Our method can be used to estimate SFGD in various coastal waters.

  5. Calibration and use of continuous heat-type automated seepage meters for submarine groundwater discharge measurements (United States)

    Mwashote, B.M.; Burnett, W.C.; Chanton, J.; Santos, I.R.; Dimova, N.; Swarzenski, P.W.


    Submarine groundwater discharge (SGD) assessments were conducted both in the laboratory and at a field site in the northeastern Gulf of Mexico, using a continuous heat-type automated seepage meter (seepmeter). The functioning of the seepmeter is based on measurements of a temperature gradient in the water between downstream and upstream positions in its flow pipe. The device has the potential of providing long-term, high-resolution measurements of SGD. Using a simple inexpensive laboratory set-up, we have shown that connecting an extension cable to the seepmeter has a negligible effect on its measuring capability. Similarly, the observed influence of very low temperature (???3 ??C) on seepmeter measurements can be accounted for by conducting calibrations at such temperatures prior to field deployments. Compared to manual volumetric measurements, calibration experiments showed that at higher water flow rates (>28 cm day-1 or cm3 cm-2 day-1) an analog flowmeter overestimated flow rates by ???7%. This was apparently due to flow resistance, turbulence and formation of air bubbles in the seepmeter water flow tubes. Salinity had no significant effect on the performance of the seepmeter. Calibration results from fresh water and sea water showed close agreement at a 95% confidence level significance between the data sets from the two media (R2 = 0.98). Comparatively, the seepmeter SGD measurements provided data that are comparable to manually-operated seepage meters, the radon geochemical tracer approach, and an electromagnetic (EM) seepage meter. ?? 2009 Elsevier Ltd.

  6. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada (United States)

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, Jody L.; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.


    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation

  7. Density-dependent surface water-groundwater interaction and nutrient discharge in the Swan-Canning Estuary (United States)

    Smith, Anthony J.; Turner, Jeffrey V.


    Salinity in the Swan-Canning Estuary, Western Australia, varies seasonally from freshwater conditions in winter up to the salinity of seawater in summer. Field observations show that the resulting seasonal density contrasts between the estuary and the adjacent fresh groundwater system are sufficient to drive mixed-convection cells that give rise to circulation of river water in the aquifer. In this study, we examine the role of steady density-driven convection as a mechanism that contributes to the exchange of dissolved nutrients, particularly ammonium, between the Swan-Canning Estuary and the local groundwater system. We present results from two-dimensional (section) and three-dimensional density-coupled flow and mass transport modelling, in comparison with Glover's abrupt-interface solution for saltwater intrusion. The modelling is focused on developing an understanding of the physical processes that influence the long-term or mean convective behaviour of groundwater beneath the estuary. It is shown that the convective stability depends fundamentally on the interplay between two factors: (1) the downward destabilizing buoyancy effect of density contrasts between the estuary and aquifer; and (2) the upward stabilizing influence of regional groundwater discharge. The structure of convection cells beneath the estuary and recirculation rates of estuary water within the groundwater system are shown to be related to a flow-modified Rayleigh number that depends critically on the aquifer anisotropy and estuary meander pattern. The recirculation of estuary water by these mechanisms is responsible for transport of high concentrations of ammonium, observed in pore fluids in the estuary bed sediments, into groundwater and its eventual return to the estuary.

  8. Properties of water surface discharge at different pulse repetition rates

    Energy Technology Data Exchange (ETDEWEB)

    Ruma,; Yoshihara, K. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Hosseini, S. H. R., E-mail:; Sakugawa, T.; Akiyama, H. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Akiyama, M. [Department of Electrical and Electronic Engineering, Kagoshima University, Kagoshima 890-0065 (Japan); Lukeš, P. [Institute of Plasma Physics, AS CR, Prague, Prague 18200 (Czech Republic)


    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H₂O₂) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H₂O₂ and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  9. Detecting groundwater discharge dynamics from point to catchment scale in a lowland stream: combining hydraulic and tracer methods

    Directory of Open Access Journals (Sweden)

    J. B. Poulsen


    Full Text Available Detecting, quantifying, and understanding groundwater discharge to streams are crucial for the assessment of water, nutrient and contaminant exchange at the surface water–groundwater interface. In lowland agricultural catchments with significant groundwater discharge this is of particular importance because of the risk of excess leaching of nutrients to streams. Here we aim to combine hydraulic and tracer methods from point to catchment scale to assess the temporal and spatial variability of groundwater discharge in a lowland, groundwater gaining stream in Denmark. At the point scale groundwater fluxes to the stream were quantified based on Vertical streambed Temperature Profiles (VTP. At the reach scale (0.15–2 km the spatial distribution of zones of focused groundwater discharge was investigated by the use of Distributed Temperature Sensing (DTS. Groundwater discharge to the stream was quantified using differential gauging with an Acoustic Doppler Current Profiler (ADCP. At the catchment scale (26–114 km2 runoff sources during main rain events were investigated by hydrograph separations based on Electrical Conductivity (EC and stable isotopes 2H / 1H. Clear differences in runoff sources between catchments were detected, ranging from approximately 65% event water for the most responsive sub-catchment and less than 10% event water for the least responsive sub-catchment. This shows a large variability in groundwater discharge to the stream, despite the similar lowland characteristics of sub-catchments, indicating the usefulness of environmental tracers for obtaining information about integrated catchment functioning during events. There were also clear spatial patterns of focused groundwater discharge detected by the DTS and ADCP measurements at the reach scale suggesting high spatial variability, where a significant part of groundwater discharge was concentrated in few zones indicating the possibility of concentrated nutrient or pollutant

  10. Proposed test method for determining discharge rates from water closets

    DEFF Research Database (Denmark)

    Nielsen, V.; Fjord Jensen, T.

    At present the rates at which discharge takes place from sanitary appliances are mostly known only in the form of estimated average values. SBI has developed a measuring method enabling determination of the exact rate of discharge from a sanitary appliance as function of time. The methods depends...... on the application of a calibrated measuring vessel, the volume of water in the vessel being measured at a given moment by means of a transducer and recorded by an UV recorder which is able to follow very rapid variations. In the article the apparatus is described in detail, and an example is given...... of the measurements of the rate of discharge from a WC....

  11. Is Submarine Groundwater Discharge a Gas Hydrate Formation Mechanism on the Circum-Arctic Shelf? (United States)

    Frederick, J. M.; Buffett, B. A.


    Methane hydrate is an ice-like solid that can sequester large quantities of methane gas in marine sediments along most continental margins where thermodynamic conditions permit its formation. Along the circum-Arctic shelf, relict permafrost-associated methane hydrate deposits formed when non-glaciated portions of the shelf experienced subaerial exposure during ocean transgressions. Gas hydrate stability and the permeability of circum-Arctic shelf sediments to gas migration is closely linked with relict submarine permafrost. Heat flow observations on the Alaskan North Slope and Canadian Beaufort Shelf suggest the movement of groundwater offshore, but direct observations of groundwater flow do not exist. Submarine discharge, an offshore flow of fresh, terrestrial groundwater, can affect the temperature and salinity field in shelf sediments, and may be an important factor in submarine permafrost and gas hydrate evolution on the Arctic continental shelf. Submarine groundwater discharge may also enhance the transport of organic matter for methanogenesis within marine sediments. Because it is buoyancy-driven, the velocity field contains regions with a vertical (upward) component as groundwater flows offshore. This combination of factors makes submarine groundwater discharge a potential mechanism controlling permafrost-associated gas hydrate evolution on the Arctic continental shelf. In this study, we quantitatively investigate the feasibility of submarine groundwater discharge as a control on permafrost-associated gas hydrate formation on the Arctic continental shelf, using the Canadian Beaufort Shelf as an example. We have developed a shelf-scale, two-dimensional numerical model based on the finite volume method for two-phase flow of pore fluid and methane gas within Arctic shelf sediments. The model tracks the evolution of the pressure, temperature, salinity, methane gas, methane hydrate, and permafrost fields given imposed boundary conditions, with latent heat of

  12. Predicting groundwater flow system discharge in the river network at the watershed scale (United States)

    Caruso, Alice; Ridolfi, Luca; Boano, Fulvio


    The interaction between rivers and aquifers affects the quality and the quantity of surface and subsurface water since it plays a crucial role for solute transport, nutrient cycling and microbial transformations. The groundwater-surface water interface, better known as hyporheic zone, has a functional significance for the biogeochemical and ecological conditions of the fluvial ecosystem since it controls the flux of groundwater solutes discharging into rivers, and vice versa. The hyporheic processes are affected by the complex surrounding aquifer because the groundwater flow system obstructs the penetration of stream water into the sediments. The impact of large-scale stream-aquifer interactions on small scale exchange has generally been analyzed at local scales of a river reach, or even smaller. However, a complete comprehension of how hyporheic fluxes are affected by the groundwater system at watershed scale is still missing. Evaluating this influence is fundamental to predict the consequences of hyporheic exchange on water quality and stream ecology. In order to better understand the actual structure of hyporheic exchange along the river network, we firstly examine the role of basin topography complexity in controlling river-aquifer interactions. To reach this target, we focus on the analysis of surface-subsurface water exchange at the watershed scale, taking into account the river-aquifer interactions induced by landscape topography. By way of a mathematical model, we aim to improve the estimation of the role of large scale hydraulic gradients on hyporheic exchange. The potential of the method is demonstrated by the analysis of a benchmark case's study, which shows how the topographic conformation influences the stream-aquifer interaction and induces a substantial spatial variability of the groundwater discharge even among adjacent reaches along the stream. The vertical exchange velocity along the river evidences a lack of autocorrelation. Both the groundwater

  13. Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach. (United States)

    Freitas, Juliana G; Rivett, Michael O; Roche, Rachel S; Durrant Neé Cleverly, Megan; Walker, Caroline; Tellam, John H


    The typically elevated natural attenuation capacity of riverbed-hyporheic zones is expected to decrease chlorinated hydrocarbon (CHC) groundwater plume discharges to river receptors through dechlorination reactions. The aim of this study was to assess physico-chemical processes controlling field-scale variation in riverbed-hyporheic zone dechlorination of a TCE groundwater plume discharge to an urban river reach. The 50-m long pool-riffle-glide reach of the River Tame in Birmingham (UK) studied is a heterogeneous high energy river environment. The shallow riverbed was instrumented with a detailed network of multilevel samplers. Freeze coring revealed a geologically heterogeneous and poorly sorted riverbed. A chlorine number reduction approach provided a quantitative indicator of CHC dechlorination. Three sub-reaches of contrasting behaviour were identified. Greatest dechlorination occurred in the riffle sub-reach that was characterised by hyporheic zone flows, moderate sulphate concentrations and pH, anaerobic conditions, low iron, but elevated manganese concentrations with evidence of sulphate reduction. Transient hyporheic zone flows allowing input to varying riverbed depths of organic matter are anticipated to be a key control. The glide sub-reach displayed negligible dechlorination attributed to the predominant groundwater baseflow discharge condition, absence of hyporheic zone, transition to more oxic conditions and elevated sulphate concentrations expected to locally inhibit dechlorination. The tail-of-pool-riffle sub-reach exhibited patchy dechlorination that was attributed to sub-reach complexities including significant flow bypass of a low permeability, high organic matter, silty unit of high dechlorination potential. A process-based conceptual model of reach-scale dechlorination variability was developed. Key findings of practitioner relevance were: riverbed-hyporheic zone CHC dechlorination may provide only a partial, somewhat patchy barrier to CHC

  14. Isotopic, geophysical and biogeochemical investigation of submarine groundwater discharge: IAEA-UNESCO intercomparison exercise at Mauritius Island. (United States)

    Povinec, P P; Burnett, W C; Beck, A; Bokuniewicz, H; Charette, M; Gonneea, M E; Groening, M; Ishitobi, T; Kontar, E; Liong Wee Kwong, L; Marie, D E P; Moore, W S; Oberdorfer, J A; Peterson, R; Ramessur, R; Rapaglia, J; Stieglitz, T; Top, Z


    Submarine groundwater discharge (SGD) into a shallow lagoon on the west coast of Mauritius Island (Flic-en-Flac) was investigated using radioactive ((3)H, (222)Rn, (223)Ra, (224)Ra, (226)Ra, (228)Ra) and stable ((2)H, (18)O) isotopes and nutrients. SGD intercomparison exercises were carried out to validate the various approaches used to measure SGD including radium and radon measurements, seepage rate measurements using manual and automated meters, sediment bulk conductivity and salinity surveys. SGD measurements using benthic chambers placed on the floor of the Flic-en-Flac Lagoon showed discharge rates up to 500 cm/day. Large variability in SGD was observed over distances of a few meters, which were attributed to different geomorphological features. Deployments of automated seepage meters captured the spatial and temporal variability of SGD with a mean seepage rate of 10 cm/day. The stable isotopic composition of submarine waters was characterized by significant variability and heavy isotope enrichment and was used to predict the contribution of fresh terrestrially derived groundwater to SGD (range from a few % to almost 100%). The integrated SGD flux, estimated from seepage meters placed parallel to the shoreline, was 35 m(3)/m day, which was in reasonable agreement with results obtained from a hydrologic water balance calculation (26 m(3)/m day). SGD calculated from the radon inventory method using in situ radon measurements were between 5 and 56 m(3)/m per day. Low concentrations of radium isotopes observed in the lagoon water reflected the low abundance of U and Th in the basalt that makes up the island. High SGD rates contribute to high nutrients loading to the lagoon, potentially leading to eutrophication. Each of the applied methods yielded unique information about the character and magnitude of SGD. The results of the intercomparison studies have resulted a better understanding of groundwater-seawater interactions in coastal regions. Such information is

  15. Quantification of tidally-influenced seasonal groundwater discharge to the Bay of Bengal by seepage meter study (United States)

    Debnath, Palash; Mukherjee, Abhijit


    Submarine groundwater discharges (SGD) play a major role in solute transport and nutrient flux to the ocean. We have conducted a spatio-temporal high-resolution lunar-tidal cycle-scale seepage meter experiment during pre-monsoon and post-monsoon seasons, to quantify the spatio-temporal patterns and variability of SGD, its terrestrial (T-SGD) and marine components (M-SGD). The measured daily average SGD rates range from no discharge to 3.6 m3 m-2 d-1 during pre-monsoon season and 0.08-5.9 m3 m-2 d-1 during post-monsoon seasons, depending on the tidal pattern. The uncertainty for SGD measurement is calculated as ±0.8% to ±11% for pre-monsoon and ±1.8% to ±17% for post-monsoon respectively. A linear, inverse relationship was observed between the calculated T-SGD and M-SGD components, which varied along the distance from the coast and position in the tidal-cycle, spatial and temporal (daily) variations of seepage rates within the lunar tidal cycle period distinctly demonstrate the influence of tides on groundwater seepage rate. As an instance, for the identification of the bulk discharge location, the centroid of the integrated SGD rate has been calculated and found to be near 20 m offshore area. The average discharge rate per unit area further extrapolated to total SGD fluxes to the Bay of Bengal from eastern Indian coast by extrapolation of the annual and seasonal fluxes observed in the study area, which are first direct/experimental estimate of SGD to the Bay of Bengal. Approximations suggest that in present-day condition, total average annual SGD to the Bay of Bengal is about 8.98 ± 0.6 × 108 m3/y. This is suggested that the SGD input to the ocean through the Bay of Bengal is approximately 0.9% of the global input from the inter-tidal zone and that has an implication on the mass balance of discharging solutes/nutrients to the global oceans. High T-SGD input is observed for all season, which is largest toward landward direction from the delineated saltwater

  16. Geochemical and geophysical examination of submarine groundwater discharge and associated nutrient loading estimates into Lynch Cove, Hood Canal, WA (United States)

    Swarzenski, P.W.; Simonds, F.W.; Paulson, A.J.; Kruse, S.; Reich, C.


    Geochemical tracer data (i.e., 222Rn and four naturally occurring Ra isotopes), electromagnetic (EM) seepage meter results, and high-resolution, stationary electrical resistivity images were used to examine the bi-directional (i.e., submarine groundwater discharge and recharge) exchange of a coastal aquifer with seawater. Our study site for these experiments was Lynch Cove, the terminus of Hood Canal, WA, where fjord-like conditions dramatically limit water column circulation that can lead to recurring summer-time hypoxic events. In such a system a precise nutrient budget may be particularly sensitive to groundwater-derived nutrient loading. Shore-perpendicular time-series subsurface resistivity profiles show clear, decimeter-scale tidal modulation of the coastal aquifer in response to large, regional hydraulic gradients, hydrologically transmissive glacial terrain, and large (4-5 m) tidal amplitudes. A 5-day 222Rn time-series shows a strong inverse covariance between 222Rn activities (0.5−29 dpm L-1) and water level fluctuations, and provides compelling evidence for tidally modulated exchange of groundwater across the sediment/water interface. Mean Rn-derived submarine groundwater discharge (SGD) rates of 85 ± 84 cm d-1 agree closely in the timing and magnitude with EM seepage meter results that showed discharge during low tide and recharge during high tide events. To evaluate the importance of fresh versus saline SGD, Rn-derived SGD rates (as a proxy of total SGD) were compared to excess 226Ra-derived SGD rates (as a proxy for the saline contribution of SGD). The calculated SGD rates, which include a significant (>80%) component of recycled seawater, are used to estimate associated nutrient (NH4+, Si, PO43-, NO3 + NO2, TDN) loads to Lynch Cove. The dissolved inorganic nitrogen (DIN = NH4 + NO2 + NO3) SGD loading estimate of 5.9 × 104 mol d-1 is 1−2 orders of magnitude larger than similar estimates derived from atmospheric deposition and surface water runoff

  17. Geochemical and geophysical examination of submarine groundwater discharge and associated nutrient loading estimates into Lynch Cove, Hood Canal, WA. (United States)

    Swarzenski, Peter W; Simonds, F William; Paulson, Anthony J; Kruse, Sarah; Reich, Chris


    Geochemical tracer data (i.e., 222Rn and four naturally occurring Ra isotopes), electromagnetic (EM) seepage meter results, and high-resolution, stationary electrical resistivity images were used to examine the bi-directional (i.e., submarine groundwater discharge and recharge) exchange of a coastal aquifer with seawater. Our study site for these experiments was Lynch Cove, the terminus of Hood Canal, WA, where fjord-like conditions dramatically limit water column circulation that can lead to recurring summer-time hypoxic events. In such a system a precise nutrient budget may be particularly sensitive to groundwater-derived nutrient loading. Shore-perpendicular time-series subsurface resistivity profiles show clear, decimeter-scale tidal modulation of the coastal aquifer in response to large, regional hydraulic gradients, hydrologically transmissive glacial terrain, and large (4-5 m) tidal amplitudes. A 5-day 222Rn time-series shows a strong inverse covariance between 222Rn activities (0.5-29 dpm L(-1)) and water level fluctuations, and provides compelling evidence for tidally modulated exchange of groundwater across the sediment/water interface. Mean Rn-derived submarine groundwater discharge (SGD) rates of 85 +/- 84 cm d(-1) agree closely in the timing and magnitude with EM seepage meter results that showed discharge during low tide and recharge during high tide events. To evaluate the importance of fresh versus saline SGD, Rn-derived SGD rates (as a proxy of total SGD) were compared to excess 226Ra-derived SGD rates (as a proxy for the saline contribution of SGD). The calculated SGD rates, which include a significant (>80%) component of recycled seawater, are used to estimate associated nutrient (NH4+, Si, PO4(3-), NO3 + NO2, TDN) loads to Lynch Cove. The dissolved inorganic nitrogen (DIN = NH4 + NO2 + NO3) SGD loading estimate of 5.9 x 10(4) mol d(-1) is 1-2 orders of magnitude larger than similar estimates derived from atmospheric deposition and surface water

  18. Chronology, sedimentology, and microfauna of groundwater discharge deposits in the central Mojave Desert, Valley Wells, California (United States)

    Pigati, Jeffrey S.; Miller, David M.; Bright, Jordon E.; Mahan, Shannon; Nekola, Jeffrey C.; Paces, James B.


    During the late Pleistocene, emergent groundwater supported persistent and long-lived desert wetlands in many broad valleys and basins in the American Southwest. When active, these systems provided important food and water sources for local fauna, supported hydrophilic and phreatophytic vegetation, and acted as catchments for eolian and alluvial sediments. Desert wetlands are represented in the geologic record by groundwater discharge deposits, which are also called spring or wetland deposits. Groundwater discharge deposits contain information on the timing and magnitude of past changes in water-table levels and, thus, are a source of paleohydrologic and paleoclimatic information. Here, we present the results of an investigation of extensive groundwater discharge deposits in the central Mojave Desert at Valley Wells, California. We used geologic mapping and stratigraphic relations to identify two distinct wetland sequences at Valley Wells, which we dated using radiocarbon, luminescence, and uranium-series techniques. We also analyzed the sediments and microfauna (ostracodes and gastropods) to reconstruct the specific environments in which they formed. Our results suggest that the earliest episode of high water-table conditions at Valley Wells began ca. 60 ka (thousands of calendar yr B.P.), and culminated in peak discharge between ca. 40 and 35 ka. During this time, cold (4–12 °C) emergent groundwater supported extensive wetlands that likely were composed of a wet, sedge-rush-tussock meadow mixed with mesic riparian forest. After ca. 35 ka, the water table dropped below the ground surface but was still shallow enough to support dense stands of phreatophytes through the Last Glacial Maximum (LGM). The water table dropped further after the LGM, and xeric conditions prevailed until modest wetlands returned briefly during the Younger Dryas cold event (13.0–11.6 ka). We did not observe any evidence of wet conditions during the Holocene at Valley Wells. The timing

  19. Geochemical and isotopic characterization of groundwater discharge to the Athabasca River: Insights into sources of salinity (United States)

    Birks, S. J.; Moncur, M. C.; Gibson, J. J.; YI, Y.; Fennell, J.; Jasechko, S.


    The Athabasca Oil Sands Region (AOSR) of Northern Alberta represents an important oil reserve for Canada and the world. Identifying impacts of oil sands development to water quality requires indicators of anthropogenic impacts that can be clearly separated from natural background variability. Identifying suitable water quality parameters is complicated in this region because the Athabasca River and its tributaries are incised directly into bitumen saturated sands of the McMurray Formation, as well as other saline Cretaceous and Devonian Formations. Previous work has suggested that the natural input of saline groundwater from these formations may be the the cause for the large increases in chloride observed between Fort McMurray and Old Fort, but more detailed understanding the background inorganic and organic inputs from the different geological units along this stretch of the river will improve our understanding of the natural hydrogeochemical setting of the region and our ability to identify anthropogenic inputs. Here we compile and compare new isotope data collected from various seep sampling campaigns with regional groundwater and river water datasets to better understand the potential sources of dissolved solutes entering the Athabasca River from natural groundwater discharge. Geophysical surveys conducted along the Athabasca River were used to identify areas with elevated terrain conductivity where high salinity groundwater could be discharging to the river. Samples of porewater from the in the hyporheic zone in these areas were obtained using drive point piezometers installed between 1- 3m below the sediment interface. The porewater, groundwater and river water isotope data provide information about the sources of the water (δ18O and δ2H), and solutes (δ34S-SO4, 87Sr/86Sr, δ37Cl, δ11B, δ13C-DIC, δ13C-DOC) as well as information on groundwater ages (3H, 14C). The porewater in the alluvial sediment showed variable degrees of mixing with the overlying

  20. Identifying Groundwater Discharge in the Merced River Basin, California Using Radon-222 (United States)

    Shaw, G. D.; Hudson, G. B.; Moran, J.; Conklin, M.


    Groundwater flow in fractured granite of the Sierra Nevada is poorly characterized, in particular, contributions of mountain block recharge are not known. Using a combination of water quality and isotopic analyses, groundwater inputs to the Upper Merced River were characterized. Between November 2003 and July 2004, monthly water quality samples were taken from Happy Isles to the inlet of Lake McClure, a 75 km reach. These samples demonstrated the expected dilution due to snowmelt in the spring. In the fall, the spatial profile matched the geology with anion concentrations increasing downstream of the transition from the Sierra Nevada batholith to the country rock, suggesting significant groundwater inputs. From July 19 to 21, 2004, radon-222 and other noble gases (He, Ne, Ar, Kr and Xe abundances and 3He/4He ratio) were measured along a 37 km reach of the Merced River, extending from the top of Yosemite Valley to the confluence of the South Fork of the Merced River. All radon samples were extracted into mineral oil immediately in the field and counted using liquid scintillation; noble gas samples were collected in copper tubes. Radon-222 activity varied from about 1 to 100 pCi/L (at collection time) indicating significant, spatially variable groundwater discharge into the Merced River. Two one-mile reaches of the Merced River were sampled for 222Rn on a fine scale. Large fracture sets in these two locations and previous temperature measurements suggested that groundwater discharge was higher relative to other locations along the river. Radon-222 activity was low upstream and downstream of large fractures observed in the bedrock; whereas, 222Rn activity was high at large fracture zones. Degassing is rapid downstream of fractures where no groundwater discharge is observed. For a representative groundwater end-member, radon-222 activity measured in Fern Spring, Yosemite Valley was about 1200 pCi/L. Excess 4He from U and Th decay is observed in samples with elevated

  1. Estimating the submarine groundwater and nutrients discharge of Yellow River delta with cross-section method. (United States)

    Liu, Guanqun; Wang, Juan; Yuan, Ruiqiang; Sun, Beibei; Zhu, Liangchao; Wang, Yansi


    In this paper, cross-section method was used to estimate the groundwater and nutrients discharge fluxing to the Bohai Sea from the Yellow River Delta. The flux of shallow phreatic groundwater (within 10 m) in the Yellow River Farm discharging into sea was 2.9x10(-5) m3/m d in 2004 and 3.1x10(-5) m3/m d in 2005. Time distribution monthly mean flux is consistent with the Yellow River's runoff but taking on lag effect. And the volume of the phreatic water discharging from the whole delta is 3.71-3.77x10(3) m3, which is 2x10(-5)% of the Yellow River's annual runoff. The transport amount of shallow confined water (buried depth 15-20 m) from 2004 to 2005 was 5.7-6.2x10(-3) m3/m d in the Yellow River delta, 0.0037-0.004% of the runoff of Yellow River. There is low concentration of NO3-, NH4+ and PO4(3-) but high dissolved SiO2 in the shallow confined aquifer. Despite the high concentration of phreatic nitrate, it weakly influences the seawater because of the little flux of discharge into sea.

  2. Recharge and discharge of near-surface groundwater in Forsmark. Comparison of classification methods

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent [Golder Associates AB, Uppsala (Sweden); Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Taeby (Sweden); Brydsten, Lars [Umeaa University, Dept. of Ecology and Environmental Science (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)


    This report presents and compares data and models for identification of near-surface groundwater recharge and discharge (RD) areas in Forsmark. The general principles of groundwater recharge and discharge are demonstrated and applied to interpret hydrological and hydrogeological observations made in the Forsmark area. 'Continuous' RD classification methods considered in the study include topographical modelling, map overlays, and hydrological-hydrogeological flow modelling. 'Discrete' (point) methods include field-based and hydrochemistry-based RD classifications of groundwater monitoring well locations. The topographical RD modelling uses the digital elevation model as the only input. The map overlays use background maps of Quaternary deposits, soils, and ground- and field layers of the vegetation/land use map. Further, the hydrological-hydrogeological modelling is performed using the MIKE SHE-MIKE 11 software packages, taking into account e.g. topography, meteorology, hydrogeology, and geometry of watercourses and lakes. The best between-model agreement is found for the topography-based model and the MIKE SHE-MIKE 11 model. The agreement between the topographical model and the map overlays is less good. The agreement between the map overlays on the one hand, and the MIKE SHE and field-based RD classifications on the other, is thought to be less good, as inferred from the comparison made with the topography-based model. However, much improvement of the map overlays can likely be obtained, e.g. by using 'weights' and calibration (such exercises were outside the scope of the present study). For field-classified 'recharge wells', there is a good agreement to the hydrochemistry-based (Piper plot) well classification, but less good for the field-classified 'discharge wells'. In addition, the concentration of the age-dating parameter tritium shows low variability among recharge wells, but a large spread among discharge

  3. Focused groundwater discharge of phosphorus to a eutrophic seepage lake (Lake Væng, Denmark): implications for lake ecological state and restoration

    DEFF Research Database (Denmark)

    Kidmose, Jacob; Nilsson, Bertel; Engesgaard, Peter


    A study on Lake Væng in Denmark demonstrates a high potential for loading of phosphorous via groundwater to seepage lakes. Groundwater discharges are displayed as an important source of phosphorous to a lake due to: (1) high concentrations in the aquifer just below the lake, and (2) the main flow...... paths through the aquifer–lakebed interface either being overland flow through a seepage face, or focused in zones with very high discharge rates. In-lake springs have measured discharge of up to 7.45 m3 per m2 of lakebed per day. These findings were based on seepage meter measurements at 18 locations......, stable isotope (δ18O) analyses, temperature profiles and mapping of ice cover distribution. Groundwater–lake interaction was modelled with a 2D conceptual flow model (MODFLOW) with hydrogeology interpreted from catchment multi electrode profiling, on-lake ground-penetrating radar, well logging...

  4. Climate change and groundwater ecohydrology: Simulating subsurface flow and discharge zones in Covey Hill, Quebec, Canada (United States)

    Levison, J.; Larocque, M.; Ouellet, M.; van Waterschoot, L.


    Nearly 2 billion people use groundwater and in Canada it is the potable water supply for about 30% of the population. Groundwater is also used in industrial and agricultural applications, and contributes to important hydrological habitats for various species. Limited research has been conducted to determine the potential impacts of climate change on groundwater. Local studies are crucial to better understand how, for example, increased duration and frequency of storms or drought periods may affect groundwater dependent ecosystems in order to anticipate and mitigate the impacts. Thus, the aim of this research is to explore the effects of climate change on a groundwater-surface water interacting system that supports a fragile ecosystem. This research is used to inform ecological conservation measures. The research site is the 17500 ha Covey Hill Natural Laboratory, which is located on the Quebec, Canada and New York State, USA border in the Chateauguay River watershed. At various locations within the Natural Laboratory there is continuous monitoring of groundwater levels and river flows. Covey Hill is an important recharge zone for the regional aquifer and provides habitat for endangered salamanders in discharge zones. Two hydrogeological models were constructed to represent flow at the site. First, a three-dimensional, finite difference model was developed using MODFLOW software to simulate overall groundwater flow at the research site. Second, a smaller-scale, discrete fracture, transient, three-dimensional, finite difference, integrated model was developed using HydroGeoSphere software to represent in better detail flow from bedrock springs that occur at mid-slope and provide the habitat for endangered salamanders. The models were used to: 1) observe groundwater flow under current climate conditions; 2) quantify water dynamics in response to climate change using 10 scenarios from the Canadian Regional Climate Model (for 1971-2000 and 2041-2070 time periods); and 3

  5. The contribution of groundwater discharge to the overall water budget of Boreal lakes in Alberta/Canada estimated from a radon mass balance

    Directory of Open Access Journals (Sweden)

    A. Schmidt


    Full Text Available Radon-222, a naturally-occurring radioisotope with a half-life of 3.8 days, was used to estimate groundwater discharge to small lakes in wetland-rich basins in the vicinity of Fort McMurray, Alberta, a region under significant water development pressures including both oil sands mining and in situ extraction. A program of field investigations was carried out in March and July 2008 using a Durridge RAD-7® and RAD Aqua® to measure radon-222 activity distributions in dissolved gas in the water column of two lakes as a tracer of groundwater discharge in the timeframe of 4 half-lives (15 days. Radon activity concentrations in lakes was found to range from 0.5 to 72 Bq/m3, compared to radon activity concentrations in groundwaters, measured using a RAD H2O, in the range of 2000–8000 Bq/m3. Radon mass balance, used in comparison with stable isotope mass balance, suggested that the two lakes under investigation had quite different proportions of annual groundwater inflow, one being close to 0.5% of annual inflow and the other about 14%, with lower values in the former attributed to a larger drainage area/lake area ratio which promotes greater surface connectivity. Interannual variability in groundwater proportions is expected despite constancy of groundwater discharge rates due to observed variability in annual surface runoff. Combination of stable isotope and radon mass balance approaches provides information on flowpath partitioning that is useful for evaluating surface-groundwater connectivity and acid sensitivity of individual water bodies of interest in the Alberta Oil Sands Region.

  6. Estimation of nearshore groundwater discharge and its potential effects on a fringing coral reef. (United States)

    Blanco, Ariel C; Watanabe, Atsushi; Nadaoka, Kazuo; Motooka, Shunsuke; Herrera, Eugene C; Yamamoto, Takahiro


    Radon (²²²Rn) measurements were conducted in Shiraho Reef (Okinawa, Japan) to investigate nearshore submarine groundwater discharge (SGD(nearshore)) dynamics. Estimated average groundwater flux was 2-3 cm/h (maximum 7-8 cm/h). End-member radon concentration and gas transfer coefficient were identified as major factors influencing flux estimation accuracy. For the 7-km long reef, SGD(nearshore) was 0.39-0.58 m³/s, less than 30% of Todoroki River's baseflow discharge. SGD(nearshore) was spatially and temporally variable, reflecting the strong influence of subsurface geology, tidal pumping, groundwater recharge, and hydraulic gradient. SGD(nearshore) elevated nearshore nitrate concentrations (0.8-2.2 mg/l) to half of Todoroki River's baseflow NO₃⁻-N (2-4 mg/L). This increased nearshore Chl-α from 0.5-2 μg/l compared to the typically low Chl-α (reef areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Non-intrusive characterization methods for wastewater-affected groundwater plumes discharging to an alpine lake. (United States)

    Roy, James W; Robillard, Jasen M; Watson, Susan B; Hayashi, Masaki


    Streams and lakes in rocky environments are especially susceptible to nutrient loading from wastewater-affected groundwater plumes. However, the use of invasive techniques such as drilling wells, installing piezometers or seepage meters, to detect and characterize these plumes can be prohibitive. In this work, we report on the use of four non-intrusive methods for this purpose at a site in the Rocky Mountains. The methods included non-invasive geophysical surveys of subsurface electrical conductivity (EC), in-situ EC measurement of discharging groundwater at the lake-sediment interface, shoreline water sampling and nutrient analysis, and shoreline periphyton sampling and analysis of biomass and taxa relative abundance. The geophysical surveys were able to detect and delineate two high-EC plumes, with capacitively coupled ERI (OhmMapper) providing detailed two-dimensional images. In situ measurements at the suspected discharge locations confirmed the presence of high-EC water in the two plumes and corroborated their spatial extent. The nutrient and periphyton results showed that only one of the two high-EC plumes posed a current eutrophication threat, with elevated nitrogen and phosphorus levels, high localized periphyton biomass and major shifts in taxonomic composition to taxa that are commonly associated with anthropogenic nutrient loading. This study highlights the need to use non-intrusive methods in combination, with geophysical and water EC-based methods used for initial detection of wastewater-affected groundwater plumes, and nutrient or periphyton sampling used to characterize their ecological effects.

  8. Modelling groundwater discharge areas using only digital elevation models as input data

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars [Umeaa Univ. (Sweden). Dept. of Biology and Environmental Science


    Advanced geohydrological models require data on topography, soil distribution in three dimensions, vegetation, land use, bedrock fracture zones. To model present geohydrological conditions, these factors can be gathered with different techniques. If a future geohydrological condition is modelled in an area with positive shore displacement (say 5,000 or 10,000 years), some of these factors can be difficult to measure. This could include the development of wetlands and the filling of lakes. If the goal of the model is to predict distribution of groundwater recharge and discharge areas in the landscape, the most important factor is topography. The question is how much can topography alone explain the distribution of geohydrological objects in the landscape. A simplified description of the distribution of geohydrological objects in the landscape is that groundwater recharge areas occur at local elevation curvatures and discharge occurs in lakes, brooks, and low situated slopes. Areas in-between these make up discharge areas during wet periods and recharge areas during dry periods. A model that could predict this pattern only using topography data needs to be able to predict high ridges and future lakes and brooks. This study uses GIS software with four different functions using digital elevation models as input data, geomorphometrical parameters to predict landscape ridges, basin fill for predicting lakes, flow accumulations for predicting future waterways, and topographical wetness indexes for dividing in-between areas based on degree of wetness. An area between the village of and Forsmarks' Nuclear Power Plant has been used to calibrate the model. The area is within the SKB 10-metre Elevation Model (DEM) and has a high-resolution orienteering map for wetlands. Wetlands are assumed to be groundwater discharge areas. Five hundred points were randomly distributed across the wetlands. These are potential discharge points. Model parameters were chosen with the

  9. Submarine groundwater discharge of total mercury and monomethylmercury to central California coastal waters. (United States)

    Black, Friank J; Paytan, Adina; Knee, Karen L; De Sieyes, Nicholas R; Ganguli, Priya M; Gray, Ellen; Flegal, A Russell


    Fluxes of total mercury (Hg(T)) and monomethylmercury (MMHg) associated with submarine groundwater discharge (SGD) at two sites onthe central California coast were estimated by combining measurements of Hg(T) and MMHg in groundwater with the use of short-lived, naturally occurring radium isotopes as tracers of groundwater inputs. Concentrations of Hg(T) were relatively low, ranging from 1.2 to 28.3 pM in filtered groundwater, 0.8 to 11.6 pM in filtered surface waters, and 2.5 to 12.9 pM in unfiltered surface waters. Concentrations of MMHg ranged from < 0.04 to 3.1 pM in filtered groundwater, < 0.04 to 0.53 pM in filtered surface waters, and 0.07 to 1.2 pM in unfiltered surface waters. Multiple linear regression analysis identified significant (p < 0.05) positive correlations between dissolved groundwater concentrations of Hg(T) and those of NH4+ and SiO2, and between dissolved groundwater concentrations of MMHg and those of Hg(T) and NH4+. However, such relationships did not account for the majority of the variability in concentration data for either mercury species in groundwater. Fluxes of Hg(T) via SGD were estimated to be 250 +/- 160 nmol day m(-1) of shoreline at Stinson Beach and 3.0 +/- 2.0 nmol m(-2) day(-1) at Elkhorn Slough. These Hg(T) fluxes are substantially greater than net atmospheric inputs of Hg(T) reported for waters in nearby San Francisco Bay. Calculated fluxes of MMHg to coastal waters via SGD were 10 +/- 12 nmol day(-1) m(-1) of shoreline at Stinson Beach and 0.24 +/- 0.21 nmol m(-2) day at Elkhorn Slough. These MMHg fluxes are similar to benthic fluxes of MMHg out of surface sediments commonly reported for estuarine and coastal environments. Consequently, this work demonstrates that SGD is an important source of both Hg(T) and MMHg to coastal waters along the central California coast.

  10. Groundwater discharge by evapotranspiration, flow of water in unsaturated soil, and stable isotope water sourcing in areas of sparse vegetation, Amargosa Desert, Nye County, Nevada (United States)

    Moreo, Michael T.; Andraski, Brian J.; Garcia, C. Amanda


    This report documents methodology and results of a study to evaluate groundwater discharge by evapotranspiration (GWET) in sparsely vegetated areas of Amargosa Desert and improve understanding of hydrologic-continuum processes controlling groundwater discharge. Evapotranspiration and GWET rates were computed and characterized at three sites over 2 years using a combination of micrometeorological, unsaturated zone, and stable-isotope measurements. One site (Amargosa Flat Shallow [AFS]) was in a sparse and isolated area of saltgrass (Distichlis spicata) where the depth to groundwater was 3.8 meters (m). The second site (Amargosa Flat Deep [AFD]) was in a sparse cover of predominantly shadscale (Atriplex confertifolia) where the depth to groundwater was 5.3 m. The third site (Amargosa Desert Research Site [ADRS]), selected as a control site where GWET is assumed to be zero, was located in sparse vegetation dominated by creosote bush (Larrea tridentata) where the depth to groundwater was 110 m.Results indicated that capillary rise brought groundwater to within 0.9 m (at AFS) and 3 m (at AFD) of land surface, and that GWET rates were largely controlled by the slow but relatively persistent upward flow of water through the unsaturated zone in response to atmospheric-evaporative demands. Greater GWET at AFS (50 ± 20 millimeters per year [mm/yr]) than at AFD (16 ± 15 mm/yr) corresponded with its shallower depth to the capillary fringe and constantly higher soil-water content. The stable-isotope dataset for hydrogen (δ2H) and oxygen (δ18O) illustrated a broad range of plant-water-uptake scenarios. The AFS saltgrass and AFD shadscale responded to changing environmental conditions and their opportunistic water use included the time- and depth-variable uptake of unsaturated-zone water derived from a combination of groundwater and precipitation. These results can be used to estimate GWET in other areas of Amargosa Desert where hydrologic conditions are similar.

  11. Extreme environments in the critical zone: Linking acidification hazard of acid sulfate soils in mound spring discharge zones to groundwater evolution and mantle degassing. (United States)

    Shand, Paul; Gotch, Travis; Love, Andrew; Raven, Mark; Priestley, Stacey; Grocke, Sonia


    A decrease in flow from the iconic travertine mound springs of the Great Artesian Basin in South Australia has led to the oxidation of hypersulfidic soils and extreme soil acidification, impacting their unique groundwater dependent ecosystems. The build-up of pyrite in these systems occurred over millennia by the discharge of deep artesian sulfate-containing groundwaters through organic-rich subaqueous soils. Rare iron and aluminium hydroxysulfate minerals form thick efflorescences due to high evaporation rates in this arid zone environment, and the oxidised soils pose a significant risk to local aquatic and terrestrial ecosystems. The distribution of extreme acidification hazard is controlled by regional variations in the hydrochemistry of groundwater. Geochemical processes fractionate acidity and alkalinity into separate parts of the discharge zone allowing potentially extreme environments to form locally. Differences in groundwater chemistry in the aquifer along flow pathways towards the spring discharge zone are related to a range of processes including mineral dissolution and redox reactions, which in turn are strongly influenced by degassing of the mantle along deep crustal fractures. There is thus a connection between shallow critical zone ecosystems and deep crustal/mantle processes which ultimately control the formation of hypersulfidic soils and the potential for extreme geochemical environments.

  12. Effect of Submarine Groundwater Discharge on Relict Arctic Submarine Permafrost and Gas Hydrate (United States)

    Frederick, J. M.; Buffett, B. A.


    Permafrost-associated gas hydrate deposits exist at shallow depths within the sediments of the circum-Arctic continental shelves. Degradation of this shallow water reservoir has the potential to release large quantities of methane gas directly to the atmosphere. Gas hydrate stability and the permeability of the shelf sediments to gas migration is closely linked with submarine permafrost. Submarine permafrost extent depends on several factors, such as the lithology, sea level variations, mean annual air temperature, ocean bottom water temperature, geothermal heat flux, and the salinity of the pore water. The salinity of the pore water is especially relevant because it partially controls the freezing point for both ice and gas hydrate. Measurements of deep pore water salinity are few and far between, but show that deep off-shore sediments are fresh. Deep freshening has been attributed to large-scale topographically-driven submarine groundwater discharge, which introduces fresh terrestrial groundwater into deep marine sediments. We investigate the role of submarine ground water discharge on the salinity field and its effects on the seaward extent of relict submarine permafrost and gas hydrate stability on the Arctic shelf with a 2D shelf-scale model based on the finite volume method. The model tracks the evolution of the temperature, salinity, and pressure fields given imposed boundary conditions, with latent heat of water ice and hydrate formation included. The permeability structure of the sediments is coupled to changes in permafrost. Results show that pore fluid is strongly influenced by the permeability variations imposed by the overlying permafrost layer. Groundwater discharge tends to travel horizontally off-shore beneath the permafrost layer and the freshwater-saltwater interface location displays long timescale transient behavior that is dependent on the groundwater discharge strength. The seaward permafrost extent is in turn strongly influenced by the

  13. Delineation of submarine groundwater discharge (SGD) in a large-scaled reclaimed land (United States)

    Lee, B.; Park, S.; Hwang, J.; Song, S.; Choi, J.; Nam, K.


    The Saemangeum reclaimed land in Korea is currently under construction for an eco-friendly multifunctional complex including agriculture, eco-tourism, business, and renewable energy industry. Regarding water supply for the reclaimed land, groundwater is the sustainable water resource and submarine groundwater discharge (SGD), subsurface fluids flowing from land to the sea, is considered as an alternative one. This study was conducted to identify SGD below a southeastern part of the reclaimed land and to delineate its pathway by investigating groundwater chemistry and electrical resistivity distribution of subsurface. Thirty four groundwater samples were collected from shallow agricultural wells placed along the past coast line (~5 km length) of the southeastern part in May and October, 2009. Field parameters including pH, EC, temperature, and ORP were measured using a portable multi-sensor and alkalinity by titration. They were analyzed for stable isotopes (δ18O and δ2H), cations (Na, K, Ca, Mg, Si, and NH4), anions (Cl, NO3, SO4, and PO4), and metals (Fe and Mn). Mean EC value was 1,163 µS/cm, corresponding to the appropriate crop growth because the criteria of crop yield is less 2,000 µS/cm. Stable isotopes results were plotted on the local meteoric water line, indicating lighter than those from sea water. It implied that the groundwater originated from inland precipitation and occurred as SGD along the coast line. From the groundwater compositions showing various water types including Na-HCO3, Ca-Cl, and Na-Cl, it could be concluded that small-scale SGD and seawater intrusion have great influences on the groundwater quality. From correlation analysis of EC-pH, Cl-HCO3, NO3-SO4, NO3-Cl, and (Fe, Mn)-NH4, spatial distributions of SGD were identified. A small catchment (0.2 km2) in the reclaimed land was selected to delineate a SGD flow path by two-dimensional electrical resistivity survey. The longitudinal and transverse lines were 760 and 275 m, respectively

  14. Demonstration of a high repetition rate capillary discharge waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, A. J., E-mail:; Pieronek, C.; Daniels, J.; Bulanov, S. S.; Waldron, W. L.; Mittelberger, D. E.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Liu, F.; Antipov, S.; Butler, J. E. [Euclid TechLabs, Gaithersburg, Maryland 20879 (United States); Bobrova, N. A.; Sasorov, P. V. [Keldysh Institute of Applied Mathematics, Moscow (Russian Federation)


    A hydrogen-filled capillary discharge waveguide operating at kHz repetition rates is presented for parameters relevant to laser plasma acceleration (LPA). The discharge current pulse was optimized for erosion mitigation with laser guiding experiments and MHD simulation. Heat flow simulations and measurements showed modest temperature rise at the capillary wall due to the average heat load at kHz repetition rates with water-cooled capillaries, which is promising for applications of LPAs such as high average power radiation sources.

  15. Fast estimation of lacustrine groundwater discharge volumes based on stable water isotopes (United States)

    Lewandowski, Jörg; Gercken, Jasper; Premke, Katrin; Meinikmann, Karin


    Lake eutrophication is still a severe problem in many parts of the world, commonly due to anthropogenic sources of nutrients such as fertilizer, manure or sewage. Improved quantification of nutrient inputs to lakes is required to address this problem. One possible input path for nutrients is lacustrine groundwater discharge (LGD). However, LGD has often been disregarded in water and nutrient budgets of lakes although some studies reveal an extraordinary importance of LGD for phosphorus inputs. The aim of the present study is to identify lakes that receive large LGD volumes compared to other input paths. Such lakes are more prone to high groundwater-borne nutrient inputs than lakes with small LGD volumes. . The simple and fast approach used in the present study is based on the fact that evaporation of surface water causes an enrichment of heavier isotopes in lake and river water while precipitation and groundwater are lighter and have similar isotopic signatures. The isotopic signature of lake water depends on a) the isotopic signature of its inputs and b) the lakés residence time (the longer the more enriched with heavier isotopes). In the present study we used the citizen science project "Tatort Gewässer" to let people collect lake water samples all over Germany. Based on additional information we identified lakes without or with small (compared to the lake volume) aboveground inflows. Based on the isotopic signatures of these lakes and additional background information such as the mean depth we could identify lakes in which groundwater is an important component of the water balance. The results will be used as a basis of intense research on groundwater-driven lake eutrophication.

  16. Estimating river discharge rates through remotely sensed thermal plumes (United States)

    Abou Najm, M.; Alameddine, I.; Ibrahim, E.; Nasr, R.


    An empirical relationship is developed for estimating river discharge rates from remotely sensed thermal plumes that generate due to the temperature gradient at the interface between rivers and large water bodies. The method first determines the plumes' near field area, length scale, and length scale deviation angle from river channel centerline from Landsat 7 ETM+ satellite images. It also makes use of mean river and ocean temperatures and tidal levels collected from NOAA. A multiple linear regression model is then used to predict measured daily discharge rates with the determined predictors. The approach is tested and validated with discharge rates collected from four USGS gauged rivers in Oregon and California. Results from 116 Landsat 7 ETM+ satellites images of the four rivers show that the standard error of the discharge estimates were within a factor of 1.5-2.0 of observed values, with mean estimate accuracy of 10%. Goodness of fit (R2) ranged from 0.51 for the Rogue River up to 0.64 for the Coquille and Siuslaw rivers. The method offers an opportunity to monitor changes in flow discharge in ungauged basins, where tidal flow is not dominating and where a temperature difference of 2 oC exists between the river and the receiving water body.

  17. A Geochemical and Geophysical Assessment of Coastal Groundwater Discharge at Select Sites in Maui and O’ahu, Hawai’i (United States)

    Swarzenski, Peter W.; Storlazzi, Curt; M.L. Dalier,; C.R. Glenn,; C.G. Smith,


    This chapter summarizes fieldwork conducted to derive new estimates of coastal groundwater discharge and associated nutrient loadings at select coastal sites in Hawai’i, USA. Locations for this work were typically identified based on pronounced, recent ecosystem degradation that may at least partially be attributable to sustained coastal groundwater discharge. Our suite of tools used to evaluate groundwater discharge included select U/Th series radionuclides, a broad spectrum of geochemical analytes, multi-channel electrical resistivity, and in situ oceanographic observations.

  18. Isotope tracing of submarine groundwater discharge offshore Ubatuba, Brazil: results of the IAEA-UNESCO SGD project. (United States)

    Povinec, P P; Bokuniewicz, H; Burnett, W C; Cable, J; Charette, M; Comanducci, J-F; Kontar, E A; Moore, W S; Oberdorfer, J A; de Oliveira, J; Peterson, R; Stieglitz, T; Taniguchi, M


    Results of groundwater and seawater analyses for radioactive (3H, 222Rn, 223Ra, 224Ra, 226Ra, and 228Ra) and stable (D and 18O) isotopes are presented together with in situ spatial mapping and time series 222Rn measurements in seawater, direct seepage measurements using manual and automated seepage meters, pore water investigations using different tracers and piezometric techniques, and geoelectric surveys probing the coast. This study represents first time that such a new complex arsenal of radioactive and non-radioactive tracer techniques and geophysical methods have been used for simultaneous submarine groundwater discharge (SGD) investigations. Large fluctuations of SGD fluxes were observed at sites situated only a few meters apart (from 0 cm d(-1) to 360 cm d(-1); the unit represents cm3/cm2/day), as well as during a few hours (from 0 cm d(-1) to 110 cm d(-1)), strongly depending on the tidal fluctuations. The average SGD flux estimated from continuous 222Rn measurements is 17+/-10 cm d(-1). Integrated coastal SGD flux estimated for the Ubatuba coast using radium isotopes is about 7x10(3) m3 d(-1) per km of the coast. The isotopic composition (deltaD and delta18O) of submarine waters was characterised by significant variability and heavy isotope enrichment, indicating that the contribution of groundwater in submarine waters varied from a small percentage to 20%. However, this contribution with increasing offshore distance became negligible. Automated seepage meters and time series measurements of 222Rn activity concentration showed a negative correlation between the SGD rates and tidal stage. This is likely caused by sea level changes as tidal effects induce variations of hydraulic gradients. The geoelectric probing and piezometric measurements contributed to better understanding of the spatial distribution of different water masses present along the coast. The radium isotope data showed scattered distributions with offshore distance, which imply that seawater

  19. Potential effects of existing and proposed groundwater withdrawals on water levels and natural groundwater discharge in Snake Valley and surrounding areas, Utah and Nevada (United States)

    Masbruch, Melissa D.; Brooks, Lynette E.


    Several U.S. Department of Interior (DOI) agencies are concerned about the cumulative effects of groundwater development on groundwater resources managed by, and other groundwater resources of interest to, these agencies in Snake Valley and surrounding areas. The new water uses that potentially concern the DOI agencies include 12 water-right applications filed in 2005, totaling approximately 8,864 acre-feet per year. To date, only one of these applications has been approved and partially developed. In addition, the DOI agencies are interested in the potential effects of three new water-right applications (UT 18-756, UT 18-758, and UT 18-759) and one water-right change application (UT a40687), which were the subject of a water-right hearing on April 19, 2016.This report presents a hydrogeologic analysis of areas in and around Snake Valley to assess potential effects of existing and future groundwater development on groundwater resources, specifically groundwater discharge sites, of interest to the DOI agencies. A previously developed steady-state numerical groundwater-flow model was modified to transient conditions with respect to well withdrawals and used to quantify drawdown and capture (withdrawals that result in depletion) of natural discharge from existing and proposed groundwater withdrawals. The original steady-state model simulates and was calibrated to 2009 conditions. To investigate the potential effects of existing and proposed groundwater withdrawals on the groundwater resources of interest to the DOI agencies, 10 withdrawal scenarios were simulated. All scenarios were simulated for periods of 5, 10, 15, 30, 55, and 105 years from the start of 2010; additionally, all scenarios were simulated to a new steady state to determine the ultimate long-term effects of the withdrawals. Capture maps were also constructed as part of this analysis. The simulations used to develop the capture maps test the response of the system, specifically the reduction of natural

  20. Submarine groundwater discharge and solute transport under a transgressive barrier island (United States)

    Evans, Tyler B.; Wilson, Alicia M.


    Many recent investigations of groundwater dynamics in beaches employed groundwater models that assumed isotropic, numerically-convenient hydrogeological conditions. Real beaches exhibit local variability with respect to stratigraphy, sediment grain size and associated topographic profile, so that groundwater flow may diverge significantly from idealized models. We used a combination of hydrogeologic field methods and a variable-density, saturated-unsaturated, transient groundwater flow model to investigate SGD and solute transport under Cabretta Beach, a small transgressive barrier island seaward of Sapelo Island, Georgia. We found that the inclusion of real beach heterogeneity drove important deviations from predictions based on theoretical beaches. Cabretta Beach sustained a stronger upper saline plume than predicted due to the presence of a buried silty mud layer beneath the surface. Infiltration of seawater was greater for neap tides than for spring tides due to variations in beach slope. The strength of the upper saline plume was greatest during spring tides, contrary to recent model predictions. The position and width of the upper saline plume was highly dynamic through the lunar cycle. Our results suggest that field measurements of salinity gradients may be useful for estimating rates of tidally and density driven recirculation through the beach. Finally, our results indicate that several important biogeochemical cycles recently studied at Cabretta Beach were heavily influenced by groundwater flow and associated solute transport.

  1. Stage-discharge rating curves based on satellite altimetry and modeled discharge in the Amazon basin (United States)

    Paris, Adrien; Dias de Paiva, Rodrigo; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Calmant, Stephane; Garambois, Pierre-André; Collischonn, Walter; Bonnet, Marie-Paule; Seyler, Frederique


    In this study, rating curves (RCs) were determined by applying satellite altimetry to a poorly gauged basin. This study demonstrates the synergistic application of remote sensing and watershed modeling to capture the dynamics and quantity of flow in the Amazon River Basin, respectively. Three major advancements for estimating basin-scale patterns in river discharge are described. The first advancement is the preservation of the hydrological meanings of the parameters expressed by Manning's equation to obtain a data set containing the elevations of the river beds throughout the basin. The second advancement is the provision of parameter uncertainties and, therefore, the uncertainties in the rated discharge. The third advancement concerns estimating the discharge while considering backwater effects. We analyzed the Amazon Basin using nearly one thousand series that were obtained from ENVISAT and Jason-2 altimetry for more than 100 tributaries. Discharge values and related uncertainties were obtained from the rain-discharge MGB-IPH model. We used a global optimization algorithm based on the Monte Carlo Markov Chain and Bayesian framework to determine the rating curves. The data were randomly allocated into 80% calibration and 20% validation subsets. A comparison with the validation samples produced a Nash-Sutcliffe efficiency (Ens) of 0.68. When the MGB discharge uncertainties were less than 5%, the Ens value increased to 0.81 (mean). A comparison with the in situ discharge resulted in an Ens value of 0.71 for the validation samples (and 0.77 for calibration). The Ens values at the mouths of the rivers that experienced backwater effects significantly improved when the mean monthly slope was included in the RC. Our RCs were not mission-dependent, and the Ens value was preserved when applying ENVISAT rating curves to Jason-2 altimetry at crossovers. The cease-to-flow parameter of our RCs provided a good proxy for determining river bed elevation. This proxy was validated

  2. Are citizen science projects useful for studying complex processes such as lacustrine groundwater discharge? (United States)

    Lewandowski, Jörg; Meinikmann, Karin; Felsmann, Katja; Hölker, Franz; Premke, Katrin


    Lake eutrophication is still a severe problem in many parts of the world, commonly due to anthropogenic sources of nutrients such as fertilizer, manure or sewage. Improved quantification of nutrient inputs is required to address this problem. One potential input path for nutrients is lacustrine groundwater discharge (LGD). However, due to unawareness, extreme aquifer heterogeneity and immense time and costs of representative investigations that input path has often been neglected. Citizen science projects might be helpful to address these problems, since they have the potential to raise public and personal awareness of the problem and cope with the heterogeneity by a large number of samples. In the present contribution we present two examples of citizen science projects in Germany addressing LGD: (1) At Lake Arendsee local citizens collected a large number of groundwater samples from their private wells and contributed to an unprecedentedly detailed picture of nutrient concentrations upstream of the lake. (2) In the project "Tatort Gewässer" people all over Germany collected surface water samples from different water bodies. Stable water isotope concentrations in lake samples were used to identify lakes in which groundwater is an important component of the water balance.

  3. Role of the Lakes in Groundwater Recharge and Discharge in the Young Glacial Area, Northern Poland. (United States)

    Jaworska-Szulc, Beata


    The aim of this research was to delineate characteristic hydrogeological lake types in the Young Glacial Area (YGA). The YGA is in the central and east part of the Kashubian Lake District (KLD) in Northern Poland, an area covered by deposits of Quaternary glaciation. All the bigger lakes were investigated in the area of about 1500 km(2) (39 lakes). The role of lakes in groundwater recharge and discharge was determined from total dissolved solids (TDS) in lake waters and also from groundwater flow simulation. The general trend was that gaining lakes, as determined by flow modeling, had higher values of TDS than losing lakes. In addition to typical gaining lakes (with TDS > 250 mg/l), there were losing lakes perched on glacial till deposits with very low TDS (lakes were delineated: ones with very low TDS and another group with slightly higher TDS (due to local contact with groundwater). Flow-through lakes with TDS of 170-200 mg/l were also delineated.

  4. Improving transmission rates of electronic discharge summaries to GPs. (United States)

    Barr, Rory; Chin, Kuen Yeow; Yeong, Keefai


    Discharge summaries are a vital tool to communicate information from Hospital to Primary Care teams; updating GPs about what happened during an admission, and handing over care detailing any follow up care required. Historically, Discharge Summaries have been posted to hospitals, increasing costs for hospitals, creating administrative work for GP practices receiving the letters, and resulting in some letters being lost or delayed in reaching the GP, with implications for patient safety if follow up requests are not received and acted upon. In an effort to improve patient care, the Clinical Commissioning Group in Surrey drew up a contract with Ashford and St Peter's Foundation Trust, aiming to increase the percentage of discharge summaries sent electronically from the rate of 9% sent within 24 hours, to over 75%. This contract set targets of 50% in May, 65% in June, and 80% in July. Financial penalties would be imposed if targets were not achieved, starting in June 2013. The Trust set up a working group comprising of doctors, IT personnel and ward PAs to devise a multi-pronged solution to achieve this target. The electronic discharge summary system was reviewed and improvements were designed and developed to make the process of signing off letters easier, and transmission of signed off letters became automated rather than requiring manual transmission by ward PAs. Presentations and leaflets to explain the importance of prompt completion and transmission of discharge summaries were given to Doctors to improve compliance using the revised IT system. Figures on transmission rates were automatically emailed to key stakeholders every day (Ward PAs, Divisional Leads) showing performance on each ward. This helped identify areas requiring more intervention. Areas (e.g. Day Surgery) that had not used electronic discharge summaries were engaged with, and persuaded to take part. As a result, transmission rates of Discharge Summaries within 24 hours of patient discharge

  5. Observations of Active Submarine Groundwater Discharge on a Shallow Coastal Sea in Yucatan, Mexico (United States)

    Marino, I.; Vera, I.; Enriquez, C.; Capurro, L.; Kantun, C.


    This contribution presents detailed measurements of fresh water fluxes from an energetic submarine groundwater discharge (SGD) located on the coastal ocean on Dzilam Bravo, Yucatan, Mexico. Due to the geologic characteristics of the site (karstic geology), inland groundwater flows through karstic conduits and exits at sea. Time series of fluxes measured by an acoustic velocimeter (VECTOR), temperature and salinity are correlated to the variability imposed by tides, currents, waves and rainfall. The contribution of SGD is a determining factor in the dynamics of marine ecosystems because it provides fresh water, nutrients, contaminants and other solutes. For this reason it is important to increase the knowledge about its dynamics and mixing processes that take place in these kind of environments. To study the spacial variability of thermohaline conditions, an area of 1 by 1 km (which includes five freshwater springs) was measured with a vessel towed CTD during drough and rainfall seasons. The results reveal that the flow conditions for the main spring (X'buya-Ha) is controlled by sea level variations, which include tides and weather effects. The outflow velocity is about 0.5 m/s during dry season when the discharge is weak, and about 3 m/s during periods of intense rainfall, when the discharge is strong. Also, it was noted that outflow direction changes as a result of high and low tides along a day. Results will be presented on the spatial influence as well, showing that the effect of the springs is very localised during high tide, but expands considerably during low tides.

  6. Stream measurements locate thermogenic methane fluxes in groundwater discharge in an area of shale-gas development. (United States)

    Heilweil, Victor M; Grieve, Paul L; Hynek, Scott A; Brantley, Susan L; Solomon, D Kip; Risser, Dennis W


    The environmental impacts of shale-gas development on water resources, including methane migration to shallow groundwater, have been difficult to assess. Monitoring around gas wells is generally limited to domestic water-supply wells, which often are not situated along predominant groundwater flow paths. A new concept is tested here: combining stream hydrocarbon and noble-gas measurements with reach mass-balance modeling to estimate thermogenic methane concentrations and fluxes in groundwater discharging to streams and to constrain methane sources. In the Marcellus Formation shale-gas play of northern Pennsylvania (U.S.A.), we sampled methane in 15 streams as a reconnaissance tool to locate methane-laden groundwater discharge: concentrations up to 69 μg L(-1) were observed, with four streams ≥ 5 μg L(-1). Geochemical analyses of water from one stream with high methane (Sugar Run, Lycoming County) were consistent with Middle Devonian gases. After sampling was completed, we learned of a state regulator investigation of stray-gas migration from a nearby Marcellus Formation gas well. Modeling indicates a groundwater thermogenic methane flux of about 0.5 kg d(-1) discharging into Sugar Run, possibly from this fugitive gas source. Since flow paths often coalesce into gaining streams, stream methane monitoring provides the first watershed-scale method to assess groundwater contamination from shale-gas development.

  7. Linking denitrification and infiltration rates during managed groundwater recharge. (United States)

    Schmidt, Calla M; Fisher, Andrew T; Racz, Andrew J; Lockwood, Brian S; Huertos, Marc Los


    We quantify relations between rates of in situ denitrification and saturated infiltration through shallow, sandy soils during managed groundwater recharge. We used thermal methods to determine time series of point-specific flow rates, and chemical and isotopic methods to assess denitrification progress. Zero order denitrification rates between 3 and 300 μmol L(-1) d(-1) were measured during infiltration. Denitrification was not detected at times and locations where the infiltration rate exceeded a threshold of 0.7 ± 0.2 m d(-1). Pore water profiles of oxygen and nitrate concentration indicated a deepening of the redoxocline at high flow rates, which reduced the thickness of the zone favorable for denitrification. Denitrification rates were positively correlated with infiltration rates below the infiltration threshold, suggesting that for a given set of sediment characteristics, there is an optimal infiltration rate for achieving maximum nitrate load reduction and improvements to water supply during managed groundwater recharge. The extent to which results from this study may be extended to other managed and natural hydrologic settings remains to be determined, but the approach taken in this study should be broadly applicable, and provides a quantitative link between shallow hydrologic and biogeochemical processes.

  8. The Relationship between a Distribution of Submarine Groundwater Discharge and a Local-scale Coastal Geology and Topography in Northern Japan (United States)

    Honda, H.; Sugimoto, R.; Shoji, J.; Tominaga, O.; Kobayashi, S.; Taniguchi, M.


    Submarine groundwater discharge (SGD) has been recognized as an important pathway for material transport to the marine environment. Submarine fresh groundwater discharge will occur wherever an aquifer is hydraulically connected with the sea and the water table is above sea level. The driving force behind this process is the hydraulic gradient from the upland region of a watershed to the surface water discharge location at the coast. Permeability also affects the rate of recharge into an aquifer and discharge into a sea. In the present study, we thus evaluated the SGD impact on the two locations in eastern (Yuza) and western (Otsuchi) side of the northern Japan to clarify the relationship between the coastal distribution of SGD and the local-scale coastal geology and topography. We applied 222Rn monitoring survey with the dual-loop system (Dimova et al. 2009) to assess the local-scale impact of SGD. In the Yuza area, abundant spring discharges are present around the coast at the terminus of volcanic lava flows. We conducted the continuous 222Rn monitoring at boat speeds of hydraulic gradient in Otsuchi Bay would be induced the stronger influence of SGD compared to Funakoshi Bay.

  9. Prospecting for groundwater discharge in the canals of Bangkok via natural radon and thoron (United States)

    Chanyotha, Supitcha; Kranrod, Chutima; Burnett, William C.; Lane-Smith, Derek; Simko, Jesse


    We conducted surveys of several canals in Bangkok, Thailand using continuous measurements of naturally occurring 222Rn ("radon") and 220Rn ("thoron"). Shallow groundwater seeping into these canals is an important pathway for contamination of surface waters. Radon, with a half-life (3.82 days) shorter than the suspected flushing time of the canals, is widely distributed throughout the waterway. It can thus be used to estimate discharge via a mass balance approach but cannot specify precisely where the discharge is occurring. Thoron, on the other hand, with its rapid decay (56 s half-life) will only occur very close to points of entry. Thus, if one detects thoron in the environment, there must be a source nearby - a good 'prospecting' tool. We found thoron spikes in Klong Bangkok Noi during a survey in August 2009. We repeated the same survey route in June 2013 and found essentially the same pattern of high thoron peaks (indicating points of discharge) adjacent to several temples along the canal. The connection to temples is thought to be a consequence of these structures being built on relatively higher ground and having sandy substrates.

  10. Seasonal enhancement of submarine groundwater discharge (SGD)-derived nitrate loading into the Ria Formosa coastal lagoon assessed by 1-D modeling of benthic NO

    NARCIS (Netherlands)

    Ibánhez, J.S.P.; Leote, C.; Rocha, C.


    The role of benthic sandy ecosystems in mitigating View the MathML sourceNO3- loads carried by Submarine Groundwater Discharge (SGD) to coastal marine ecosystems is uncertain. Benthic biogeochemical mediation of View the MathML sourceNO3--rich submarine groundwater discharge was studied at the seepa

  11. Estimates of groundwater recharge rates and sources in the East Mountain area, Eastern Bernalillo County, New Mexico, 2005-12 (United States)

    Rice, Steven E.; Crilley, Dianna M.


    The U.S. Geological Survey, in cooperation with the Bernalillo County Public Works Division, has conducted a monitoring program in the East Mountain area of eastern Bernalillo County, New Mexico, since 2000 to better define the hydrogeologic characteristics of the East Mountain area and to provide scientific information that will assist in the sustainable management of water resources. This report presents estimates of groundwater recharge to the aquifers that supply water to a network of springs that discharged within the East Mountain area of eastern Bernalillo County during 2005–12. Chloride concentration, the mass ratio of chloride to bromide, and the stable isotope ratios of hydrogen and oxygen were used to estimate annual groundwater recharge rates and to identify the sources and timing of recharge to the aquifers in the East Mountain area. Groundwater recharge rates were estimated by using a chloride mass-balance (CMB) method applied to data from selected springs located in the study area.

  12. Statistical analysis of interaction between lake seepage rates and groundwater and lake levels (United States)

    Ala-aho, P.; Rossi, P. M.; Klöve, B.


    In Finland, the main sources of groundwater are the esker deposits from the last ice age. Small lakes imbedded in the aquifer with no outlets or inlets are typically found in eskers. Some lakes at Rokua esker, in Northern Finland, have been suffering from changes in water stage and quality. A possible permanent decline of water level has raised considerable concern as the area is also used for recreation and tourism. Rare biotypes supported by the oligotrophic lakes can also be endangered by the level decline. Drainage of peatlands located in the discharge zone of the aquifer is a possible threat for the lakes and the whole aquifer. Drainage can potentially lower the aquifer water table which can have an effect on the groundwater-lake interaction. The aim of this study was to understand in more detail the interaction of the aquifer and the lake systems so potential causes for the lake level variations could be better understood and managed. In-depth understanding of hydrogeological system provides foundation to study the nutrient input to lakes affecting lake ecosystems. A small lake imbedded the Rokua esker aquifer was studied in detail. Direct measurements of seepage rate between the lake and the aquifer were carried out using seepage meters. Seepage was measured from six locations for eight times during May 2010 - November 2010. Precipitation was recorded with a tipping bucket rain gauge adjacent to the lake. Lake stage and groundwater levels from three piezometers were registered on an hourly interval using pressure probes. Statistical methods were applied to examine relationship between seepage measurements and levels of lake and groundwater and amount of precipitation. Distinct areas of inseepage and outseepage of the lake were distinguished with seepage meter measurements. Seepage rates showed only little variation within individual measurement locations. Nevertheless analysis revealed statistically significant correlation of seepage rate variation in four

  13. Calibrating a large-extent high-resolution coupled groundwater-land surface model using soil moisture and discharge data

    NARCIS (Netherlands)

    Sutanudjaja, E.H.; Beek, L.P.H. van; Jong, S.M. de; Geer, F.C. van; Bierkens, M.F.P.


    We explore the possibility of using remotely sensed soil moisture data and in situ discharge observations to calibrate a large-extent hydrological model. The model used is PCR-GLOBWB-MOD, which is a physically based and fully coupled groundwater-land surface model operating at a daily basis and havi

  14. Draft Technical Protocol for Characterizing Natural Attenuation of Chlorinated Solvent Ground-Water Plumes Discharging into Wetlands (United States)


    others, 1984), and the distribution of marsh marigold (Caltha palustris L.) has been used to map seeps and springs next to a lake and in wetlands in...Minnesota (Rosenberry, 2000). Marsh marigold preferentially grows in ground-water discharge areas across the upper Midwest states and south central

  15. Evidence for Submarine Groundwater Discharge into the Black Sea—Investigation of Two Dissimilar Geographical Settings

    Directory of Open Access Journals (Sweden)

    Michael Schubert


    Full Text Available The sustainable management of coastal marine environments requires a comprehensive understanding of the processes related to material transport from land to coastal sea. Besides surface water discharge (e.g., rivers and storm drains, submarine groundwater discharge (SGD plays a key role since it provides a major pathway for solute and particulate transport of contaminants and nutrients, both having considerable potential to cause deterioration of the overall ecological status of coastal environments. The aim of the presented study was the investigation of SGD in two exemplary and dissimilar areas at the Black Sea coast, one in the west (Romania and one in the east (Georgia. The approach included the assessment of the geological/geographical setting regarding the potential of SGD occurrence, the use of environmental tracer data (222Rn, δ18O, δ2H, salinity, and the evaluation of sea surface temperature patterns near the coastline using satellite data. Besides the individual site specific results, the study revealed that a combined evaluation of tracer data and satellite based information allows SGD localization with satisfying precision. A downscaling approach starting with large scale satellite data is generally recommended, continuing with medium scale tracer patterns and ending with local spot sampling.

  16. Dynamic Attribution of Global Water Demand to Surface Water and Groundwater Resources: Effects of Abstractions and Return Flows on River Discharge (United States)

    de Graaf, Inge; van Beek, Rens; Wada, Yoshi; Bierkens, Marc


    As human water demand is increasing worldwide, groundwater is abstracted at rates that exceed groundwater recharge in many areas, resulting in depletion of existing groundwater stocks. Most studies, that focus on human water consumption and water stress indicate a gap between water demand and availability. However, between studies very different assumptions are made on how water abstraction is divided between surface water, groundwater, and other resources. Moreover, simplified assumptions are used of the interactions between groundwater and surface water. Here, we simulate at the global scale, the dynamic attribution of total water demand to surface water and groundwater resources, based on actual water availability and accounting for return flows and surface water- groundwater interactions. The global hydrological model PCR-GLOBWB is used to simulate water storages, abstractions, and return flows for the model period 1960-2010, with a daily time step at 0.5° x 0.5° spatial resolution. Total water demand is defined as requirements for irrigation, industry, and domestic use. Water abstractions are variably taken from surface water and groundwater resources depending on availability of both resources. Return flows of non-consumed abstracted water contribute to a single source; those of irrigation recharging groundwater, those of industry and domestic use discharging to surface waters. Groundwater abstractions are taken from renewable groundwater, or when exceeding recharge from an alternative unlimited resource. This resource consists of non-renewable groundwater, or non-local water, the former being an estimate of groundwater depletion. Results show that worldwide the effect of water abstractions is evident, especially on the magnitude and frequency of low flows when the contribution of groundwater through baseflow is substantial. River regimes are minimally affected by abstractions in industrial regions because of the high return flows. In irrigated regions the

  17. Investigation of Submarine Groundwater Discharge along the Tidal Reach of the Caloosahatchee River, Southwest Florida (United States)

    Reich, Christopher D.


    The tidal reach of the Caloosahatchee River is an estuarine habitat that supports a diverse assemblage of biota including aquatic vegetation, shellfish, and finfish. The system has been highly modified by anthropogenic activity over the last 150 years (South Florida Water Management District (SFWMD), 2009). For example, the river was channelized and connected to Lake Okeechobee in 1881 (via canal C-43). Subsequently, three control structures (spillway and locks) were installed for flood protection (S-77 and S-78 in the 1930s) and for saltwater-intrusion prevention (S-79, W.P. Franklin Lock and Dam in 1966). The emplacement of these structures and their impact to natural water flow have been blamed for water-quality problems downstream within the estuary (Flaig and Capece, 1998; SFWMD, 2009). Doering and Chamberlain (1999) found that the operation of these control structures caused large and often rapid variations in salinity during various times of the year. Variable salinities could have deleterious impacts on the health of organisms in the Caloosahatchee River estuary. Flow restriction along the Caloosahatchee has also been linked to surface-water eutrophication problems (Doering and Chamberlain, 1999; SFWMD, 2009) and bottom-sediment contamination (Fernandez and others, 1999). Sources of nutrients (nitrogen and phosphorous) that cause eutrophication are primarily from residential sources and agriculture, though wastewater-treatment-plant discharges can also play a major role (SFWMD, 2009). The pathway for many of these nutrients is by land runoff and direct discharge from stormwater drains. An often overlooked source of nutrients and other chemical constituents is from submarine groundwater discharge (SGD). SGD can be either a diffuse or point source (for example, submarine springs) of nutrients and other chemical constituents to coastal waters (Valiela and others, 1990; Swarzenski and others, 2001; 2006; 2007; 2008). SGD can be composed of either fresh or

  18. Analysis of groundwater discharge with a lumped-parameter model, using a case study from Tajikistan (United States)

    Pozdniakov, S. P.; Shestakov, V. M.

    A lumped-parameter model of groundwater balance is proposed that permits an estimate of discharge variability in comparison with the variability of recharge, by taking into account the influence of aquifer parameters. Recharge-discharge relationships are analysed with the model for cases of deterministic and stochastic recharge time-series variations. The model is applied to study the temporal variability of groundwater discharge in a river valley in the territory of Tajikistan, an independent republic in Central Asia. Résumé Un modèle global de bilan d'eau souterraine a été développé pour estimer la variabilité de l'écoulement par rapport à celle de la recharge, en prenant en compte l'influence des paramètres de l'aquifère. Les relations entre recharge et écoulement sont analysées à l'aide du modèle pour des variations des chroniques de recharge soit déterministes, soit stochastiques. Le modèle est appliquéà l'étude de la variabilité temporelle de l'écoulement souterrain vers une rivière, dans le Tadjikistan, une république indépendante d'Asie centrale. Resumen Se propone un modelo de parámetros concentrados para realizar el balance de aguas subterráneas, el cual permite estimar la variabilidad en la descarga con respecto a la variabilidad en la recarga, en función de los parámetros que caracterizan el acuífero. Las relaciones entre recarga y descarga se analizan con el modelo para distintos casos de series temporales de recarga, tanto deterministas como estocásticas. El modelo se aplica al estudio de la variabilidad temporal de la descarga en un valle aluvial de Tadyikistán, una república independiente del Asia Central.

  19. Effects of changes in pumping on regional groundwater-flow paths, 2005 and 2010, and areas contributing recharge to discharging wells, 1990–2010, in the vicinity of North Penn Area 7 Superfund site, Montgomery County, Pennsylvania (United States)

    Senior, Lisa A.; Goode, Daniel J.


    A previously developed regional groundwater flow model was used to simulate the effects of changes in pumping rates on groundwater-flow paths and extent of recharge discharging to wells for a contaminated fractured bedrock aquifer in southeastern Pennsylvania. Groundwater in the vicinity of the North Penn Area 7 Superfund site, Montgomery County, Pennsylvania, was found to be contaminated with organic compounds, such as trichloroethylene (TCE), in 1979. At the time contamination was discovered, groundwater from the underlying fractured bedrock (shale) aquifer was the main source of supply for public drinking water and industrial use. As part of technical support to the U.S. Environmental Protection Agency (EPA) during the Remedial Investigation of the North Penn Area 7 Superfund site from 2000 to 2005, the U.S. Geological Survey (USGS) developed a model of regional groundwater flow to describe changes in groundwater flow and contaminant directions as a result of changes in pumping. Subsequently, large decreases in TCE concentrations (as much as 400 micrograms per liter) were measured in groundwater samples collected by the EPA from selected wells in 2010 compared to 2005‒06 concentrations.To provide insight on the fate of potentially contaminated groundwater during the period of generally decreasing pumping rates from 1990 to 2010, steady-state simulations were run using the previously developed groundwater-flow model for two conditions prior to extensive remediation, 1990 and 2000, two conditions subsequent to some remediation 2005 and 2010, and a No Pumping case, representing pre-development or cessation of pumping conditions. The model was used to (1) quantify the amount of recharge, including potentially contaminated recharge from sources near the land surface, that discharged to wells or streams and (2) delineate the areas contributing recharge that discharged to wells or streams for the five conditions.In all simulations, groundwater divides differed from

  20. Multiple sensor tracking of submarine groundwater discharge: concept study along the Dead Sea. (United States)

    Siebert, Christian; Mallast, Ulf; Rödiger, Tino; Ionescu, Danny; Schwonke, Friedhelm; Hall, John K.; Sade, Aharon R.; Pohl, Thomas; Merkel, Broder


    As a result of the continuously declining water level of the Dead Sea, vast areas of its former lakebed are exposed. That unconsolidated sequence of clay minerals and evaporates (e.g. aragonite, gypsum, halite) generally reacts as aquiclude - preventing direct drainage of the surrounding mountain freshwater aquifers. The high density differences between the hypersaline Dead Sea (1.24 g/cm3) and the approaching fresh water generates a flat dipping and stable Ghyben-Herzberg interface. However, a network of open fissures and cracks enables these freshwaters to regionally penetrate both, aquiclude and interface and to finally enter the Dead Sea on- and offshore. These offshore springs, also termed sublake groundwater discharge (SGD), are neither qualitatively nor quantitatively analysed yet. This is the reason why it is one of the most doubtful variables in existing balances of the lake's water budget and strongly requires improvement. To disclose pathways from the feeding mountain aquifers to the springs, intense hydrochemical and microbial investigations were carried out both, onshore and submarine. The waters have their origin in a variety of hard rock aquifers of Cretaceous age. After draining into the Dead Sea sediments, waters carry the easily soluble components (gypsum, halite) and the abundant organic matter, erodes and transports the hardly soluble minerals (clay and aragonite) and admix with briny pore water, respectively, which are all hosted in the sediment body. Diving campaigns allowed to map at least parts of the submarine spring cluster and to correlate their locations with neo-tectonic patterns. However, comprehensive mapping solely by divers is unfeasible due to the complexity and density of spring locations. The subsurface morphology is characterised by craters, walls, gullies and cones, occasionally nested and intensely anastomosed. To comprehensively understand reasons for specific discharge locations and their shapes, high-precision and high

  1. Groundwater. (United States)

    Braids, Olin C.; Gillies, Nola P.


    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  2. Understanding the hydrologic impacts of wastewater treatment plant discharge to shallow groundwater: Before and after plant shutdown (United States)

    Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph; Hutchinson, Kasey J.; Bradley, Paul M.


    Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.

  3. Quantifying groundwater exchange rates in a beach barrier lagoon using a radioisotopic tracer and geophysical methods: Younger Lagoon, Santa Cruz, CA (United States)

    Richardson, C. M.; Swarzenski, P. W.; Johnson, C.


    Coastal lagoons are highly productive systems with a strong dependence on the physico-chemical regime of their surrounding environment. Groundwater interactions with the nearshore environment can drive ecosystem stability and productivity. Lagoons with restricted surface connectivity interact with coastal waters via subsurface flow paths that follow natural hydraulic gradients, producing a dynamic freshwater-saltwater mixing zone with submarine groundwater discharge (SGD) regions that are tidally influenced. Recent studies demonstrate the importance of SGD in maintaining nearshore ecology through a number of processes, including enhanced chemical loadings, focused biogeochemical transformations, and complex water mixing scenarios (Slomp and Van Cappellen, 2004 and Taniguchi et al., 2002). Groundwater discharge to the coastal ocean is often slow, diffuse and site-specific. Traditional methods used to evaluate SGD fluxes operate at varying scales and typically result in over or underestimates of SGD. Novel monitoring and evaluation methods are required in order to better understand how coastal aquifer systems influence multi-scalar water and nutrient budgets. Recently developed methods to determine fluid exchange rates include the use of select U- and Th-series radionuclides, multi-channel resistivity imaging, as well as the integration of temperature data and 1-D analytical modeling. Groundwater fluxes were examined in a coastal lagoon system to characterize the physics of subsurface fluid transport evidenced by visible seepage faces at low tide. Fluid exchange rates were quantified to determine the spatial and temporal variability of groundwater movement using thermal time series, water level data, and a coupled radiotracer-geophysical method. Our investigation of subsurface characteristics and groundwater fluxes using both traditional and newly-developed methods indicated that seasonal water inputs and tidal controls on water table elevation significantly

  4. Geochemical controls of groundwaters upwelling in saline environments: Case study the discharge playa of Sidi El Hani (Sahel, Tunisia) (United States)

    Tagorti, Mohamed Ali; Essefi, Elhoucine; Touir, Jamel; Guellala, Rihab; Yaich, Chokri


    Within the discharge playa of Sidi El Hani, the surrounding aquifers converge due to uprising underground waters. The Principal Component Analysis proves that the fluid density is inversely influenced by the rainfall and has a reciprocal effect with evaporation. This parameter is governed by uprising groundwaters and the convergence of waters and inflow in the sabkha result in a geochemical exceptionality. The fluid density maintains high values during the year, the modeling of which shows a third sinusoidal distribution. This model remains stable along a span of time because the surrounding aquifer feeds the discharge playa by a continuous salty water flow. In general, waters in the majority of drills surrounding the discharge playa have the same facies which is mainly made up of water charged with Na+ and Cl-. A sample from the northeast of discharge playa shows a geochemical similarity with two wells located in its vicinity.

  5. Groundwater withdrawal rates from the Ozark Plateaus aquifer system, 1900 to 2010 (United States)

    Knierim, Katherine J.; Nottmeier, Anna M.; Worland, Scott C.; Westerman, Drew A.; Clark, Brian R.


    Groundwater is an often overlooked freshwater resource compared to surface water, but groundwater is used widely across the United States, especially during periods of drought. If groundwater models can successfully simulate past conditions, they may be used to evaluate potential future pumping scenarios or climate conditions, thus providing a valuable planning tool for water-resource managers. Quantifying the groundwater-use component for a groundwater model is a vital but often challenging endeavor. This dataset includes groundwater withdrawal rates modeled for the Ozark Plateaus aquifer system (Ozark system) from 1900 to 2010 by groundwater model cell (2.6 square kilometers) for five water-use divisions—agriculture (including irrigation and aquaculture), livestock, public supply (including municipal and rural water districts), and non-agriculture (including thermoelectric power generation, mining, commercial, and industrial)—and by country for domestic (self-supplied) use. Two child items are included with the dataset: “Domestic groundwater withdrawal rates from the Ozark Plateaus aquifer system, 1900 to 2010” and “Public supply, non-agriculture, livestock, and agriculture groundwater withdrawal rates from the Ozark Plateaus aquifer system, 1900 to 2010”. The Ozark system is located in the central United States and is composed of interbedded Cambrian to Pennsylvanian clastic and carbonate lithologies. In stratigraphic order, the Ozark system includes the Basement confining unit, St. Francois aquifer, St. Francois confining unit, Ozark aquifer, Ozark confining unit, Springfield Plateau aquifer, and Western Interior Plains confining system. Generally, the lower portion of the Ozark aquifer is the primary source of groundwater across much of Missouri and the Springfield Plateau aquifer is used across northern Arkansas. A full description of the methods used to model groundwater withdrawal rates from the Ozark system are available in Knierim et al., IN

  6. How significant is submarine groundwater discharge and its associated dissolved inorganic carbon in a river-dominated shelf system?

    Directory of Open Access Journals (Sweden)

    Q. Liu


    Full Text Available In order to assess the role of submarine groundwater discharge (SGD and its impact on the carbonate system on the northern South China Sea (NSCS shelf, we measured seawater concentrations of four radium isotopes 223,224,226,228Ra along with carbonate system parameters in June–July, 2008. Complementary groundwater sampling was conducted in coastal areas in December 2008 and October 2010 to constrain the groundwater end-members. The distribution of Ra isotopes in the NSCS was largely controlled by the Pearl River plume and coastal upwelling. Long-lived Ra isotopes (228Ra and 226Ra were enriched in the river plume but low in the offshore surface water and subsurface water/upwelling zone. In contrast, short-lived Ra isotopes (224Ra and 223Ra were elevated in the subsurface water/upwelling zone as well as in the river plume but depleted in the offshore surface water. In order to quantify SGD, we adopted two independent mathematical approaches. Using a three end-member mixing model with total alkalinity (TAlk and Ra isotopes, we derived a SGD flux into the NSCS shelf of 2.3–3.7 × 108 m3 day−1. Our second approach involved a simple mass balance of 228Ra and 226Ra and resulted in a first order but consistent SGD flux estimate of 2.2–3.7 × 108 m3 day−1. These fluxes were equivalent to 12–21 % of the Pearl River discharge, but the source of the SGD was mostly recirculated seawater. Despite the relatively small SGD volume flow compared to the river, the associated material fluxes were substantial given their elevated concentrations of dissolved inorganic solutes. In this case, dissolved inorganic carbon (DIC flux through SGD was 153–347 × 109 mol yr−1, or ~23–53 % of the riverine DIC export flux. Our estimates of the groundwater-derived phosphate flux ranged 3–68 × 10

  7. Groundwater drift as a tracer for identifying sources of spring discharge. (United States)

    Mori, Nataša; Kanduč, Tjaša; Opalički Slabe, Maja; Brancelj, Anton


    Groundwater invertebrate drift, collected from the spring outlets at the interface of vadose and phreatic zones, has been examined for its potential for identifying sources of discharge from a karst aquifer. Concurrently, major ion geochemistry, dissolved inorganic carbon (δ13CDIC), particulate organic carbon (δ13CPOC), and naturally occurring stable isotopes of oxygen and tritium (δ18O, 3H) were investigated over a period of 1 year in two outlets, a temporary (TS) and a perennial (PS) spring. A few differences in major ion geochemistry and stable isotope composition were found between the two springs together with moderate seasonal variability. In contrast, invertebrate drift showed clear differences between TS and PS springs in density and composition. Canonical correspondence analysis showed the presence of two distinct groups of samples from TS and PS, with Ca2+ as the only significant explanatory variable for differences in drift composition. Finally, certain species from the drift were found to be useful tracers for distinguishing between the phreatic and the epikarst and vadose zones as the origin of spring water.

  8. Radium mass balance and submarine groundwater discharge in Sepetiba Bay, Rio de Janeiro State, Brazil (United States)

    Smoak, Joseph M.; Sanders, Christian J.; Patchineelam, Sambasiva R.; Moore, Willard S.


    Radium-226 and 228Ra activities were determined in water samples from within and adjacent to Sepetiba Bay, Rio de Janeiro State (Brazil) in 1998, 2005 and 2007. Surface waters in Sepetiba Bay were substantially higher in 226Ra and 228Ra compared to ocean end member samples. Using the residence time of water in the bay we calculated the flux required to maintain the observed enrichment over the ocean end members. We then applied a radium mass balance to estimate the volume of submarine groundwater discharge (SGD) into the bay. The estimates of SGD into Sepetiba Bay (in 1010 L day-1) were 2.56, 3.75, and 1.0, respectively for 1998, 2005, and 2007. These estimates are equivalent to approximately 1% of the total volume of the bay each day or 50 L m-2 day-1. It is likely that a substantial portion of the SGD in Sepetiba Bay consists of infiltrated seawater. This large flux of SGD has the potential to supply substantial quantities of nutrients, carbon and metals into coastal waters. The SGD found here is greater than what is typically found in SGD studies along the eastern United States and areas with similar geologic characteristics. Considering there are many coastal areas around the world like Sepetiba Bay, this could revise upward the already important contribution of SGD to coastal as well as oceanic budgets.

  9. Submarine groundwater discharge into typical tropical lagoons: A case study in eastern Hainan Island, China (United States)

    Wang, Xilong; Du, Jinzhou


    Assessing submarine groundwater discharge (SGD) into lagoons and bays can be helpful to understand biogeochemical processes, especially nutrient dynamics. In the present paper, radium (Ra) isotopes were used to quantify SGD in two typical tropical lagoons (Laoye Lagoon (LY Lagoon) and Xiaohai Lagoon (XH Lagoon)) of eastern Hainan Island, China. The Ra mass balance model provided evidence that SGD plays an important role in the hydrology of the LY Lagoon and the XH Lagoon, delivering average SGD fluxes of 1.7 × 106 (94 L m-2 d-1) and 1.8 × 106 (41 L m-2 d-1) m3 d-1, respectively. Tidal pumping was one of the important driving forces for SGD fluxes in the LY and the XH Lagoons. Tidal-driven SGD into the tidal channels of both lagoons can account for approximately 10% of the total SGD flux into the lagoons. In addition, the dissolved inorganic nutrient budgets were reassessed in the LY Lagoon and the XH Lagoon, which showed that SGD was the major source of nutrients entering the LY Lagoon and that the LY Lagoon behaved as a source for dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) and as a sink for dissolved silicate (DSi). Nutrient loads in the XH Lagoon were mainly derived from riverine inputs and SGD, and the XH Lagoon behaved as a source for DIP, but a sink for DIN and DSi.

  10. Thermal ground-water discharge and associated convective heat flux, Bruneau-Grand View area, southwest Idaho (United States)

    Young, H.W.; Lewis, R.E.; Backsen, R.L.


    The Bruneau-Grand View area occupies about 1,100 square miles in southwest Idaho. The area has a rural population dependent on ground-water irrigation. Temperature of the ground water ranges from 15 C to more than 80 C. Ground water for irrigation is obtained from flowing and pumped wells. Discharge of thermal ground water from 104 irrigation wells and from 5 hot springs in 1978 was about 50,500 acre-feet. Convective heat flux from the geothermal system associated with this discharge was 4.97 x 10 to the 7th power calories per second. (Woodard-USGS)

  11. A hydrological budget (2002-2008) for a large subtropical wetland ecosystem indicates marine groundwater discharge accompanies diminished freshwater flow (United States)

    Saha, Amartya K.; Moses, Christopher S.; Price, Rene M.; Engel, Victor; Smith, Thomas J.; Anderson, Gordon


    Water budget parameters are estimated for Shark River Slough (SRS), the main drainage within Everglades National Park (ENP) from 2002 to 2008. Inputs to the water budget include surface water inflows and precipitation while outputs consist of evapotranspiration, discharge to the Gulf of Mexico and seepage losses due to municipal wellfield extraction. The daily change in volume of SRS is equated to the difference between input and outputs yielding a residual term consisting of component errors and net groundwater exchange. Results predict significant net groundwater discharge to the SRS peaking in June and positively correlated with surface water salinity at the mangrove ecotone, lagging by 1 month. Precipitation, the largest input to the SRS, is offset by ET (the largest output); thereby highlighting the importance of increasing fresh water inflows into ENP for maintaining conditions in terrestrial, estuarine, and marine ecosystems of South Florida.

  12. Synoptic Multi-tracer Sensing for Mapping Groundwater-Surface Water Discharges and Estimating Reactive Nitrate Loading along a Gaining Lowland River (United States)

    Pai, H.; Villamizar, S. R.; Harmon, T. C.


    Distributed groundwater (GW) discharges to surface water (GW-SW discharges) in river systems remain difficult to delineate across spatiotemporal scales yet are important to understand with respect to link land management practices to nonpoint source constituent loading. In this work, we develop and test a relatively low-cost strategy for watershed-scale mapping distributed GW-SW discharges for nitrate (NO3-) in a gaining lowland river. We employ ambient GW specific conductance (SC) and nitrate as tracers using a high-resolution longitudinal synoptic sensing along the lower Merced River (38 river km) in Central California. Using available GW SC, we first calibrate a simple distributed GW-SW discharge model (segment-by-segment mixing model) at 1-km resolution for 13 synoptic sampling events at upstream daily flows ranging from 1.3 to 31.6 m3s-1. We then apply the distributed discharge estimates to a similar distributed nitrate loading model, adding a first-order decay term representing shallow aquifer denitrification along the GW-SW flow path. Best-fitting model outcomes (RMSE = 0.06-0.98 mg L-1) were found when we censored GW nitrate data following below detection thresholds (typically 0.5 mg L-1 NO3-N). The range of reach-estimated dimensionless denitrification rate terms varied from 0 to 0.432, which is slightly lower than previous regional results (0.17-1.06), accounting for our reach travel time.

  13. Self-discharge rate of lithium thionyl-chloride cells

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, W.R.


    Our low-rate lithium/thionyl-chloride ``D`` cell is required to provide power continuously for up to 10 years. The cell was designed at Sandia National Laboratories and manufactured at Eagle-Picher Industries, Joplin, Missouri. We have conducted accelerated aging studies at elevated temperatures to predict long-term performance of cells fabricated in 1992. Cells using 1.0M LiAlCl{sub 4} electrolyte follow Arrhenius kinetics with an activation energy of 14.6 Kcal/mol. This results in an annual capacity loss to self-discharge of 0.13 Ah at 25 C. Cells using a 1.0M LiAlCl{sub 4}{sm_bullet}SO{sub 2} electrolyte do not follow Arrhenius behavior. The performance of aged cells from an earlier fabrication lot is variable.

  14. Geochemical characterization of groundwater discharging from springs north of the Grand Canyon, Arizona, 2009–2016 (United States)

    Beisner, Kimberly R.; Tillman, Fred D; Anderson, Jessica R.; Antweiler, Ronald C.; Bills, Donald J.


    A geochemical study was conducted on 37 springs discharging from the Toroweap Formation, Coconino Sandstone, Hermit Formation, Supai Group, and Redwall Limestone north of the Grand Canyon near areas of breccia-pipe uranium mining. Baseline concentrations were established for the elements As, B, Li, Se, SiO2, Sr, Tl, U, and V. Three springs exceeded U.S. Environmental Protection Agency drinking water standards: Fence Spring for arsenic, Pigeon Spring for selenium and uranium, and Willow (Hack) Spring for selenium. The majority of the spring sites had uranium values of less than 10 micrograms per liter (μg/L), but six springs discharging from all of the geologic units studied that are located stratigraphically above the Redwall Limestone had uranium values greater than 10 μg/L (Cottonwood [Tuckup], Grama, Pigeon, Rock, and Willow [Hack and Snake Gulch] Springs). The geochemical characteristics of these six springs with elevated uranium include Ca-Mg-SO4 water type, circumneutral pH, high specific conductance, correlation and multivariate associations between U, Mo, Sr, Se, Li, and Zn, low 87Sr/86Sr, low 234U/238U activity ratios (1.34–2.31), detectable tritium, and carbon isotopic interpretation indicating they may be a mixture of modern and pre-modern waters. Similar geochemical compositions of spring waters having elevated uranium concentrations are observed at sites located both near and away from sites of uranium-mining activities in the present study. Therefore, mining does not appear to explain the presence of elevated uranium concentrations in groundwater at the six springs noted above. The elevated uranium at the six previously mentioned springs may be influenced by iron mineralization associated with mineralized breccia pipe deposits. Six springs discharging from the Coconino Sandstone (Upper Jumpup, Little, Horse, and Slide Springs) and Redwall Limestone (Kanab and Side Canyon Springs) contained water with corrected radiocarbon ages as much as 9

  15. Modeling Electric Discharges with Entropy Production Rate Principles

    Directory of Open Access Journals (Sweden)

    Thomas Christen


    Full Text Available Under which circumstances are variational principles based on entropy production rate useful tools for modeling steady states of electric (gas discharge systems far from equilibrium? It is first shown how various different approaches, as Steenbeck’s minimum voltage and Prigogine’s minimum entropy production rate principles are related to the maximum entropy production rate principle (MEPP. Secondly, three typical examples are discussed, which provide a certain insight in the structure of the models that are candidates for MEPP application. It is then thirdly argued that MEPP, although not being an exact physical law, may provide reasonable model parameter estimates, provided the constraints contain the relevant (nonlinear physical effects and the parameters to be determined are related to disregarded weak constraints that affect mainly global entropy production. Finally, it is additionally conjectured that a further reason for the success of MEPP in certain far from equilibrium systems might be based on a hidden linearity of the underlying kinetic equation(s.

  16. Flow of granular materials-I. Discharge rates from hoppers

    Energy Technology Data Exchange (ETDEWEB)

    Nedderman, R.M. (Univ. of Cambridge, England); Tuezuen, U.; Savage, S.B.; Houlsby, G.T.


    This was the first of a set of three review papers on the flow of granular materials. The objective of the papers was to review the published literature in these fields. Much information was drawn from a body of unpulished work represented by internal reports of the Chemical Engineering Department at Cambridge. This paper discussed the experimental results for hopper discharge rates and the correlations of these results. Then theoretical analyses that have been advanced to explain the observations were presented. Also the effects of interstitial pressure gradients were discussed, both those that arise due to deliberate pressurization of the hopper and those caused by the dilation of the flowing material. The flow of coarse, free-flowing materials through orifices seemed to have been adequately investigated experimentally and the correlation of Beverloo or minor modifications of it appeared to predict the flow rates with acceptable precision. Some difficulties were however encountered with narrow angled conical hoppers or in cases where the orifice is close to a vertical wall. The effects of an imposed gas flow were also correlated to reasonable precision at least for modest gas flow rates. Though the correlations seemed satisfactory, there was no really adequate theoretical explanations of the observations. Several theories exist that give qualitative trends in accord with obsrvation but there is no theory that can be used without empirical adjustments of the coefficients. However, with fine particles many more difficulties are encountered. 6 figures. (DP)

  17. Submarine groundwater discharge at Kahana Bay, Oahu, 1997-2001: in situ CTD and water chemistry tracer data (NODC Accession 0011399) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Submarine groundwater discharge (SGD) is neither well understood nor commonly investigated in Hawaii, but it is recognized as a potential pollution source to coastal...

  18. Potential areas of ground-water discharge in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent parts of Nevada and Utah (United States)

    U.S. Geological Survey, Department of the Interior — These data represent potential areas of ground-water discharge for selected hydrographic areas in eastern Nevada and western Utah. The data are based on phreatophyte...

  19. Groundwater Discharge and Salinity Sources to an Impaired Major River in a Semi-Arid Coastal Region: Nueces River, Texas (United States)

    Murgulet, V.; Murgulet, D.; Hay, R.


    Nueces River, an impaired stream located on the South Texas Gulf coast area, has shown water quality degradation due to to increased salinity levels in areas adjacent to the Calallen saltwater reservoir dam. This study investigates the role of submarine groundwater discharge in delivering increased salt contents to the river and how the subsurface hydrology is affected by the presence of a salt barrier (i.e. saltwater dam) which separates the tidal and non-tidal parts of the Nueces river basin. Thus, a combination of resistivity profiling and elemental and stable isotope geochemistry methods has been applied to portions of the river located downstream (tidal) and upstream (non-tidal) of the dam. Preliminary data show that salinity levels gradually increases at the river bank indicating that groundwater is likely a source of solutes to the river in the upper, non-tidal portion. The presence of vertical upwelling of conductive groundwater plumes is also revealed by marine resistivity profiles collected along the river. Different sampling during the spring and summer of 2014 show higher concentration values of major ions (i.e., calcium, magnesium, sodium, potassium, chloride, etc.) and salinity of pore water for the upstream river at several locations while it remains relatively constant for bottom- and surface water. In addition, because the groundwater and porewater have slightly lower pH values, a shift to more acidic surface water accompanied by some increases in dissolved major ion concentrations and salinity suggest that groundwater might represent a source of increased salt content in the upper portion of the river. On the other hand, downstream dissolved major ion concentrations generally decrease in pore- and bottom water from spring to summer and are correlated with decreases in salinity while surface water becomes more saline with an increase in major ions. Therefore, these preliminary data indicate different hydrology systems of the two portions of the

  20. Groundwater flow analysis and dose rate estimates from releases to wells at a coastal site

    Energy Technology Data Exchange (ETDEWEB)

    Kattilakoski, E.; Suolanen, V. [VTT Energy, Espoo (Finland)


    {sup 3}/a. Due to the placing of the shallow wells in the discharge areas, the dilution calculated in the shallow well was shown to be close to that calculated in the deep well. In conservative considerations the value around 90 000 m{sup 3}/a can be regarded as a representative expectation value of the effective dilution of the well. This dilution volume value was also suggested by the most realistic modelling approach of the groundwater flow analysis. It was used as basis when calculating the nuclide specific dose conversion factors (DCF's) for the drinking water pathway. The DCF's were calculated for unit release rates (1 Bq/a) and the assumed water consumption rate was 2 litres/day. (orig.)

  1. [Seasonal variations of community structures phytoplankton in groundwater discharge areas along the Northern Yucatán Peninsula coast]. (United States)

    Alvarez-Góngora, Cynthia Catalina; Liceaga-Correa, Maria de los Angeles; Herrera-Silveira, Jorge Alfredo


    The highly touristic Yucatán Peninsula is principally constituted with coastal marine environments. Like other coastal areas, this has been affected by the increase of waste water discharge, hydrological modifications and land use changes in the area. The phytoplankton community structure is one of the main components of coastal ecosystems and the most affected in hydrological processes. In order to follow the seasonal variations, the phytoplankton was characterized to follow the hydrological variability in two sites (Dzilam and Progreso) of the Northern Yucatán Peninsula. For this, cruises were carried out monthly during one year, from April 2004 to March 2005, with two samplings per season (dry, rainy and "nortes"). Hydrological variability was associated with seasonality and directly linked to groundwater discharges in the Dzilam area, and waste water discharges in the Progreso area. The highest nutrient concentrations occurred mainly during the rainy season. The phytoplankton community changes observed throughout the year suggested that the hydrological and chemical variability associated with seasonality and anthropogenic impacts have a strong influence. The substitution of diatoms by dinoflagellates as the dominant group in Progreso was the result of seasonal variability itself, but also could have been caused by eutrophic processes; while in Dzilam, the major presence of diatoms could have been favored by groundwater discharges. The results of this study can be used to understand the linkages between stressors from the anthropogenic activities and coastal water quality and changes.

  2. Groundwater exchanges near a channelized versus unmodified stream mouth discharging to a subalpine lake (United States)

    Constantz, J.; Naranjo, R.; Niswonger, R.; Allander, K.; Neilson, B.; Rosenberry, D.; Smith, D.; Rosecrans, C.; Stonestrom, D.


    The terminus of a stream flowing into a larger river, pond, lake, or reservoir is referred to as the stream-mouth reach or simply the stream mouth. The terminus is often characterized by rapidly changing thermal and hydraulic conditions that result in abrupt shifts in surface water/groundwater (sw/gw) exchange patterns, creating the potential for unique biogeochemical processes and ecosystems. Worldwide shoreline development is changing stream-lake interfaces through channelization of stream mouths, i.e., channel straightening and bank stabilization to prevent natural meandering at the shoreline. In the central Sierra Nevada (USA), Lake Tahoe's shoreline has an abundance of both "unmodified" (i.e., not engineered though potentially impacted by broader watershed engineering) and channelized stream mouths. Two representative stream mouths along the lake's north shore, one channelized and one unmodified, were selected to compare and contrast water and heat exchanges. Hydraulic and thermal properties were monitored during separate campaigns in September 2012 and 2013 and sw/gw exchanges were estimated within the stream mouth-shoreline continuum. Heat-flow and water-flow patterns indicated clear differences in the channelized versus the unmodified stream mouth. For the channelized stream mouth, relatively modulated, cool-temperature, low-velocity longitudinal streambed flows discharged offshore beneath warmer buoyant lakeshore water. In contrast, a seasonal barrier bar formed across the unmodified stream mouth, creating higher-velocity subsurface flow paths and higher diurnal temperature variations relative to shoreline water. As a consequence, channelization altered sw/gw exchanges potentially altering biogeochemical processing and ecological systems in and near the stream mouth.

  3. Identification and characterization of potential discharge areas for radionuclide transport by groundwater from a nuclear waste repository in Sweden. (United States)

    Berglund, Sten; Bosson, Emma; Selroos, Jan-Olof; Sassner, Mona


    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.

  4. ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 2. Groundwater contaminant mass discharge reduction

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Lange, Ida Vedel; Bjerg, Poul Løgstrup;


    The impact of source mass depletion on the down-gradient contaminant mass discharge was monitored for a 19-month period as a part of a field demonstration of the ZVI-Clay soil mixing remediation technology. Groundwater samples were collected from conventional monitoring wells (120 samples......) and a dense network of multilevel samplers (640 samples). The hydraulic gradient and conductivity were determined. Depletion of the contaminant source is described in the companion paper (Fjordbøge et al., 2012). Field data showed four distinct phases for PCE mass discharge: (1) baseline conditions, (2......) initial rapid reduction, (3) temporary increase, and (4) slow long-term reduction. Numerical modeling was utilized to develop a conceptual understanding of the four phases and to identify the governing processes. The initial rapid reduction of mass discharge was a result of the changed hydraulic...

  5. Identification and Characterization of Potential Discharge Areas for Radionuclide Transport by Groundwater from a Nuclear Waste Repository in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, Sten [HydroResearch AB, Taeby (Sweden)], E-mail:; Bosson, Emma; Selroos, Jan-Olof [Swedish Nuclear Fuel and Waste Management Co (SKB), Stockholm (Sweden); Sassner, Mona [DHI Sverige AB, Stockholm (Sweden)


    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.

  6. Characterization of mean transit time at large springs in the Upper Colorado River Basin, USA: a tool for assessing groundwater discharge vulnerability (United States)

    Solder, John E.; Stolp, Bernard J.; Heilweil, Victor M.; Susong, David D.


    Environmental tracers (noble gases, tritium, industrial gases, stable isotopes, and radio-carbon) and hydrogeology were interpreted to determine groundwater transit-time distribution and calculate mean transit time (MTT) with lumped parameter modeling at 19 large springs distributed throughout the Upper Colorado River Basin (UCRB), USA. The predictive value of the MTT to evaluate the pattern and timing of groundwater response to hydraulic stress (i.e., vulnerability) is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the springs range from 10 to 15,000 years and 90 % of the cumulative discharge-weighted travel-time distribution falls within the range of 2-10,000 years. Historical variability in discharge was assessed as the ratio of 10-90 % flow-exceedance (R 10/90%) and ranged from 2.8 to 1.1 for select springs with available discharge data. The lag-time (i.e., delay in discharge response to drought conditions) was determined by cross-correlation analysis and ranged from 0.5 to 6 years for the same select springs. Springs with shorter MTTs (<80 years) statistically correlate with larger discharge variations and faster responses to drought, indicating MTT can be used for estimating the relative magnitude and timing of groundwater response. Results indicate that groundwater discharge to streams in the UCRB will likely respond on the order of years to climate variation and increasing groundwater withdrawals.

  7. Study on High Rate Discharge Performance and Mechanism of AB5 Type Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    郭靖洪; 陈德敏; 于军; 张建海; 刘国忠; 杨柯


    The effects of surface treatment, particle size distribution,rare earth composition and B additive on the high rate discharge performance of hydrogen storage alloys were investigated. It is found that the activity, discharge capacity and high rate dischargeability of the alloys are improved after physical and chemical modification as a result of the increase of the surface area and formation of the electrocatalysis layers, which increase both the electrochemical reaction rate on the alloy surface and H diffusion rate in the alloy bulk. It is also found that both the over-coarse and over-fine particle size increase the contact resistance of the electrode, resulting in a decrease of discharge capacity, deterioration of high rate dischargeability and lower discharge plateau. In another word, a suitable particle size distribution can enhance the alloy activity, discharge capacity and high rate dischargeability. In addition, the high rate dischargeability is enhanced by increasing La content and decreasing Ce content of the alloy composition because of enlargement of the unit cell volume and the improvement of the surface activity. Moreover, B additive resultes in the formation of the second phase, and makes the alloys easier pulverization, which greatly improves the activity, discharge capacity and high rate dischargeability.

  8. Submarine groundwater discharge in the Sarasota Bay system: Its assessment and implications for the nearshore coastal environment (United States)

    Mwashote, B. M.; Murray, M.; Burnett, W. C.; Chanton, J.; Kruse, S.; Forde, A.


    A study was conducted from July 2002 through June 2006 in order to assess the significance of submarine groundwater discharge (SGD) to Sarasota Bay (SB), Florida. The assessment approaches used in this study included manual seepage meters, geochemical tracers (radon, 222Rn and methane, CH4), and subseafloor resistivity measurements. The estimated SGD advection rates in the SB system were found to range from 0.7 to 24.0 cm/day, except for some isolated hot spot occurrences where higher rates were observed. In general, SGD estimates were relatively higher (5.9-24.0 cm/day) in the middle and south regions of the bay compared to the north region (0.7-5.9 cm/day). Average dissolved inorganic nutrient concentrations within the SB water column ranged: 0.1-11 μM (NO2+NO3), 0.1-9.1 μM (NH4) and 0.2-1.4 μM (PO4). The average N/P ratio was higher in the north compared to the middle and south regions of the bay. On average, we conservatively estimate that about 27% of the total N in the SB system was derived via SGD. The prevalence of shallow embayed areas in the SB system and the presence of numerous septic tanks in the surrounding settlements enhanced the potential effects of nutrient rich seepages. Statistical comparison of the quantitative approaches revealed a good agreement between SGD estimates from manual seepage meters and those derived from the 222Rn model (p=0.67; α=0.05; n=18). CH4 was found to be useful for qualitative SGD assessments. CH4 and 222Rn were correlated (r2=0.31; α=0.05; n=54). Large scale resistivity surveys showed spatial variability that correlates more clearly with lithology than with SGD patterns.

  9. Weekly variations of discharge and groundwater quality caused by intermittent water supply in an urbanized karst catchment (United States)

    Grimmeisen, Felix; Zemann, Moritz; Goeppert, Nadine; Goldscheider, Nico


    Leaky sewerage and water distribution networks are an enormous problem throughout the world, specifically in developing countries and regions with water scarcity. Especially in many arid and semi-arid regions, intermittent water supply (IWS) is common practice to cope with water shortage. This study investigates the combined influence of urban activities, IWS and water losses on groundwater quality and discusses the implications for water management. In the city of As-Salt (Jordan), local water supply is mostly based on groundwater from the karst aquifer that underlies the city. Water is delivered to different supply zones for 24, 48 or 60 h each week with drinking water losses of around 50-60%. Fecal contamination in groundwater, mostly originating from the likewise leaky sewer system is a severe challenge for the local water supplier. In order to improve understanding of the local water cycle and contamination dynamics in the aquifer beneath the city, a down gradient spring and an observation well were chosen to identify contaminant occurrence and loads. Nitrate, Escherichia coli, spring discharge and the well water level were monitored for 2 years. Autocorrelation analyses of time series recorded during the dry season revealed weekly periodicity of spring discharge (45 ± 3.9 L s-1) and NO3-N concentrations (11.4 ± 0.8 mg L-1) along with weekly varying E. coli levels partly exceeding 2.420 MPN 100 mL-1. Cross-correlation analyses demonstrate a significant and inverse correlation of nitrate and discharge variations which points to a periodic dilution of contaminated groundwater by freshwater from the leaking IWS being the principal cause of the observed fluctuations. Contaminant inputs from leaking sewers appear to be rather constant. The results reveal the distinct impact of leaking clean IWS on the local groundwater and subsequently on the local water supply and therefore demonstrate the need for action regarding the mitigation of groundwater contamination and

  10. Preliminary characterization of nitrogen and phosphorus in groundwater discharging to Lake Spokane, northeastern Washington, using stable nitrogen isotopes (United States)

    Gendaszek, Andrew S.; Cox, Stephen E.; Spanjer, Andrew R.


    Lake Spokane, locally referred to as Long Lake, is a 24-mile-long section of the Spokane River impounded by Long Lake Dam that has, in recent decades, experienced water-quality problems associated with eutrophication. Consumption of oxygen by the decomposition of aquatic plants that have proliferated because of high nutrient concentrations has led to seasonally low dissolved oxygen concentrations in the lake. Of nitrogen and phosphorus, the two primary nutrients necessary for aquatic vegetation growth, phosphorus was previously identified as the limiting nutrient that regulates the growth of aquatic plants and, thus, dissolved oxygen concentrations in Lake Spokane. Phosphorus is delivered to Lake Spokane from municipal and industrial point-source inputs to the Spokane River upstream of Lake Spokane, but is also conveyed by groundwater and surface water from nonpoint-sources including septic tanks, agricultural fields, and wildlife. In response, the Washington State Department of Ecology listed Lake Spokane on the 303(d) list of impaired water bodies for low dissolved oxygen concentrations and developed a Total Maximum Daily Load for phosphorus in 1992, which was revised in 2010 because of continuing algal blooms and water-quality concerns.This report evaluates the concentrations of phosphorus and nitrogen in shallow groundwater discharging to Lake Spokane to determine if a difference exists between nutrient concentrations in groundwater discharging to the lake downgradient of residential development with on-site septic systems and downgradient of undeveloped land without on-site septic systems. Elevated nitrogen isotope values (δ15N) within the roots of aquatic vegetation were used as an indicator of septic-system derived nitrogen. δ15N values were measured in August and September 2014 downgradient of residential development near the lakeshore, of residential development on 300-ft-high terraces above the lake, and of undeveloped land in the eastern (upper) and

  11. Evaluation of aerial thermal infrared remote sensing to identify groundwater-discharge zones in the Meduxnekeag River, Houlton, Maine (United States)

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.; O'Donnell, Cara


    Residents of the area near Houlton, Maine, have observed seasonal episodic blooms of algae and documented elevated concentrations of fecal-coliform bacteria and inorganic nutrients and low dissolved oxygen concentrations in the Meduxnekeag River. Although point and nonpoint sources of urban and agricultural runoff likely contribute to water-quality impairment, the role of shallow groundwater inflows in delivering such contaminants to the Meduxnekeag River has not been well understood. To provide information about possible groundwater inflows to the river, airborne thermal infrared videography was evaluated as a means to identify and classify thermal anomalies in a 25-mile reach of the mainstem and tributaries of the Meduxnekeag River near Houlton, Maine. The U.S. Geological Survey, in cooperation with the Houlton Band of Maliseet Indians, collected thermal infrared images from a single-engine, fixed-wing aircraft during flights on December 3–4, 2003, and November 26, 2004. Eleven thermal anomalies were identified on the basis of data from the December 2003 flight and 17 from the November 2004 flight, which covered the same reaches of stream. Following image analysis, characterization, and prioritization, the georeferenced infrared images of the thermal anomalies were compared to features on topographic maps of the study area. The mapped anomalies were used to direct observations on the ground to confirm discharge locations and types of inflow. The variations in grayscale patterns on the images were thus confirmed as representing shallow groundwater-discharge zones (seeps), outfalls of treated wastewater, or ditches draining runoff from impervious surfaces.

  12. Groundwater discharge to wetlands driven by storm and flood events: Quantification using continuous Radon-222 and electrical conductivity measurements and dynamic mass-balance modelling (United States)

    Gilfedder, B. S.; Frei, S.; Hofmann, H.; Cartwright, I.


    The dynamic response of groundwater discharge to external influences such as rainfall is an often neglected part of water and solute balances in wetlands. Here we develop a new field platform for long-term continuous 222Rn and electrical conductivity (EC) measurements at Sale Wetland, Australia to study the response of groundwater discharge to storm and flood events. The field measurements, combined with dynamic mass-balance modelling, demonstrate that the groundwater flux can increase from 3 to ∼20 mm d-1 following storms and up to 5 mm d-1 on the receding limb of floods. The groundwater pulses are likely produced by activation of local groundwater flow paths by water ponding on the surrounding flood plains. While 222Rn is a sensitive tracer for quantifying transient groundwater discharge, the mass-balance used to estimate fluxes is sensitive to parameterisation of gas exchange (k) with the atmosphere. Comparison of six equations for calculating k showed that, based on parameterisation of k alone, the groundwater flux estimate could vary by 58%. This work shows that neglecting transient processes will lead to errors in water and solute flux estimates based on infrequent point measurements. This could be particularly important for surface waters connected to contaminated or saline groundwater systems.

  13. Characterization of mean transit time at large springs in the Upper Colorado River Basin, USA: a tool for assessing groundwater discharge vulnerability (United States)

    Solder, John E.; Stolp, Bernard J.; Heilweil, Victor M.; Susong, David D.


    Environmental tracers (noble gases, tritium, industrial gases, stable isotopes, and radio-carbon) and hydrogeology were interpreted to determine groundwater transit-time distribution and calculate mean transit time (MTT) with lumped parameter modeling at 19 large springs distributed throughout the Upper Colorado River Basin (UCRB), USA. The predictive value of the MTT to evaluate the pattern and timing of groundwater response to hydraulic stress (i.e., vulnerability) is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the springs range from 10 to 15,000 years and 90 % of the cumulative discharge-weighted travel-time distribution falls within the range of 2-10,000 years. Historical variability in discharge was assessed as the ratio of 10-90 % flow-exceedance ( R 10/90%) and ranged from 2.8 to 1.1 for select springs with available discharge data. The lag-time (i.e., delay in discharge response to drought conditions) was determined by cross-correlation analysis and ranged from 0.5 to 6 years for the same select springs. Springs with shorter MTTs (groundwater response. Results indicate that groundwater discharge to streams in the UCRB will likely respond on the order of years to climate variation and increasing groundwater withdrawals.


    Institute of Scientific and Technical Information of China (English)


    Lab experiment and mathematical simulation Modular three dimensional finite difference groundwater (MODFLOW) were performed in a soil tank to simulate the hydrogeochemical interaction between lake and typical unconfined aquifer. Results show that the velocity decreases exponentially with the transect distance on seepage face. The maximal velocity occurs at the top point of seepage face. The obliquity of seepage face has a great influence on the maximum and distribution of seepage velocity. With the increase of the obliquity of seepage face, the maximal velocity decreases quickly and the velocity distribution becomes much more even. Most of groundwater flow and pollutant flux discharges through a narrow portion near the top of seepage face. The flow and mass concentrated in the narrow portion increase with the decrease of the obliquity of seepage face. These will benefit to design a reasonable and economical scenario to manage lakeshore and to control the pollution of lake water near lakeshore.

  15. A 3-D numerical model of the influence of meanders on groundwater discharge to a gaining stream in an unconfined sandy aquifer (United States)

    Balbarini, Nicola; Boon, Wietse M.; Nicolajsen, Ellen; Nordbotten, Jan M.; Bjerg, Poul L.; Binning, Philip J.


    Groundwater discharge to streams depends on stream morphology and groundwater flow direction, but are not always well understood. Here a 3-D groundwater flow model is employed to investigate the impact of meandering stream geometries on groundwater discharge to streams in an unconfined and homogenous sandy aquifer at the reach scale (10-200 m). The effect of meander geometry was examined by considering three scenarios with varying stream sinuosity. The interaction with regional groundwater flow was examined for each scenario by considering three groundwater flow directions. The sensitivity of stream morphology and flow direction to other parameters was quantified by varying the stream width, the meander amplitude, the magnitude of the hydraulic gradient, the hydraulic conductivity, and the aquifer thickness. Implications for a real stream were then investigated by simulating groundwater flow to a stream at a field site located in Grindsted, Denmark. The simulation of multiple scenarios was made possible by the employment of a computationally efficient coordinate transform numerical method. Comparison of the scenarios showed that the geometry of meanders greatly affect the spatial distribution of groundwater flow to streams. The shallow part of the aquifer discharges to the outward pointing meanders, while deeper groundwater flows beneath the stream and enters from the opposite side. The balance between these two types of flow depends on the aquifer thickness and meander geometry. Regional groundwater flow can combine with the effect of stream meanders and can either enhance or smooth the effect of a meander bend, depending on the regional flow direction. Results from the Grindsted site model showed that real meander geometries had similar effects to those observed for the simpler sinuous streams, and showed that despite large temporal variations in stream discharge, the spatial pattern of flow is almost constant in time for a gaining stream.

  16. Application of Distributed Temperature Sensing for coupled mapping of sedimentation processes and spatio-temporal variability of groundwater discharge in soft-bedded streams

    DEFF Research Database (Denmark)

    Sebök, Éva; Calvache, Carlos Duque; Engesgaard, Peter Knudegaard;


    -induced temperature anomalies resemble the signal of groundwater discharge while scouring will cause the cable to float in the water column and measure stream water temperatures. DTS applied in a looped layout with nine fibre optic cable rows in a 70 × 5 m section of a soft-bedded stream made it possible to detect......The delineation of groundwater discharge areas based on Distributed Temperature Sensing (DTS) data of the streambed can be difficult in soft-bedded streams where sedimentation and scouring processes constantly change the position of the fibre optic cable relative to the streambed. Deposition...... on the simultaneous interpretation of streambed temperature and elevation data, a method is proposed to delineate potential high-groundwater discharge areas and identify deposition-induced temperature anomalies in soft-bedded streams. Potential high-discharge sites were detected using as metrics the daily minimum...

  17. Hydrodynamics of a shallow coastal lagoon with submarine groundwater discharge: a numerical modeling exercise (United States)

    Casares, R.; Marino-Tapia, I.


    Coastal lagoons are subjected to physical forces that make them vulnerable to climate change and human intervention. The karstic geology along the coastal zone of Yucatan Peninsula, Mexico, forces groundwater to discharge in the sea and coastal lagoons through underground conduits that can form small but numerous and scattered underwater springs. These freshwater inputs, along with other physical forces like ocean tides and meteorological events, can have a significant effect on the circulation and residence times in coastal lagoons. Climate change consequences such as sea level rise and changing rain patterns, as well as the increasing human impact, can cause or aggravate certain environmental effects. Since coastal lagoons provide important environmental services there is a need to understand and have predictive capability to simulate the transport processes and the forces acting on them. The present study was carried out in the coastal lagoon of Celestun, located at NW Yucatan Peninsula, a region of karstic geology. The aim of this research is to understand the barotropic hydrodynamic functioning of this shallow system, taking into account the oceanographical, meteorological and hydrological forcing. Emphasis is made on the residence times in different parts of the lagoon, and the effects of freshwater inputs. For the detailed understanding of the processes the hydrodynamic numerical model DELFT3D was implemented. The model was validated with data gathered on the field during two intensive oceanographic campaigns, which included installation of CTDs and acoustic current meters at strategic sites distributed in the system, and detailed bathymetric measurements using an echosounder coupled with a differential GPS on board of a motorboat. In order to improve model performance a sensitivity analysis to the main variables involved in the model was carried out, among them: the size of the grid cells, grid depth, time step, friction coefficients, boundary conditions

  18. Underground Test Area Subproject Phase I Data Analysis Task. Volume III - Groundwater Recharge and Discharge Data Documentation Package

    Energy Technology Data Exchange (ETDEWEB)



    Volume III of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the data covering groundwater recharge and discharge. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  19. Groundwater Discharge Area for the Diamond Valley Flow System, Central Nevada (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central Nevada....

  20. Groundwater discharge areas for Antelope, Kobeh, and Monitor Valleys, Central Nevada, 1964 (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents "phreatophyte areas" mapped as part of a groundwater reconnaissance effort in four valleys in central Nevada and published in 1964. The data...

  1. Evapotranspiration Units for the Diamond Valley Flow System Groundwater Discharge Area, Central Nevada, 2010 (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central Nevada....

  2. Burkholderia pseudomallei is frequently detected in groundwater that discharges to major watercourses in northern Australia. (United States)

    Baker, Anthony L; Warner, Jeffrey M


    Burkholderia pseudomallei is the environmental bacterium that causes the serious disease melioidosis. Recently, a high prevalence of viable B. pseudomallei was reported from natural groundwater seeps around Castle Hill, a clinical focus of melioidosis in Townsville, Australia. This study sought to expand previous findings to determine the extent of B. pseudomallei in more diverse natural groundwater seeps in northern Queensland to ascertain if the presence of the organism in groundwater on Castle Hill was an isolated occurrence. Analysis of water samples (n = 26) obtained from natural groundwater seeps following an intensive rainfall event in the Townsville region determined the presence of B. pseudomallei DNA in duplicates of 18 samples (69.2 % [95 % CI, 51.5 to 87.0]). From 26 water samples, a single isolate of B. pseudomallei was recovered despite plating of both pre-enriched samples and original water samples onto selective media, indicating that the sensitivity of these molecular techniques far exceeds culture-based methods. Furthermore, the identification of new environments endemic for melioidosis may be more effectively determined by analysing surface groundwater seeps than by the analysis of random soil samples. This study suggests that a higher incidence of melioidosis following monsoonal rains may be partially the result of exposure to groundwater sources carrying B. pseudomallei, and that modifications to public health messages in endemic regions may be warranted. Moreover, these findings have implications for predictive models of melioidosis, effective models requiring consideration of topographical and surface hydrological data.

  3. Review of submarine groundwater discharge (SGD) in coastal zones of the Southeast and Gulf Coast regions of the United States with management implications. (United States)

    McCoy, C A; Corbett, D R


    Groundwater serves as the primary drinking water source for over half of the coastal populations of the Southeast and Gulf Coast regions, two of the fastest growing regions in the United States. Increased demand for this resource has exceeded sustainable yields in many areas and induced saltwater intrusion of coastal aquifers. A process associated with coastal groundwater, submarine groundwater discharge (SGD), has been documented as a source of subsurface fluids to coastal ocean environments throughout the Southeast and Gulf Coast regions and is potentially a significant contributor to nearshore water and geochemical budgets (i.e., nutrients, carbon, trace metals) in many coastal regions. The importance of groundwater as a drinking water source for coastal populations and the influences of submarine groundwater discharge to the coastal ocean warrant increased research and management of this resource. This paper highlights findings from recent SGD studies on three hydrogeologically different continental margins (Onslow Bay, NC, southern Florida, and the Louisiana margin), provides background on the common methods of assessing SGD, and suggests a regional management plan for coastal groundwater resources. Suggested strategies call for assessments of SGD in areas of potentially significant discharge, development of new monitoring networks, and the incorporation of a regional coastal groundwater resources council.

  4. How significant is submarine groundwater discharge and its associated dissolved inorganic carbon in a river-dominated shelf system-the northern South China Sea?

    Directory of Open Access Journals (Sweden)

    Q. Liu


    Full Text Available In order to assess the role of submarine groundwater discharge (SGD and its impact on the carbonate system on the northern South China Sea (NSCS shelf, we measured seawater concentrations of four radium isotopes 223,224,226,228Ra along with carbon dioxide parameters in June–July, 2008. Complementary groundwater sampling was conducted in coastal areas in December 2008 and October 2010 to constrain the groundwater end-members. The distribution of Ra isotopes in the NSCS was largely controlled by the Pearl River plume and coastal upwelling. Long-lived Ra isotopes (228Ra and 226Ra were enriched in the river plume but low in the offshore surface water and subsurface water/upwelling zone. In contrast, short-lived Ra isotopes (224Ra and 223Ra were elevated in the subsurface water/upwelling zone as well as the river plume but depleted in the offshore surface water. In order to quantify SGD, we adopted two independent mathematical approaches. Using a three end-member mixing model with total alkalinity (TAlk and Ra isotopes, we derived a SGD flux into the NSCS shelf of 2.3–3.7 ×108 m3 d−1. Our second approach involved a simple mass balance of 228Ra and 226Ra and resulted in a first order but consistent SGD rate estimate of 2.8–4.5 × 108 m3 d−1. These fluxes were equivalent to 13–25 % of the Pearl River discharge, but the source of the SGD is mostly recirculated seawater. Despite the relatively small SGD volume flow compared to the river, the associated material fluxes were substantial given the elevated concentrations of dissolved inorganic solutes. In this case, dissolved inorganic carbon (DIC flux through SGD was 266–520 × 109 mol yr−1, which was ~44–73 % of the riverine DIC export flux. Given our estimates of the groundwater-derived phosphate flux, SGD may be

  5. Water and acrylamide monomer transfer rates from a settling basin to groundwaters. (United States)

    Binet, Stéphane; Bru, Kathy; Klinka, Thomas; Touzé, Solène; Motelica-Heino, Mickael


    The aim of this paper was to estimate the potential leakage of acrylamide monomer, used for flocculation in a settling basin, towards the groundwaters. Surface-groundwater interactions were conceptualized with a groundwater transport model, using a transfer rate to describe the clogged properties of the interface. The change in the transfer rate as a function of the spreading of the clogged layer in the settling basin was characterized with respect to time. It is shown that the water and the Acrylamide transfer rate are not controlled by the spreading of the clogged layer until this layer fully covers the interface. When the clogged layer spreads out, the transfer rate remains in the same order of magnitude until the area covered reaches 80 %. The main flux takes place through bank seepage. In these early stage conditions of a working settling basin, the acrylamide flux towards groundwaters remains constant, at close to 10 g/year (±5).

  6. Groundwater capture processes under a seasonal variation in natural recharge and discharge (United States)

    Maddock, Thomas, III.; Vionnet, Leticia Beatriz

    "Capture" is the increase in recharge and the decrease in discharge that occurs when pumping is imposed on an aquifer system that was in a previous state of approximate dynamic equilibrium. Regional groundwater models are usually used to calculate capture in a two-step procedure. A steady-state solution provides an initial-head configuration, a set of flows through the boundaries for the modeled region, and the initial basis for the capture calculation. The transient solutions provide the total change in flows through the boundaries. A difference between the transient and steady-state solutions renders the capture calculation. When seasonality is a modeling issue, the use of a single initial hydraulic head and a single set of boundary flows leads to miscalculations of capture. Instead, an initial condition for each season should be used. This approach may be accomplished by determining steady oscillatory solutions, which vary through the seasons but repeat from year to year. A regional groundwater model previously developed for a portion of the San Pedro River basin, Arizona, USA, is modified to illustrate the effect that different initial conditions have on transient solutions and on capture calculations. Résumé Les "prélèvements" sont constitués par l'augmentation de la recharge et par la diminution de l'écoulement qui se produit lorsqu'un pompage est imposéà un système aquifère qui était auparavant dans un état proche de l'équilibre dynamique. Les modèles régionaux de nappe sont en général utilisés pour calculer les prélèvements dans une procédure à deux étapes. Une solution en régime permanent donne la configuration piézométrique initiale, un jeu de conditions aux limites pour la région modélisée et les données de base pour le calcul des prélèvements. Les solutions transitoires donnent les modifications globales des conditions aux limites. Lorsque des variations saisonnières sont produites en sortie du modèle, le recours à une

  7. Vertical Sampling in Recharge Areas Versus Lateral Sampling in Discharge Areas: Assessing the Agricultural Nitrogen Legacy in Groundwater (United States)

    Gilmore, T. E.; Genereux, D. P.; Solomon, D. K.; Mitasova, H.; Burnette, M.


    Agricultural nitrogen (N) is a legacy contaminant often found in shallow groundwater systems. This legacy has commonly been observed using well nests (vertical sampling) in recharge areas, but may also be observed by sampling at points in/beneath a streambed using pushable probes along transects across a channel (lateral sampling). We compared results from two different streambed point sampling approaches and from wells in the recharge area to assess whether the different approaches give fundamentally different pictures of (1) the magnitude of N contamination, (2) historic trends in N contamination, and (3) the extent to which denitrification attenuates nitrate transport through the surficial aquifer. Two different arrangements of streambed points (SP) were used to sample groundwater discharging into a coastal plain stream in North Carolina. In July 2012, a 58 m reach was sampled using closely-spaced lateral transects of SP, revealing high average [NO3-] (808 μM, n=39). In March 2013, transects of SP were widely distributed through a 2.7 km reach that contained the 58 m reach and suggested overall lower [NO3-] (210 μM, n=30), possibly due to variation in land use along the longer study reach. Mean [NO3-] from vertical sampling (2 well nests with 3 wells each) was 296 μM. Groundwater apparent ages from SP in the 58 m and 2.7 km reaches suggested lower recharge [NO3-] (observed [NO3-] plus modeled excess N2) in 0-10 year-old water (1250 μM and 525 μM, respectively), compared to higher recharge [NO3-] from 10-30 years ago (about 1600 μM and 900 μM, respectively). In the wells, [NO3-] was highest (835 μM) in groundwater with apparent age of 12-15 years and declined as apparent age increased, a trend that was consistent with SP in the 2.7 km reach. The 58 m reach suggested elevated recharge [NO3-] (>1100 μM) over a 50-year period. Excess N2 from wells suggested that about 62% of nitrate had been removed via denitrification since recharge, versus 51% and 78

  8. Capacity fade study of lithium-ion batteries cycled at high discharge rates (United States)

    Ning, Gang; Haran, Bala; Popov, Branko N.

    Capacity fade of Sony US 18650 Li-ion batteries cycled using different discharge rates was studied at ambient temperature. The capacity losses were estimated after 300 cycles at 2 C and 3 C discharge rates and were found to be 13.2 and 16.9% of the initial capacity, respectively. At 1 C discharge rate the capacity lost was only 9.5%. The cell cycled at high discharge rate (3 C) showed the largest internal resistance increase of 27.7% relative to the resistance of the fresh cells. The rate capability losses were proportional with the increase of discharge rates. Half-cell study and material and charge balances were used to quantify the capacity fade due to the losses of primary active material (Li +), the secondary active material (LiCoO 2/C)) and rate capability losses. It was found that carbon with 10.6% capacity loss after 300 cycles dominates the capacity fade of the whole cell at high discharge rates (3 C). A mechanism is proposed which explains the capacity fade at high discharge rates.

  9. Characterization of mean transit time at large springs in the Upper Colorado River Basin, USA: A tool for assessing groundwater discharge vulnerability (United States)

    Solder, John; Stolp, Bernard J.; Heilweil, Victor M.; Susong, David D.


    Environmental tracers (noble gases, tritium, industrial gases, stable isotopes, and radio-carbon) and hydrogeology were interpreted to determine groundwater transit-time distribution and calculate mean transit time (MTT) with lumped parameter modeling at 19 large springs distributed throughout the Upper Colorado River Basin (UCRB), USA. The predictive value of the MTT to evaluate the pattern and timing of groundwater response to hydraulic stress (i.e., vulnerability) is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the springs range from 10 to 15,000 years and 90 % of the cumulative discharge-weighted travel-time distribution falls within the range of 2−10,000 years. Historical variability in discharge was assessed as the ratio of 10–90 % flow-exceedance (R 10/90%) and ranged from 2.8 to 1.1 for select springs with available discharge data. The lag-time (i.e., delay in discharge response to drought conditions) was determined by cross-correlation analysis and ranged from 0.5 to 6 years for the same select springs. Springs with shorter MTTs (<80 years) statistically correlate with larger discharge variations and faster responses to drought, indicating MTT can be used for estimating the relative magnitude and timing of groundwater response. Results indicate that groundwater discharge to streams in the UCRB will likely respond on the order of years to climate variation and increasing groundwater withdrawals.

  10. Impact of different discharge patterns on bed occupancy rate and bed waiting time: a simulation approach. (United States)

    Zhu, Zhecheng


    Beds are one of the most important resources in a healthcare system. How to manage beds efficiently is an important indicator of the efficiency of the healthcare system. Bed management is challenging to many healthcare service providers in many aspects. In recent years, population growth and aging society impose extra pressure on bed requirement. There are usually two key performance indicators of a bed management system: bed occupancy rate and bed waiting time. In this paper, different discharge patterns and their impacts on the bed occupancy rate and bed waiting time are studied. A discrete event simulation model is constructed to evaluate the existing discharge pattern in a Singapore regional hospital using actual hospital admission and discharge transaction data. Then different discharge patterns are tested in the same context. Simulation results show that a proper discharge pattern significantly smoothes the fluctuation of bed occupancy rate and reduce the bed waiting time.

  11. Matched comparison of GP and consultant rating of electronic discharge summaries. (United States)

    Stainkey, Lesley; Pain, Tilley; McNichol, Margaret; Hack, John; Roberts, Lynden


    Queensland Health is implementing a state-wide system to electronically generate and distribute discharge summaries. Previously, general practitioners (GPs) have indicated that the quality of the discharge summary does not support clinical handover. While the electronic system will address some issues (e.g. legibility and timeliness), the quality of the discharge summary content is predominantly independent of method of generation. As discharge summaries are usually generated by interns, we proposed that improvement in the quality of the summary may be achieved through education. This project aimed to compare the perceptions of hospital-based consultant educators and recipient GPs regarding discharge summary content and quality. The discharge summary and audit tool were sent to the recipient GP (n=134) and a hospital consultant (n=14) for satisfaction rating, using a 5- point Likert scale for questions relating to diagnosis, the listing of clinical management, medication, pathology, investigations, and recommendations to GP. Sampling was performed by selecting up to 10 discharge summaries completed by each first-year intern (n=36) in 2009, during the second, third and fourth rotations at the Townsville Hospital until a total of 403 was reached. Matched responses were compared using the Kappa statistic. The response rate was 93% (n=375) and 63% (n=254) for consultants and GPs respectively. Results from this study demonstrated that GPs were more satisfied with discharge summaries than were consultants. An anomaly occurred in three questions where, despite the majority of GPs rating satisfied or very satisfied, a small but proportionally greater number of GPs were very dissatisfied when compared with consultants. Poor or fair agreement between GPs and consultants was demonstrated in medications, pathology results, investigations and recommendations to GP, with GPs rating higher satisfaction in all questions. Lower consultant satisfaction ratings compared with GP

  12. Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, David; Roos, Gillian [Golder Associates Ltd., 2390 Argentia Road, Mississauga, ON L5N 5Z7 (Canada); Ferguson Jones, Andrea [MMM Group Ltd., 100 Commerce Valley Drive West, Thornhill, ON L3T 0A1 (Canada); Case, Glenn [AECL Port Hope Area Initiative Management Office, 115 Toronto Road, Port Hope, ON L1A 3S4 (Canada); Yule, Adam [Public Works and Government Services Canada, 4900 Yonge Street, 11th Floor, Toronto, ON, M2N 6A6 (Canada)


    The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSR have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground

  13. Importance of including small-scale tile drain discharge in the calibration of a coupled groundwater-surface water catchment model

    DEFF Research Database (Denmark)

    Hansen, Anne Lausten; Refsgaard, Jens Christian; Christensen, Britt Stenhøj Baun;


    the catchment. In this study, a coupled groundwater-surface water model based on the MIKE SHE code was developed for the 4.7 km2 Lillebæk catchment in Denmark, where tile drain flow is a major contributor to the stream discharge. The catchment model was calibrated in several steps by incrementally including...... the observation data into the calibration to see the effect on model performance of including diverse data types, especially tile drain discharge. For the Lillebæk catchment, measurements of hydraulic head, daily stream discharge, and daily tile drain discharge from five small (1–4 ha) drainage areas exist....... The results showed that including tile drain data in the calibration of the catchment model improved its general performance for hydraulic heads and stream discharges. However, the model failed to correctly describe the local-scale dynamics of the tile drain discharges, and, furthermore, including the drain...

  14. Monitoring physical properties of a submarine groundwater discharge source at Kalogria Bay, SW Peloponnissos, Greece (United States)

    Karageorgis, A. P.; Papadopoulos, V. P.; Georgopoulos, D.; Kanellopoulos, Th. D.; Papathanassiou, E.


    An impressive SGD in Kalogria Bay (SW Peloponnissos) was surveyed for the first time in 2006, revealing the existence of 2 major and 2 minor point sources of freshwater (salinity ~l-2); the discharge was ~ 1000 m3 h-1. The major point source was located in a karstic cavity at 25 m depth. In July 2009, and for a period of one year, the site was monitored intensively. During summer, the underwater discharge was not very strong, the water was flowing from many dispersed points, and salinity range was 20-36. During autumn and winter, flow velocity increased considerably (> 1 m s-1), and the SGDs discharged water of low salinity (< 2). Gradually, the smaller SGDs ceased their operation, and the major SGD emanated brackish water during spring and summer, thus hampering the possibilities of freshwater exploitation, in a touristic area which suffers from great aridity and water demand is high during summer.

  15. Monitoring physical properties of a submarine groundwater discharge source at Kalogria Bay, SW Peloponnissos, Greece

    Directory of Open Access Journals (Sweden)

    Papathanassiou E.


    Full Text Available An impressive SGD in Kalogria Bay (SW Peloponnissos was surveyed for the first time in 2006, revealing the existence of 2 major and 2 minor point sources of freshwater (salinity ~l-2; the discharge was ~ 1000 m3 h−1. The major point source was located in a karstic cavity at 25 m depth. In July 2009, and for a period of one year, the site was monitored intensively. During summer, the underwater discharge was not very strong, the water was flowing from many dispersed points, and salinity range was 20–36. During autumn and winter, flow velocity increased considerably (> 1 m s−1, and the SGDs discharged water of low salinity (< 2. Gradually, the smaller SGDs ceased their operation, and the major SGD emanated brackish water during spring and summer, thus hampering the possibilities of freshwater exploitation, in a touristic area which suffers from great aridity and water demand is high during summer.

  16. Ground-truthing electrical resistivity methods in support of submarine groundwater discharge studies: Examples from Hawaii, Washington, and California (United States)

    Johnson, Cordell; Swarzenski, Peter W.; Richardson, Christina M.; Smith, Christopher G.; Kroeger, Kevin D.; Ganguli, Priya M.


    Submarine groundwater discharge (SGD) is an important conduit that links terrestrial and marine environments. SGD conveys both water and water-borne constituents into coastal waters, where these inflows may impact near-shore ecosystem health and sustainability. Multichannel electrical resistivity techniques have proven to be a powerful tool to examine scales and dynamics of SGD and SGD forcings. However, there are uncertainties both in data aquisition and data processing that must be addressed to maximize the effectiveness of this tool in estuarine or marine environments. These issues most often relate to discerning subtle nuances in the flow of electricity through variably saturated media that can also be highly conductive (i.e., seawater).

  17. Does localized recharge occur at a discharge area within the ground-water flow system of Yucca Mountain, Nevada?

    Energy Technology Data Exchange (ETDEWEB)

    Czarnecki, J.B. [Geological Survey, Denver, CO (United States); Kroitoru, L. [Roy F. Weston, Inc., Washington, DC (United States); Ronen, D. [Weizmann Inst. of Science, Rehovot (Israel)]|[Hydrological Service, Jerusalem (Israel); Magaritz, M. [Weizmann Inst. of Science, Rehovot (Israel)


    Studies done in 1984, at a central site on Franklin Lake playa (also known as Alkali Flat, a major discharge area of the ground-water flow system that includes Yucca Mountain, Nevada, the potential site of a high-level nuclear-waste repository) yield limited hydraulic-head and hydrochemical data from a 3-piezometer nest which indicated a slightly downward hydraulic gradient ({minus}0.02) and decreasing concentration of dissolved solids with increasing depth. Hydraulic-head measurements in June, 1989 made at the piezometer nest showed a substantially larger downward gradient ({minus}0.10) and a 0. 83{minus}meter higher water level in the shallowest piezometer (3.29 meters deep), indicating the possibility of localized recharge. during the period of September-November, 1989, a multilevel sampler was used to obtain detailed hydrochemical profiles of the uppermost 1. 5 m of the saturated zone.

  18. Submarine groundwater discharge as an integral environmental "currency" limiting population and development within the ecosphere of small islands (United States)

    Coffey, Ruth

    Submarine groundwater discharge (SGD) from oceanic islands has been estimated to contribute over a third of the global SGD due to orographic precipitation, short aquifer pathways and poorly developed surface drainage. This seepage of groundwater across the sea floor connects land and coastal ocean resources, and is hereby proposed as a parameter to evaluate the interconnections between coastal environmental quality and coastal populations and development. Relatively few islands have been studied, but SGD is typically found to be an important, and often the only, source of nutrients to coastal waters. Freshwater and its pollutant load are delivered to the coastal zone via SGD with consequent impacts on tourism and fisheries thus linking the land-based and marine economic sectors. The characteristics of SGD were investigated on Barbados, Guam and Bimini, islands all of, at least partly, carbonate origin, This study evaluates the similarities and differences between these islands and assesses the applicability of using SGD as a parameter within a population--development--environment model. Model scenarios can be used to explore the integrated coastal impacts of wastewater treatment practices and changes in seasonal rainfall due to climate change. This study also presents novel analytical methods for SGD field data.

  19. Improvement of growth rate of plants by bubble discharge in water (United States)

    Takahata, Junichiro; Takaki, Koichi; Satta, Naoya; Takahashi, Katsuyuki; Fujio, Takuya; Sasaki, Yuji


    The effect of bubble discharge in water on the growth rate of plants was investigated experimentally for application to plant cultivation systems. Spinach (Spinacia oleracea), radish (Raphanus sativus var. sativus), and strawberry (Fragaria × ananassa) were used as specimens to clarify the effect of the discharge treatment on edible parts of the plants. The specimens were cultivated in pots filled with artificial soil, which included chicken manure charcoal. Distilled water was sprayed on the artificial soil and drained through a hole in the pots to a water storage tank. The water was circulated from the water storage tank to the cultivation pots after 15 or 30 min discharge treatment on alternate days. A magnetic compression-type pulsed power generator was used to produce the bubble discharge with a repetition rate of 250 pps. The plant height in the growth phase and the dry weight of the harvested plants were improved markedly by the discharge treatment in water. The soil and plant analyzer development (SPAD) value of the plants also improved in the growth phase of the plants. The concentration of nitrate nitrogen, which mainly contributed to the improvement of the growth rate, in the water increased with the discharge treatment. The Brix value of edible parts of Fragaria × ananassa increased with the discharge treatment. The inactivation of bacteria in the water was also confirmed with the discharge treatment.

  20. Spatial Characteristics of Geothermal Spring Temperatures and Discharge Rates in the Tatun Volcanic Area, Taiwan (United States)

    Jang, C. S.; Liu, C. W.


    The Tatun volcanic area is the only potential volcanic geothermal region in the Taiwan island, and abundant in hot spring resources owing to stream water mixing with fumarolic gases. According to the Meinzer's classification, spring temperatures and discharge rates are the most important properties for characterizing spring classifications. This study attempted to spatially characterize spring temperatures and discharge rates in the Tatun volcanic area, Taiwanusing indicator kriging (IK). First, data on spring temperatures and discharge rates, which were collected from surveyed data of the Taipei City Government, were divided into high, moderate and low categories according to spring classification criteria, and the various categories were regarded as estimation thresholds. Then, IK was adopted to model occurrence probabilities of specified temperatures and discharge rates in springs, and to determine their classifications based on estimated probabilities. Finally, nine combinations were obtained from the classifications of temperatures and discharge rates in springs. Moreover, the combinations and features of spring water were spatially quantified according to seven sub-zones of spring utilization. A suitable and sustainable development strategy of the spring area was proposed in each sub-zone based on probability-based combinations and features of spring water.The research results reveal that the probability-based classifications using IK provide an excellent insight in exploring the uncertainty of spatial features in springs, and can provide Taiwanese government administrators with detailed information on sustainable spring utilization and conservation in the overexploited spring tourism areas. The sub-zones BT (Beitou), RXY (Rd. Xingyi), ZSL (Zhongshanlou) and LSK (Lengshuikeng) with high or moderate discharge rates are suitable to supply spring water for tourism hotels.Local natural hot springs should be planned in the sub-zones DBT (Dingbeitou), ZSL, XYK

  1. Geophysical and hydrogeological characterisation of the impacts of on-site wastewater treatment discharge to groundwater in a poorly productive bedrock aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, Shane [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland (United Kingdom); McCarthy, Valerie; Rafferty, Patrick [Department of Applied Sciences, Dundalk Institute of Technology, Dublin Road, Dundalk (Ireland); Orr, Alison; Flynn, Raymond [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland (United Kingdom)


    Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100 m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar

  2. Seasonal changes in submarine groundwater discharge to coastal salt ponds estimated using 226Ra and 228Ra as tracers (United States)

    Hougham, A.L.; Moran, S.B.; Masterson, J.P.; Kelly, R.P.


    Submarine groundwater discharge (SGD) to coastal southern Rhode Island was estimated from measurements of the naturally-occurring radioisotopes 226Ra (t1/2 = 1600??y) and 228Ra (t1/2 = 5.75??y). Surface water and porewater samples were collected quarterly in Winnapaug, Quonochontaug, Ninigret, Green Hill, and Pt. Judith-Potter Ponds, as well as nearly monthly in the surface water of Rhode Island Sound, from January 2002 to August 2003; additional porewater samples were collected in August 2005. Surface water activities ranged from 12-83??dpm 100??L- 1 (60??dpm = 1??Bq) and 21-256??dpm 100??L- 1 for 226Ra and 228Ra, respectively. Porewater 226Ra activities ranged from 16-736??dpm 100??L- 1 (2002-2003) and 95-815??dpm 100??L- 1 (2005), while porewater 228Ra activities ranged from 23-1265??dpm 100??L- 1. Combining these data with a simple box model provided average 226Ra-based submarine groundwater fluxes ranging from 11-159??L m- 2 d- 1 and average 228Ra-derived fluxes of 15-259??L m- 2 d- 1. Seasonal changes in Ra-derived SGD were apparent in all ponds as well as between ponds, with SGD values of 30-472??L m- 2 d- 1 (Winnapaug Pond), 6-20??L m- 2 d- 1 (Quonochontaug Pond), 36-273??L m- 2 d- 1 (Ninigret Pond), 29-76??L m- 2 d- 1 (Green Hill Pond), and 19-83??L m- 2 d- 1 (Pt. Judith-Potter Pond). These Ra-derived fluxes are up to two orders of magnitude higher than results predicted by a numerical model of groundwater flow, estimates of aquifer recharge for the study period, and values published in previous Ra-based SGD studies in Rhode Island. This disparity may result from differences in the type of flow (recirculated seawater versus fresh groundwater) determined using each technique, as well as variability in porewater Ra activity. ?? 2007 Elsevier B.V. All rights reserved.

  3. Non-uniform groundwater discharge across a stream bed: Heat as a tracer

    DEFF Research Database (Denmark)

    Jensen, Jannick Kolbjørn; Engesgaard, Peter Knudegaard


    throughout the period. On the other hand, discharge to the stream at the opposite bank near a steep hillslope decreased signifi cantly toward the end of the period (early June), which was a¿ ributed to a drop in the water table on this side of the stream. The results from the O me series analysis were......Time series analysis of conO nuous streambed temperature during a period of 47 d revealed that discharge to a stream is nonuniform, with strongly increasing verO cal fl uxes throughout the top 20 cm of the streambed–aquifer interface. An analyO cal soluO on to the transient heat transport equa...... compared with seepage meter measurements and the results from a steady-state analyO cal soluO on to the heat transport equaO on. The diff erent methods agreed on the pa¿ ern of discharge across the stream width, and the mean values during the studied period generally agreed well but with diff erent ranges....

  4. Modeling anthropogenic boron in groundwater flow and discharge at Volusia Blue Spring (Florida, USA) (United States)

    Reed, Erin M.; Wang, Dingbao; Duranceau, Steven J.


    Volusia Blue Spring (VBS) is the largest spring along the St. Johns River in Florida (USA) and the spring pool is refuge for hundreds of manatees during winter months. However, the water quality of the spring flow has been degraded due to urbanization in the past few decades. A three-dimensional contaminant fate and transport model, utilizing MODFLOW-2000 and MT3DMS, was developed to simulate boron transport in the Upper Florida Aquifer, which sustains the VBS spring discharge. The VBS model relied on information and data related to natural water features, rainfall, land use, water use, treated wastewater discharge, septic tank effluent flows, and fertilizers as inputs to simulate boron transport. The model was calibrated against field-observed water levels, spring discharge, and analysis of boron in water samples. The calibrated VBS model yielded a root-mean-square-error value of 1.8 m for the head and 17.7 μg/L for boron concentrations within the springshed. Model results show that anthropogenic boron from surrounding urbanized areas contributes to the boron found at Volusia Blue Spring.

  5. Impact of gas flow rate on breakdown of filamentary dielectric barrier discharges (United States)

    Höft, H.; Becker, M. M.; Kettlitz, M.


    The influence of gas flow rate on breakdown properties and stability of pulsed dielectric barrier discharges (DBDs) in a single filament arrangement using a gas mixture of 0.1 vol. % O2 in N2 at atmospheric pressure was investigated by means of electrical and optical diagnostics, accompanied by fluid dynamics and electrostatics simulations. A higher flow rate perpendicular to the electrode symmetry axis resulted in an increased breakdown voltage and DBD current maximum, a higher discharge inception jitter, and a larger emission diameter of the discharge channel. In addition, a shift of the filament position for low gas flow rates with respect to the electrode symmetry axis was observed. These effects can be explained by the change of the residence time of charge carriers in the discharge region—i.e., the volume pre-ionization—for changed flow conditions due to the convective transport of particles out of the center of the gap.

  6. Effects of Gas Flow Rate on the Discharge Characteristics of a DC Excited Plasma Jet (United States)

    Li, Xuechen; Jia, Pengying; Di, Cong; Bao, Wenting; Zhang, Chunyan


    A direct current (DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas. Using optical and electrical methods, the discharge characteristics are investigated for the diffuse plasma plume. Results indicate that the discharge has a pulse characteristic, under the excitation of a DC voltage. The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode. It is found that, with an increment of the gas flow rate, both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode, reach their minima at about 1.5 L/min, and then slightly increase in the turbulent mode. However, the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min, and then slightly decreases in the turbulent mode. supported by National Natural Science Foundation of China (Nos. 10805013, 11375051), Funds for Distinguished Young Scientists of Hebei Province, China (No. A2012201045), Department of Education for Outstanding Youth Project of China (No. Y2011120), and Youth Project of Hebei University of China (No. 2011Q14)

  7. Assessing modern rates of river sediment discharge to the ocean using satellite gravimetry (United States)

    Mouyen, Maxime; Longuevergne, Laurent; Steer, Philippe; Crave, Alain; Lemoine, Jean-Michel; Save, Himanshu; Robin, Cécile


    Worldwide rivers annually export about 19 Gigatons of sediments to the ocean that mostly accumulate in the coastal zones and on the continental shelves. This sediment discharge testifies of the intensity of continental erosion and records changes in climate, tectonics and human activity. However, natural and instrumental uncertainties inherent to the in-situ measurements of sediment discharge prevent from conclusive estimates to better understand these linkages. Here we develop a new method, using the Gravity Recovery and Climate Experiment (GRACE) satellite data, to infer mass-integrative estimates of sediment discharge of large rivers to the ocean. GRACE satellite provides global gravity time series that have proven useful for quantifying mass transport, including continental water redistribution at the Earth surface (ice sheets and glaciers melting, groundwater storage variations) but has been seldom used for monitoring sediment mass transfers so far. Here we pair the analysis of regularized GRACE solutions at high spatial resolution corrected from all known contributions (hydrology, ocean, atmosphere) to a particle tracking model that predicts the location of the sediment sinks for 13 rivers with the highest sediments loads in the world. We find that the resulting GRACE-derived sediment discharges off the mouth of the Amazon, Ganges-Brahmaputra, Changjiang (Yangtze), Indus, Magdalena, Godavari and Mekong rivers are consistent with in-situ measurements. Our results suggest that the lack of time continuity and of global coverage in terrestrial sediment discharge measurements could be reduced by using GRACE, which provides global and continuous data since 2002. GRACE solutions are regularly improved and new satellite gravity missions are being prepared hence making our approach even more relevant in a near future. The accumulation of sediments over time will keep increasing the signal to noise ratio of the gravity time series, which will improve the precision of

  8. Geophysical and hydrogeological characterisation of the impacts of on-site wastewater treatment discharge to groundwater in a poorly productive bedrock aquifer. (United States)

    Donohue, Shane; McCarthy, Valerie; Rafferty, Patrick; Orr, Alison; Flynn, Raymond


    Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar

  9. A differential equation for the flow rate during silo discharge: Beyond the Beverloo rule



    We present a differential equation for the flow rate of granular materials during the discharge of a silo. This is based in the energy balance of the variable mass system in contrast with the traditional derivations based on heuristic postulates such as the free fall arch. We show that this new equation is consistent with the well known Beverloo rule, providing an independent estimate for the universal Beverloo prefactor. We also find an analytic expression for the pressure under discharging ...

  10. Submarine groundwater discharge revealed by radium isotopes (Ra-223 and Ra-224 near a paleochannel on the Southern Brazilian continental shelf

    Directory of Open Access Journals (Sweden)

    Karina Kammer Attisano


    Full Text Available Submarine Groundwater Discharge (SGD has been recognized as an important component of the ocean-continent interface. The few previous studies in Brazil have focused on nearshore areas. This paper explores SGD on the Southern Brazilian Continental Shelf using multiple lines of evidence that include radium isotopes, dissolved nutrients, and water mass observations. The results indicated that SGD may be occurring on the Continental Shelf in the Albardão region, near a paleochannel located 50 km offshore. This paleochannel may thus be a preferential pathway for the delivery of nutrient- and metal-enriched groundwater and porewater into continental shelf waters.

  11. Global Modeling of N2O Discharges: Rate Coefficients and Comparison with ICP and Glow Discharges Results

    Directory of Open Access Journals (Sweden)

    Konstantinos Katsonis


    Full Text Available We developed a Global Model for N2O plasmas valid for applications in various power, gas flow rate, and pressure regimes. Besides energy losses from electron collisions with N2O, it takes into consideration those due to molecular N2 and O2 and to atomic N and O species. Positive atomic N+ and O+ and molecular N2O+, N2+, and O2+ have been treated as separate species and also negative O− ions. The latter confer an electronegative character to the discharge, calling for modified plasma sheath and plasma potential formulas. Electron density and temperature and all species densities have been evaluated, hence the ionization and dissociation percentages of N2O, N2, and O2 molecules and the plasma electronegativity. The model is extended to deal with N2/O2 mixtures feedings, notably with air. Rate coefficients and model results are discussed and compared with those from available theoretical and experimental work on ICP and glow discharge devices.

  12. Applications of radon and radium isotopes to determine submarine groundwater discharge and flushing times in Todos os Santos Bay, Brazil. (United States)

    Hatje, Vanessa; Attisano, Karina Kammer; de Souza, Marcelo Friederichs Landim; Mazzilli, Barbara; de Oliveira, Joselene; de Araújo Mora, Tamires; Burnett, William C


    Todos os Santos Bay (BTS) is the 2nd largest bay in Brazil and an important resource for the people of the State of Bahia. We made measurements of radon and radium in selected areas of the bay to evaluate if these tracers could provide estimates of submarine groundwater discharge (SGD) and flushing times of the Paraguaçu Estuary and BTS. We found that there were a few areas along the eastern and northeastern shorelines that displayed relatively high radon and low salinities, indicating possible sites of enhanced SGD. A time-series mooring over a tidal cycle at Marina do Bonfim showed a systematic enrichment of the short-lived radium isotopes (223)Ra and (224)Ra during the falling tide. Assuming that the elevated radium isotopes were related to SGD and using measured radium activities from a shallow well at the site, we estimated groundwater seepage at about 70 m(3)/day per unit width of shoreline. Extrapolating to an estimated total shoreline length provided a first approximation of total (fresh + saline) SGD into BTS of 300 m(3)/s, about 3 times the average river discharge into the bay. Just applying the shoreline lengths from areas identified with high radon and reduced salinity results in a lower SGD estimate of 20 m(3)/s. Flushing times of the Paraguaçu Estuary were estimated at about 3-4 days based on changing radium isotope ratios from low to high salinities. The flushing time for the entire BTS was also attempted using the same approach and resulted in a surprisingly low value of only 6-8 days. Although physical oceanographic models have proposed flushing times on the order of months, a simple tidal prism calculation provided results in the range of 4-7 days, consistent with the radium approach. Based on these initial results, we recommend a strategy for refining both SGD and flushing time estimates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A tidal creek water budget: Estimation of groundwater discharge and overland flow using hydrologic modeling in the Southern Everglades (United States)

    Michot, Béatrice; Meselhe, Ehab A.; Rivera-Monroy, Victor H.; Coronado-Molina, Carlos; Twilley, Robert R.


    Taylor Slough is one of the natural freshwater contributors to Florida Bay through a network of microtidal creeks crossing the Everglades Mangrove Ecotone Region (EMER). The EMER ecological function is critical since it mediates freshwater and nutrient inputs and controls the water quality in Eastern Florida Bay. Furthermore, this region is vulnerable to changing hydrodynamics and nutrient loadings as a result of upstream freshwater management practices proposed by the Comprehensive Everglades Restoration Program (CERP), currently the largest wetland restoration project in the USA. Despite the hydrological importance of Taylor Slough in the water budget of Florida Bay, there are no fine scale (˜1 km 2) hydrodynamic models of this system that can be utilized as a tool to evaluate potential changes in water flow, salinity, and water quality. Taylor River is one of the major creeks draining Taylor Slough freshwater into Florida Bay. We performed a water budget analysis for the Taylor River area, based on long-term hydrologic data (1999-2007) and supplemented by hydrodynamic modeling using a MIKE FLOOD (DHI, model to evaluate groundwater and overland water discharges. The seasonal hydrologic characteristics are very distinctive (average Taylor River wet vs. dry season outflow was 6 to 1 during 1999-2006) with a pronounced interannual variability of flow. The water budget shows a net dominance of through flow in the tidal mixing zone, while local precipitation and evapotranspiration play only a secondary role, at least in the wet season. During the dry season, the tidal flood reaches the upstream boundary of the study area during approximately 80 days per year on average. The groundwater field measurements indicate a mostly upwards-oriented leakage, which possibly equals the evapotranspiration term. The model results suggest a high importance of groundwater contribution to the water salinity in the EMER. The model performance is satisfactory

  14. Model for charge/discharge-rate-dependent plastic flow in amorphous battery materials (United States)

    Khosrownejad, S. M.; Curtin, W. A.


    Plastic flow is an important mechanism for relaxing stresses that develop due to swelling/shrinkage during charging/discharging of battery materials. Amorphous high-storage-capacity Li-Si has lower flow stresses than crystalline materials but there is evidence that the plastic flow stress depends on the conditions of charging and discharging, indicating important non-equilibrium aspects to the flow behavior. Here, a mechanistically-based constitutive model for rate-dependent plastic flow in amorphous materials, such as LixSi alloys, during charging and discharging is developed based on two physical concepts: (i) excess energy is stored in the material during electrochemical charging and discharging due to the inability of the amorphous material to fully relax during the charging/discharging process and (ii) this excess energy reduces the barriers for plastic flow processes and thus reduces the applied stresses necessary to cause plastic flow. The plastic flow stress is thus a competition between the time scales of charging/discharging and the time scales of glassy relaxation. The two concepts, as well as other aspects of the model, are validated using molecular simulations on a model Li-Si system. The model is applied to examine the plastic flow behavior of typical specimen geometries due to combined charging/discharging and stress history, and the results generally rationalize experimental observations.

  15. [Groundwater]. (United States)

    González De Posada, Francisco


    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  16. A digital procedure for ground water recharge and discharge pattern recognition and rate estimation. (United States)

    Lin, Yu-Feng; Anderson, Mary P


    A digital procedure to estimate recharge/discharge rates that requires relatively short preparation time and uses readily available data was applied to a setting in central Wisconsin. The method requires only measurements of the water table, fluxes such as stream baseflows, bottom of the system, and hydraulic conductivity to delineate approximate recharge/discharge zones and to estimate rates. The method uses interpolation of the water table surface, recharge/discharge mapping, pattern recognition, and a parameter estimation model. The surface interpolator used is based on the theory of radial basis functions with thin-plate splines. The recharge/discharge mapping is based on a mass-balance calculation performed using MODFLOW. The results of the recharge/discharge mapping are critically dependent on the accuracy of the water table interpolation and the accuracy and number of water table measurements. The recharge pattern recognition is performed with the help of a graphical user interface (GUI) program based on several algorithms used in image processing. Pattern recognition is needed to identify the recharge/discharge zonations and zone the results of the mapping method. The parameter estimation program UCODE calculates the parameter values that provide a best fit between simulated heads and flows and calibration head-and-flow targets. A model of the Buena Vista Ground Water Basin in the Central Sand Plains of Wisconsin is used to demonstrate the procedure.

  17. Predictions of Radionuclide Dose Rates from Sellafield Discharges using a Compartmental Model

    Energy Technology Data Exchange (ETDEWEB)

    McCubbin, D.; Leonard, K.S.; Gurbutt, P.A.; Round, G.D


    A multi-compartmental model (MIRMAID) of the Irish Sea has been used to predict radionuclide dose rates to the public, via seafood consumption pathways. Radionuclides originate from the authorised discharge of low level liquid effluent from the BNF plc nuclear reprocessing plant at Sellafield. The model has been used to predict combined annual doses, the contribution of dose from individual radionuclides and to discriminate dose between present day and historic discharges. An assessment has been carried out to determine the sensitivity of the predictions to changes in various model parameters. The predicted dose to the critical group from seafood consumption in 1995 ranged from 37-96 {mu}Sv of which the majority originated from current discharges. The contribution from {sup 99}Tc was predicted to have increased from 0.2% in 1993 up to 20% in 1995. The predicted contribution of Pu and Am from historic discharges is underestimated in the model. (author)

  18. Multi-temporal thermal analyses for submarine groundwater discharge (SGD) detection over large spatial scales in the Mediterranean (United States)

    Hennig, Hanna; Mallast, Ulf; Merz, Ralf


    Submarine groundwater discharge (SGD) sites act as important pathways for nutrients and contaminants that deteriorate marine ecosystems. In the Mediterranean it is estimated that 75% of freshwater input is contributed from karst aquifers. Thermal remote sensing can be used for a pre-screening of potential SGD sites in order to optimize field surveys. Although different platforms (ground-, air- and spaceborne) may serve for thermal remote sensing, the most cost-effective are spaceborne platforms (satellites) that likewise cover the largest spatial scale (>100 km per image). Therefore an automatized and objective approach that uses thermal satellite images from Landsat 7 and Landsat 8 was used to localize potential SGD sites on a large spatial scale. The method using descriptive statistic parameter specially range and standard deviation by (Mallast et al., 2014) was adapted to the Mediterranean Sea. Since the method was developed for the Dead Sea were satellite images with cloud cover are rare and no sea level change occurs through tidal cycles it was essential to adapt the method to a region where tidal cycles occur and cloud cover is more frequent . These adaptations include: (1) an automatic and adaptive coastline detection (2) include and process cloud covered scenes to enlarge the data basis, (3) implement tidal data in order to analyze low tide images as SGD is enhanced during these phases and (4) test the applicability for Landsat 8 images that will provide data in the future once Landsat 7 stops working. As previously shown, the range method shows more accurate results compared to the standard deviation. However, the result exclusively depends on two scenes (minimum and maximum) and is largely influenced by outliers. Counteracting on this drawback we developed a new approach. Since it is assumed that sea surface temperature (SST) is stabilized by groundwater at SGD sites, the slope of a bootstrapped linear model fitted to sorted SST per pixel would be less

  19. Groundwater Coastal Discharge at the Kalogrias Bay in Mani and its Relationship with the Geological and Tectonic Structure of Taygetos (Mani, Southern Peloponnese- Greece) (United States)

    Migiros, George; Papanikolaou, Ioannis


    A massive groundwater coastal gushing spring with an annual freshwater discharge rate that exceeds 7*106m3 has been mapped within the Messiniakos Gulf in the Kalogrias bay and Kardamili-Mani (southern Peloponnese), approximately 100m from the coastline. The mechanism that supports this high discharge rate is not only of exceptional scientific interest due also to its complexity, but its potential exploration would be crucial for the future survival, economic development and prosperity of a large part of the Mani peninsula. The sea bottom morphology has an ovoid shape with the deepest part at 29m towards the gushing spring, it is characterized by important linear morphologic features in a rather unstable geologic environment of carbonate bedrock which is covered by a thin layer of semi-cohesive sediments. The study area belongs to the Geotectonic Unit of Mani that covers a large part of the Taygetos mountain and forms the predominant water supply source for all karstic springs of Mani. It consists of thick carbonates of Triassic that end up with the flysch sedimentation in Oligocene times. These alpine rocks are covered uncomfortably by Pliocene and Pleistocene sediments of variable clastic materials. Detailed geological and tectonic analysis of the region, supported by the mapping of springs and the relevant karstic features of the area shows that: a) Springs towards the mountain areas are either contact springs or karstic springs of low discharge rate that are strictly related to the folds and thrusts that were developed during the Alpine deformation phase. b) Springs towards lower slopes and the lowland areas are linked to the Pliocene and Pleistocene sediments that outcrop in local topographic lows and are aligned along strike the normal faults formed by the subsequent extensional phases. They are of low discharge rate and their water supply comes both from the overlying strata of the same Plio-Pleistocene deposits and sideways from the bedrock carbonate rocks

  20. High-pressure pulsed avalanche discharges: Formulas for required preionization density and rate for homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Brenning, N.; Axnaes, I.; Nilsson, J.O.; Eninger, J.E. [Royal Inst. of Tech., Stockholm (Sweden)


    The requirements on preionization for the formation of spatially homogeneous pulsed avalanche discharges are examined. The authors derive two formulas which apply in the case of a slowly rising electric field, one which gives the required preionization density at breakdown, and one which gives the required preionization rate. These quantities are expressed as functions of the electrochemical properties of the gas, the neutral density, and the electric field rise time. They also treat the statistical effect that the electrons tend to form groups, in contrast to being randomly distributed in space, during the prebreakdown phase. This process is found to increase the required preionization rate significantly, typically by a factor of five for a discharge at atmospheric pressure. Homogeneous high-pressure discharges have been used for laser excitation, and have also been proposed for chemical plasma processing (ozone production) because of their good scaling properties and high efficiency.

  1. Groundwater lowering and stream incision rates in the Central Appalachian Mountains of West Virginia, USA

    Directory of Open Access Journals (Sweden)

    Gregory S. Springer


    Full Text Available Surface channel incision rates are of broad geomorphological interest because they set the boundary conditions for landscape change by affecting changes in local relief and hillslope angles. We report groundwater table lowering rates associated with subsurface Buckeye Creek and the surface channel of Spring Creek in southeastern West Virginia, USA. The mountainous watersheds have drainage areas of 14 km2 and 171 km2, respectively. The lowering rates are derived from U/Th-dating of stalagmites and the paleomagnetostratigraphy of clastic sediments in Buckeye Creek Cave. The oldest stalagmites have a minimum age of 0.54 Ma and we use a minimum age of 0.778 Ma for clastic cave sediments deposited during a period of reversed magnetic polarity. The water table at Buckeye Creek has lowered at a rate of ≤40 m Ma-1. Based on the relative elevations of Buckeye and Spring creeks, the water table at Spring Creek has lowered at a rate of ≤47 m Ma-1. These values are consistent with previously published rates obtained from caves in the region, although those rates were reported as surface channel incision rates, based on the assumption local groundwaters drained to the surface channel of interest. However, the rates we report are almost certainly not simple bedrock incision rates because of autogenic processes within the cave and surrounding, well-developed fluviokarst. Caveats aside, incision rates of ≤47 m Ma-1 now appear typical of landscapes of the Appalachian Mountains and Plateau.

  2. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.


    Existing data on base-flow and groundwater nitrate loads were compiled and analyzed to assess the significance of groundwater discharge as a source of the nitrate load to nontidal streams of the Chesapeake Bay watershed. These estimates were then related to hydrogeomorphic settings based on lithology and physiographic province to provide insight on the areal distribution of ground-water discharge. Base-flow nitrate load accounted for 26 to about 100 percent of total-flow nitrate load, with a median value of 56 percent, and it accounted for 17 to 80 percent of total-flow total-nitrogen load, with a median value of 48 percent. Hydrograph separations were conducted on continuous streamflow records from 276 gaging stations within the watershed. The values for base flow thus calculated were considered an estimate of ground-water discharge. The ratio of base flow to total flow provided an estimate of the relative importance of ground-water discharge within a basin. Base-flow nitrate loads, total-flow nitrate loads, and total-flow total-nitrogen loads were previously computed from water-quality and discharge measurements by use of a regression model. Base-flow nitrate loads were available from 78 stations, total-flow nitrate loads were available from 86 stations, and total-flow total-nitrogen loads were available for 48 stations. The percentage of base-flow nitrate load to total-flow nitrate load could be computed for 57 stations, whereas the percentage of base-flow nitrate load to totalflow total-nitrogen load could be computed for 36 stations. These loads were divided by the basin area to obtain yields, which were used to compare the nitrate discharge from basins of different sizes. The results indicate that ground-water discharge is a significant source of water and nitrate to the total streamflow and nitrate load. Base flow accounted for 16 to 92 percent of total streamflow at the 276 sampling sites, with a median value of 54 percent. It is estimated that of the 50

  3. Predicting the Discharge Rate Contribution of the Binuwang Watershed to the Agos River, Philippines (United States)

    Aquino, Dakila; Paningbatan, Eduardo; Mahar Francisco Lagmay, Alfredo


    In 2004, Typhoon Winnie brought torrential rains which triggered massive landslides and floods which devastated the provinces of Infanta, Real and General Nakar in the Philippines. Winnie inflicted USD 111.14 million worth of damage to crops, livestock and infrastructure and left thousands dead or homeless. The Binuwang River is a sub-tributary of the Agos River, but the extent to which it contributes to flooding has not yet been determined. This study measures the depth of the Binuwang River to estimate the discharge rate contribution of the Binuwang River Watershed to the Agos River using an automatic rain gauge recorder and water level loggers set to record at 5-minute intervals. Flood-generating rainfall events were monitored during the onset of Typhoon Nesat (locally called 'Pedring') September 26-27, 2011. The automated rain gauge recorded 227 mm cumulative rainfall over a 6-hour and 41-minute period. It reached a peak rainfall intensity of 17.5 mm per 5-minute interval that generated a discharge height increase of 1.8 m at the monitoring station and a total discharge volume of 99,823 m3 over a 35-hour duration. An 8.81-hour lag time from the peak rainfall to the peak discharge concentration was recorded. A PCRaster-based hydrologic model was used to predict the total discharge hydrograph of the Binuwang River Watershed. A Digital Elevation Model (DEM) and soil and land use maps were prepared to parameterize the model. The observed and predicted discharge hydrographs were found to be highly correlated. Among the parameters used to calibrate the model hydrologic output, most sensitive are the infiltration saturation coefficient and Manning's roughness coefficient. An increase in the infiltration saturation coefficient resulted in a decreased discharge height, while an increase of Manning's roughness coefficient lengthened the lag time. The predicted discharge volume and height were used to simulate the impact of reforestation and land conversion to cultivated

  4. Bayesian discharge rating curves based on B-spline smoothing functions

    Directory of Open Access Journals (Sweden)

    K. M. Ingimarsson


    Full Text Available Discharge in rivers is commonly estimated by the use of a rating curve constructed from pairs of measured water elevations and discharges at a specific location. The Bayesian approach has been successfully applied to estimate discharge rating curves that are based on the standard power-law. In this paper the standard power-law model is extended by adding a B-spline function. The extended model is compared to the standard power-law model by applying the models to discharge data sets from sixty one different rivers. In addition four rivers are analyzed in detail to demonstrate the benefit of the extended model. The models are compared using two measures, the Deviance Information Criterion (DIC and Bayes factor. The former provides robust comparison of fit adjusting for the different complexity of the models and the latter measures the evidence of one model against the other. The extended model captures deviations in the data from the standard power-law but reduces to the standard power-law when that model is adequate. The extended model provides substantially better fit than the standard power-law model for about 30% of the rivers and performs better for 60% of the rivers when extrapolating large discharge values.

  5. Strength training, but not endurance training, reduces motor unit discharge rate variability. (United States)

    Vila-Chã, Carolina; Falla, Deborah


    This study evaluates and compares the effects of strength and endurance training on motor unit discharge rate variability and force steadiness of knee extensor muscles. Thirty sedentary healthy men (age, 26.0±3.8yrs) were randomly assigned to strength training, endurance training or a control group. Conventional endurance and strength training was performed 3days per week, over a period of 6weeks. Maximum voluntary contraction (MVC), time to task failure (at 30% MVC), coefficient of variation (CoV) of force and of the discharges rates of motor units from the vastus medialis obliquus and vastus lateralis were determined as subjects performed 20% and 30% MVC knee extension contractions before and after training. CoV of motor unit discharges rates was significantly reduced for both muscles following strength training (Pstrength training intervention only (PStrength training, but not endurance training, reduces motor unit discharge rate variability and enhances force steadiness of the knee extensors. These results provide new insights into the neuromuscular adaptations that occur with different training methods.

  6. Primary weathering rates, water transit times and concentration-discharge relations: A theoretical analysis for the critical zone (United States)

    Ameli, Ali; Erlandsson, Martin; Beven, Keith; Creed, Irena; McDonnell, Jeffrey; Bishop, Kevin


    The permeability architecture of the critical zone exerts a major influence on the hydrogeochemistry of the critical zone. Water flowpath dynamics drive the spatio-temporal pattern of geochemical evolution and resulting streamflow concentration-discharge (C-Q) relation, but these flowpaths are complex and difficult to map quantitatively. Here, we couple a new integrated flow and particle tracking transport model with a general reversible Transition-State-Theory style dissolution rate-law to explore theoretically how C-Q relations and concentration in the critical zone respond to decline in saturated hydraulic conductivity (Ks) with soil depth. We do this for a range of flow rates and mineral reaction kinetics. Our results show that for minerals with a high ratio of equilibrium concentration to intrinsic weathering rate, vertical heterogeneity in Ks enhances the gradient of weathering-derived solute concentration in the critical zone and strengthens the inverse stream C-Q relation. As the ratio of equilibrium concentration to intrinsic weathering rate decreases, the spatial distribution of concentration in the critical zone becomes more uniform for a wide range of flow rates, and stream C-Q relation approaches chemostatic behaviour, regardless of the degree of vertical heterogeneity in Ks. These findings suggest that the transport-controlled mechanisms in the hillslope can lead to chemostatic C-Q relations in the stream while the hillslope surface reaction-controlled mechanisms are associated with an inverse stream C-Q relation. In addition, as the ratio of equilibrium concentration to intrinsic weathering rate decreases, the concentration in the critical zone and stream become less dependent on groundwater age (or transit time)

  7. A differential equation for the flow rate during silo discharge: Beyond the Beverloo rule

    Directory of Open Access Journals (Sweden)

    Madrid Marcos A.


    Full Text Available We present a differential equation for the flow rate of granular materials during the discharge of a silo. This is based in the energy balance of the variable mass system in contrast with the traditional derivations based on heuristic postulates such as the free fall arch. We show that this new equation is consistent with the well known Beverloo rule, providing an independent estimate for the universal Beverloo prefactor. We also find an analytic expression for the pressure under discharging conditions.

  8. Rate of three-body electron attachment to the oxygen molecule in an externally sustained discharge

    Energy Technology Data Exchange (ETDEWEB)

    Krasyukov, A.G.; Naumov, V.G.; Shachkin, L.V.; Shashkov, V.M.


    The rate of three-body attachment of electrons to the oxygen molecule has been determined in an atmospheric-pressure discharge sustained by a fast electron beam in a O/sub 2/:N/sub 2/ = 1:20 mixture. The experimental results agree well with theoretical results derived elsewhere. The attachment rate falls off with increasing input energy. A qualitative explanation is offered for this effect.

  9. Systematic Method for Evaluating Extraction and Injection Flow Rates for 100-KR-4 and 100-HR-3 Groundwater Operable Unit Pump-and-Treat Interim Actions for Hydraulic Containment

    Energy Technology Data Exchange (ETDEWEB)

    Spiliotopoulos, Alexandros A.


    This document describes a systematic method to develop flow rate recommendations for Pump-and-Treat (P&T) extraction and injection wells in 100-KR-4 and 100-HR-3 Groundwater Operable Units (OU) of the Hanford Site. Flow rate recommendations are developed as part of ongoing performance monitoring and remedy optimization of the P&T interim actions to develop hydraulic contairnnent of the dissolved chromium plume in groundwater and protect the Columbia River from further discharges of groundwater from inland. This document details the methodology and data required to infer the influence of individual wells near the shoreline on hydraulic containment and river protection and develop flow rate recommendations to improve system performance and mitigate potential shortcomings of the system configuration in place.

  10. Arsenic removal from groundwater using iron electrocoagulation: effect of charge dosage rate. (United States)

    Amrose, Susan; Gadgil, Ashok; Srinivasan, Venkat; Kowolik, Kristin; Muller, Marc; Huang, Jessica; Kostecki, Robert


    We demonstrate that electrocoagulation (EC) using iron electrodes can reduce arsenic below 10 μg/L in synthetic Bangladesh groundwater and in real groundwater from Bangladesh and Cambodia, while investigating the effect of operating parameters that are often overlooked, such as charge dosage rate. We measure arsenic removal performance over a larger range of current density than in any other single previous EC study (5000-fold: 0.02 - 100 mA/cm(2)) and over a wide range of charge dosage rates (0.060 - 18 Coulombs/L/min). We find that charge dosage rate has significant effects on both removal capacity (μg-As removed/Coulomb) and treatment time and is the appropriate parameter to maintain performance when scaling to different active areas and volumes. We estimate the operating costs of EC treatment in Bangladesh groundwater to be $0.22/m(3). Waste sludge (~80 - 120 mg/L), when tested with the Toxic Characteristic Leachate Protocol (TCLP), is characterized as non-hazardous. Although our focus is on developing a practical device, our results suggest that As[III] is mostly oxidized via a chemical pathway and does not rely on processes occurring at the anode. Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Environmental Science and Health, Part A, to view the free supplemental file.

  11. Micro Wire Electro Discharge Grinding: Optimization of Material Removal Rate and Surface Roughness (United States)

    Yeakub Ali, Mohammad; Rahman, Mohamed Abd; Nordin, Rosmarina


    This paper presents the analysis and modelling of material removal rate (MRR) and surface roughness (Ra) by micro wire electro discharge grinding (micro-WEDG) with control parameter of gap voltage, feed rate, and spindle speed. The data were analyzed and empirical models are developed. The optimized values of MRR and Ra are 0.051 mm3/min and 0.25 μm respectively with 110 V gap voltage, 38 μm/s feed rate, and 1315 rpm spindle speed. The analysis showed that gap voltage has significant effect on material removal rate while spindle speed has significant effect on surface roughness.

  12. Mortality, Rehospitalisation and Violent Crime in Forensic Psychiatric Patients Discharged from Hospital: Rates and Risk Factors.

    Directory of Open Access Journals (Sweden)

    Seena Fazel

    Full Text Available To determine rates and risk factors for adverse outcomes in patients discharged from forensic psychiatric services.We conducted a historical cohort study of all 6,520 psychiatric patients discharged from forensic psychiatric hospitals between 1973 and 2009 in Sweden. We calculated hazard ratios for mortality, rehospitalisation, and violent crime using Cox regression to investigate the effect of different psychiatric diagnoses and two comorbidities (personality or substance use disorder on outcomes.Over mean follow-up of 15.6 years, 30% of patients died (n = 1,949 after discharge with an average age at death of 52 years. Over two-thirds were rehospitalised (n = 4,472, 69%, and 40% violently offended after discharge (n = 2,613 with a mean time to violent crime of 4.2 years. The association between psychiatric diagnosis and outcome varied-substance use disorder as a primary diagnosis was associated with highest risk of mortality and rehospitalisation, and personality disorder was linked with the highest risk of violent offending. Furthermore comorbid substance use disorder typically increased risk of adverse outcomes.Violent offending, premature mortality and rehospitalisation are prevalent in patients discharged from forensic psychiatric hospitals. Individualised treatment plans for such patients should take into account primary and comorbid psychiatric diagnoses.

  13. Suicide Rates After Discharge From Psychiatric Facilities: A Systematic Review and Meta-analysis. (United States)

    Chung, Daniel Thomas; Ryan, Christopher James; Hadzi-Pavlovic, Dusan; Singh, Swaran Preet; Stanton, Clive; Large, Matthew Michael


    High rates of suicide after psychiatric hospitalization are reported in many studies, yet the magnitude of the increases and the factors underlying them remain unclear. To quantify the rates of suicide after discharge from psychiatric facilities and examine what moderates those rates. English-language, peer-reviewed publications published from January 1, 1946, to May 1, 2016, were located using MEDLINE, PsychINFO, and EMBASE with the search terms ((suicid*).ti AND (hospital or discharg* OR inpatient or in-patient OR admit*).ab and ((mortality OR outcome* OR death*) AND (psych* OR mental*)).ti AND (admit* OR admis* or hospital* OR inpatient* OR in-patient* OR discharg*).ab. Hand searching was also done. Studies reporting the number of suicides among patients discharged from psychiatric facilities and the number of exposed person-years and studies from which these data could be calculated. The meta-analysis adhered to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) and Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines. A random-effects model was used to calculate a pooled estimate of postdischarge suicides per 100 000 person-years. The suicide rate after discharge from psychiatric facilities was the main outcome, and the association between the duration of follow-up and the year of the sampling were the main a priori moderators. A total of 100 studies reported 183 patient samples (50 samples of females, 49 of males, and 84 of mixed sex; 129 of adults or unspecified patients, 20 of adolescents, 19 of older patients, and 15 from long-term or forensic discharge facilities), including a total of 17 857 suicides during 4 725 445 person-years. The pooled estimate postdischarge suicide rate was 484 suicides per 100 000 person-years (95% CI, 422-555 suicides per 100 000 person-years; prediction interval, 89-2641), with high between-sample heterogeneity (I2 = 98%). The suicide rate was highest within 3 months

  14. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Energy Technology Data Exchange (ETDEWEB)

    Prasetyaningrum, A., E-mail:; Ratnawati,; Jos, B. [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto Tembalang, Semarang, Central Java, Indonesia, 50276 (Indonesia)


    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  15. Determining the Discharge Rate from a Submerged Oil Leaks using ROV Video and CFD study (United States)

    Saha, Pankaj; Shaffer, Frank; Shahnam, Mehrdad; Savas, Omer; Devites, Dave; Steffeck, Timothy


    The current paper reports a technique to measure the discharge rate by analyzing the video from a Remotely Operated Vehicle (ROV). The technique uses instantaneous images from ROV video to measure the velocity of visible features (turbulent eddies) along the boundary of an oil leak jet and subsequently classical theory of turbulent jets is imposed to determine the discharge rate. The Flow Rate Technical Group (FRTG) Plume Team developed this technique that manually tracked the visible features and produced the first accurate government estimates of the oil discharge rate from the Deepwater Horizon (DWH). For practical application this approach needs automated control. Experiments were conducted at UC Berkeley and OHMSETT that recorded high speed, high resolution video of submerged dye-colored water or oil jets and subsequently, measured the velocity data employing LDA and PIV software. Numerical simulation have been carried out using experimental submerged turbulent oil jets flow conditions employing LES turbulence closure and VOF interface capturing technique in OpenFOAM solver. The CFD results captured jet spreading angle and jet structures in close agreement with the experimental observations. The work was funded by NETL and DOI Bureau of Safety and Environmental Enforcement (BSEE).

  16. Influence of the energy dissipation rate in the discharge of a plasma synthetic jet actuator

    Energy Technology Data Exchange (ETDEWEB)

    Belinger, A; Cambronne, J P [Universite de Toulouse, UPS, INPT, LAPLACE - Laboratoire Plasma et Conversion d' Energie, 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Hardy, P; Barricau, P; Caruana, D, E-mail: [ONERA Centre Midi-Pyrenees, Departement Modeles pour l' Aerodynamique et l' Energetique, BP74025, 2 avenue Edouard Belin, 31055 TOULOUSE CEDEX 4 (France)


    A promising actuator for high-speed flow control, referred to as a plasma synthetic jet (PSJ), is being studied by the DMAE department of the ONERA, and the Laplace laboratory of the CNRS, in France. This actuator was inspired by the 'sparkjet' device developed by the Johns Hopkins University Applied Physics Laboratory. The PSJ, which produces a synthetic jet with high exhaust velocities, no active mechanical components and no mass flow admission, holds the promise of enabling high-speed flows to be manipulated. With this high-velocity jet it is possible to reduce fluid phenomena such as transition and turbulence, thus making it possible to increase an aircraft's performance whilst at the same time reducing its environmental impact. A thermal plasma discharge was created in a micro-cavity, causing the gas to be expelled. It is relevant that the velocity and momentum depend on the energy dispersed by the electric discharge. To control the frequency and energy dispersed in the plasma, the Laplace laboratory has developed two high-voltage power supply systems. These allow two different types of discharge to be produced, with energy being supplied to the discharge in two different manners. In this paper, we focus on the impact of the power supply on the plasma synthetic jet, and in particular on the role of the rate of energy dissipation in the discharge. In order to estimate the influence of the power supply on the machinery of the actuator, specific experimental techniques were used to investigate the electrical (voltage, current), thermal (Infra-red camera) and aerodynamic (jet duration, isentropic pressure, jet velocity) characteristics. These data sets were used to determine which of the two power supplies was more effective, thus allowing us to reach several conclusions concerning the importance of the energy dissipation rate on the PSJ actuator.

  17. Estimates of EPSP amplitude based on changes in motoneuron discharge rate and probability. (United States)

    Powers, Randall K; Türker, K S


    When motor units are discharging tonically, transient excitatory synaptic inputs produce an increase in the probability of spike occurrence and also increase the instantaneous discharge rate. Several researchers have proposed that these induced changes in discharge rate and probability can be used to estimate the amplitude of the underlying excitatory post-synaptic potential (EPSP). We tested two different methods of estimating EPSP amplitude by comparing the amplitude of simulated EPSPs with their effects on the discharge of rat hypoglossal motoneurons recorded in an in vitro brainstem slice preparation. The first estimation method (simplified-trajectory method) is based on the assumptions that the membrane potential trajectory between spikes can be approximated by a 10 mV post-spike hyperpolarization followed by a linear rise to the next spike and that EPSPs sum linearly with this trajectory. We hypothesized that this estimation method would not be accurate due to interspike variations in membrane conductance and firing threshold that are not included in the model and that an alternative method based on estimating the effective distance to threshold would provide more accurate estimates of EPSP amplitude. This second method (distance-to-threshold method) uses interspike interval statistics to estimate the effective distance to threshold throughout the interspike interval and incorporates this distance-to-threshold trajectory into a threshold-crossing model. We found that the first method systematically overestimated the amplitude of small (EPSPs and underestimated the amplitude of large (>5 mV EPSPs). For large EPSPs, the degree of underestimation increased with increasing background discharge rate. Estimates based on the second method were more accurate for small EPSPs than those based on the first model, but estimation errors were still large for large EPSPs. These errors were likely due to two factors: (1) the distance to threshold can only be directly

  18. 46 CFR 108.437 - Pipe sizes and discharge rates for enclosed ventilation systems for rotating electrical equipment. (United States)


    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pipe sizes and discharge rates for enclosed ventilation... Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.437 Pipe sizes and discharge rates for enclosed ventilation systems for rotating electrical equipment. (a) The minimum pipe size for the initial...

  19. A model for the silver-zinc battery during high rates of discharge (United States)

    Venkatraman, Murali; Van Zee, J. W.

    A transient one-dimensional mathematical model is developed and used to study the performance and thermal behavior of the silver-zinc cell during discharge. The model considers the negative (zinc) electrode, separator, and positive (silver) electrode and describes the simultaneous electrochemical reactions in the positive electrode, mass transfer limitations, and heat generation. Changes in porosity and electrolyte composition due to electrochemical reactions, local reaction rates, diffusion, and migration of electrolyte are reported. Emphasis is placed on understanding the movement of the reaction front in the negative electrode during discharge and its correlation to the useful capacity of the cell. The sensitivity of this capacity to changes in the values of initial electrolyte, exchange current densities, and tortuosity are presented. It is shown that under certain conditions, in a system employing 25% KOH as the electrolyte, the useful capacity of the cell could be limited to 55.6% of its rated capacity when the discharge rate is increased from 1 C to 2 C. The temperature rise in a single cell was predicted and observed to agree with the experimental values.

  20. Heart Rate at Hospital Discharge in Patients With Heart Failure Is Associated With Mortality and Rehospitalization (United States)

    Laskey, Warren K.; Alomari, Ihab; Cox, Margueritte; Schulte, Phillip J.; Zhao, Xin; Hernandez, Adrian F.; Heidenreich, Paul A.; Eapen, Zubin J.; Yancy, Clyde; Bhatt, Deepak L.; Fonarow, Gregg C.


    Background Whether heart rate upon discharge following hospitalization for heart failure is associated with long‐term adverse outcomes and whether this association differs between patients with sinus rhythm (SR) and atrial fibrillation (AF) have not been well studied. Methods and Results We conducted a retrospective cohort study from clinical registry data linked to Medicare claims for 46 217 patients participating in Get With The Guidelines®–Heart Failure. Cox proportional‐hazards models were used to estimate the association between discharge heart rate and all‐cause mortality, all‐cause readmission, and the composite outcome of mortality/readmission through 1 year. For SR and AF patients with heart rate ≥75, the association between heart rate and mortality (expressed as hazard ratio [HR] per 10 beats‐per‐minute increment) was significant at 0 to 30 days (SR: HR 1.30, 95% CI 1.22 to 1.39; AF: HR 1.23, 95% CI 1.16 to 1.29) and 31 to 365 days (SR: HR 1.15, 95% CI 1.12 to 1.20; AF: HR 1.05, 95% CI 1.01 to 1.08). Similar associations between heart rate and all‐cause readmission and the composite outcome were obtained for SR and AF patients from 0 to 30 days but only in the composite outcome for SR patients over the longer term. The HR from 0 to 30 days exceeded that from 31 to 365 days for both SR and AF patients. At heart rates heart failure, higher discharge heart rate was associated with increased risks of death and rehospitalization, with higher risk in the first 30 days and for SR compared with AF. PMID:25904590

  1. DEM study of granular discharge rate through a vertical pipe with a bend outlet in small absorber sphere system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianjin, E-mail:; Zhang, He; Liu, Malin; Huang, Zhiyong; Bo, Hanliang; Dong, Yujie


    Highlights: • The work concerns granular flow in a vertical pipe with a bend. • Discharge rate fluctuation in vertical pipe are mainly from velocity fluctuation. • Steady discharge rate decreases rapidly and saturates with μ{sub s} increasing. • Steady discharge rate W{sub s} still obey the 5/2 power law of pipe internal diameter. • A correlation developed for steady discharge rate for this new geometry. - Abstract: Absorber sphere pneumatic conveying is a special application of pneumatic conveying technique in the pebble bed High Temperature Gas-Cooled Reactor (HTGR or HTR). Granular discharge through a vertical pipe with a bend outlet is one of the control modes to determine solid mass flowrate which is an important parameter for the design of absorber sphere pneumatic conveying. Granular discharge rate through the vertical pipe with a bend outlet in the small absorber sphere system are investigated by discrete element method simulation. The effect of geometry parameters on discharge rate, the discharge rate fluctuation in the vertical pipe, and the effect of friction on steady discharge rate (W{sub s}) are analyzed and discussed. The phenomena of discharge rate fluctuation in the vertical pipe are observed, which are mainly resulted from the evolution of the average downward granular velocity. The steady discharge rate decreases rapidly with sliding friction coefficient increasing from 0.125 to 0.5, and gradually saturates with the friction coefficient further increasing from 0.5 to 1. It is interesting that the linear relation between W{sub s}{sup 2/5} and pipe internal diameter D with zero intercept are found for the vertical pipe discharge with a bend outlet, which is different from the orifice discharge through a hopper or silo with none-zero intercept. A correlation similar to Beverloo’s correlation is developed to predict the steady discharge rate through the vertical pipe with a bend outlet. These results are helpful for the design of sphere

  2. Effect of Electric Discharge Machining on Material Removal Rate and White Layer Composition

    Directory of Open Access Journals (Sweden)



    Full Text Available In this study the MRR (Material Removal Rate of the aerospace grade (2024 T6 aluminum alloy 2024 T6 has been determined with copper electrode and kerosene oil is used as dielectric liquid. Discharge energy is controlled by electric current while keeping Pulse-ON time and Pulse-OFF time as constant. The characteristics of the EDMed (Electric Discharge Machined surface are discussed. The sub-surface defect due to arcing has been explained. As the surface material of tool electrode and workpiece melts simultaneously and there are chances of the contamination of both surfaces by the contents of each other. Therefore, the EDS (Energy Dispersive Spectroscopy of the white layer and base material of the workpiece was performed by SEM (Scanning Electron Microscope at the discharge currents of 3, 6 and 12 amperes. It was conformed that the contamination of the surface of the workpiece material occurred by carbon, copper and oxygen contents. The quantitative analysis of these contents with respect to the discharge current has been presented in this paper.

  3. Tracing of submarine groundwater discharge in the Siberian Arctic coastal zone: the case study in the Buor-Khaya Bay, Laptev Sea. (United States)

    Charkin, A. N.; Dudarev, O.; Semiletov, I. P.; Shakhova, N. E.; Rutgers van der Loeff, M.; Salyuk, A.


    That is suggested and widely accepted that a significant portion of the Great Siberian Rivers discharge comes to the Arctic ocean via submarine groundwater discharge (SGD). However, that statement was never proofed by observations. When groundwater discharges from the coastal aquifer to the ocean, the radium isotopes are transported with the groundwater, and they can be measured to trace and quantify SGD, and the flux of constituents associated with SGD. The primary goal of this study is to use radium isotopes to proof that SGD is existing in the Laptev Sea coastal zone close to the Lena River delta, which supposed to be characterized by continuous permafrost with thickness up to 600-800m. If so, we supposed to quantify methane fluxes to the coastal ocean through SGD. Discrete seawater, and Lena river water samples were collected from different horizons from the holes made in fast ice using submerged pump and Niskin bottle in the western part of Buor- Khaya Bay in March-April 2014 and 2015. We identified and traced SGD using short-lived radium (224Ra and 223Ra) and radon (222Rn) isotopes in complex with geophysical (electromagnetic technique) , geological (sediment core results from 16 boreholes), hydrological (temperature, salinity), and hydrochemical (total alkalinity, dissolved methane and oxygen) data. It was found that the SGD is controlled by the processes associated with changing state of the subsea permafrost. Thus, this technique can give an unique information about the location of SGD "leakage" sites across the East Siberian Arctic Shelf, which represents > 80% of subsea permafrost existing in the entire Arctic ocean.

  4. Hydrogeology and hydrochemistry of groundwater-dominated lakes

    DEFF Research Database (Denmark)

    Kazmierczak, Jolanta

    and tracking groundwater flow paths and, thus, to determine the source of the water. These observations were confirmed and explained by flow models. The results of the 2D and 3D flow modelling showed that groundwater contribution is 75% of the total water input into the lake, out of which 35% discharges...... is mobilized in the sediments of the old lake/stream bottom due to reductive dissolution of iron hydroxides by organic matter. The process is triggered by the discharge of anoxic groundwater from the deeper parts of the aquifer to the near shore environment. High groundwater seepage rates do not leave enough...

  5. Assessing land-ocean connectivity via submarine groundwater discharge (SGD) in the Ria Formosa Lagoon (Portugal): combining radon measurements and stable isotope hydrology (United States)

    Rocha, Carlos; Veiga-Pires, Cristina; Scholten, Jan; Knoeller, Kay; Gröcke, Darren R.; Carvalho, Liliana; Anibal, Jaime; Wilson, Jean


    Natural radioactive tracer-based assessments of basin-scale submarine groundwater discharge (SGD) are well developed. However, SGD takes place in different modes and the flow and discharge mechanisms involved occur over a wide range of spatial and temporal scales. Quantifying SGD while discriminating its source functions therefore remains a major challenge. However, correctly identifying both the fluid source and composition is critical. When multiple sources of the tracer of interest are present, failure to adequately discriminate between them leads to inaccurate attribution and the resulting uncertainties will affect the reliability of SGD solute loading estimates. This lack of reliability then extends to the closure of local biogeochemical budgets, confusing measures aiming to mitigate pollution.Here, we report a multi-tracer study to identify the sources of SGD, distinguish its component parts and elucidate the mechanisms of their dispersion throughout the Ria Formosa - a seasonally hypersaline lagoon in Portugal. We combine radon budgets that determine the total SGD (meteoric + recirculated seawater) in the system with stable isotopes in water (δ2H, δ18O), to specifically identify SGD source functions and characterize active hydrological pathways in the catchment. Using this approach, SGD in the Ria Formosa could be separated into two modes, a net meteoric water input and another involving no net water transfer, i.e., originating in lagoon water re-circulated through permeable sediments. The former SGD mode is present occasionally on a multi-annual timescale, while the latter is a dominant feature of the system. In the absence of meteoric SGD inputs, seawater recirculation through beach sediments occurs at a rate of ˜ 1.4 × 106 m3 day-1. This implies that the entire tidal-averaged volume of the lagoon is filtered through local sandy sediments within 100 days ( ˜ 3.5 times a year), driving an estimated nitrogen (N) load of ˜ 350 Ton N yr-1 into the system

  6. Flow Rate in the Discharge of a Two-dimensional Silo (United States)

    Zuriguel, I.; Janda, A.; Garcimartín, A.; Maza, D.


    We present an experimental study of the flow rate in the discharge of a flat bottomed two-dimensional silo. The results of the flow rate dependence on the size of the orifice evidence that the Beverloo expression is not valid for small outlet sizes. This behavior is related with the properties of the flow rate which has been found to fluctuate in a gaussian like form for large orifices. On the contrary, for small orifices extreme events appear at zero flow rates causing a significant slow down of the average flow rate. These events are explained in terms of the existence of arches that block the outlet instantaneously but are unstable to permanently halt the flow.

  7. Summer Mean Enhanced Vegetation Index for the Diamond Valley Flow System Groundwater Discharge Area, Central Nevada, 2010 (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central Nevada....

  8. Hydrogeology and hydrochemistry of groundwater-dominated lakes

    DEFF Research Database (Denmark)

    Kazmierczak, Jolanta

    , while deeper groundwater by-passes the lake by flowing underneath the gyttja sediments and discharges at the eastern sandy shore, where groundwater springs and high discharge zones (HDZ) are observed. Hydrogeochemical tracers were successfully used for estimating the general discharge distribution...... at a 25-m-wide sandy lakebed, while surface runoff from the western and southern seepage faces delivers approximately 65%. The simulated seepage rates are an acceptable approximation of the average fluxes measured with seepage meters on the eastern shore. Seepage measurements and the observation...... bottom and heterogeneities in the hydraulic properties of the lakebed have a significant influence on the groundwater flow patterns and discharge dynamics. Part of the groundwater flowing from the west and south is forced to discharge at wetlands/seepage faces at the western and southern lake shores...

  9. Motor unit discharge rate in dynamic movements of the aging soleus

    DEFF Research Database (Denmark)

    Kallio, Jouni; Søgaard, Karen; Avela, Janne


    % in concentric (CON) and eccentric (ECC) contractions. Soleus intramuscular EMG was recorded with bipolar fine-wire electrodes and decomposed to individual trains of motor unit discharges. In ISO the MUDR increased with each force level from 40 to 100% MVC. In dynamic contractions the descriptive analysis showed......Aging is related to a variety of changes at the muscular level. It seems that the age-related changes in motor unit activation are muscle- and intensity dependent. The purpose of this study was to examine the motor unit discharge rate (MUDR) in both isometric and dynamic contractions of the aging...... a higher MUDR in CON compared to ISO or ECC. The difficulties of recording single motor units in dynamic contractions, especially in the elderly is discussed....

  10. Impacts of groundwater discharge at Myora Springs (North Stradbroke Island, Australia) on the phenolic metabolism of eelgrass, Zostera muelleri, and grazing by the juvenile rabbitfish, Siganus fuscescens. (United States)

    Arnold, Thomas; Freundlich, Grace; Weilnau, Taylor; Verdi, Arielle; Tibbetts, Ian R


    Myora Springs is one of many groundwater discharge sites on North Stradbroke Island (Queensland, Australia). Here spring waters emerge from wetland forests to join Moreton Bay, mixing with seawater over seagrass meadows dominated by eelgrass, Zostera muelleri. We sought to determine how low pH/high CO2 conditions near the spring affect these plants and their interactions with the black rabbitfish (Siganus fuscescens), a co-occurring grazer. In paired-choice feeding trials S. fuscescens preferentially consumed Z. muelleri shoots collected nearest to Myora Springs. Proximity to the spring did not significantly alter the carbon and nitrogen contents of seagrass tissues but did result in the extraordinary loss of soluble phenolics, including Folin-reactive phenolics, condensed tannins, and phenolic acids by ≥87%. Conversely, seagrass lignin contents were, in this and related experiments, unaffected or increased, suggesting a shift in secondary metabolism away from the production of soluble, but not insoluble, (poly)phenolics. We suggest that groundwater discharge sites such as Myora Springs, and other sites characterized by low pH, are likely to be popular feeding grounds for seagrass grazers seeking to reduce their exposure to soluble phenolics.

  11. Impacts of Groundwater Discharge at Myora Springs (North Stradbroke Island, Australia) on the Phenolic Metabolism of Eelgrass, Zostera muelleri, and Grazing by the Juvenile Rabbitfish, Siganus fuscescens (United States)

    Arnold, Thomas; Freundlich, Grace; Weilnau, Taylor; Verdi, Arielle; Tibbetts, Ian R.


    Myora Springs is one of many groundwater discharge sites on North Stradbroke Island (Queensland, Australia). Here spring waters emerge from wetland forests to join Moreton Bay, mixing with seawater over seagrass meadows dominated by eelgrass, Zostera muelleri. We sought to determine how low pH / high CO2 conditions near the spring affect these plants and their interactions with the black rabbitfish (Siganus fuscescens), a co-occurring grazer. In paired-choice feeding trials S. fuscescens preferentially consumed Z. muelleri shoots collected nearest to Myora Springs. Proximity to the spring did not significantly alter the carbon and nitrogen contents of seagrass tissues but did result in the extraordinary loss of soluble phenolics, including Folin-reactive phenolics, condensed tannins, and phenolic acids by ≥87%. Conversely, seagrass lignin contents were, in this and related experiments, unaffected or increased, suggesting a shift in secondary metabolism away from the production of soluble, but not insoluble, (poly)phenolics. We suggest that groundwater discharge sites such as Myora Springs, and other sites characterized by low pH, are likely to be popular feeding grounds for seagrass grazers seeking to reduce their exposure to soluble phenolics. PMID:25127379

  12. Impacts of groundwater discharge at Myora Springs (North Stradbroke Island, Australia on the phenolic metabolism of eelgrass, Zostera muelleri, and grazing by the juvenile rabbitfish, Siganus fuscescens.

    Directory of Open Access Journals (Sweden)

    Thomas Arnold

    Full Text Available Myora Springs is one of many groundwater discharge sites on North Stradbroke Island (Queensland, Australia. Here spring waters emerge from wetland forests to join Moreton Bay, mixing with seawater over seagrass meadows dominated by eelgrass, Zostera muelleri. We sought to determine how low pH/high CO2 conditions near the spring affect these plants and their interactions with the black rabbitfish (Siganus fuscescens, a co-occurring grazer. In paired-choice feeding trials S. fuscescens preferentially consumed Z. muelleri shoots collected nearest to Myora Springs. Proximity to the spring did not significantly alter the carbon and nitrogen contents of seagrass tissues but did result in the extraordinary loss of soluble phenolics, including Folin-reactive phenolics, condensed tannins, and phenolic acids by ≥87%. Conversely, seagrass lignin contents were, in this and related experiments, unaffected or increased, suggesting a shift in secondary metabolism away from the production of soluble, but not insoluble, (polyphenolics. We suggest that groundwater discharge sites such as Myora Springs, and other sites characterized by low pH, are likely to be popular feeding grounds for seagrass grazers seeking to reduce their exposure to soluble phenolics.

  13. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China (United States)

    Yang, Zhi; Zhou, Yangxiao; Wenninger, Jochen; Uhlenbrook, Stefan; Wang, Xusheng; Wan, Li


    The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.

  14. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China (United States)

    Yang, Zhi; Zhou, Yangxiao; Wenninger, Jochen; Uhlenbrook, Stefan; Wang, Xusheng; Wan, Li


    The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.

  15. Age-related decreases in motor unit discharge rate and force control during isometric plantar flexion

    DEFF Research Database (Denmark)

    Kallio, J; Søgaard, Karen; Avela, J


    Aging is related to multiple changes in muscle physiology and function. Previous findings concerning the effects of aging on motor unit discharge rate (DR) and fluctuations in DR and force are somewhat contradictory. Eight YOUNG and nine OLD physically active males performed isometric ramp (RECR......) and isotonic (ISO) plantar flexions at 10 and 20% of surface EMG at MVC. Motor unit (MU) action potentials were recorded with intramuscular fine-wire electrodes and decomposed with custom build software "Daisy". DR was lower in OLD in RECR-10% (17.9%, p...

  16. Coordinated Secondary Control for Balanced Discharge Rate of Energy Storage System in Islanded AC Microgrids

    DEFF Research Database (Denmark)

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.


    incidents and unintentional outages in DG units, but also aims to provide a fast transient response and an accurate output-current-sharing performance. A complete root locus analysis is given in order to achieve system stability and parameter sensitivity. Experimental results are presented to show......A coordinated secondary control approach based on an autonomous current-sharing control strategy for balancing the discharge rates of energy storage systems (ESSs) in islanded AC microgrids is proposed in this paper. The coordinated secondary controller can regulate the power outputs of distributed...... the performance of the whole system and to verify the effectiveness of the proposed controller....

  17. Plutonium Discharge Rates and Spent Nuclear Fuel Inventory Estimates for Nuclear Reactors Worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Brian K. Castle; Shauna A. Hoiland; Richard A. Rankin; James W. Sterbentz


    This report presents a preliminary survey and analysis of the five primary types of commercial nuclear power reactors currently in use around the world. Plutonium mass discharge rates from the reactors’ spent fuel at reload are estimated based on a simple methodology that is able to use limited reactor burnup and operational characteristics collected from a variety of public domain sources. Selected commercial reactor operating and nuclear core characteristics are also given for each reactor type. In addition to the worldwide commercial reactors survey, a materials test reactor survey was conducted to identify reactors of this type with a significant core power rating. Over 100 material or research reactors with a core power rating >1 MW fall into this category. Fuel characteristics and spent fuel inventories for these material test reactors are also provided herein.

  18. In situ denitrification and DNRA rates in soils and underlying groundwater of an integrated constructed wetland (United States)

    Mofizur Rahman Jahangir, Mohammad; Fenton, Owen; McAleer, Eoin; Carroll, Paul; Harrington, Rory; Johnston, Paul; Müller, Christoph; Richards, Karl


    Nitrogen (N) removal efficiency in constructed wetlands (CW) is low and again it does not in itself explain whether the removed N species are reactive or benign. Evaluation of environmental benefits of CW necessitates knowing N removal mechanisms and the fate of the removed N in such system. In situ denitrification and DNRA (dissimilatory nitrate reduction to ammonium) rates were measured in an earthen lined 5-cell integrated CW using 15N-enriched nitrate (NO3--N) push-pull method. Measurements were conducted in 2 groundwater depths (shallow- soils in CW bed; and deep- 4 m below CW soils) in 2 contrasting cells (high vs. low nutrient loads) of the CW. Denitrification (N¬2O-N + N2-N) and DNRA were the major NO3--N removal processes accounting together for 54-79% of the total biochemical removal of the applied NO3--N. Of which 14-17 and 40-68% were removed by denitrification and DNRA, respectively. Both the processes significantly differed with CW cells indicating that N transformations depend on the rate of nutrient loads in different cells. They were significantly higher in shallow than deep groundwater. Environmental conditions were favourable for both the processes (i.e. low dissolved oxygen and low redox potential, high dissolved organic carbon, high total carbon and high dissolved organic N) but DNRA rate was favoured over denitrification by high ambient NH4+ concentrations, reduced sulphide and low pH (5.9 - 7.0). Low pH might have limited denitrification to some extent to an incomplete state, being evident by a high N2O-N/(N2O-N+N2-N) ratio (0.35 ± 0.17, SE). Relatively higher N2O-N/(N2O-N+N2-N) ratio and higher DNRA rate over denitrification suggest that the end products of N transformations are reactive. This N2O can be consumed to N2 and/or emit to atmosphere directly and indirectly. The DNRA rate and accumulation of NH4+ indicated that CW is a net source of NH4+ in groundwater. Ammonium produced by DNRA can be fixed in soils and, when exchange sites are

  19. Solute transport into the Jiulong River estuary via pore water exchange and submarine groundwater discharge: New insights from 224Ra/228Th disequilibrium (United States)

    Hong, Qingquan; Cai, Pinghe; Shi, Xiangming; Li, Qing; Wang, Guizhi


    Pore water exchange (PEX) and submarine groundwater discharge (SGD) represent two mechanisms for solute transport from the seabed into the coastal ocean. However, their relative importance remains to be assessed. In this study, we pursued the recently developed 224Ra/228Th disequilibrium approach to quantify PEX fluxes of 224Ra into the Jiulong River estuary, China. By constructing a full mass balance of water column 224Ra, we were allowed to put various source terms, i.e., SGD, diffusive and advective pore water flow (PEX), and river input in a single context. This led to the first quantitative assessment of the relative importance of PEX vs. SGD in the delivery of solutes into an estuary. We carried out two surveys in the Jiulong River estuary: one in January 2014 (winter survey), the other in August 2014 (summer survey). By virtue of a 1-D mass balance model of 224Ra in the sediment column, we demonstrated that PEX fluxes of 224Ra were highly variable, both temporally and spatially, and can change by 1-2 orders of magnitude in our study area. Moreover, we identified a strong correlation between 224Ra-based irrigation rate and 234Th-based sediment mixing rate. Our results highlighted irrigation as the predominant PEX process for solute transfer across the sediment-water interface. Total PEX flux of 224Ra (in 1010 dpm d-1) into the Jiulong River estuary was estimated to be 22.3 ± 3.0 and 33.7 ± 5.5 during the winter and summer surveys, respectively. In comparison, total SGD flux of 224Ra (in 1010 dpm d-1) was 11.3 ± 8.6 and 49.5 ± 16.3 in the respective seasons. By multiplying the PEX fluxes of 224Ra by the ratio of the concentration gradients of component/224Ra at the sediment-water interface, we quantified the total PEX fluxes of dissolved inorganic carbon (DIC) and nutrients (NH4+, NO3-, and H4SiO4) into the Jiulong River estuary. In the meantime, net export of DIC and nutrients via SGD were estimated by multiplying the SGD fluxes of 224Ra by the DIC

  20. Importance of dissolved organic carbon flux through submarine groundwater discharge to the coastal ocean: Results from Masan Bay, the southern coast of Korea (United States)

    Oh, Yong Hwa; Lee, Yong-Woo; Park, Sang Rul; Kim, Tae-Hoon


    In order to estimate the fluxes of dissolved organic carbon (DOC) through submarine groundwater discharge (SGD), salinity and DOC concentrations in groundwater, stream water, and seawater were investigated in May 2006 and 2007 (dry season) and August 2006 (wet season) in Masan Bay, Korea. In both seasons, the average concentrations of DOC in groundwater (139 ± 23 μM in May and 113 ± 18 μM in August) were relatively lower than those in stream water (284 ± 104 μM in May and 150 ± 36 μM in August) but similar to those of the bay water (149 ± 17 μM in May and 117 ± 13 μM in August). The DOC concentrations in groundwater, stream water, and seawater showed negative relationships with salinity, but those in the surface bay water were observed above the theoretical mixing line, indicating that DOC may be produced by in situ primary production in this bay. Based on a simple DOC mass balance model, SGD-derived DOC fluxes in Masan Bay were estimated to be 6.7 × 105 mol d- 1 in the dry season and 6.4 × 105 mol d- 1 in the wet season, showing no remarkable seasonal variation. The DOC fluxes through SGD in Masan Bay accounted for approximately 65% of the total input fluxes. This result suggests that the DOC flux through SGD can be the most important source of DOC in this bay, and SGD may play an important role in carbon budget and biogeochemistry in coastal areas.

  1. Effects of recharge and discharge on delta2H and delta18O composition and chloride concentration of high arsenic/fluoride groundwater from the Datong Basin, northern China. (United States)

    Xie, Xianjun; Wang, Yanxin; Su, Chunli; Duan, Mengyu


    To better understand the effects of recharge and discharge on the hydrogeochemistry of high levels of arsenic (As) and fluoride (F) in groundwater, environmental isotopic composition (delta2H and delta18O) and chloride (Cl) concentrations were analyzed in 29 groundwater samples collected from the Datong Basin. High arsenic groundwater samples (As > 50 micog/L) were found to be enriched in lighter isotopic composition that ranged from -92 to -78 per thousand for deuterium (delta2H) and from -12.5 to -9.9 per thousand for oxygen-18 (delta18O). High F-containing groundwater (F > 1 mg/L) was relatively enriched in heavier isotopic composition and varied from -90 to -57 per thousand and from -12.2 to -6.7 per thousand for delta2H and delta18O, respectively. High chloride concentrations and delta18O values were primarily measured in groundwater samples from the northern and southwestern portions of the study area, indicating the effect of evaporation on groundwater. The observation of relatively homogenized and low delta18O values and chloride concentrations in groundwater samples from central part of the Datong Basin might be a result of fast recharge by irrigation returns, which suggests that irrigation using arsenic-contaminated groundwater affected the occurrence of high arsenic-containing groundwater in the basin.

  2. Modeling biogeochemical processes in subterranean estuaries : Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients

    NARCIS (Netherlands)

    Spiteri, C.; Slomp, C.P.; Tuncay, K.; Meile, C.


    A two-dimensional density-dependent reactive transport model, which couples groundwater flow and biogeochemical reactions, is used to investigate the fate of nutrients (NO3 −, NH4 +, and PO4) in idealized subterranean estuaries representing four end-members of oxic/anoxic aquifer and seawater redox

  3. Measurement and estimation of radiocesium discharge rate from paddy field during land preparation and mid-summer drainage. (United States)

    Miyazu, Susumu; Yasutaka, Tetsuo; Yoshikawa, Natsuki; Tamaki, Shouhei; Nakajima, Kousei; Sato, Iku; Nonaka, Masanori; Harada, Naoki


    In this research, we evaluated the range of (137)Cs discharge rates from paddy fields during land preparation and mid-summer drainage. First, we investigated (137)Cs discharge loads during land preparation and mid-summer drainage and their ratio to the (137)Cs inventory of paddy field soil. We found that total discharge rates were 0.003-0.028% during land preparation and 0.001-0.011% during mid-summer drainage. Next, we validated the range of obtained total discharge of (137)Cs from the paddy fields using a simplified equation and literature review. As a result, we conclude that the range of total outflow loads of suspended solids for the investigated paddy field was generally representative of paddy fields in Japan. Moreover, the (137)Cs discharge ratio had a wide range, but was extremely small relative to (137)Cs present in paddy field soil before irrigation.

  4. Mass discharge rate retrieval combining weather radar and thermal camera observations (United States)

    Vulpiani, Gianfranco; Ripepe, Maurizio; Valade, Sebastien


    The mass discharge rate is a key parameter for initializing volcanic ash dispersal models. Commonly used empirical approaches derive the discharge rate by the plume height as estimated by remote sensors. A novel approach based on the combination of weather radar observations and thermal camera imagery is presented here. It is based on radar ash concentration estimation and the retrieval of the vertical exit velocities of the explosive cloud using thermal camera measurements. The applied radar retrieval methodology is taken from a revision of previously presented work. Based on the analysis of four eruption events of the Mount Etna volcano (Sicily, Italy) that occurred in December 2015, the proposed methodology is tested using observations collected by three radar systems (at C and X band) operated by the Italian Department of Civil Protection. The total erupted mass was estimated to be about 9·109 kg and 2.4·109 kg for the first and second events, respectively, while it was about 1.2·109 kg for both the last two episodes. The comparison with empirical approaches based on radar-retrieved plume height shows a reasonably good agreement. Additionally, the comparative analysis of the polarimetric radar measurements provides interesting information on the vertical structure of the ash plume, including the size of the eruption column and the height of the gas thrust region.

  5. Nutrients fluxes from groundwater discharge into Mangueira Lagoon (Rio Grande do Sul, Brazil); Fluxos de nutrientes associados as descargas de agua subterranea para a Lagoa Mangueira (Rio Grande do Sul, Brasil)

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Carlos F.F.; Niencheski, Luis F.H.; Attisano, Karina K.; Milani, Marcio R., E-mail: [Instituto de Oceanografia, Universidade Federal do Rio Grande, Campus Carreiros, Rio Grande, RS (Brazil); Santos, Isaac R. [Department of Oceanography, Florida State University, Tallahassee, FL (United States); Milani, Idel C. [Departamento de Engenharia Hidrica, Centro de Desenvolvimento Tecnologico, Universidade Federal de Pelotas, Campus Porto, Pelotas, RS (Brazil)


    This study assesses the importance of groundwater discharge to dissolved nutrient levels in Mangueira Lagoon. A transect of an irrigation canal in the margin of Lagoon demonstrated a strong geochemical gradient due to high groundwater inputs in this area. Using {sup 222}Rn as a quantitative groundwater tracer, we observed that the flux of dissolved inorganic nitrogen (DIN), silicate and phosphate (1178 and 1977; 26190 and 35652; 167 and 188 mol d{sup -1} for winter and summer, respectively) can continually supply/sustain primary production. The irrigation canals act as an artificial underground tributary and represent a new source of nutrients to coastal lagoons. (author)

  6. Effect of the rate of rise in discharge current on the output of a 46.9-nm soft X-ray laser based on capillary discharge (United States)

    Barnwal, S.; Nigam, S.; Aneesh, K.; Prasad, Y. B. S. R.; Naik, P. A.; Navathe, C. P.; Gupta, P. D.


    The rate of rise in discharge current (d I/d t) is an important parameter in an X-ray laser pumped by fast capillary discharge. The effect of this parameter on the energy of an argon plasma-based 46.9-nm soft X-ray laser pulse has been experimentally studied. It was found that an X-ray laser pulse with ~2 μJ energy, which can be obtained at a discharge current of ~40 kA with d I/d t value of ~7.1 × 1011 A/s, can also be obtained at a much lower peak current of ~26 kA if the quarter period ( T/4) of the discharge current is made shorter to achieve a comparable d I/d t value. For a fixed T/4, the laser energy could be enhanced from 2 to 4 μJ for an increase in the d I/d t value from 7.1 × 1011 to 1.3 × 1012 A/s by increasing the peak current from 26 to 44 kA. It was also observed that for a fixed d I/d t, mere increase in the discharge current does not increase the laser energy.

  7. A Positive Association Between Hospice Profit Margin And The Rate At Which Patients Are Discharged Before Death. (United States)

    Dolin, Rachel; Holmes, G Mark; Stearns, Sally C; Kirk, Denise A; Hanson, Laura C; Taylor, Donald H; Silberman, Pam


    Hospice care is designed to support patients and families through the final phase of illness and death. Yet for more than a decade, hospices have steadily increased the rate at which they discharge patients before death-a practice known as "live discharge." Although certain live discharges are consistent with high-quality care, regulators have expressed concern that some hospices' desire to maximize profits drives them to inappropriately discharge patients. We used Medicare claims data for 2012-13 and cost reports for 2011-13 to explore relationships between hospice-level financial margins and live discharge rates among freestanding hospices. Adjusted analyses showed positive and significant associations between both operating and total margins and hospice-level rates of live discharge: One-unit increases in operating and total margin were associated with increases of 3 percent and 4 percent in expected hospice-level live discharge rates, respectively. These findings suggest that additional research is needed to explore links between profitability and patient-centeredness in the Medicare hospice program. Project HOPE—The People-to-People Health Foundation, Inc.

  8. Dynamic linear models to explore time-varying suspended sediment-discharge rating curves (United States)

    Ahn, Kuk-Hyun; Yellen, Brian; Steinschneider, Scott


    This study presents a new method to examine long-term dynamics in sediment yield using time-varying sediment-discharge rating curves. Dynamic linear models (DLMs) are introduced as a time series filter that can assess how the relationship between streamflow and sediment concentration or load changes over time in response to a wide variety of natural and anthropogenic watershed disturbances or long-term changes. The filter operates by updating parameter values using a recursive Bayesian design that responds to 1 day-ahead forecast errors while also accounting for observational noise. The estimated time series of rating curve parameters can then be used to diagnose multiscale (daily-decadal) variability in sediment yield after accounting for fluctuations in streamflow. The technique is applied in a case study examining changes in turbidity load, a proxy for sediment load, in the Esopus Creek watershed, part of the New York City drinking water supply system. The results show that turbidity load exhibits a complex array of variability across time scales. The DLM highlights flood event-driven positive hysteresis, where turbidity load remained elevated for months after large flood events, as a major component of dynamic behavior in the rating curve relationship. The DLM also produces more accurate 1 day-ahead loading forecasts compared to other static and time-varying rating curve methods. The results suggest that DLMs provide a useful tool for diagnosing changes in sediment-discharge relationships over time and may help identify variability in sediment concentrations and loads that can be used to inform dynamic water quality management.

  9. An Investigation of Coastal Groundwater Discharge and Associated Nutrient Inputs Using Electrical Resistivity, Temperature, and Geochemical Tracer in Pescadero Lagoon, California (United States)

    Volpi, C. M.; Swarzenski, P. W.; McPhee-Shaw, E. E.; Aiello, I. W.


    Pescadero Lagoon is a complex lagoon system located on the central California coast in San Mateo County. Over the last decade, external stressors such as degraded water quality, restricted circulation, heightened groundwater withdrawals, changes in the fluvial geomorphology that affect surface water runoff, and widespread agriculture in the watershed have impacted the lagoon. The lagoon system is bounded on the marine side by an ephemeral sand berm that is seasonally closed and so hinders open exchange with the ocean. This berm and the Mediterranean-type climate play an important role in the lagoon's circulation and water quality. The most high-profile and deleterious effect of reduced ocean-lagoon exchange and restricted water circulation is the occurrence of bottom-water low oxygen events that can trigger seasonal fish kills. This project employed a suite of geophysical and geochemical techniques to better understand the role of groundwater on lagoon water and constituent balances. The main objective of this research was to quantify groundwater seepage rates into Pescadero Lagoon across broad spatial and temporal scales using electrical resistivity, temperature, and Radon-222 (222Rn) as tracers of groundwater movement. Resulting seepage rate estimates were then used to derive associated nutrient flux estimates, which can be compared to atmospheric and riverine nutrient load estimates to yield more comprehensive nutrient budgets. The groundwater seepage into the lagoon for the time period of March 2013 to February 2014 was relatively low and did not exceed 0.2 m/day. The timing of the sand berm closure, lack of hydrologic connectivity, and lack of freshwater input proved to be crucial limiting factors in the overall health of the ecosystem.

  10. Groundwater Recharge Rates and Surface Runoff Response to Land Use and Land Cover Changes in Semi-arid Environments (United States)

    Owuor, Steven; Butterbach-Bahl, Klaus; Guzha, Alphonce; Rufino, Mariana; Pelster, David; Díaz-Pinés, Eugenio; Breuer, Lutz; Merbold, Lutz


    Conclusive evidence and understanding of the effects of land use and land cover (LULC) on both groundwater recharge and surface runoff is critical for effective management of water resources in semi-arid region as those heavily depend on groundwater resources. However, there is limited quantitative evidence on how changes to LULC in semi-arid tropical and subtropical regions affect the subsurface components of the hydrologic cycle, particularly groundwater recharge. In this study, we reviewed a total of 27 studies (2 modelling and 25 experimental), which reported on pre- and post-land use change groundwater recharge or surface runoff magnitude, and thus allowed to quantify the response of groundwater recharge rates and runoff to LULC. Restoration of bare land induces a decrease in groundwater recharge from 42 % of precipitation to between 6 and 12 % depending on the final LULC. If forests are cleared for rangelands, groundwater recharge increases by 7.8 ± 12.6 %, while conversion to cropland or grassland results in increases of 3.4 ± 2.5 and 4.4 ± 3.3 %, respectively. Rehabilitation of bare land to cropland results in surface runoff reductions of between 5.2 and 7.3 %. The conversion of forest vegetation to managed LULC shows an increase in surface runoff from 1 to 14.1 % depending on the final LULC. Surface runoff is reduced from 2.5 to 1.1 % when grassland is converted to forest vegetation. While there is general consistency in the results from the selected case studies, we conclude that there are few experimental studies that have been conducted in tropical and subtropical semi-arid regions, despite that many people rely heavily on groundwater for their livelihoods. Therefore, there is an urgent need to increase the body of quantitative evidence given the pressure of growing human population and climate change on water resources in the region.

  11. Association between the unemployment rate and inpatient cost per discharge by payer in the United States, 2005-2010. (United States)

    Maeda, Jared Lane K; Henke, Rachel Mosher; Marder, William D; Karaca, Zeynal; Friedman, Bernard S; Wong, Herbert S


    Several reports have linked the 2007-2009 Great Recession in the United States with a slowdown in health care spending and decreased utilization. However, little is known regarding how the recent economic downturn affected hospital costs per inpatient stay for different segments of the population. The purpose of this study was to examine the association between changes in the unemployment rate and inpatient cost per discharge for Medicare and commercial discharges. We used retrospective data at the Core Based Statistical Area (CBSA)-level from 46 states that contributed to the Healthcare Cost and Utilization Project State Inpatient Databases from 2005 to 2010. Unemployment data was derived from the American Community Survey. An instrumental variable two-stage least squares approach with fixed- or random-effects was used to examine the association between unemployment rate and inpatient cost per discharge by payer because of potential endogeneity. The marginal effect of unemployment was associated with an increase in inpatient cost per discharge for both payers. A one percentage point increase in the unemployment rate was associated with a $37 increase for commercial discharges and a $49 increase for Medicare discharges. We find evidence that the inpatient cost per discharge is countercyclical across different segments of the population. The underlying mechanisms by which unemployment affects hospital resource use however, might differ between payer groups.

  12. Lava discharge rate estimates from thermal infrared satellite data for Pacaya Volcano during 2004-2010 (United States)

    Morgan, Hilary A.; Harris, Andrew J. L.; Gurioli, Lucia


    Pacaya is one of the most active volcanoes in Central America and has produced lava flows frequently since 1961. All effusive activity between 1961 and 2009 was confined by an arcuate collapse scarp surrounding the northern and eastern flanks. However, the recent breaching of this topographic barrier, and the eruption of a large lava flow outside of the main center of activity, have allowed lava to extend into nearby populated areas, indicating the need for assessment and monitoring of lava flow hazards. We investigated whether a commonly used satellite-based model could produce accurate lava discharge rates for the purpose of near-real-time assessment of hazards during future eruptions and to assess the dynamics of this persistently degassing system. The model assumes a linear relationship between active lava flow area and time-averaged discharge rate (TADR) via a simple conversion factor. We calculated the conversion factor via two methods: (1) best-fitting of satellite-derived flow areas to ground-based estimates of lava flow volume, and (2) theoretically via a parameterized model that takes into account the physical properties of the lava. To apply the latter method, we sampled four lava flows and measured density, vesicularity, crystal content, and major element composition. We found the best agreement of conversion factors in the eruption with the most complete satellite coverage, and used data for these flows to define the linear relationship between area and discharge rate. The physical properties of the sampled flows were essentially identical, so that any discrepancy between the two methods of calculating conversion factors must be due to modeling errors or environmental factors unaccounted for by the parameterized model. However, our best-fitting method provides a new means to set the conversion appropriately, and to obtain self-consistent TADRs. We identified two distinct types of effusive activity at Pacaya: Type 1 activity characterized by initially

  13. Residence time of submarine fresh groundwater discharge in Hachijo Island, Japan: Application of dating tracers of Tritium, CFCs and SF6 (United States)

    MOGI, K.; Asai, K.


    Hachijo is a volcanic Island in the Western Pacific Ring of Fire. Submarine fresh groundwater discharge (SGD) distribute around the coastal area of Hachijo Island. In this study, we estimate the residence time of the SGD using the multi age tracer method, to understand the mechanism of SGD. Water samples were collected from 1 SGD, 5 mountain springs and 6 costal wells, and were measured in Tritium, CFCs and SF6 concentrations. All water samples contain detectable tritium, indicating that these waters are mainly recharged at post-bomb period. CFC-12 and SF6 concentration of water samples show wide variations from 163 to 247 pg/kg and from 1.06 to 2.61 fmol/kg, respectively. The SF6-based apparent ages for the mountain springs and shallow well were estimated at less than 6 years, and ranged from 12 to 20 years in the deep wells. Estimated SF6 age of the SGD (13 years) coincide with the age of the deep wells, suggesting that the SGD play a role of outlet of deep groundwater.

  14. Impact Of Particle Agglomeration On Accumulation Rates In The Glass Discharge Riser Of HLW Melter

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, WA (United States); Rodriguez, C. A. [Pacific Northwest National Laboratory, Richland, WA (United States); Matyas, J. [Pacific Northwest National Laboratory, Richland, WA (United States); Owen, A. T. [Pacific Northwest National Laboratory, Richland, WA (United States); Jansik, D. P. [Pacific Northwest National Laboratory, Richland, WA (United States); Lang, J. B. [Pacific Northwest National Laboratory, Richland, WA (United States)


    The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with x-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, and on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ~185+-155 {mu}m, and produced >3 mm thick layer after 120 h at 850 deg C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers.

  15. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao


    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  16. Global Groundwater related Risk Indicators: quantifying groundwater stress and groundwater table decline (1990-2010) at global scale (United States)

    Faneca Sanchez, Marta; Sutanudjaja, Edwin; Kuijper, Marijn; Bierkens, Marc


    Groundwater is an invisible but indispensable resource for the economic development of many countries. Due to the need for this resource, in many cases it is exploited under severe pressure and the exploitation can become not sustainable. The non-sustainable exploitation of water is a well-known problem on both regional and global scales. However, most currently-available assessments on water stress still mostly focus on surface water and on water balances. In this work, we presented two global maps of groundwater risk indicators: an updated version of the groundwater stress (Gleeson et al., 2011, DOI: 10.1038/nature11295) and an indicator on groundwater table decline for the period 1990-2010. To calculate both indicators, we used the updated PCR-GLOBWB model output at 5 arcmin resolution (about 10 km at the equator), that is extended with an offline coupling to a global groundwater MODFLOW model. PCR-GLOBWB simulates daily river discharge and groundwater recharge, as well as surface water and groundwater abstraction rates. The latter are estimated internally within the model based on the simulation of their availabilities and water demands for irrigation and other sectors. The daily output of PCR-GLOBWB would then be aggregated to the monthly resolution and used to force the MODFLOW groundwater model resolving spatio-temporal groundwater table dynamics, incorporating the simulated groundwater abstraction of PCR-GLOBWB. Using the PCR-GLOBWB and MODFLOW simulation results from the period 1990-2010, we then quantified groundwater stress and assessed the groundwater table decline. Results are presented on four different spatial scales: 5 arcmin pixel, drainage/sub-catchment unit, state level, and major aquifer unit. The maps clearly show where groundwater is under stress, where there is a trend in the drop of the groundwater table, the slope of the drop and the significance of it.

  17. Compilation of data to estimate groundwater migration potential for constituents in active liquid discharges at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Ames, L.L.; Serne, R.J.


    A preliminary characterization of the constituents present in the 33 liquid waste streams at the US Department of Energy's Hanford Site has been completed by Westinghouse Hanford Company. In addition, Westinghouse Hanford has summarized the soil characteristics based on drill logs collected at each site that receives these liquid wastes. Literature searches were conducted and available Hanford-specific data were tabulated and reviewed. General literature on organic chemicals present in the liquid waste streams was also reviewed. Using all of this information, Pacific Northwest Laboratory has developed a best estimate of the transport characteristics (water solubility and soil adsorption properties) for those radionuclides and inorganic and organic chemicals identified in the various waste streams. We assume that the potential for transport is qualified through the four geochemical parameters: solubility, distribution coefficient, persistence (radiogenic or biochemical half-life), and volatility. Summary tables of these parameters are presented for more than 50 inorganic and radioactive species and more than 50 organic compounds identified in the liquid waste streams. Brief descriptions of the chemical characteristics of Hanford sediments, solubility, and adsorption processes, and of how geochemical parameters are used to estimate migration in groundwater-sediment environments are also presented. Groundwater monitoring data are tabulated for wells neighboring the facilities that receive the liquid wastes. 91 refs., 16 figs., 23 tabs.

  18. Differences between young and elderly in soleus motor unit discharge rate in dynamic movements

    Directory of Open Access Journals (Sweden)

    Jouni eKallio


    Full Text Available Aging is related to changes at the muscular level, leading to a decline in motor performance increasing the risk of falling and injury. It seems that the age-related changes in motor unit activation are muscle- and intensity dependent. The purpose of this study was to examine possible differences in soleus motor unit discharge rate (MUDR in both isometric and dynamic contractions between young and elderly adults. 11 young (YOUNG and 8 elderly (OLD males participated in the study. The subjects performed isometric and dynamic plantar flexions while seated in an ankle dynamometer. The force levels studied were 10, 20, 40, 60, 80 and 100% of the isometric (ISO MVC in ISO and 10, 20 and 40% in concentric (CON and eccentric (ECC contractions. Soleus intramuscular EMG was recorded with bipolar fine-wire electrodes and decomposed to individual trains of motor unit discharges. In ISO the MUDR was higher in YOUNG in 20, 40, 60 and 80% MVC, while in the dynamic contractions no age-difference was seen. For both age-groups MUDR was higher in CON compared to ISO or ECC. The relative level of sEMG activity in SOL and GM for a given force level was in all conditions higher for OLD compared to YOUNG. The decreased MUDR in OLD may be an adaptation to an increased twitch duration in order to optimize force generation. The lack of an age-difference in dynamic contractions could be due to differences in recruitment-strategies, coactivation or a lack of recording from high force levels.

  19. Addressing Groundwater Declines with Precision Agriculture: An Economic Comparison of Monitoring Methods for Variable-Rate Irrigation

    Directory of Open Access Journals (Sweden)

    Grant H. West


    Full Text Available Irrigated row-crop agriculture is contributing to declining groundwater in areas such as the Mississippi Delta region of eastern Arkansas. There is a need to move toward sustainable levels of groundwater withdrawal. Recent improvements in remote monitoring technologies such as wireless soil moisture sensors and unmanned aerial vehicles offer the potential for farmers to effectively practice site-specific variable-rate irrigation management for the purpose of applying water more efficiently, reducing pumping costs, and retaining groundwater. Soil moisture sensors and unmanned aerial vehicles are compared here in terms of their net returns per acre-foot and cost-effectiveness of aquifer retention. Soil moisture sensors ($9.09 per acre-foot offer slightly more net returns to producers than unmanned aerial vehicles ($7.69 per acre-foot, though costs associated with unmanned aerial vehicles continue to drop as more manufacturers enter the market and regulations become clear.

  20. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. (United States)

    Li, Na; Chen, Zongping; Ren, Wencai; Li, Feng; Cheng, Hui-Ming


    There is growing interest in thin, lightweight, and flexible energy storage devices to meet the special needs for next-generation, high-performance, flexible electronics. Here we report a thin, lightweight, and flexible lithium ion battery made from graphene foam, a three-dimensional, flexible, and conductive interconnected network, as a current collector, loaded with Li(4)Ti(5)O(12) and LiFePO(4), for use as anode and cathode, respectively. No metal current collectors, conducting additives, or binders are used. The excellent electrical conductivity and pore structure of the hybrid electrodes enable rapid electron and ion transport. For example, the Li(4)Ti(5)O(12)/graphene foam electrode shows a high rate up to 200 C, equivalent to a full discharge in 18 s. Using them, we demonstrate a thin, lightweight, and flexible full lithium ion battery with a high-rate performance and energy density that can be repeatedly bent to a radius of 5 mm without structural failure and performance loss.

  1. Using short pulses to enhance the production rate of vibrationally excited hydrogen molecules in hydrogen discharge

    Institute of Scientific and Technical Information of China (English)

    Sun Ji-Zhong; Li Xian-Tao; Bai Jing; Wang De-Zhen


    Hydrogen discharges driven by the combined radio-frequency(rf)/short pulse sources are investigated using the particle-in-cell method.The simulation results show that the discharge driven additionally by the short pulse can enhance the electron density and modulate the electron energy to provide a better condition for negative hydrogen ion production than the discharge driven by the rf-only source.

  2. A comparison of recharge rates in aquifers of the United States based on groundwater-age data (United States)

    McMahon, P.B.; Plummer, L.N.; Böhlke, J.K.; Shapiro, S.D.; Hinkle, S.R.


    An overview is presented of existing groundwater-age data and their implications for assessing rates and timescales of recharge in selected unconfined aquifer systems of the United States. Apparent age distributions in aquifers determined from chlorofluorocarbon, sulfur hexafluoride, tritium/helium-3, and radiocarbon measurements from 565 wells in 45 networks were used to calculate groundwater recharge rates. Timescales of recharge were defined by 1,873 distributed tritium measurements and 102 radiocarbon measurements from 27 well networks. Recharge rates ranged from tracers of young groundwater exhibited a significant inverse correlation with mean annual air temperature and a significant positive correlation with mean annual precipitation. Comparison of recharge derived from groundwater ages with recharge derived from stream base-flow evaluation showed similar overall patterns but substantial local differences. Results from this compilation demonstrate that age-based recharge estimates can provide useful insights into spatial and temporal variability in recharge at a national scale and factors controlling that variability. Local age-based recharge estimates provide empirical data and process information that are needed for testing and improving more spatially complete model-based methods.

  3. Sources of uncertainty in climate change impacts on river discharge and groundwater in a headwater catchment of the Upper Nile Basin, Uganda

    Directory of Open Access Journals (Sweden)

    D. G. Kingston


    Full Text Available The changing availability of freshwater resources is likely to be one of the most important consequences of projected 21st century climate change for both human and natural systems. However, substantial uncertainty remains regarding the precise impacts of climate change on water resources, due in part due to uncertainty in GCM projections of climate change. Here we explore the potential impacts of climate change on freshwater resources in a humid, tropical catchment (the River Mitano in the Upper Nile Basin of Uganda. Uncertainty associated with GCM structure and climate sensitivity is explored, as well as parameter specification within hydrological models. These aims are achieved by running pattern-scaled output from seven GCMs through a semi-distributed hydrological model of the catchment (developed using SWAT. Importantly, use of pattern-scaled GCM output allows investigation of specific thresholds of global climate change including the purported 2 °C threshold of "dangerous" climate change. In-depth analysis of results based on the HadCM3 GCM climate scenarios shows that annual river discharge first increases, then declines with rising global mean air temperature. A coincidental shift from a bimodal to unimodal discharge regime also results from a projected reduction in baseflow (groundwater discharge. Both of these changes occur after a 4 °C rise in global mean air temperature. These results are, however, highly GCM dependent, in both the magnitude and direction of change. This dependence stems primarily from projected differences in GCM scenario precipitation rather than temperature. GCM-related uncertainty is far greater than that associated with climate sensitivity or hydrological model parameterisation.

  4. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA (United States)

    Green, Christopher T.; Jurgens, Bryant C.; Zhang, Yong; Starn, J. Jeffrey; Singleton, Michael J.; Esser, Bradley K.


    Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O2 reduction and denitrification (NO3- reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwater age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF6, CFCs, 3H, He from 3H (tritiogenic He), 14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO3- and dissolved gas data to estimate zero order and first order rates of O2 reduction and denitrification. Results indicated that O2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O2 and NO3- reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O2 reduction rates. Estimated historical NO3- trends were similar to historical measurements. Results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.

  5. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA (United States)

    Green, Christopher T.; Jurgens, Bryant; Zhang, Yong; Starn, Jeffrey; Singleton, Michael J.; Esser, Bradley K.


    Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O2 reduction and denitrification (NO3− reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwater age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF6, CFCs, 3H, He from 3H (tritiogenic He),14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO3− and dissolved gas data to estimate zero order and first order rates of O2 reduction and denitrification. Results indicated that O2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O2 and NO3− reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O2 reduction rates. Estimated historical NO3− trends were similar to historical measurements. Results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.

  6. Evaluation of Groundwater Renewability in the Henan Plains, China (United States)

    Dong, W.; Shi, X.


    The sustainability of groundwater resources in the Henan Plains, located in the eastern portion of central China, has been threatened by both increasing industrial and agricultural pumping and periods of drought occurring since the 1990s. Therefore, there is an urgent need to improve water resources management in the Henan Plains. However, the recharge and annual renewal rate are very difficult to calculate when based only on traditional hydrogeological methods because of inadequate hydrometeorologic data. In this study, tritium concentrations in groundwater and reconstructed 3H concentration time series from 1953~2009 in precipitation were used to determine the annual groundwater renewal rate. The 3H concentrations mostly range from 2.91 to 40.30 TU in the shallow groundwater with a mean 3H concentration of 19.13TU, which suggests that the shallow groundwater is recharged from modern precipitation after 1953 in the study area. Three exceptionally low 3H concentration(less than 1TU) wells were sampled in Xinxiang, Puyang and Zhengyang which indicates that those wells contain deep old groundwater recharge before 1953 as a result of over-pumping. High renewal rates (more than 4%/a) of groundwater are located mainly in the recharge area such as along the Yellow River and in the pediments of Taihang Mountain, Songqi Mountain, Funiu Mountain, Dabie Mountain, where the groundwater extraction volume could be increased. Moderate renewal rates (2%/a~3%/a) of groundwater are mainly in the runoff area where the groundwater extraction volume can be kept at current levels. Low renewal rates (1%/a~2%/a) of groundwater are located mainly in the discharge areas in the eastern regions of Nanle, Puyang, Shangqiu, Luyi where the groundwater extraction volume should be reduced. The lowest renewal rates of (less than 1%/a) groundwater are in Puyang, Xinxiang, Zhengyang and Xixian, where the groundwater extraction volume should be restricted.

  7. Groundwater interaction with surface drains in the Ord River Irrigation Area, northern Australia: investigation by multiple methods (United States)

    Smith, Anthony J.; Pollock, Daniel W.; Palmer, Duncan


    Following 35 years of persistent groundwater rise beneath northern Ivanhoe Plain in the Ord River Irrigation Area, northern Australia, the water table appears to have stabilized near the base of the irrigation surface-drain network. Hydrometric evidence indicates that intersection of the deepest surface drains by the rising water table simultaneously reduced aquifer recharge from surface-water infiltration and increased aquifer discharge by groundwater exfiltration. Water-table analysis supports the working hypothesis that the largest irrigation drain D4 on north Ivanhoe Plain has been receiving a significant amount of groundwater discharge since the mid-1990s. The rate of groundwater discharge to surface drains on north Ivanhoe Plain was estimated to be around 15-20 million (M)L/day based on groundwater-flow modelling. Groundwater tracing using radon and electrical conductivity indicated that groundwater discharge to drain D4 was ˜6-12 ML/day in August 2007. The rate of groundwater discharge was significantly larger where the drain traverses a very-permeable sand and gravel palaeochannel. Relatively modest exfiltration rates of order of magnitude tens to hundreds of mm/day into the drain were estimated to mitigate 0.5 m/year groundwater accretion for a land area of order of magnitude hundreds to thousands of ha.

  8. Identifying Groundwater Discharge Sources and Associated Geochemical Influences Using Resistivity Imaging and Geochemical Tracers in a Semi-Arid Estuary in South Texas (United States)

    Douglas, A. R.; Murgulet, D.; Spalt, N.


    The Nueces Bay (NB) system has been found to be ecologically unsound due to the loss/alteration of habitat and flow regimes required by indicator species and compromised nutrient cycling and sediment loading. The management practices of freshwater inflow regimes to NB concentrates on surface water flows and does not account for groundwater inflows, though submarine groundwater discharge (SGD) has been identified as a source of freshwater and limiting nutrients that could significantly impact bay salinities and nutrient loading. To encompass the range of spatio-temporal variabilities occurring between groundwater (GW) and surface-water (SW), multiple methods, including resistivity imaging, geochemical tracers, and radioisotopes, are applied in conjunction to identify SGD sources. Preliminary continuous resistivity profile surveys identified multiple possible GW upwelling paths from which thirteen stations were chosen in NB and two stations in Nueces River (NR). A Principal Component Analysis (PCA) of initial geochemical, nutrient and radioisotope data, shows that 76% of the variation in the data is explained by three factors: seasonality, freshwater inflows, and reducing environment. Significant seasonal variation is seen in average SW salinity (37psu in September 2014 to 4psu in June 2015), Ra-224 (359dpm/L in September to 636dpm/L in December), Ra-226 (268dpm/L in September to 570 dpm/L in December), ammonium (1.3μM in September to 5.5μM in April), and chlorophyll-α (3.99μg/L in December to 12.3 μg/L in April). Additionally, short-lived radioisotopes Rn-222 and Ra-224 are consistently elevated near the NR mouth, the inflow from Gum Hollow Creek, and a single station in the middle of the Bay indicating more localized, active SGD sources. However, only the stations in NR and at the NR mouth show consistently strong correlations to chlorophyll-α, phosphate, and silicate, with the river station closest to NB having the highest concentrations of nitrogen

  9. Reduced motor unit discharge rates of maximal velocity dynamic contractions in response to a submaximal dynamic fatigue protocol. (United States)

    Harwood, B; Choi, I; Rice, C L


    Fatigability is highly task dependent wherein motor unit (MU) discharge rates and recruitment thresholds are affected differently depending on whether contractions are performed at maximal or submaximal intensities. Although much is described for isometric tasks, the behavior of MU properties during the production of maximal velocity dynamic contractions following submaximal fatiguing contractions is unknown. In seven young men, we evaluated changes in MU recruitment thresholds and MU discharge rates of the anconeus muscle during both submaximal and maximal dynamic elbow extensions following a submaximal dynamic fatiguing protocol of moderate intensity to velocity task failure. Velocity and power of the maximal dynamic contractions declined ∼45 and ∼55%, respectively, but these variables were unchanged for the submaximal target velocity contractions. Discharge rates of the 12 MUs at task failure were unchanged for submaximal dynamic contractions, but were decreased ∼20% for maximal dynamic and ballistic isometric contractions at task failure. MU recruitment thresholds of submaximal dynamic contractions decreased 52% at task failure, but were similar throughout the fatiguing protocol for maximal contractions. These findings support the concept of a common neural mechanism responsible for the relative declines in MU discharge rate associated with submaximal fatigability in both isometric and dynamic contractions.

  10. Groundwater age, mixing and flow rates in the vicinity of large open pit mines, Pilbara region, northwestern Australia (United States)

    Cook, Peter; Dogramaci, Shawan; McCallum, James; Hedley, Joanne


    Determining groundwater ages from environmental tracer concentrations measured on samples obtained from open bores or long-screened intervals is fraught with difficulty because the sampled water represents a variety of ages. A multi-tracer technique (Cl, 14C, 3H, CFC-11, CFC-12, CFC-113 and SF6) was used to decipher the groundwater ages sampled from long-screened production bores in a regional aquifer around an open pit mine in the Pilbara region of northwest Australia. The changes in tracer concentrations due to continuous dewatering over 7 years (2008-2014) were examined, and the tracer methods were compared. Tracer concentrations suggest that groundwater samples are a mixture of young and old water; the former is inferred to represent localised recharge from an adjacent creek, and the latter to be diffuse recharge. An increase in 14C activity with time in wells closest to the creek suggests that dewatering of the open pit to achieve dry mining conditions has resulted in change in flow direction, so that localised recharge from the creek now forms a larger proportion of the pumped groundwater. The recharge rate prior to development, calculated from a steady-state Cl mass balance, is 6 mm/y, and is consistent with calculations based on the 14C activity. Changes in CFC-12 concentrations with time may be related to the change in water-table position relative to the depth of the well screen.

  11. Regional Groundwater Processes and Flow Dynamics from Age Tracer Data (United States)

    Morgenstern, Uwe; Stewart, Mike K.; Matthews, Abby


    Age tracers are now used in New Zealand on regional scales for quantifying the impact and lag time of land use and climate change on the quantity and quality of available groundwater resources within the framework of the National Policy Statement for Freshwater Management 2014. Age tracers provide measurable information on the dynamics of groundwater systems and reaction rates (e.g. denitrification), essential for conceptualising the regional groundwater - surface water system and informing the development of land use and groundwater flow and transport models. In the Horizons Region of New Zealand, around 200 wells have tracer data available, including tritium, SF6, CFCs, 2H, 18O, Ar, N2, CH4 and radon. Well depths range from shallower wells in gravel aquifers in the Horowhenua and Tararua districts, and deeper wells in the aquifers between Palmerston North and Wanganui. Most of the groundwater samples around and north of the Manawatu River west of the Tararua ranges are extremely old (>100 years), even from relatively shallow wells, indicating that these groundwaters are relatively disconnected from fresh surface recharge. The groundwater wells in the Horowhenua tap into a considerably younger groundwater reservoir with groundwater mean residence time (MRT) of 10 - 40 years. Groundwater along the eastern side of the Tararua and Ruahine ranges is significantly younger, typically groundwater recharge rates, as deduced from groundwater depth and MRT, are extremely low in the central coastal area, consistent with confined groundwater systems, or with upwelling of old groundwater close to the coast. Very low vertical recharge rates along the Manawatu River west of the Manawatu Gorge indicate upwelling groundwater conditions in this area, implying groundwater discharge into the river is more likely here than loss of river water into the groundwater system. High recharge rates observed at several wells in the Horowhenua area and in the area east of the Tararua and

  12. Response surface modelling of tool electrode wear rate and material removal rate in micro electrical discharge machining of Inconel 718

    DEFF Research Database (Denmark)

    Puthumana, Govindan


    conductivity and high strength causing it extremely difficult tomachine. Micro-Electrical Discharge Machining (Micro-EDM) is a non-conventional method that has a potential toovercome these restrictions for machining of Inconel 718. Response Surface Method (RSM) was used for modelling thetool Electrode Wear...

  13. Rate of three-body electron attachment to an oxygen molecule in a semi-self-maintained discharge (United States)

    Krasiukov, A. G.; Naumov, V. G.; Shachkin, L. V.; Shashkov, V. M.


    The rate of three-body electron attachment to an oxygen molecule has been investigated in a semi-self-maintained discharge sustained by a fast electron beam in a mixture of O2:N2 = 1:20 at atmospheric pressure. Experimental results are in good agreement with theory. It is found that the attachment rate decreases with the increasing energy input, and a qualitative explanation of this effect is presented.

  14. Hydrological data concerning submarine groundwater discharge along the western margin of Indian River Lagoon, east-central Florida - December 2016 and January 2017 (United States)

    McCloskey, Terrence; Smith, Christopher G.; Zaremba, Nicholas; McBride, Elsie; Everhart, Cheyenne


    Indian River Lagoon, one of the most biologically diverse estuarine systems in the continental United States, is a shallow brackish lagoon stretching along approximately 200 kilometers (km) of the Atlantic coast of central Florida. Lagoon width varies from ~0.5 – 9.0 km, with substantial human infrastructure lining both shores. Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center investigated submarine groundwater discharge at Eau Gallie North, a site along the western shore in the central section of the lagoon, using continuous resistivity profiling (CRP). The CRP array was towed behind a boat along five shore-parallel transects located ~125, 200, 350, 500 and 750 meters offshore and traversing ~1.5 km along north-south transects. Each transect was given a track name (EB., EC., ED., EE., and EF.) and lines were run both north to south and south to north. Repetitive profiles will be conducted along these same tracks, at various times, in order to determine temporal variability. As resistivity is a function of both geology and salinity, temporal changes will reflect salinity changes, as the underlying geology will be presumed to remain constant. Resistivity data were assigned geographic coordinates and water depth values, in order to produce modeled resistivity, accounting for salinity and geologic parameters.  This data release provides the raw resistivity, geographical and water parameter data collected in December 2016 and January 2017.

  15. Increasing the success rate of groundwater exploration in developing nation using geophysical methods: Case of a small community in Nigeria. (United States)

    Isiorho, S. A.; Omole, D.; Aizebeokhai, A.


    About 35 percent of Nigeria's population of the more than 180 M relies on groundwater. Due to the lack of an adequate water supply system within Ogun State, many homes result to drilling their own private wells. Most groundwater is sourced from shallow wells (less than 30 m) and is often of poor water quality. The number of borehole failures is also alarming. Several entrepreneurs have seized on the lack of adequate water supply to drill for groundwater. Several of these wells have either failed or are not adequate for the purposed use of the water. There also appears to be no proper coordination of the citing of these wells. To increase the success rates of the boreholes, the use of geophysical methods amongst others is recommended. This study examines the exploration for groundwater and water quality in Ogun State in Nigeria, using Ota as an example. Ogun State has both significant surface and groundwater resources. However, due to the indiscriminate and lack of proper waste disposal, the vast majority of the surface waters and shallow well waters are impaired making them unsuitable for many users. To access a deeper groundwater source, a geophysical survey was performed to assist in finding a possible location for a borehole. A geophysical survey using the vertical electric sounding (VES) with Schlumberger configuration was carried out. The data shows that there are five layers within the proposed borehole site. Based on the data, it was suggested that a well be placed at a depth between 65-75 m (213-246 ft.). The borehole was drilled to 67m. This depth, from the literature, corresponds to the Abeokuta formation. A pump was installed at 66 m (217 ft.) depth and the first 50 feet of the borehole was grouted to prevent surface water from getting into the hole. A pumping test was performed for about two hours. While this was noteworthy, the data is not made available to any centralized body. No water chemistry was undertaken and more still needs to be done with

  16. Water quality, discharge, and groundwater levels in the Palomas, Mesilla, and Hueco Basins in New Mexico and Texas from below Caballo Reservoir, New Mexico, to Fort Quitman, Texas, 1889-2013 (United States)

    McKean, Sarah E.; Matherne, Anne Marie; Thomas, Nicole


    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, compiled data from various sources to develop a dataset that can be used to conduct an assessment of the total dissolved solids in surface water and groundwater of the Palomas, Mesilla, and Hueco Basins in New Mexico and Texas, from below Caballo Reservoir, N. Mex., to Fort Quitman, Tex. Data include continuous surface-water discharge records at various locations on the Rio Grande; surface-water-quality data for the Rio Grande collected at selected locations in the Palomas, Mesilla, and Hueco Basins; groundwater levels and groundwater-quality data collected from selected wells in the Palomas and Mesilla Basins; and data from several seepage investigations conducted on the Rio Grande and selected drains in the Mesilla Basin.

  17. Charging/Discharging Nanomorphology Asymmetry and Rate-Dependent Capacity Degradation in Li-Oxygen Battery. (United States)

    Kushima, Akihiro; Koido, Tetsuya; Fujiwara, Yoshiya; Kuriyama, Nariaki; Kusumi, Nobuhiro; Li, Ju


    Liquid-cell in situ transmission electron microscopy (TEM) observations of the charge/discharge reactions of nonaqueous Li-oxygen battery cathode were performed with ∼5 nm spatial resolution. The discharging reaction occurred at the interface between the electrolyte and the reaction product, whereas in charging, the reactant was decomposed at the contact with the gold current collector, indicating that the lithium ion diffusivity/electronic conductivity is the limiting factor in discharging/charging, respectively, which is a root cause for the asymmetry in discharging/charging overpotential. Detachments of lithium oxide particles from the current collector into the liquid electrolyte are frequently seen when the cell was discharged at high overpotentials, with loss of active materials into liquid electrolyte ("flotsam") under minute liquid flow agitation, as the lithium peroxide dendritic trees are shown to be fragile mechanically and electrically. Our result implies that enhancing the binding force between the reaction products and the current collector to maintain robust electronic conduction is a key for improving the battery performance. This work demonstrated for the first time the in situ TEM observation of a three-phase-reaction involving gold electrode, lithium oxides, DMSO electrolyte and lithium salt, and O2 gas. The technique described in this work is not limited to Li-oxygen battery but also can be potentially used in other applications involving gas/liquid/solid electrochemical reactions.

  18. High rates of relapse in adolescents crack users after inpatient clinic discharge

    Directory of Open Access Journals (Sweden)

    Rosemeri Siqueira Pedroso

    Full Text Available ABSTRACT Objective The objective of the present study was to evaluate 88 adolescent crack users referred to hospitalization and to follow them up after discharge to investigate relapse and factors associated with treatment. Methods Cohort (30 and 90 days after discharge from a psychiatric hospital and a rehab clinic for treatment for chemical dependency in Porto Alegre between 2011 and 2012. Instruments: Semi-structured interview, conducted to evaluate the sociodemographic profile of the sample and describe the pattern of psychoactive substance use; Crack Use Relapse Scale/CURS; Questionnaire Tracking Users to Crack/QTUC; K-SADS-PL. Results In the first follow-up period (30 days after discharge, 65.9% of participants had relapsed. In the second follow-up period (90 days after discharge, 86.4% of participants had relapsed. Conclusion This is one of the first studies that show the extremely high prevalence of early relapse in adolescent crack users after discharge, questioning the cost/benefit of inpatient treatment for this population. Moreover, these results corroborate studies which suggested, young psychostimulants users might need tailored intensive outpatient treatment with contingency management and other behavioral strategies, in order to increase compliance and reduce drug or crime relapse, but this specific therapeutic modality is still scarce and must be developed in Brazil.

  19. Groundwater surface mapping informs sources of catchment baseflow


    J. F. Costelloe; T. J. Peterson; K. Halbert; A. W. Western; J. J. McDonnell


    Groundwater discharge is a major contributor to stream baseflow. Quantifying this flux is difficult, despite its considerable importance to water resource management and evaluation of the effects of groundwater extraction on streamflow. It is important to be able to differentiate between contributions to streamflow from regional groundwater discharge (more susceptible to groundwater extraction) compared to interflow processes (arguably less susceptible to groundwater ...

  20. Combination of poroelasticity theory and constant strain rate test in modelling land subsidence due to groundwater extraction (United States)

    Pham, Tien Hung; Rühaak, Wolfram; Sass, Ingo


    Extensive groundwater extraction leads to a drawdown of the ground water table. Consequently, soil effective stress increases and can cause land subsidence. Analysis of land subsidence generally requires a numerical model based on poroelasticity theory, which was first proposed by Biot (1941). In the review of regional land subsidence accompanying groundwater extraction, Galloway and Burbey (2011) stated that more research and application is needed in coupling of stress-dependent land subsidence process. In geotechnical field, the constant rate of strain tests (CRS) was first introduced in 1969 (Smith and Wahls 1969) and was standardized in 1982 through the designation D4186-82 by American Society for Testing and Materials. From the reading values of CRS tests, the stress-dependent parameters of poroelasticity model can be calculated. So far, there is no research to link poroelasticity theory with CRS tests in modelling land subsidence due to groundwater extraction. One dimensional CRS tests using conventional compression cell and three dimension CRS tests using Rowe cell were performed. The tests were also modelled by using finite element method with mixed elements. Back analysis technique is used to find the suitable values of hydraulic conductivity and bulk modulus that depend on the stress or void ratio. Finally, the obtained results are used in land subsidence models. Biot, M. A. (1941). "General theory of three-dimensional consolidation." Journal of applied physics 12(2): 155-164. Galloway, D. L. and T. J. Burbey (2011). "Review: Regional land subsidence accompanying groundwater extraction." Hydrogeology Journal 19(8): 1459-1486. Smith, R. E. and H. E. Wahls (1969). "Consolidation under constant rates of strain." Journal of Soil Mechanics & Foundations Div.

  1. Organisation and features of hospital, intermediate care and social services in English sites with low rates of delayed discharge. (United States)

    Baumann, Matt; Evans, Sherrill; Perkins, Margaret; Curtis, Lesley; Netten, Ann; Fernandez, Jose-Luis; Huxley, Peter


    In recent years, there has been significant concern, and policy activity, in relation to the problem of delayed discharges from hospital. Key elements of policy to tackle delays include new investment, the establishment of the Health and Social Care Change Agent Team, and the implementation of the Community Care (Delayed Discharge) Act 2003. Whilst the problem of delays has been widespread, some authorities have managed to tackle delays successfully. The aim of the qualitative study reported here was to investigate discharge practice and the organisation of services at sites with consistently low rates of delay, in order to identify factors supporting such good performance. Six 'high performing' English sites (each including a hospital trust, a local authority, and a primary care trust) were identified using a statistical model, and 42 interviews were undertaken with health and social services staff involved in discharge arrangements. Additionally, the authors set out to investigate the experiences of patients in the sites to examine whether there was a cost to patient care and outcomes of discharge arrangements in these sites, but unfortunately, it was not possible to secure sufficient patient participation. Whilst acknowledging the lack of patient experience and outcome data, a range of service elements was identified at the sites that contribute to the avoidance of delays, either through supporting efficiency within individual agencies or enabling more efficient joint working. Sites still struggling with delays should benefit from knowledge of this range. The government's reimbursement scheme appears to have been largely helpful in the study sites, prompting efficiency-driven changes to the organisation of services and discharge systems, but further focused research is required to provide clear evidence of its impact nationally, and in particular, how it impacts on staff, and patients and their families.

  2. Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection. (United States)

    Xu, Wen-Tao; Peng, Hong-Jie; Huang, Jia-Qi; Zhao, Chen-Zi; Cheng, Xin-Bing; Zhang, Qiang


    The self-discharge of a lithium-sulfur cell decreases the shelf-life of the battery and is one of the bottlenecks that hinders its practical applications. New insights into both the internal chemical reactions in a lithium-sulfur system and effective routes to retard self-discharge for highly stable batteries are crucial for the design of lithium-sulfur cells. Herein, a lithium-sulfur cell with a carbon nanotube/sulfur cathode and lithium-metal anode in lithium bis(trifluoromethanesulfonyl)imide/1,3-dioxolane/dimethyl ether electrolyte was selected as the model system to investigate the self-discharge behavior. Both lithium anode passivation and polysulfide anion diffusion suppression strategies are applied to reduce self-discharge of the lithium-sulfur cell. When the lithium-metal anode is protected by a high density passivation layer induced by LiNO3 , a very low shuttle constant of 0.017 h(-1) is achieved. The diffusion of the polysulfides is retarded by an ion-selective separator, and the shuttle constants decreased. The cell with LiNO3 additive maintained a discharge capacity of 97 % (961 mAh g(-1) ) of the initial capacity after 120 days at open circuit, which was around three times higher than the routine cell (32 % of initial capacity, corresponding to 320 mAh g(-1) ). It is expected that lithium-sulfur batteries with ultralow self-discharge rates may be fabricated through a combination of anode passivation and polysulfide shuttle control, as well as optimization of the lithium-sulfur cell configuration.

  3. Groundwater quality assessment for the Chestnut Ridge Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)


    This report contains groundwater quality data obtained during the 1991 calendar year at several hazardous and non-hazardous waste- management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (CRHR), which is one of the three regimes defined for the purposes of groundwater quality monitoring and remediation (Figure 2). The Health, Safety, Environment, and Accountability (HSEA) Division of the Y-12 Plant Environmental Management Department manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  4. Constructing river stage-discharge rating curves using remotely sensed river cross-sectional inundation areas and river bathymetry (United States)

    Pan, Feifei; Wang, Cheng; Xi, Xiaohuan


    Remote sensing from satellites and airborne platforms provides valuable data for monitoring and gauging river discharge. One effective approach first estimates river stage from satellite-measured inundation area based on the inundation area-river stage relationship (IARSR), and then the estimated river stage is used to compute river discharge based on the stage-discharge rating (SDR) curve. However, this approach is difficult to implement because of a lack of data for constructing the SDR curves. This study proposes a new method to construct the SDR curves using remotely sensed river cross-sectional inundation areas and river bathymetry. The proposed method was tested over a river reach between two USGS gauging stations, i.e., Kingston Mines (KM) and Copperas Creek (CC) along the Illinois River. First a polygon over each of two cross sections was defined. A complete IARSR curve was constructed inside each polygon using digital elevation model (DEM) and river bathymetric data. The constructed IARSR curves were then used to estimate 47 river water surface elevations at each cross section based on 47 river inundation areas estimated from Landsat TM images collected during 1994-2002. The estimated water surface elevations were substituted into an objective function formed by the Bernoulli equation of gradually varied open channel flow. A nonlinear global optimization scheme was applied to solve the Manning's coefficient through minimizing the objective function value. Finally the SDR curve was constructed at the KM site using the solved Manning's coefficient, channel cross sectional geometry and the Manning's equation, and employed to estimate river discharges. The root mean square error (RMSE) in the estimated river discharges against the USGS measured river discharges is 112.4 m3/s. To consider the variation of the Manning's coefficient in the vertical direction, this study also suggested a power-law function to describe the vertical decline of the Manning

  5. Environmental risk of climate change and groundwater abstraction on stream ecological conditions

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige; Bøgh, Eva; Jensen, Niels H.

    flows and groundwater levels are of interest, as they relate to aquatic habitat and nitrate leaching, respectively. This study evaluates the risk to stream ecological conditions for a lowland Danish catchment under multiple scenarios of climate change and groundwater abstraction. Projections of future...... and risk to stream ecological conditions. We find low flow and annual discharge to be most impacted by scenarios of climate change, with high variation across climate models (+/- 40% change). Doubling of current groundwater abstraction rates reduces annual discharge by approximately 20%, with higher...... reductions to low flows seen around 40%. Climate change has a greater relative impact on groundwater levels (+/- 25%) than the groundwater abstraction scenarios (+/- 5%) alone, though the combined impacts can change groundwater levels up to +/- 35%....

  6. Analysis of subsurface temperature data to quantify groundwater recharge rates in a closed Altiplano basin, northern Chile (United States)

    Kikuchi, C. P.; Ferré, T. P. A.


    Quantifying groundwater recharge is a fundamental part of groundwater resource assessment and management, and is requisite to determining the safe yield of an aquifer. Natural groundwater recharge in arid and semi-arid regions comprises several mechanisms: in-place, mountain-front, and mountain-block recharge. A field study was undertaken in a high-plain basin in the Altiplano region of northern Chile to quantify the magnitude of in-place and mountain-front recharge. Water fluxes corresponding to both recharge mechanisms were calculated using heat as a natural tracer. To quantify in-place recharge, time-series temperature data in cased boreholes were collected, and the annual fluctuation at multiple depths analyzed to infer the water flux through the unsaturated zone. To quantify mountain-front recharge, time-series temperature data were collected in perennial and ephemeral stream channels. Streambed thermographs were analyzed to determine the onset and duration of flow in ephemeral channels, and the vertical water fluxes into both perennial and ephemeral channels. The point flux estimates in streambeds and the unsaturated zone were upscaled to channel and basin-floor areas to provide comparative estimates of the range of volumetric recharge rates corresponding to each recharge mechanism. The results of this study show that mountain-front recharge is substantially more important than in-place recharge in this basin. The results further demonstrate the worth of time-series subsurface temperature data to characterize both in-place and mountain-front recharge processes.

  7. Probability-based classifications for spatially characterizing the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region, Taiwan. (United States)

    Jang, Cheng-Shin


    Accurately classifying the spatial features of the water temperatures and discharge rates of hot springs is crucial for environmental resources use and management. This study spatially characterized classifications of the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region of Northern Taiwan by using indicator kriging (IK). The water temperatures and discharge rates of the springs were first assigned to high, moderate, and low categories according to the two thresholds of the proposed spring classification criteria. IK was then used to model the occurrence probabilities of the water temperatures and discharge rates of the springs and probabilistically determine their categories. Finally, nine combinations were acquired from the probability-based classifications for the spatial features of the water temperatures and discharge rates of the springs. Moreover, various combinations of spring water features were examined according to seven subzones of spring use in the study region. The research results reveal that probability-based classifications using IK provide practicable insights related to propagating the uncertainty of classifications according to the spatial features of the water temperatures and discharge rates of the springs. The springs in the Beitou (BT), Xingyi Road (XYR), Zhongshanlou (ZSL), and Lengshuikeng (LSK) subzones are suitable for supplying tourism hotels with a sufficient quantity of spring water because they have high or moderate discharge rates. Furthermore, natural hot springs in riverbeds and valleys should be developed in the Dingbeitou (DBT), ZSL, Xiayoukeng (XYK), and Macao (MC) subzones because of low discharge rates and low or moderate water temperatures.

  8. Groundwater recharge and agricultural contamination (United States)

    Böhlke, J.K.


    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  9. Concept for calculating dose rates from activated groundwater at accelerator sites

    CERN Document Server

    Prolingheuer, N; Vanderborght, J; Schlögl, B; Nabbi, R; Moormann, R

    Licensing of particle accelerators requires the proof that the groundwater outside of the site will not be significantly contaminated by activation products formed below accelerator and target. In order to reduce the effort for this proof, a site independent simplified but conservative method is under development. The conventional approach for calculation of activation of soil and groundwater is shortly described on example of a site close to Forschungszentrum Juelich, Germany. Additionally an updated overview of a data library for partition coefficients for relevant nuclides transported in the aquifer at the site is presented. The approximate model for transport of nuclides with ground water including exemplary results on nuclide concentrations outside of the site boundary and of resulting effective doses is described. Further applications and developments are finally outlined.

  10. Characterization and Electrochemical Performance at High Discharge Rates of Tin Dioxide Thin Films Synthesized by Atomic Layer Deposition (United States)

    Maximov, M. Yu.; Novikov, P. A.; Nazarov, D. V.; Rymyantsev, A. M.; Silin, A. O.; Zhang, Y.; Popovich, A. A.


    In this study, thin films of tin dioxide have been synthesized on substrates of silicon and stainless steel by atomic layer deposition (ALD) with tetraethyl tin and by inductively coupled remote oxygen plasma as precursors. Studies of the surface morphology by scanning electron microscopy show a strong dependence on synthesis temperature. According to the x-ray photoelectron spectroscopy measurements, the samples contain tin in the oxidation state +4. The thickness of the thin films for electrochemical performance was approximately 80 nm. Electrochemical cycling in the voltage range of 0.01-0.8 V have shown that tin oxide has a stable discharge capacity of approximately 650 mAh/g during 400 charge/discharge cycles with an efficiency of approximately 99.5%. The decrease in capacity after 400 charge/discharge cycles was around 5-7%. Synthesized SnO2 thin films have fast kinetics of lithium ions intercalation and excellent discharge efficiency at high C-rates, up to 40C, with a small decrease in capacity of less than 20%. Specific capacity and cyclic stability of thin films of SnO2 synthesized by ALD exceed the values mentioned in the literature for pure tin dioxide thin films.

  11. High power nano-LiMn2O4 cathode materials with high-rate pulse discharge capability for lithium-ion batteries

    Institute of Scientific and Technical Information of China (English)

    Chen Ying-Chao; Xie Kai; Pan Yi; Zheng Chun-Man; Wang Hua-Lin


    Nano-LiMn2O4 cathode materials with nano-sized particles are synthesized via a citric acid assisted sol-gel route. The structure, the morphology and the electrochemical properties of the nano-LiMn2O4 are investigated. Compared with the micro-sized LiMn2O4, the nano-LiMn2O4 possesses a high initial capacity (120 mAh/g) at a discharge rate of 0.2 C (29.6 mA/g). The nano-LiMn2O4 also has a good high-rate discharge capability, retaining 91% of its capacity at a discharge rate of 10 C and 73% at a discharge rate of 40 C. In particular, the nano-LiMn2O4 shows an excellent high-rate pulse discharge capability. The cut-off voltage at the end of 50-ms pulse discharge with a discharge rate of 80 C is above 3.40 V, and the voltage returns to over 4.10 V after the pulse discharge. These results show that the prepared nano-LiMn2O4 could be a potential cathode material for the power sources with the capability to deliver very high-rate pulse currents.

  12. On the use of exchange rates as trading rules in a bilateral system of transferable discharge permits

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, F. [Department Economia Aplicada, Facultad de Derecho, Campus ' Miguel de Unamuno' , University of Salamanca, Salamanca (Spain)


    The use of a system of transferable discharge permits to control the harmful effects of non-uniformly mixed pollutants requires the application of trading rules in order to prevent permit trading among sources from violating environmental standards. The elements and properties of bilateral trading rules can be analyzed more easily once formulated as exchange rates, which would convert, in a cost-effective way, the emission right potentially given up by the seller into an offsetting emission right acquired by the buyer. In this article, a new expression for such exchange rates is proposed and then analyzed to infer some unexplored properties of the system. 8 refs.

  13. A self-consistent model for the discharge kinetics in a high-repetition-rate copper-vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Carman, R.J.; Brown, D.J.W.; Piper, J.A. (Macquarie Univ., Sydney (Australia). Centre for Lasers and Applications)


    A self-consistent computer model has been developed to simulate the discharge kinetics and lasing characteristics of a copper-vapor laser (CVL) for typical operating conditions. Using a detailed rate-equation analysis, the model calculates the spatio-temporal evolution of the population densities of 11 atomic and ionic copper levels, four neon levels, and includes 70 collisional and radiative processes, in addition to radial particle transport. The long-term evolution of the plasma is taken into account by integrating the set of coupled rate equations describing the discharge and electrical circuit through multiple excitation-afterglow cycles. A time-dependent two-electron group model, based on a bi-Maxwellian electron energy distribution function, has been used to evaluate the energy partitioning between the copper vapor and the neon-buffer gas. The behavior of the plasma in the cooler end regions of the discharge tube near the electrodes, where the plasma kinetics are dominated by the buffer gas, has also been modeled. Results from the model have been compared to experimental data for a narrow-bore ([phi] = 1.8 cm) CVL operating under optimum conditions.

  14. Genetic associations as indices of nitrogen cycling rates in an aerobic denitrification biofilter used for groundwater remediation. (United States)

    Zhang, Yan; Ji, Guodong; Wang, Rongjing


    An aerobic denitrification biofilter (ADB) for groundwater remediation was developed with high removal efficiencies (total nitrogen (TN): 82.3-95.8%; NO3(-)-N: 93.2-98.2%). Nitrate (NO3(-)-N) transformation rates stabilized between 21.0 and 23.4 g/(m(3) h), whereas nitrite (NO2(-)-N) and ammonium (NH4(+)-N) transformation rates remained less than 6.0 g/(m(3) h) as the dissolved oxygen (DO) level increased from 1.0 mg/L to 6.0 mg/L. Nitric oxide (NO) and nitrous oxide (N2O) accumulated with great fluctuations (NO: 0-1.6×10(-3) g/(m(3) h); N2O: 0.1-1.1g/(m(3)h)) throughout the experiment. This study suggested that gene associations reflect quantitative relationships with aerobic denitrification rates and can provide useful information regarding aerobic denitrification processes in groundwater. Especially, the qnorB/nosZ ratio acts as the main driver for NO3(-)-N and NH4(+)-N transformation, while the qnorB/nosZ ratio followed by the (nirS+nirK)/nosZ ratio serve a dominant role in the accumulation of N2O and NO. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Integration of In Situ Radon Modeling with High Resolution Aerial Remote Sensing for Mapping and Quantifying Local to Regional Flow and Transport of Submarine Groundwater Discharge from Coastal Aquifers (United States)

    Glenn, C. R.; Kennedy, J. J.; Dulaiova, H.; Kelly, J. L.; Lucey, P. G.; Lee, E.; Fackrell, J.


    Submarine groundwater discharge (SGD) is a principal conduit for huge volumes of fresh groundwater loss and is a key transport mechanism for nutrient and contaminant pollution to coastal zones worldwide. However, the volumes and spatially and temporally variable nature of SGD is poorly known and requires rapid and high-resolution data acquisition at the scales in which it is commonly observed. Airborne thermal infrared (TIR) remote sensing, using high-altitude manned aircraft and low-altitude remote-controlled unmanned aerial vehicles (UAVs or "Drones") are uniquely qualified for this task, and applicable wherever 0.1°C temperature contrasts exist between discharging and receiving waters. We report on the use of these technologies in combination with in situ radon model studies of SGD volume and nutrient flux from three of the largest Hawaiian Islands. High altitude manned aircraft results produce regional (~300m wide x 100s km coastline) 0.5 to 3.2 m-resolution sea-surface temperature maps accurate to 0.7°C that show point-source and diffuse flow in exquisite detail. Using UAVs offers cost-effective advantages of higher spatial and temporal resolution and instantaneous deployments that can be coordinated simultaneously with any ground-based effort. We demonstrate how TIR-mapped groundwater discharge plume areas may be linearly and highly correlated to in situ groundwater fluxes. We also illustrate how in situ nutrient data may be incorporated into infrared imagery to produce nutrient distribution maps of regional worth. These results illustrate the potential for volumetric quantification and up-scaling of small- to regional-scale SGD. These methodologies provide a tremendous advantage for identifying and differentiating spring-fed, point-sourced, and/or diffuse groundwater discharge into oceans, estuaries, and streams. The integrative techniques are also important precursors for developing best-use and cost-effective strategies for otherwise time-consuming in

  16. Application of {sup 222} Rn as a tracer of groundwater discharge at the coastal zone of Ubatuba, Sao Paulo State, Brazil; Aplicacao de {sup 222} Rn como tracador da descarga de aguas subterraneas na regiao costeira de Ubatuba, Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Joselene de; Farias, Luciana A.; Mazzilli, Barbara P. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Dept. de Radiometria Ambiental]. E-mail:; Burnett, William C. [Florida State Univ., Tallahassee, FL (United States); Saraiva, Elisabete de S.B. e; Furtado, Valdenir V. [Sao Paulo Univ., SP (Brazil). Inst. Oceanografico. Dept. de Oceanografia Quimica e Geologica


    Submarine groundwater discharge (SGD) and recycled seawater can provide chemical constituents to coastal zone, representing an important material flux pathway from land to sea in some areas. Geochemical tracers, like {sup 222} Rn and {sup 226} Ra, are advantageous for regional-scale assessment of SGD, because their signals represent values integrated through the water column that removes small-scale variations. These radionuclides are usually enriched in groundwater compared to seawater, can be measured at very low concentrations and are conservative. This work reports preliminary results of a study carried out in a series of small embayements of Ubatuba, Sao Paulo State-Brazil, covering latitudes between 23 deg 26{sup '}S and 23 deg 46{sup '}S and longitudes between 45 deg02{sup '}W and 45 deg 11{sup '}W. The main aims of this research were to set up an analytical method to assess {sup 222} Rn and {sup 226} Ra activities in seawater samples and to apply the excess {sup 222} Rn inventories obtained to estimate the submarine groundwater discharge. Measurements made during 2001/2002 included {sup 222} Rn and {sup 226} Ra in seawater, {sup 222} Rn in sediment, seawater and sediment physical properties. (author)

  17. Groundwater quality assessment for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)


    The report contains groundwater and surface water quality data obtained during the 1991 calendar year at several hazardous and non- hazardous waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (BCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation (Figure 2). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Division manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  18. New pixelized Micromegas detector with low discharge rate for the COMPASS experiment

    CERN Document Server

    Neyret, D.; Anfreville, M.; Bedfer, Y.; Burtin, E.; Coquelet, C.; d'Hose, N.; Desforge, D.; Giganon, A.; Jourde, D.; Kunne, F.; Magnon, A.; Makke, N.; Marchand, C.; Paul, B.; Platchkov, S.; Thibaud, F.; Usseglio, M.; Vandenbroucke, M.


    New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five times higher luminosity with hadron beams, detection of beam particles (flux up to a few hundred of kHz/mm^{2}, 10 times larger than for the present Micromegas detectors) with pixelized read-out in the central part, light and integrated electronics, and improved robustness. Two solutions of reduction of discharge impact have been studied, with Micromegas detectors using resistive layers and using an additional GEM foil. Performance of such detectors has also been measured. A large size prototypes with nominal active area and pixelized read-out has been produced and installed at COMPASS in 2010. In 2011 prototypes featuring an additional GEM foil, as well as an resistive prototype, are installed at COMPASS and preliminary results from those detectors presented very go...

  19. High-rate deposition of silicon films in a magnetron discharge with liquid target (United States)

    Tumarkin, A.; Zibrov, M.; Khodachenko, G.; Tumarkina, D.


    Silicon coatings have been deposited on substrates made of low-carbon and high- carbon steels and tungsten in a magnetron discharge with liquid target at substrate bias voltages ranging from +100 V to -600 V. The structure of obtained coatings was examined by a scanning electron microscopy. The strong influence of substrate bias voltage on the coating structure was observed. The corrosion resistance of coated steel samples was examined in concentrated sulphuric, hydrochloric and nitric acids and their solutions. The resistance of coated tungsten samples against high-temperature oxidation was examined by their exposure to O2 gas at a pressure of 0.2 Pa and a temperature of 1073 K. The coatings deposited under bias voltages of+100 V and -600 V had dense structures and showed the best protective properties among all deposited coatings.

  20. U/Th series radionuclides as coastal groundwater tracers (United States)

    Swarzenski, P.W.


    The study of coastal groundwater has recently surfaced as an active interdisciplinary area of research, driven foremost by its importance as a poorly quantified pathway for subsurface material transport into coastal ecosystems. Key issue in coastal groundwater research include a complete geochemical characterization of the groundwater(s); quantification of the kinetics of subsurface transport, including rock-water interactions; determination of groundwater ages; tracing of groundwater discharge into coastal waters using radiochemical fingerprints; and an assessment of the potential ecological impact of such subsurface flow to a reviving water body. For such applications, the isotopic systemics of select naturally occurring radionucludes in the U/Th series has proven to be particularly useful. These radionuclides (e.g., U, Th, Ram and Rn) are ubiquitous in all groundwaters ad are represented by several isotopes with widely different half-lives and chemistries (Figure 1). As a result, varied biogeochemical processes occurring over a broad range of time scales can be studied. In source rock, most U/Th series isotopes in secular equilibrium; that is, the rate of decay of a daughter isotope is equal to that of it radiogenic parent, and so will have equal activities (in this context, the specific activity is simply a measure of the amount of radioactivity per unit amount). In contrast, these nuclides exhibit strong fractionations within the surrounding groundwaters because of their respective physiochemical differences. Disequilibria in U/Th series radionuclides can thus be used to identify distinct water masses, quantify release rates from source rocks, assess groundwater migration rates, and assess groundwater discharge rates in coastal waters., Large isotopic variations also have the potential for providing precise fingerprints for groundwaters from specific aquifers and have been explored as a means for calculating groundwater ages and estuarine water mass transit

  1. Development and Evaluation of an Ultrasonic Groundwater Seepage Meter (United States)

    Paulsen, R. J.; Smith, C. F.; O'Rourke, D.; Wong, T.; Bokuniewicz, H.


    Submarine groundwater discharge can influence significantly the near-shore transport and flux of chemicals into the oceans. Quantification of the sources and rates of such discharge requires a groundwater seepage meter that provides continuous measurements at high resolution over an extended period of time. An ultrasonic flow meter has been adapted for such measurements in the submarine environment. Connected to a steel collection funnel, the meter houses two piezoelectric transducers mounted at opposite ends of a cylindrical flow tube. By monitoring the perturbations of fluid flow on the propagation of sound waves inside the flow tube, the ultrasonic meter can measure both forward and reverse fluid flows in real time. Laboratory and field calibrations show that the ultrasonic meter can resolve groundwater discharges on the order of 0.1 μ m/s, and it is sufficiently robust for deployment in the field for several days. Data from West Neck Bay, Shelter Island, New York elucidate the temporal and spatial heterogeneity of submarine groundwater discharge and its interplay with tidal loading. A negative correlation between the discharge and tidal elevation was generally observed. A methodology was also developed whereby data for the sound velocity as a function of temperature can be used to infer the salinity and source of the submarine discharge. Independent measurements of electrical conductance were performed to validate this methodology. This meter has also been deployed as part of an international groundwater seepage intercomparison experiment with Scientific Committee on Oceanic Research (SCOR) / Land-Ocean Interaction in the Coastal Zone (LOICZ) Working Group 112. Results are in good agreement with other methodologies developed to quantify submarine groundwater discharge.

  2. Groundwater simulation and management models for the upper Klamath Basin, Oregon and California (United States)

    Gannett, Marshall W.; Wagner, Brian J.; Lite, Kenneth E.


    major streams and most major tributaries for which a substantial part of the flow comes from groundwater discharge are included in the model. Groundwater discharge to agricultural drains, evapotranspiration from aquifers in areas of shallow groundwater, and groundwater flow to and from adjacent basins also are simulated in key areas. The model has the capability to calculate the effects of pumping and other external stresses on groundwater levels, discharge to streams, and other boundary fluxes, such as discharge to drains. Historical data indicate that the groundwater system in the upper Klamath Basin fluctuates in response to decadal climate cycles, with groundwater levels and spring flows rising and declining in response to wet and dry periods. Data also show that groundwater levels fluctuate seasonally and interannually in response to groundwater pumping. The most prominent response is to the marked increase in groundwater pumping starting in 2001. The calibrated model is able to simulate observed decadal-scale climate-driven fluctuations in the groundwater system as well as observed shorter-term pumping-related fluctuations. Example model simulations show that the timing and location of the effects of groundwater pumping vary markedly depending on the pumping location. Pumping from wells close (within a few miles) to groundwater discharge features, such as springs, drains, and certain streams, can affect those features within weeks or months of the onset of pumping, and the impacts can be essentially fully manifested in several years. Simulations indicate that seasonal variations in pumping rates are buffered by the groundwater system, and peak impacts are closer to mean annual pumping rates than to instantaneous rates. Thus, pumping effects are, to a large degree, spread out over the entire year. When pumping locations are distant (more than several miles) from discharge features, the effects take many years or decades to fully impact those features, and much of

  3. Timing of wet episodes in Atacama Desert over the last 15 ka. The Groundwater Discharge Deposits (GWD) from Domeyko Range at 25°S. (United States)

    Sáez, Alberto; Godfrey, Linda V.; Herrera, Christian; Chong, Guillermo; Pueyo, Juan J.


    A chronologically robust reconstruction of timing and dynamics of millennial time scale wet episodes encompassing the entire Atacama Desert during the last 15 ka has been constructed. To accomplish this, a new composite paleoclimatic record from Groundwater Discharge Deposits (GWD) in the Sierra de Varas (Domeyko Range, southern Atacama in Chile at 25°S) has been compiled and compared with other published paleohydrologic records from the Atacama region. In Sierra de Varas (SV), three millennial timescale wet climate phases have been characterized: around 14.5 ka cal BP, 12.2-9.8 ka cal BP, and 4.7 ka cal BP to the present day. These wet phases are interpreted from intervals of GWD facies formed during periods when the springs were active. GWD facies include: (1) black organic peat, rooted mudstones and sandstones formed in local wetland environments, and (2) gypsum-carbonate rich layers formed by interstitial growth. GWD intervals alternate with gravelly alluvial material deposited during arid phases. A trend towards less humid conditions during the Late Holocene wet episode characterizes GWD sedimentary series in Sierra the Varas, suggesting the onset of a dry episode over the last few centuries. Around 0.7 ka BP a very short wet episode is recorded in the central part of the desert suggesting this was the time of maximum humidity for the entire late Holocene wet period. A brief arid phase occurred between 1.5 and 2.0 ka BP indicated by the absence of GWD in the Domeyko Range. The paleoclimatic reconstruction encompassing the entire Atacama region shows that both the intensity and occurrence of wetter conditions were governed mainly by the distance to the source of moisture, and secondarily by the elevation of the sites. In the northern Atacama (16-20°S), four wet phases fed by N-NE summer monsoon precipitations have been proposed: Tauca phase (18-14 ka cal BP) and Coipasa phase (13-10 ka cal BP) during the Late Glacial, followed by Early Holocene and Late

  4. Examining the spatial and temporal variation of groundwater inflows to a valley-to-floodplain river using 222Rn, geochemistry and river discharge: the Ovens River, southeast Australia

    Directory of Open Access Journals (Sweden)

    M. C. L. Yu


    Full Text Available Radon (222Rn and major ion geochemistry were used to define and quantify the catchment-scale river-aquifer interactions along the Ovens River in the southeast Murray-Darling Basin, Victoria, Australia, between September 2009 and October 2011. The Ovens River is characterized by the transition from a single channel river residing within a mountain valley in the upper catchment to a multi-channel meandering river on flat alluvial plains in the lower catchment. Overall, the river is dominated by gaining reaches, receiving groundwater from both alluvial and basement aquifers. The distribution of gaining and losing reaches is governed by catchment morphology and lithology. In the upper catchment, rapid groundwater recharge through sediments that have high hydraulic conductivities in a narrow valley produces higher baseflow to the river during wet (high flow periods as a result of hydraulic loading. In the lower catchment, the open and flat alluvial plains, lower rainfall and finer-gained sediments reduce the magnitude and variability of hydraulic gradient between the aquifer and the river, producing lower and constant groundwater inflow. With a small difference between the water table and the river height, small changes in river height or in groundwater level can result fluctuating gaining and losing behaviour along the river. The middle catchment represents a transition in river-aquifer interactions from upper to lower catchment. High baseflow in some parts of the middle and lower catchments is caused by groundwater flow over basement highs. Mass balance calculations based on 222Rn activities indicate that groundwater inflow is 4–22% of total flow with higher baseflow occurring in high flow periods. Uncertainties in gas exchange coefficient and 222Rn activities of groundwater alter the calculated groundwater inflow to 3–35%. Ignoring hyporheic exchange appears not to have a significant impact on the total groundwater estimates. In comparison to

  5. New dating method: Groundwater residence time estimated from the 4He accumulation rate calibrated by using cosmogenic and subsurface-produced 36Cl

    Directory of Open Access Journals (Sweden)

    Habermehl M. A.


    Full Text Available Groundwater contains dissolved He, and its concentration increases with the residence time of the groundwater. Thus, if the 4He accumulation rate is constant, the dissolved 4He concentration in ground-water is equivalent to the residence time. Since accumulation mechanisms are not easily separated in the field, we estimate the total He accumulation rate during the half-life of 36Cl (3.01 × 105 years. We estimated the 4He accumulation rate, calibrated using both cosmogenic and subsurface-produced 36Cl, in the Great Artesian Basin (GAB, Australia, and the subsurface-produced 36Cl increase at the Äspö Hard Rock Laboratory, Sweden. 4He accumulation rates range from (1.9±0.3 × 10−11 to (15±6 × 10−11 ccSTP·cm−3·y−1 in GAB and (1.8 ±0.7 × 10−8 ccSTP·cm−3·y−1 at Äspö. We confirmed a ground-water flow with a residence time of 0.7-1.06 Ma in GAB and stagnant groundwater with the long residence time of 4.5 Ma at Äspö. Therefore, the groundwater residence time can be deduced from the dissolved 4He concentration and the 4He accumulation rate calibrated by 36Cl, provided that 4He accumulation, groundwater flow, and other geo-environmental conditions have remained unchanged for the required amount of geological time.

  6. MODFLOW-2000 model used to evaluate potential effects of existing and proposed groundwater withdrawals on water levels and natural groundwater discharge in Snake Valley and surrounding areas, Utah and Nevada (United States)

    U.S. Geological Survey, Department of the Interior — A previously developed three-dimensional steady-state numerical groundwater-flow model was modified to transient conditions with respect to well withdrawals, and...

  7. Analysis of a lithium/thionyl chloride battery under moderate-rate discharge

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.; Nagasubramanian, G.; Jungst, R.G.; Weidner, J.W.


    A one-dimensional mathematical model of a spirally wound lithium/thionyl chloride primary battery is developed and used for parameter estimation and design studies. The model formulation is based on the fundamental conservation laws using porous electrode theory and concentrated solution theory. The model is used to estimate the transference number, the diffusion coefficient, and the kinetic parameters for the reactions at the anode and the cathode as a function of temperature. These parameters are obtained by fitting the simulated capacity and average cell voltage to experimental data over a wide range of temperatures ({minus}55 to 49 C) and discharge loads (10--250 {Omega}). The experiments were performed on D-sized, cathode-limited, spirally wound lithium/thionyl chloride cells. The model is also used to study the effect of cathode thickness on the cell capacity as a function of temperature, and it was found that the optimum thickness for the cathode-limited design is temperature and load dependent.

  8. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)


    This report contains groundwater quality data obtained during the 1991 calendar year at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation. This report was prepared for informational purposes. Included are the analytical data for groundwater samples collected from selected monitoring wells during 1991 and the results for quality assurance/quality control (QA/QC) samples associated with each groundwater sample. This report also contains summaries of selected data, including ion-charge balances for each groundwater sample, a summary of analytical results for nitrate (a principle contaminant in the UEFPCHR), results of volatile organic compounds (VOCs) analyses validated using the associated QA/QC sample data, a summary of trace metal concentrations which exceeded drinking-water standards, and a summary of radiochemical analyses and associated counting errors.

  9. Properties and etching rates of negative ions in inductively coupled plasmas and dc discharges produced in Ar/SF6

    DEFF Research Database (Denmark)

    Draghici, Mihai; Stamate, Eugen


    Negative ion production is investigated in a chamber with transversal magnetic filter operated in dc or inductively coupled plasma (ICP) modes in Ar/SF6 gas mixtures. Plasma parameters are evaluated by mass spectrometry and Langmuir probe for different discharge conditions. The density ratio...... of negative ion to electron exceeded 300 in dc mode while it was below 100 in the ICP mode. The possibility to apply a large positive bias to an electrode without affecting the plasma potential and the transition from a negative sheath to anodic glow are also investigated. The etching rates by positive...... and negative ions are evaluated on silicon substrate for different Ar/SF6 gas ratios. The etching rate by negative ions was with less than 5% smaller than that by positive ions....

  10. Reconciling Groundwater Storage Depletion Due to Pumping with Sustainability

    Directory of Open Access Journals (Sweden)

    Annukka Lipponen


    Full Text Available Groundwater pumping causes depletion of groundwater storage. The rate of depletion incurred by any new well is gradually decreasing and eventually becomes zero in the long run, after induced recharge and reduction of natural discharge of groundwater combined (capture have become large enough to balance the pumping rate completely. If aquifer-wide aggregated pumping rates are comparatively large, then such a new dynamic equilibrium may not be reached and groundwater storage may become exhausted. Decisions to pump groundwater are motivated by people’s need for domestic water and by expected benefits of using water for a variety of activities. But how much finally is abstracted from an aquifer (or is considered to be an optimal aggregate abstraction rate depends on a wide range of other factors as well. Among these, the constraint imposed by the groundwater balance (preventing aquifer exhaustion has received ample attention in the professional literature. However, other constraints or considerations related to changes in groundwater level due to pumping are observed as well and in many cases they even may dominate the decisions on pumping. This paper reviews such constraints or considerations, examines how they are or may be incorporated in the decision-making process, and evaluates to what extent the resulting pumping rates and patterns create conditions that comply with principles of sustainability.

  11. Regression Method for Estimating Long-Term Mean Annual Ground-Water Recharge Rates from Base Flow in Pennsylvania (United States)

    Risser, Dennis W.; Thompson, Ronald E.; Stuckey, Marla H.


    A method was developed for making estimates of long-term, mean annual ground-water recharge from streamflow data at 80 streamflow-gaging stations in Pennsylvania. The method relates mean annual base-flow yield derived from the streamflow data (as a proxy for recharge) to the climatic, geologic, hydrologic, and physiographic characteristics of the basins (basin characteristics) by use of a regression equation. Base-flow yield is the base flow of a stream divided by the drainage area of the basin, expressed in inches of water basinwide. Mean annual base-flow yield was computed for the period of available streamflow record at continuous streamflow-gaging stations by use of the computer program PART, which separates base flow from direct runoff on the streamflow hydrograph. Base flow provides a reasonable estimate of recharge for basins where streamflow is mostly unaffected by upstream regulation, diversion, or mining. Twenty-eight basin characteristics were included in the exploratory regression analysis as possible predictors of base-flow yield. Basin characteristics found to be statistically significant predictors of mean annual base-flow yield during 1971-2000 at the 95-percent confidence level were (1) mean annual precipitation, (2) average maximum daily temperature, (3) percentage of sand in the soil, (4) percentage of carbonate bedrock in the basin, and (5) stream channel slope. The equation for predicting recharge was developed using ordinary least-squares regression. The standard error of prediction for the equation on log-transformed data was 9.7 percent, and the coefficient of determination was 0.80. The equation can be used to predict long-term, mean annual recharge rates for ungaged basins, providing that the explanatory basin characteristics can be determined and that the underlying assumption is accepted that base-flow yield derived from PART is a reasonable estimate of ground-water recharge rates. For example, application of the equation for 370

  12. δ44/40Ca variability in shallow water carbonates and the impact of submarine groundwater discharge on Ca-cycling in marine environments (United States)

    Holmden, C.; Papanastassiou, D. A.; Blanchon, P.; Evans, S.


    Shallow water carbonates from Florida Bay, the Florida Reef Tract, and a Mexican Caribbean fringing reef at Punta Maroma were studied to determine the range of Ca-isotope variation among a cohort of modern carbonate producers and to look for local-scale Ca-cycling effects. The total range of Ca-isotope fractionation is 0.4‰ at Punta Maroma, yielding an allochem-weighted average δ44/40Ca value of -1.12‰ consistent with bulk sediment from the lagoon with a value of -1.09‰. These values are virtually identical to bulk carbonate sediments from the Florida Reef Tract (-1.11‰) and from one location in Florida Bay (-1.09‰) near a tidal inlet in the Florida Keys. No evidence was found for the ∼0.6‰ fractionation between calcite and aragonite which has been observed in laboratory precipitation experiments. Combining these results with carbonate production modes and δ44/40Ca values for pelagic carbonates taken from the literature, we calculate a weighted average value of -1.12 ± 0.11‰ (2σ) for the global-scale Ca-output flux into carbonate sediments. The δ44/40Ca value of the input Ca-flux from rivers and hydrothermal fluids is -1.01 ± 0.04‰ (2σmean), calculated from literature data that have been corrected for inter-laboratory bias. Assuming that the ocean Ca cycle is in steady state, we calculate a δ44/40Ca value of -1.23 ± 0.23‰ (2σ) for submarine groundwater discharge (SGD) on a global scale. The SGD Ca-flux rivals river flows and mid-ocean ridge hydrothermal vent inputs as a source of Ca to the oceans. It has the potential to differ significantly in its isotopic value from these traditional Ca-inputs in the geological past, and to cause small changes in the δ44/40Ca value of oceans through time. In the innermost water circulation restricted region of northeastern Florida Bay, sediments and waters exhibit a 0.7‰ gradient in δ44/40Ca values decreasing towards the Florida Everglades. This lowering of δ44/40Ca is predominantly caused by

  13. Experimental investigation and simulation of temperature distributions in a 16Ah-LiMnNiCoO2 battery during rapid discharge rates (United States)

    Panchal, S.; Dincer, I.; Agelin-Chaab, M.; Fraser, R.; Fowler, M.


    It is very important to have quantitative data regarding the temperature distributions of lithium-ion batteries at different discharge rates in order to design thermal management systems and also for battery thermal modellers. In this paper, the surface temperature distributions on a superior lithium polymer battery (SLPB) with lithium manganese nickel cobalt oxide (LiMnNiCoO2) cathode material (16 Ah capacity) at C/8, C/4, C/2, 1C, 2C, and 3C discharge rates are presented. Additionally, a battery thermal model is developed for this battery using a neural network approach with the Bayesian Regularization method and the simulated results are compared with experimental results in terms of temperature and voltage profiles at C/8, C/4, C/2, 1C, 2C, and 3C discharge rates. Thermal images, which were also captured during experiments with an IR camera at various discharge rates, and are reported in the paper. The results of this study show that the increased discharge rates between C/8 and 3C results in increased surface temperature distributions on the principal surface of the battery and decreased discharge capacity.

  14. Linking chloride mass balance infiltration rates with chlorofluorocarbon and SF6 groundwater dating in semi-arid settings: potential and limitations. (United States)

    Stadler, Susanne; Osenbruck, Karsten; Duijnisveld, Wilhelmus H M; Schwiede, Martin; Bottcher, Jurgen


    In the framework of the investigation of enrichment processes of nitrate in groundwater of the Kalahari of Botswana near Serowe, recharge processes were investigated. The thick unsaturated zone extending to up to 100 m of mostly unconsolidated sediments and very low recharge rates pose a serious challenge to study solute transport related to infiltration and recharge processes, as this extends past the conventional depths of soil scientific investigations and is difficult to describe using evidence from the groundwater due to the limitations imposed by available tracers. To determine the link between nitrate in the vadose zone and in the uppermost groundwater, sediment from the vadose zone was sampled up to a depth of 15-20 m (in one case also to 65 m) on several sites with natural vegetation in the research area. Among other parameters, sediment and water were analysed to determine chloride and nitrate concentration depth profiles. Using the chloride mass balance method, an estimation of groundwater infiltration rates produced values of 0.2-4 mm a(-1). The uncertainty of these values is, however, high. Because of the extreme thickness of the vadose zone, the travel time in the unsaturated zone might reach extreme values of up to 500 years and more. For investigations using groundwater, we applied the chlorofluorocarbons CFC-113, CFC-12, sulphur hexafluoride (SF(6)) and tritium to identify potential recharge, and found indications for some advective transport of the CFCs and SF(6), which we accounted for as constituting potential active localised recharge. In our contribution, we show the potential and limitations of the applied methods to determine groundwater recharge and coupled solute transport in semi-arid settings, and compare travel time ranges derived from soil science and groundwater investigations.

  15. Dimensionless numbers used to characterize stratification in water tanks for discharging at low flow rates

    Energy Technology Data Exchange (ETDEWEB)

    Castell, A.; Medrano, M.; Sole, C.; Cabeza, L.F. [GREA Innovacio concurrent, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida (Spain)


    The efficiency of thermal energy storage and solar collector systems is improved if the water tank is stratified. There are many parameters to characterize stratification but no work compares their suitability. This paper identifies the most used dimensionless numbers to characterize stratification in water tanks and studies their suitability. Experiments with different flow rates were done and the dimensionless numbers were determined. Richardson is the best number to define stratification in a water tank, while Mix number presents some problems and a bad behaviour. The other numbers do not clearly characterize stratification but can be useful combined with Richardson. (author)

  16. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    DB Barnett


    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  17. Impact of groundwater use as heat energy on coastal ecosystem and fisheries (United States)

    Taniguchi, Makoto


    Demands for groundwater as a heat energy source to melt snow is increasing in many coastal snowy areas in Japan because of the lack of laborers for snow removal and the abundance of groundwater resources. The temperature of groundwater is relatively higher in winter than that of the air and river water, therefore it is a useful heat source to melt snow. However, groundwater is also beneficial for the coastal ecosystem and fishery production because of the nutrient discharge by submarine groundwater discharge (SGD), which is one of the water and dissolved material pathways from land to the ocean. Therefore, groundwater is involved in the tradeoff and management conflict existing between energy and food (fisheries). In this study, the impact of groundwater, used as a heat energy source for the melting of snow accumulated on roads, on the coastal ecosystem and fisheries has been analyzed in the snowy areas of Obama City, Fukui Prefecture, Japan. Positive correlation has been found between primary production rates in Obama Bay and radon concentrations which show the magnitude of the submarine groundwater discharge. Therefore, the increase in groundwater pumping on land reduces fishery production in the ocean. Results of 3D numerical simulations of the basin scale groundwater model show a reduction of SGD by 5 percent due to an increase in groundwater pumping by 1.5 times. This reduction of SGD caused a 3.7 ton decrease in fishery production under the aforementioned assumptions. The groundwater-energy-fishery nexus was found in Obama Bay, Japan and the tradeoff between water and food was evaluated.

  18. Groundwater contamination in relation with the increasing urbanization rate in Africa. Case of Cotonou and Porto Novo (Benin). (United States)

    Odeloui, Diane; Celle-Jeanton, Hélène; Huneau, Frédéric; Boukari, Moussa; Alassane, Abdelkarim; Garel, Emilie; Lavastre, Véronique; Bertrand, Guillaume


    More than one billion people in the world still have no access to sufficient resources in drinking water (United Nation, 2014). In particular, large cities in Africa have to face several problems: 1) population growth associated with the strongest urbanization rate increase (5% per year) of the world leading to a dramatic increase in good-quality water needs, 2) low levels of solid waste management and sanitation services, 3) insufficient or disconnected water supply services, 4) low knowledge of water resources availabilities. The situation in Benin is a relevant illustration of the problems that Africa has to face to. As many other coastal urban areas in Africa (Showers, 2002; Re et al., 2011), Cotonou and Porto Novo cities have seen a rapid increase of their population as these towns constitute a corridor of transit for the imports and the exports in the nearby countries. Hence, they are very attractive for job hunters, and constitute the administrative centers for the whole country. This rapid population growth amplifies the problem of water supply and may generate serious impacts on groundwater resources: depletion due to overexploitation, salinization due to seawater intrusion and pollution linked to human activities. In order to insure a safe water supply in the context of increasing urbanization and population in the coastal area of Cotonou and Porto Novo, the identification of the main sources of pollution is essential for the implementation of long-term water management procedures. Based on two field campaigns carried out in January-2012 (dry season) and August-2012 (rainy season), hydrochemical analysis have been realized on groundwater sampled from boreholes drilled in the CTA (Continental Terminal Aquifer) and wells dug in the QCA (Quaternary Coastal Aquifer) in order to investigate the origin of salinization and the present time extension of the nitrate contamination. Historical data have also been collected from previous studies in order to

  19. 用氡-222评价五缘湾的地下水输入%Assessment of submarine groundwater discharge into the Wuyuan bay via continuous Radon-222 measurements

    Institute of Scientific and Technical Information of China (English)

    郭占荣; 李开培; 袁晓婕; 章斌; 马志勇


    In recent years, submarine groundwater discharge (SGD) has been recognized as an important process in land-ocean interactions in the coastal zone (LOICZ). The subject has thus become the focus of intensive research. Geochemical tracers can be effective tools for estimating SGD in LOICZ. The objective of this study is to estimate SGD in the Wuyuan Bay using Radon-222 (222Rn) as naturally occurring tracer. The dynamic variation of SGD can thus be subsequently assessed. We continuously measure the seawater 222Rn and 226Ra activities, the near-sea surface air Rn, wind speed, sea water temperature and depth for two consecutive days. We also deploy an incubation device to measure the diffusive flux of 222Rn from sediments and the pore-water 222Rn activities. Based on the mass balance principle for the 222Rn flux, the measured seawater 222Rn are corrected for the decay product of parent 226Ra, the effects of tides, the losses to the atmosphere, the diffusive influxes from the sediments, and the mixing with offshore seawaters. The result shows a conservative estimate of 222Rn flux attributed to SGD is between 0 and 126.7 Bq/(m2 h) , which can account for 54% 222Rn in seawater. Taking a SGD end-member as example, the calculated SGD input rates range from 0 to 29. 3 cm/d with an average value of 9. 3 cm/d. The end-member is made of the weighted average of ground-water and pore-water 222Rn activities. The fluctuation in the SGD input rate has a 12-h period, which matches well with the semi-diurnal tides in this region. The SGD input to the Wuyuan Bay could be as much as 1. 86 X 105 mVd if the estimation were made under the assumption that the average SGD input rate is applicable to the entire bay area. The input of terrestrially derived fresh groundwater in the Wuyuan Bay could be approximately 1. 86 X 104 mVd if the fresh groundwater were 10% of the total SGD input.%海底地下水排泄(SGD)近年来成为陆-海相互作用的研究热点,地球化学示踪方法是其主

  20. Oscillations in motor unit discharge are reflected in the low-frequency component of rectified surface EMG and the rate of change in force. (United States)

    Yoshitake, Yasuhide; Shinohara, Minoru


    Common drive to a motor unit (MU) pool manifests as low-frequency oscillations in MU discharge rate, producing fluctuations in muscle force. The aim of the study was to examine the temporal correlation between instantaneous MU discharge rate and rectified EMG in low frequencies. Additionally, we attempted to examine whether there is a temporal correlation between the low-frequency oscillations in MU discharge rate and the first derivative of force (dF/dt). Healthy young subjects produced steady submaximal force with their right finger as a single task or while maintaining a pinch-grip force with the left hand as a dual task. Surface EMG and fine-wire MU potentials were recorded from the first dorsal interosseous muscle in the right hand. Surface EMG was band-pass filtered (5-1,000 Hz) and full-wave rectified. Rectified surface EMG and the instantaneous discharge rate of MUs were smoothed by a Hann-window of 400 ms duration (equivalent to 2 Hz low-pass filtering). In each of the identified MUs, the smoothed MU discharge rate was positively correlated with the rectified-and-smoothed EMG as confirmed by the distinct peak in cross-correlation function with greater values in the dual task compared with the single task. Additionally, the smoothed MU discharge rate was temporally correlated with dF/dt more than with force and with rectified-and-smoothed EMG. The results indicated that the low-frequency component of rectified surface EMG and the first derivative of force provide temporal information on the low-frequency oscillations in the MU discharge rate.

  1. Can nitrate contaminated groundwater be remediated by optimizing flood irrigation rate with high nitrate water in a desert oasis using the WHCNS model? (United States)

    Liang, Hao; Qi, Zhiming; Hu, Kelin; Prasher, Shiv O; Zhang, Yuanpei


    Nitrate contamination of groundwater is an environmental concern in intensively cultivated desert oases where this polluted groundwater is in turn used as a major irrigation water resource. However, nitrate fluxes from root zone to groundwater are difficult to monitor in this complex system. The objectives of this study were to validate and apply the WHCNS (soil Water Heat Carbon Nitrogen Simulator) model to simulate water drainage and nitrate leaching under different irrigation and nitrogen (N) management practices, and to assess the utilization of groundwater nitrate as an approach to remediate nitrate contaminated groundwater while maintain crop yield. A two-year field experiment was conducted in a corn field irrigated with high nitrate groundwater (20 mg N L(-1)) in Alxa, Inner Mongolia, China. The experiment consisted of two irrigation treatments (Istd, standard, 750 mm per season; Icsv, conservation, 570 mm per season) factorially combined with two N fertilization treatments (Nstd, standard, 138 kg ha(-1); Ncsv, conservation, 92 kg ha(-1)). The validated results showed that the WHCNS model simulated values of crop dry matter, yield, soil water content and soil N concentration in soil profile all agreed well with the observed values. Compared to the standard water management (Istd), the simulated drainage and nitrate leaching decreased about 65% and 59%, respectively, under the conservation water management (Icsv). Nearly 55% of input N was lost by leaching under the IstdNstd and IstdNcsv treatments, compared to only 26% under the IcsvNstd and IcsvNcsv treatments. Simulations with more than 240 scenarios combing different levels of irrigation and fertilization indicated that irrigation was the main reason leading to the high risk of nitrate leaching, and the nitrate in irrigation groundwater can be best utilized without corn yield loss when the total irrigation was reduced from the current 750 mm to 491 mm. This reduced irrigation rate facilitated

  2. Modeling falling groundwater tables in major cities of the world (United States)

    Sutanudjaja, Edwin; Erkens, Gilles


    Groundwater use and its over-consumption are one of the major drivers in the hydrology of many major cities in the world, particularly in delta regions. Yet, a global assessment to identify cities with declining groundwater table problems has not been done yet. In this study we used the global hydrological model PCR-GLOBWB (10 km resolution, for 1960-2010). Using this model, we globally calculated groundwater recharge and river discharge/surface water levels, as well as global water demand and abstraction from ground- and surface water resources. The output of PCR-GLOBWB model was then used to force a groundwater MODFLOW-based model simulating spatio-temporal groundwater head dynamics, including groundwater head declines in all major cities - mainly in delta regions - due to escalation in abstraction of groundwater to meet increasing water demand. Using these coupled models, we managed to identify a number of critical cities having groundwater table falling rates above 50 cm/year (average in 2000-2010), such as Barcelona, Houston, Los Angeles, Mexico City, New York, Rome and many large cities in China, Libya, India and Pakistan, as well as in Middle East and Central Asia regions. However, our simulation results overestimate the depletion rates in San Jose, Tokyo, Venice, and other cities where groundwater usages have been aggressively managed and replaced by importing surface water from other places. Moreover, our simulation might underestimate the declining groundwater head trends in some familiar cases, such as Bangkok (12 cm/year), Ho Chi Minh City (34 cm/year), and Jakarta (26 cm/year). The underestimation was due to an over-optimistic model assumption in allocating surface water for satisfying urban water needs. In reality, many big cities, although they are located in wet regions and have abundant surface water availability, still strongly rely on groundwater sources due to inadequate facilities to treat and distribute surface water resources.

  3. Estimating groundwater discharge into Minjiang River estuary based on stable isotopes deuterium and oxygen-18%用氢氧稳定同位素评价闽江河口区地下水输入

    Institute of Scientific and Technical Information of China (English)

    章斌; 郭占荣; 高爱国; 袁晓婕; 李开培; 马志勇


    通过分析闽江河口区降水、地表水和地下水的氢氧稳定同位素特征,揭示降水的环境同位素效应和地下水的形成演化规律,定量评价河口区多种水体的混合过程及地下水输入量.夏季的降水氢氧同位素组成相对贫化,呈现出降雨量效应.在δ180与δD关系图上,闽江北岸基岩裂隙水、平原及丘陵区浅层地下水均落在福州降水线上,而南岸平原及丘陵区浅层地下水大部分落在福州降水线右下方,其拟合线与降水线交点与5~9月农灌期降水氢氧同位素加权值接近,表明北岸地下水主要来自降水补给,而南岸地下水同时接受灌溉水和降水补给,并在入渗过程中经历了不同程度的蒸发作用.闽江河口段除接受两岸地下水补给外,局部河段还接受断裂带裂隙水补给.将线性端元混合模型、数字高程模型和地下水文分析法结合起来定量评价地下水的输入和各水体的混合过程,结果显示,在河口段淡水区,地下水混合比率上限为8.8%,其中包括0.4%的断裂带裂隙水;在河口段淡成水混合区,淡水(河水、地下水)和海水的混合比为53:47,其中地下水的保守混合比率为1.7%;枯水期闽江河口段地下水保守输入量为87.Om3/s,是闽江径流量的12.8%.%Through analyzing the characteristics of deuterium and oxygen-18 composition in precipilation, surface water and groundwater, this paper will reveal the isotopic effects of precipitation, the origin and evolution of groundwater, and estimate the mixing processes between various water bodies and groundwater discharge into the Minjiang River esluary. The hydrogen and oxygen isotopic compositions of precipitation are more depleted in heavy isotopes during summer, showing the so-called amount effect. The δ18O versus δD plots for two types of water samples are on the Fuzhou local meteoric water line (LMWL). The two water types are the fissure groundwater and the shallow

  4. In situ measurements of volatile aromatic hydrocarbon biodegradation rates in groundwater (United States)

    Cozzarelli, Isabelle M.; Bekins, Barbara A.; Eganhouse, Robert P.; Warren, Ean; Essaid, Hedeff I.


    Benzene and alkylbenzene biodegradation rates and patterns were measured using an in situ microcosm in a crude-oil contaminated aquifer near Bemidji, Minnesota. Benzene-D6, toluene, ethylbenzene, o-, m- and p-xylenes and four pairs of C 3- and C 4-benzenes were added to an in situ microcosm and studied over a 3-year period. The microcosm allowed for a mass-balance approach and quantification of hydrocarbon biodegradation rates within a well-defined iron-reducing zone of the anoxic plume. Among the BTEX compounds, the apparent order of persistence is ethylbenzene > benzene > m,p-xylenes > o-xylene ≥ toluene. Threshold concentrations were observed for several compounds in the in situ microcosm, below which degradation was not observed, even after hundreds of days. In addition, long lag times were observed before the onset of degradation of benzene or ethylbenzene. The isomer-specific degradation patterns were compared to observations from a multi-year study conducted using data collected from monitoring wells along a flowpath in the contaminant plume. The data were fit with both first-order and Michaelis-Menten models. First-order kinetics provided a good fit for hydrocarbons with starting concentrations below 1 mg/L and Michaelis-Menten kinetics were a better fit when starting concentrations were above 1 mg/L, as was the case for benzene. The biodegradation rate data from this study were also compared to rates from other investigations reported in the literature.

  5. In situ measurements of volatile aromatic hydrocarbon biodegradation rates in groundwater (United States)

    Cozzarelli, I.M.; Bekins, B.A.; Eganhouse, R.P.; Warren, E.; Essaid, H.I.


    Benzene and alkylbenzene biodegradation rates and patterns were measured using an in situ microcosm in a crude-oil contaminated aquifer near Bemidji, Minnesota. Benzene-D6, toluene, ethylbenzene, o-, m- and p-xylenes and four pairs of C3- and C4-benzenes were added to an in situ microcosm and studied over a 3-year period. The microcosm allowed for a mass-balance approach and quantification of hydrocarbon biodegradation rates within a well-defined iron-reducing zone of the anoxic plume. Among the BTEX compounds, the apparent order of persistence is ethylbenzene > benzene > m,p-xylenes > o-xylene ≥ toluene. Threshold concentrations were observed for several compounds in the in situ microcosm, below which degradation was not observed, even after hundreds of days. In addition, long lag times were observed before the onset of degradation of benzene or ethylbenzene. The isomer-specific degradation patterns were compared to observations from a multi-year study conducted using data collected from monitoring wells along a flowpath in the contaminant plume. The data were fit with both first-order and Michaelis-Menten models. First-order kinetics provided a good fit for hydrocarbons with starting concentrations below 1 mg/L and Michaelis-Menten kinetics were a better fit when starting concentrations were above 1 mg/L, as was the case for benzene. The biodegradation rate data from this study were also compared to rates from other investigations reported in the literature.

  6. Impact of Trade Liberalization and Exchange Rate Policy on Industrial Water Pollution and Groundwater Depletion



    Environmentalists and economists alike have assumed that greater economic openness will lead to increased industrial pollution in developing countries. This paper argues that trade liberalization does not necessarily result in more pollution intensive industrial development using the case of two economic centers in the Philippines. The study links changes in trade and exchange rate policy to the environment by identifying the environmental damage likely to be aggravated by the policy change t...

  7. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    KAUST Repository

    Regnery, J.


    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e. redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e. less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR.

  8. Prediction of material removal rate and surface roughness for wire electrical discharge machining of nickel using response surface methodology

    Directory of Open Access Journals (Sweden)

    Thangam Chinnadurai


    Full Text Available This study focuses on investigating the effects of process parameters, namely, Peak current (Ip, Pulse on time (Ton, Pulse off time (Toff, Water pressure (Wp, Wire feed rate (Wf, Wire tension (Wt, Servo voltage (Sv and Servo feed setting (Sfs, on the Material Removal Rate (MRR and Surface Roughness (SR for Wire electrical discharge machining (Wire-EDM of nickel using Taguchi method. Response Surface Methodology (RSM is adopted to evolve mathematical relationships between the wire cutting process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired optimal wire cutting quality. Besides, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Mini-tab is used to establish the design and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA method to check their appropriateness and suitability. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses accurately and precisely within the limits of cutting parameter being used.

  9. Calculation of lava discharge rates during effusive eruptions: an empirical approach using MODIS Middle InfraRed data (United States)

    Coppola, Diego; Laiolo, Marco; Cigolini, Corrado


    The rate at which the lava is erupted is a crucial parameter to be monitored during any volcanic eruption. However, its accurate and systematic measurement, throughout the whole duration of an event, remains a big challenge, also for volcanologists working on highly studied and well monitored volcanoes. The thermal approach (also known as thermal proxy) is actually one of most promising techniques adopted during effusive eruptions, since it allows to estimate Time Averaged lava Discharge Rates (TADR) from remote-sensed infrared data acquired several time per day. However, due to the complexity of the physic behind the effusive phenomenon and the difficulty to have field validations, the application of the thermal proxy is still debated and limited to few volcanoes only. Here we present the analysis of MODIS Middle InfraRed data, collected by during several distinct eruptions, in order to show how an alternative, empirical method (called radiant density approach; Coppola et al., 2013) permit to estimate TADRs over a wide range of emplacement styles and lava compositions. We suggest that the simplicity of this empirical approach allows its rapid application during eruptive crisis, and provides the basis for more complex models based on the cooling and spreading processes of the active lava bodies.

  10. Long-term groundwater contamination after source removal—The role of sorbed carbon and nitrogen on the rate of reoxygenation of a treated-wastewater plume on Cape Cod, MA, USA (United States)

    Smith, Richard L.; Repert, Deborah A.; Barber, Larry B.; LeBlanc, Denis R.


    suggests that the total sorbed carbon pool is large relative to the rate of oxygen entrainment and will be impacting groundwater geochemistry for many decades. This has implications for long-term oxidation of reduced constituents, such as ammonium, that are being transported downgradient away from the infiltration beds toward surface and coastal discharge zones.

  11. Assessment of capacity loss in low-rate lithium/bromine chloride in thionyl chloride cells by microcalorimetry and long-term discharge (United States)

    Takeuchi, E. S.; Meyer, S. M.; Holmes, C. F.


    Real-time discharge is one of the few reliable methods available for determining capacities of low-rate cells. The utilization of high energy density lithium batteries in low-rate implantable applications has increased the need for more time-efficient methods of predicting cell longevity since cells have been shown to last in excess of eight years. The relationship between heat dissipation and self-discharge of low-rate lithium/BCX (bromine chloride in thionyl chloride) cells was studied and allows prediction of cell life prior to the availability of real-time data. The method was verified by real-time cell discharge data and provided estimates of delivered capacity within 6 percent of the actual values.

  12. Assessment of the Impact of Industrial Effluents on Groundwater Quality in Okhla Industrial Area, New Delhi, India

    Directory of Open Access Journals (Sweden)

    Wequar Ahmad Siddiqui


    Full Text Available In the present study physicochemical parameters like pH, hardness, TDS, chloride, sulphate, nitrate, fluoride, DO, COD and conductivity of some important heavy metals such as iron, cobalt, cadmium, lead, mercury, chromium, selenium and arsenic were first analyzed in effluent water of Okhla industrial area phase-II and then groundwater of near by areas. Obtained values of effluent water were compared with ISI standard for effluent water discharge and groundwater values were compared with ISI and WHO drinking water standards. The result shows that discharge of untreated effluents by the industries is leading to contamination of groundwater of the surrounding areas. Lead, mercury, fluoride, TDS, sulphate was above the desirable limit in effluent water (ISI standard for effluent water discharge. Subsequent analysis of groundwater of nearby areas was rated as unacceptable for drinking because of presence of fluoride in all the samples above the desirable limit. Lead, mercury, cadmium, chloride was also detected in many samples.

  13. Modeling of groundwater draft based on satellite-derived crop acreage estimation over an arid region of northwest India (United States)

    Bhadra, Bidyut Kumar; Kumar, Sanjay; Paliwal, Rakesh; Jeyaseelan, A. T.


    Over-exploitation of groundwater for agricultural crops puts stress on the sustainability of natural resources in the arid region of Rajasthan state, India. Hydrogeological study of groundwater levels of the study area during the pre-monsoon (May to June), post-monsoon (October to November) and post-irrigation (February to March) seasons of 2004-2005 to 2011-2012 shows a steady decline of groundwater levels at the rate of 1.28-1.68 m/year, mainly due to excessive groundwater draft for irrigation. Due to the low density of the groundwater observation-well network in the study area, assessment of groundwater draft, and thus groundwater resource management, becomes a difficult task. To overcome the situation, a linear groundwater draft model (LGDM) has been developed based on the empirical relationship between satellite-derived crop acreage and the observed groundwater draft for the year 2003-2004. The model has been validated for a decade, during three year-long intervals (2005-2006, 2008-2009 and 2011-2012) using groundwater draft, estimated through a discharge factor method. Further, the estimated draft was validated through observed pumping data from random sampled villages (2011-2012). The results suggest that the developed LGDM model provides a good alternative to the estimation of groundwater draft based on satellite-based crop area in the absence of groundwater observation wells in arid regions of northwest India.

  14. Estimated rates of groundwater recharge to the Chicot, Evangeline and Jasper aquifers by using environmental tracers in Montgomery and adjacent counties, Texas, 2008 and 2011 (United States)

    Oden, Timothy D.; Truini, Margot


    Montgomery County is in the northern part of the Houston, Texas, metropolitan area, the fourth most populous metropolitan area in the United States. As populations have increased since the 1980s, groundwater has become an important resource for public-water supply and industry in the rapidly growing area of Montgomery County. Groundwater availability from the Gulf Coast aquifer system is a primary concern for water managers and community planners in Montgomery County and requires a better understanding of the rate of recharge to the system. The Gulf Coast aquifer system in Montgomery County consists of the Chicot, Evangeline, and Jasper aquifers, the Burkeville confining unit, and underlying Catahoula confining system. The individual sand and clay sequences of the aquifers composing the Gulf Coast aquifer system are not laterally or vertically continuous on a regional scale; however, on a local scale, individual sand and clay lenses can extend over several miles. The U.S. Geological Survey, in cooperation with the Lone Star Groundwater Conservation District, collected groundwater-quality samples from selected wells within or near Montgomery County in 2008 and analyzed these samples for concentrations of chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), tritium (3H), helium-3/tritium (3He/3H), helium-4 (4He), and dissolved gases (DG) that include argon, carbon dioxide, methane, nitrogen and oxygen. Groundwater ages, or apparent age, representing residence times since time of recharge, were determined by using the assumption of a piston-flow transport model. Most of the environmental tracer data indicated the groundwater was recharged prior to the 1950s, limiting the usefulness of CFCs, SF6, and 3H concentrations as tracers. In many cases, no tracer was usable at a well for the purpose of estimating an apparent age. Wells not usable for estimating an apparent age were resampled in 2011 and analyzed for concentrations of major ions and carbon-14 (14C). At six of

  15. Thermal effect of climate change on groundwater-fed ecosystems (United States)

    Burns, Erick; Zhu, Yonghui; Zhan, Hongbin; Manga, Michael; Williams, Colin F.; Ingebritsen, Steven E.; Dunham, Jason


    Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat-transport equations are used to identify key processes that control the long-term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land-surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater-dependent ecosystems. In this system, upper basin groundwater temperatures are strongly affected only by recharge conditions. However, as the vadose zone thins away from the highlands, changes in the average annual land-surface temperature also influence groundwater temperatures. Transient response to temperature change depends on both the conductive time scale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the large lower elevation springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years.

  16. Authigenic carbonate mounds from active methane seeps on the southern Aquitaine Shelf (Bay of Biscay, France): Evidence for anaerobic oxidation of biogenic methane and submarine groundwater discharge during formation (United States)

    Pierre, Catherine; Demange, Jérome; Blanc-Valleron, Marie-Madeleine; Dupré, Stéphanie


    The widespread methane emissions that were discovered in 2013 on the Aquitaine Shelf at water depth between 140 and 220 m are associated with authigenic carbonate crusts that cover meter-high subcircular reliefs of 10-100 m in diameter. These authigenic carbonates are primarily aragonite plus calcite and dolomite, which cement the fine- to medium-grained sandy sediment. The carbonate cement is often pierced by numerous circular cavities of 5-10 μm in diameter that are considered to be moulds of gas bubbles. Conversely, micron-sized cavities in the aragonite crystals are attributed to dissolution features, in relation to the production of CO2 during the aerobic oxidation of methane. The oxygen isotopic compositions of bulk carbonate (+1.7 to +3.7‰) and aragonite cements obtained from microsampling (-0.1 to +1.4‰) indicate that these carbonates were precipitated in mixtures of seawater and freshwater, i.e., in the context of submarine groundwater discharge at the seafloor. The carbon isotopic compositions of authigenic carbonates (-51.9 to -38.1‰) and of aragonite cements (-49.9 to -29.3‰) show that the dissolved inorganic carbon of pore fluids was mostly produced by the anaerobic oxidation of biogenic methane and also partly from the groundwater system.

  17. Simulated effects of ground-water withdrawals and artificial recharge on discharge to streams, springs, and riparian vegetation in the Sierra Vista Subwatershed of the Upper San Pedro Basin, southeastern Arizona (United States)

    Leake, Stanley A.; Pool, Donald R.; Leenhouts, James M.


    In the context of ground-water resources, “capture” or “streamflow depletion” refers to withdrawal-induced changes in inflow to or outflow from an aquifer. These concepts are helpful in understanding the effects of long-term development of ground-water resources. For the Upper San Pedro Basin in Arizona, USA and Sonora, Mexico, a recently developed ground-water flow model is available to help quantify capture of water from the river and riparian system. A common method of analysis is to compute curves of capture and aquifer-storage change for a range of time at select points of interest. This study, however, presents results of a method to show spatial distributions of total change in inflow and outflow from withdrawal or injection for select times of interest. The mapped areal distributions show the effect of a single well in terms of the ratio of the change in boundary flow rate to rate of withdrawal or injection by the well. To the extent that the system responds linearly to ground-water withdrawal or injection, fractional responses in the mapped distributions can be used to quantify response for any withdrawal or injection rate. Capture distributions calculated using the Upper San Pedro model include response to (1) withdrawal in the lower basin-fill aquifer for times of 10 and 50 years following the initiation of pumping from predevelopment conditions and (2) artificial recharge to the water table in the area underlain by the lower basin-fill aquifer after 10 and 50 years. The mapped distributions show that response to withdrawals and injections is greatest near the river/riparian system. Presence of clay layers in the vertical interval between withdrawal locations and the river/riparian system, however, can delay the response.

  18. Janus Solid-Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries. (United States)

    Zheng, Jiaxin; Hou, Yuyang; Duan, Yandong; Song, Xiaohe; Wei, Yi; Liu, Tongchao; Hu, Jiangtao; Guo, Hua; Zhuo, Zengqing; Liu, Lili; Chang, Zheng; Wang, Xiaowei; Zherebetskyy, Danylo; Fang, Yanyan; Lin, Yuan; Xu, Kang; Wang, Lin-Wang; Wu, Yuping; Pan, Feng


    LiFePO4 has long been held as one of the most promising battery cathode for its high energy storage capacity. Meanwhile, although extensive studies have been conducted on the interfacial chemistries in Li-ion batteries,1-3 little is known on the atomic level about the solid-liquid interface of LiFePO4/electrolyte. Here, we report battery cathode consisted with nanosized LiFePO4 particles in aqueous electrolyte with an high charging and discharging rate of 600 C (3600/600 = 6 s charge time, 1 C = 170 mAh g(-1)) reaching 72 mAh g(-1) energy storage (42% of the theoretical capacity). By contrast, the accessible capacity sharply decreases to 20 mAh g(-1) at 200 C in organic electrolyte. After a comprehensive electrochemistry tests and ab initio calculations of the LiFePO4-H2O and LiFePO4-EC (ethylene carbonate) systems, we identified the transient formation of a Janus hydrated interface in the LiFePO4-H2O system, where the truncated symmetry of solid LiFePO4 surface is compensated by the chemisorbed H2O molecules, forming a half-solid (LiFePO4) and half-liquid (H2O) amphiphilic coordination environment that eases the Li desolvation process near the surface, which makes a fast Li-ion transport across the solid/liquid interfaces possible.

  19. 用镭同位素评价九龙江河口区的地下水输入%Estimating submarine groundwater discharge to the Jiulong River estuary using Ra isotopes

    Institute of Scientific and Technical Information of China (English)

    郭占荣; 黄磊; 袁晓婕; 刘花台; 李开培


    A mass balance model of naturally-occurring short-lived and long-lived radium isotopes (224Ra and 226Ra)for the Jiulong River Estuary is developed to estimate the submarine groundwater discharge (SGD) to the estuary.All likely source and sink terms are considered in the model establishment.The source terms for Ra include river discharge, desorption from riverine suspended particles, desorption from resuspended particles, diffusion from subtidal sediments, and input from open sea and SGD.Ra can also be removed through radioactive decay and with ebb tide.The modeling result shows that up to 41.9% to 56.9% of the total Ra input can be attributed to the contribution of submarine groundwater in the estuary, and this has to be sustained by a discharge of 1.65 × l08 to 1.83 × 108m3/d in groundwater input.Such groundwater amounts can be four times that of river discharge in the estuary.Assuming that fresh groundwater can account for 10% of the total amount of groundwater, then the model calculated inorganic nutrient fluxes are 4.61 × 106 mol/d for dissolved inorganic nitrogen ( DIN), 0.22 ×106 mol/d for dissolved inorganic phosphate ( DIP), and 6.94 × 106 mol/d for dissolved inorganic silicon ( DSi), respectively.And such inorganic nutrient fluxes are 23%, 28% and 77% of that delivered by river discharge in the estuary, respectively.The result suggests that a considerable amount of nutrients in the Jiulong River Estuary is coming from the contribution of SGD.The latter itself is also significant in relation to the total river discharge in the estuary.Nutrients contributed by SGD could potentially cause environmental concerns of estuary and coastal marine eutrophication.Such an environmental issue must be considered in the future management plan.%为评价九龙江河口区的地下水输入量及其输送的营养盐数量,建立了天然存在的镭同位素224Ra和226Ra的质量平衡模型.镭的源项考虑了河流的输入、河流悬浮颗粒的解

  20. Calculation of the inventory and near-field release rates of radioactivity from neutron-activated metal parts discharged from the high flux isotope reactor and emplaced in solid waste storage area 6 at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kelmers, A.D.; Hightower, J.R.


    Emplacement of contaminated reactor components involves disposal in lined and unlined auger holes in soil above the water table. The radionuclide inventory of disposed components was calculated. Information on the composition and weight of the components, as well as reasonable assumptions for the neutron flux fueling use, the time of neutron exposure, and radioactive decay after discharge, were employed in the inventory calculation. Near-field release rates of /sup 152/Eu, /sup 154/Eu, and /sup 155/Eu from control plates and cylinders were calculated for 50 years after emplacement. Release rates of the europium isotopes were uncertain. Two release-rate-limiting models were considered and a range of reasonable values were assumed for the time-to-failure of the auger-hole linear and aluminum cladding and europium solubility in SWSA-6 groundwater. The bounding europium radionuclide near-field release rates peaked at about 1.3 Ci/year total for /sup 152,154,155/Eu in 1987 for the lower bound, and at about 420 Ci/year in 1992 for the upper bound. The near-field release rates of /sup 55/Fe, /sup 59/Ni, /sup 60/Co, and /sup 63/Ni from stainless steel and cobalt alloy components, as well as of /sup 10/Be, /sup 41/Ca, and /sup 55/Fe from beryllium reflectors, were calculated for the next 100 years, assuming bulk waste corrosion was the release-rate-limiting step. Under the most conservative assumptions for the reflectors, the current (1986) total radionuclide release rate was calculated to be about 1.2 x 10/sup -4/ Ci/year, decreasing by 1992 to a steady release of about 1.5 x 10/sup -5/ Ci/year due primarily to /sup 41/Ca. 50 refs., 13 figs., 8 tabs.

  1. Predicting tile drainage discharge

    DEFF Research Database (Denmark)

    Iversen, Bo Vangsø; Kjærgaard, Charlotte; Petersen, Rasmus Jes;

    of the water load coming from the tile drainage system is therefore essential. This work aims at predicting tile drainage discharge using dynamic as well as a statistical predictive models. A large dataset of historical tile drain discharge data, daily discharge values as well as yearly average values were......More than 50 % of Danish agricultural areas are expected to be artificial tile drained. Transport of water and nutrients through the tile drain system to the aquatic environment is expected to be significant. For different mitigation strategies such as constructed wetlands an exact knowledge...... used in the analysis. For the dynamic modelling, a simple linear reservoir model was used where different outlets in the model represented tile drain as well as groundwater discharge outputs. This modelling was based on daily measured tile drain discharge values. The statistical predictive model...

  2. Limits to Global Groundwater Consumption (United States)

    Graaf, I. D.; Van Beek, R.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.


    In regions with frequent water stress and large aquifer systems, groundwater is often used as an additional fresh water source. For many regions of the world groundwater abstraction exceeds groundwater recharge and persistent groundwater depletion occurs. The most direct effect of groundwater depletion is declining of water tables, leading to reduced groundwater discharge needed to sustain base-flow to e.g. rivers. Next to that, pumping costs increase, wells dry up and land subsidence occurs. These problems are expected to increase in the near future due to growing population and climate changes. This poses the urgent question of what the limits are of groundwater consumption worldwide. We simulate global water availability (5 arc-minute resolution, for 1960-2050) using the hydrological model PCR-GLOBWB (van Beek et al. 2011), coupled to a groundwater model based on MODFLOW (de Graaf et al. 2015), allowing for groundwater - surface water interactions. The groundwater model includes a parameterization of world's confined and unconfined aquifer systems needed for a realistic simulation of groundwater head dynamics. Water demands are included (from Wada et al. 2014). We study the limits to water consumption, focusing on locally attainable groundwater and groundwater levels critical to rivers to sustain low flows. We show an increasing trend (1960-2050) in groundwater head declines, due to increase in groundwater demand. Also, stream flow will decrease and low flow conditions will occur more frequent and will be longer in duration in the near future, especially for irrigated areas. Next to that, we provide a global overview of the years it takes until groundwater gets unattainable for e.g. a local farmer (100 m below land-surface used as a proxy), and estimate the increase in pumping cost for the near future. The results show where and when limits of groundwater consumption are reached globally.

  3. The absorption effect of the Lα-line Supplement to the paper 'On the Correlation Between the Hα-line emission rate and the ablation rate of a hydrogen pellet in tokamak discharges' – Nuclear Fusion 24 (1984) 697

    DEFF Research Database (Denmark)

    Chang, C. T.; Thomsen, Kenneth


    Several assumptions made in a previous study of the correlation between the Hα-line emission rate and the ablation rate of a hydrogen pellet injected into a tokamak discharge showed that the emission layer of the ablatant as optically thin with respect to all levels of the principal quantum numbe...

  4. Heart rate at discharge and long-term prognosis following percutaneous coronary intervention in stable and acute coronary syndromes - results from the BASKET PROVE trial

    DEFF Research Database (Denmark)

    Jensen, Magnus Thorsten; Kaiser, Christoph; Sandsten, Karl Erik;


    Elevated heart rate (HR) is associated with mortality in a number of heart diseases. We examined the long-term prognostic significance of HR at discharge in a contemporary population of patients with stable angina (SAP), non-ST-segment elevation acute coronary syndromes (NSTE-ACS), and ST-segment...

  5. Optimal Groundwater Development in Coastal Aquifers Near Beihai, China

    Institute of Scientific and Technical Information of China (English)


    Groundwater resources occur in a multi-aquifer system in the alluvial coastal plain near Beihai, China. The aquifers receive recharge from precipitation, canal and reservoir infiltration, and discharge through subterranean drainage into the sea and through artificial pumping. A quasithree-dimensional finite element model has been used to simulate the spatial and temporal distribution of groundwater levels in the aquifers. Various input parameters were considered in the simulation model. A linear optimization model has been developed for groundwater development within the coastal aquifers. The objective function of the model is to maximize the total groundwater pumpage from the confined aquifer. The control of sea water intrusion is examined by the restriction of the water levels at points along the coast and of the pumping rates in coastal management cells. The response matrix used in the optimization model was generated from the simulation model by forecasting drawdown produced by pumping at a unit impulse discharge. Groundwater development can be primarily optimized by the alteration of the pumping rates of the existing wells.

  6. Pancreatitis - discharge (United States)

    Chronic pancreatitis - discharge; Pancreatitis - chronic - discharge; Pancreatic insufficiency - discharge; Acute pancreatitis - discharge ... You were in the hospital because you have pancreatitis. This is a swelling of the pancreas. You ...

  7. A Simulation of the Effects of Varying Repetition Rate and Pulse Width of Nanosecond Discharges on Premixed Lean Methane-Air Combustion

    Directory of Open Access Journals (Sweden)

    Moon Soo Bak


    Full Text Available Two-dimensional kinetic simulation has been carried out to investigate the effects of repetition rate and pulse width of nanosecond repetitively pulsed discharges on stabilizing premixed lean methane-air combustion. The repetition rate and pulse width are varied from 10 kHz to 50 kHz and from 9 ns to 2 ns while the total power is kept constant. The lower repetition rates provide larger amounts of radicals such as O, H, and OH. However, the effect on stabilization is found to be the same for all of the tested repetition rates. The shorter pulse width is found to favor the production of species in higher electronic states, but the varying effects on stabilization are also found to be small. Our results indicate that the total deposited power is the critical element that determines the extent of stabilization over this range of discharge properties studied.

  8. Stereotactic radiosurgery - discharge (United States)

    Gamma knife - discharge; Cyberknife - discharge; Stereotactic radiotherapy - discharge; Fractionated stereotactic radiotherapy - discharge; Cyclotrons - discharge; Linear accelerator - discharge; Lineacs - ...

  9. Robust, non-invasive methods for metering groundwater well extraction in remote environments (United States)

    Bulovic, Nevenka; Keir, Greg; McIntyre, Neil


    Quantifying the rate of extraction from groundwater wells can be essential for regional scale groundwater management and impact assessment. This is especially the case in regions heavily dependent on groundwater such as the semi-arid Surat and Bowen Basins in Queensland, Australia. Of the 30 000+ groundwater wells in this area, the majority of which are used for stock watering and domestic purposes, almost none have flow metering devices installed. As part of a research project to estimate regional groundwater extraction, we have undertaken a small scale flow metering program on a selected set of wells. Conventional in-line flow meters were unsuitable for our project, as both non-invasiveness and adaptability / suitability to a variety of discharge pipe characteristics was critical. We describe the use of two metering technologies not widely used in groundwater applications, non-invasive, clamp-on ultrasonic transit time flow meters and tipping bucket flow meters, as semi-permanent installations on discharge pipes of various artesian and sub-artesian groundwater wells. We present examples of detailed extraction rate time-series, which are of particular value in developing predictive models of water well extraction in data limited areas where water use dynamics and drivers are poorly understood. We conclude by discussing future project trajectories, which include expansion of the monitoring network through development of novel metering techniques and telemetry across large areas of poor connectivity.

  10. Using 14C and 3H to understand groundwater flow and recharge in an aquifer window

    Directory of Open Access Journals (Sweden)

    A. P. Atkinson


    14C ages are between 100 and 10 000 years. 3H activities are negligible in most of the groundwater and groundwater electrical conductivity in individual areas remains constant over the period of study. Although diffuse local recharge is evident, the depth to which it penetrates is limited to the upper 10 m of the aquifer. Rather, groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High, and acts as a regional discharge zone where upward head gradients are maintained annually, limiting local recharge. Additionally, the Gellibrand River does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10 000 years BP to the present day are interpreted to indicate an increase in recharge rates on the Barongarook High.

  11. Geologic influence on groundwater salinity drives large seawater circulation through the continental shelf (United States)

    Michael, Holly A.; Scott, Kaileigh C.; Koneshloo, Mohammad; Yu, Xuan; Khan, Mahfuzur R.; Li, Katie


    Observations of offshore freshened groundwater and saline groundwater discharge along continental shelves have important implications for water resources, ecosystem function, and the composition of the ocean, but they cannot be explained by basic theory. We show that these independent observations are linked and result from processes that drive variable-density groundwater flow through the spatial heterogeneity that is ubiquitous in geologic formations. We use lithologic data to develop geostatistical models that mimic the architecture of coastal aquifers. Simulation of groundwater flow and salt transport through these random realizations shows that heterogeneity produces spatially complex subsurface salinity distributions that extend tens of kilometers offshore, even at steady state. The associated density gradients drive high saline groundwater circulation rates that cannot be predicted by equivalent homogeneous models. Results suggest that these phenomena may be common along continental shelves, potentially altering estimates of ocean chemical budgets and impacting coastal water management for future generations.

  12. Preliminary Geologic Map of the Southern Funeral Mountains and Adjacent Ground-Water Discharge Sites, Inyo County, California, and Nye County, Nevada (United States)

    Fridrich, Christopher J.; Thompson, Ren A.; Slate, Janet L.; Berry, M.E.; Machette, Michael N.


    This map covers the southern part of the Funeral Mountains, and adjacent parts of four structural basins - Furnace Creek, Amargosa Valley, Opera House, and central Death Valley. It extends over three full 7.5-minute quadrangles, and parts of eleven others - a total area of about 950 square kilometers. The boundaries of this map were drawn to include all of the known proximal hydrogeologic features that may affect the flow of ground water that discharges from the springs of the Furnace Creek wash area, in the west-central part of the map. These springs provide the major potable water supply for Death Valley National Park.

  13. Study of a New Technology to Test the Discharge Rate of Safety Valve on Steady Discharge State%安全阀稳态排量测试新技术研究

    Institute of Scientific and Technical Information of China (English)

    郭崇志; 刘佳


    Discharge capacity is the most important parameter to measure the safety valve performance ,so evaluating and measuring it accurately is extremely important .Standard test method of safety valve dis-charge capacity is too complicated and strict to promote .Different from lots of experimental studies on the discharge in most papers tested in a fixed opening height state which omitted the dynamic effects on tran -sient opening process will cause deviations .This paper has studied a new evaluating method of discharge in stable discharge stage by using the spool sensor tested data .Numerical simulations have found that the theoretical nozzle throat located on the curtain face and the relief fluid was in transonic flow stage when the valve was in stable discharge stage caused by overpressure .Further detection technology studies have shown that stable discharge could be determined and measured by the data of stable discharge stage col -lected by spool sensor , and could achieve the rated capacity assessment .This new detection method ex-plored the discharge testing technology ,revolutionized the traditional flow meter ideas ,extended the appli-cations of the spool sensor ,provided a simply approached testing method ,and the accuracy is sufficient .%排量是衡量安全阀性能的重要参数,因此其准确计算和评估极为重要。排量的标准测试方法要求严格,测试繁琐且难以实施。与多数文献略去开启过程动态效应在固定开高状态下进行排量研究不同,文中研究了一种利用阀芯传感器的测试数据来评估动态开启稳定排放阶段排量的计量方法。数值模拟发现,超压泄放过程的稳态排放阶段喷管的喉部位于帘面,并且发现,排放流体处于跨音速流态。进一步的检测技术研究表明,稳态排量可以通过阀芯传感器采集的稳态排放数据来确定和计量,进而可以实现额定排量评估。这种新的排量计量和测试技术改变

  14. Pumpage for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents ground-water discharged from the Death Valley regional ground-water flow system (DVRFS) through pumped wells. Pumping from wells in...

  15. Simplified Flood Inundation Mapping Based On Flood Elevation-Discharge Rating Curves Using Satellite Images in Gauged Watersheds

    Directory of Open Access Journals (Sweden)

    Younghun Jung


    Full Text Available This study suggests an approach to obtain flood extent boundaries using spatial analysis based on Landsat-5 Thematic Mapper imageries and the digital elevation model. The suggested approach firstly extracts the flood inundation areas using the ISODATA image-processing algorithm from four Landsat 5TM imageries. Then, the ground elevations at the intersections of the extracted flood extent boundaries and the specified river cross sections are read from the digital elevation to estimate the elevation-discharge relationship. Lastly, the flood extent is generated based on the estimated elevation-discharge relationship. The methodology was tested over two river reaches in Indiana, United States. The estimated elevation-discharge relationship showed a good match with the correlation coefficients varying between 0.82 and 0.99. In addition, self-validation was also performed for the estimated spatial extent of the flood by comparing it to the waterbody extracted from the Landsat images used to develop the elevation-discharge relationship. The result indicated that the match between the estimated and the extracted flood extents was better with higher flood magnitude. We expect that the suggested methodology will help under-developed and developing countries to obtain flood maps, which have difficulties getting flood maps through traditional approaches based on computer modeling.

  16. Methanotrophy controls groundwater methane export from a barrier island (United States)

    Schutte, Charles A.; Wilson, Alicia M.; Evans, Tyler; Moore, Willard S.; Joye, Samantha B.


    Methane concentrations can be high in coastal groundwater, resulting in methane export driven by submarine groundwater discharge. However, the magnitude of this methane flux depends significantly on the rate of methanotrophy, the often overlooked process of microbial methane consumption that occurs within coastal aquifer sediments. Here we describe a zone of methanogenesis within the freshwater lens of a barrier island aquifer and investigate the methane source/sink behavior of the barrier island system as a whole. The median concentration of methane dissolved in fresh groundwater beneath the center of the island was 0.6 mM, supported by high rates of potential methanogenesis (22 mmol m-2 day-1). However, rates of microbial methane consumption were also elevated in surrounding sediments (18 mmol m-2 day-1). Groundwater flowing from the zone of methanogenesis to the point of discharge into the ocean had a long residence time within methanotrophic sediments (∼195 days) such that the majority of the methane produced within the barrier island aquifer was likely consumed there.

  17. Effect of flow rate on the characteristics of rep etitive microsecond-pulse gliding discharges%气流对微秒脉冲滑动放电特性的影响∗

    Institute of Scientific and Technical Information of China (English)

    牛宗涛; 章程; 马云飞; 王瑞雪; 陈根永; 严萍; 邵涛


    Gliding discharges driven by microsecond-pulse power supply can generate non-thermal plasmas with high energy and high power density at atmospheric pressure. However, the flowing air significantly influences the characteristics of the microsecond-pulse gliding discharges in a repetitive mode. In this paper, in order to obtain the characteristics of the microsecond-pulse gliding discharges in a needle-to-needle gap, a microsecond-pulse power supply with an output voltage up to 30 kV, a pulse width ∼8 µs, and a pulse repetition frequencies 1–3000 Hz is used to investigate the electrical characteristics of gliding discharges by analyzing the voltage-current waveforms and obtaining the discharge images. Experimental results show that there are three typical discharge modes in the microsecond-pulse gliding discharges as the applied voltage increases, i.e. corona discharge, diffuse discharge, and gliding-like discharge. Both voltage-current waveforms and the discharge images at different discharge modes have significantly different behaviors. Corona discharge only exists near the positive electrode with a small radius of curvature. Diffuse discharges behave as the overlapped plasma channels bridge the entire gap. The channel of diffuse discharge is full of gap, which starts from the positive electrode, spreads in all directions, and ends at the negative electrode. Gliding-like discharge behaves as a continuous spark channeling, showing a continuous spark, which is discharging strongly and influenced by flow rates. Furthermore, both pulse repetition frequency (PRF) and flow rate remarkably affects the characteristics of microsecond-pulse gliding discharges. When the flow rate is small (2 L/min), the spark channels of gliding-like discharge gradually concentrate with the increase of the PRF. However, when the flow rate is larger (16 L/min), the spark channels of gliding-like discharge behave dispersively when the PRF increases. In our opinion, different

  18. GC/MS based analyses of individual organic constituents of chao phraya river water and estimated discharge rates into the upper gulf of Thailand (United States)

    Ehrhardt, Manfred; Wattayakorn, Gullaya; Dawson, Rodger


    Detailed GC/MS based chemical analyses of organic concentrates from the Chao Phraya River obtained from a water sample collected in the Bangkok metropolitan area indicated that hydrocarbons of petroleum or combustion sources may be minor constituents of the dissolved lipophilic fraction relative to biogenic hydrocarbons and industrial chemicals. Using published data on river discharge and the concentrations measured in an integrated sample, tentative input rates into the Upper Gulf of Thailand for characterized chemicals are calculated.

  19. The effect of substrate holder size on the electric field and discharge plasma on diamond-film formation at high deposition rates during MPCVD (United States)

    An, Kang; Chen, Liangxian; Liu, Jinlong; Zhao, Yun; Yan, Xiongbo; Hua, Chenyi; Guo, Jianchao; Wei, Junjun; Hei, Lifu; Li, Chengming; Lu, Fanxiu


    The effect of the substrate holder feature dimensions on plasma density (n e), power density (Q mw) and gas temperature (T) of a discharge marginal plasma (a plasma caused by marginal discharge) and homogeneous plasma were investigated for the microwave plasma chemical vapor deposition process. Our simulations show that decreasing the dimensions of the substrate holder in a radical direction and increasing its dimension in the direction of the axis helps to produce marginally inhomogeneous plasma. When the marginal discharge appears, the maximum plasma density and power density appear at the edge of the substrate. The gas temperature increases until a marginally inhomogeneous plasma develops. The marginally inhomogeneous plasma can be avoided using a movable substrate holder that can tune the plasma density, power density and gas temperature. It can also ensure that the power density and electron density are as high as possible with uniform distribution of plasma. Moreover, both inhomogeneous and homogeneous diamond films were prepared using a new substrate holder with a diameter of 30 mm. The observation of inhomogeneous diamond films indicates that the marginal discharge can limit the deposition rate in the central part of the diamond film. The successfully produced homogeneous diamond films show that by using a substrate holder it is possible to deposit diamond film at 7.2 μm h-1 at 2.5 kW microwave power.

  20. Hydrological conditions and evaluation of sustainable groundwater use in the Sierra Vista Subwatershed, Upper San Pedro Basin, southeastern Arizona (United States)

    Gungle, Bruce; Callegary, James B.; Paretti, Nicholas V.; Kennedy, Jeffrey R.; Eastoe, Christopher J.; Turner, Dale S.; Dickinson, Jesse E.; Levick, Lainie R.; Sugg, Zachary P.


    This study assessed progress toward achieving sustainable groundwater use in the Sierra Vista Subwatershed of the Upper San Pedro Basin, Arizona, through evaluation of 14 indicators of sustainable use. Sustainable use of groundwater in the Sierra Vista Subwatershed requires, at a minimum, a stable rate of groundwater discharge to, and thus base flow in, the San Pedro River. Many of the 14 indicators are therefore related to long-term or short-term effects on base flow and provide us with a means to evaluate groundwater discharge to and base flow in the San Pedro River. The indicators were based primarily on 10 to 20 years of data monitoring in the subwatershed, ending in 2012, and included subwatershedwide indicators, riparian-system indicators, San Pedro River indicators, and springs indicators.

  1. Relating groundwater to seasonal wetlands in southeastern Wisconsin, USA (United States)

    Skalbeck, J.D.; Reed, D.M.; Hunt, R.J.; Lambert, J.D.


    Historically, drier types of wetlands have been difficult to characterize and are not well researched. Nonetheless, they are considered to reflect the precipitation history with little, if any, regard for possible relation to groundwater. Two seasonal coastal wetland types (wet prairie, sedge meadow) were investigated during three growing seasons at three sites in the Lake Michigan Basin, Wisconsin, USA. The six seasonal wetlands were characterized using standard soil and vegetation techniques and groundwater measurements from the shallow and deep systems. They all met wetland hydrology criteria (e.g., water within 30 cm of land surface for 5% of the growing season) during the early portion of the growing season despite the lack of appreciable regional groundwater discharge into the wetland root zones. Although root-zone duration analyses did not fit a lognormal distribution previously noted in groundwater-dominated wetlands, they were able to discriminate between the plant communities and showed that wet prairie communities had shorter durations of continuous soil saturation than sedge meadow communities. These results demonstrate that the relative rates of groundwater outflows can be important for wetland hydrology and resulting wetland type. Thus, regional stresses to the shallow groundwater system such as pumping or low Great Lake levels can be expected to affect even drier wetland types. ?? Springer-Verlag 2008.

  2. 基于同位素与水化学分析法的地下水补径排研究——以苏锡常地区浅层地下水为例%Study on Replenishment Runoff and Discharg of the Shallow Groundwater Based on the Isotope and Hydrochemishtry Analysis Methods —For Example the Shallow Groundwater in Su-Xi-Chang Area

    Institute of Scientific and Technical Information of China (English)

    张秝湲; 陈锁忠; 都娥娥


    在分析研究区浅层地下水空间分布特征的基础上,采用同位素与化学分析相结合的方法研究苏锡常浅层地下水的补径排条件.利用氢氧同位素的分析结果,建立潜水与微承压水的δD-δ18O%关系曲线,分析潜水含水层与河流、湖泊等地表水体关系;利用放射性同位素氚与14C研究微承水与现代水的补给关系;利用常规的水化学分析方法研究浅层地下水补给途径.结合研究区地下水水位、地层岩性、地形、地貌等多方面因素综合分析了浅层地下水的补径排条件,从而指导苏锡常地区浅层地下水合理开发利用.%On the basis of analysis and study of spatial distribution characteristics of shallow groundwater, this paper studys replenishment, runoff and discharg conditions of the shallow groundwater using isotope and hydrochemishtry analysis methods in Su-Xi-Chang area. The δD - δ18 O% curve is established for phreatic and micro-confined undergroundwater by the analysis results of hydrogen and oxygen isotope. According to the δD -δ18O% curve, analyzing the relations of the phreatic aquifer with rivers, lakes and other surface water, and the evaporation degree of micro-confined groundwater. The replenishment relations of micro-confined grounderwater and modern water are studyed by radioisotope tritium and 14C. The problem of the shallow groundwater replenishment sources change is studyed by the conventional method of chemical. That synthetically analyze the conditions of shallow groundwater replenishment runoff and discharge combining with groundwater level, lithology, topography and other aspects, in order to guide the rational development and utilization of shallow groundwater in Su-Xi-Chang.

  3. Factors Associated With the Increasing Rates of Discharges Directly Home From Intensive Care Units-A Direct From ICU Sent Home Study. (United States)

    Lau, Vincent I; Priestap, Fran A; Lam, Joyce N H; Ball, Ian M


    To evaluate the relationship between rates of discharge directly to home (DDH) from the intensive care unit (ICU) and bed availability (ward and ICU). Also to identify patient characteristics that make them candidates for safe DDH and describe transfer delay impact on length of stay (LOS). Retrospective cohort study of all adult patients who survived their stay in our medical-surgical-trauma ICU between April 2003 and March 2015. Median age was 49 years (interquartile range [IQR]: 33.5-60.4), and the majority of the patients were males (54.8%). Median number of preexisting comorbidities was 5 (IQR: 2-7) diagnoses. Discharge directly to home increased from 28 (3.1% of all survivors) patients in 2003 to 120 (12.5%) patients in 2014. The mean annual rate of DDH was between 11% and 12% over the last 6 years. Approximately 62% (n = 397) of patients waited longer than 4 hours for a ward bed, with a median delay of 2.0 days (IQR: 0.5-4.7) before being DDH. There was an inverse correlation between ICU occupancy and DDH rates (r P = -.55, P occupancy and DDH rates (r s = -.055, P = .64, 95% CI = -0.25 to 0.21). The DDH rates have been increasing over time at our institution and were inversely correlated with ICU bed occupancy but were not associated with ward occupancy. The DDH patients are young, have few comorbidities on admission, and few discharge diagnoses, which are usually reversible single system problems with low disease burden. Transfers to the ward are delayed in a majority of cases, leading to increased ICU LOS and likely increased overall hospital LOS as well. © The Author(s) 2016.

  4. Steady-state discharge into tunnels in formations with random variability and depth-decaying trend of hydraulic conductivity (United States)

    Jiang, Xiao-Wei; Wan, Li; Yeh, Tian-Chyi Jim; Wang, Xu-Sheng; Xu, Liang


    SummaryMulti-scale heterogeneity of geological formations is a rule, which consists of random (local-scale) and systematic (large-scale) variability of hydraulic conductivity. The random variability and depth-decaying trend, a systematic variability, have different effects on subsurface flow, thus on groundwater discharge into tunnels. Little research has examined this problem in the past. Using Monte Carlo simulation and information of statistics of heterogeneity, we evaluate the most likely (ensemble average) discharge rate into a tunnel in geologic media with the multi-scale heterogeneity and uncertainty associated with this estimate. We find that the ensemble average discharge rate is larger than the discharge rate predicted by geometric mean of hydraulic conductivity, and smaller than the discharge rate predicted by arithmetic mean of hydraulic conductivity. Moreover, the ensemble average discharge rate decreases with the decay exponent of the depth-decaying trend, and increases with the standard deviation as well as the correlation scale of the stationary log-conductivity fields. We also find that the discharge rate of a tunnel is highly influenced by the hydraulic conductivity near the tunnel. Furthermore, deviation of the true discharge rate from the ensemble average can be large and increases with the decay exponent, standard deviation and correlation scale of log-conductivity fields. The largest uncertainty of discharge rate prediction in the shallow subsurface is controlled by the variability of conductivity fields and the uncertainty at the deep subsurface is by the depth-decaying trend of hydraulic conductivity. Therefore, accurate prediction of groundwater discharge into tunnels requires detailed characterization of multi-scale heterogeneity.

  5. Effect of hole geometry and Electric-Discharge Machining (EDM) on airflow rates through small diameter holes in turbine blade material (United States)

    Hippensteele, S. A.; Cochran, R. P.


    The effects of two design parameters, electrode diameter and hole angle, and two machine parameters, electrode current and current-on time, on air flow rates through small-diameter (0.257 to 0.462 mm) electric-discharge-machined holes were measured. The holes were machined individually in rows of 14 each through 1.6 mm thick IN-100 strips. The data showed linear increase in air flow rate with increases in electrode cross sectional area and current-on time and little change with changes in hole angle and electrode current. The average flow-rate deviation (from the mean flow rate for a given row) decreased linearly with electrode diameter and increased with hole angle. Burn time and finished hole diameter were also measured.

  6. Groundwater controls on biogeomorphic succession and river channel morphodynamics (United States)

    Bätz, N.; Colombini, P.; Cherubini, P.; Lane, S. N.


    Biogeomorphic succession describes feedbacks between vegetation succession and fluvial processes that, at the decadal timescale, lead to a transition from bare river-deposited sediment to fully developed riparian forest. Where the rate of stabilization by biogeomorphic succession is greater than the rate of ecological disturbance by fluvial processes, a river is likely to evolve into less dynamic states. While river research has frequently considered the physical dimensions of morphodynamics, less is known about physical controls on succession rates, and how these impact stream morphodynamics. Here we test the hypothesis that groundwater dynamics influence morphodynamics via the rate of biogeomorphic succession. We applied historic imagery analysis in combination with dendroecological methods for willows growing on young gravelly fluvial landforms along a steep groundwater-depth gradient. We determined the following: floodplain morphodynamics and plant encroachment at the decadal scale, pioneer willow growth rates, and their relationships to hydrological variables. Willow growth rates were correlated with moisture availability (groundwater, discharge, and precipitation variability) in the downwelling reach, while little correlation was found in the upwelling reach. After a reduction in ecological disturbance frequency, data suggest that where groundwater is upwelling, biogeomorphic succession is fast, the engineering effect of vegetation is quickly established, and hence channel stability increased and active channel width reduces. Where groundwater is downwelling, deeper and more variable, biogeomorphic succession is slower, the engineering effect is reduced, and a wider active width is maintained. Thus, groundwater is an important control on biogeomorphic feedbacks intensity and, through the stabilizing effect of vegetation, may drive long-term river channel morphodynamics.

  7. Quantifying shallow and deep groundwater inputs to rivers with groundwater dating in hydrological observatories. (United States)

    Aquilina, Luc; Marçais, Jean; Gauvain, Alexandre; Kolbe, Tamara; de Dreuzy, Jean-Raynald; Labasque, Thierry; Abbott, Benjamin W.; Vergnaud, Virginie; Chatton, Eliot; Thomas, Zahra; Ruiz, Laurent; Bour, Olivier; Pinay, Gilles


    River water derives in part from groundwater—water that has spent some time in the subsurface (e.g. soil, unsaturated zone, saturated zone). However, because groundwater residence times vary from months to millennia, determining the proportion of shallow and deep groundwater contribution can be challenging. Groundwater dating with anthropogenic gases and natural geochemical tracers can decipher the origin of groundwater contribution to rivers, particularly when repeat samplings are carried out in different hydrological conditions. Here, we present two different applications of this approach from three hydrological observatories (H+ hydrogeological network; Aghrys and Armorique observatories) in western France, all these observatories belonging to the OZCAR national network. We carried out a regional investigation of mean groundwater ages in hard rock aquifers in Brittany, using long-term chronicles from hydrological observatories and regional monitoring sites. We determined the mean residence-time (RT) and annual renewal rate (RR) of four compartments of these aquifers: the direct contribution of a very young water component (i.e. RT less than 1-2 yr), the upper variably saturated zone (RR 27-33%), the weathered layer (RR 1.8-2.1%) and the fractured zone (RR 0.1%). From these values and a nitrate chronicle, we were able to determine the respective contributions of each compartment to the largest river in Brittany, the Vilaine, which drains 30% of the region. We found that the deep fractured compartment with very slow renewal times contributed to 25-45% of river water in winter and 30-60% in summer. The very young water which includes direct precipitation and soil fluxes constituted 40-65% of the winter river water (Aquilina et al., 2012). To complement these estimates, we investigated the relationship between dissolved silica and groundwater age in the Armorique hydrological observatory in northern Brittany. We computed the silica concentration expected along the

  8. Relationship between groundwater recharge, discharge evolution and Karez flow attenuation in Shanshan County in nearly 60 years%近60年鄯善县地下水补排量演变与坎儿井流量衰减关系

    Institute of Scientific and Technical Information of China (English)

    吴彬; 杜明亮; 杨鹏年; 李英连


    In Turpan Basin, groundwater recharge and discharge system have been sharply changed due to excessive diversion of surface water and overexploitation of groundwater, so a series of ecological environment problems have been caused, such as Aydingkol Lake ecosystem deterioration, Karez flow attenuation and even drying up, land desertification, frequent sandstorm. Karez is an impressive hydraulic engineering project as well as a cultural achievement for over 2000 years. In order to preserve and revitalize some Karezes, multiple measures have been implemented. Based on the data of water use and groundwater evaluation in different period, groundwater budget was calculated, the evolution of groundwater recharge and discharge was analyzed, and the evolution stage was divided according to the variation curve over time. The relationship between groundwater system evolution and Karez flow attenuation was also analyzed using correlation analysis method. The results showed that: 1) Groundwater recharge and discharge were mainly affected by human activities. Annual rainfall was small and slightly showed a trend of decrease, and rainfall infiltration was negligible. The impact of climate change on groundwater system was negligible. River runoff increased slightly. But the river leakage decreased by around 1.0×108 m3 from 1956 to 2014. Channel leakage and field infiltration showed a trend of increase before 1990, reached the peak value of 0.359×108 and 0.168×108 m3 respectively, and then declined. Groundwater exploitation by well has experienced sustained increasing, reached the maximum of 3.536×108 m3 in 2010, and declined since 2011, and well production was 2.570×108 m3 in 2014. Karez flow increased in 1960s to the maximum value of 2.173×108 m3, and after that decreased and drying up; only a flow yield of 0.5944×108 m3 was still provided to irrigation in 2014. Spring water, as well as Karez flow, reduced from 1.063×108 m3 in 1958 to 0.0686×108 m3 in 2010. The

  9. Hydrogeochemical and isotopic characterization of the groundwater ...

    African Journals Online (AJOL)


    : ... is also affected by the relief, while the southward shift of the isohyets .... Solids (TDS) were calculated by adding the main ionic species ... (Davis and De Wiest, 1966; Freeze and Cherry, 1979). ... depression point of groundwater discharge.

  10. Sympathetic-induced changes in discharge rate and spike-triggered average twitch torque of low-threshold motor units in humans. (United States)

    Roatta, Silvestro; Arendt-Nielsen, Lars; Farina, Dario


    Animal and in vitro studies have shown that the sympathetic nervous system modulates the contractility of skeletal muscle fibres, which may require adjustments in the motor drive to the muscle in voluntary contractions. In this study, these mechanisms were investigated in the tibialis anterior muscle of humans during sympathetic activation induced by the cold pressor test (CPT; left hand immersed in water at 4 degrees C). In the first experiment, 11 healthy men performed 20 s isometric contractions at 10% of the maximal torque, before, during and after the CPT. In the second experiment, 12 healthy men activated a target motor unit at the minimum stable discharge rate for 5 min in the same conditions as in experiment 1. Intramuscular electromyographic (EMG) signals and torque were recorded and used to assess the motor unit discharge characteristics (experiment 1) and spike-triggered average twitch torque (experiment 2). CPT increased the diastolic blood pressure and heart rate by (mean +/- S.D.) 18 +/- 9 mmHg and 4.7 +/- 6.5 beats min(-1) (P < 0.01), respectively. In experiment 1, motor unit discharge rate increased from 10.4 +/- 1.0 pulses s(-1) before to 11.1 +/- 1.4 pulses s(-1) (P < 0.05) during the CPT. In experiment 2, the twitch half-relaxation time decreased by 15.8 +/- 9.3% (P < 0.05) during the CPT with respect to baseline. These results provide the first evidence of an adrenergic modulation of contractility of muscle fibres in individual motor units in humans, under physiological sympathetic activation.

  11. Determining the spill flow discharge of combined sewer overflows using rating curves based on computational fluid dynamics instead of the standard weir equation. (United States)

    Fach, S; Sitzenfrei, R; Rauch, W


    It is state of the art to evaluate and optimise sewer systems with urban drainage models. Since spill flow data is essential in the calibration process of conceptual models it is important to enhance the quality of such data. A wide spread approach is to calculate the spill flow volume by using standard weir equations together with measured water levels. However, these equations are only applicable to combined sewer overflow (CSO) structures, whose weir constructions correspond with the standard weir layout. The objective of this work is to outline an alternative approach to obtain spill flow discharge data based on measurements with a sonic depth finder. The idea is to determine the relation between water level and rate of spill flow by running a detailed 3D computational fluid dynamics (CFD) model. Two real world CSO structures have been chosen due to their complex structure, especially with respect to the weir construction. In a first step the simulation results were analysed to identify flow conditions for discrete steady states. It will be shown that the flow conditions in the CSO structure change after the spill flow pipe acts as a controlled outflow and therefore the spill flow discharge cannot be described with a standard weir equation. In a second step the CFD results will be used to derive rating curves which can be easily applied in everyday practice. Therefore the rating curves are developed on basis of the standard weir equation and the equation for orifice-type outlets. Because the intersection of both equations is not known, the coefficients of discharge are regressed from CFD simulation results. Furthermore, the regression of the CFD simulation results are compared with the one of the standard weir equation by using historic water levels and hydrographs generated with a hydrodynamic model. The uncertainties resulting of the wide spread use of the standard weir equation are demonstrated.

  12. The influence of Zihe Stream on the groundwater resources of the Dawu well field and on the discharge at the Heiwang iron mine, Zibo City area, Shandong Province, China (United States)

    Zhu, Xue-Yu; Liu, Jian-Li; Qian, Xiao-Xing

    The Dawu well field, one of the largest in China, supplies most of the water for the Zibo City urban area in Shandong Province. The field yields 522,400-535,400m3/d from an aquifer in fractured karstic Middle Ordovician carbonate rocks. Much of the recharge to the aquifer is leakage of surface water from Zihe Stream, the major drainage in the area. Installation of the Taihe Reservoir in 1972 severely reduced the downstream flow in Zihe Stream, resulting in a marked reduction in the water table in the Dawu field. Since 1994, following the installation of a recharge station on Zihe Stream upstream from the well field that injects water from the Taihe Reservoir into the stream, the groundwater resources of the field have recovered. An average of 61.2×103m3/d of groundwater, mostly from the Ordovician aquifer, is pumped from the Heiwang iron mine, an open pit in the bed of Zihe Stream below the Taihe Reservoir. A stepwise regression equation, used to evaluate the role of discharge from the reservoir into the stream, confirms that reservoir water is one of the major sources of groundwater in the mine. Résumé Le champ captant de Dawu, l'un des plus importants de Chine, fournit l'essentiel de l'eau à la communauté urbaine de Zibo, dans la province de Shandong. Ce champ captant fournit entre 522,400 et 535,400m3/j à partir d'un aquifère fracturé karstique des carbonates de l'Ordovicien moyen. La plupart de la recharge de cet aquifère est assurée par des pertes d'eau de surface de la rivière Zihe, principal cours d'eau de la région. La mise en eau du réservoir de Taihe en 1972 a sévèrement réduit en aval l'écoulement de la Zihe, ce qui a provoqué une diminution nette du niveau de la nappe dans le champ captant de Dawu. Depuis 1974, après la mise en fonctionnement d'une station de recharge sur la rivière Zihe, injectant, en amont du champ captant, de l'eau du réservoir de Taihe dans la rivière, les ressources en eau souterraine ont été reconstitu

  13. Utility of Radium Isotopes for Evaluating Residence Time and Submarine Groundwater Discharge%用镭同位素评价海水滞留时间及海底地下水排泄

    Institute of Scientific and Technical Information of China (English)

    刘花台; 郭占荣; 袁晓婕; 李开培; 章斌


    海底地下水排泄(submarine groundwater discharge,SGD)难以直接测量,镭同位素和氡-222等天然示踪剂使得间接评价SGD通量成为可能.为了评价五缘湾的水体滞留时间和SGD通量,实测了湾内海水、湾外海水和地下水中2244Ra和226Ra的活度,利用224 Ra和226 Ra半衰期的差异,采用224 Ra与226 Ra的活度比值计算湾内水团的年龄和平均滞留时间,利用224 Ra和226Ra的质量平衡模型计算SGD通量.五缘湾13个站位的水团年龄在0.6~2.4 d之间,湾顶水团年龄相对较大,平均海水滞留时间1.4d.地下水输入五缘湾的224Ra和226 Ra通量分别为5.17×106 Bq/d和5.28×106 Bq/d,将该通量用地下水端元的活度转换成为SGD通量分别是0.21m3/m2/d(224 Ra平衡模型)和0.23 m3/m2/d(226 Ra平衡模型),两种模型的结果较接近,其平均值0.22 m3/m2/d可作为五缘湾的海底地下水排泄通量.

  14. Vegetation induced diel signal and its meaning in recharge and discharge regions (United States)

    Gribovszki, Zoltán; Tóth, Tibor; Csáfordi, Péter; Szabó, András; Móricz, Norbert; Kalicz, Péter


    Afforestation, promoted by the European Union is planned in Hungary in the next decades. One of the most important region for afforestation is the Hungarian Great Plain where the precipitation is far below potential ET so forests can not survive without significant water uptake from shallow groundwater. Diel fluctuations of hydrological variables (e.g., soil moisture, shallow groundwater level, streamflow rate) are rarely investigated in the hydrologic literature although these short-term fluctuations may incorporate useful information (like groundwater uptake) about hydro-ecological systems in shallow groundwater areas. Vegetation induced diel fluctuations are rarely compared under varying hydrologic conditions (such as recharge and discharge zones). In this study, the data of soil moisture and shallow groundwater monitoring under different surface covers (forest and neighboring agricultural plots) in discharge and recharge regions were analyzed to gain a better understanding of the vegetation hydrological impact or water uptake in changing climate. The pilot areas of the study are located in Hungarian Great Plain and in Western Hungary. The water table under the forest displayed a typical night-time recovery in the discharge region, indicating a significant groundwater supply. Certainly, the root system of the forest was able to tap the groundwater in depths measuring a few metres, while the shallower roots of the herbaceous vegetation generally did not reach the groundwater reservoir at these depths. In the recharge zone the water table under the forest showed step-like diel pattern that refer to a lack of additional groundwater supply from below. The low groundwater evapotranspiration of the forest in the recharge zone was due to the lack of the groundwater supply in the recharge area. Similar patterns can be detected in the soil moisture of recharge and discharge zones as well. Our results suggest that local estimations of groundwater evapotranspiration from


    African Journals Online (AJOL)



    Oct 30, 2012 ... monitor and assess groundwater quality. Key words: ... improved yield/production and discharge of waste from ... Thus, the groundwater quality monitoring and .... D/Line. 28.51. 6.76. 49.42. 65.6. 23. ND. 60.24. 1.58. 10.361.

  16. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater quality data and calculated rate of contaminant migration, Part 1

    Energy Technology Data Exchange (ETDEWEB)


    This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  17. Thermal-sprayed, thin-film pyrite cathodes for thermal batteries -- Discharge-rate and temperature studies in single cells

    Energy Technology Data Exchange (ETDEWEB)



    Using an optimized thermal-spray process, coherent, dense deposits of pyrite (FeS{sub 2}) with good adhesion were formed on 304 stainless steel substrates (current collectors). After leaching with CS{sub 2} to remove residual free sulfur, these served as cathodes in Li(Si)/FeS{sub 2} thermal cells. The cells were tested over a temperature range of 450 C to 550 C under baseline loads of 125 and 250 mA/cm{sup 2}, to simulate conditions found in a thermal battery. Cells built with such cathodes outperformed standard cells made with pressed-powder parts. They showed lower interracial resistance and polarization throughout discharge, with higher capacities per mass of pyrite. Post-treatment of the cathodes with Li{sub 2}O coatings at levels of >7% by weight of the pyrite was found to eliminate the voltage transient normally observed for these materials. Results equivalent to those of standard lithiated catholytes were obtained in this manner. The use of plasma-sprayed cathodes allows the use of much thinner cells for thermal batteries since only enough material needs to be deposited as the capacity requirements of a given application demand.

  18. Calendar year 1995 groundwater quality report for the Chestnut Ridge Hydrogeological Regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. 1995 Groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)



    This annual groundwater quality report (GWQR) contains groundwater quality data obtained during the 1995 calendar year (CY) at several hazardous and nonhazardous waste management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The U.S. Environmental Protection Agency (EPA) identification number for the Y-12 Plant is TN.

  19. Bronchiolitis - discharge (United States)

    RSV bronchiolitis - discharge; Respiratory syncytial virus bronchiolitis - discharge ... Your child has bronchiolitis , which causes swelling and mucus to build up in the smallest air passages of the lungs. In the hospital, ...

  20. Simulation of regional ground-water flow in the Upper Deschutes Basin, Oregon (United States)

    Gannett, Marshall W.; Lite, Kenneth E.


    streams is also well simulated throughout the model. Ground-water discharge to streams in the area of the confluence of the Deschutes, Crooked, and Metolius Rivers is closely matched. The model was also calibrated to transient conditions from 1978 to 1997 using traditional trial-and-error methods. Climatic cycles during this period provided an excellent regional hydrologic signal for calibration. Climate-driven water-level fluctuations are simulated with reasonable accuracy over most of the model area. The timing and magnitude of simulated water-level fluctuations caused by annual pulses of recharge from precipitation match those observed reasonably well, given the limitations of the time discretization in the model. Water-level fluctuations caused by annual canal leakage are simulated very well over most of the area where such fluctuations occur. The transient model also simulates the volumetric distribution and temporal variations in ground-water discharge reasonably well. The match between simulated and measured volume of and variations in ground-water discharge is, however, somewhat dependent on geographic scale. The rates of and variations in ground-water discharge are matched best at regional scales. Example simulations were made to demonstrate the utility of the model for evaluating the effects of ground-water pumping or canal lining. Pumping simulations show that pumped water comes largely from aquifer storage when pumping begins, but as the water table stabilizes, the pumping increasingly diminishes the discharge to streams and, hence, streamflow. The time it takes for pumping to affect streamflow varies spatially depending, in general, on the location of pumping relative to the discharge areas. Canal-lining simulations show similar effects.

  1. Ground-Water Resources in Kaloko-Honokohau National Historical Park, Island of Hawaii, and Numerical Simulation of the Effects of Ground-Water Withdrawals (United States)

    Oki, Delwyn S.; Tribble, Gordon W.; Souza, William R.; Bolke, Edward L.


    Within the Kaloko-Honokohau National Historical Park, which was established in 1978, the ground-water flow system is composed of brackish water overlying saltwater. Ground-water levels measured in the Park range from about 1 to 2 feet above mean sea level, and fluctuate daily by about 0.5 to 1.5 feet in response to ocean tides. The brackish water is formed by mixing of seaward flowing fresh ground water with underlying saltwater from the ocean. The major source of fresh ground water is from subsurface flow originating from inland areas to the east of the Park. Ground-water recharge from the direct infiltration of precipitation within the Park area, which has land-surface altitudes less than 100 feet, is small because of low rainfall and high rates of evaporation. Brackish water flowing through the Park ultimately discharges to the fishponds in the Park or to the ocean. The ground water, fishponds, and anchialine ponds in the Park are hydrologically connected; thus, the water levels in the ponds mark the local position of the water table. Within the Park, ground water near the water table is brackish; measured chloride concentrations of water samples from three exploratory wells in the Park range from 2,610 to 5,910 milligrams per liter. Chromium and copper were detected in water samples from the three wells in the Park and one well upgradient of the Park at concentrations of 1 to 5 micrograms per liter. One semi-volatile organic compound, phenol, was detected in water samples from the three wells in the Park at concentrations between 4 and 10 micrograms per liter. A regional, two-dimensional (areal), freshwater-saltwater, sharp-interface ground-water flow model was used to simulate the effects of regional withdrawals on ground-water flow within the Park. For average 1978 withdrawal rates, the estimated rate of fresh ground-water discharge to the ocean within the Park is about 6.48 million gallons per day, or about 3 million gallons per day per mile of coastline

  2. Drought in groundwater-drought distribution and performance indicators

    NARCIS (Netherlands)

    Peters, E.; Lanen, van H.A.J.; Torfs, P.J.J.F.; Bier, G.


    In order to investigate how droughts are changed by the groundwater system and to analyse the performance of groundwater during drought, 10 time series of 1000 years of recharge and groundwater discharge were generated. The 10×1000 years of synthetic daily data were generated using Nearest Neighbour

  3. Simulation of groundwater withdrawal scenarios for the Redwall-Muav and Coconino Aquifer Systems of northern and central Arizona (United States)

    Pool, D.R.


    . Simulated changes in discharge for scenarios 2 and 3 are less than for scenario 1 because of lower rates of groundwater withdrawal. Scenario 3 resulted in greater groundwater discharge than scenarios 1 and 2 at all major groundwater discharge features from 2006 through 2105 except for Clear and Chevelon Creeks, where the same groundwater discharge was simulated by each of the three scenarios.Changes in groundwater discharge are expected to occur after 2105 to all major surface features that discharge from the Redwall-Muav and Coconino aquifers because change in aquifer storage was occurring at the end of the simulation in 2105. The accuracy of simulated changes resulting from the Coconino Plateau Water Advisory Council groundwater withdrawal scenarios is dependent on the persistence of several hydrologic assumptions that are inherent in the Northern Arizona Regional Groundwater Flow Model including, but not limited to, the reasonably accurate simulation of (1) transmissivity distributions, (2) distributions of vertical hydraulic properties, (3) distributions of spatial rates of withdrawal and incidental recharge, (4) aquifer extents, and (5) hydrologic barriers and conduits.

  4. Investigation of Surface Roughness and Material Removal Rate (MRR on Tool Steel Using Brass and Copper Electrode for Electrical Discharge Grinding (EDG Process

    Directory of Open Access Journals (Sweden)

    M. Hafiz Helmi


    Full Text Available This paper presents the investigation on surface roughness and material removal rate (MRR of tool steel machined with brass and copper electrode for Electrical Discharge Grinding (EDG process. The machining parameter include pulse ON time, pulse OFF time, peak current and capacitance. Analysis of variance (ANOVA with Taguchi method is used to investigate the significant effect on the performance characteristic and the optimal cutting parameters of EDG. The result shows that, the surface roughness value when using of both tool materials are mostly influenced by pulse ON time and peak current. The capacitance parameter in both experiments was not giving any significant effect. The significant factors for the material removal rate due to the machining parameter are peak current parameter and ON time parameter but it also can increase the machining time

  5. Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water–seawater interface in two Hawaiian groundwater systems (United States)

    Dimova, Natasha T.; Swarzenski, Peter W.; Dulaiova, Henrieta; Glenn, Craig R.


    Multichannel electrical resistivity (ER) measurements were conducted at two contrasting coastal sites in Hawaii to obtain new information on the spatial scales and dynamics of the fresh water–seawater interface and rates of coastal groundwater exchange. At Kiholo Bay (located on the dry, Kona side of the Big Island) and at a site in Maunalua Bay (Oahu), there is an evidence for abundant submarine groundwater discharge (SGD). However, the hydrologic and geologic controls on coastal groundwater discharge are likely to be different at these two sites. While at Kiholo Bay SGD is predominantly through lava tubes, at the Maunalua Bay site exchange occurs mostly through nearshore submarine springs. In order to calculate SGD fluxes, it is important to understand the spatial and temporal scales of coastal groundwater exchange. From ER time series data, subsurface salinity distributions were calculated using site-specific formation factors. A salinity mass balance box model was then used to calculate rates of point source (i.e., spatially discreet) and total fresh water discharge. From these data, mean SGD rates were calculated for Kiholo Bay (∼9,200 m3/d) and for the Maunalua Bay site (∼5,900 m3/d). While such results are on the same order of magnitude to geochemical tracer-derived SGD rates, the ER SGD rates provide enhanced details of coastal groundwater exchange that can enable a more cohesive whole watershed perspective.

  6. Fracture flow and groundwater compartmentalization in the Rollins Sandstone, Lower Mesaverde Group, Colorado, USA (United States)

    Mayo, Alan L.; Koontz, Wendell


    This paper presents a site-specific conceptual model of groundwater flow in fractured damage zones associated with faulting in a package of sedimentary rocks. The model is based on the results of field and laboratory investigations. Groundwater and methane gas inflows from fault-fracture systems in the West Elk coal mine, Colorado, USA, have occurred with increasing severity. Inflows of 6, 160 and 500 L s-1 discharged almost instantaneously from three separate faults encountered in mine workings about 460 m below ground level. The faults are about 600 m apart. The δ 2H and δ 18O compositions of the fault-related inflow waters and the hydrodynamic responses of each fault inflow indicate that the groundwaters discharge from hydraulically isolated systems. 14C data indicate that the groundwaters are as much as 10,500 years old. Discharge temperatures are geothermal (≈30°C), which could indicate upwelling from depth. However, calculations of geothermal gradients, analysis of solute compositions of groundwater in potential host reservoirs, geothermometer calculations, and results of packer testing indicate that the fractured groundwater reservoir is the Rollins Sandstone (120 m thick) directly beneath the coal seams. The packer test also demonstrates that the methane gas is contained in the coal seams. A geothermal gradient of 70-80°C km-1, related to an underlying intrusion, is probably responsible for the slightly elevated discharge temperatures. Large discharge volumes, as great as 8.2×105 m3 from the 14 South East Headgate fault (14 SEHG), rapid declines in discharge rates, and vertical and horizontal permeability (matrix permeability generally <0.006 Darcy) indicate fracture flow. An in-mine pumping test demonstrates that the 14 SEHG fault has excellent hydraulic communication with fractures 50 m from the fault. Aeromagnetic data indicate that the faults are tectonically related to an igneous body that is several thousand meters below the coal seams

  7. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary

    Energy Technology Data Exchange (ETDEWEB)

    Sadat-Noori, Mahmood, E-mail: [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia); Santos, Isaac R. [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); Tait, Douglas R. [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia); Maher, Damien T. [School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia)


    The role of groundwater in transporting nutrients to coastal aquatic systems has recently received considerable attention. However, the relative importance of fresh versus saline groundwater-derived nutrient inputs to estuaries and how these groundwater pathways may alter surface water N:P ratios remains poorly constrained. We performed detailed time series measurements of nutrients in a tidal estuary (Hat Head, NSW, Australia) and used radium to quantify the contribution of fresh and saline groundwater to total surface water estuarine exports under contrasting hydrological conditions (wet and dry season). Tidally integrated nutrient fluxes showed that the estuary was a source of nutrients to the coastal waters. Dissolved inorganic nitrogen (DIN) export was 7-fold higher than the average global areal flux rate for rivers likely due to the small catchment size, surrounding wetlands and high groundwater inputs. Fresh groundwater discharge was dominant in the wet season accounting for up to 45% of total dissolved nitrogen (TDN) and 48% of total dissolved phosphorus (TDP) estuarine exports. In the dry season, fresh and saline groundwater accounted for 21 and 33% of TDN export, respectively. The combined fresh and saline groundwater fluxes of NO{sub 3}, PO{sub 4}, NH{sub 4}, DON, DOP, TDN and TDP were estimated to account for 66, 58, 55, 31, 21, 53 and 47% of surface water exports, respectively. Groundwater-derived nitrogen inputs to the estuary were responsible for a change in the surface water N:P ratio from typical N-limiting conditions to P-limiting as predicted by previous studies. This shows the importance of both fresh and saline groundwater as a source of nutrients for coastal productivity and nutrient budgets of coastal waters. - Highlights: • Groundwater TDN and TDP fluxes account for 53 and 47% of surface water exports. • The estuary DIN export was 7-fold higher than the average global areal flux. • Fresh GW nutrient input dominated the wet season and

  8. Enhanced cycling stability and high rate dischargeability of (La,Mg)2Ni7-type hydrogen storage alloys with (La,Mg)5Ni19 minor phase (United States)

    Liu, Jingjing; Han, Shumin; Han, Da; Li, Yuan; Yang, Shuqin; Zhang, Lu; Zhao, Yumeng


    The A2B7-type lanthanum (La)-magnesium (Mg)-nickel (Ni)-based alloy with single (La,Mg)2Ni7 phase and different amounts of (La,Mg)5Ni19 minor phase was obtained by step-wise sintering. The impact of (La,Mg)5Ni19 phase on the alloy's microstructure and electrochemical performance was subsequently studied. It was found that the average subunit volume in (La,Mg)5Ni19 phase is smaller than that in (La,Mg)2Ni7 phase, resulting in increases of strains inside the alloys and decreases of cell volumes. During battery charge/discharge, the (La,Mg)5Ni19 phase network scattered in the alloys relieves internal stress, alleviates pulverization and oxidation of the alloys, stabilizes the stacking structures against amorphization, and finally improves the cycling stability of the alloys. Furthermore, (La,Mg)5Ni19 phase with higher Ni content desorbs hydrogen ahead of (La,Mg)2Ni7 phase. The reduced hydrogen pressure in (La,Mg)5Ni19 phase can subsequently lead to the fast discharge of (La,Mg)2Ni7 phase, thus making a remarkable improvement in high rate dischargeability at 1500 mA g-1 from 46.2% to 58.9% with increasing (La,Mg)5Ni19 phase abundance from 0 to 37.4 wt.%. Therefore, it is believed that A2B7-type La-Mg-Ni-based alloys with A5B19-type minor phase are promising prototypes for high-power and long-lifetime nickel/metal hydride battery electrode materials.

  9. Ground-water status report, Pearl Harbor area, Hawaii, 1978 (United States)

    Soroos, Ronald L.; Ewart, Charles J.


    Increasing demand for freshwater in Hawaii has placed heavy stress on many of the State 's basal aquifer systems. The most heavily stressed of these systems is the Pearl Harbor on Oahu. The Pearl Harbor basal aquifer supplies as much as 277 million gallons per day. Since early in this century, spring discharge has been declining while pumpage has been increasing. Total ground-water discharge has remained steady despite short-term fluctuations. Some wells show general increases in chloride concentration while others remain steady. Chloride concentrations throughout the area show no apparent increase since 1970. Basal water head maps of the Pearl Harbor area clearly reflect the natural discharge points, which are the springs located along the shore near the center of Pearl Harbor. Basal-water hydrographs show a general decline of about 0.09 foot per year. This implies depletion of storage at a rate of about 25 million gallons per day. (USGS).

  10. A multi-method approach for groundwater resource assessment in coastal carbonate (karst) aquifers: the case study of Sierra Almijara (southern Spain) (United States)

    Andreo, B.; Barberá, J. A.; Mudarra, M.; Marín, A. I.; García-Orellana, J.; Rodellas, V.; Pérez, I.


    Understanding the transference of water resources within hydrogeological systems, particularly in coastal aquifers, in which groundwater discharge may occur through multiple pathways (through springs, into rivers and streams, towards the sea, etc.), is crucial for sustainable groundwater use. This research aims to demonstrate the usefulness of the application of conventional recharge assessment methods coupled to isotopic techniques for accurately quantifying the hydrogeological balance and submarine groundwater discharge (SGD) from coastal carbonate aquifers. Sierra Almijara (Southern Spain), a carbonate aquifer formed of Triassic marbles, is considered as representative of Mediterranean coastal karst formations. The use of a multi-method approach has permitted the computation of a wide range of groundwater infiltration rates (17-60%) by means of direct application of hydrometeorological methods (Thornthwaite and Kessler) and spatially distributed information (modified APLIS method). A spatially weighted recharge rate of 42% results from the most coherent information on physiographic and hydrogeological characteristics of the studied system. Natural aquifer discharge and groundwater abstraction have been volumetrically quantified, based on flow and water-level data, while the relevance of SGD was estimated from the spatial analysis of salinity, 222Rn and the short-lived radium isotope 224Ra in coastal seawater. The total mean aquifer discharge (44.9-45.9 hm3 year-1) is in agreement with the average recharged groundwater (44.7 hm3 year-1), given that the system is volumetrically equilibrated during the study period. Besides the groundwater resources assessment, the methodological aspects of this research may be interesting for groundwater management and protection strategies in coastal areas, particularly karst environments.

  11. Trace element geochemistry of groundwater in a karst subterranean estuary (Yucatan Peninsula, Mexico) (United States)

    Gonneea, Meagan Eagle; Charette, Matthew A.; Liu, Qian; Herrera-Silveira, Jorge A.; Morales-Ojeda, Sara M.


    of the aquifer matrix following organic matter degradation and redox processes including sulfate reduction (salinity: 0.2-36.6, Ba: 7-1630 nmol kg-1, Sr: 1.3-210 μmol kg-1, U: 0.3-18 nmol kg-1, Mn: 0.6-2600 nmol kg-1, Ca: 2.1-15.2 mmol kg-1, 226Ra 20-5120 dpm 100 L-1). However, there is no evidence in the spring geochemistry that deep marine groundwater within this reaction zone exchanges with the coastal ocean via spring discharge. Total submarine groundwater discharge rates calculated from radium tracers are 40-95 m3 m-1 d-1, with terrestrial discharge contributing 75 ± 25% of the total. Global estimates of chemical loading from karst subterranean estuaries suggest Sr and U fluxes are potentially 15-28% and 7-33% of total ocean inputs (8.2-15.3 mol y-1 and 4.0-7.7 mol y-1), respectively. Radium-226 inputs from karst subterranean estuaries are 34-50 times river inputs (6.7-9.9 × 1016 dpm y-1).

  12. Application of factor analysis and electrical resistivity to understand groundwater contributions to coastal embayments in semi-arid and hypersaline coastal settings

    Energy Technology Data Exchange (ETDEWEB)

    Bighash, Paniz, E-mail:; Murgulet, Dorina


    Groundwater contributions and sources of salinity to Oso Bay in south Texas were investigated using multivariate statistical analysis of geochemical data and multitemporal electrical resistivity tomography surveys. Both analysis of geochemical data and subsurface imaging techniques identified two commonalities for the investigated system: 1) hypersaline water occurs near the groundwater/surface water interface during wet conditions creating reverse hydraulic gradients due to density effects. The development and downward movement of these fluids as continuous plumes deflect fresher groundwater discharge downward and laterally away from the surface; and 2) more pronounced upwelling of fresher groundwater occurs during drought periods when density inversions are more defined and are expected to overcome dispersion and diffusion processes and create sufficiently large-enough unstable gradients that induce density-difference convection. Salinity mass-balance models derived from time-difference resistivity tomograph and in-situ salinity data reaffirm these findings indicating that groundwater upwelling is more prominent during dry to wet conditions in 2013 (~ 545.5 m{sup 3}/d) and is less pronounced during wet to dry conditions in 2012 (~ 262.7 m{sup 3}/d) for the 224 m{sup 2} area surveyed. Findings show that the highly saline nature of water in this area and changes in salinity regimes can be attributed to a combination of factors, namely: surface outflows, evapoconcentration, recirculation of hypersaline groundwaters, and potential trapped oil field brines. Increased drought conditions will likely exacerbate the rate at which salinity levels are increasing in bays and estuaries in semi-arid regions where both hypersaline groundwater discharge and high evaporation rates occur simultaneously. - Highlights: • Study of salinity regimes in relation to groundwater in a coastal semiarid setting • Factor analysis defined dominant factors influencing water quality

  13. Groundwater-level trends and forecasts, and salinity trends, in the Azraq, Dead Sea, Hammad, Jordan Side Valleys, Yarmouk, and Zarqa groundwater basins, Jordan (United States)

    Goode, Daniel J.; Senior, Lisa A.; Subah, Ali; Jaber, Ayman


    Changes in groundwater levels and salinity in six groundwater basins in Jordan were characterized by using linear trends fit to well-monitoring data collected from 1960 to early 2011. On the basis of data for 117 wells, groundwater levels in the six basins were declining, on average about -1 meter per year (m/yr), in 2010. The highest average rate of decline, -1.9 m/yr, occurred in the Jordan Side Valleys basin, and on average no decline occurred in the Hammad basin. The highest rate of decline for an individual well was -9 m/yr. Aquifer saturated thickness, a measure of water storage, was forecast for year 2030 by using linear extrapolation of the groundwater-level trend in 2010. From 30 to 40 percent of the saturated thickness, on average, was forecast to be depleted by 2030. Five percent of the wells evaluated were forecast to have zero saturated thickness by 2030. Electrical conductivity was used as a surrogate for salinity (total dissolved solids). Salinity trends in groundwater were much more variable and less linear than groundwater-level trends. The long-term linear salinity trend at most of the 205 wells evaluated was not increasing, although salinity trends are increasing in some areas. The salinity in about 58 percent of the wells in the Amman-Zarqa basin was substantially increasing, and the salinity in Hammad basin showed a long-term increasing trend. Salinity increases were not always observed in areas with groundwater-level declines. The highest rates of salinity increase were observed in regional discharge areas near groundwater pumping centers.

  14. 氡和镭同位素在沿岸海底地下水研究中的应用%Application of Radon and Radium Isotopes in Estimating Submarine Groundwater Discharge in Coastal Areas

    Institute of Scientific and Technical Information of China (English)

    李开培; 郭占荣; 袁晓婕; 章斌; 马志勇


    海底地下水排泄(SGD)是海岸带陆海相互作用的一个重要的过程,其重要意义体现在它对海岸带水循环和地球化学循环的影响,以及它对沿岸海域生态环境的影响.国际上自从20世纪90年代中期开始系统研究海底地下水排泄以来,已经研究和开发出一整套较为完善的理论和方法,但SGD的研究在我国才刚刚起步,相关报道极少见且缺乏不同方法的对比研究.目前,评价SGD常用的方法有:渗流仪法、数值模拟法和地球化学示踪法.其中以氡和镭为代表的地球化学示踪法成为最具影响力的评价方法.该文详细介绍用氡和镭同位素评价SGD的理论和方法及其适用条件.%Submarine groundwater discharge (SGD) is recognized as an important land-sea interaction in the coastal zone, for it is volumetrically and chemically significant to coastal water and chemical budgets, and it may have an influence on coastal ecological environment. Since the mid 90's, a set of relatively complete theories and methods has been developed and established due to the systematic researches on SGD internationally. However the study on SGD has just begun in China, its relevant report is rarely available and short of comparison experiments of different methods.The current methods for SGD estimation mainly include: seepage meter measurement, numerical simulation,geochemical tracing method. Among those methods,geochemical tracing method has become one of the most powerful methods, and radium and radon as the representative of geochemical tracers has been extensively used. The methods and applicable conditions of SGD estimation using radon and radium isotopes are introduced in detail.

  15. Calendar year 1993 groundwater quality report for the Bear Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater and surface water quality data and calculated rate of contaminant migration, Part 1

    Energy Technology Data Exchange (ETDEWEB)


    This report contains groundwater and surface-water quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (Bear Creek Regime), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater and surface water report for the Bear Creek Regime is completed in two-parts; Part 1 (this report) containing the groundwater and surface-water quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater and surface-water quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  16. Climate Change and Groundwater-Implications for Global Food and Water Security (United States)

    Dettinger, M. D.; Earman, S.; Funk, C. C.


    Current projections of 21st Century climate change indicate that warming temperatures and changing precipitation may threaten water sources in many regions. Many projections have been developed of the potential impacts on surface water supplies, but few have yet been developed for groundwater systems. Groundwater systems, though, may be quite vulnerable to the effects of climate change, with changes in precipitation amounts and timing directly challenging recharge and pumpage in many settings, and the effects of warming on evapotranspiration demands and on the intensities of rainfall and runoff indirectly impacting groundwater recharge and discharge rates and locations. Another potential indirect impact of warming on groundwater may be through changes in precipitation form. In many regions, groundwater recharge is preferentially derived from melting snowpacks, because seasonal snowpacks accumulate precipitation from multiple storms prior to releasing it in slow steady streams that are well suited for possible recharge, especially in relatively dry settings. Loss of snowpacks due to warming trends, like those in western North America, is likely to disrupt and, in many settings, decrease past recharge patterns and totals, and indeed recharge may be even more vulnerable to warming effects than is surface runoff in many settings. These potential impacts on groundwater should be of widespread concern because groundwater pumpage supplies much of the water used for irrigated agriculture globally. Recent mapping (by others) has identified broad areas where groundwater withdrawals are outpacing recharge rates beneath Pakistan and northwestern India, the Great Plains of North America, parts of northern Argentina and Bolivia, large parts of central Asia, and elsewhere. Notably, many of these same areas are on the ramparts of mountain ranges that may be particularly prone to loss of snowpack under even moderate warming trends, e.g., as indicated by having large fractions of

  17. Estimate of regional groundwater recharge rate in the Central Haouz Plain, Morocco, using the chloride mass balance method and a geographical information system (United States)

    Ait El Mekki, Ouassil; Laftouhi, Nour-Eddine; Hanich, Lahoucine


    Located in the extreme northwest of Africa, the Kingdom of Morocco is increasingly affected by drought. Much of the country is characterised by an arid to semi-arid climate and the demand for water is considerably higher than the supply, particularly on the Haouz Plain in the centre of the country. The expansion of agriculture and tourism, in addition to industrial development and mining, have exacerbated the stress on water supplies resulting in drought. It is therefore necessary to adopt careful management practices to preserve the sustainability of the water resources in this region. The aquifer recharge rate in the piedmont region that links the High Atlas and the Central Haouz Plain was estimated using the chloride mass balance hydrochemical method, which is based on the relationship between the chloride concentrations in groundwater and rainwater. The addition of a geographical information system made it possible to estimate the recharge rate over the whole 400 km2 of the study area. The results are presented in the form of a map showing the spatialized recharge rate, which ranges from 13 to 100 mm/year and the recharge percentage of the total rainfall varies from 3 to 25 % for the hydrological year 2011-2012. This approach will enable the validation of empirical models covering areas >6200 km2, such as the Haouz nappe.


    Energy Technology Data Exchange (ETDEWEB)

    J.H. Payer


    The stress corrosion crack initiation and growth rate response was evaluated on as-received, as-welded, cold worked and aged Alloy 22 (UNS N06022) and titanium Grades 7 (UNS R52400), 28 (UNS R55323) and 29 (UNS R56404) at 105-165 C in various aerated, concentrated groundwater environments. Time-to-failure experiments on actively-loaded tensile specimens at 105 C evaluated the effects of applied stress, welding, surface finish, shot peening, cold work, crevicing, and aging treatments in Alloy 22 (UNS N06022), and found these materials to be highly resistant to SCC (none observed). Long-term U-bend data at 165 C corroborated these findings. Titanium Grade 7 and stainless steels were also included in the 105 C test matrix. Long term crack growth rate data showed stable crack growth in titanium Grade 7. Recent creep tests in air confirm literature data that these alloys are quite susceptible to creep failure, even below the yield stress, and it is unclear whether cracking in SCC tests is only accelerated by the creep response, or whether creep is responsible for cracking. Alloy 22 exhibited stable growth rates under ''gentle'' cyclic loading, but was prone to crack arrest at fully static loading. No effect of Pb additions was observed.

  19. 1:1,000,000-scale estimated outer extent of areas of groundwater discharge as evapotranspiration for the Great Basin carbonate and alluvial aquifer system of Nevada, Utah, and parts of adjacent states (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a study focusing on groundwater resources in the Great Basin carbonate and alluvial aquifer system (GBCAAS). The GBCAAS is a...

  20. Groundwater Management Policies for Maintaining Stream Flow Given Variable Climatic Conditions (United States)

    Pohll, G.; Carroll, R. W.; Brozovic, N.


    scale. Second, targeted reductions in pumping are modeled in which reductions in pumping may vary between stakeholders to account for spatial variability in expected system dynamics. Third, dynamic targeted reductions that are allowed to vary annually are modeled, allowing policy responsiveness to both variable climate and nonlinearity of system dynamics. Optimization is done to maximize the volume of stream discharge increased per area of lost crop production for given rates of reduced groundwater pumping. We explore the extent to which increased complexity in policy - which is administratively costly to implement - improves cost-effectiveness relative to simpler policies. Moreover, we consider how nonlinear feedback in system response to reduced groundwater pumping may favor certain kinds of policies over others based on mandated regulatory objectives and climatic shifts.

  1. Characterizing rapid capacity fade and impedance evolution in high rate pulsed discharged lithium iron phosphate cells for complex, high power loads (United States)

    Wong, Derek N.; Wetz, David A.; Heinzel, John M.; Mansour, Azzam N.


    Three 26650 LiFePO4 (LFP) cells are cycled using a 40 A pulsed charge/discharge profile to study their performance in high rate pulsed applications. This profile is used to simulate naval pulsed power loads planned for deployment aboard future vessels. The LFP cells studied experienced an exponential drop in their usable high-rate recharge capacity within sixty cycles due to a rapid rise in their internal resistance. Differential capacitance shows that the voltage window for charge storage is pushed outside of the recommended voltage cutoff limits. Investigation into the state of health of the electrodes shows minimal loss of active material from the cathode to side reactions. Post-mortem examination of the anodic surface films reveals a large increase in the concentration of reduced salt compounds indicating that the pulsed profile creates highly favorable conditions for LiPF6 salt to break down into LiF. This film slows the ionic movement at the interface, affecting transfer kinetics, resulting in charge buildup in the bulk anode without successful energy storage. The results indicate that the use of these cells as a power supply for high pulsed power loads is hindered because of ionically resistant film development and not by an increasing rate of active material loss.


    Directory of Open Access Journals (Sweden)

    T. N. Bukharova


    Full Text Available According to the data available in the literature, as high as 50% of women have benign breast tumors frequently accompanied by nip- ple discharge. Nipple discharge may be serous, bloody, purulent, and colostric. The most common causes are breast abscess, injury, drugs, prolactinoma, intraductal pappiloma, ductal ectasia, intraductal cancer (not more than 10%.

  3. Simulation of groundwater flow and interaction of groundwater and surface water on the Lac du Flambeau Reservation, Wisconsin (United States)

    Juckem, Paul F.; Fienen, Michael N.; Hunt, Randall J.


    management, were simulated (at current discharge rates) to evaluate the potential extent of wa

  4. Preparation of low cobalt high rate discharge hydrogen storage alloy MlNi3.85Co0.45Mn0.4Al0.3X0.1(X=Mg,Si,Sn)

    Institute of Scientific and Technical Information of China (English)

    刘开宇; 张平民; 唐有根


    The non-stoichiometric high rate discharge hydrogen storage alloys series MlNi3.85Co0.45Mn0.4Al0.3X0.1 (Ml represents the lanthanum-rich mischmetal, and X=Mg,Si,Sn) were prepared. The XRD and EDS results show that the high catalysis active miscellaneous La2Ni7 phase forms except for main phase LaNi5 in the alloy body. The high rate discharge performance of hydrogen storage alloys electrode was improved because of the formation of La2Ni7 phase. The discharge capacities at 0.2C, 1C and 5C discharge rate reach 320mAh*g-1, 300 mAh*g-1 and 260 mAh*g-1 respectively when X is (Mg+Si). At the same scanning rate of circular volt-ampere testing, the surface anode oxidation peak current and peak area of the alloy containing (Mg+Si) electrode are far more larger than that of the high cobalt alloy MlNi3.55Co0.75Mn0.4Al0.3 (AB5). Furthermore, the cobalt content of the hydrogen storage alloy containing (Mg+Si) decreases by 40% and the high rate discharge performance improves obviously compare to high cobalt AB5 alloys, it is promising that the hydrogen storage alloy containing (Mg+Si) becomes to an ideal dynamic battery cathode material.

  5. Reaction rates at 297 {plus_minus} 3 K of four benzyl type radicals with O{sub 2}, NO, and NO{sub 2} by discharge flow/laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Goumri, A.; Elmaimouni, L.; Sawerysyn, J.P.; Devolder, P. [Universite des Sciences et Techniques, Villeneuve D`Ascq (France)


    The rate constants of 4 benzyl type radicals with O{sub 2}, NO, and NO{sub 2} are measured by discharge flow/laser-induced fluorescence. The ratio of these rate constants with NO and O{sub 2} indicates that tropospheric o- and m-methylbenzyl radicals are scavenged by O{sub 2}. 50 refs., 5 figs., 4 tabs.

  6. Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico (United States)

    Pool, D.R.; Dickinson, Jesse E.


    A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.

  7. Groundwater discharge in high-mountain watersheds: A valuable resource for downstream semi-arid zones. The case of the Bérchules River in Sierra Nevada (Southern Spain). (United States)

    Jódar, Jorge; Cabrera, José Antonio; Martos-Rosillo, Sergio; Ruiz-Constán, Ana; González-Ramón, Antonio; Lambán, Luis Javier; Herrera, Christian; Custodio, Emilio


    Aquifers in permeable formations developed in high-mountain watersheds slow down the transfer of snowmelt to rivers, modifying rivers' flow pattern. To gain insight into the processes that control the hydrologic response of such systems the role played by groundwater in an alpine basin located at the southeastern part of the Iberian Peninsula is investigated. As data in these environments is generally scarce and its variability is high, simple lumped parameter hydrological models that consider the groundwater component and snow accumulation and melting are needed. Instead of using existing models that use many parameters, the Témez lumped hydrological model of common use in Spain and Ibero-American countries is selected and modified to consider snow to get a simplified tool to separate hydrograph components. The result is the TDD model (Témez-Degree Day) which is applied in a high mountain watershed with seasonal snow cover in Southern Spain to help in quantifying groundwater recharge and determining the groundwater contribution to the outflow. Average groundwater recharge is about 23% of the precipitation, and groundwater contribution to total outflow ranges between 70 and 97%. Direct surface runoff is 1% of precipitation. These values depend on the existence of snow. Results are consistent with those obtained with chloride atmospheric deposition mass balances by other authors. They highlight the important role of groundwater in high mountain areas, which is enhanced by seasonal snow cover. Results compare well with other areas. This effect is often neglected in water planning, but can be easily taken into account just by extending the water balance tool in use, or any other, following the procedure that has being developed.

  8. Groundwater/Surface-Water Interaction in the Context of South African Water Policy (United States)

    Levy, J.; Xu, Y.


    Groundwater/surface-water interaction is receiving increasing focus in Africa due to its importance to ecologic systems and sustainability. South Africa’s 1998 National Water Act (NWA) recognized water as a basic human right and its importance for ecological sustainability. Ecological integrity of water resources was considered an important component in redressing past social inequities, eliminating poverty, and encouraging economic development. Under the NWA, groundwater-use licenses are granted only after setting aside the groundwater Reserve, the amount of water needed to supply basic human needs and preserve a minimum degree of ecological integrity. One challenge to successful implementation of the NWA, therefore, is the accurate quantification of groundwater contributions to aquatic ecosystems. This is especially true considering that so many of South Africa’s aquifers are in highly heterogeneous and anisotropic fractured-rock settings. The most common approach taken in South Africa is estimation of average annual flux rates at the regional scale of quaternary catchments with baseflow separation techniques and then applying a water-budget approach, subtracting the groundwater discharge rate from the recharge rate. The water-balance approach might be a good first step, but it ignores spatial and temporal variability, potentially missing the local impacts associated with placement of production boreholes. Identification of discrete areas of groundwater discharge could be achieved with stable-isotopic and geochemical analyses and vegetative mapping. Groundwater-flow modeling should be used where possible as it holistically incorporates available data and can predict impacts of groundwater extraction and development based on the relative positions of boreholes and surface-water bodies. Sustainable development entails recognition of the trade-offs between preservation and development. There will always be scientific uncertainty associated with estimation and

  9. Discharge Dialogue

    DEFF Research Database (Denmark)

    Horsbøl, Anders


    less attention has been given to medical patients, who are often elderly and suffer from multiple diseases. This paper addresses the latter issue with a case study of a local initiative to improve transition from hospital to home (care) for medical patients at a Danish hospital, in which a discharge...... coordinator, employed at the hospital, is supposed to anticipate discharge and serve as mediator between the hospital and the municipal home care system. Drawing on methods from discourse and interaction analysis, the paper studies the practice of the discharge coordinator in two encounters between patients...

  10. Groundwater dating for understanding nitrogen in groundwater systems - Time lag, fate, and detailed flow path ways (United States)

    Morgenstern, Uwe; Hadfield, John; Stenger, Roland


    Nitrate contamination of groundwater is a problem world-wide. Nitrate from land use activities can leach out of the root zone of the crop into the deeper part of the unsaturated zone and ultimately contaminate the underlying groundwater resources. Nitrate travels with the groundwater and then discharges into surface water causing eutrophication of surface water bodies. To understand the source, fate, and future nitrogen loads to ground and surface water bodies, detailed knowledge of the groundwater flow dynamics is essential. Groundwater sampled at monitoring wells or discharges may not yet be in equilibrium with current land use intensity due to the time lag between leaching out of the root zone and arrival at the sampling location. Anoxic groundwater zones can act as nitrate sinks through microbial denitrification. However, the effect of denitrification on overall nitrate fluxes depends on the fraction of the groundwater flowing through such zones. We will show results from volcanic aquifers in the central North Island of New Zealand where age tracers clearly indicate that the groundwater discharges into large sensitive lakes like Lake Taupo and Lake Rotorua are not yet fully realising current land use intensity. The majority of the water discharging into these lakes is decades and up to over hundred years old. Therefore, increases in dairy farming over the last decades are not yet reflected in these old water discharges, but over time these increased nitrate inputs will eventually work their way through the large groundwater systems and increasing N loads to the lakes are to be expected. Anoxic zones are present in some of these aquifers, indicating some denitrification potential, however, age tracer results from nested piezo wells show young groundwater in oxic zones indicating active flow in these zones, while anoxic zones tend to have older water indicating poorer hydraulic conductivity in these zones. Consequently, to evaluate the effect of denitrification

  11. Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence (United States)

    Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman


    Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.

  12. Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence (United States)

    Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman


    Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.

  13. Groundwater Sustainability through a Novel Dewatering Technology (United States)

    Jin, Y.; Holzbecher, E.; Ebneth, S.


    Groundwater plays a key role in the hydrologic cycle and ecosystem balances. Over the past decades, groundwater is intensively extracted in order to keep construction or mining sites dry. For the latter purpose the pumped water is usually discharged into a nearby surface water body or injected into an aquifer distant from the abstraction sites. As a result, aquifers are depleted and the local eco-system is disrupted as a consequence of falling groundwater tables. Given ongoing pressure on aquifer from abstraction sites, it is vital to bring up adequate attention on groundwater conservation. We demonstrate a novel technique, Düsensauginfiltration (DSI, translated as 'nozzel-suction-infiltration'), which avoids water conveyance but still lowers the groundwater table locally. The method combines abstraction of groundwater at the upper part of the aquifer with injection in the same borehole, but at a greater depth. Hence no water is withdrawn from the system. The method is already used practically in Germany, Netherlands, and China, however, it is not yet fully scientifically understood and evaluated. Currently, two tests sites in Germany, for single and multi well respectively, are selected, at which the DSI technology is currently examined. The project is cooperated with a leading dewatering company (Hoelscher Wasserbau GmbH) and funded by Deutsche Bundesstiftung Umwelt (DBU). To provide the basic principle of the method, we present numerical models solving the differential equation, which is derived from Darcy's Law and mass conservation, describing groundwater flow. We set up stationary numerical models in 2D (vertical cross section for single well case) and 3D (multi well case and/or when ambient groundwater flow is considered) using COMSOL Multiphysics. Since our model region only involves the saturated part of the unconfined aquifer, the numerical model solves a free boundary problem using hydraulic pressure as unknown variable. Two physical modes are included

  14. Ileostomy - discharge (United States)

    ... foods that may block your stoma are raw pineapple, nuts and seeds, celery, popcorn, corn, dried fruits ( ... ask your doctor Living with your ileostomy Low-fiber diet Small bowel resection - discharge Total colectomy or ...

  15. Gallstones - discharge (United States)

    ... this page: // Gallstones - discharge To use the sharing features on this page, please enable JavaScript. You have gallstones. These are hard, pebble-like deposits that formed ...

  16. Trends in drop out, drug free discharge and rates of re-presentation: a retrospective cohort study of drug treatment clients in the North West of England

    Directory of Open Access Journals (Sweden)

    McVeigh Jim


    Full Text Available Abstract Background Governments aim to increase treatment participation by problematic drug users. In the UK this has been achieved by fiscal investment, an expanded workforce, reduced waiting times and coercive measures (usually criminal justice (CJ led. No assessment of these measures on treatment outcomes has been made. Using established monitoring systems we assessed trends in 'dropped out' and 'discharged drug free' (DDF, since the launch of the national drug strategy, and rates of treatment re-presentation for these cohorts. Methods A longitudinal dataset of drug users (1997 to 2004/05, n = 26,415 was used to identify people who dropped out of, and were DDF from, services for years 1998 to 2001/02, and re-presentations of these people in years to 2004/05. Trends in drop out and DDF, baseline comparisons of those DDF and those who dropped out and outcome comparisons for those referred from the CJ system versus other routes of referral were examined using chi square. Logistic regression analyses identified variables predicting drop out versus DDF and subsequent re-presentation versus no re-presentation. Results The proportion of individuals dropping out has increased from 7.2% in 1998 to 9.6% in 2001/02 (P Conclusion Increasing numbers in treatment is associated with an increased proportion dropping out and an ever-smaller proportion DDF. Rates of drop out are significantly higher for those coerced into treatment via the CJ system. Rates of re-presentation are similar for those dropping out and those DDF. Encouragingly, those who need to re-engage with treatment, particularly those who drop out, are doing so more quickly. The impact of coercion on treatment outcomes and the appropriateness of aftercare provision require further consideration.

  17. Understanding Groundwater-Surface Water Interactions Using a Paired Tracer Approach in Alberta's Rocky Mountains (United States)

    Spencer, S. A.; Silins, U.; Anderson, A.; Collins, A.; Williams, C.


    The eastern slopes of the Rocky Mountains produce the majority of Alberta's surface water supply. While land disturbance affects hydrologic processes governing runoff and water quality, groundwater-surface water interactions may be an important component of catchment resistance to hydrological change. The objectives of this study were to describe reach and sub-catchment coupling of groundwater and surface water processes and to characterize the role of groundwater contribution to surface discharge across spatial and temporal scales. This research is part of Phase II of the Southern Rockies Watershed Project investigating the hydrological effects of three forest harvest treatments (clear-cutting with retention, strip cutting, and partial-cutting) in the front-range Rocky Mountains in the Crowsnest Pass, Alberta. Six nested hydrometric stations in Star Creek (10.4 km2) were used to collect pre-disturbance stream discharge and water quality data (2009-2014). Instantaneous differential streamflow gauging was conducted on reaches ~700 m in length to define stream reaches that were gaining or losing water. Constant rate tracer injection was conducted on gaining reaches to further refine regions of groundwater inputs during high flows, the recession limb of the annual hydrograph, and summer baseflows. Despite being a snow-dominated catchment, groundwater is a major contributor to annual streamflow (60 - 70 %). In general, locations of gaining and losing reaches were consistent across spatial and temporal scales of investigation. A strong losing reach in one sub-basin was observed where underflow may be responsible for the loss of streamflow along this section of the stream. However, strong groundwater upwelling was also observed in a reach lower in the catchment likely due to a "pinch-point" in topographic relief. Spatial and temporal variations in groundwater-surface water interactions are likely important factors in hydrologic resistance to land disturbance.

  18. Interstitial lung disease - adults - discharge (United States)

    Diffuse parenchymal lung disease - discharge; Alveolitis - discharge; Idiopathic pulmonary pneumonitis - discharge; IPP - discharge; Chronic interstitial lung - discharge; Chronic respiratory interstitial lung - discharge; Hypoxia - interstitial lung - discharge

  19. Erosion rates, sediment transport and characteristic discharge in a transient landscape in the Entle catchment (northern border of the Central Alps, Switzerland) (United States)

    van den Berg, Fabien; Schlunegger, Fritz; Norton, Kevin


    The 65 km2-large Entle catchment is located at the northern border of the Central Alps of Switzerland and is underlain by various lithologies including Flysch, carbonate sequences, Molasse deposits and glacial till. It has been subjected to headward knickpoint migration since the termination of the LGM (16 ± 3 ka), due to a base level fall upon glacial retreat. The incised portions of the catchment were delineated within a GIS environment in an effort to calculate volumetric differences between the glacial surface and the modern topography. The sediment budget estimates yield an average erosion rate of 1.93 ± 0.36 mm.yr-1 in the incised reaches, and a maximum local erosion rate of 11.47 ± 2.15 mm.yr-1. Assuming that there has been no erosion elsewhere, the basin-wide averaged erosion rate is estimated at 0.31 ± 0.06 mm.yr-1. This is consistent with 10Be-based denudation rates measured in adjacent catchments. Although constant erosion rates are generally assumed for studies involving 10Be analysis, field evidence indicate that headward knickzone migration through bedrock and unconsolidated glacial till has destabilized the surrounding hillslopes, resulting in supply of large volumes of sediment to the trunk channel by landsliding and/or debris flows downstream the knickzone. This additional influx of sediments may raise the local base level within the incised reach, thus perturbing the migration of the knickzone for a limited time interval. This time span critically depends on the relative importance between the probability density function (PDF) of the sediment particle size supplied by mass failure processes and debris flows, and the characteristic water discharge magnitude to remove that material. Measurements of the PDFs of the sediment particles along the incised Entle reach together with the application a simple long profile stream-power model for the entrainment and transport of sediment allow the identification of characteristic bed-forming discharge

  20. Groundwater modeling of Saq Aquifer Buraydah Al Qassim for better water management strategies. (United States)

    Al-Salamah, Ibrahim S; Ghazaw, Yousry M; Ghumman, Abdul Razzaq


    Saudi Arabia is an arid country. It has limited water supplies. About 80-90% of water supplies come from groundwater, which is depleting day by day. It needs appropriate management. This paper has investigated groundwater modeling of Saq Aquifer in Buraydah Al Qassim to estimate the impact of its excessive use on depletion of Saq Aquifer. MODFLOW model has been used in this study. Data regarding the aquifer parameters was measured by pumping tests. Groundwater levels and discharge of wells in the area for the year 2008 and previous record of year 1999 have been collected from Municipal Authority of Buraydah. Location of wells was determined by Garmin. The model has been run for different sets of pumping rates to recommend an optimal use of groundwater resources and get prolonged life of aquifer. Simulations have been made for a long future period of 27 years (2008-2035). Model results concluded that pumping from the Saq Aquifer in Buraydah area will result into significant cones of depression if the existing excessive pumping rates prevail. A drawdown up to 28 m was encountered for model run for 27 years for existing rates of pumping. Aquifer withdrawals and drawdowns will be optimal with the conservation alternative. The management scheme has been recommended to be adopted for the future protection of groundwater resources in Kingdom of Saudi Arabia.

  1. State Waste Discharge Permit application, 183-N Backwash Discharge Pond

    Energy Technology Data Exchange (ETDEWEB)


    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE91NM-177 requires a series of permitting activities for liquid effluent discharges. Liquid effluents on the Hanford Site have been classified as Phase I, Phase II, and Miscellaneous Streams. The Consent Order No. DE91NM-177 establishes milestones for State Waste Discharge Permit application submittals for all Phase I and Phase II streams, as well as the following 11 Miscellaneous Streams as identified in Table 4 of the Consent Order No. DE91NM-177.

  2. Influence of temporally variable groundwater flow conditions on point measurements and contaminant mass flux estimations