WorldWideScience

Sample records for groundwater database interactively

  1. Database of Interacting Proteins (DIP)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The DIP database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent...

  2. InterAction Database (IADB)

    Science.gov (United States)

    The InterAction Database includes demographic and prescription information for more than 500,000 patients in the northern and middle Netherlands and has been integrated with other systems to enhance data collection and analysis.

  3. Protein-Protein Interaction Databases

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Jensen, Lars Juhl

    2015-01-01

    of research are explored. Here we present an overview of the most widely used protein-protein interaction databases and the methods they employ to gather, combine, and predict interactions. We also point out the trade-off between comprehensiveness and accuracy and the main pitfall scientists have to be aware......Years of meticulous curation of scientific literature and increasingly reliable computational predictions have resulted in creation of vast databases of protein interaction data. Over the years, these repositories have become a basic framework in which experiments are analyzed and new directions...

  4. Database Description - Yeast Interacting Proteins Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available Yeast Interacting Proteins Database Database Description General information of database Database name Yeast... Interacting Proteins Database Alternative name - Creator Creator Name: Takashi Ito* Creator Affiliation: Di...-4-7136-3989 FAX: +81-4-7136-3979 E-mail : Database classification Metabolic and Signaling Pathways - Protei...n-protein interactions Organism Taxonomy Name: Saccharomyces cerevisiae Taxonomy ID: 4932 Database descripti...ive yeast two-hybrid analysis of budding yeast proteins. Features and manner of utilization of database Prot

  5. Interactive bibliographical database on color

    Science.gov (United States)

    Caivano, Jose L.

    2002-06-01

    The paper describes the methodology and results of a project under development, aimed at the elaboration of an interactive bibliographical database on color in all fields of application: philosophy, psychology, semiotics, education, anthropology, physical and natural sciences, biology, medicine, technology, industry, architecture and design, arts, linguistics, geography, history. The project is initially based upon an already developed bibliography, published in different journals, updated in various opportunities, and now available at the Internet, with more than 2,000 entries. The interactive database will amplify that bibliography, incorporating hyperlinks and contents (indexes, abstracts, keywords, introductions, or eventually the complete document), and devising mechanisms for information retrieval. The sources to be included are: books, doctoral dissertations, multimedia publications, reference works. The main arrangement will be chronological, but the design of the database will allow rearrangements or selections by different fields: subject, Decimal Classification System, author, language, country, publisher, etc. A further project is to develop another database, including color-specialized journals or newsletters, and articles on color published in international journals, arranged in this case by journal name and date of publication, but allowing also rearrangements or selections by author, subject and keywords.

  6. Update History of This Database - Yeast Interacting Proteins Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us ...Yeast Interacting Proteins Database Update History of This Database Date Update contents 2010/03/29 Yeast In...t This Database Database Description Download License Update History of This Database Site Policy | Contact Us Update History

  7. Database Dictionary for Ethiopian National Ground-Water DAtabase (ENGDA) Data Fields

    Science.gov (United States)

    Kuniansky, Eve L.; Litke, David W.; Tucci, Patrick

    2007-01-01

    Introduction This document describes the data fields that are used for both field forms and the Ethiopian National Ground-water Database (ENGDA) tables associated with information stored about production wells, springs, test holes, test wells, and water level or water-quality observation wells. Several different words are used in this database dictionary and in the ENGDA database to describe a narrow shaft constructed in the ground. The most general term is borehole, which is applicable to any type of hole. A well is a borehole specifically constructed to extract water from the ground; however, for this data dictionary and for the ENGDA database, the words well and borehole are used interchangeably. A production well is defined as any well used for water supply and includes hand-dug wells, small-diameter bored wells equipped with hand pumps, or large-diameter bored wells equipped with large-capacity motorized pumps. Test holes are borings made to collect information about the subsurface with continuous core or non-continuous core and/or where geophysical logs are collected. Test holes are not converted into wells. A test well is a well constructed for hydraulic testing of an aquifer in order to plan a larger ground-water production system. A water-level or water-quality observation well is a well that is used to collect information about an aquifer and not used for water supply. A spring is any naturally flowing, local, ground-water discharge site. The database dictionary is designed to help define all fields on both field data collection forms (provided in attachment 2 of this report) and for the ENGDA software screen entry forms (described in Litke, 2007). The data entered into each screen entry field are stored in relational database tables within the computer database. The organization of the database dictionary is designed based on field data collection and the field forms, because this is what the majority of people will use. After each field, however, the

  8. GIS-based hydrogeological databases and groundwater modelling

    Science.gov (United States)

    Gogu, Radu Constantin; Carabin, Guy; Hallet, Vincent; Peters, Valerie; Dassargues, Alain

    2001-12-01

    Reliability and validity of groundwater analysis strongly depend on the availability of large volumes of high-quality data. Putting all data into a coherent and logical structure supported by a computing environment helps ensure validity and availability and provides a powerful tool for hydrogeological studies. A hydrogeological geographic information system (GIS) database that offers facilities for groundwater-vulnerability analysis and hydrogeological modelling has been designed in Belgium for the Walloon region. Data from five river basins, chosen for their contrasting hydrogeological characteristics, have been included in the database, and a set of applications that have been developed now allow further advances. Interest is growing in the potential for integrating GIS technology and groundwater simulation models. A "loose-coupling" tool was created between the spatial-database scheme and the groundwater numerical model interface GMS (Groundwater Modelling System). Following time and spatial queries, the hydrogeological data stored in the database can be easily used within different groundwater numerical models. Résumé. La validité et la reproductibilité de l'analyse d'un aquifère dépend étroitement de la disponibilité de grandes quantités de données de très bonne qualité. Le fait de mettre toutes les données dans une structure cohérente et logique soutenue par les logiciels nécessaires aide à assurer la validité et la disponibilité et fournit un outil puissant pour les études hydrogéologiques. Une base de données pour un système d'information géographique (SIG) hydrogéologique qui offre toutes les facilités pour l'analyse de la vulnérabilité des eaux souterraines et la modélisation hydrogéologique a été établi en Belgique pour la région Wallonne. Les données de cinq bassins de rivières, choisis pour leurs caractéristiques hydrogéologiques différentes, ont été introduites dans la base de données, et un ensemble d

  9. [Validation of interaction databases in psychopharmacotherapy].

    Science.gov (United States)

    Hahn, M; Roll, S C

    2017-07-24

    Drug-drug interaction databases are an important tool to increase drug safety in polypharmacy. There are several drug interaction databases available but it is unclear which one shows the best results and therefore increases safety for the user of the databases and the patients. So far, there has been no validation of German drug interaction databases. Validation of German drug interaction databases regarding the number of hits, mechanisms of drug interaction, references, clinical advice, and severity of the interaction. A total of 36 drug interactions which were published in the last 3-5 years were checked in 5 different databases. Besides the number of hits, it was also documented if the mechanism was correct, clinical advice was given, primary literature was cited, and the severity level of the drug-drug interaction was given. All databases showed weaknesses regarding the hit rate of the tested drug interactions, with a maximum of 67.7% hits. The highest score in this validation was achieved by MediQ with 104 out of 180 points. PsiacOnline achieved 83 points, arznei-telegramm® 58, ifap index® 54 and the ABDA-database 49 points. Based on this validation MediQ seems to be the most suitable databank for the field of psychopharmacotherapy. The best results in this comparison were achieved by MediQ but this database also needs improvement with respect to the hit rate so that the users can rely on the results and therefore increase drug therapy safety.

  10. Annotation and retrieval in protein interaction databases

    Science.gov (United States)

    Cannataro, Mario; Hiram Guzzi, Pietro; Veltri, Pierangelo

    2014-06-01

    Biological databases have been developed with a special focus on the efficient retrieval of single records or the efficient computation of specialized bioinformatics algorithms against the overall database, such as in sequence alignment. The continuos production of biological knowledge spread on several biological databases and ontologies, such as Gene Ontology, and the availability of efficient techniques to handle such knowledge, such as annotation and semantic similarity measures, enable the development on novel bioinformatics applications that explicitly use and integrate such knowledge. After introducing the annotation process and the main semantic similarity measures, this paper shows how annotations and semantic similarity can be exploited to improve the extraction and analysis of biologically relevant data from protein interaction databases. As case studies, the paper presents two novel software tools, OntoPIN and CytoSeVis, both based on the use of Gene Ontology annotations, for the advanced querying of protein interaction databases and for the enhanced visualization of protein interaction networks.

  11. Drug interaction databases in medical literature

    DEFF Research Database (Denmark)

    Kongsholm, Gertrud Gansmo; Nielsen, Anna Katrine Toft; Damkier, Per

    2015-01-01

    PURPOSE: It is well documented that drug-drug interaction databases (DIDs) differ substantially with respect to classification of drug-drug interactions (DDIs). The aim of this study was to study online available transparency of ownership, funding, information, classifications, staff training...... and the three most commonly used subscription DIDs in the medical literature. The following parameters were assessed for each of the databases: Ownership, classification of interactions, primary information sources, and staff qualification. We compared the overall proportion of yes/no answers from open access...... databases and subscription databases by Fisher's exact test-both prior to and after requesting missing information. RESULTS: Among open access DIDs, 20/60 items could be verified from the webpage directly compared to 24/36 for the subscription DIDs (p = 0.0028). Following personal request, these numbers...

  12. Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.

    2014-01-01

    The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

  13. HCVpro: Hepatitis C virus protein interaction database

    KAUST Repository

    Kwofie, Samuel K.

    2011-12-01

    It is essential to catalog characterized hepatitis C virus (HCV) protein-protein interaction (PPI) data and the associated plethora of vital functional information to augment the search for therapies, vaccines and diagnostic biomarkers. In furtherance of these goals, we have developed the hepatitis C virus protein interaction database (HCVpro) by integrating manually verified hepatitis C virus-virus and virus-human protein interactions curated from literature and databases. HCVpro is a comprehensive and integrated HCV-specific knowledgebase housing consolidated information on PPIs, functional genomics and molecular data obtained from a variety of virus databases (VirHostNet, VirusMint, HCVdb and euHCVdb), and from BIND and other relevant biology repositories. HCVpro is further populated with information on hepatocellular carcinoma (HCC) related genes that are mapped onto their encoded cellular proteins. Incorporated proteins have been mapped onto Gene Ontologies, canonical pathways, Online Mendelian Inheritance in Man (OMIM) and extensively cross-referenced to other essential annotations. The database is enriched with exhaustive reviews on structure and functions of HCV proteins, current state of drug and vaccine development and links to recommended journal articles. Users can query the database using specific protein identifiers (IDs), chromosomal locations of a gene, interaction detection methods, indexed PubMed sources as well as HCVpro, BIND and VirusMint IDs. The use of HCVpro is free and the resource can be accessed via http://apps.sanbi.ac.za/hcvpro/ or http://cbrc.kaust.edu.sa/hcvpro/. © 2011 Elsevier B.V.

  14. Groundwater - surface water interactions in the Ayeyarwady river delta, Myanmar

    Science.gov (United States)

    Miyaoka, K.; Haruyama, S.; Kuzuha, Y.; Kay, T.

    2012-12-01

    Groundwater is widely used as a water resource in the Ayeyarwady River delta. But, Groundwater has some chemical problem in part of the area. To use safety groundwater for health, it is important to make clear the actual conditions of physical and chemical characteristics of groundwater in this delta. Besides, Ayeyarwady River delta has remarkable wet and dry season. Surface water - groundwater interaction is also different in each season, and it is concerned that physical and chemical characteristics of groundwater is affected by the flood and high waves through cyclone or monsoon. So, it is necessary to research a good aquifer distribution for sustainable groundwater resource supply. The purposes of this study are evaluate to seasonal change of groundwater - surface water interactions, and to investigate the more safety aquifer to reduce the healthy risk. Water samples are collected at 49 measurement points of river and groundwater, and are analyzed dissolved major ions and oxygen and hydro-stable isotope compositions. There are some groundwater flow systems and these water qualities are different in each depth. These showed that physical and chemical characteristics of groundwater are closely related to climatological, geomorphogical, geological and land use conditions. At the upper Alluvium, groundwater quality changes to lower concentration in wet season, so Ayeyarwady River water is main recharge water at this layer in the wet season. Besides, in the dry season, water quality is high concentration by artificial activities. Shallower groundwater is affected by land surface conditions such as the river water and land use in this layer. At lower Alluvium, Arakan and Pegu mountains are main recharge area of good water quality aquifers. Oxygen18 value showed a little affected by river water infiltration in the wet season, but keep stable good water quality through the both seasons. In the wet season, the same groundwater exists and water quality changes through

  15. Groundwater surface water interaction study using natural isotopes tracer

    Science.gov (United States)

    Yoon, Yoon Yeol; Kim, Yong Chul; Cho, Soo Young; Lee, Kil Yong

    2015-04-01

    Tritium and stable isotopes are a component of the water molecule, they are the most conservative tracer for groundwater study. And also, radon is natural radioactive nuclide and well dissolved in groundwater. Therefore, these isotopes are used natural tracer for the study of surface water and groundwater interaction of water curtain greenhouse area. The study area used groundwater as a water curtain for warming tool of greenhouse during the winter, and is associated with issues of groundwater shortage while being subject to groundwater-river water interaction. During the winter time, these interactions were studied by using Rn-222, stable isotopes and H-3. These interaction was monitored in multi depth well and linear direction well of groundwater flow. And dam effect was also compared. Samples were collected monthly from October 2013 to April 2014. Radon and tritium were analyzed using Quantulus low background liquid scintillation counter and stable isotopes were analyzed using an IRIS (Isotope Ratio Infrared Spectroscopy ; L2120-i, Picarro). During the winter time, radon concentration was varied from 0.07 Bq/L to 8.9 Bq/L and different interaction was showed between dam. Surface water intrusion was severe at February and restored April when greenhouse warming was ended. The stable isotope results showed different trend with depth and ranged from -9.16 ‰ to -7.24 ‰ for δ 18O value, while the δD value was ranged from -57.86 ‰ to -50.98 ‰. The groundwater age as dated by H-3 was ranged 0.23 Bq/L - 0.59 Bq/L with an average value of 0.37 Bq/L.

  16. Groundwater-surface water interactions: the behavior of a small lake connected to groundwater

    Science.gov (United States)

    Arnoux, Marie; Barbecot, Florent; Gibert-Brunet, Elisabeth

    2016-04-01

    Interactions between lakes and groundwater have been under concern in recent years and are still not well understood. Exchange rates are both spatially and temporally highly variable and are generally underestimated. However these interactions are of utmost importance for water resource management and need to be better understood since (i) the hydrogeological and geochemical equilibria within the lake drive the evolution of lakes' ecology and quality, and (ii) groundwater inflow, even in low rate, can be a key element in both the lake nutrient balance (and therefore in lake's eutrophication) and vulnerability to pollution. In many studies two main geochemical tracers, i.e. water stable isotopes and radon-222, are used to determine these interactions. However there are still many uncertainties on their time and space variations and their reliability to determine the lake budget. Therefore, a lake connected to groundwater on a small catchment was chosen to quantify groundwater fluxes change over time and the related influences on the lake's water geochemistry. Through analyse in time and space of both tracers and a precise instrumentation of the lake, their variations linked to groundwater inflows are determined. The results show that each tracer provides additional information for the lake budget with the interest to well determine the information given by each measurement: the radon-222 gives information on the groundwater inflows at a point in space and time while water stable isotopes highlight the dominant parameters of the yearly lake budget. The variation in groundwater inflows allow us to discuss lake's evolution regarding climate and environmental changes.

  17. Database Dictionary for Ethiopian National Ground-Water Database (ENGDA) Data Fields

    Science.gov (United States)

    2007-01-01

    Water Field Methods classes taught at the MoWR/Japanese International Cooperative Association ( JICA ) ground-water training facility in Addis Ababa...Technology Agency (ESTA) helped coordinate the development of ENGDA, by coordinating with IAEA, MoWR, GSE, JICA , and AAU. During USGS missions to...Tadesse, General Manager of GSE and Ato Mesfin Tegene, Vice Minister of MoWR and Ato Markos Tefera and Dr. Yuji Maruo, of the MoWR/ JICA training

  18. A Brief Review of RNA-Protein Interaction Database Resources

    Directory of Open Access Journals (Sweden)

    Ying Yi

    2017-01-01

    Full Text Available RNA-protein interactions play critical roles in various biological processes. By collecting and analyzing the RNA-protein interactions and binding sites from experiments and predictions, RNA-protein interaction databases have become an essential resource for the exploration of the transcriptional and post-transcriptional regulatory network. Here, we briefly review several widely used RNA-protein interaction database resources developed in recent years to provide a guide of these databases. The content and major functions in databases are presented. The brief description of database helps users to quickly choose the database containing information they interested. In short, these RNA-protein interaction database resources are continually updated, but the current state shows the efforts to identify and analyze the large amount of RNA-protein interactions.

  19. Large interactive database: design and implementation

    Science.gov (United States)

    Peralta-Fabi, Ricardo; Peralta, Alejandro; Vicente, Esau; Prado, Jorge M.; Diaz, C.

    1992-04-01

    A database system is being integrated in order to store and interactively retrieve information from a several hundred Gbytes optical memory. The low cost, high reliability requirements for the development and maintenance phase of the system suggested a modular design based on a network server, optical server, and some 40 (80386 based) viewing consoles with touch screens, but no keyboard or other controls since they are exposed to use by the general public. Optical disks store graphics, video, stills, text, animation, and audio which are accessed through hypertext and interactive graphics while a somewhat simple expert analyzes and records data on various aspects of the user, such as general interests, common questions, sociological-educational, background, etc. This information is in turn used to adapt several parameters of information display: rate of flow, language style, number and type of control buttons, degree of detail, and others. The large quantity of video, still images, and different graphics formats, has made it necessary to optimize the information contained via reduction of colors/resolution, compression techniques, and recursive use of a basic set of displays and video segments. The paper presents the design in some detail, with general examples of system capabilities, growth, and applications.

  20. Global simulation of interactions between groundwater and terrestrial ecosystems

    Science.gov (United States)

    Braakhekke, M. C.; Rebel, K.; Dekker, S. C.; Smith, B.; Van Beek, L. P.; Sutanudjaja, E.; van Kampenhout, L.; Wassen, M. J.

    2016-12-01

    In many places in the world ecosystems are influenced by the presence of a shallow groundwater table. In these regions upward water flux due to capillary rise increases soil moisture availability in the root zone, which has strong positive effect on evapotranspiration. Additionally it has important consequences for vegetation dynamics and fluxes of carbon and nitrogen. Under water limited conditions shallow groundwater stimulates vegetation productivity, and soil organic matter decomposition while under saturated conditions groundwater may have a negative effect on these processes due to lack of oxygen. Furthermore, since plant species differ with respect to their root distribution, preference for moisture conditions, and resistance to oxygen stress, shallow groundwater also influences vegetation type. Finally, processes such as denitrification and methane production occur under strictly anaerobic conditions and are thus strongly influenced by moisture availability. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure and are therefore less suitable to represent effects of groundwater on biogeochemical fluxes. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure and biogeochemical processes. These models are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB. Using this coupled model we aim to

  1. Surface water and groundwater interaction on a hill island

    DEFF Research Database (Denmark)

    Frederiksen, Rasmus Rumph; Rasmussen, Keld Rømer; Christensen, Steen

    – the hill islands – is relatively unknown. This study aims at providing new information about the rainfall-runoff processes in hill island landscapes where surface water and groundwater interaction is expected to have a dominant role and hill-slope processes not. Through stream flow measurements, field...

  2. Review of information on interactions between vegetation and groundwater

    CSIR Research Space (South Africa)

    Le Maitre, David C

    1999-04-01

    Full Text Available Research Commission (WRC), culminating in a report entitled The Interaction between Vegeta- tion and Groundwater: Research Priorities for South Africa (Scott and Le Maitre, 1998). It concentrates on studies of the impacts of vegetation on groundwater.... * To whom all correspondence should be addressed ( (021) 888-2610; fax (021) 888-2693; e-mail dlmaitre@csir.co.za Received 17 August 1998; accepted in revised form 4 December 1998. ISSN 0378-4738 = Water SA Vol. 25 No. 2 April 1999138 Available on website...

  3. The MAHNOB Mimicry Database - a database of naturalistic human interactions

    NARCIS (Netherlands)

    Bilakhia, Sanjay; Petridis, Stavros; Nijholt, Anton; Pantic, Maja

    2015-01-01

    People mimic verbal and nonverbal expressions and behaviour of their counterparts in various social interactions. Research in psychology and social sciences has shown that mimicry has the power to influence social judgment and various social behaviours, including negotiation and debating, courtship,

  4. Full Data of Yeast Interacting Proteins Database (Annotation Updated Version) - Yeast Interacting Proteins Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available st proteins and their interactions are required. Several sources including YPD (Yeast Proteome Database, Cos...ome database (WormPD): comprehensive resources for the organization and comparison of model organism protein

  5. Interactive searching of facial image databases

    Science.gov (United States)

    Nicholls, Robert A.; Shepherd, John W.; Shepherd, Jean

    1995-09-01

    A set of psychological facial descriptors has been devised to enable computerized searching of criminal photograph albums. The descriptors have been used to encode image databased of up to twelve thousand images. Using a system called FACES, the databases are searched by translating a witness' verbal description into corresponding facial descriptors. Trials of FACES have shown that this coding scheme is more productive and efficient than searching traditional photograph albums. An alternative method of searching the encoded database using a genetic algorithm is currenly being tested. The genetic search method does not require the witness to verbalize a description of the target but merely to indicate a degree of similarity between the target and a limited selection of images from the database. The major drawback of FACES is that is requires a manual encoding of images. Research is being undertaken to automate the process, however, it will require an algorithm which can predict human descriptive values. Alternatives to human derived coding schemes exist using statistical classifications of images. Since databases encoded using statistical classifiers do not have an obvious direct mapping to human derived descriptors, a search method which does not require the entry of human descriptors is required. A genetic search algorithm is being tested for such a purpose.

  6. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  7. Development and trial of the drug interaction database system

    Directory of Open Access Journals (Sweden)

    Virasakdi Chongsuvivatwong

    2003-07-01

    Full Text Available The drug interaction database system was originally developed at Songklanagarind Hospital. Data sets of drugs available in Songklanagarind Hospital comprising standard drug names, trade names, group names, and drug interactions were set up using Microsoft® Access 2000. The computer used was a Pentium III processor running at 450 MHz with 128 MB SDRAM operated by Microsoft® Windows 98. A robust structured query language algorithm was chosen for detecting interactions. The functioning of this database system, including speed and accuracy of detection, was tested at Songklanagarind Hospital and Naratiwatrachanagarind Hospital using hypothetical prescriptions. Its use in determining the incidence of drug interactions was also evaluated using a retrospective prescription data file. This study has shown that the database system correctly detected drug interactions from prescriptions. Speed of detection was approximately 1 to 2 seconds depending on the size of prescription. The database system was of benefit in determining of incidence rate of drug interaction in a hospital.

  8. Characterizing the interaction of groundwater and surface water in the karst aquifer of Fangshan, Beijing (China)

    Science.gov (United States)

    Chu, Haibo; Wei, Jiahua; Wang, Rong; Xin, Baodong

    2016-12-01

    Correct understanding of groundwater/surface-water (GW-SW) interaction in karst systems is of greatest importance for managing the water resources. A typical karst region, Fangshan in northern China, was selected as a case study. Groundwater levels and hydrochemistry analyses, together with isotope data based on hydrogeological field investigations, were used to assess the GW-SW interaction. Chemistry data reveal that water type and the concentration of cations in the groundwater are consistent with those of the surface water. Stable isotope ratios of all samples are close to the local meteoric water line, and the 3H concentrations of surface water and groundwater samples are close to that of rainfall, so isotopes also confirm that karst groundwater is recharged by rainfall. Cross-correlation analysis reveals that rainfall leads to a rise in groundwater level with a lag time of 2 months and groundwater exploitation leads to a fall within 1 month. Spectral analysis also reveals that groundwater level, groundwater exploitation and rainfall have significantly similar response periods, indicating their possible inter-relationship. Furthermore, a multiple nonlinear regression model indicates that groundwater level can be negatively correlated with groundwater exploitation, and positively correlated with rainfall. The overall results revealed that groundwater level has a close correlation with groundwater exploitation and rainfall, and they are indicative of a close hydraulic connection and interaction between surface water and groundwater in this karst system.

  9. Characterizing the interaction of groundwater and surface water in the karst aquifer of Fangshan, Beijing (China)

    Science.gov (United States)

    Chu, Haibo; Wei, Jiahua; Wang, Rong; Xin, Baodong

    2017-03-01

    Correct understanding of groundwater/surface-water (GW-SW) interaction in karst systems is of greatest importance for managing the water resources. A typical karst region, Fangshan in northern China, was selected as a case study. Groundwater levels and hydrochemistry analyses, together with isotope data based on hydrogeological field investigations, were used to assess the GW-SW interaction. Chemistry data reveal that water type and the concentration of cations in the groundwater are consistent with those of the surface water. Stable isotope ratios of all samples are close to the local meteoric water line, and the 3H concentrations of surface water and groundwater samples are close to that of rainfall, so isotopes also confirm that karst groundwater is recharged by rainfall. Cross-correlation analysis reveals that rainfall leads to a rise in groundwater level with a lag time of 2 months and groundwater exploitation leads to a fall within 1 month. Spectral analysis also reveals that groundwater level, groundwater exploitation and rainfall have significantly similar response periods, indicating their possible inter-relationship. Furthermore, a multiple nonlinear regression model indicates that groundwater level can be negatively correlated with groundwater exploitation, and positively correlated with rainfall. The overall results revealed that groundwater level has a close correlation with groundwater exploitation and rainfall, and they are indicative of a close hydraulic connection and interaction between surface water and groundwater in this karst system.

  10. Surface water - groundwater interactions at different spatial and temporal scales

    DEFF Research Database (Denmark)

    Sebök, Éva

    in lowland catchments, mainly exploring and assessing Distributed Temperature Sensing (DTS) which by detecting variability in temperatures at the Sediment-Water Interface (SWI) can indirectly map variability in groundwater discharge at several spatial and temporal scales. On the small-scale (...As there is a growing demand for the protection and optimal management of both the surface water and groundwater resources, the understanding of their exchange processes is of great importance. This PhD study aimed at describing the natural spatial and temporal variability of these interactions...... detected large spatial variability in SWI temperatures with scattered high-discharge sites in a stream and also in a lake where discharge fluxes were estimated by vertical temperature profiles and seepage meter measurements. On the kilometre scale DTS indicated less spatial variability in streambed...

  11. Impact of river restoration on groundwater - surface water - interactions

    Science.gov (United States)

    Kurth, Anne-Marie; Schirmer, Mario

    2014-05-01

    Since the end of the 19th century, flood protection was increasingly based on the construction of impermeable dams and side walls (BWG, 2003). In spite of providing flood protection, these measures also limited the connectivity between the river and the land, restricted the area available for flooding, and hampered the natural flow dynamics of the river. Apart from the debilitating effect on riverine ecosystems due to loss of habitats, these measures also limited bank filtration, inhibited the infiltration of storm water, and affected groundwater-surface water-interactions. This in turn had a profound effect on ecosystem health, as a lack of groundwater-surface water interactions led to decreased cycling of pollutants and nutrients in the hyporheic zone and limited the moderation of the water temperature (EA, 2009). In recent decades, it has become apparent that further damages to riverine ecosystems must be prohibited, as the damages to ecology, economy and society surmount any benefits gained from exploiting them. Nowadays, the restoration of rivers is a globally accepted means to restore ecosystem functioning, protect water resources and amend flood protection (Andrea et al., 2012; Palmer et al., 2005; Wortley et al., 2013). In spite of huge efforts regarding the restoration of rivers over the last 30 years, the question of its effectiveness remains, as river restorations often reconstruct a naturally looking rather than a naturally functioning stream (EA, 2009). We therefore focussed our research on the effectiveness of river restorations, represented by the groundwater-surface water-interactions. Given a sufficiently high groundwater level, a lack of groundwater-surface water-interactions after restoration may indicate that the vertical connectivity in the stream was not fully restored. In order to investigate groundwater-surface water-interactions we determined the thermal signature on the stream bed and in +/- 40 cm depth by using Distributed Temperature

  12. Drug interactions in female oncologic inpatients: differences among databases

    Directory of Open Access Journals (Sweden)

    Patricia Moriel

    2013-08-01

    Full Text Available The aim of the present study was to quantify drug interactions in prescriptions for women undergoing supportive therapy in an oncology setting at a women’s hospital in Brazil and compare the information provided by different databases regarding these drug interactions. A convenience sample was selected of prescriptions for patients diagnosed with breast or gynecological tumors hospitalized in the clinical oncology and surgery wards from April to June 2009. DRUGDEX/Micromedex (Thomson Micromedex was the main database used for the identification of drug interactions and was compared with two other databases: Drugs.com and Lexicomp. The search was performed by inputting all drug combinations found in the prescriptions in Micromedex and Drugs.com. All interactions identified and classified by Micromedex and/or Drugs.com as of major severity were then checked in Lexicomp. A total of 152 interactions were identified by Micromedex (61 major, 69 moderate and 22 minor. In Drugs.com, 614 interactions were identified (85 major, 464 moderate and 65 minor. Forty-four were classified as major drug interactions in at least one of the databases: 30 in Micromedex, 26 in Drugs. com and 14 in Lexicomp. The present findings reveal discrepancies among the three databases analyzed. Thus, standardization should be proposed. Moreover, both the pharmacist and multidisciplinary team should perform a critical analysis of prescriptions to promote safe practices in the use of medications and minimize potential complications caused by drug interactions.

  13. Experimental and numerical modelling of surface water-groundwater flow and pollution interactions under tidal forcing

    Science.gov (United States)

    Spanoudaki, Katerina; Bockelmann-Evans, Bettina; Schaefer, Florian; Kampanis, Nikolaos; Nanou-Giannarou, Aikaterini; Stamou, Anastasios; Falconer, Roger

    2015-04-01

    continuous tide on the coastal side. The integrated surface water-groundwater numerical model IRENE (Spanoudaki et al., 2009, Spanoudaki, 2010) was also used in the study, with the numerical model predictions being compared with experimental results, which provide a valuable database for model calibration and validation. IRENE couples the 3D, non-steady state Navier-Stokes equations, after Reynolds averaging and with the assumption of hydrostatic pressure distribution, to the equations describing 3D saturated groundwater flow of constant density. The model uses the finite volume method with a cell-centered structured grid providing thus flexibility and accuracy in simulating irregular boundary geometries. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection-diffusion equation describing the fate and transport of contaminants introduced in a 3D turbulent flow field to the partial differential equation describing the fate and transport of contaminants in 3D transient groundwater flow systems. References Ebrahimi, K., Falconer, R.A. and Lin B. (2007). Flow and solute fluxes in integrated wetland and coastal systems. Environmental Modelling and Software, 22 (9), 1337-1348. Hughes, S.A. (1995). Physical Modelling and Laboratory Techniques in Coastal Engineering. World Scientific Publishing Co. Pte. Ltd., Singapore. Kuan, W.K., Jin, G., Xin, P., Robinson, C. Gibbes, B. and Li. L. (2012). Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resources Research, 48 (2), doi:10.1029/2011WR010678. Spanoudaki, K., Stamou, A.I. and Nanou-Giannarou, A. (2009). Development and verification of a 3-D integrated surface water-groundwater model. Journal of Hydrology, 375 (3-4), 410-427. Spanoudaki, K. (2010). Integrated numerical modelling of surface water groundwater systems (in Greek

  14. Object-relational database infrastructure for interactive multimedia service

    Science.gov (United States)

    Hu, Michael J.; Chunyan, Miao

    1997-10-01

    Modern interactive multimedia services, such as the video-on-demand, electronic library, and etc. tend to involve large-scale media archives of audio records, video clips, image banks, and text documents. Thus, these services impose many challenges on designing and implementing new generation database systems. In this paper, we first introduce a new multimedia data model, which could accommodate sophisticated media types, as well as complex relationships among different media entities. Thereafter, an object-relationship media types, as well as complex relationships among different media entities. Thereafter, an object-relational database infrastructure is proposed, to support applications of the data model developed in our project. The infrastructure is designated both as a framework for designing and implementing multimedia databases, and as a reference model to compare and evaluate different database systems. Features of the proposed infrastructure, as well as its implementation into a prototype multimedia database system, are also discussed in the paper.

  15. The BioGRID interaction database: 2017 update

    Science.gov (United States)

    Chatr-aryamontri, Andrew; Oughtred, Rose; Boucher, Lorrie; Rust, Jennifer; Chang, Christie; Kolas, Nadine K.; O'Donnell, Lara; Oster, Sara; Theesfeld, Chandra; Sellam, Adnane; Stark, Chris; Breitkreutz, Bobby-Joe; Dolinski, Kara; Tyers, Mike

    2017-01-01

    The Biological General Repository for Interaction Datasets (BioGRID: https://thebiogrid.org) is an open access database dedicated to the annotation and archival of protein, genetic and chemical interactions for all major model organism species and humans. As of September 2016 (build 3.4.140), the BioGRID contains 1 072 173 genetic and protein interactions, and 38 559 post-translational modifications, as manually annotated from 48 114 publications. This dataset represents interaction records for 66 model organisms and represents a 30% increase compared to the previous 2015 BioGRID update. BioGRID curates the biomedical literature for major model organism species, including humans, with a recent emphasis on central biological processes and specific human diseases. To facilitate network-based approaches to drug discovery, BioGRID now incorporates 27 501 chemical–protein interactions for human drug targets, as drawn from the DrugBank database. A new dynamic interaction network viewer allows the easy navigation and filtering of all genetic and protein interaction data, as well as for bioactive compounds and their established targets. BioGRID data are directly downloadable without restriction in a variety of standardized formats and are freely distributed through partner model organism databases and meta-databases. PMID:27980099

  16. The BioGRID interaction database: 2017 update.

    Science.gov (United States)

    Chatr-Aryamontri, Andrew; Oughtred, Rose; Boucher, Lorrie; Rust, Jennifer; Chang, Christie; Kolas, Nadine K; O'Donnell, Lara; Oster, Sara; Theesfeld, Chandra; Sellam, Adnane; Stark, Chris; Breitkreutz, Bobby-Joe; Dolinski, Kara; Tyers, Mike

    2017-01-04

    The Biological General Repository for Interaction Datasets (BioGRID: https://thebiogrid.org) is an open access database dedicated to the annotation and archival of protein, genetic and chemical interactions for all major model organism species and humans. As of September 2016 (build 3.4.140), the BioGRID contains 1 072 173 genetic and protein interactions, and 38 559 post-translational modifications, as manually annotated from 48 114 publications. This dataset represents interaction records for 66 model organisms and represents a 30% increase compared to the previous 2015 BioGRID update. BioGRID curates the biomedical literature for major model organism species, including humans, with a recent emphasis on central biological processes and specific human diseases. To facilitate network-based approaches to drug discovery, BioGRID now incorporates 27 501 chemical-protein interactions for human drug targets, as drawn from the DrugBank database. A new dynamic interaction network viewer allows the easy navigation and filtering of all genetic and protein interaction data, as well as for bioactive compounds and their established targets. BioGRID data are directly downloadable without restriction in a variety of standardized formats and are freely distributed through partner model organism databases and meta-databases. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Response of groundwater level and surface-water/groundwater interaction to climate variability: Clarence-Moreton Basin, Australia

    Science.gov (United States)

    Cui, Tao; Raiber, Matthias; Pagendam, Dan; Gilfedder, Mat; Rassam, David

    2017-08-01

    Understanding the response of groundwater levels in alluvial and sedimentary basin aquifers to climatic variability and human water-resource developments is a key step in many hydrogeological investigations. This study presents an analysis of groundwater response to climate variability from 2000 to 2012 in the Queensland part of the sedimentary Clarence-Moreton Basin, Australia. It contributes to the baseline hydrogeological understanding by identifying the primary groundwater flow pattern, water-level response to climate extremes, and the resulting dynamics of surface-water/groundwater interaction. Groundwater-level measurements from thousands of bores over several decades were analysed using Kriging and nonparametric trend analysis, together with a newly developed three-dimensional geological model. Groundwater-level contours suggest that groundwater flow in the shallow aquifers shows local variations in the close vicinity of streams, notwithstanding general conformance with topographic relief. The trend analysis reveals that climate variability can be quickly reflected in the shallow aquifers of the Clarence-Moreton Basin although the alluvial aquifers have a quicker rainfall response than the sedimentary bedrock formations. The Lockyer Valley alluvium represents the most sensitively responding alluvium in the area, with the highest declining (-0.7 m/year) and ascending (2.1 m/year) Sen's slope rates during and after the drought period, respectively. Different surface-water/groundwater interaction characteristics were observed in different catchments by studying groundwater-level fluctuations along hydrogeologic cross-sections. The findings of this study lay a foundation for future water-resource management in the study area.

  18. Coastal Zone Hazards Related to Groundwater-Surface Water Interactions and Groundwater Flooding

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2009-12-01

    Worldwide, as many as half a million people have died in natural and man-made disasters since the turn of the 21st century (Wirtz, 2008). Further, natural and man-made hazards can lead to extreme financial losses (Elsner et al, 2009). Hazards, hydrological and geophysical risk analysis related to groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of its significance. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models (Geist and Parsons, 2006), and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health (Glantz, 2007). In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction. This paper proposes consideration of two case studies which are important and significant for future development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone (Zavialov, 2005). It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered

  19. The BioGRID interaction database: 2015 update.

    Science.gov (United States)

    Chatr-Aryamontri, Andrew; Breitkreutz, Bobby-Joe; Oughtred, Rose; Boucher, Lorrie; Heinicke, Sven; Chen, Daici; Stark, Chris; Breitkreutz, Ashton; Kolas, Nadine; O'Donnell, Lara; Reguly, Teresa; Nixon, Julie; Ramage, Lindsay; Winter, Andrew; Sellam, Adnane; Chang, Christie; Hirschman, Jodi; Theesfeld, Chandra; Rust, Jennifer; Livstone, Michael S; Dolinski, Kara; Tyers, Mike

    2015-01-01

    The Biological General Repository for Interaction Datasets (BioGRID: http://thebiogrid.org) is an open access database that houses genetic and protein interactions curated from the primary biomedical literature for all major model organism species and humans. As of September 2014, the BioGRID contains 749,912 interactions as drawn from 43,149 publications that represent 30 model organisms. This interaction count represents a 50% increase compared to our previous 2013 BioGRID update. BioGRID data are freely distributed through partner model organism databases and meta-databases and are directly downloadable in a variety of formats. In addition to general curation of the published literature for the major model species, BioGRID undertakes themed curation projects in areas of particular relevance for biomedical sciences, such as the ubiquitin-proteasome system and various human disease-associated interaction networks. BioGRID curation is coordinated through an Interaction Management System (IMS) that facilitates the compilation interaction records through structured evidence codes, phenotype ontologies, and gene annotation. The BioGRID architecture has been improved in order to support a broader range of interaction and post-translational modification types, to allow the representation of more complex multi-gene/protein interactions, to account for cellular phenotypes through structured ontologies, to expedite curation through semi-automated text-mining approaches, and to enhance curation quality control. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Yeast Interacting Proteins Database: YEL043W, YOR164C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available on quantitative analysis of protein-protein interaction maps; may interact with ribosomes, based on co-purification studies...ing based on quantitative analysis of protein-protein interaction maps; may interact with ribosomes, based on co-purification studies

  1. Drug interactions in female oncologic inpatients: differences among databases

    OpenAIRE

    Patricia Moriel; Jorge Augusto Siqueira; Renata Cavalcanti Carnevale; Caroline de Godoi Rezende Costa; Aline Aparecida da Cruz; Nice Maria Oliveira da Silva; Adélia Corina Bernardes; Roberta Paro Carvalho; Priscila Gava Mazzola

    2013-01-01

    The aim of the present study was to quantify drug interactions in prescriptions for women undergoing supportive therapy in an oncology setting at a women’s hospital in Brazil and compare the information provided by different databases regarding these drug interactions. A convenience sample was selected of prescriptions for patients diagnosed with breast or gynecological tumors hospitalized in the clinical oncology and surgery wards from April to June 2009. DRUGDEX/M...

  2. Yeast Interacting Proteins Database: YPL095C, YGL198W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available d to late Golgi vesicles; computational analysis of large-scale protein-protein interaction data suggests a ...gene name YIP4 Prey description Protein that interacts with Rab GTPases, localized to late Golgi vesicles; computation

  3. Yeast Interacting Proteins Database: YDR425W, YGL161C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available icles; computational analysis of large-scale protein-protein interaction data sug...olgi vesicles; computational analysis of large-scale protein-protein interaction data suggests a possible ro

  4. Yeast Interacting Proteins Database: YPL070W, YOR155C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available utational analysis of large-scale protein-protein interaction data suggests a possible role in transcription...9 domain; computational analysis of large-scale protein-protein interaction data suggests a possible role in

  5. Yeast Interacting Proteins Database: YPL070W, YLR245C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available utational analysis of large-scale protein-protein interaction data suggests a possible role in transcription...Vps9 domain; computational analysis of large-scale protein-protein interaction data suggests a possible role

  6. Yeast Interacting Proteins Database: YPL070W, YPR193C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available utational analysis of large-scale protein-protein interaction data suggests a possible role in transcription...in; computational analysis of large-scale protein-protein interaction data suggests a possible role in trans

  7. Yeast Interacting Proteins Database: YGL161C, YDR084C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available les; computational analysis of large-scale protein-protein interaction data suggests a possible role in vesi...GTPases, localized to late Golgi vesicles; computational analysis of large-scale protein-protein interaction

  8. Yeast Interacting Proteins Database: YMR124W, YLR031W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available in localizes to the cell periphery, cytoplasm, bud, and bud neck; interacts with Crm1p in two-hybrid assay; ... periphery, cytoplasm, bud, and bud neck; interacts with Crm1p in two-hybrid assay

  9. Yeast Interacting Proteins Database: YPR040W, YDL188C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YPR040W TIP41 Protein that interacts physically and genetically with Tap42p, which ...ait ORF YPR040W Bait gene name TIP41 Bait description Protein that interacts physically and genetically

  10. Yeast Interacting Proteins Database: YPR040W, YDL134C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YPR040W TIP41 Protein that interacts physically and genetically with Tap42p, which ...Bait ORF YPR040W Bait gene name TIP41 Bait description Protein that interacts physically and genetically

  11. Yeast Interacting Proteins Database: YPR103W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available tein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors...gulated gene expression; interacts with protein kinase Snf1p, glucose sensors Snf

  12. Yeast Interacting Proteins Database: YDL226C, YGL198W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available omputational analysis of large-scale protein-protein interaction data suggests a ... computational analysis of large-scale protein-protein interaction data suggests a possible role in vesicle-

  13. Yeast Interacting Proteins Database: YDR026C, YDL030W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDR026C - Protein of unknown function that may interact with ribosomes, based on co-purification...ein of unknown function that may interact with ribosomes, based on co-purification

  14. Yeast Interacting Proteins Database: YNL311C, YKL001C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YNL311C - Protein of unknown function that may interact with ribosomes, based on co-purification...nknown function that may interact with ribosomes, based on co-purification experi

  15. Yeast Interacting Proteins Database: YMR153W, YLR324W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available peroxisome number; partially functionally redundant with Pex31p; genetic interactions suggest action at a step downstream of steps... partially functionally redundant with Pex31p; genetic interactions suggest action at a step downstream of steps

  16. Yeast Interacting Proteins Database: YBR270C, YPL255W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ytoskeletal dynamics during polarized growth and cell wall integrity; interacts with Slm1p and Slm2p, homolo...t regulates actin cytoskeletal dynamics during polarized growth and cell wall integrity; interacts with Slm1

  17. Yeast Interacting Proteins Database: YJL199C, YJL199C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available d in closely related Saccharomyces species; protein detected in large-scale protein-protein interaction studies...cies; protein detected in large-scale protein-protein interaction studies Rows with this prey as prey (4) Ro...n; not conserved in closely related Saccharomyces species; protein detected in large-scale protein-protein interaction studies... species; protein detected in large-scale protein-protein interaction studies Rows with this prey as prey Ro

  18. Interaction between river water and groundwater: Geochemical and anthropogenic influence

    Science.gov (United States)

    Elango, L.; Karthikeyan, B.

    2011-12-01

    River water generally controls the quality and quantity of groundwater in its vicinity. Contribution by the rivers to groundwater is significant if there is over extraction. This is common in large cities where dependence on groundwater is high due to limited piped water supply. Chennai, India is one such large city where the river flowing is contaminated and the people in the near locality depend on groundwater for domestic use (Figure). The objective of this study is to understand the linkage between the river water and groundwater, and to assess the role played by the geochemical processes and anthropogenic influence. This study was carried out in and around Adyar River basin, Chennai by the collection of surface water and groundwater samples. Rainfall, lake water level and groundwater level from January 2005 to December 2009 was compared to understand their relationship. The concentration of major ion concentration vary widely in groundwater and surface water with respect to space and time. Na-Cl and Ca-Mg-Cl were the dominant groundwater and surface water type. Seawater intrusion may also be one of the reasons for Na-Cl dominant nature. In general, the ionic concentration of surface water increases towards the eastern part as in the case of groundwater. Evaporation and ion exchange were the major processes controlling groundwater chemistry in this area. Groundwater chemistry is similar to that of surface water. The surface water is contaminated due to discharge of industrial effluents and domestic sewage into the Adyar River by partly or untreated domestic sewage. Ecological restoration of Adyar River is planned and to be implemented shortly by the Government agencies which is expected to improve the river water quality. Systematic monitoring of water quality in this area will help to assess the improvement in surface water quality during the restoration process as well as its impact on groundwater.

  19. Toward an interactive article: integrating journals and biological databases

    Directory of Open Access Journals (Sweden)

    Marygold Steven J

    2011-05-01

    model organism databases such as WormBase. Our pipeline results in interactive articles that are data rich with high accuracy. The use of a manual quality control step sets this pipeline apart from other hyperlinking tools and results in benefits to authors, journals, readers and databases.

  20. Effects of water-sediment interaction and irrigation practices on iodine enrichment in shallow groundwater

    Science.gov (United States)

    Li, Junxia; Wang, Yanxin; Xie, Xianjun; DePaolo, Donald J.

    2016-12-01

    High iodine concentrations in groundwater have caused serious health problems to the local residents in the Datong basin, northern China. To determine the impact of water-sediment interaction and irrigation practices on iodine mobilization in aquifers, isotope (2H, 18O and 87Sr/86Sr) and hydrogeochemical studies were conducted. The results show that groundwater iodine concentrations vary from 14.4 to 2180 μg/L, and high iodine groundwater (>150 μg/L) mainly occurs in the central area of the Datong basin. Sediment iodine content is between organic matter acts as the main source of groundwater iodine. The 87Sr/86Sr values and groundwater chemistry suggest that aluminosilicate hydrolysis is the dominant process controlling hydrochemical evolution along groundwater flowpath, and the degradation of TOC/iodine-rich sediment mediated by microbes potentially triggers the iodine release from the sediment into groundwater in the discharge area. The vertical stratification of groundwater 18O and 2H isotope reflects the occurrence of a vertical mixing process driven by periodic surface irrigation. The vertical mixing could change the redox potential of shallow groundwater from sub-reducing to oxidizing condition, thereby affecting the iodine mobilization in shallow groundwater. It is postulated that the extra introduction of organic matter and O2/NO3/SO4 could accelerate the microbial activity due to the supplement of high ranking electron acceptors and promote the iodine release from the sediment into shallow groundwater.

  1. HIV-1, human interaction database: current status and new features.

    Science.gov (United States)

    Ako-Adjei, Danso; Fu, William; Wallin, Craig; Katz, Kenneth S; Song, Guangfeng; Darji, Dakshesh; Brister, J Rodney; Ptak, Roger G; Pruitt, Kim D

    2015-01-01

    The 'Human Immunodeficiency Virus Type 1 (HIV-1), Human Interaction Database', available through the National Library of Medicine at http://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1/interactions, serves the scientific community exploring the discovery of novel HIV vaccine candidates and therapeutic targets. Each HIV-1 human protein interaction can be retrieved without restriction by web-based downloads and ftp protocols and includes: Reference Sequence (RefSeq) protein accession numbers, National Center for Biotechnology Information Gene identification numbers, brief descriptions of the interactions, searchable keywords for interactions and PubMed identification numbers (PMIDs) of journal articles describing the interactions. In addition to specific HIV-1 protein-human protein interactions, included are interaction effects upon HIV-1 replication resulting when individual human gene expression is blocked using siRNA. A total of 3142 human genes are described participating in 12,786 protein-protein interactions, along with 1316 replication interactions described for each of 1250 human genes identified using small interfering RNA (siRNA). Together the data identifies 4006 human genes involved in 14,102 interactions. With the inclusion of siRNA interactions we introduce a redesigned web interface to enhance viewing, filtering and downloading of the combined data set.

  2. Yeast Interacting Proteins Database: YOR285W, YDR233C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available racts with exocyst subunit Sec6p and with Yip3p; also interacts with Sbh1p; null mutant has an altered (most...tion ER membrane protein that interacts with exocyst subunit Sec6p and with Yip3p; also interacts with Sbh1p; null mutant has an alte...red (mostly cisternal) ER morphology; member of the RTNL

  3. Yeast Interacting Proteins Database: YGL198W, YGL161C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YGL198W YIP4 Protein that interacts with Rab GTPases, localized to late Golgi vesicles; comput...that interacts with Rab GTPases, localized to late Golgi vesicles; computational ...eracts with Rab GTPases, localized to late Golgi vesicles; computational analysis of large-scale protein-pro...ized to late Golgi vesicles; computational analysis of large-scale protein-protein interaction data suggests

  4. Yeast Interacting Proteins Database: YGL161C, YGL198W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YGL161C YIP5 Protein that interacts with Rab GTPases, localized to late Golgi vesicles; comput...that interacts with Rab GTPases, localized to late Golgi vesicles; computational ...eracts with Rab GTPases, localized to late Golgi vesicles; computational analysis of large-scale protein-pro...ized to late Golgi vesicles; computational analysis of large-scale protein-protein interaction data suggests

  5. Simulation of groundwater flow and interaction of groundwater and surface water on the Lac du Flambeau Reservation, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Fienen, Michael N.; Hunt, Randall J.

    2014-01-01

    The Lac du Flambeau Band of Lake Superior Chippewa and Indian Health Service are interested in improving the understanding of groundwater flow and groundwater/surface-water interaction on the Lac du Flambeau Reservation (Reservation) in southwest Vilas County and southeast Iron County, Wisconsin, with particular interest in an understanding of the potential for contamination of groundwater supply wells and the fate of wastewater that is infiltrated from treatment lagoons on the Reservation. This report describes the construction, calibration, and application of a regional groundwater flow model used to simulate the shallow groundwater flow system of the Reservation and water-quality results for groundwater and surface-water samples collected near a system of waste-water-treatment lagoons. Groundwater flows through a permeable glacial aquifer that ranges in thickness from 60 to more than 200 feet (ft). Seepage and drainage lakes are common in the area and influence groundwater flow patterns on the Reservation. A two-dimensional, steady-state analytic element groundwater flow model was constructed using the program GFLOW. The model was calibrated by matching target water levels and stream base flows through the use of the parameter-estimation program, PEST. Simulated results illustrate that groundwater flow within most of the Reservation is toward the Bear River and the chain of lakes that feed the Bear River. Results of analyses of groundwater and surface-water samples collected downgradient from the wastewater infiltration lagoons show elevated levels of ammonia and dissolved phosphorus. In addition, wastewater indicator chemicals detected in three downgradient wells and a small downgradient stream indicate that infiltrated wastewater is moving southwest of the lagoons toward Moss Lake. Potential effects of extended wet and dry periods (within historical ranges) were evaluated by adjusting precipitation and groundwater recharge in the model and comparing the

  6. Yeast Interacting Proteins Database: YDR425W, YGL198W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available with this bait as prey (0) YGL198W YIP4 Protein that interacts with Rab GTPases, localized to late Golgi vesicles; computation...IP4 Prey description Protein that interacts with Rab GTPases, localized to late Golgi vesicles; computatio

  7. Yeast Interacting Proteins Database: YMR125W, YPL178W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available so contains Sto1p, component of the spliceosomal commitment complex; interacts with Npl3p, possibly to packa...lso contains Sto1p, component of the spliceosomal commitment complex; interacts with Npl3p, possibly to pack

  8. Yeast Interacting Proteins Database: YOR124C, YGR268C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available that of Type I J-proteins; computational analysis of large-scale protein-protein interaction data suggests a...tational analysis of large-scale protein-protein interaction data suggests a possible role in actin patch as

  9. Yeast Interacting Proteins Database: YMR163C, YDL065C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available fractionates with peroxisome membranes and co-localizes with peroxisomes in vivo; physically interacts with ...ionates with peroxisome membranes and co-localizes with peroxisomes in vivo; physically interacts with the m... gene name INP2 Bait description Peroxisome-specific receptor important for peroxisome inheritance; co-fract

  10. Yeast Interacting Proteins Database: YGR239C, YDR142C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ing PTS2; interacts with Pex7p; partially redundant with Pex18p Rows with this bait as bait (2) Rows with th...2; interacts with Pex7p; partially redundant with Pex18p Rows with this bait as bait Rows with this bait as

  11. Yeast Interacting Proteins Database: YMR047C, YDR229W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available R229W IVY1 Phospholipid-binding protein that interacts with both Ypt7p and Vps33p, may partially...holipid-binding protein that interacts with both Ypt7p and Vps33p, may partially counteract the action of Vp

  12. Yeast Interacting Proteins Database: YGR218W, YMR124W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ry, cytoplasm, bud, and bud neck; interacts with Crm1p in two-hybrid assay; YMR12...bud, and bud neck; interacts with Crm1p in two-hybrid assay; YMR124W is not an essential gene Rows with this

  13. Yeast Interacting Proteins Database: YLR291C, YJL199C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ved in closely related Saccharomyces species; protein detected in large-scale protein-protein interaction studies...in large-scale protein-protein interaction studies Rows with this prey as prey Rows with this prey as prey (

  14. Yeast Interacting Proteins Database: YML064C, YJL199C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available y related Saccharomyces species; protein detected in large-scale protein-protein interaction studies Rows wi...in-protein interaction studies Rows with this prey as prey (4) Rows with this prey as bait (1) 28 6 3 4 0 0 ...d in closely related Saccharomyces species; protein detected in large-scale prote

  15. Yeast Interacting Proteins Database: YNL189W, YJL199C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available tein; not conserved in closely related Saccharomyces species; protein detected in large-scale protein-protein interaction studies...myces species; protein detected in large-scale protein-protein interaction studies Rows with this prey as pr

  16. Yeast Interacting Proteins Database: YMR139W, YJR094C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available events, activates transcription of early meiotic genes through interaction with Ume6p, degraded by the 26S proteasome following...scription of early meiotic genes through interaction with Ume6p, degraded by the 26S proteasome following ph

  17. Yeast Interacting Proteins Database: YHR114W, YDR422C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available substrate specificity; vacuolar protein containing KIS (Kinase-Interacting Sequence) and ASC (Association w...strate specificity; vacuolar protein containing KIS (Kinase-Interacting Sequence) and ASC (Association with ...e 4 CuraGen (0 or 1) 0 S. Fields (0 or 1) 0 Association (0 or 1,YPD) 0 Complex (0

  18. Yeast Interacting Proteins Database: YBR108W, YDR388W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YBR108W AIM3 Protein interacting with Rvs167p; null mutant is viable and displays e...l mutant is viable and displays elevated frequency of mitochondrial genome loss R...8 - Show YBR108W Bait ORF YBR108W Bait gene name AIM3 Bait description Protein interacting with Rvs167p; nul

  19. Yeast Interacting Proteins Database: YBR108W, YGR136W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YBR108W AIM3 Protein interacting with Rvs167p; null mutant is viable and displays e...w YBR108W Bait ORF YBR108W Bait gene name AIM3 Bait description Protein interacting with Rvs167p; null mutant is viable and display

  20. Yeast Interacting Proteins Database: YGL237C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding prote... expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein

  1. Yeast Interacting Proteins Database: YMR280C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available olved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensor... glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, an

  2. Yeast Interacting Proteins Database: YLR447C, YDR277C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available uction pathway, required for repression of transcription by Rgt1p; interacts with Rgt1p and the Snf3p and Rgt2p glucose sensors...transduction pathway, required for repression of transcription by Rgt1p; interacts with Rgt1p and the Snf3p and Rgt2p glucose sensors

  3. Yeast Interacting Proteins Database: YPR028W, YLR324W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available er; partially functionally redundant with Pex31p; genetic interactions suggest action at a step downstream of steps...ant with Pex31p; genetic interactions suggest action at a step downstream of steps mediated by Pex28p and Pe

  4. Yeast Interacting Proteins Database: YHR102W, YKL189W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available gulation of Ace2p activity and cellular morphogenesis, interacts with Kic1p and Sog2p, localizes to sites of polarized...on of Ace2p activity and cellular morphogenesis, interacts with Kic1p and Sog2p, localizes to sites of polarized

  5. Yeast Interacting Proteins Database: YBR270C, YIL105C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ytoskeletal dynamics during polarized growth and cell wall integrity; interacts with Slm1p and Slm2p, homolo...eletal dynamics during polarized growth and cell wall integrity; interacts with Slm1p and Slm2p, homologous ... gene name BIT2 Bait description Subunit of TORC2, a membrane-associated complex that regulates actin cytosk

  6. Yeast Interacting Proteins Database: YBR270C, YNL047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ytoskeletal dynamics during polarized growth and cell wall integrity; interacts with Slm1p and Slm2p, homolo...arized growth and cell wall integrity; interacts with Slm1p and Slm2p, homologous P...gene name BIT2 Bait description Subunit of TORC2, a membrane-associated complex that regulates actin cytoskeletal dynamics during pol

  7. Yeast Interacting Proteins Database: YBR270C, YDR259C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ytoskeletal dynamics during polarized growth and cell wall integrity; interacts with Slm1p and Slm2p, homolo... actin cytoskeletal dynamics during polarized growth and cell wall integrity; interacts with Slm1p and Slm2p

  8. Yeast Interacting Proteins Database: YBR270C, YKR026C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ytoskeletal dynamics during polarized growth and cell wall integrity; interacts with Slm1p and Slm2p, homolo...ctin cytoskeletal dynamics during polarized growth and cell wall integrity; interacts with Slm1p and Slm2p,

  9. Yeast Interacting Proteins Database: YKR026C, YBR270C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available n cytoskeletal dynamics during polarized growth and cell wall integrity; interacts with Slm1p and Slm2p, hom...oskeletal dynamics during polarized growth and cell wall integrity; interacts with Slm1p and Slm2p, homologo

  10. Yeast Interacting Proteins Database: YBR187W, YNR032W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available st a possible role in ribosome biogenesis Rows with this bait as bait (1) Rows with this bait as prey (0) YN...ccumulation; interacts with Tap42p, which binds to and regulates other protein phosphatases Rows with this prey as prey (2) Row... and physical interactions suggest a possible role in ribosome biogenesis Rows with this bait as bait Rows w...ith this bait as bait (1) Rows with this bait as prey Rows with this bait as prey...quired for glycogen accumulation; interacts with Tap42p, which binds to and regulates other protein phosphatases Row

  11. Yeast Interacting Proteins Database: YLR324W, YDR479C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available e regulation of peroxisomal size, number and distribution; genetic interactions suggest that Pex28p and Pex29p act at steps...gest action at a step downstream of steps mediated by Pex28p and Pex29p Rows with... the regulation of peroxisomal size, number and distribution; genetic interactions suggest that Pex28p and Pex29p act at steps...n of peroxisome number; partially functionally redundant with Pex31p; genetic interactions suggest action at a step downstream of ste...ps mediated by Pex28p and Pex29p Rows with this bait as bait (2) Rows with this bai

  12. Modelling wetland-groundwater interactions in the boreal Kälväsvaara esker, Northern Finland

    Science.gov (United States)

    Jaros, Anna; Rossi, Pekka; Ronkanen, Anna-Kaisa; Kløve, Bjørn

    2016-04-01

    Many types of boreal peatland ecosystems such as alkaline fens, aapa mires and Fennoscandia spring fens rely on the presence of groundwater. In these ecosystems groundwater creates unique conditions for flora and fauna by providing water, nutrients and constant water temperature enriching local biodiversity. The groundwater-peatland interactions and their dynamics are not, however, in many cases fully understood and their measurement and quantification is difficult due to highly heterogeneous structure of peatlands and large spatial extend of these ecosystems. Understanding of these interactions and their changes due to anthropogenic impact on groundwater resources would benefit the protection of the groundwater dependent peatlands. The groundwater-peatland interactions were investigated using the fully-integrated physically-based groundwater-surface water code HydroGeoSphere in a case study of the Kälväsvaara esker aquifer, Northern Finland. The Kälväsvaara is a geologically complex esker and it is surrounded by vast aapa mire system including alkaline and springs fens. In addition, numerous small springs occur in the discharge zone of the esker. In order to quantify groundwater-peatland interactions a simple steady-state model was built and results were evaluated using expected trends and field measurements. The employed model reproduced relatively well spatially distributed hydrological variables such as soil water content, water depths and groundwater-surface water exchange fluxes within the wetland and esker areas. The wetlands emerged in simulations as a result of geological and topographical conditions. They could be identified by high saturation levels at ground surface and by presence of shallow ponded water over some areas. The model outputs exhibited also strong surface water-groundwater interactions in some parts of the aapa system. These areas were noted to be regions of substantial diffusive groundwater discharge by the earlier studies. In

  13. Midcontinent Interactive Digital Carbon Atlas and Relational Database (MIDCARB)

    Energy Technology Data Exchange (ETDEWEB)

    Timothy R. Carr; Scott W. White

    2002-06-01

    This annual report describes progress of the project entitled ''Midcontinent Interactive Digital Carbon Atlas and Relational Database (MIDCARB)''. This project, funded by the Department of Energy, is a cooperative project that assembles a consortium of five states (Indiana, Illinois, Kansas, Kentucky and Ohio) to construct an online distributed Relational Database Management System (RDBMS) and Geographic Information System (GIS) covering aspects of carbon dioxide geologic sequestration (http://www.midcarb.org). The system links the five states in the consortium into a coordinated regional database system consisting of datasets useful to industry, regulators and the public. The project is working to provide advanced distributed computing solutions to link database servers across the five states into a single system where data is maintained at the local level but is accessed through a single Web portal and can be queried, assembled, analyzed and displayed. Each individual state has strengths in data gathering, data manipulation and data display, including GIS mapping, custom application development, web development, and database design. Sharing of expertise provides the critical mass of technical expertise to improve CO{sub 2} databases and data access in all states. This project improves the flow of data across servers in the five states and increases the amount and quality of available digital data. The MIDCARB project is developing improved online tools to provide real-time display and analyze CO{sub 2} sequestration data. The system links together data from sources, sinks and transportation within a spatial database that can be queried online. Visualization of high quality and current data can assist decision makers by providing access to common sets of high quality data in a consistent manner.

  14. Yeast Interacting Proteins Database: YPL070W, YBR176W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available utational analysis of large-scale protein-protein interaction data suggests a possible role in transcription...otein of unknown function containing a Vps9 domain; computational analysis of large-scale

  15. Yeast Interacting Proteins Database: YDR084C, YGL198W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available with Rab GTPases, localized to late Golgi vesicles; computational analysis of large-scale...omputational analysis of large-scale protein-protein interaction data suggests a possible role in vesicle-me

  16. Yeast Interacting Proteins Database: YGL198W, YDR084C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available les; computational analysis of large-scale protein-protein interaction data suggests a possible role in vesi... GTPases, localized to late Golgi vesicles; computational analysis of large-scale protein-protein interactio

  17. Yeast Interacting Proteins Database: YML064C, YOR284W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available th this bait as prey (0) YOR284W HUA2 Cytoplasmic protein of unknown function; computational analysis of large-scale... unknown function; computational analysis of large-scale protein-protein interact

  18. Yeast Interacting Proteins Database: YNL189W, YOR284W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ait as prey (0) YOR284W HUA2 Cytoplasmic protein of unknown function; computational analysis of large-scal...protein of unknown function; computational analysis of large-scale protein-protein interaction data suggests

  19. Yeast Interacting Proteins Database: YPR148C, YDL237W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YPR148C - Protein of unknown function that may interact with ribosomes, based on co-purification experiments... with ribosomes, based on co-purification experiments; green fluorescent protein

  20. Yeast Interacting Proteins Database: YLR347C, YLR377C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ucleoporins to mediate nuclear import of NLS-containing cargo proteins via the nuclear pore complex; regulat...0p; interacts with nucleoporins to mediate nuclear import of NLS-containing cargo proteins via the nuclear p

  1. Yeast Interacting Proteins Database: YLR347C, YBR176W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ucleoporins to mediate nuclear import of NLS-containing cargo proteins via the nuclear pore complex; regulat...p; interacts with nucleoporins to mediate nuclear import of NLS-containing cargo proteins via the nuclear po

  2. Yeast Interacting Proteins Database: YJR091C, YKL076C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available encoding membrane-associated proteins; involved in localizing the Arp2/3 complex to mitochondria; overexpre...NA-binding proteins, interacts with mRNAs encoding membrane-associated proteins; involved in localizing the

  3. Yeast Interacting Proteins Database: YJR091C, YNR048W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available encoding membrane-associated proteins; involved in localizing the Arp2/3 complex to mitochondria; overexpre...y of RNA-binding proteins, interacts with mRNAs encoding membrane-associated proteins; involved in localizing

  4. Yeast Interacting Proteins Database: YJR091C, YML015C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available encoding membrane-associated proteins; involved in localizing the Arp2/3 complex to mitochondria; overexpre...y of RNA-binding proteins, interacts with mRNAs encoding membrane-associated proteins; involved in localizing

  5. Yeast Interacting Proteins Database: YGL145W, YNL258C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ripheral membrane protein required for Golgi-to-ER retrograde traffic; component ... membrane protein required for Golgi-to-ER retrograde traffic; component of the ER target site that interact

  6. Yeast Interacting Proteins Database: YDL239C, YPL070W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available Vps9 domain; computational analysis of large-scale protein-protein interaction data suggests a possible role...ey description Cytoplasmic protein of unknown function containing a Vps9 domain; computational analysis of large-scale

  7. Yeast Interacting Proteins Database: YLR319C, YGL015C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YLR319C BUD6 Actin- and formin-interacting protein, involved in actin cable nucleation and polarized...in actin cable nucleation and polarized cell growth; isolated as bipolar budding mutant; potential Cdc28p su

  8. Yeast Interacting Proteins Database: YBR270C, YPL124W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ytoskeletal dynamics during polarized growth and cell wall integrity; interacts with Slm1p and Slm2p, homolo...membrane-associated complex that regulates actin cytoskeletal dynamics during polarized growth and cell wall

  9. Yeast Interacting Proteins Database: YBR270C, YLR423C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ytoskeletal dynamics during polarized growth and cell wall integrity; interacts with Slm1p and Slm2p, homolo...escription Subunit of TORC2, a membrane-associated complex that regulates actin cytoskeletal dynamics during polarized

  10. Yeast Interacting Proteins Database: YDL239C, YLR423C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDL239C ADY3 Protein required for spore wall formation, thought to mediate assembly... of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...0 0 - - - - - 0 0 34 - Show YDL239C Bait ORF YDL239C Bait gene name ADY3 Bait des...ure at the leading edge of the prospore membrane via interaction with spindle pole body components; potentia

  11. Approaches to characterizing biogeochemistry effects of groundwater and surface water interaction at the riparian interface

    Science.gov (United States)

    Groundwater-surface water interaction (GSI) in riparian ecosystems strongly influences biological activity that controls nutrient flux and processes. Shallow groundwater in riparian zones is a hot spot for nitrogen removal processes, a storage zone for solutes, and a target for ...

  12. A protein domain interaction interface database: InterPare

    Directory of Open Access Journals (Sweden)

    Lee Jungsul

    2005-08-01

    Full Text Available Abstract Background Most proteins function by interacting with other molecules. Their interaction interfaces are highly conserved throughout evolution to avoid undesirable interactions that lead to fatal disorders in cells. Rational drug discovery includes computational methods to identify the interaction sites of lead compounds to the target molecules. Identifying and classifying protein interaction interfaces on a large scale can help researchers discover drug targets more efficiently. Description We introduce a large-scale protein domain interaction interface database called InterPare http://interpare.net. It contains both inter-chain (between chains interfaces and intra-chain (within chain interfaces. InterPare uses three methods to detect interfaces: 1 the geometric distance method for checking the distance between atoms that belong to different domains, 2 Accessible Surface Area (ASA, a method for detecting the buried region of a protein that is detached from a solvent when forming multimers or complexes, and 3 the Voronoi diagram, a computational geometry method that uses a mathematical definition of interface regions. InterPare includes visualization tools to display protein interior, surface, and interaction interfaces. It also provides statistics such as the amino acid propensities of queried protein according to its interior, surface, and interface region. The atom coordinates that belong to interface, surface, and interior regions can be downloaded from the website. Conclusion InterPare is an open and public database server for protein interaction interface information. It contains the large-scale interface data for proteins whose 3D-structures are known. As of November 2004, there were 10,583 (Geometric distance, 10,431 (ASA, and 11,010 (Voronoi diagram entries in the Protein Data Bank (PDB containing interfaces, according to the above three methods. In the case of the geometric distance method, there are 31,620 inter-chain domain

  13. Yeast Interacting Proteins Database: YML064C, YNL044W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available M-phase; controls actomyosin and septin dynamics during cytokinesis Rows with this bait as bait (20) Rows wi...Golgi transport; interacts with members of the Rab GTPase family and Yip1p; also interacts with Rtn1p Row...s with this prey as prey (4) Rows with this prey as bait (1) 28 6 2 2 0 0 0 0 0 - - ...n dynamics during cytokinesis Rows with this bait as bait Rows with this bait as bait (20) Rows with this bait as prey Row...acts with members of the Rab GTPase family and Yip1p; also interacts with Rtn1p Rows with this prey as prey Row

  14. Yeast Interacting Proteins Database: YNR051C, YER151C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available that coregulates anterograde and retrograde transport between the endoplasmic reticulum and Golgi compartme...C UBP3 Ubiquitin-specific protease that interacts with Bre5p to co-regulate anterograde and retrograde...t gene name BRE5 Bait description Ubiquitin protease cofactor, forms deubiquitination complex with Ubp3p that coregulates anterograde... and retrograde transport between the endoplasmic reticulum and Golgi compartments;...3 Prey description Ubiquitin-specific protease that interacts with Bre5p to co-regulate anterograde and retrograde

  15. Yeast Interacting Proteins Database: YNL273W, YMR048W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ing gap repair of damaged DNA; interacts with the MCM helicase Rows with this bait as bait (1) Rows with thi...s bait as prey (0) YMR048W CSM3 Protein required for accurate chromosome segregation during meiosis Row...s with this prey as prey (1) Rows with this prey as bait (0) 4 3 2 2 0 0 0 0 0 - - - -...rk to promote sister chromatid cohesion after DNA damage, facilitating gap repair of damaged DNA; interacts with the MCM helicase Row...s with this bait as bait Rows with this bait as bait (1) Rows with this bait as prey Row

  16. Yeast Interacting Proteins Database: YNR006W, YHL002W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available has Ubiquitin Interaction Motifs which bind ubiquitin (Ubi4p) Rows with this bait as bait (1) Rows with this..., as well as for recycling of Golgi proteins and formation of lumenal membranes Rows with this prey as prey (1) Row...ined for degradation; has Ubiquitin Interaction Motifs which bind ubiquitin (Ubi4p) Row...s with this bait as bait Rows with this bait as bait (1) Rows with this bait as prey Rows with this ba...degradation, as well as for recycling of Golgi proteins and formation of lumenal membranes Row

  17. Yeast Interacting Proteins Database: YDR425W, YJL036W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available e post-Golgi endosome to the trans-Golgi network; interacts with Snx4p Rows with this bait as bait (4) Rows ...Golgi endosomes to the trans-Golgi network and in cytoplasm to vacuole transport;...eval of late-Golgi SNAREs from the post-Golgi endosome to the trans-Golgi network; interacts with Snx4p Rows...lved in retrieval of late-Golgi SNAREs from post-Golgi endosomes to the trans-Golgi network and in cytoplasm

  18. Yeast Interacting Proteins Database: YDL239C, YDR273W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDL239C ADY3 Protein required for spore wall formation, thought to mediate assembly... of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...it as prey (1) YDR273W DON1 Meiosis-specific component of the spindle pole body, ...0 - - - - - 0 0 5 - Show YDL239C Bait ORF YDL239C Bait gene name ADY3 Bait descri... at the leading edge of the prospore membrane via interaction with spindle pole body components; potentially

  19. Yeast Interacting Proteins Database: YDL239C, YOR324C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDL239C ADY3 Protein required for spore wall formation, thought to mediate assembly... of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p... as bait (0) 4 5 3 4 0 0 0 0 0 - - - - - 0 0 4 - Show YDL239C Bait ORF YDL239C Ba... a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle pole

  20. Yeast Interacting Proteins Database: YDL239C, YDR148C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDL239C ADY3 Protein required for spore wall formation, thought to mediate assembly... of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...s prey as bait (0) 4 15 2 5 0 0 0 0 0 - - - - - 0 0 3 - Show YDL239C Bait ORF YDL...mbly of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindl

  1. Yeast Interacting Proteins Database: YDL239C, YPL255W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDL239C ADY3 Protein required for spore wall formation, thought to mediate assembly... of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...it as prey (1) YPL255W BBP1 Protein required for the spindle pole body (SPB) dupl...ows with this prey as bait (0) 4 8 3 4 0 0 0 0 0 - - - - - 0 0 7 - Show YDL239C Bait ORF YDL...ediate assembly of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindl

  2. Yeast Interacting Proteins Database: YDL239C, YAL028W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDL239C ADY3 Protein required for spore wall formation, thought to mediate assembly... of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...(1) Rows with this prey as bait (0) 4 5 4 7 0 0 0 0 0 - - - - - 0 0 3 - Show YDL239C Bait ORF YDL... to mediate assembly of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindl

  3. Yeast Interacting Proteins Database: YDR176W, YDL239C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available the SAGA complex, and the SLIK complex Rows with this bait as bait (4) Rows with this bait as prey (0) YDL23... a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle pole...it as bait (4) Rows with this bait as prey Rows with this bait as prey (0) Prey ORF YDL239C Prey gene name A...ining structure at the leading edge of the prospore membrane via interaction with spindle pole body componen

  4. Yeast Interacting Proteins Database: YDL239C, YBR072W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDL239C ADY3 Protein required for spore wall formation, thought to mediate assembly... of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p... (3) Rows with this prey as bait (0) 4 52 1 1 0 0 0 0 0 - - - - - 0 0 3 - Show YDL239C Bait ORF YDL...ht to mediate assembly of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindl

  5. Yeast Interacting Proteins Database: YDL239C, YLR072W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDL239C ADY3 Protein required for spore wall formation, thought to mediate assembly... of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p... with this prey as prey (1) Rows with this prey as bait (0) 4 5 4 7 0 0 0 0 0 - - - - - 0 0 4 - Show YDL239C Bait ORF YDL...pore membrane via interaction with spindle pole body components; potentially phosphorylated by Cdc28p Rows w

  6. Yeast Interacting Proteins Database: YDR479C, YLR324W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available peroxisomal size, number and distribution; genetic interactions suggest that Pex28p and Pex29p act at steps ...ggest action at a step downstream of steps mediated by Pex28p and Pex29p Rows with this prey as prey (5) Row...regulation of peroxisomal size, number and distribution; genetic interactions suggest that Pex28p and Pex29p act at steps... suggest action at a step downstream of steps mediated by Pex28p and Pex29p Rows

  7. The BioGRID interaction database: 2013 update.

    Science.gov (United States)

    Chatr-Aryamontri, Andrew; Breitkreutz, Bobby-Joe; Heinicke, Sven; Boucher, Lorrie; Winter, Andrew; Stark, Chris; Nixon, Julie; Ramage, Lindsay; Kolas, Nadine; O'Donnell, Lara; Reguly, Teresa; Breitkreutz, Ashton; Sellam, Adnane; Chen, Daici; Chang, Christie; Rust, Jennifer; Livstone, Michael; Oughtred, Rose; Dolinski, Kara; Tyers, Mike

    2013-01-01

    The Biological General Repository for Interaction Datasets (BioGRID: http//thebiogrid.org) is an open access archive of genetic and protein interactions that are curated from the primary biomedical literature for all major model organism species. As of September 2012, BioGRID houses more than 500 000 manually annotated interactions from more than 30 model organisms. BioGRID maintains complete curation coverage of the literature for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the model plant Arabidopsis thaliana. A number of themed curation projects in areas of biomedical importance are also supported. BioGRID has established collaborations and/or shares data records for the annotation of interactions and phenotypes with most major model organism databases, including Saccharomyces Genome Database, PomBase, WormBase, FlyBase and The Arabidopsis Information Resource. BioGRID also actively engages with the text-mining community to benchmark and deploy automated tools to expedite curation workflows. BioGRID data are freely accessible through both a user-defined interactive interface and in batch downloads in a wide variety of formats, including PSI-MI2.5 and tab-delimited files. BioGRID records can also be interrogated and analyzed with a series of new bioinformatics tools, which include a post-translational modification viewer, a graphical viewer, a REST service and a Cytoscape plugin.

  8. Yeast Interacting Proteins Database: YDL226C, YJL151C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available s bait as prey (0) YJL151C SNA3 Integral membrane protein localized to vacuolar intralumenal vesicles, computation...intralumenal vesicles, computational analysis of large-scale protein-protein interaction data suggests a pos... gene name SNA3 Prey description Integral membrane protein localized to vacuolar

  9. Yeast Interacting Proteins Database: YJR091C, YLR156W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ion with Jsn1p in a large-scale analysis Rows with this prey as prey (1) Rows with this prey as bait (0) 7 5...scription Putative protein of unknown function; exhibits a two-hybrid interaction with Jsn1p in a large-scale

  10. Yeast Interacting Proteins Database: YNL041C, YDR229W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available pholipid-binding protein that interacts with both Ypt7p and Vps33p, may partially...teracts with both Ypt7p and Vps33p, may partially counteract the action of Vps33p and vice versa, localizes

  11. Yeast Interacting Proteins Database: YIL007C, YOR117W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YIL007C NAS2 Proteasome-interacting protein involved in the assembly of the base su... - - - - - 0 0 3 4 Show YIL007C Bait ORF YIL007C Bait gene name NAS2 Bait description Proteasome-interacti

  12. Yeast Interacting Proteins Database: YNL078W, YMR139W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available with septins; possibly involved in a mitotic signaling network Rows with this bait as bait (2) Rows with thi...y interacts with septins; possibly involved in a mitotic signaling network Rows with this bait as bait Rows

  13. Yeast Interacting Proteins Database: YDL167C, YBR212W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available as bait (2) Rows with this bait as prey (0) YBR212W NGR1 RNA binding protein that negatively regulates grow...ption RNA binding protein that negatively regulates growth rate; interacts with the 3' UTR of the mitochondr

  14. Yeast Interacting Proteins Database: YDL044C, YLR386W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of mitochondrial RNA polymerase (Rpo41p) and couples RNA processing and translation to transcription Rows wi...protein that interacts with an N-terminal region of mitochondrial RNA polymerase (Rpo41p) and couples RNA pr

  15. Yeast Interacting Proteins Database: YJR091C, YKL113C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available encoding membrane-associated proteins; involved in localizing the Arp2/3 complex to mitochondria; overexpre...r of the Puf family of RNA-binding proteins, interacts with mRNAs encoding membrane-associated proteins; involved in localizing

  16. Yeast Interacting Proteins Database: YJR091C, YDR389W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available encoding membrane-associated proteins; involved in localizing the Arp2/3 complex to mitochondria; overexpre...d proteins; involved in localizing the Arp2/3 complex to mitochondria; overexpression causes increased sensi...scription Member of the Puf family of RNA-binding proteins, interacts with mRNAs encoding membrane-associate

  17. Yeast Interacting Proteins Database: YJR091C, YDL147W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available encoding membrane-associated proteins; involved in localizing the Arp2/3 complex to mitochondria; overexpre...g proteins, interacts with mRNAs encoding membrane-associated proteins; involved in localizing the Arp2/3 co

  18. Yeast Interacting Proteins Database: YDL239C, YPL124W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...ore wall formation, thought to mediate assembly of a Don1p-containing structure at the leading edge of the p

  19. Yeast Interacting Proteins Database: YDL239C, YHR184W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available of a Don1p-containing structure at the leading edge of the prospore membrane via interaction with spindle p...e wall formation, thought to mediate assembly of a Don1p-containing structure at the leading edge of the pro

  20. Yeast Interacting Proteins Database: YOR358W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; act...rotein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regulator o

  1. Yeast Interacting Proteins Database: YGL127C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ith protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regula...rotein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors

  2. Yeast Interacting Proteins Database: YOR302W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available rol of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt...tein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt1

  3. Yeast Interacting Proteins Database: YGR268C, YER125W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available larity to that of Type I J-proteins; computational analysis of large-scale protein-protein interaction data ...equence similarity to that of Type I J-proteins; computational analysis of large-scale protein-protein inter

  4. Yeast Interacting Proteins Database: YDL100C, YOR164C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available to the ER membrane; has low-level ATPase activity Rows with this bait as bait (2) Rows with this bait as pre...and homologous to human gene C7orf20; interacts with Mdy2p Rows with this prey as prey (2) Rows with this pr...nto the ER membrane; has low-level ATPase activity Rows with this bait as bait Rows with this bait as bait (2) Row...s with this bait as prey Rows with this bait as prey (10) Prey ORF YOR164C ...gous to human gene C7orf20; interacts with Mdy2p Rows with this prey as prey Rows with this prey as prey (2) Row

  5. Yeast Interacting Proteins Database: YOR164C, YDL100C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ogous to human gene C7orf20; interacts with Mdy2p Rows with this bait as bait (1) Rows with this bait as pre...teins into the ER membrane; has low-level ATPase activity Rows with this prey as prey (10) Rows with this pr...logous to human gene C7orf20; interacts with Mdy2p Rows with this bait as bait Rows with this bait as bait (1) Row...s with this bait as prey Rows with this bait as prey (2) Prey ORF YDL100C Prey gene name GET3 Prey des... the ER membrane; has low-level ATPase activity Rows with this prey as prey Rows with this prey as prey (10) Row

  6. Yeast Interacting Proteins Database: YOR047C, YKL038W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available racts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a...Bait description Protein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose senso...rs Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regulator of the tra

  7. Yeast Interacting Proteins Database: YER093C, YBR270C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available sociated complex that regulates actin cytoskeletal dynamics during polarized growth and cell wall integrity;...that regulates actin cytoskeletal dynamics during polarized growth and cell wall integrity; interacts with S...p-Bit61p), a membrane-associated complex that regulates actin cytoskeletal dynamics during polarized growth ...ated complex that regulates actin cytoskeletal dynamics during polarized growth and cell wall integrity; int

  8. Yeast Interacting Proteins Database: YPR088C, YOR128C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available SRP to signal receptor; contains GTPase domain Rows with this bait as bait (1) Rows with this bait as prey ...e 'de novo' purine nucleotide biosynthetic pathway; red pigment accumulates in mutant cells deprived of adenine Row...s with this prey as prey (6) Rows with this prey as bait (0) 16 54 2 2 0 0 0 0 0 - - - - - 0 0 3 - Sh...P, interacts with the SRP RNA, and mediates binding of SRP to signal receptor; contains GTPase domain Rows with this bait as bait Row...s with this bait as bait (1) Rows with this bait as prey Row

  9. Yeast Interacting Proteins Database: YJR055W, YPL193W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YJR055W HIT1 Protein of unknown function, required for growth at high temperature Row...s with this bait as bait (1) Rows with this bait as prey (0) YPL193W RSA1 Protein involved in the assembly... of 60S ribosomal subunits; functionally interacts with Dbp6p; functions in a late nucleoplasmic step of the assembly Row...s with this prey as prey (1) Rows with this prey as bait (0) 6 5 2 2...unknown function, required for growth at high temperature Rows with this bait as bait Rows with this bait as bait (1) Row

  10. Yeast Interacting Proteins Database: YEL017W, YEL017W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available 17W GTT3 Protein of unknown function with a possible role in glutathione metabolism, as suggested by compu...Bait description Protein of unknown function with a possible role in glutathione metabolism, as suggested by comput...ion Protein of unknown function with a possible role in glutathione metabolism, as suggested by computationa...YEL017W GTT3 Protein of unknown function with a possible role in glutathione metabolism, as suggested by com...putational analysis of large-scale protein-protein interaction data; GFP-fusion pro

  11. Yeast Interacting Proteins Database: YLR324W, YLR324W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available uggest action at a step downstream of steps mediated by Pex28p and Pex29p Rows with this prey as prey (5) Ro...ggest action at a step downstream of steps mediated by Pex28p and Pex29p Rows wit...ns suggest action at a step downstream of steps mediated by Pex28p and Pex29p Row...n of peroxisome number; partially functionally redundant with Pex31p; genetic interactions suggest action at a step downstream of ste...ps mediated by Pex28p and Pex29p Rows with this bait as bait (2) Rows with this bai

  12. Radioactive contamination and radionuclide migration in groundwater. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The bibliography contains citations concerning the contamination of groundwater with radionuclides and their subsequent migration. Monitoring surveys of existing sites with actual or potential radioactive groundwater contamination are included. Transport and migration models for radionuclides in groundwater are discussed. Natural radiation and accidental releases are considered in addition to anthropogenic sources of radioactive pollution such as waste storage and disposal. Contributions to radioactive pollution from uranium mining and processing are discussed in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Radioactive contamination and radionuclide migration in groundwater. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The bibliography contains citations concerning the contamination of groundwater with radionuclides and their subsequent migration. Monitoring surveys of existing sites with actual or potential radioactive groundwater contamination are included. Transport and migration models for radionuclides in groundwater are discussed. Natural radiation and accidental releases are considered in addition to anthropogenic sources of radioactive pollution such as waste storage and disposal. Contributions to radioactive pollution from uranium mining and processing are discussed in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. CREDO: a protein-ligand interaction database for drug discovery.

    Science.gov (United States)

    Schreyer, Adrian; Blundell, Tom

    2009-02-01

    Harnessing data from the growing number of protein-ligand complexes in the Protein Data Bank is an important task in drug discovery. In order to benefit from the abundance of three-dimensional structures, structural data must be integrated with sequence as well as chemical data and the protein-small molecule interactions characterized structurally at the inter-atomic level. In this study, we present CREDO, a new publicly available database of protein-ligand interactions, which represents contacts as structural interaction fingerprints, implements novel features and is completely scriptable through its application programming interface. Features of CREDO include implementation of molecular shape descriptors with ultrafast shape recognition, fragmentation of ligands in the Protein Data Bank, sequence-to-structure mapping and the identification of approved drugs. Selected analyses of these key features are presented to highlight a range of potential applications of CREDO. The CREDO dataset has been released into the public domain together with the application programming interface under a Creative Commons license at http://www-cryst.bioc.cam.ac.uk/credo. We believe that the free availability and numerous features of CREDO database will be useful not only for commercial but also for academia-driven drug discovery programmes.

  15. Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence

    Science.gov (United States)

    Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman

    2016-12-01

    Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.

  16. Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence

    Science.gov (United States)

    Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman

    2017-05-01

    Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.

  17. EXPANDING ACADEMIC VOCABULARY WITH AN INTERACTIVE ON-LINE DATABASE

    Directory of Open Access Journals (Sweden)

    Marlise Horst

    2005-05-01

    Full Text Available University students used a set of existing and purpose-built on-line tools for vocabulary learning in an experimental ESL course. The resources included concordance, dictionary, cloze-builder, hypertext, and a database with interactive self-quizzing feature (all freely available at www.lextutor.ca. The vocabulary targeted for learning consisted of (a Coxhead's (2000 Academic Word List, a list of items that occur frequently in university textbooks, and (b unfamiliar words students had met in academic texts and selected for entry into the class database. The suite of tools were designed to foster retention by engaging learners in deep processing, an aspect that is often described as missing in computer exercises for vocabulary learning. Database entries were examined to determine whether context sentences supported word meanings adequately and whether entered words reflected the unavailability of cognates in the various first languages of the participants. Pre- and post-treatment performance on tests of knowledge of words targeted for learning in the course were compared to establish learning gains. Regression analyses investigated connections between use of specific computer tools and gains.

  18. Limitations of fibre optic distributed temperature sensing for quantifying surface water groundwater interactions

    Directory of Open Access Journals (Sweden)

    H. Roshan

    2014-07-01

    Full Text Available Studies of surface water–groundwater interactions using fiber optic distributed temperature sensing (FO-DTS has increased in recent years. However, only a few studies to date have explored the limitations of FO-DTS in detecting groundwater discharge to streams. A FO_DTS system was therefore tested in a flume under controlled laboratory conditions for its ability to accurately measure the discharge of hot or cold groundwater into a simulated surface water flow. In the experiment the surface water (SW and groundwater (GW velocities, expressed as ratios (vgw/vsw, were varied from 0.21% to 61.7%; temperature difference between SW-GW were varied from 2 to 10 °C; the direction of temperature gradient were varied with both cold and-hot water injection; and two different bed materials were used to investigate their effects on FO_DTS's detection limit of groundwater discharge. The ability of the FO_DTS system to detect the discharge of groundwater of a different temperature in the laboratory environment was found to be mainly dependent upon the surface and groundwater flow velocities and their temperature difference. A correlation was proposed to estimate the groundwater discharge from temperature. The correlation is valid when the ratio of the apparent temperature response to the source temperature difference is above 0.02.

  19. Modelling free surface aquifers to analyze the interaction between groundwater and sinuous streams

    DEFF Research Database (Denmark)

    Balbarini, Nicola; Boon, W. M.; Bjerg, Poul Løgstrup;

    Several mathematical methods for modelling free surface aquifers are available. Aquifer-stream interaction is an important application of these models, and are challenging to simulate because stream interaction is described by a highly variable head boundary, which can cause numerical instabilities...... and errors. In addition, when streams are sinuous, groundwater flow is truly 3-dimensional, with strong vertical flows and sharp changes in horizontal direction. Here 3 different approaches to simulating free surface aquifers are compared for simulating groundwater-stream interaction. The aim of the models...... was to investigate the effect of meander bends on the spatial and temporal variability of aquifer-stream interaction, and to develop a new 3D conceptual model of groundwater-stream interaction. Three mathematical methods were tested, representing the three main methods available for modeling 3D unconfined aquifers...

  20. Mathematical modelling of surface water-groundwater flow and salinity interactions in the coastal zone

    Science.gov (United States)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2014-05-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. In these numerical models surface water flow is usually described by the 1-D Saint Venant equations (e.g. Swain and Wexler, 1996) or the 2D shallow water equations (e.g. Liang et al., 2007). Further simplified equations, such as the diffusion and kinematic wave approximations to the Saint Venant equations, are also employed for the description of 2D overland flow and 1D stream flow (e.g. Gunduz and Aral, 2005). However, for coastal bays, estuaries and wetlands it is often desirable to solve the 3D shallow water equations to simulate surface water flow. This is the case e.g. for wind-driven flows or density-stratified flows. Furthermore, most integrated models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated

  1. Interaction of Rahaliya-Ekhedhur groundwater with the aquifer rock, West Razzaza Lake, Central Iraq

    Science.gov (United States)

    Al-Dabbas, Moutaz A.

    2016-09-01

    The groundwater of Dammam aquifer in Rahaliya-Ekhedhur area, West Razzaza, Iraq, was studied to identify the main hydrogeochemical processes and the groundwater-rock interaction. The results indicated that Na+ and SO4 2- are the dominant ions in the groundwater. The average contribution of cations in the aquifer is Na+ + K+ (24.7 %), Ca2+ (13.9 %), and Mg2+ (11.4 %), while anions contribution is SO4 2- (23.0 %), Cl- (20.7 %), and HCO3 - (6.3 %). The groundwater characterized by neutral to slightly alkaline hard water, excessively mineralized, and slightly brackish water type. Rock-water interaction processes are identified to include dissolution of carbonates, sulfates, halite, and clay minerals, leaching, and cation exchanges, with little impact of evaporation.

  2. Interactive Multi-Instrument Database of Solar Flares (IMIDSF)

    Science.gov (United States)

    Sadykov, Viacheslav M.; Nita, Gelu M.; Oria, Vincent; Kosovichev, Alexander G.

    2017-08-01

    Solar flares represent a complicated physical phenomenon observed in a broad range of the electromagnetic spectrum, from radiowaves to gamma-rays. For a complete understanding of the flares it is necessary to perform a combined multi-wavelength analysis using observations from many satellites and ground-based observatories. For efficient data search, integration of different flare lists and representation of observational data, we have developed the Interactive Multi-Instrument Database of Solar Flares (https://solarflare.njit.edu/). The web database is fully functional and allows the user to search for uniquely-identified flare events based on their physical descriptors and availability of observations of a particular set of instruments. Currently, data from three primary flare lists (GOES, RHESSI and HEK) and a variety of other event catalogs (Hinode, Fermi GBM, Konus-Wind, OVSA flare catalogs, CACTus CME catalog, Filament eruption catalog) and observing logs (IRIS and Nobeyama coverage), are integrated. An additional set of physical descriptors (temperature and emission measure) along with observing summary, data links and multi-wavelength light curves is provided for each flare event since January 2002. Results of an initial statistical analysis will be presented.

  3. An Interactive Multi-instrument Database of Solar Flares

    Science.gov (United States)

    Sadykov, Viacheslav M.; Kosovichev, Alexander G.; Oria, Vincent; Nita, Gelu M.

    2017-07-01

    Solar flares are complicated physical phenomena that are observable in a broad range of the electromagnetic spectrum, from radio waves to γ-rays. For a more comprehensive understanding of flares, it is necessary to perform a combined multi-wavelength analysis using observations from many satellites and ground-based observatories. For an efficient data search, integration of different flare lists, and representation of observational data, we have developed the Interactive Multi-Instrument Database of Solar Flares (IMIDSF, https://solarflare.njit.edu/). The web-accessible database is fully functional and allows the user to search for uniquely identified flare events based on their physical descriptors and the availability of observations by a particular set of instruments. Currently, the data from three primary flare lists (Geostationary Operational Environmental Satellites, RHESSI, and HEK) and a variety of other event catalogs (Hinode, Fermi GBM, Konus-W IND, the OVSA flare catalogs, the CACTus CME catalog, the Filament eruption catalog) and observing logs (IRIS and Nobeyama coverage) are integrated, and an additional set of physical descriptors (temperature and emission measure) is provided along with an observing summary, data links, and multi-wavelength light curves for each flare event since 2002 January. We envision that this new tool will allow researchers to significantly speed up the search of events of interest for statistical and case studies.

  4. Groundwater surface water interactions and the role of phreatophytes in identifying recharge zones

    Directory of Open Access Journals (Sweden)

    T. S. Ahring

    2012-11-01

    Full Text Available Groundwater and surface water interactions within riparian corridors impact the distribution of phreatophytes that tap into groundwater stores. The changes in canopy area of phreatophytes over time is related to changes in depth to groundwater, distance from a stream or river, and hydrologic soil group. Remote sensing was used to determine the location of trees with pre-development and post-development aerial photography over the Ogallala Aquifer in the central plains of the United States. It was found that once the depth to groundwater becomes greater than about 3 m, tree populations decrease as depth to water increases. This subsequently limited the extent of phreatophytes to within 700 m of the river. It was also found that phreatophytes have a higher likelihood of growing on hydrologic soil groups with higher saturated hydraulic conductivity. Phreatophytes exist along portions of the Arkansas River corridor where significant decreases in groundwater occurred as long as alluvium exists to create perched conditions where trees survive dry periods. Significant decreases (more that 50% in canopy cover exists along river segments where groundwater declined by more than 10 m, indicating areas with good hydraulic connectivity between surface water and groundwater. Thus, interpretation of changes in phreatophyte distribution using historical and recent aerial photography is important in delineating zones of enhanced recharge where aquifers might be effectively recharged through diversion of surface water runoff.

  5. Groundwater surface water interactions through streambeds and the role of phreatophytes in identifying important recharge zones

    Directory of Open Access Journals (Sweden)

    T. S. Ahring

    2012-06-01

    Full Text Available Groundwater and surface water interactions within riparian corridors impact the distribution of phreatophytes that tap into groundwater stores. The changes in canopy area of phreatophytes over time is related to changes in depth to groundwater, distance from a stream or river, and hydrologic soil group. Remote sensing was used to determine the location of trees with predevelopment and post-development aerial photography over the Ogallala Aquifer in the central plains of the United States. It was found that once the depth to groundwater becomes greater than about 3 m, tree populations decrease as depth to water increases. This subsequently limited the extent of phreatophytes to within 700 m of the river. It was also found that phreatophytes have a higher likelihood of growing on hydrologic soil groups with higher saturated hydraulic conductivity. Phreatophytes exist along portions of the Arkansas River corridor where significant decreases in groundwater occurred as long as alluvium exists to create perched conditions where trees survive dry periods. Significant decreases (more that 50% in canopy cover exists along river segments where groundwater declined by more than 10 m, indicating areas with good hydraulic connectivity between surface water and groundwater. Thus, interpretation of changes in phreatophyte distribution using historical and recent aerial photophaphy is important in delineating zones of enhanced recharge where aquifers might be effectively recharged through diversion of surface water runoff.

  6. Download - Yeast Interacting Proteins Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us ...らダウンロード Joomla SEF URLs by Artio About This Database Database Description Download License Update History of

  7. [Groundwater].

    Science.gov (United States)

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  8. Sea-water/groundwater interactions along a small catchment of the European Atlantic coast

    DEFF Research Database (Denmark)

    Einsiedl, Florian

    2012-01-01

    The geochemistry and isotopic composition of a karstic coastal aquifer in western Ireland has shed light on the effect of sea-water/groundwater interactions on the water quality of Ireland’s Atlantic coastal zone. The use of stable isotope data from the IAEA precipitation station in Valentia......, located in SW Ireland has facilitated the characterization of groundwater recharge conditions in the western part of Ireland and suggests that groundwater is mostly replenished by the isotopically light winter precipitation. The dissolved SO42- in the karstic groundwater that was collected during baseflow...... conditions with δ34S values between 4.6‰ and 18‰ may be composed of S stemming from three principal sources: SO42- derived from precipitation which is composed of both sea-spray S (δ34S: 20‰) and an isotopically light anthropogenic source (δ34S: 1–5‰), SO42-stemming from animal slurries (δ34S: ∼5...

  9. License - Yeast Interacting Proteins Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available freely redistribute part or whole of the data from this database; and freely create and distribute database and other derivative wor...ks based on part or whole of the data from this database, under the Standard Licens

  10. Database of groundwater levels and hydrograph descriptions for the Nevada Test Site area, Nye County, Nevada

    Science.gov (United States)

    Elliott, Peggy E.; Fenelon, Joseph M.

    2010-01-01

    A database containing water levels measured from wells in and near areas of underground nuclear testing at the Nevada Test Site was developed. The water-level measurements were collected from 1941 to 2016. The database provides information for each well including well construction, borehole lithology, units contributing water to the well, and general site remarks. Water-level information provided in the database includes measurement source, status, method, accuracy, and specific water-level remarks. Additionally, the database provides hydrograph narratives that document the water-level history and describe and interpret the water-level hydrograph for each well.Water levels in the database were quality assured and analyzed. Multiple conditions were assigned to each water-level measurement to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed to each water-level measurement.

  11. Databases

    Data.gov (United States)

    National Aeronautics and Space Administration — The databases of computational and experimental data from the first Aeroelastic Prediction Workshop are located here. The databases file names tell their contents by...

  12. Persistence of uranium groundwater plumes: Contrasting mechanisms at two DOE sites in the groundwater-river interaction zone

    Science.gov (United States)

    Zachara, John M.; Long, Philip E.; Bargar, John; Davis, James A.; Fox, Patricia; Fredrickson, Jim K.; Freshley, Mark D.; Konopka, Allan E.; Liu, Chongxuan; McKinley, James P.; Rockhold, Mark L.; Williams, Kenneth H.; Yabusaki, Steve B.

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of residual, contaminant U; the rates of current kinetic processes (both biotic and abiotic) influencing U(VI) solid-liquid distribution; the presence of detrital organic matter and the resulting spatial heterogeneity in microbially-driven redox properties; and the magnitude of groundwater hydrologic dynamics controlled by river-stage fluctuations, geologic structures, and aquifer hydraulic properties. The comparative analysis of these sites provides important guidance to the characterization, understanding, modeling, and remediation

  13. Groundwater-Surface Water Interactions in the Poldered Landscape of Southwest Bangladesh

    Science.gov (United States)

    Peters, C.; Hornberger, G. M.; Wilson, C.; Goodbred, S. L., Jr.

    2014-12-01

    Bangladesh is shaped by the largest and most active delta system in the world. The Ganges, Brahmaputra, and Meghna river networks carve the low lying deltaic plains of the southern part of the country. Much of the tidal mangrove forest ecosystem of the lower delta was converted to poldered islands that sustain a Bangladesh population of 150 million though shrimp farming and rice production. These polder inhabitants lack potable water resources due to pathogen laden surface water and saline groundwater. This study examines polder groundwater-surface water interactions of fresh and saline water sources. Preliminary sampling of the polder groundwater suggests unpredictable apportioning of freshwater in the brackish aquifer. Using a broadband electromagnetic induction technique, we examine the conductivity profile of the shallow subsurface stratigraphy to identify potential rainwater recharge sites. Transects of nested piezometers, equipped with conductivity, temperature, and depth sensors, help determine the extent of tidal channel-aquifer interactions. Lithology from cores indicates that a highly variable clay cap likely regulates recharge. A better understanding of groundwater-surface water interactions will aid in the search for potable groundwater.

  14. Spectral Induced Polarization monitoring of the groundwater physico-chemical parameters daily variations for stream-groundwater interactions

    Science.gov (United States)

    Jougnot, Damien; Camerlynck, Christian; Robain, Henri; Tallec, Gaëlle; Ribolzi, Olivier; Gaillardet, Jérôme

    2017-04-01

    performed. Relating the daily fluctuations of the groundwater complex conductivity and the river physico-chemical parameters could therefore establish a new proxy to characterize stream-groundwater interactions. In parallel to the field measurements, laboratory experiments have been conducted on soil samples from the two sites. These measurements provide a better understanding of the complex conductivity signature of the samples submitted to saturation and pore water physico-chemical changes. This work is in progress but the first results already show that the method has a real interest for the monitoring of daily variations of the physico-chemistry properties of the groundwater and their relations to those of the stream.

  15. Groundwater and security

    NARCIS (Netherlands)

    Conti, K.I.; Kukurić, N.; Gupta, J.; Pahl-Wostl, C.; Bhaduri, A.; Gupta, J.

    2016-01-01

    Humans abstract two hundred times more groundwater than oil, annually. Ironically, the role of groundwater in water management and supply is underappreciated, partially due to its invisibility. By conducting a literature survey and investigating groundwater information databases, this chapter answer

  16. Core Data of Yeast Interacting Proteins Database (Annotation Updated Version) - Yeast Interacting Proteins Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available nteractions are required. Several sources including YPD (Yeast Proteome Database, Costanzo, M. C., Hogan, J....erse direction. *1 The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources

  17. Characterizing the Interaction between Groundwater and Surface Water in the Boise River for Water Sustainability

    Science.gov (United States)

    Hernandez, J.; Tan, K.; Portugais, B.

    2014-12-01

    Management of water resources has increasingly become aware of the importance of considering groundwater and surface water as an interconnected, single resource. Surface water is commonly hydraulically connected to groundwater, but the interactions are difficult to observe and measure. Such a conjunctive approach has often been left out of water-management considerations because of a lack of understanding of the processes occurring. The goal of this research is to increase the better understanding of the interaction between the surface water and groundwater using the study case of the Treasure Valley Aquifer and the Boise River in Idaho, framed on water sustainability. Water-budgets for the Treasure Valley for the calendar years 1996 and 2000 suggest that the Boise River lost to the shallow aquifer almost 20 Hm3 and 95 Hm3, respectively, along the Lucky Peak to Capitol Bridge reach. Groundwater discharge occurred into the Boise River, along the Capitol Bridge to Parma reach, at about 645 Hm3 and 653 Hm3for the calendar years 1996 and 2000, respectively (USBR). These figures highlight the importance of better understanding of the water flow because of disparity, which would impact groundwater management practices. There is a need of better understanding of the groundwater-surface water interface for predicting responses to natural and human-induced stresses. A groundwater flow model was developed to compute the rates and directions of groundwater movement through aquifer and confining units in the subsurface. The model also provides a representation of the interaction that occurs between the Boise River and the shallow aquifer in the Treasure Valley. Work in progress on the general flow pattern allows assessing of the connectivity between shallow aquifer and river for helping understanding the impacts of groundwater extraction. Quantifying the interaction between the two freshwater sources would be beneficial in proper water management decisions in order to optimize

  18. Integrating Multiple Geophysical Methods to Quantify Alpine Groundwater- Surface Water Interactions: Cordillera Blanca, Peru

    Science.gov (United States)

    Glas, R. L.; Lautz, L.; McKenzie, J. M.; Baker, E. A.; Somers, L. D.; Aubry-Wake, C.; Wigmore, O.; Mark, B. G.; Moucha, R.

    2016-12-01

    Groundwater- surface water interactions in alpine catchments are often poorly understood as groundwater and hydrologic data are difficult to acquire in these remote areas. The Cordillera Blanca of Peru is a region where dry-season water supply is increasingly stressed due to the accelerated melting of glaciers throughout the range, affecting millions of people country-wide. The alpine valleys of the Cordillera Blanca have shown potential for significant groundwater storage and discharge to valley streams, which could buffer the dry-season variability of streamflow throughout the watershed as glaciers continue to recede. Known as pampas, the clay-rich, low-relief valley bottoms are interfingered with talus deposits, providing a likely pathway for groundwater recharged at the valley edges to be stored and slowly released to the stream throughout the year by springs. Multiple geophysical methods were used to determine areas of groundwater recharge and discharge as well as aquifer geometry of the pampa system. Seismic refraction tomography, vertical electrical sounding (VES), electrical resistivity tomography (ERT), and horizontal-to-vertical spectral ratio (HVSR) seismic methods were used to determine the physical properties of the unconsolidated valley sediments, the depth to saturation, and the depth to bedrock for a representative section of the Quilcayhuanca Valley in the Cordillera Blanca. Depth to saturation and lithological boundaries were constrained by comparing geophysical results to continuous records of water levels and sediment core logs from a network of seven piezometers installed to depths of up to 6 m. Preliminary results show an average depth to bedrock for the study area of 25 m, which varies spatially along with water table depths across the valley. The conceptual model of groundwater flow and storage derived from these geophysical data will be used to inform future groundwater flow models of the area, allowing for the prediction of groundwater

  19. Persistence of uranium groundwater plumes: Contrasting mechanisms at two DOE sites in the groundwater-river interaction zone

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M.; Long, Philip E.; Bargar, John; Davis, James A.; Fox, Patricia M.; Fredrickson, Jim K.; Freshley, Mark D.; Konopka, Allan; Liu, Chongxuan; McKinley, James P.; Rockhold, Mark L.; Williams, Kenneth H.; Yabusaki, Steven B.

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and that are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 µg/L or 0.126 µmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (< one pore volume). At the Rifle site, slow oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influences plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences

  20. A study of interaction between surface water and groundwater using environmental isotope in Huaisha River basin

    Institute of Scientific and Technical Information of China (English)

    SONG Xianfang; LIU Xiangchao; XIA Jun; YU Jingjie; TANG Changyuan

    2006-01-01

    The surface water and groundwater are important components of water cycle,and the interaction between surface water and groundwater is the important part in water cycle research.As the effective tracers in water cycle research,environmental isotope and hydrochemistry can reveal the interrelationships between surface water and groundwater effectively.The study area is the Huaisha River basin,which is located in Huairou district,Beijing.The field surveying and sampling for spring,river and well water were finished in 2002 and 2003.The hydrogen and oxygen isotopes and water quality were measured at the laboratory.The spatial characteristics in isotope and evolution of water quality along river lines at the different area were analyzed.The altitude effect of oxygen isotope in springs was revealed,and then using this equation,theory foundation for deducing recharge source of spring was estimated.By applying the mass balance method,the annual mean groundwater recharge rate at the catchment was estimated.Based on the groundwater recharge analysis,combining the hydrogeological condition analysis,and comparing the rainfall-runoff coefficients from the 1960s to 1990s in the Huaisha River basin and those in the Chaobai River basin,part of the runoff in the Huaisha River basin is recharged outside of this basin,in other words,this basin is an un-enclosed basin.On the basis of synthetically analyses,combining the compositions of hydrogen and oxygen isotopes and hydrochemistry,geomorphology,geology,and watershed systems characteristics,the relative contributions between surface water and groundwater flow at the different areas at the catchments were evaluated,and the interaction between surface water and groundwater was revealed lastly.

  1. Understanding Groundwater-Surface Water Interactions Using a Paired Tracer Approach in Alberta's Rocky Mountains

    Science.gov (United States)

    Spencer, S. A.; Silins, U.; Anderson, A.; Collins, A.; Williams, C.

    2015-12-01

    The eastern slopes of the Rocky Mountains produce the majority of Alberta's surface water supply. While land disturbance affects hydrologic processes governing runoff and water quality, groundwater-surface water interactions may be an important component of catchment resistance to hydrological change. The objectives of this study were to describe reach and sub-catchment coupling of groundwater and surface water processes and to characterize the role of groundwater contribution to surface discharge across spatial and temporal scales. This research is part of Phase II of the Southern Rockies Watershed Project investigating the hydrological effects of three forest harvest treatments (clear-cutting with retention, strip cutting, and partial-cutting) in the front-range Rocky Mountains in the Crowsnest Pass, Alberta. Six nested hydrometric stations in Star Creek (10.4 km2) were used to collect pre-disturbance stream discharge and water quality data (2009-2014). Instantaneous differential streamflow gauging was conducted on reaches ~700 m in length to define stream reaches that were gaining or losing water. Constant rate tracer injection was conducted on gaining reaches to further refine regions of groundwater inputs during high flows, the recession limb of the annual hydrograph, and summer baseflows. Despite being a snow-dominated catchment, groundwater is a major contributor to annual streamflow (60 - 70 %). In general, locations of gaining and losing reaches were consistent across spatial and temporal scales of investigation. A strong losing reach in one sub-basin was observed where underflow may be responsible for the loss of streamflow along this section of the stream. However, strong groundwater upwelling was also observed in a reach lower in the catchment likely due to a "pinch-point" in topographic relief. Spatial and temporal variations in groundwater-surface water interactions are likely important factors in hydrologic resistance to land disturbance.

  2. A study of interaction between surface water and groundwater using environmental isotope in Huaisha River basin

    Institute of Scientific and Technical Information of China (English)

    SONG; Xianfang; LIU; Xiangchao; XIA; Jun; YU; Jingjie; TANG; Changyuan

    2006-01-01

    The surface water and groundwater are important components of water cycle,and the interaction between surface water and groundwater is the important part in water cycle research.As the effective tracers in water cycle research,environmental isotope and hydrochemistry can reveal the interrelationships between surface water and groundwater effectively.The study area is the Huaisha River basin,which is located in Huairou district,Beijing.The field surveying and sampling for spring,river and well water were finished in 2002 and 2003.The hydrogen and oxygen isotopes and water quality were measured at the laboratory.The spatial characteristics in isotope and evolution of water quality along river lines at the different area were analyzed.The altitude effect of oxygen isotope in springs was revealed,and then using this equation,theory foundation for deducing recharge source of spring was estimated.By applying the mass balance method,the annual mean groundwater recharge rate at the catchment was estimated.Based on the groundwater recharge analysis,combining the hydrogeological condition analysis,and comparing the rainfall-runoff coefficients from the 1960s to 1990s in the Huaisha River basin and those in the Chaobai River basin,part of the runoff in the Huaisha River basin is recharged outside of this basin,in other words,this basin is an un-enclosed basin.On the basis of synthetically analyses,combining the compositions of hydrogen and oxygen isotopes and hydrochemistry,geomorphology,geology,and watershed systems characteristics,the relative contributions between surface water and groundwater flow at the different areas at the catchments were evaluated,and the interaction between surface water and groundwater was revealed lastly.

  3. Groundwater levels for selected wells in Upper Kittitas County, Washington

    Science.gov (United States)

    Fasser, E.T.; Julich, R.J.

    2011-01-01

    Groundwater levels for selected wells in Upper Kittitas County, Washington, are presented on an interactive, web-based map to document the spatial distribution of groundwater levels in the study area measured during spring 2011. Groundwater-level data and well information were collected by the U.S. Geological Survey using standard techniques and are stored in the U.S. Geological Survey National Water Information System, Groundwater Site-Inventory database.

  4. Groundwater/Surface-Water Interaction in the Context of South African Water Policy

    Science.gov (United States)

    Levy, J.; Xu, Y.

    2010-12-01

    Groundwater/surface-water interaction is receiving increasing focus in Africa due to its importance to ecologic systems and sustainability. South Africa’s 1998 National Water Act (NWA) recognized water as a basic human right and its importance for ecological sustainability. Ecological integrity of water resources was considered an important component in redressing past social inequities, eliminating poverty, and encouraging economic development. Under the NWA, groundwater-use licenses are granted only after setting aside the groundwater Reserve, the amount of water needed to supply basic human needs and preserve a minimum degree of ecological integrity. One challenge to successful implementation of the NWA, therefore, is the accurate quantification of groundwater contributions to aquatic ecosystems. This is especially true considering that so many of South Africa’s aquifers are in highly heterogeneous and anisotropic fractured-rock settings. The most common approach taken in South Africa is estimation of average annual flux rates at the regional scale of quaternary catchments with baseflow separation techniques and then applying a water-budget approach, subtracting the groundwater discharge rate from the recharge rate. The water-balance approach might be a good first step, but it ignores spatial and temporal variability, potentially missing the local impacts associated with placement of production boreholes. Identification of discrete areas of groundwater discharge could be achieved with stable-isotopic and geochemical analyses and vegetative mapping. Groundwater-flow modeling should be used where possible as it holistically incorporates available data and can predict impacts of groundwater extraction and development based on the relative positions of boreholes and surface-water bodies. Sustainable development entails recognition of the trade-offs between preservation and development. There will always be scientific uncertainty associated with estimation and

  5. Groundwater-surface water interactions in montane meadows of the Sierra Nevada, California

    Science.gov (United States)

    Lucas, R. G.; Conklin, M. H.

    2012-12-01

    center data indicate groundwater discharge for the entirety of the summer growing season—long after the adjacent forest soils have dried out. Analysis of the geochemical data show that major ion concentrations vary little within the individual wells but vary from the edge of the meadow to the center. Stream water samples show surface flow is dominated by snow melt in the spring and is influenced more by subsurface flow as the growing season progresses. Groundwater discharges into the center of the meadows, long after the soils the adjacent Forests have dried out. This is consistent with the results from our geochemical analysis that suggests the surface water leaving the meadow systems is more influenced by subsurface flow later in the summer. Consistent groundwater discharge, with little variation in the geochemical profile of the groundwater, suggests a shallow groundwater source that is not being fully utilized by the adjacent forest landscape. These montane meadow systems provide a window for investigating groundwater surface water interactions in the catchments of the Southern Sierra Critical Zone Observatory.

  6. GSFLOW model simulations used to evaluate the impact of irrigated agriculture on surface water - groundwater interaction

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Watershed-scale coupled surface water (SW) – groundwater (GW) flow modeling was used to examine changes in streamflow and SW – GW interaction resulting from...

  7. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China

    Science.gov (United States)

    Yang, Zhi; Zhou, Yangxiao; Wenninger, Jochen; Uhlenbrook, Stefan; Wang, Xusheng; Wan, Li

    2017-02-01

    The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.

  8. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China

    Science.gov (United States)

    Yang, Zhi; Zhou, Yangxiao; Wenninger, Jochen; Uhlenbrook, Stefan; Wang, Xusheng; Wan, Li

    2017-08-01

    The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.

  9. Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2011-12-01

    We report here some efforts and results in studying the imbalance in groundwater-surface water interactions and processes of groundwater-surface water interactions and groundwater flooding creating hazards in the coastal zones. Hazards, hydrological and geophysical risk analysis related to imbalance in groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of significance of imbalance in groundwater-surface water interactions. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models, and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health. In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction under conditions of imbalance in groundwater-surface water interactions. This paper proposes consideration of two case studies which are important and significant for future understanding of a concept of imbalance in groundwater-surface water interactions and development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone. It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due

  10. Databases

    Directory of Open Access Journals (Sweden)

    Nick Ryan

    2004-01-01

    Full Text Available Databases are deeply embedded in archaeology, underpinning and supporting many aspects of the subject. However, as well as providing a means for storing, retrieving and modifying data, databases themselves must be a result of a detailed analysis and design process. This article looks at this process, and shows how the characteristics of data models affect the process of database design and implementation. The impact of the Internet on the development of databases is examined, and the article concludes with a discussion of a range of issues associated with the recording and management of archaeological data.

  11. Multiple Factor Analysis and k-Means Clustering-Based Classification of the DOE Groundwater Contaminant Database

    Science.gov (United States)

    Faybishenko, B.; Hazen, T. C.

    2009-12-01

    A proper classification of the plume characteristics is critical for selecting the most suitable characterization, monitoring, and remediation technologies. To perform a statistical analysis of the different groundwater plume characteristics, we used the DOE Groundwater Database, including 221 groundwater plumes located at 60 DOE sites. To classify the plume characteristics, we used a multiple factor analysis (MFA), including a principal component analysis (PCA) of quantitative plume characteristics and a multiple correspondence analysis (MCA) of qualitative plume characteristics. The input parameters used for the statistical analysis are: the presence of eight types of contaminant groups—chlorinated hydrocarbons, fuels, explosives, sulfates, nitrates, metals, tritium, and radioisotopes; a number and associations of contaminant groups; a contamination severity index (based on the association of contaminant groups and complexity of remediation); contaminant mass and plume volumes; groundwater depth and velocities; and climatic conditions. The input variables are also partitioned into the active and supplementary plume characteristics. Statistical results include the evaluation of the correlation matrix between the groups of variables and individual plume characteristics. From the results of the MFA, the first four factors can be used to describe the variability of the basic plume characteristics. The contaminant severity index and the number of contaminant groups provide a major contribution to the 1st factor; the types of contaminant groups and carbon tetrachloride concentrations provide the major contribution to the 2nd factor. The contribution of the supplementary data (climate and plume depth and velocity) is insignificant. The presence of radioactive contaminants is mostly related to the 1st factor; the presence of sulfates, and to a lesser degree the presence of nitrates and metals, is related to the 2nd factor. The strongest relationship is, as expected

  12. Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions : An integrated modeling approach

    Science.gov (United States)

    Huntington, Justin L.; Niswonger, Richard G.

    2012-01-01

    Previous studies indicate predominantly increasing trends in precipitation across the Western United States, while at the same time, historical streamflow records indicate decreasing summertime streamflow and 25th percentile annual flows. These opposing trends could be viewed as paradoxical, given that several studies suggest that increased annual precipitation will equate to increased annual groundwater recharge, and therefore increased summertime flow. To gain insight on mechanisms behind these potential changes, we rely on a calibrated, integrated surface and groundwater model to simulate climate impacts on surface water/groundwater interactions using 12 general circulation model projections of temperature and precipitation from 2010 to 2100, and evaluate the interplay between snowmelt timing and other hydrologic variables, including streamflow, groundwater recharge, storage, groundwater discharge, and evapotranspiration. Hydrologic simulations show that the timing of peak groundwater discharge to the stream is inversely correlated to snowmelt runoff and groundwater recharge due to the bank storage effect and reversal of hydraulic gradients between the stream and underlying groundwater. That is, groundwater flow to streams peaks following the decrease in stream depth caused by snowmelt recession, and the shift in snowmelt causes a corresponding shift in groundwater discharge to streams. Our results show that groundwater discharge to streams is depleted during the summer due to earlier drainage of shallow aquifers adjacent to streams even if projected annual precipitation and groundwater recharge increases. These projected changes in surface water/groundwater interactions result in more than a 30% decrease in the projected ensemble summertime streamflow. Our findings clarify causality of observed decreasing summertime flow, highlight important aspects of potential climate change impacts on groundwater resources, and underscore the need for integrated hydrologic

  13. Ecosystem-groundwater interactions under changing land uses: Linking water, salts, and carbon across central Argentina

    Science.gov (United States)

    Jobbagy, E. G.; Nosetto, M. D.; Santoni, C. S.; Jackson, R. B.

    2007-05-01

    Although most ecosystems display a one-way connection with groundwater based on the regulation of deep water drainage (recharge), this link can become reciprocal when the saturated zone is shallow and plants take up groundwater (discharge). In what context is the reciprocal link most likely? How is it affected by land use changes? Has it consequences on salt and carbon cycling? We examine these questions across a precipitation gradient in the Pampas and Espinal of Argentina focusing on three vegetation change situations (mean annual rainfall): afforestation of humid (900-1300 mm) and subhumid grassland (700-900 mm/yr of rainfall), annual cultivation of subhumid grasslands (700-800 mm/yr), and annual cultivation of semiarid forests (500-700 mm). Humid and subhumid grasslands have shallow (salinity of tree species. Cultivation with corn and soybean can lead to groundwater consumption in the driest belt of subhumid grassland. Up to five-fold yield increases in lowlands vs. uplands during the driest years indicate a dramatic impact of groundwater use on carbon uptake and groundwater salinization suggests a recharge-to- discharge switch. In dry forests groundwater is not accessible (> 15 m deep) and recharge under natural conditions is null. The establishment of crops, however, triggers the onset of recharge, as evidenced by vadose zones getting wetter and leached of atmospheric chloride. Cropping may cause water table raises leading to a two-way coupling of ecosystems and groundwater in the future, as it has been documented for similar settings in Australia and the Sahel. In the Pampas land use change interacts with groundwater consumption leading to higher carbon uptake (humid and subhumid grasslands) and salt accumulation (subhumid grasslands). In the Espinal (semiarid forest) land use change currently involves a one-way effect on groundwater recharge that may switch to a reciprocal connection if regional water table raises occur. Neglecting the role of groundwater

  14. A Data Model for Hydrologic Sensor Networks Monitoring River- Groundwater Interactions

    Science.gov (United States)

    Schneider, Philipp; Wombacher, Andreas

    2010-05-01

    Real-time operated wireless sensor networks produce large amounts of data, so that typical eyeball based analysis of data comes to its limits. Consequently we have to adapt and automate our data handling and archiving procedures, as well as our data analysis tools. Management of sensor data requires metadata to understand the semantics of observations. While modelers have high demands on metadata, experimentalists prefer to minimize entering metadata, as this is an additional effort. Quite often this is done on subjective basis ("field notes") without following a strict and predefined structure with transparent criteria and consistent vocabulary. Nevertheless, data has to be semantically annotated. The claim of this presentation is to focus on the essentials, being described by location, time, owner, instrument and measurement. The applicability is demonstrated in a case study focussing on monitoring changes of river-groundwater interactions in the context of river restoration. Fundamental steps are (i) a proper storage in a database, (ii) traceable link between data and meta-data and (iii) semantically annotation tagged to the data, e.g. concerning data quality and data interpretation. To some extend this can be done automatically (e.g. plausibility check, if values are in expected range). The scientific challenge lies in identifying periods (data strings) where high resolution data stresses expected system behavior and established process representations/conceptualizations used in well accepted and widely used models. When and where do we measure data which do not match our expectations? As the amount of data will increase dramatically, pre-aggregation and visualization have to be automated to focus on critical parts of time series which needs interpretation with further expert knowledge.

  15. Integrated Modeling of Groundwater and Surface Water Interactions in a Manmade Wetland

    Directory of Open Access Journals (Sweden)

    Guobiao Huang Gour-Tsyh Yeh

    2012-01-01

    Full Text Available A manmade pilot wetland in south Florida, the Everglades Nutrient Removal (ENR project, was modeled with a physics-based integrated approach using WASH123D (Yeh et al. 2006. Storm water is routed into the treatment wetland for phosphorus removal by plant and sediment uptake. It overlies a highly permeable surficial groundwater aquifer. Strong surface water and groundwater interactions are a key component of the hydrologic processes. The site has extensive field measurement and monitoring tools that provide point scale and distributed data on surface water levels, groundwater levels, and the physical range of hydraulic parameters and hydrologic fluxes. Previous hydrologic and hydrodynamic modeling studies have treated seepage losses empirically by some simple regression equations and, only surface water flows are modeled in detail. Several years of operational data are available and were used in model historical matching and validation. The validity of a diffusion wave approximation for two-dimensional overland flow (in the region with very flat topography was also tested. The uniqueness of this modeling study is notable for (1 the point scale and distributed comparison of model results with observed data; (2 model parameters based on available field test data; and (3 water flows in the study area include two-dimensional overland flow, hydraulic structures/levees, three-dimensional subsurface flow and one-dimensional canal flow and their interactions. This study demonstrates the need and the utility of a physics-based modeling approach for strong surface water and groundwater interactions.

  16. Groundwater/surface-water interactions in the Bad River Watershed, Wisconsin

    Science.gov (United States)

    Leaf, Andrew T.; Fienen, Michael N.; Hunt, Randall J.; Buchwald, Cheryl A.

    2015-11-23

    A groundwater-flow model was developed for the Bad River Watershed and surrounding area by using the U.S. Geological Survey (USGS) finite-difference code MODFLOW-NWT. The model simulates steady-state groundwater-flow and base flow in streams by using the streamflow routing (SFR) package. The objectives of this study were to: (1) develop an improved understanding of the groundwater-flow system in the Bad River Watershed at the regional scale, including the sources of water to the Bad River Band of Lake Superior Chippewa Reservation (Reservation) and groundwater/surface-water interactions; (2) provide a quantitative platform for evaluating future impacts to the watershed, which can be used as a starting point for more detailed investigations at the local scale; and (3) identify areas where more data are needed. This report describes the construction and calibration of the groundwater-flow model that was subsequently used for analyzing potential locations for the collection of additional field data, including new observations of water-table elevation for refining the conceptualization and corresponding numerical model of the hydrogeologic system.

  17. Interaction between policy measures. Analysis tool in the MURE database

    Energy Technology Data Exchange (ETDEWEB)

    Boonekamp, P.G.M. [ECN Policy Studies, Petten (Netherlands); Faberi, S. [Institute of Studies for the Integration of Systems ISIS, Rome (Italy)

    2013-12-15

    The ODYSSEE database on energy efficiency indicators (www.odyssee-indicators.org) has been set up to enable the monitoring and evaluation of realised energy efficiency improvements and related energy savings. The database covers the 27 EU countries as well as Norway and Croatia and data are available from 1990 on. This report describes how sets of mutually consistent impacts for packages as well as individual policy measures can be determined in the MURE database (MURE is the French abbreviation for Mesures d'Utilisation Rationnelle de l'Energie)

  18. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    Chlorinated-solvent form one of the largest groups of environmental chemicals. Their use and misuse in industry have lead to a large entry of these chemicals into the environment, resulting in widespread dissemination and oftentimes environmental contamination. Chlorinated solvent contamination of groundwater resources has been widely reported. For instance, there has been much interest in the assessment of these contaminant levels and their evolutions with time in the groundwater body below the Vilvoorde-Machelen industrial area (Belgium). The long industrial history of the area has lead to complex patterns of pollution from multiple sources and the site has been polluted to the extent that individual plumes are not definable any more. Understanding of groundwater/surface water interaction is a critical component for determining the fate of contaminant both in streams and ground water due to the fact that groundwater and surface water are in continuous dynamic interaction in the hydrologic cycle. The interaction has practical consequences in the quantity and quality of water in either system in the sense that depletion and/or contamination of one of the system will eventually affect the other one. The transition zone between a stream and its adjacent aquifer referred to as the hyporheic zone plays a critical role in governing contaminant exchange and transformation during water exchange between the two water bodies. The hyporheic zone of Zenne River ( the main receptor ) is further complicated due to the fact that the river banks are artificially trained with sheet piles along its reach extending some 12 m below the surface. This study demonstrates the use of MODFLOW, a widely used modular three-dimensional block-centred finite difference, saturated flow model for simulating the flow and direction of movement of groundwater through aquifer and stream-aquifer interaction and the use of transport model RT3D, a three-dimensional multi-species reactive transport model

  19. Processes and features affecting the near field hydrochemistry. Groundwater-bentonite interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, J.; Arcos, D.; Duro, L. [QuantiSci SL, Barcelona (Spain)

    1999-12-01

    This report discusses in a quantitative manner the evolution of the near field aqueous chemistry as a result of the interactions between three different intruding groundwaters (Aespoe, Gideaa and Finnsjoen) with the MX-80 bentonite buffer material. The main emphasis has been placed on studying the evolution of the main chemical buffers of the system (alkalinity and redox capacities) and the resulting master variables (pH and pe). The calculations have been done by using a set of thermodynamic and kinetic parameters previously calibrated against experimental data on bentonite/granitic groundwater interactions, in combination with the PHREEQC geochemical code. The results of the calculations indicate that the alkalinity buffercapacity is mainly exerted by the accessory content of carbonate minerals (calcite) in the bentonite system, while the ion exchange process plays a secondary (but not negligible) role. The Ca(II) content of the intruding groundwater has an impact on the resulting pH. For Ca(II) rich waters, like Aespoe, the resulting pH remains in the range of granitic groundwaters (7.5-9.5) during the overall repository lifetime (1 million years). For Ca(II) poor groundwaters, the systems evolves to high alkalinity (pH : 10.5 - 10.8) due to the depletion of calcite and the release of carbonate in to the near field aqueous chemistry. Concerning the reducing capacity of the system, this is mainly controlled by the accessory pyrite content, although the Fe(II) content in montmorillonite and in the carbonates cannot be disregarded. Reducing conditions in the bentonite/groundwater system are ensured throughout the lifetime of the repository system unless this is placed in direct and lifetime contact with the atmosphere (surface storage)

  20. Radioactivity in rocks and soil and interaction with groundwater in an arid region

    Science.gov (United States)

    Alshamsi, Dalal; Murad, Ahmed; Aldahan, Ala; Hou, Xiaolin; El Saiy, Ayman

    2014-05-01

    Interaction of groundwater with soil and rocks changes the chemical composition of the water both spatially and temporally. In arid regions, surficial recharge of groundwater is generally limited to sporadic rainfall events which may cause rapid interaction between the recharge water and the aquifers materials. Among the elements that commonly increase in concentration as groundwater interact with the aquifer materials are the radioactive elements such as uranium and thorium and their decay chain products. Here, we present data on 235U, 238U, 232Th as well as 137Cs in some sediments and rock aquifers located in the United Arab Emirates (UAE) in southeastern Arabian Peninsula. The Quaternary sediments are composed of silt, sand and gravel with varying proportions of quartz, carbonates, feldspars, evaporites, while the carbonates are mainly limestones, dolomitic limestones, dolomite and calcareous mudstones. These carbonate rocks cover ages extending from 10-230 Myr. After complete digestion using fluoric and nitric acids and chemical separation, the isotopes were measured using ICP-MS. The 235U, 238U and 232Th concentrations ranges are 2.66-32.5 ng/g, 354.7-4453 ng/g and 13.2-1367 ng/g respectively in the carbonate rocks. In the sediments the concentrations are 4.6-17.5 ng/g for 235U, 631.7-2406 ng/g for 238U and 25.6-799.6 ng/g for 232Th. Although it is difficult to quantify the amounts of uranium isotopes that enter the hydrological system from the aquifers, it seems that in the presence of carboxyl ions, uranium forms highly soluble complexes which can be transported to large distances in groundwater. The variations in 232Th concentrations are probably controlled by the availability of sulfate salt rocks (like gypsum) interacting with thorium and forming soluble thorium compounds which can also explain the highly variable concentrations in groundwater.

  1. Interactions between groundwater and surface water: The state of the science

    Science.gov (United States)

    Sophocleous, M.

    2002-01-01

    The interactions between groundwater and surface water are complex. To understand these interactions in relation to climate, landform, geology, and biotic factors, a sound hydrogeoecological framework is needed. All these aspects are synthesized and exemplified in this overview. In addition, the mechanisms of interactions between groundwater and surface water (GW-SW) as they affect recharge-discharge processes are comprehensively outlined, and the ecological significance and the human impacts of such interactions are emphasized. Surface-water and groundwater ecosystems are viewed as linked components of a hydrologic continuum leading to related sustainability issues. This overview concludes with a discussion of research needs and challenges facting this evolving field. The biogeochemical processes within the upper few centimeters of sediments beneath nearly all surface-water bodies (hyporheic zone) have a profound effect on the chemistry of the water interchange, and here is where most of the recent research has been focusing. However, to advance conceptual and other modeling of GW-SW systems, a broader perspective of such interactions across and between surface-water bodies is needed, including multidimensional analyses, interface hydraulic characterization and spatial variability, site-to-region regionalization approaches, as well as cross-disciplinary collaborations.

  2. Human immunodeficiency virus type 1, human protein interaction database at NCBI.

    Science.gov (United States)

    Fu, William; Sanders-Beer, Brigitte E; Katz, Kenneth S; Maglott, Donna R; Pruitt, Kim D; Ptak, Roger G

    2009-01-01

    The 'Human Immunodeficiency Virus Type 1 (HIV-1), Human Protein Interaction Database', available through the National Library of Medicine at www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions, was created to catalog all interactions between HIV-1 and human proteins published in the peer-reviewed literature. The database serves the scientific community exploring the discovery of novel HIV vaccine candidates and therapeutic targets. To facilitate this discovery approach, the following information for each HIV-1 human protein interaction is provided and can be retrieved without restriction by web-based downloads and ftp protocols: Reference Sequence (RefSeq) protein accession numbers, Entrez Gene identification numbers, brief descriptions of the interactions, searchable keywords for interactions and PubMed identification numbers (PMIDs) of journal articles describing the interactions. Currently, 2589 unique HIV-1 to human protein interactions and 5135 brief descriptions of the interactions, with a total of 14,312 PMID references to the original articles reporting the interactions, are stored in this growing database. In addition, all protein-protein interactions documented in the database are integrated into Entrez Gene records and listed in the 'HIV-1 protein interactions' section of Entrez Gene reports. The database is also tightly linked to other databases through Entrez Gene, enabling users to search for an abundance of information related to HIV pathogenesis and replication.

  3. Surface Water-Groundwater Interactions as a Critical Component of Uranium Plume Persistence

    Science.gov (United States)

    Williams, K. H.; Christensen, J. N.; Hobson, C.

    2015-12-01

    Residual contamination of soils, sediments and groundwater by uranium milling operations presents a lingering problem at former mill sites throughout the upper Colorado River Basin in the western USA. Remedial strategies predicated upon natural flushing by low uranium recharge waters have frequently failed to achieve target concentrations set by national and state regulators. Flushing times of tens of years have often yielded negligible decreases in groundwater uranium concentrations, with extrapolated trends suggesting multiple decades or longer may be required to achieve regulatory goals. The U.S. Department of Energy's Rifle, Colorado field site serves as a natural laboratory for investigating the underlying causes for uranium plume persistence, with recent studies there highlighting the important role that surface water-groundwater interactions play in sustaining uranium delivery to the aquifer. Annual snowmelt-driven increases in Colorado River discharge induce 1-2 m excursions in groundwater elevation at the Rifle site, which enables residual tailings-contaminated materials (so-called Supplemental Standards) to become hydrologically connected to the aquifer for short periods of time during peak discharge. The episodic contact between shallow groundwater and residual contamination leads to abrupt 20-fold increases in groundwater uranium concentration, which serve to seasonally replenish the plume given the location of the Supplemental Standards along the upgradient edge of the aquifer. Uranium isotope composition changes abruptly as uranium concentrations increase reflecting the contribution of a temporally distinct contaminant reservoir. The release of uranium serves to potentially replenish organic matter rich sediments located within the alluvial aquifer at downstream locations, which have been postulated to serve as a parallel contributor to plume persistence following the uptake, immobilization, and slow re-oxidation of uranium.

  4. Noble gas tracing of groundwater/coalbed methane interaction in the San Juan Basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Ballentine, C.J.; Kipfer, R.; Schoell, M.; Thibodeaux, S. [ETH, Zurich (Switzerland). Inst. of Isotope Geology & Mineral Resources

    2005-12-01

    The San Juan Basin natural gas field, located in northwestern New Mexico and southwestern Colorado in the USA, is a case-type coalbed methane system. Groundwater is thought to play a key role in both biogenic methane generation and the CO{sub 2} sequestration potential of coalbed systems. We show here how noble gases can be used to construct a physical model that describes the interaction between the groundwater system and the produced gas. The results conclusively show that the volume of groundwater seen by coal does not play a role in determining the volume of methane produced by secondary biodegradation of these coalbeds. There is no requirement of continuous groundwater flow for renewing the microbes or nutrient components. Strong mass related isotopic fractionation of {sup 20}Ne/{sup 22}NE and {sup 38}Ar/{sup 36} isotopic ratios was also seen. This can be explained by a noble gas concentration gradient in the groundwater during gas production, which causes diffusive partial re-equilibration of the noble gas isotopes. It is important for the study of other systems in which extensive groundwater degassing may have occurred to recognize that severe isotopic fractionation of air-derived noble gases can occur when such concentration gradients are established during gas production. Excess air-derived Xe and Kr in our samples are shown to be related to the diluting coalbed methane and can only be accounted for if Xe and Kr are preferentially and volumetrically trapped within the coal matrix and released during biodegradation to form CH{sub 4}.

  5. Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics.

    Science.gov (United States)

    Sakai, Hiroaki; Lee, Sung Shin; Tanaka, Tsuyoshi; Numa, Hisataka; Kim, Jungsok; Kawahara, Yoshihiro; Wakimoto, Hironobu; Yang, Ching-chia; Iwamoto, Masao; Abe, Takashi; Yamada, Yuko; Muto, Akira; Inokuchi, Hachiro; Ikemura, Toshimichi; Matsumoto, Takashi; Sasaki, Takuji; Itoh, Takeshi

    2013-02-01

    The Rice Annotation Project Database (RAP-DB, http://rapdb.dna.affrc.go.jp/) has been providing a comprehensive set of gene annotations for the genome sequence of rice, Oryza sativa (japonica group) cv. Nipponbare. Since the first release in 2005, RAP-DB has been updated several times along with the genome assembly updates. Here, we present our newest RAP-DB based on the latest genome assembly, Os-Nipponbare-Reference-IRGSP-1.0 (IRGSP-1.0), which was released in 2011. We detected 37,869 loci by mapping transcript and protein sequences of 150 monocot species. To provide plant researchers with highly reliable and up to date rice gene annotations, we have been incorporating literature-based manually curated data, and 1,626 loci currently incorporate literature-based annotation data, including commonly used gene names or gene symbols. Transcriptional activities are shown at the nucleotide level by mapping RNA-Seq reads derived from 27 samples. We also mapped the Illumina reads of a Japanese leading japonica cultivar, Koshihikari, and a Chinese indica cultivar, Guangluai-4, to the genome and show alignments together with the single nucleotide polymorphisms (SNPs) and gene functional annotations through a newly developed browser, Short-Read Assembly Browser (S-RAB). We have developed two satellite databases, Plant Gene Family Database (PGFD) and Integrative Database of Cereal Gene Phylogeny (IDCGP), which display gene family and homologous gene relationships among diverse plant species. RAP-DB and the satellite databases offer simple and user-friendly web interfaces, enabling plant and genome researchers to access the data easily and facilitating a broad range of plant research topics.

  6. Interaction prediction between groundwater and quarry extension using discrete choice models and artificial neural networks

    CERN Document Server

    Barthélemy, Johan; Collier, Louise; Hallet, Vincent; Moriamé, Marie; Sartenaer, Annick

    2016-01-01

    Groundwater and rock are intensively exploited in the world. When a quarry is deepened the water table of the exploited geological formation might be reached. A dewatering system is therefore installed so that the quarry activities can continue, possibly impacting the nearby water catchments. In order to recommend an adequate feasibility study before deepening a quarry, we propose two interaction indices between extractive activity and groundwater resources based on hazard and vulnerability parameters used in the assessment of natural hazards. The levels of each index (low, medium, high, very high) correspond to the potential impact of the quarry on the regional hydrogeology. The first index is based on a discrete choice modelling methodology while the second is relying on an artificial neural network. It is shown that these two complementary approaches (the former being probabilistic while the latter fully deterministic) are able to predict accurately the level of interaction. Their use is finally illustrate...

  7. Calculation of an interaction index between extractive activity and groundwater resources

    Science.gov (United States)

    Collier, Louise; Hallet, Vincent; Barthélemy, Johan; Moriamé, Marie; Cartletti, Timotéo

    2015-04-01

    There are two underground resources intensively exploited in Wallonia (the southern Region of Belgium): groundwater and rock. Groundwater production rate is about 380*106 cubic meter per year from which 80 % is used for drinking water (SPW-DGO3, 2014). Annual rock extraction is about 73*106 tons per year and 80.6% of the materials are carbonate rocks (Collier and Hallet, 2013) corresponding to the most important aquifer formations. Given the high population density and environmental pressures, lateral quarry extensions are limited and the only solution for the operators is to excavate deeper. In this context, the aquifer level of the exploited formation is often reached and dewatering systems have to be installed to depress the water table below the quarry pit bottom. This affects the regional hydrogeology and, in some cases, the productivity of the water catchments is threatened. Using simple geological and hydrogeological parameters, an interaction index was developed to assess the interaction between extractive activity and groundwater resources and, in consequence, to define how far the feasibility study should go into detailed hydrogeological investigations. The interaction index is based on the equation used in the assessment of natural hazards (Dauphiné, 2003), which gives: Interaction = F (Quarry, Aquifer). The interaction is the risk, which is equal to a function where the hazard is defined from parameters corresponding to the quarry and vulnerability from parameters related to groundwater resources. Six parameters have been determined. The parameters chosen to represent the hazard of a quarry are: the geological, the hydrogeological and the piezometric contexts. The parameters chosen to represent the vulnerability of the water resources are: the relative position between the quarry and the water catchment (well, spring, gallery, etc.) sites, the productivity of the catchment and the quality of the groundwater. Each parameter was classified into four

  8. Hydrological connectivity of alluvial Andean valleys: a groundwater/surface-water interaction case study in Ecuador

    Science.gov (United States)

    Guzmán, Pablo; Anibas, Christian; Batelaan, Okke; Huysmans, Marijke; Wyseure, Guido

    2016-06-01

    The Andean region is characterized by important intramontane alluvial and glacial valleys; a typical example is the Tarqui alluvial plain, Ecuador. Such valley plains are densely populated and/or very attractive for urban and infrastructural development. Their aquifers offer opportunities for the required water resources. Groundwater/surface-water (GW-SW) interaction generally entails recharge to or discharge from the aquifer, dependent on the hydraulic connection between surface water and groundwater. Since GW-SW interaction in Andean catchments has hardly been addressed, the objectives of this study are to investigate GW-SW interaction in the Tarqui alluvial plain and to understand the role of the morphology of the alluvial valley in the hydrological response and in the hydrological connection between hillslopes and the aquifers in the valley floor. This study is based on extensive field measurements, groundwater-flow modelling and the application of temperature as a groundwater tracer. Results show that the morphological conditions of a valley influence GW-SW interaction. Gaining and losing river sections are observed in narrow and wide alluvial valley sections, respectively. Modelling shows a strong hydrological connectivity between the hillslopes and the alluvial valley; up to 92 % of recharge of the alluvial deposits originates from lateral flow from the hillslopes. The alluvial plain forms a buffer or transition zone for the river as it sustains a gradual flow from the hills to the river. Future land-use planning and development should include concepts discussed in this study, such as hydrological connectivity, in order to better evaluate impact assessments on water resources and aquatic ecosystems.

  9. A useful tool for drug interaction evaluation: The University of Washington Metabolism and Transport Drug Interaction Database

    Directory of Open Access Journals (Sweden)

    Hachad Houda

    2010-10-01

    Full Text Available Abstract The Metabolism and Transport Drug Interaction Database (http://www.druginteractioninfo.org is a web-based research and analysis tool developed in the Department of Pharmaceutics at the University of Washington. The database has the largest manually curated collection of data related to drug interactions in humans. The tool integrates information from the literature, public repositories, reference textbooks, guideline documents, product prescribing labels and clinical review sections of new drug approval (NDA packages. The database's easy-to-use web portal offers tools for visualisation, reporting and filtering of information. The database helps scientists to mine kinetics information for drug-metabolising enzymes and transporters, to assess the extent of in vivo drug interaction studies, as well as case reports for drugs, therapeutic proteins, food products and herbal derivatives. This review provides a brief description of the database organisation, its search functionalities and examples of use.

  10. Effect of groundwater--lake interactions on arsenic enrichment in freshwater beach aquifers.

    Science.gov (United States)

    Lee, Jacky; Robinson, Clare; Couture, Raoul-Marie

    2014-09-02

    Field measurements combined with numerical simulations provide insight into the water exchange, groundwater flow, and geochemical processes controlling the mobility of arsenic (As) in freshwater beach aquifers. Elevated dissolved As (up to 56 μg/L) was observed 1-2 m below the shoreline at two sandy beaches on Lake Erie, Ontario, Canada. Water and solid-phase analyses suggest that Fe (hydr)oxides present below the shoreline accumulate As, creating a risk of high As in the beach aquifer. Groundwater flow simulations combined with vertical hydraulic gradient measurements indicate that wave-induced flow recirculations across the groundwater-lake interface are significant. These recirculations, which vary with wave intensity and lake water level fluctuations, set up redox and pH gradients, where Fe precipitates and subsequently sequesters As. The elevated As concentrations observed at both beaches, combined with the distribution of other dissolved species, suggest that the As enrichment may be naturally occurring. Regardless of the As source, the interacting hydrologic and geochemical processes revealed may have important implications for the flux of As and also other oxyanions, such as phosphate, across the groundwater-lake interface in nearshore areas of the Great Lakes.

  11. Surface-groundwater interactions in hard rocks in Sardon Catchment of western Spain: an integrated modeling approach

    NARCIS (Netherlands)

    Tanvir Hassan, S.M.; Lubczynski, M.; Niswonger, R.G.; Su, Zhongbo

    2014-01-01

    The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic

  12. An interactive style of the testing database production for EIS

    Directory of Open Access Journals (Sweden)

    Milan Mišovič

    2006-01-01

    Full Text Available Using a progressive Information Technology for development of Software Modules for Enterprise Information Systems brings a lot of practical and theoretical problems. One of them is a verification of results achieved in Life Cycle Stages, especially in the analysis stage. Instead of a very deep theoretical approach we can use quite practical testing by means of a testing database. Such testing database has to be constructed gradually from the Data Flow Diagram by a special algorithm.This article introduces a formal description of the entity population and entity states. There is suggested to deal with fragments of the DFD that are produced with respect to the event set. This DFD event fragment is refined to transactions and their elementary functions. There is defined a transaction path in every transaction. By means of a special state equation system is generally defined conception of a correct functional processing of entities going along a selected transaction path. Solutions of such state equation systems are platform for getting a testing database.

  13. Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China

    Science.gov (United States)

    Xu, Wei; Su, Xiaosi; Dai, Zhenxue; Yang, Fengtian; Zhu, Pucheng; Huang, Yong

    2017-06-01

    Environmental tracers (such as major ions, stable and radiogenic isotopes, and heat) monitored in natural waters provide valuable information for understanding the processes of river-groundwater interactions in arid areas. An integrated framework is presented for interpreting multi-tracer data (major ions, stable isotopes (2H, 18O), the radioactive isotope 222Rn, and heat) for delineating the river-groundwater interactions in Nalenggele River basin, northwest China. Qualitative and quantitative analyses were undertaken to estimate the bidirectional water exchange associated with small-scale interactions between groundwater and surface water. Along the river stretch, groundwater and river water exchange readily. From the high mountain zone to the alluvial fan, groundwater discharge to the river is detected by tracer methods and end-member mixing models, but the river has also been identified as a losing river using discharge measurements, i.e. discharge is bidirectional. On the delta-front of the alluvial fan and in the alluvial plain, in the downstream area, the characteristics of total dissolved solids values, 222Rn concentrations and δ18O values in the surface water, and patterns derived from a heat-tracing method, indicate that groundwater discharges into the river. With the environmental tracers, the processes of river-groundwater interaction have been identified in detail for better understanding of overall hydrogeological processes and of the impacts on water allocation policies.

  14. Interaction between surface water areas and groundwater in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, T.; Kuroda, K.; Do Thuan, A.; Tran Thi Viet, N.; Takizawa, S.

    2012-12-01

    Hanoi is the capital of Viet Nam and the second largest city in this country (population: 6.45 million in 2009). Hanoi city has developed along the Red River and has many lakes, ponds and canals. However, recent rapid urbanization of this city has reduced number of natural water areas such as ponds and lakes by reclamation not only in the central area but the suburban area. Canals also have been reclaimed or cut into pieces. Contrary, number of artificial water areas such as fish cultivation pond has rapidly increased. On the other hand, various kind of waste water flows into these natural and artificial water areas and induces pollution and eutrophication. These waste waters also have possibility of pollution of groundwater that is one of major water resources in this city. In addition, groundwater in this area has high concentrations of Arsenic, Fe and NH4. Thus, groundwater use may causes re-circulation of Arsenic. However, studies on the interaction between surface water areas and groundwater and on the role of surface water areas for solute transport with water cycle are a few. Therefore, we focused on these points and took water samples of river, pond and groundwater from four communities in suburban areas: two communities are located near the Red River and other two are far from the River. Also, columnar sediment samples of these ponds were taken and pore water was abstracted. Major dissolved ions, metals and stable isotopes of oxygen and hydrogen of water samples were analyzed. As for water cycle, from the correlation between δ18O and δD, the Red River water (after GNIR) were distributed along the LMWL (δD=8.2δ18O+14.1, calculated from precipitation (after GNIP)). On the other hand, although the pond waters in rainy season were distributed along the LMWL, that in dry season were distributed along the local evaporation line (LEL, slope=5.6). The LEL crossed with the LMWL at around the point of weighted mean values of precipitation in rainy season and of

  15. Surface-groundwater interactions in hard rocks in Sardon Catchment of western Spain: an integrated modeling approach

    Science.gov (United States)

    Hassan, S.M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Zhongbo, Su

    2014-01-01

    The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface–groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y−1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y−1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.

  16. Spatially telescoping measurements for improved characterization of groundwater-surface water interactions

    Science.gov (United States)

    Kikuchi, Colin; Ferre, Ty P.A.; Welker, Jeffery M.

    2012-01-01

    The suite of measurement methods available to characterize fluxes between groundwater and surface water is rapidly growing. However, there are few studies that examine approaches to design of field investigations that include multiple methods. We propose that performing field measurements in a spatially telescoping sequence improves measurement flexibility and accounts for nested heterogeneities while still allowing for parsimonious experimental design. We applied this spatially telescoping approach in a study of ground water-surface water (GW-SW) interaction during baseflow conditions along Lucile Creek, located near Wasilla, Alaska. Catchment-scale data, including channel geomorphic indices and hydrogeologic transects, were used to screen areas of potentially significant GW-SW exchange. Specifically, these data indicated increasing groundwater contribution from a deeper regional aquifer along the middle to lower reaches of the stream. This initial assessment was tested using reach-scale estimates of groundwater contribution during baseflow conditions, including differential discharge measurements and the use of chemical tracers analyzed in a three-component mixing model. The reach-scale measurements indicated a large increase in discharge along the middle reaches of the stream accompanied by a shift in chemical composition towards a regional groundwater end member. Finally, point measurements of vertical water fluxes -- obtained using seepage meters as well as temperature-based methods -- were used to evaluate spatial and temporal variability of GW-SW exchange within representative reaches. The spatial variability of upward fluxes, estimated using streambed temperature mapping at the sub-reach scale, was observed to vary in relation to both streambed composition and the magnitude of groundwater contribution from differential discharge measurements. The spatially telescoping approach improved the efficiency of this field investigation. Beginning our assessment

  17. Learning about Intermolecular Interactions from the Cambridge Structural Database

    Science.gov (United States)

    Battle, Gary M.; Allen, Frank H.

    2012-01-01

    A clear understanding and appreciation of noncovalent interactions, especially hydrogen bonding, are vitally important to students of chemistry and the life sciences, including biochemistry, molecular biology, pharmacology, and medicine. The opportunities afforded by the IsoStar knowledge base of intermolecular interactions to enhance the…

  18. Learning about Intermolecular Interactions from the Cambridge Structural Database

    Science.gov (United States)

    Battle, Gary M.; Allen, Frank H.

    2012-01-01

    A clear understanding and appreciation of noncovalent interactions, especially hydrogen bonding, are vitally important to students of chemistry and the life sciences, including biochemistry, molecular biology, pharmacology, and medicine. The opportunities afforded by the IsoStar knowledge base of intermolecular interactions to enhance the…

  19. Statistical analysis of interaction between lake seepage rates and groundwater and lake levels

    Science.gov (United States)

    Ala-aho, P.; Rossi, P. M.; Klöve, B.

    2012-04-01

    In Finland, the main sources of groundwater are the esker deposits from the last ice age. Small lakes imbedded in the aquifer with no outlets or inlets are typically found in eskers. Some lakes at Rokua esker, in Northern Finland, have been suffering from changes in water stage and quality. A possible permanent decline of water level has raised considerable concern as the area is also used for recreation and tourism. Rare biotypes supported by the oligotrophic lakes can also be endangered by the level decline. Drainage of peatlands located in the discharge zone of the aquifer is a possible threat for the lakes and the whole aquifer. Drainage can potentially lower the aquifer water table which can have an effect on the groundwater-lake interaction. The aim of this study was to understand in more detail the interaction of the aquifer and the lake systems so potential causes for the lake level variations could be better understood and managed. In-depth understanding of hydrogeological system provides foundation to study the nutrient input to lakes affecting lake ecosystems. A small lake imbedded the Rokua esker aquifer was studied in detail. Direct measurements of seepage rate between the lake and the aquifer were carried out using seepage meters. Seepage was measured from six locations for eight times during May 2010 - November 2010. Precipitation was recorded with a tipping bucket rain gauge adjacent to the lake. Lake stage and groundwater levels from three piezometers were registered on an hourly interval using pressure probes. Statistical methods were applied to examine relationship between seepage measurements and levels of lake and groundwater and amount of precipitation. Distinct areas of inseepage and outseepage of the lake were distinguished with seepage meter measurements. Seepage rates showed only little variation within individual measurement locations. Nevertheless analysis revealed statistically significant correlation of seepage rate variation in four

  20. Groundwater and surface-water interactions near White Bear Lake, Minnesota, through 2011

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Rosenberry, Donald O.; Jackson, P. Ryan; Bode, Jenifer A.; O'Grady, Ryan M.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the White Bear Lake Conservation District, the Minnesota Pollution Control Agency, the Minnesota Department of Natural Resources, and other State, county, municipal, and regional planning agencies, watershed organizations, and private organizations, conducted a study to characterize groundwater and surface-water interactions near White Bear Lake through 2011. During 2010 and 2011, White Bear Lake and other lakes in the northeastern part of the Twin Cities Metropolitan Area were at historically low levels. Previous periods of lower water levels in White Bear Lake correlate with periods of lower precipitation; however, recent urban expansion and increased pumping from the Prairie du Chien-Jordan aquifer have raised the question of whether a decline in precipitation is the primary cause for the recent water-level decline in White Bear Lake. Understanding and quantifying the amount of groundwater inflow to a lake and water discharge from a lake to aquifers is commonly difficult but is important in the management of lake levels. Three methods were used in the study to assess groundwater and surface-water interactions on White Bear Lake: (1) a historical assessment (1978-2011) of levels in White Bear Lake, local groundwater levels, and their relation to historical precipitation and groundwater withdrawals in the White Bear Lake area; (2) recent (2010-11) hydrologic and water-quality data collected from White Bear Lake, other lakes, and wells; and (3) water-balance assessments for White Bear Lake in March and August 2011. An analysis of covariance between average annual lake-level change and annual precipitation indicated the relation between the two variables was significantly different from 2003 through 2011 compared with 1978 through 2002, requiring an average of 4 more inches of precipitation per year to maintain the lake level. This shift in the linear relation between annual lake-level change and annual precipitation

  1. Interaction of rare earth elements and components of the Horonobe deep groundwater.

    Science.gov (United States)

    Kirishima, Akira; Kuno, Atsushi; Amamiya, Hiroshi; Kubota, Takumi; Kimuro, Shingo; Amano, Yuki; Miyakawa, Kazuya; Iwatsuki, Teruki; Mizuno, Takashi; Sasaki, Takayuki; Sato, Nobuaki

    2017-02-01

    To better understand the migration behavior of minor actinides in deep groundwater, the interactions between doped rare earth elements (REEs) and components of Horonobe deep groundwater were investigated. Approximately 10 ppb of the REEs, i.e. Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, and Yb were doped into a groundwater sample collected from a packed section in a borehole drilled at 140 m depth in the experiment drift of Horonobe Underground Research Laboratory in Hokkaido, Japan. The groundwater sample was sequentially filtered with a 0.2 μm pore filter, and 10 kDa, 3 kDa and 1 kDa nominal molecular weight limit (NMWL) ultrafilters with conditions kept inert. Next, the filtrate solutions were analyzed with inductively coupled plasma mass spectrometry (ICP-MS) to determine the concentrations of the REEs retained in solution at each filtration step, while the used filters were analyzed through neutron activation analysis (NAA) and TOF-SIMS element mapping to determine the amounts and chemical species of the trapped fractions of REEs on each filter. A strong relationship between the ratios of REEs retained in the filtrate solutions and the ionic radii of the associated REEs was observed; i.e. smaller REEs occur in larger proportions dissolved in the solution phase under the conditions of the Horonobe groundwater. The NAA and TOF-SIMS analyses revealed that portions of the REEs were trapped by the 0.2 μm pore filter as REE phosphates, which correspond to the species predicted to be predominant by chemical equilibrium calculations for the conditions of the Horonobe groundwater. Additionally, small portions of colloidal REEs were trapped by the 10 kDa and 3 kDa NMWL ultrafilters. These results suggest that phosphate anions play an important role in the chemical behavior of REEs in saline (seawater-based) groundwater, which may be useful for predicting the migration behavior of trivalent actinides released from radioactive waste repositories in the far

  2. Channelpedia: an integrative and interactive database for ion channels

    Directory of Open Access Journals (Sweden)

    Rajnish eRanjan

    2011-12-01

    Full Text Available Ion channels are membrane proteins that selectively conduct ions across the cell membrane. The flux of ions through ion channels drives electrical and biochemical processes in cells and plays a critical role in shaping the electrical properties of neurons. During the past three decades,extensive research has been carried out to characterize the molecular, structural and biophysical properties of ion channels. This research has begun to elucidate the role of ion channels in neuronal function and has subsequently led to the development of computational models of ion channel function. Although there have been substantial efforts to consolidate these findings into easily accessible and coherent online resources, a single comprehensive resource is still lacking. The success of these initiatives has been hindered by the sheer diversity of approaches and the variety in data formats. Here, we present Channelpedia (http://www.Channelpedia.net which is designed to store information related to ion channels and models and is characterized by an efficient information management framework. Composed of a combination of a database and a wiki like discussion platform Channelpedia allows researchers to collaborate and synthesize ion channel information from literature. Equipped to automatically update references, Channelpedia integrates and highlights recent publications with relevant information in the database. It is web based, freely accessible and currently contains 187 annotated ion channels with 45 Hodgkin-Huxley models.

  3. GPCR Interaction - GRIPDB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available btype Partner Name Partner Name Evidence Kind of evidence Experiment or Prediction Annotations Annotations o...f the interaction Articles Reference article (PubMed ID) Methods Methods of the evidence

  4. STITCH 2: an interaction network database for small molecules and proteins

    DEFF Research Database (Denmark)

    Kuhn, Michael; Szklarczyk, Damian; Franceschini, Andrea

    2010-01-01

    Over the last years, the publicly available knowledge on interactions between small molecules and proteins has been steadily increasing. To create a network of interactions, STITCH aims to integrate the data dispersed over the literature and various databases of biological pathways, drug-target r......Over the last years, the publicly available knowledge on interactions between small molecules and proteins has been steadily increasing. To create a network of interactions, STITCH aims to integrate the data dispersed over the literature and various databases of biological pathways, drug......-target relationships and binding affinities. In STITCH 2, the number of relevant interactions is increased by incorporation of BindingDB, PharmGKB and the Comparative Toxicogenomics Database. The resulting network can be explored interactively or used as the basis for large-scale analyses. To facilitate links to other...

  5. How fault zones impact regional permeability and groundwater systems: insights from global database of fault zone studies.

    Science.gov (United States)

    Scibek, J.; McKenzie, J. M.; Gleeson, T.

    2014-12-01

    Regional and continental scale groundwater flow models derive aquifer permeability distributions from datasets based on hydraulic tests and calibrated local and regional flow models, however, much of this data does not account for barrier/conduit effects of fault zones, local and regional geothermal flow cells, and other fault-controlled flow systems. In this study we researched and compiled fault zone permeability and conceptual permeability models in different geologic settings from published multidisciplinary literature (structural- and hydro-geology, engineering geology of tunnels and mines, and geothermal projects among others). The geospatial database focuses on data-rich regions such as North America, Europe, and Japan. Regionalization of the dominant conceptual models of fault zones was regionalized based on geological attributes and tested conceptually with simple numerical models, to help incorporate the effect of fault zones on regional to continental flow models. Results show that for large regional and continental scale flow modeling, the fault zone data can be generalized by geology to determine the relative importance of fault conduits vs fault barriers, which can be converted to effective anisotropy ratios for large scale flow, although local fault-controlled flow cells in rift zones require appropriate upscaling. The barrier/conduit properties of fault zones are present in all regions and rock types, and the barrier effect must be properly conceptualized in large scale flow models. The fault zone data from different geologic disciplines have different biases (e.g. outcrop studies, deep drillhole tests, tunnels, etc.) depending on scale of hydraulic tests. Finally, the calibrated recharge estimates for fault controlled flow systems may be lower than for unfaulted flow systems due to predominant barrier (regional anisotropy or permeability reduction), suggesting a "scaling effect" on recharge estimates.

  6. Quantifying the regional groundwater/surface water interaction based on 18O and Deuterium

    Science.gov (United States)

    Merz, Christoph; Lischeid, Gunnar; Nitzsche, Kai; Kayler, Zachary Eric

    2017-04-01

    time. First results clearly show distinct patterns of the temporal dynamics of the groundwater/surface water interaction reflecting the regional system behavior. They provide the basis for anticipating future development of the hydraulic system under climate change, and - regarding system changes - for adapted water resources management decisions.

  7. Investigating the spatio-temporal variability in groundwater and surface water interactions: a multi-technical approach

    Directory of Open Access Journals (Sweden)

    N. P. Unland

    2013-03-01

    Full Text Available The interaction between groundwater and surface water along the Tambo and Nicholson Rivers, southeast Australia, was investigated using 222Rn, Cl, differential flow gauging, head gradients, electrical conductivity (EC and temperature profiling. Head gradients, temperature profiles, Cl concentrations and 222Rn activities all indicate higher groundwater fluxes to the Tambo River in areas of increased topographic variation where the potential to form large groundwater–surface water gradients is greater. Groundwater discharge to the Tambo River calculated by Cl mass balance was significantly lower (1.48 × 104 to 1.41 × 103 m3 day−1 than discharge estimated by 222Rn mass balance (5.35 × 105 to 9.56 × 103 m3 day−1 and differential flow gauging (5.41 × 105 to 6.30 × 103 m3 day−1. While groundwater sampling from the bank of the Tambo River was intended to account for the variability in groundwater chemistry associated with river-bank interaction, the spatial variability under which these interactions occurs remained unaccounted for, limiting the use of Cl as an effective tracer. Groundwater discharge to both the Tambo and Nicholson Rivers was the highest under high flow conditions in the days to weeks following significant rainfall, indicating that the rivers are well connected to a groundwater system that is responsive to rainfall. Groundwater constituted the lowest proportion of river discharge during times of increased rainfall that followed dry periods, while groundwater constituted the highest proportion of river discharge under baseflow conditions (21.4% of the Tambo in April 2010 and 18.9% of the Nicholson in September 2010.

  8. Surface-Water and Groundwater Interactions along the Withlacoochee River, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Yobbi, D.K.; McBride, W.S.

    2009-01-01

    A study of the Withlacoochee River watershed in west-central Florida was conducted from October 2003 to March 2007 to gain a better understanding of the hydrology and surface-water and groundwater interactions along the river. The Withlacoochee River originates in the Green Swamp area in north-central Polk County and flows northerly through seven counties, emptying into the Gulf of Mexico. This study includes only the part of the watershed located between the headwaters in the Green Swamp and the U.S. Geological Survey gaging station near Holder, Florida. The Withlacoochee River within the study area is about 108 miles long and drains about 1,820 square miles. The Withlacoochee River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the degree of confinement between the Upper Florida aquifer and the surficial aquifer is highly variable throughout the watershed. The potential for movement of water from the surface or shallow deposits to deeper deposits, or from deeper deposits to the shallow deposits, exists throughout the Withlacoochee River watershed. Water levels were higher in deeper Upper Floridan aquifer wells than in shallow Upper Floridan aquifer wells or surficial aquifer wells at 11 of 19 paired or nested well sites, indicating potential for discharge to the surface-water system. Water levels were higher in shallow Upper Floridan aquifer or surficial aquifer wells than in deeper Upper Floridan aquifer wells at five other sites, indicating potential for recharge to the deeper Upper Floridan aquifer. Water levels in the surficial aquifer and Upper Floridan aquifer wells at the remaining three sites were virtually the same, indicating little or no confinement at the sites. Potentiometric-surface maps of the Upper Floridan aquifer indicate the pattern of groundwater

  9. Simulation of groundwater-seawater interaction in the coastal surficial aquifer in Bohai Bay, Tianjin, China

    Science.gov (United States)

    Yi, Lixin; Ma, Bo; Liu, Lingling; Tang, Guoqiang; Wang, Tianyu

    2016-08-01

    This paper quantitatively investigates groundwater-seawater interactions and explores the annual variations and spatial distributions in submarine groundwater discharge (SGD) and seawater intrusion (SWI) in the Bohai Sea coastal zone in Tianjin, China. A three-dimensional finite element model, FEMWATER in the GMS environment, is developed to simulate density-dependent flow and transport in coastal groundwater aquifers. A sensitivity analysis is used to explore how the model output varies with the hydrogeological parameters and boundary conditions. The results suggest that both SGD and SWI occur across the sea-aquifer interface. Along the modeled 45 km stretch of coastline, the annual SGD and SWI rates are 4.23 × 107 m3/yr and 0.86 × 107 m3/yr, respectively. The results also indicate that SGD is highest in the winter and lowest in the summer, and SWI exhibits the opposite trend. This change in flow direction across the sea-aquifer interface corresponds to seasonal changes in sea level. SGD mainly occurs in the southern and northern parts of the study area, and SWI primarily occurs in the central part. The results of the sensitivity analysis suggest that the SGD and SWI model outputs are most sensitive to sea level and the hydraulic conductivity in the top layer.

  10. Literature curation of protein interactions: measuring agreement across major public databases

    Science.gov (United States)

    Turinsky, Andrei L.; Razick, Sabry; Turner, Brian; Wodak, Shoshana J.

    2010-01-01

    Literature curation of protein interaction data faces a number of challenges. Although curators increasingly adhere to standard data representations, the data that various databases actually record from the same published information may differ significantly. Some of the reasons underlying these differences are well known, but their global impact on the interactions collectively curated by major public databases has not been evaluated. Here we quantify the agreement between curated interactions from 15 471 publications shared across nine major public databases. Results show that on average, two databases fully agree on 42% of the interactions and 62% of the proteins curated from the same publication. Furthermore, a sizable fraction of the measured differences can be attributed to divergent assignments of organism or splice isoforms, different organism focus and alternative representations of multi-protein complexes. Our findings highlight the impact of divergent curation policies across databases, and should be relevant to both curators and data consumers interested in analyzing protein-interaction data generated by the scientific community. Database URL: http://wodaklab.org/iRefWeb PMID:21183497

  11. Use of the BioGRID Database for Analysis of Yeast Protein and Genetic Interactions.

    Science.gov (United States)

    Oughtred, Rose; Chatr-aryamontri, Andrew; Breitkreutz, Bobby-Joe; Chang, Christie S; Rust, Jennifer M; Theesfeld, Chandra L; Heinicke, Sven; Breitkreutz, Ashton; Chen, Daici; Hirschman, Jodi; Kolas, Nadine; Livstone, Michael S; Nixon, Julie; O'Donnell, Lara; Ramage, Lindsay; Winter, Andrew; Reguly, Teresa; Sellam, Adnane; Stark, Chris; Boucher, Lorrie; Dolinski, Kara; Tyers, Mike

    2016-01-04

    The BioGRID database is an extensive repository of curated genetic and protein interactions for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and the yeast Candida albicans SC5314, as well as for several other model organisms and humans. This protocol describes how to use the BioGRID website to query genetic or protein interactions for any gene of interest, how to visualize the associated interactions using an embedded interactive network viewer, and how to download data files for either selected interactions or the entire BioGRID interaction data set. © 2016 Cold Spring Harbor Laboratory Press.

  12. Interaction between shallow groundwater, saline surface water and nutrient discharge in a seasonal estuary: the Swan-Canning system

    Science.gov (United States)

    Linderfelt, William R.; Turner, Jeffrey V.

    2001-09-01

    The Swan and Canning Rivers converge to form an estuary that is seasonally forced by wet winter and dry summer conditions. The estuary is also tidally forced due to its contact with the Indian Ocean. The perception that the occurrence of nuisance algal blooms has increased in frequency and severity in recent years has prompted the present investigation into the interaction of the shallow groundwater system with the Swan-Canning Estuary. The extent to which this interaction contributes to nutrient delivery to the river is a focus of the work.Groundwater interaction with the upper reaches of the Swan River is shown to occur at three length scales: (i) the scale of the river-bed sediments (i.e. 1000 m). Two-dimensional groundwater flow modelling in plan covering the regionally advected groundwater flow domain of the upper Swan River Estuary from the Causeway to Guildford shows that there is a net groundwater discharge to the Swan River of groundwater discharge of about 80 000 m3/day, or about 29 million m3/year. Between 1987 and 1996, the average surface tributary inflow to the Swan River was about 460 million m3/year. Thus groundwater discharge contributed approximately 6% of the total annual river flow. This percentage is clearly small in comparison to the total river flow. However, in the six months from November to April in summer, tributary flow into the Swan River declines sharply to an average total of approximately 12 million m3. Groundwater discharge during this six-month period is approximately 14 million m3 or about 55% of the surface tributary flow, and thus groundwater is a significant component of the total inflow to the Swan-Canning Estuary during this period. Nutrient concentrations, particularly ammonium, within the sediment pore fluids underlying the river are very high relative to concentrations in the river, such that groundwater discharge rates of this magnitude are capable of introducing significant nutrient loadings to the river. The nitrogen

  13. The influence of surface water - groundwater interactions on the shallow groundwater in agricultural areas near Fu River, China

    Science.gov (United States)

    Brauns, Bentje; Løgstrup Bjerg, Poul; Jakobsen, Rasmus; Song, Xianfang

    2014-05-01

    The Northern China Plain (NPC) is known as a very productive area in China for the production of maize and winter wheat, which is grown by local farmers rotationally without lag phases throughout the year. The needed application of fertilizers and pesticides can hereby have strong impacts on the quality shallow groundwaters. Because 70-80% percent of the annual rainfall in the NCP is limited to the summer months, irrigation in the spring season is a necessity. As high quality groundwater resources from deeper aquifers are a valuable and rare asset in Northern China, it should preferentially be used as drinking water, and farmers therefore often shift to flood irrigation with surface water from streams. It is due to this reason, that large agricultural areas are located very close alongside these waterways; often without buffer zones. Fu River is one of the major feeding streams for the Baiyangdian Lake region in the north of Hebei Province. It springs in the west of the lake area and - after passing the populated city of Baoding (with a population of about 600 000 in the metropolitan area) - continues on its course through agricultural area before it feeds into the lake system. Industrial and domestic wastewater as well as surface runoff from urban and agricultural areas substantiates for a significant amount of the river's recharge and often causes poor water quality. As the water from the river may infiltrate into the shallow groundwater, this could cause further deterioration of the groundwater quality, additionally to the effects of the agricultural activities. However, fluctuations may be high because of the strong seasonal differences in precipitation and depending on the connectivity and dynamics of the system . In order to assess the water quality situation and the potential link between surface water and shallow groundwater in the region, a small-scale investigation site was set up on a typical wheat-maize field that reaches almost up to the river bank in

  14. A User’s Guide to the Comprehensive Water Quality Database for Groundwater in the Vicinity of the Nevada Test Site, Rev. No.: 1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene

    2006-09-01

    This water quality database (viz.GeochemXX.mdb) has been developed as part of the Underground Test Area (UGTA) Program with the cooperation of several agencies actively participating in ongoing evaluation and characterization activities under contract to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The database has been constructed to provide up-to-date, comprehensive, and quality controlled data in a uniform format for the support of current and future projects. This database provides a valuable tool for geochemical and hydrogeologic evaluations of the Nevada Test Site (NTS) and surrounding region. Chemistry data have been compiled for groundwater within the NTS and the surrounding region. These data include major ions, organic compounds, trace elements, radionuclides, various field parameters, and environmental isotopes. Colloid data are also included in the database. The GeochemXX.mdb database is distributed on an annual basis. The extension ''XX'' within the database title is replaced by the last two digits of the release year (e.g., Geochem06 for the version released during the 2006 fiscal year). The database is distributed via compact disc (CD) and is also uploaded to the Common Data Repository (CDR) in order to make it available to all agencies with DOE intranet access. This report provides an explanation of the database configuration and summarizes the general content and utility of the individual data tables. In addition to describing the data, subsequent sections of this report provide the data user with an explanation of the quality assurance/quality control (QA/QC) protocols for this database.

  15. Modeling the Surface Water-Groundwater Interaction in Arid and Semi-Arid Regions Impacted by Agricultural Activities

    Science.gov (United States)

    Tian, Y.; Wu, B.; Zheng, Y.

    2013-12-01

    In many semi-arid and arid regions, interaction between surface water and groundwater plays an important role in the eco-hydrological system. The interaction is often complicated by agricultural activities such as surface water diversion, groundwater pumping, and irrigation. In existing surface water-groundwater integrated models, simulation of the interaction is often simplified, which could introduce significant simulation uncertainty under certain circumstance. In this study, GSFLOW, a USGS model coupling PRMS and MODFLOW, was improved to better characterize the surface water-groundwater interaction. The practices of water diversion from rivers, groundwater pumping and irrigation are explicitly simulated. In addition, the original kinematic wave routing method was replaced by a dynamic wave routing method. The improved model was then applied in Zhangye Basin (the midstream part of Heihe River Baisn), China, where the famous 'Silk Road' came through. It is a typical semi-arid region of the western China, with extensive agriculture in its oasis. The model was established and calibrated using the data in 2000-2008. A series of numerical experiments were conducted to evaluate the effect of those improvements. It has been demonstrated that with the improvements, the observed streamflow and groundwater level were better reproduced by the model. The improvements have a significant impact on the simulation of multiple fluxes associated with the interaction, such as groundwater discharge, riverbed seepage, infiltration, etc. Human activities were proved to be key elements of the water cycle in the study area. The study results have important implications to the water resources modeling and management in semi-arid and arid basins.

  16. A Conventional Liner Acoustic/Drag Interaction Benchmark Database

    Science.gov (United States)

    Howerton, Brian M.; Jones, Michael G.

    2017-01-01

    The aerodynamic drag of acoustic liners has become a significant topic in the design of such for aircraft noise applications. In order to evaluate the benefits of concepts designed to reduce liner drag, it is necessary to establish the baseline performance of liners employing the typical design features of conventional configurations. This paper details a set of experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of a number of perforate-over-honeycomb liner configurations at flow speeds of M=0.3 and 0.5. These conventional liners are investigated to determine their resistance factors using a static pressure drop approach. Comparison of the resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 Hz at source sound pressure levels of 140 and 150 dB. Educed impedance and attenuation spectra are used to determine the interaction between acoustic performance and drag.

  17. Groundwater and river water interaction at Ciromban and Cibeureum riverbank, Tasikmalaya: Can we solve water shortage?

    Science.gov (United States)

    Pratama, A.; Abdulbari, N.; Nugraha, M. I.; Prasetio, Y.; Tulak, G. P.; Darul, A.; Irawan, D. E.

    2015-09-01

    Water shortage is a common problem in the high density settlement along the riverbank of Ciromban and Cibeureum River, Tasikmalaya, as the quality of the water also decreases. One of the solution is to maximize the use of river water. This study aims to investigate the interaction between river and groundwater along the riverbank as a function of land use impact. A river water and unconfined groundwater level mapping has been conducted to make water flow map, assuming both waters are in the same flow system. Physical parameters, temperature, TDS, and pH were measured at each stations to understand water characteristics. Based on observations at 50 dug wells and 12 river stations on July-August 2014, a close interaction between both water bodies has been identified with two flow systems: effluent flow (or gaining stream) at Cibereum river segment and influent flow (losing stream) at Ciromban river segment. Physical parameters show a high correlation in temperature, pH, and TDS. Hence, further evaluation should be taken before using river water as raw water supply in Tasikmalaya area.

  18. Interactive Genetic Algorithm - An Adaptive and Interactive Decision Support Framework for Design of Optimal Groundwater Monitoring Plans

    Science.gov (United States)

    Babbar-Sebens, M.; Minsker, B. S.

    2006-12-01

    In the water resources management field, decision making encompasses many kinds of engineering, social, and economic constraints and objectives. Representing all of these problem dependant criteria through models (analytical or numerical) and various formulations (e.g., objectives, constraints, etc.) within an optimization- simulation system can be a very non-trivial issue. Most models and formulations utilized for discerning desirable traits in a solution can only approximate the decision maker's (DM) true preference criteria, and they often fail to consider important qualitative and incomputable phenomena related to the management problem. In our research, we have proposed novel decision support frameworks that allow DMs to actively participate in the optimization process. The DMs explicitly indicate their true preferences based on their subjective criteria and the results of various simulation models and formulations. The feedback from the DMs is then used to guide the search process towards solutions that are "all-rounders" from the perspective of the DM. The two main research questions explored in this work are: a) Does interaction between the optimization algorithm and a DM assist the system in searching for groundwater monitoring designs that are robust from the DM's perspective?, and b) How can an interactive search process be made more effective when human factors, such as human fatigue and cognitive learning processes, affect the performance of the algorithm? The application of these frameworks on a real-world groundwater long-term monitoring (LTM) case study in Michigan highlighted the following salient advantages: a) in contrast to the non-interactive optimization methodology, the proposed interactive frameworks were able to identify low cost monitoring designs whose interpolation maps respected the expected spatial distribution of the contaminants, b) for many same-cost designs, the interactive methodologies were able to propose multiple alternatives

  19. Investigating the spatio-temporal variability in groundwater and surface water interactions: a multi-technique approach

    Directory of Open Access Journals (Sweden)

    N. P. Unland

    2013-09-01

    Full Text Available The interaction between groundwater and surface water along the Tambo and Nicholson rivers, southeast Australia, was investigated using 222Rn, Cl, differential flow gauging, head gradients, electrical conductivity (EC and temperature profiles. Head gradients, temperature profiles, Cl concentrations and 222Rn activities all indicate higher groundwater fluxes to the Tambo River in areas of increased topographic variation where the potential to form large groundwater–surface water gradients is greater. Groundwater discharge to the Tambo River calculated by Cl mass balance was significantly lower (1.48 × 104 to 1.41 × 103 m3 day−1 than discharge estimated by 222Rn mass balance (5.35 × 105 to 9.56 × 103 m3 day−1 and differential flow gauging (5.41 × 105 to 6.30 × 103 m3 day−1 due to bank return waters. While groundwater sampling from the bank of the Tambo River was intended to account for changes in groundwater chemistry associated with bank infiltration, variations in bank infiltration between sample sites remain unaccounted for, limiting the use of Cl as an effective tracer. Groundwater discharge to both the Tambo and Nicholson rivers was the highest under high-flow conditions in the days to weeks following significant rainfall, indicating that the rivers are well connected to a groundwater system that is responsive to rainfall. Groundwater constituted the lowest proportion of river discharge during times of increased rainfall that followed dry periods, while groundwater constituted the highest proportion of river discharge under baseflow conditions (21.4% of the Tambo in April 2010 and 18.9% of the Nicholson in September 2010.

  20. Behaviour of boron and strontium isotopes in groundwater-aquifer interactions in the Cornia Plain (Tuscany, Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Pennisi, Maddalena [Istituto di Geoscienze e Georisorse, CNR, Pisa (Italy)]. E-mail: M.Pennisi@igg.cnr.it; Bianchini, Gianluca [Istituto di Geoscienze e Georisorse, CNR, Pisa (Italy); Dipartimento di Scienze della Terra, Universita di Ferrara (Italy); Muti, Antonio [Azienda Servizi Ambientali, Area Val di Cornia, Livorno (Italy); Kloppmann, Wolfram [Bureau des Recherches Geologiques et Minieres, Orleans (France); Gonfiantini, Roberto [Istituto di Geoscienze e Georisorse, CNR, Pisa (Italy)

    2006-07-15

    The Cornia Plain alluvial aquifer, in Tuscany, is exploited intensely to meet the demand for domestic, irrigation and industrial water supplies. The B concentration of groundwater, however, is often above the European limit of 1 mg L{sup -1}, with the result that exploitation of these water resources requires careful management. Boron and Sr isotopes have been used as part of a study on the origin and distribution of B dissolved in groundwater, and indirectly as a contribution to the development of appropriate water management strategies. The geochemistry of the Cornia Plain groundwater changes from a HCO{sub 3} facies in the inland areas to a Cl facies along the coastal belt, where seawater intrusion takes place. The B concentration of groundwater increases towards the coastal areas, while the {sup 11}B/{sup 10}B ratio decreases. This indicates that there is an increasing interaction between dissolved B and the sediments forming the aquifer matrix, whose B content is in the order of 100 mg kg{sup -1}. Adsorption-desorption exchanges take place between water and the sediment fine fraction rich in clay minerals, with a net release of B from the matrix into the groundwater, and a consequent {delta} {sup 11}B shift from positive to negative values. The aquifer matrix sediments therefore seem to be the major source of B dissolved in the groundwater. The groundwater-matrix interactions triggered by the ionic strength increase caused by seawater intrusion can also be detected in the Ca-Na ion exchanges. Dissolved Sr follows a trend similar to that of Ca, while the {sup 87}Sr/{sup 86}Sr ratio is equal to that of the exchangeable Sr of the aquifer matrix and therefore does not change significantly. These results have helped to define a new strategy for groundwater exploitation, with the final objective of reducing B concentration in the water extracted from the aquifer.

  1. Interactions among Climate Forcing, Soil Water, and Groundwater for Enhanced Water Management Practices in Nebraska

    Science.gov (United States)

    You, J.; Hubbard, K. G.; Chen, X.

    2009-12-01

    Water is one of the most valuable and vulnerable resources. The varying precipitation regimes together with the varying land use and land cover types over the state of Nebraska necessitate continuous monitoring and modeling of soil water, particularly in the root zone. Underlying the irrigated lands is the High Plains Aquifer, one of the largest in the world. The Ogallala Aquifer is hydrologically connected with streams in numerous river valleys and with rainfall/soil water at the surface. To sustain water reserves the net effect of groundwater pumping for irrigation and recharging the ground water system by precipitation/irrigation. If the net effect is zero or positive the reserves will not shrink. The Automated Weather Data Network (AWDN) of Nebraska has intensive soil water observation and critical weather measurements. Nebraska also has ground water wells, co-located with or near some of the AWDN stations. This work was conducted to continuously monitor the soil water and groundwater table and to model the surface and subsurface hydrologic processes as an integrated/linked system. The further task is to quantify the recharge under different initial conditions, land use practices, and to combine the new information with a surface hydrology model over various sites in Nebraska. To accomplish these objectives two weather stations were installed and enhanced at Shelton and Kearney and soil probes were buried directly under the crop lands. The newly installed soil water probes are co-located with the nearby weather stations and ground water wells. All the data recorded from the atmosphere, soil and aquifer will be incorporated into AWDN data archives and will be analyzed to examine the interactions between precipitation, soil moisture and groundwater.

  2. Hydrogeologic framework and groundwater/surface-water interactions of the South Fork Nooksack River Basin, northwestern Washington

    Science.gov (United States)

    Gendaszek, Andrew S.

    2014-01-01

    A hydrogeologic framework of the South Fork (SF) Nooksack River Basin in northwestern Washington was developed and hydrologic data were collected to characterize the groundwater-flow system and its interaction with surface‑water features. In addition to domestic, agricultural, and commercial uses of groundwater within the SF Nooksack River Basin, groundwater has the potential to provide ecological benefits by maintaining late-summer streamflows and buffering stream temperatures. Cold-water refugia, created and maintained in part by groundwater, have been identified by water-resource managers as key elements to restore the health and viability of threatened salmonids in the SF Nooksack River. The SF Nooksack River drains a 183-square mile area of the North Cascades and the Puget Lowland underlain by unconsolidated glacial and alluvial sediments deposited over older sedimentary, metamorphic, and igneous bedrock. The primary aquifer that interacts with the SF Nooksack River was mapped within unconsolidated glacial outwash and alluvial sediment. The lower extent of this unit is bounded by bedrock and fine-grained, poorly sorted unconsolidated glaciomarine and glaciolacustrine sediments. In places, these deposits overlie and confine an aquifer within older glacial sediments. The extent and thickness of the hydrogeologic units were assembled from mapped geologic units and lithostratigraphic logs of field-inventoried wells. Generalized groundwater-flow directions within the surficial aquifer were interpreted from groundwater levels measured in August 2012; and groundwater seepage gains and losses to the SF Nooksack River were calculated from synoptic streamflow measurements made in the SF Nooksack River and its tributaries in September 2012. A subset of the field-inventoried wells was measured at a monthly interval to determine seasonal fluctuations in groundwater levels during water year 2013. Taken together, these data provide the foundation for a future groundwater

  3. Groundwater Surface Water Interactions in a Gold-Mined Dredged Floodplain of the Merced River

    Science.gov (United States)

    Sullivan, L.; Conklin, M. H.; Ghezzehei, T. A.

    2012-12-01

    The Merced River, originating in the Sierra Nevada, California, drains a watershed with an area of ~3,305 km2. Merced River has been highly altered due to diversions, mechanically dredged mining, and damming. A year of groundwater-surface water interactions were studied to elucidate the hydrological connection between the Main Canal, an unlined canal that contains Merced River water flows parallel to the river with an average elevation of 89m, the highly conductive previously dredged floodplain, and the Merced River with an average elevation of 84m. Upstream of the study reach, located in an undredged portion, of the floodplain are two fish farms that have been operating for approximately 40 years. This study reach has been historically important for salmon spawning and rearing, where more than 50% of the Chinook salmon of the Merced River spawn. Currently salmon restoration is focusing gravel augmentation and adding side channel and ignoring groundwater influences. Exchanges between the hyporheic and surrounding surface, groundwater, riparian, and alluvial floodplain habitats occur over a wide range of spatial and temporal scales. Pressure transducers were installed in seven wells and four ponds located in the dredged floodplain. All wells were drilled to the Mehrten Formation, a confining layer, and screened for last 3m. These groundwater well water levels as well as the surface water elevations of the Main Canal and the Merced River were used to determine the direction of sublateral surface flows using Groundwater Vistas as a user interface for MODFLOW. The well and pond waters and seepage from the river banks were sampled for anion/cation, dissolved organic carbon, total nitrogen, total iron, and total dissolved iron concentrations to determine water sources and the possibility of suboxic water. Field analysis indicated that water in all wells and ponds exhibit low dissolved oxygen, high conductivity rates, and oxidation/reduction potentials that switched from

  4. Interactive Generalization on Large-Scale Topographical Map Supported by a Database Platform

    Institute of Scientific and Technical Information of China (English)

    CAI Zhongliang; WU Hehai; DU Qingyun; LIAO Chujiang

    2003-01-01

    This paper makes astudy on the interactive digital gener-alization, where map generalizationcan be divided into intellective reason-ing procedure and operational proce-dure, which are done by human andcomputer, respectively. And an inter-active map generalization environmentfor large scale topographic map is thendesigned and realized. This researchfocuses on: ① the significance of re-searching an interactive map generali-zation environment, ② the features oflarge scale topographic map and inter-active map generalization, ③ the con-struction of map generalization-orien-ted database platform.

  5. Seawater intrusion into groundwater aquifer through a coastal lake - complex interaction characterised by water isotopes (2)H and (18)O.

    Science.gov (United States)

    Gemitzi, Alexandra; Stefanopoulos, Kyriakos; Schmidt, Marie; Richnow, Hans H

    2014-01-01

    The present study investigates the complex interactions among surface waters, groundwaters and a coastal lake in northeastern Greece, using their stable isotopic composition (δ(18)O, δ(2)H) in combination with hydrogeological and hydrochemical data. Seasonal and spatial trends of water isotopes were studied and revealed that all water bodies in the study area interact. It was also shown that the aquifer's increased salinity is not due to fossil water from past geological periods, but is attributed to brackish lake water intrusion into the aquifer induced by the extensive groundwater pumping for irrigation purposes. Quantification of the contribution of the lake to the aquifer was achieved using the simple dilution formula. The isotopic signatures of the seawater and the groundwaters are considerably different, so there is a very little possibility of direct seawater intrusion into the aquifer.

  6. Perched groundwater-surface interactions and their consequences in stream flow generation in a semi-arid headwater catchment

    Science.gov (United States)

    Molenat, Jerome; Bouteffeha, Maroua; Raclot, Damien; Bouhlila, Rachida

    2013-04-01

    In semi-arid headwater catchment, it is usually admitted that stream flow comes predominantly from Hortonian overland flow (infiltration excess overland flow). Consequently, subsurface flow processes, and especially perched or shallow groundwater flow, have not been studied extensively. Here we made the assumption that perched groundwater flow could play a significant role in stream flow generation in semi-arid catchment. To test this assumption, we analyzed stream flow time series of a headwater catchment in the Tunisian Cap Bon region and quantified the flow fraction coming from groundwater discharge and that from overland flow. Furthermore, the dynamics of the perched groundwater was analyzed, by focusing on the different perched groundwater-surface interaction processes : diffuse and local infiltration, diffuse exfiltration, and direct groundwater discharge to the stream channel. This work is based on the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Results show that even though Hortonian overland flow was the main hydrological process governing the stream flow generation, groundwater discharge contribution to the stream channel annually accounted for from 10% to 20 % depending on the year. Furthermore, at some periods, rising of groundwater table to the soil surface in bottom land areas provided evidences of the occurrence of saturation excess overland flow processes during some storm events. Reference Voltz , M. and Albergel , J., 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement, Ministère de la Recherche.

  7. Geomorphic interaction among climate, sea levels and karst groundwater: the Taranto area (South of Italy)

    Science.gov (United States)

    Spilotro, Giuseppe; Fidelibus, Maria Dolores; Argentiero, Ilenia; Pellicani, Roberta; Parisi, Alessandro; Di Modugno, Antonella

    2017-04-01

    The area of Taranto (Apulia region, Italy) has an extraordinary environmental and landscape value, which derives from its specific geological, geomorphological and hydrogeological conditions: they represent the effect of a complex mechanism of interaction in the geological time among the sea, its level variations and stands driven by climate changes, karst groundwater and the geo lithological frame. The knowledge of this interaction spans over two very different time duration: the first is subsequent to the sedimentary pleistocenic deposition and diagenesis and lasts until the late Holocene; the second spans over a more limited time durations, from the LIA until today, and its knowledge is mainly based on hystorical topographic records and reports. The general geological and stratigraphical setting is represented by marine deposits, which fill the Bradanic Trough, shaped in the upper part as marine terraces bordering the W and SW side of the Murgian carbonate platform (Apulia, South of Italy) as well. This latter constitutes an important karst hydro-structure, fed by precipitation, bordered on the opposite side of the Bradanic Trough by the Adriatic Sea. Fresh groundwater hosted in the huge coastal aquifer freely flows towards the Adriatic coast, while on the opposite W-NW side, the continuous confinement by the impermeable filling of the trough, forces the underground drainage of the aquifer towards the Ionian Sea just in the Taranto area. The overall flow rate of the groundwater through submarine and subaerial coastal springs, according to the current sea level, is significant and currently estimated in about 18 m3/sec. Climate changes have forced over geological time, but also in shorter periods, sea level changes and stands, consequently correlated to groundwater levels. This allowed genesis of selected karst levels, of regional extension, both at the surface or underground, which arise as typical forms, namely polje and karst plane inland, terraces on the sea

  8. Investigating the effect of surface water - groundwater interactions on stream temperature using Distributed temperature sensing and instream temperature model

    DEFF Research Database (Denmark)

    Karthikeyan, Matheswaran; Blemmer, Morten; Mortensen, Julie Flor;

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using...... the Distributed Temperature Sensing (DTS) system and instream temperature modelling. Locations of surface water–groundwater interactions were identified from the temperature data collected over a 2-km stream reach using a DTS system with 1-m spatial and 5-min temporal resolution. The stream under consideration...... exhibits three distinct thermal regimes within a 2 km reach length due to two major interactions. An energy balance model is used to simulate the instream temperature and to quantify the effect of these interactions on the stream temperature. This research demonstrates the effect of reach level small scale...

  9. Modeling groundwater-surface water interactions in an operational setting by linking object- oriented river basin management model (RiverWare) with 3-D finite-difference groundwater model (MODFLOW).

    Science.gov (United States)

    Valerio, A.; Rajaram, H.; Zagona, E.

    2007-12-01

    Accurate representation of groundwater-surface water interactions is critical to modeling low river flow periods in riparian environments in the semi-arid southwestern United States. As an example, over-appropriation of human water use in the Middle Rio Grande region adversely impacts the habitat of the endangered Rio Grande silvery minnow. Improved management practices during low flow conditions could prevent channel desiccation and habitat destruction. We present a modeling tool with significant potential for improved decision-making in stream reaches influenced by significant surface-groundwater interactions. While river basin management models typically represent operational complexities such as human elements of water demand and consumption with a high degree of sophistication, they often represent groundwater-surface water interactions semi-empirically or at coarse resolution. In contrast, distributed groundwater models, with an adequately fine grid represent groundwater-surface water interactions accurately, but seldom incorporate complex details of water rights and user demands. To best exploit the strengths of both classes of models, we have developed a link between the object-oriented river management software package RiverWare and the USGS groundwater modeling program MODFLOW. An interactive time stepping approach is used in the linked model. RiverWare and MODFLOW run in parallel exchanging data after each time-step. This linked framework incorporates several features critical to modeling groundwater-surface interactions in riparian zones, including riparian ET, localized variations in seepage rates and rule-based water allocations to users and/or environmental flows, and is expected to be an improved tool for modeling groundwater-surface water interaction in regions where groundwater storage repose to changing river conditions is rapid. The performance of the linked model is illustrated through applications on the Rio Grande in the vicinity of

  10. Hydrogeologic framework and groundwater/surface-water interactions of the upper Yakima River Basin, Kittitas County, central Washington

    Science.gov (United States)

    Gendaszek, Andrew S.; Ely, D. Matthew; Hinkle, Stephen R.; Kahle, Sue C.; Welch, Wendy B.

    2014-01-01

    The hydrogeology, hydrology, and geochemistry of groundwater and surface water in the upper (western) 860 square miles of the Yakima River Basin in Kittitas County, Washington, were studied to evaluate the groundwater-flow system, occurrence and availability of groundwater, and the extent of groundwater/surface-water interactions. The study area ranged in altitude from 7,960 feet in its headwaters in the Cascade Range to 1,730 feet at the confluence of the Yakima River with Swauk Creek. A west-to-east precipitation gradient exists in the basin with the western, high-altitude headwaters of the basin receiving more than 100 inches of precipitation per year and the eastern, low-altitude part of the basin receiving about 20 inches of precipitation per year. From the early 20th century onward, reservoirs in the upper part of the basin (for example, Keechelus, Kachess, and Cle Elum Lakes) have been managed to store snowmelt for irrigation in the greater Yakima River Basin. Canals transport water from these reservoirs for irrigation in the study area; additional water use is met through groundwater withdrawals from wells and surface-water withdrawals from streams and rivers. Estimated groundwater use for domestic, commercial, and irrigation purposes is reported for the study area. A complex assemblage of sedimentary, metamorphic, and igneous bedrock underlies the study area. In a structural basin in the southeastern part of the study area, the bedrock is overlain by unconsolidated sediments of glacial and alluvial origin. Rocks and sediments were grouped into six hydrogeologic units based on their lithologic and hydraulic characteristics. A map of their extent was developed from previous geologic mapping and lithostratigraphic information from drillers’ logs. Water flows through interstitial space in unconsolidated sediments, but largely flows through fractures and other sources of secondary porosity in bedrock. Generalized groundwater-flow directions within the

  11. The interaction between surface water and groundwater and its effect on water quality in the Second Songhua River basin, northeast China

    Indian Academy of Sciences (India)

    Bing Zhang; Xianfang Song; Yinghua Zhang; Ying Ma; Changyuan Tang; Lihu Yang; Zhong-Liang Wang

    2016-10-01

    The relationship between surface water and groundwater not only influences the water quantity, but also affects the water quality. The stable isotopes ($\\delta$D, $\\delta^{18}$O) and hydrochemical compositions in water samples were analysed in the Second Songhua River basin. The deep groundwater is mainly recharged from shallow groundwater in the middle and upper reaches. The shallow groundwater is discharged to rivers in the downstream. The runoff from upper reaches mainly contributed the river flow in the downstream. The CCME WQI indicated that the quality of surface water and groundwater was ‘Fair’. The mixing process between surface water and groundwater was simulated by the PHREEQC code with the results from the stable isotopes. The interaction between surface water and groundwater influences the composition of ions in the mixing water, and further affects the water quality with other factors.

  12. Groundwater-Surface Water Interaction: A Case Study of Embankment Dam Safety Assessment in Sweden.

    Science.gov (United States)

    Ferdos, F.; Dargahi, B.

    2015-12-01

    Seepage, when excessive and unimpeded, can cause embankment dam failure. Such failures are often initiated by internal erosion and piping. Modelling these phenomena in embankment dams, accounting for the groundwater-surface water interactions, is crucial when performing dam safety assessments. The aim of this study was to evaluate the applicability of modelling seepage flows in multi-region dams using a finite element based multi-physics model. The model was applied to the Trängslet dam, the largest dam in Sweden. The objectives were to analyze the characteristics of both the flow and the surface-ground water interactions occurring in the dam, including: i) the saturated and unsaturated laminar flow regimes within the dam body, ii) the non-linear through-flow in the dam shoulders' coarse material, iii) the influence of the surface waves in the reservoir on the seepage flow by coupling the physics to a hydrodynamic interface, and iv) the influence of a conceptual "erosion tunnel" on the seepage flow and its interaction with the surface water flow by coupling the physics to a CFD interface. The focus of the study was on the influence of the transient water head boundary condition, surface waves and the internal erosion tunnel on the location of the phreatic line and the seepage flow rate. The simulated seepage flow of the dam in its original condition tallied with the monitoring measurements (40-70 l/s). The main feature found was the relatively high position of the phreatic line, which could compromise the stability of the dam. The combination of the seepage model with the reservoir hydrodynamics indicated a negligible influence of the surface waves on seepage flow. Results from the combination of the seepage model with fluid dynamics indicated that a conceptual "erosion tunnel" placed within the dam, even as high as in the unsaturated zone, significantly affects the phreatic line's position. This also causes the seepage flow to increase by several orders of

  13. A hierarchical approach on groundwater-surface water interaction in wetlands along the upper Biebrza River, Poland

    Directory of Open Access Journals (Sweden)

    C. Anibas

    2012-07-01

    Full Text Available As recognized in the European Water Framework Directive, groundwater-dependent wetlands and their diverse ecosystems have important functions which need to be protected. The vegetation in such habitats is often dependent on quality, quantity and patterns of river discharge and groundwater-surface water interaction on a local or reach scale. Since groundwater-surface water exchange studies on natural rivers and wetlands with organic soils are scarce, more functional analysis is needed. To this end we combined different field methods including piezometer nests, temperature as tracer and seepage meter measurements. Some of these measurements were used as inputs and/or as validation for the numerical 1-D heat transport model STRIVE. In transient mode the model was used to calculate spatially distributed vertical exchange fluxes from temperature profiles measured at the upper Biebrza River in Poland over a period of nine months. Time series of estimated fluxes and hydraulic head gradients in the hyporheic zone were used to estimate the temporal variability of groundwater-surface water exchange.

    This paper presents a hierarchical approach for quantifying and interpreting groundwater-surface water interaction in space and time. The results for the upper Biebrza show predominantly upward water fluxes, sections of recharge, however, exist along the reach. The fluxes depend more on hydraulic gradients than on riverbed conductivity. This indicates that the fluvio-plain scale is required for interpreting the exchange fluxes, which are estimated on a local scale. The paper shows that a conceptual framework is necessary for understanding the groundwater-surface water interaction processes, where the exchange fluxes are influenced by local factors like the composition of the riverbed and the position of the measurement on a local scale, and by regional factors like the hydrogeology and topography on a fluvio-plain scale. The hierarchical methodology

  14. Database dictionary for the results of groundwater tracer tests using tritiated water, conducted at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, B.K. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Civil Engineering; Huff, D.D. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

    1997-05-01

    In 1977, the United States Geological Survey (USGS) conducted two tracer tests at the Oak Ridge National Laboratory (ORNL) using tritiated water to study the relative importance of bedding-plane openings on shallow groundwater flow. Through a cooperative agreement between the USGS and the US Department of Energy (DOE), the data were made available to researchers at the Oak Ridge National Laboratory (ORNL), who organized the data into a data management format. The results of these groundwater tracer tests have been compiled into a collection of four SAS data sets. This report documents these SAS data sets, including their structure, methodology, and content. The SAS data sets include information on precipitation, tritium, water levels, and well construction for wells at or near ORNL radioactive waste burial grounds 4, 5, and 6.

  15. KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space.

    Science.gov (United States)

    van Linden, Oscar P J; Kooistra, Albert J; Leurs, Rob; de Esch, Iwan J P; de Graaf, Chris

    2014-01-23

    Protein kinases regulate the majority of signal transduction pathways in cells and have become important targets for the development of designer drugs. We present a systematic analysis of kinase-ligand interactions in all regions of the catalytic cleft of all 1252 human kinase-ligand cocrystal structures present in the Protein Data Bank (PDB). The kinase-ligand interaction fingerprints and structure database (KLIFS) contains a consistent alignment of 85 kinase ligand binding site residues that enables the identification of family specific interaction features and classification of ligands according to their binding modes. We illustrate how systematic mining of kinase-ligand interaction space gives new insights into how conserved and selective kinase interaction hot spots can accommodate the large diversity of chemical scaffolds in kinase ligands. These analyses lead to an improved understanding of the structural requirements of kinase binding that will be useful in ligand discovery and design studies.

  16. HBVPathDB: A database of HBV infection-related molecular interaction network

    Institute of Scientific and Technical Information of China (English)

    Yi Zhang; Xiao-Chen Bo; Jing Yang; Sheng-Qi Wang

    2005-01-01

    AIM: To describe molecules or genes interaction between hepatitis B viruses (HBV) and host, for understanding how virus' and host's genes and molecules are networked to form a biological system and for perceiving mechanism of HBV infection.METHODS: The knowledge of HBV infection-related reactions was organized into various kinds of pathways with carefully drawn graphs in HBVPathDB. Pathway information is stored with relational database management system (DBMS), which is currently the most efficient way to manage large amounts of data and query is implemented with powerful Structured Query Language (SQL). The search engine is written using Personal Home Page (PHP) with SQL embedded and web retrieval interface is developed for searching with Hypertext Markup Language (HTML).RESULTS: We present the first version of HBVPathDB,which is a HBV infection-related molecular interaction network database composed of 306 pathways with 1050molecules involved. With carefully drawn graphs, pathway information stored in HBVPathDB can be browsed in an intuitive way. We develop an easy-to-use interface for flexible accesses to the details of database. Convenient software is implemented to query and browse the pathway information of HBVPathDB. Four search page layout options-category search, gene search, description search,unitized search-are supported by the search engine ofthe database. The database is freely available at http://www.bio-inf, net/HBVPathDB/HBV/.CONCLUSION: The conventional perspective HBVPathDB have already contained a considerable amount of pathway information with HBV infection related, which is suitable for in-depth analysis of molecular interaction network of virus and host. HBVPathDB integrates pathway data-sets with convenient software for query, browsing,visualization, that provides users more opportunity to identify regulatory key molecules as potential drug targets and to explore the possible mechanism of HBV infection based on gene expression datasets.

  17. Dual isotopic approach for determining groundwater origin and water-rock interactions in over exploited watershed in India

    Science.gov (United States)

    Negrel, Philippe; Pauwels, Hélène; Millot, Romain; Roy, Stéphane; Guerrot, Catherine

    2010-05-01

    Groundwater flow and storage in hard rock areas is becoming a matter of great interest and importance to researchers and water managers either with regards to the quantity, quality of water as well as delimitation of resources and aquifers. Degradation of groundwater resources by abstraction, contamination, ... has been increasing in many areas and is of growing concern for few decades. In terms of hydrogeology, hard rocks represent a quite heterogeneous and anisotropic media with irregular distribution of pathways of groundwater flow, typically consisting of three vertical zones, upper weathered, middle fractured and lower massive bedrock. Aim of this work is dual and the Maheshwaram watershed (53 km2, Andhra Pradesh, India) representative of watersheds in southern India in terms of geology, overpumping of its hard-rock aquifer (more than 700 classical open end wells in use), its cropping pattern (rice dominating), and its rural socio-economy mainly based on traditional agriculture is investigated through stable isotopes of the water molecule and lead isotopes in groundwater. The overall objective is to incorporate isotopic- and chemical-tracing data and constraints into methods for evaluating groundwater circulation. It divides into fingerprinting the groundwater recharge processes (e.g. the input by the monsoon) and the water use in such agricultural watershed, which is of primary importance in such semi-arid context and investigating the processes of water-rock interactions (e.g. granite-water interaction). In the frame of delimitation of resources and aquifers and long-term sustainability, we monitored the input from monsoon-precipitation over 2 years, and measured spatial and temporal variations in δ18O and δ2H in the groundwater and in precipitation. Individual recharge from the two monsoon periods was identified. This led to identification of periods during which evaporation affects groundwater quality through a higher concentration of salts and stable

  18. Impact of river-lake-groundwater interaction on boundless carbon cycle in continental basin

    Science.gov (United States)

    Nakayama, T.; Shankman, D.

    2012-12-01

    In the Changjiang River in south China, deforestation and land reclamation have induced serious soil erosion and increased floods. Although the Three Gorges Dam (TGD) will provide flood control, the aquatic environment might be changed by discharge control and pollutant loads caused by the deposition of large amounts of sediment in the upper dam (Yang et al., 2006). Some research implies that seepage of groundwater along the lower regions plays important role in maintaining stream flow and after TGD impounding by using natural radionuclides (Dai et al., 2010). It is effective to clarify complicated river-lake-groundwater interaction (Eltahir and Yeh, 1999; Dai et al., 2010), and to evaluate optimum amount of transferred water and environmental consequences in the basin. The authors have so far developed the process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a, 2008b, 2010, 2011a-b, 2012a-c; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Watanabe, 2004, 2006, 2008a, 2008b; Nakayama et al., 2006, 2007, 2010, 2012), which includes complex interactions between the forest canopy, surface water, the unsaturated zone, aquifers, lakes, and rivers. The objective of this research is to estimate the impact of river-lake-groundwater interaction on hydrologic cycle and to predict the impact of TGD on the hydrologic change in the downstream Dongting and Poyang Lakes region by using a process-based model. Analysis of power spectra in river discharge also helps to understand its complex mechanism. This integrated system also throws some light on the improvement in boundless biogeochemical cycle along terrestrial-aquatic continuum (Cole et al., 2007). References; Cole, J.J. et al., Ecosystems, doi:10.1007/s10021-006-9013-8, 2007. Dai, Z. et al., Hydrogeol. J., 18, 359-369, 2010. Eltahir, E.A.B.& Yeh, P.J.-F., Water Resour. Res., 35(4), 1199-1217, 1999. Nakayama, T., Ecol. Model., doi:10.1016/j.ecolmodel.2008

  19. Unraveling brackish groundwater - surface water interaction in an agricultural field using direct measurements at the field scale

    Science.gov (United States)

    Delsman, Joost; Waterloo, Maarten; Groen, Michel; Groen, Koos

    2014-05-01

    Understanding the interaction between groundwater and surface water is important for a myriad of reasons, including flow forecasting, nutrient transport, and water allocation for agriculture and other water users. This understanding is especially important in deep polder areas in the Netherlands, where brackish groundwater seepage (upward flowing regional groundwater) results in a significant salt load to surface water, and may damage crops if salts reach the rootzone in dry summers. Research on groundwater - surface water interaction historically focused on relatively pristine headwater catchments, only recently shifting somewhat to agricultural catchments. The latter pose specific research challenges, as agricultural activities and active water management can have a significant influence on hydrology. A brackish seepage flux, with a different density as precipitation, may significantly influence flow paths to surface water. Research on this specific topic is, however, lacking. We therefore investigated the interaction between groundwater and surface water in an agricultural catchment with a significant brackish seepage flux. In addition, we investigated the effects of intake of fresh water during periods of precipitation deficits, a common management strategy in lowland regions. We instrumented an agricultural ditch to enable direct, 15 min interval measurements of water fluxes and salinity to both agricultural drains and the ditch separately. These measurements are supported by piezometer nests, soil moisture sensors, temperature sensors, geophysics and a meteorological tower. Measurements focused on the summer period and were taken during two measurement periods: May 2012 - November 2012, and April 2013 - October 2013. Our measurements allowed for a direct, high-frequency separation of hydrological flow routes on this agricultural field between flow to agricultural drains and the ditch. The salinity of seepage water allowed for a relatively easy separation of

  20. Analytical results, database management and quality assurance for analysis of soil and groundwater samples collected by cone penetrometer from the F and H Area seepage basins

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, D.R.; Johnson, W.H.; Serkiz, S.M.

    1994-10-01

    The Quantification of Soil Source Terms and Determination of the Geochemistry Controlling Distribution Coefficients (K{sub d} values) of Contaminants at the F- and H-Area Seepage Basins (FHSB) study was designed to generate site-specific contaminant transport factors for contaminated groundwater downgradient of the Basins. The experimental approach employed in this study was to collect soil and its associated porewater from contaminated areas downgradient of the FHSB. Samples were collected over a wide range of geochemical conditions (e.g., pH, conductivity, and contaminant concentration) and were used to describe the partitioning of contaminants between the aqueous phase and soil surfaces at the site. The partitioning behavior may be used to develop site-specific transport factors. This report summarizes the analytical procedures and results for both soil and porewater samples collected as part of this study and the database management of these data.

  1. MatrixDB, the extracellular matrix interaction database: updated content, a new navigator and expanded functionalities.

    Science.gov (United States)

    Launay, G; Salza, R; Multedo, D; Thierry-Mieg, N; Ricard-Blum, S

    2015-01-01

    MatrixDB (http://matrixdb.ibcp.fr) is a freely available database focused on interactions established by extracellular proteins and polysaccharides. It is an active member of the International Molecular Exchange (IMEx) consortium and has adopted the PSI-MI standards for annotating and exchanging interaction data, either at the MIMIx or IMEx level. MatrixDB content has been updated by curation and by importing extracellular interaction data from other IMEx databases. Other major changes include the creation of a new website and the development of a novel graphical navigator, iNavigator, to build and expand interaction networks. Filters may be applied to build sub-networks based on a list of biomolecules, a specified interaction detection method and/or an expression level by tissue, developmental stage, and health state (UniGene data). Any molecule of the network may be selected and its partners added to the network at any time. Networks may be exported under Cytoscape and tabular formats and as images, and may be saved for subsequent re-use.

  2. Transport of reactive colloids and contaminants in groundwater: effect of nonlinear kinetic interactions.

    NARCIS (Netherlands)

    Weerd, van de H.; Leijnse, A.; Riemsdijk, van W.H.

    1998-01-01

    Transport of reactive colloids in groundwater may enhance the transport of contaminants in groundwater. Often, the interpretation of results of transport experiments is not a simple task as both reactions of colloids with the solid matrix and reactions of contaminants with the solid matrix and

  3. Zone of Interaction Between Hanford Site Groundwater and Adjacent Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Robert E.; Connelly, Michael P.

    2001-10-23

    This report describes the FY 2000 results of a Science and Technology investigation of the groundwater/river interface at the Hanford Site. The investigation focused on (1) a 2-D simulation of water flowpaths beneath the shoreline region under the influence of a transient river stage, and (2) mixing between groundwater and river water.

  4. The interaction between a manmade lake and groundwater: an example site in the Aurku area, Chiayi County, Taiwan

    Science.gov (United States)

    Ting, Cheh-Shyh; Jean, Jiin-Shuh; Tseng, Chien-Chang; Wu, Ming-Chee

    2007-02-01

    The objectives of this study are (1) to understand the subsurface hydrology in the Aurku area, Chiayi County, southern Taiwan, and (2) to determine the interaction between the manmade lake and groundwater level through the recharge produced by infiltration by on-site investigation and laboratory sand tank simulation. The manmade lake was selected as the field site for groundwater recharge effect so as to assess the role of infiltration from the aquaculture ponds in this area. These results can be used as reference for future application of constructing a series of manmade lakes. The field experiment was performed to measure the infiltration rate of the manmade lake by using the water balance method and double-ring infiltration test. The results demonstrated that the manmade lake had helped the recharge of the groundwater. Raising or maintaining a higher water level of the manmade lake can promote higher infiltration. When the groundwater level is equal to or higher than the bottom of the manmade lake, infiltration will slow or cease. The field experiment and laboratory sand tank simulation demonstrated that the infiltration rate increased with the higher storage depth of the manmade lake. The laboratory simulation also indicated that while the groundwater level was lower than the bottom of manmade lake (i.e. the reference level) and the initial water depth (3 cm) was equal to or greater than 50% of the full water storage depth, the infiltration depth increased with time. However, the infiltration depth would be very small or nearly zero when the groundwater level was higher than the bottom of the manmade lake. Copyright

  5. Climate Variability and Water-Regulation Effects on Surface Water and Groundwater Interactions in California's Central Valley

    Science.gov (United States)

    Munoz-Arriola, F.; Dettinger, M. D.; Hanson, R. T.; Faunt, C.; Cayan, D. R.

    2011-12-01

    California's Central Valley is one of the most important agricultural areas in the world and is highly dependent on the availability and management of surface water and groundwater. As such, it is a valuable large-scale system for investigating the interaction of climate variability and water-resource management on surface-water and groundwater interactions. In the Central Valley, multiple tools are available to allow scientists to understand these interactions. However, the full effect of human activities on the interactions occurring along the Aquifer-Soil-Plant-Atmosphere continuum remains uncertain. Two models were linked to investigate how non-regulated (natural conditions) and regulated (releases from dams) surface-water inflows from the surrounding contributing drainage areas to the alluvial plains of the Central Valley affects the valley's surface-water supply and groundwater pumpage under different climate conditions. The Variable Infiltration Capacity (VIC) macroscale (surface) hydrologic model was used to estimate the non-regulated streamflow. The U.S. Geological Survey's recently developed Central Valley Hydrologic Model (CVHM) was used to route both the regulated and non-regulated streamflow to the Central Valley and simulate the resulting hydrologic system. The CVHM was developed using MODFLOW's Farm Process (MF-FMP) in order to simulate agricultural water demand, surface-water deliveries, groundwater pumpage, and return flows in 21 water-balance subregions. As such, the CVHM simulates conjunctive use of water, providing a broad perspective on changes in the water systems of the Valley. Inflows from the contributing mountain watersheds are simulated in CVHM using the streamflow-routing package for the 1961-2003 time period. In order to analyze the affect of climate variability, dry and wet years were identified from below the 10th and above the 90th percentiles, respectively, in a multi-decadal time series (1961-2003) of surface-water inflows. The

  6. Surface Water and Groundwater Interactions in Traditionally Irrigated Fields in Northern New Mexico, U.S.A.

    Directory of Open Access Journals (Sweden)

    Karina Y. Gutiérrez-Jurado

    2017-02-01

    Full Text Available Better understanding of surface water (SW and groundwater (GW interactions and water balances has become indispensable for water management decisions. This study sought to characterize SW-GW interactions in three crop fields located in three different irrigated valleys in northern New Mexico by (1 estimating deep percolation (DP below the root zone in flood-irrigated crop fields; and (2 characterizing shallow aquifer response to inputs from DP associated with irrigation. Detailed measurements of irrigation water application, soil water content fluctuations, crop field runoff, and weather data were used in the water budget calculations for each field. Shallow wells were used to monitor groundwater level response to DP inputs. The amount of DP was positively and significantly related to the total amount of irrigation water applied for the Rio Hondo and Alcalde sites, but not for the El Rito site. The average irrigation event DP using data for the complete irrigation season at each of the three sites was 77.0 mm at El Rito, 54.5 mm at Alcalde and 53.1 mm at Rio Hondo. Groundwater level rise compared to pre-irrigation event water levels ranged from 3 to 1870 mm, and was influenced by differences in irrigation practices between sites. Crop evapotranspiration estimates averaged across irrigation events were highest in Rio Hondo (22.9 mm, followed by El Rito (14.4 mm and Alcalde (10.4 mm. Results from this study indicate there are strong surface water-groundwater connections in traditionally irrigated systems of northern New Mexico, connections that may be employed to better manage groundwater recharge and river flow.

  7. Study of groundwater-quarry interactions in the context of energy storage systems

    Science.gov (United States)

    Poulain, Angélique; goderniaux, Pascal; de dreuzy, Jean-Raynald

    2016-04-01

    Pump storage hydroelectricity is an efficient way to temporarily store energy. This technique requires to store temporarily a large volume of water in an upper reservoir, and to release it through turbines to the lower reservoir, to produce electricity. Recently, the idea of using old flooded quarries as a lower reservoir has been discussed. However, these flooded quarries are generally in relation with an unconfined aquifer. Consequently, pumping or injecting large volumes of water, within short time intervals, will have an impact on the adjacent water table. The objectives of this study is to understand the consequences of pumping/injection of large water volumes in a quarry on the adjacent unconfined aquifer. Numerical tools are used to understand the impact of oscillatory pumping in a quarry on the aquifer. Sinusoidal pumping are imposed on a generic quarry modelled with a 3D finite difference simulator. The period of the sinusoidal pumping is maximum 12 hours. We observe and study the propagation of this stress in the adjacent porous media and the amplitude of water level variations in the quarry, as a function of the hydraulic parameters. Two different configurations have been considered: homogeneous hydraulic parameters in the porous media and the presence of a fractured zone in the vicinity of the quarry. Results show that the influence of the quarry - aquifer interactions on the amplitude of water level fluctuations in the quarry remains low whatever the hydraulic parameters. The attenuation of the groundwater head fluctuations in the porous media logically increases with the distance of the quarry. In the homogeneous case, we have an equal propagation of the stress in all point of the environment. The maximal distance of propagation increases with the hydraulic conductivity and the porosity values. The presence of a fractured zone induces preferential flow paths, which distort significantly the zone impacted by the sinusoidal pumping. In the fracture, the

  8. iPPI-DB: an online database of modulators of protein-protein interactions.

    Science.gov (United States)

    Labbé, Céline M; Kuenemann, Mélaine A; Zarzycka, Barbara; Vriend, Gert; Nicolaes, Gerry A F; Lagorce, David; Miteva, Maria A; Villoutreix, Bruno O; Sperandio, Olivier

    2016-01-01

    In order to boost the identification of low-molecular-weight drugs on protein-protein interactions (PPI), it is essential to properly collect and annotate experimental data about successful examples. This provides the scientific community with the necessary information to derive trends about privileged physicochemical properties and chemotypes that maximize the likelihood of promoting a given chemical probe to the most advanced stages of development. To this end we have developed iPPI-DB (freely accessible at http://www.ippidb.cdithem.fr), a database that contains the structure, some physicochemical characteristics, the pharmacological data and the profile of the PPI targets of several hundreds modulators of protein-protein interactions. iPPI-DB is accessible through a web application and can be queried according to two general approaches: using physicochemical/pharmacological criteria; or by chemical similarity to a user-defined structure input. In both cases the results are displayed as a sortable and exportable datasheet with links to external databases such as Uniprot, PubMed. Furthermore each compound in the table has a link to an individual ID card that contains its physicochemical and pharmacological profile derived from iPPI-DB data. This includes information about its binding data, ligand and lipophilic efficiencies, location in the PPI chemical space, and importantly similarity with known drugs, and links to external databases like PubChem, and ChEMBL.

  9. A Comprehensive Software System for Interactive, Real-time, Visual 3D Deterministic and Stochastic Groundwater Modeling

    Science.gov (United States)

    Li, S.

    2002-05-01

    Taking advantage of the recent developments in groundwater modeling research and computer, image and graphics processing, and objected oriented programming technologies, Dr. Li and his research group have recently developed a comprehensive software system for unified deterministic and stochastic groundwater modeling. Characterized by a new real-time modeling paradigm and improved computational algorithms, the software simulates 3D unsteady flow and reactive transport in general groundwater formations subject to both systematic and "randomly" varying stresses and geological and chemical heterogeneity. The software system has following distinct features and capabilities: Interactive simulation and real time visualization and animation of flow in response to deterministic as well as stochastic stresses. Interactive, visual, and real time particle tracking, random walk, and reactive plume modeling in both systematically and randomly fluctuating flow. Interactive statistical inference, scattered data interpolation, regression, and ordinary and universal Kriging, conditional and unconditional simulation. Real-time, visual and parallel conditional flow and transport simulations. Interactive water and contaminant mass balance analysis and visual and real-time flux update. Interactive, visual, and real time monitoring of head and flux hydrographs and concentration breakthroughs. Real-time modeling and visualization of aquifer transition from confined to unconfined to partially de-saturated or completely dry and rewetting Simultaneous and embedded subscale models, automatic and real-time regional to local data extraction; Multiple subscale flow and transport models Real-time modeling of steady and transient vertical flow patterns on multiple arbitrarily-shaped cross-sections and simultaneous visualization of aquifer stratigraphy, properties, hydrological features (rivers, lakes, wetlands, wells, drains, surface seeps), and dynamically adjusted surface flooding area

  10. Watermark: An Application and Methodology and Application for Interactive and intelligent Decision Support for Groundwater Systems

    Science.gov (United States)

    Pierce, S. A.; Wagner, K.; Schwartz, S.; Gentle, J. N., Jr.

    2016-12-01

    Critical water resources face the effects of historic drought, increased demand, and potential contamination, the need has never been greater to develop resources to effectively communicate conservation and protection across a broad audience and geographical area. The Watermark application and macro-analysis methodology merges topical analysis of context rich corpus from policy texts with multi-attributed solution sets from integrated models of water resource and other subsystems, such as mineral, food, energy, or environmental systems to construct a scalable, robust, and reproducible approach for identifying links between policy and science knowledge bases. The Watermark application is an open-source, interactive workspace to support science-based visualization and decision making. Designed with generalization in mind, Watermark is a flexible platform that allows for data analysis and inclusion of large datasets with an interactive front-end capable of connecting with other applications as well as advanced computing resources. In addition, the Watermark analysis methodology offers functionality that streamlines communication with non-technical users for policy, education, or engagement with groups around scientific topics of societal relevance. The technology stack for Watermark was selected with the goal of creating a robust and dynamic modular codebase that can be adjusted to fit many use cases and scale to support usage loads that range between simple data display to complex scientific simulation-based modelling and analytics. The methodology uses to topical analysis and simulation-optimization to systematically analyze the policy and management realities of resource systems and explicitly connect the social and problem contexts with science-based and engineering knowledge from models. A case example demonstrates use in a complex groundwater resources management study highlighting multi-criteria spatial decision making and uncertainty comparisons.

  11. Groundwater-carbon interactions within the Red Lake Peatland of northern Minnesota

    Science.gov (United States)

    Glaser, P. H.; Siegel, D. I.; Rosenberry, D. O.; Chanton, J.; Reeve, A. S.; Slater, L. D.; Cooper, W. T.; Burdige, D. J.; Comas, X.; Corbett, J. E.; tfaily, M. M.; Morin, P. J.

    2011-12-01

    Peatlands represent a critical component of the Global Carbon Cycle serving as both a major source and sink for greenhouse gases. Although a broad consensus exists that the carbon balance of these wet-waterlogged deposits is intimately linked to hydrological processes, considerable uncertainty still exists with regard to the dynamics of these linkages and their response to climate change. This gap in understanding has broad implications for modeling the future carbon and water balance of peatlands even though peatlands tend to be concentrated in regions that are predicted to sustain the maximum degree of future global warming. The Red Lake Peatland Observatory was established to characterize these interactions within a large 1300 square kilometer peatland in northwestern Minnesota. The 20 instrument stations of the RLPO continuously track fluxes of heat, momentum, water, and carbon dioxide within the deep peat profile and overlying atmospheric boundary layers of a bog-fen complex at spatial scales from meters to kilometers. Each fall zones of overpressure formed within the shallow (50-150 cm) peat of the bog, poor-fen, and fen stations apparently in response to the buildup of biogenic gases related to a) the cessation of the growing season and b) a decline in methane emissions through vascular plants. These zones of overpressure persisted through the winter but dissipated after the spring thaw. Transient zones of overpressure also developed within the deeper peat but the hydraulic head gradients indicate that an overall trend of downward flow prevailed at all sites since the onset of wetter conditions in August of 2009. This flow regime would support the downward transport of labile root exudates into the deeper peat providing a stimulus for methanogenesis. Overall data from the RLPO indicates a dynamic interaction among climate, hydraulics, and carbon cycling with an especially close coupling between biogenic gases and groundwater flow

  12. Study of the water-rock interaction in Tsengwenshi groundwater system (southern Taiwan) using BCR sequential extraction procedure

    Science.gov (United States)

    Teng, J. Y.

    2012-04-01

    The heavy metals in groundwater seriously risk the human wealth, agriculture and the aquaculture, especially, if the water is the major source of daily use. Generally, in spite of anthropogenic source, the heavy metals in groundwater are released during water-rock interaction. However, there are many mineral phases being capable of releasing heavy metals. It would need a sequential extraction procedure to identify the source mineral phase in the aquifer. In addition, the geochemical reactions after the release of heavy metals are also important to modify the concentrations. In this study, the rare earth elements are used to be a natural tracer for this purpose. The study area, Tsengwenshi watershed in southern Taiwan, is an alluvial fan with all kinds of land uses and is notorious of arsenic contamination. The groundwaters sampled in this study show that arsenic is enriched in deep aquifer (depth>150m), which is composed of sediments deposited in the last glacial period (18 ka). Based on this conceptual model, the results of BCR sequential extraction procedure are categorized into shallow aquifer (depthheavy metals in two groups can be subsequently obtained to take account of extensive water-rock interaction in the groundwater system. The results show that arsenic and other heavy metals are mostly binding with Fe-Mn oxides. To compare the ratios between deep and shallow aquifers for all heavy metals, the pattern of groundwaters does not show the similar type with those of extracted phases from soils. It is believed that the released heavy metals were strongly modified by the geochemical reactions during the transportation in the groundwater system. In addition, the analysis results of the rare earth elements demonstrates that almost all groundwaters with high arsenic do not have Ce negative anomaly; and, on the contrary, those with low arsenic are generally characterized by strong negative anomaly. Generally, the Ce negative anomaly is a prominent indicator of

  13. Estimation of lake water - groundwater interactions in meromictic mining lakes by modelling isotope signatures of lake water.

    Science.gov (United States)

    Seebach, Anne; Dietz, Severine; Lessmann, Dieter; Knoeller, Kay

    2008-03-01

    A method is presented to assess lake water-groundwater interactions by modelling isotope signatures of lake water using meteorological parameters and field data. The modelling of delta(18)O and deltaD variations offers information about the groundwater influx into a meromictic Lusatian mining lake. Therefore, a water balance model is combined with an isotope water balance model to estimate analogies between simulated and measured isotope signatures within the lake water body. The model is operated with different evaporation rates to predict delta(18)O and deltaD values in a lake that is only controlled by weather conditions with neither groundwater inflow nor outflow. Comparisons between modelled and measured isotope values show whether the lake is fed by the groundwater or not. Furthermore, our investigations show that an adaptation of the Craig and Gordon model [H. Craig, L.I. Gordon. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, E. Tongiorgi (Ed.), pp. 9-130, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa (1965).] to specific conditions in temperate regions seems necessary.

  14. Characterizing multiple sources and interaction in the critical zone through Sr-isotope tracing of surface and groundwater

    Science.gov (United States)

    Negrel, Philippe; Pauwels, Hélène

    2017-04-01

    The Critical Zone (CZ) is the lithosphere-atmosphere boundary where complex physical, chemical and biological processes occurs and control the transfer and storage of water and chemical elements. This is the place where life-sustaining resources are, where nutrients are being released from the rocks. Because it is the place where we are living, this is a fragile zone, a critical zone as a perturbed natural ecosystem. Water resources in hard-rocks commonly involve different hydrogeological compartments such as overlying sediments, weathered rock, the weathered-fissured zone, and fractured bedrock. Streams, lakes and wetlands that drain such environments can drain groundwater, recharge groundwater, or do both. Groundwater resources in many countries are increasingly threatened by growing demand, wasteful use, and contamination. Surface water and shallow groundwater are particularly vulnerable to pollution, while deeper resources are more protected from contamination. Here, we first report on Sr isotope data as well as major ions, from shallow and deep groundwater in several granite and schist areas over France with intensive agriculture covering large parts of these catchments. In three granite and Brioverian 'schist' areas of the Armorican Massif, the range in Sr contents in groundwater from different catchments agrees with previous work on groundwater sampled from granites in France. The Sr content is well correlated with Mg and both are partly related to agricultural practices and water rock interaction. The relationship between Sr- isotope and Mg/Sr ratios allow defining the different end-members, mainly rain, agricultural practice and water-rock interaction. The data from the Armorican Massif and other surface and groundwater for catchment draining silicate bedrocks (300-450Ma) like the Hérault, Seine, Moselle, Garonne, Morvan, Margeride, Cantal, Pyrénées and Vosges are scattered between at least three geochemical signatures. These include fertilizer and

  15. Teaching Three-Dimensional Structural Chemistry Using Crystal Structure Databases. 2. Teaching Units that Utilize an Interactive Web-Accessible Subset of the Cambridge Structural Database

    Science.gov (United States)

    Battle, Gary M.; Allen, Frank H.; Ferrence, Gregory M.

    2010-01-01

    A series of online interactive teaching units have been developed that illustrate the use of experimentally measured three-dimensional (3D) structures to teach fundamental chemistry concepts. The units integrate a 500-structure subset of the Cambridge Structural Database specially chosen for their pedagogical value. The units span a number of key…

  16. The Relationship between Searches Performed in Online Databases and the Number of Full-Text Articles Accessed: Measuring the Interaction between Database and E-Journal Collections

    Science.gov (United States)

    Lamothe, Alain R.

    2011-01-01

    The purpose of this paper is to report the results of a quantitative analysis exploring the interaction and relationship between the online database and electronic journal collections at the J. N. Desmarais Library of Laurentian University. A very strong relationship exists between the number of searches and the size of the online database…

  17. The Relationship between Searches Performed in Online Databases and the Number of Full-Text Articles Accessed: Measuring the Interaction between Database and E-Journal Collections

    Science.gov (United States)

    Lamothe, Alain R.

    2011-01-01

    The purpose of this paper is to report the results of a quantitative analysis exploring the interaction and relationship between the online database and electronic journal collections at the J. N. Desmarais Library of Laurentian University. A very strong relationship exists between the number of searches and the size of the online database…

  18. Development of a river-groundwater interaction model and its application to a catchment in Northwestern China

    Science.gov (United States)

    Hu, Litang; Xu, Zongxue; Huang, Weidong

    2016-12-01

    The river-groundwater interaction is an important component of the hydrological cycle. This study develops an integrated river-GW model that uses a one-dimensional open channel flow model and a three-dimensional saturated GW flow model to describe the dynamic river-GW relationship at the basin scale, as well as groundwater flow and streamflow in arid regions. The model is tested with three cases, and the good agreement between the simulated and observed results demonstrates that the model can be used to simulate river-GW interactions. The integrated river-GW model is applied to the middle reaches of the Heihe River Basin and is calibrated using multi-source field data, including hydraulic heads from observation wells, streamflow, and spring flow. The case studies in the Heihe River Basin find that the following: (1) the river-GW relationships vary seasonally and spatially and depend on many factors, such as the river flow and GW uses; (2) in the middle reaches, the annual mean river-groundwater flux exchange from Yinluoxia to the Heihe Bridge is approximately 17% of the mean streamflow and increases to more than 49% from the Heihe Bridge to Zhengyixia; and (3) after the implementation of the water reallocation plan in 2000, the river-GW relationship in some reaches changed from a gaining stream to a losing stream due to the increase of GW abstraction. These findings suggest that GW pumpage should be controlled rationally and demonstrate that the integrated river-GW model can be used to analyse the temporal-spatial trends of river-groundwater interaction in arid regions.

  19. A methodology to establish a database to study gene environment interactions for childhood asthma

    Directory of Open Access Journals (Sweden)

    McCormick Jonathan

    2010-12-01

    Full Text Available Abstract Background Gene-environment interactions are likely to explain some of the heterogeneity in childhood asthma. Here, we describe the methodology and experiences in establishing a database for childhood asthma designed to study gene-environment interactions (PAGES - Paediatric Asthma Gene Environment Study. Methods Children with asthma and under the care of a respiratory paediatrician are being recruited from 15 hospitals between 2008 and 2011. An asthma questionnaire is completed and returned by post. At a routine clinic visit saliva is collected for DNA extraction. Detailed phenotyping in a proportion of children includes spirometry, bronchodilator response (BDR, skin prick reactivity, exhaled nitric oxide and salivary cotinine. Dietary and quality of life questionnaires are completed. Data are entered onto a purpose-built database. Results To date 1045 children have been invited to participate and data collected in 501 (48%. The mean age (SD of participants is 8.6 (3.9 years, 57% male. DNA has been collected in 436 children. Spirometry has been obtained in 172 children, mean % predicted (SD FEV1 97% (15 and median (IQR BDR is 5% (2, 9. There were differences in age, socioeconomic status, severity and %FEV1 between the different centres (p≤0.024. Reasons for non-participation included parents not having time to take part, children not attending clinics and, in a small proportion, refusal to take part. Conclusions It is feasible to establish a national database to study gene-environment interactions within an asthmatic paediatric population; there are barriers to participation and some different characteristics in individuals recruited from different centres. Recruitment to our study continues and is anticipated to extend current understanding of asthma heterogeneity.

  20. Developing Molecular Interaction Database and Searching for Similar Pathways (MOLECULAR BIOLOGY AND INFORMATION-Biological Information Science)

    OpenAIRE

    Kawashima, Shuichi; Katayama, Toshiaki; Kanehisa, Minoru

    1998-01-01

    We have developed a database named BRITE, which contains knowledge of interacting molecules and/or genes concering cell cycle and early development. Here, we report an overview of the database and the method of automatic search for functionally common sub-pathways between two biological pathways in BRITE.

  1. Quantifying the influence of surface water-groundwater interaction on nutrient flux in a lowland karst catchment

    Science.gov (United States)

    McCormack, T.; Naughton, O.; Johnston, P. M.; Gill, L. W.

    2016-06-01

    Nutrient contamination of surface waters and groundwaters is an issue of growing importance as the risks associated with agricultural run-off escalate due to increasing demands on global food production. In this study, the influence of surface water-groundwater interaction on the nutrient flux in a lowland karst catchment was investigated with the aid of alkalinity sampling and a hydrological model. The objective of the study was to determine the impact of ephemeral karst lakes (turloughs) on the surface water-groundwater nutrient flux, and whether these lakes act as sources or sinks of nutrients within the groundwater flow system. Water samples were tested from a variety of rivers, turloughs, boreholes and springs at monthly intervals over 3 years. Alkalinity sampling was used to elucidate the contrasting hydrological functioning between different turloughs. Such disparate hydrological functioning was further investigated with the aid of a hydrological model which allowed for an estimate of allogenically and autogenically derived nutrient loading into the karst system. The model also allowed for an investigation of mixing within the turloughs, comparing observed behaviours with the hypothetical conservative behaviour allowed for by the model. Within the turloughs, recorded nutrient concentrations were found to reduce over the flooded period, even though the turloughs hydrological functioning (and the hydrological model) suggested this would not occur under conservative conditions. As such, it was determined that nutrient loss processes were occurring within the system. Denitrification during stable flooded periods (typically 3-4 months per year) was deemed to be the main process reducing nitrogen concentrations within the turloughs, whereas phosphorus loss is thought to occur mostly via sedimentation and subsequent soil deposition. The results from this study suggest that, in stable conditions, ephemeral lakes can impart considerable nutrient losses on a karst

  2. AraPPISite: a database of fine-grained protein-protein interaction site annotations for Arabidopsis thaliana.

    Science.gov (United States)

    Li, Hong; Yang, Shiping; Wang, Chuan; Zhou, Yuan; Zhang, Ziding

    2016-09-01

    Knowledge about protein interaction sites provides detailed information of protein-protein interactions (PPIs). To date, nearly 20,000 of PPIs from Arabidopsis thaliana have been identified. Nevertheless, the interaction site information has been largely missed by previously published PPI databases. Here, AraPPISite, a database that presents fine-grained interaction details for A. thaliana PPIs is established. First, the experimentally determined 3D structures of 27 A. thaliana PPIs are collected from the Protein Data Bank database and the predicted 3D structures of 3023 A. thaliana PPIs are modeled by using two well-established template-based docking methods. For each experimental/predicted complex structure, AraPPISite not only provides an interactive user interface for browsing interaction sites, but also lists detailed evolutionary and physicochemical properties of these sites. Second, AraPPISite assigns domain-domain interactions or domain-motif interactions to 4286 PPIs whose 3D structures cannot be modeled. In this case, users can easily query protein interaction regions at the sequence level. AraPPISite is a free and user-friendly database, which does not require user registration or any configuration on local machines. We anticipate AraPPISite can serve as a helpful database resource for the users with less experience in structural biology or protein bioinformatics to probe the details of PPIs, and thus accelerate the studies of plant genetics and functional genomics. AraPPISite is available at http://systbio.cau.edu.cn/arappisite/index.html .

  3. Modeling the time-varying interaction between surface water and groundwater bodies

    Science.gov (United States)

    Gliege, Steffen; Steidl, Jörg; Lischeid, Gunnar; Merz, Christoph

    2016-04-01

    The countless kettle holes (small lakes) in the Late Pleistocene landscapes of Northern Europe have important ecological and hydrological functions. On the one hand they act as depressions in which water and solutes of mainly agriculturally used catchments accumulate. On the other hand they operate as biochemical reactors with respect to greenhouse gas emissions, carbon sequestration, and as major sinks for nutrients and contaminants. Even small kettle holes often are hydraulically connected to the uppermost groundwater system: Groundwater discharges into the kettle hole on one side, and the aquifer is recharged from the kettle hole water body on the other side. Thus kettle hole biogeochemical processes are both affected by groundwater and vice versa. Groundwater flow direction and velocity into and out of the kettle hole often is not stable over time. Groundwater flow direction might reverse at the downstream part, resulting in repeated recycling of groundwater and corresponding solute turnover within the kettle holes. A sound understanding of this intricate interplay is a necessary prerequisite for better understanding of the biogeochemistry of this terrestrial-aquatic interface. A numerical experiment was used to quantify the lateral solute exchange between a kettle hole and the surrounding groundwater. A vertical cross section through the real existing catchment of a kettle hole was chosen. Glacial till represents the lower boundary. The heterogeneity of the subsurface was reproduced by various parameterizations of the soil hydraulic properties as well as varying the thickness of the unconfined aquifer or the lateral boundary conditions. In total 24 different parameterizations were implemented in the modeling software HydroGeoSphere (HGS). HGS is suitable to calculate the fluid exchange between surface and subsurface simultaneously and in a physically based way. The simulation runs were done for the period from November 1994 to October 2014. All results were

  4. Joint assimilation of piezometric heads and groundwater temperatures for improved modelling of river-aquifer interactions

    Science.gov (United States)

    Kurtz, Wolfgang; Hendricks-Franssen, Harrie-Jan; Vereecken, Harry

    2013-04-01

    Measured groundwater temperatures close to streams contain valuable information for the assessment of mass transfer rates between river and aquifer and the hydraulic properties around a streambed. For groundwater management close to rivers, the characterization of these hydraulic properties is of special interest because exchange fluxes between river and aquifer influence the sustainability of groundwater abstraction and the quality of pumped drinking water. Additionally, it can be important for groundwater management to gain reliable predictions of groundwater temperatures, e.g. in order to regulate the temperature of extracted drinking water. Data assimilation techniques, like the ensemble Kalman filter (EnKF), provide a flexible stochastic framework to merge model simulations with different types of measurement data in order to enhance the (real-time) prediction of groundwater states and to improve the estimation of uncertain hydraulic subsurface parameters. EnKF has already been used for managed river-aquifer systems to improve the prediction of groundwater levels and the estimation of hydraulic parameters by the assimilation of measured piezometric head data. As temperature data can provide additional information on stream-aquifer exchange it is investigated whether this information further constrains states, fluxes and parameters of the river-groundwater system. For this purpose, we performed data assimilation experiments with two different model setups: (i) a simple synthetic model of a river-aquifer system where the parameters and simulation conditions were perfectly known (ii) a more complex model of the Limmat aquifer in Zurich where real-world data were assimilated. Results for the synthetic case suggest that a joint assimilation of piezometric heads and groundwater temperatures together with updating of uncertain hydraulic conductivities and leakage coefficients gives the best estimation of states, fluxes and hydraulic properties (i.e., hydraulic

  5. Drug-target interaction prediction: databases, web servers and computational models.

    Science.gov (United States)

    Chen, Xing; Yan, Chenggang Clarence; Zhang, Xiaotian; Zhang, Xu; Dai, Feng; Yin, Jian; Zhang, Yongdong

    2016-07-01

    Identification of drug-target interactions is an important process in drug discovery. Although high-throughput screening and other biological assays are becoming available, experimental methods for drug-target interaction identification remain to be extremely costly, time-consuming and challenging even nowadays. Therefore, various computational models have been developed to predict potential drug-target associations on a large scale. In this review, databases and web servers involved in drug-target identification and drug discovery are summarized. In addition, we mainly introduced some state-of-the-art computational models for drug-target interactions prediction, including network-based method, machine learning-based method and so on. Specially, for the machine learning-based method, much attention was paid to supervised and semi-supervised models, which have essential difference in the adoption of negative samples. Although significant improvements for drug-target interaction prediction have been obtained by many effective computational models, both network-based and machine learning-based methods have their disadvantages, respectively. Furthermore, we discuss the future directions of the network-based drug discovery and network approach for personalized drug discovery based on personalized medicine, genome sequencing, tumor clone-based network and cancer hallmark-based network. Finally, we discussed the new evaluation validation framework and the formulation of drug-target interactions prediction problem by more realistic regression formulation based on quantitative bioactivity data.

  6. Impact of variable river water stage on the simulation of groundwater-river interactions over the Upper Rhine Graben hydrosystem

    Science.gov (United States)

    Habets, F.; Vergnes, J.

    2013-12-01

    The Upper Rhine alluvial aquifer is an important transboundary water resource which is particularly vulnerable to pollution from the rivers due to anthropogenic activities. A realistic simulation of the groundwater-river exchanges is therefore of crucial importance for effective management of water resources, and hence is the main topic of the NAPROM project financed by the French Ministry of Ecology. Characterization of these fluxes in term of quantity and spatio-temporal variability depends on the choice made to represent the river water stage in the model. Recently, a couple surface-subsurface model has been applied to the whole aquifer basin. The river stage was first chosen to be constant over the major part of the basin for the computation of the groundwater-river interactions. The present study aims to introduce a variable river water stage to better simulate these interactions and to quantify the impact of this process over the simulated hydrological variables. The general modeling strategy is based on the Eau-Dyssée modeling platform which couples existing specialized models to address water resources and quality in regional scale river basins. In this study, Eau-Dyssée includes the RAPID river routing model and the SAM hydrogeological model. The input data consist in runoff and infiltration coming from a simulation of the ISBA land surface scheme covering the 1986-2003 period. The QtoZ module allows to calculate river stage from simulated river discharges, which is then used to calculate the exchanges between aquifer units and river. Two approaches are compared. The first one uses rating curves derived from observed river discharges and river stages. The second one is based on the Manning's formula. Manning's parameters are defined with geomorphological parametrizations and topographic data based on Digital Elevation Model (DEM). First results show a relatively good agreement between observed and simulated river water height. Taking into account a

  7. "WISEASS" - A State-of-the-art Interactive Supernova Spectroscopy Database

    CERN Document Server

    Yaron, Ofer

    2012-01-01

    We have entered an era of massive data sets in astronomy. In particular, the number of supernova (SN) discoveries and classifications has substantially increased over the years from few tens to thousands per year. It is no longer the case that observations of a few prototypical events encapsulate most spectroscopic information about SNe, motivating the development of modern tools to collect, archive, organize and distribute spectra in general, and SN spectra in particular. For this reason we have developed the Weizmann Institute of Science Experimental Astrophysics Spectroscopy System - WISEASS -- an SQL-based database (DB) with an interactive web-based graphical interface. The system serves as an archive of high quality SN spectra, including both historical (legacy) data as well as data that is accumulated by ongoing modern programs. The archive provides information about objects, their spectra, and related meta-data. Utilizing interactive plots, we provide a graphical interface to visualize data, perform li...

  8. The importance of coupled modelling of variably saturated groundwater flow-heat transport for assessing river-aquifer interactions

    Science.gov (United States)

    Engeler, I.; Hendricks Franssen, H. J.; Müller, R.; Stauffer, F.

    2011-02-01

    SummaryThis paper focuses on the role of heat transport in river-aquifer interactions for the study area Hardhof located in the Limmat valley within the city of Zurich (Switzerland). On site there are drinking water production facilities of Zurich water supply, which pump groundwater and infiltrate bank filtration water from river Limmat. The artificial recharge by basins and by wells creates a hydraulic barrier against the potentially contaminated groundwater flow from the city. A three-dimensional finite element model of the coupled variably saturated groundwater flow and heat transport was developed. The hydraulic conductivity of the aquifer and the leakage coefficient of the riverbed were calibrated for isothermal conditions by inverse modelling, using the pilot point method. River-aquifer interaction was modelled using a leakage concept. Coupling was considered by temperature-dependent values for hydraulic conductivity and for leakage coefficients. The quality of the coupled model was tested with the help of head and temperature measurements. Good correspondence between simulated and measured temperatures was found for the three pumping wells and seven piezometers. However, deviations were observed for one pumping well and two piezometers, which are situated in an area, where zones with important hydrogeological heterogeneity are expected. A comparison of simulation results with isothermal leakage coefficients with those of temperature-dependent leakage coefficients shows that the temperature dependence is able to reduce the head residuals close to the river by up to 30%. The largest improvements are found in the zone, where the river stage is considerably higher than the groundwater level, which is in correspondence with the expectations. Additional analyses also showed that the linear leakage concept cannot reproduce the seepage flux in a downstream section during flood events. It was found that infiltration is enhanced during flood events, which is

  9. DockScreen: A Database of In Silico Biomolecular Interactions to Support Computational Toxicology

    Directory of Open Access Journals (Sweden)

    Michael-Rock Goldsmith

    2014-01-01

    Full Text Available We have developed DockScreen, a database of in silico biomolecular interactions designed to enable rational molecular toxicological insight within a computational toxicology framework. This database is composed of chemical/target (receptor and enzyme binding scores calculated by molecular docking of more than 1000 chemicals into 150 protein targets and contains nearly 135 thousand unique ligand/target binding scores. Obtaining this dataset was achieved using eHiTS (Simbiosys Inc., a fragment-based molecular docking approach with an exhaustive search algorithm, on a heterogeneous distributed high-performance computing framework. The chemical landscape covered in DockScreen comprises selected environmental and therapeutic chemicals. The target landscape covered in DockScreen was selected based on the availability of high-quality crystal structures that covered the assay space of phase I ToxCast in vitro assays. This in silico data provides continuous information that establishes a means for quantitatively comparing, on a structural biophysical basis, a chemical’s profile of biomolecular interactions. The combined minimum-score chemical/target matrix is provided.

  10. Geospatial Database of Ground-Water Altitude and Depth-to-Ground-Water Data for Utah, 1971-2000

    Science.gov (United States)

    Buto, Susan G.; Jorgensen, Brent E.

    2007-01-01

    A geospatial database of ground-water-level altitude and depth-to-ground-water data for Utah was developed. Water-level contours from selected published reports were converted to digital Geographic Information System format and attributes describing the contours were added. Water-level altitude values were input to an inverse distance weighted interpolator to create a raster of interpolated water-level altitude for each report. The water-level altitude raster was subtracted from digital land-surface altitude data to obtain depth-to-water rasters for each study. Comparison of the interpolated rasters to actual water-level measurements shows that the interpolated water-level altitudes are well correlated with measured water-level altitudes from the same time period. The data can be downloaded and displayed in any Geographic Information System or can be explored by downloading a data package and map from the U.S. Geological Survey.

  11. Evaluation of groundwater and surface-water interactions in the Caddo Nation Tribal Jurisdictional Area, Caddo County, Oklahoma, 2010-13

    Science.gov (United States)

    Mashburn, Shana L.; Smith, S. Jerrod

    2014-01-01

    Streamflows, springs, and wetlands are important natural and cultural resources to the Caddo Nation. Consequently, the Caddo Nation is concerned about the vulnerability of the Rush Springs aquifer to overdrafting and whether the aquifer will continue to be a viable source of water to tribal members and other local residents in the future. Interest in the long-term viability of local water resources has resulted in ongoing development of a comprehensive water plan by the Caddo Nation. As part of a multiyear project with the Caddo Nation to provide information and tools to better manage and protect water resources, the U.S. Geological Survey studied the hydraulic connection between the Rush Springs aquifer and springs and streams overlying the aquifer. The Caddo Nation Tribal Jurisdictional Area is located in southwestern Oklahoma, primarily in Caddo County. Underlying the Caddo Nation Tribal Jurisdictional Area is the Permian-age Rush Springs aquifer. Water from the Rush Springs aquifer is used for irrigation, public, livestock and aquaculture, and other supply purposes. Groundwater from the Rush Springs aquifer also is withdrawn by domestic (self-supplied) wells, although domestic use was not included in the water-use summary in this report. Perennial streamflow in many streams and creeks overlying the Rush Springs aquifer, such as Cobb Creek, Lake Creek, and Willow Creek, originates from springs and seeps discharging from the aquifer. This report provides information on the evaluation of groundwater and surface-water resources in the Caddo Nation Jurisdictional Area, and in particular, information that describes the hydraulic connection between the Rush Springs aquifer and springs and streams overlying the aquifer. This report also includes data and analyses of base flow, evidence for groundwater and surface-water interactions, locations of springs and wetland areas, groundwater flows interpreted from potentiometric-surface maps, and hydrographs of water levels

  12. A simplified model of soakaway infiltration interaction with a shallow groundwater table

    DEFF Research Database (Denmark)

    Roldin, Maria; Locatelli, Luca; Mark, Ole

    2013-01-01

    This paper presents a new and simplified modeling concept for soakaway infiltration in the presence of a shallow groundwater table, including representation of the local groundwater mound and its effects on the infiltration rate. The soil moisture retention curve is used to represent the influence......-dimensional unsaturated/saturated flow model based on Richard’s equation. The comparison shows that soakaway emptying times calculated by the new model are on average 13% higher than the emptying times of the two-dimensional model. The deviation is smaller for scenarios including a shallow groundwater table, only around...... scenarios at all times during the simulation period. The extra uncertainty introduced by this new model is compensated for by the reduction in runtime; it is on average 600 times faster than the two-dimensional model. Furthermore, the new model is based on the same input parameters as the two...

  13. A Novel Method for Micro-Aggregation in Secure Statistical Databases Using Association and Interaction

    Science.gov (United States)

    Oommen, B. John; Fayyoumi, Ebaa

    We consider the problem of micro-aggregation in secure statistical databases, by enhancing the primitive Micro-Aggregation Technique (MAT), which incorporates proximity information. The state-of-the-art MAT recursively reduces the size of the data set by excluding points which are farthest from the centroid, and those which are closest to these farthest points, while it ignores the mutual Interaction between the records. In this paper, we argue that inter-record relationships can be quantified in terms of two entities, namely their "Association" and "Interaction". Based on the theoretically sound principles of the neural networks (NN), we believe that the proximity information can be quantified using the mutual Association, and their mutual Interaction can be quantified by invoking transitive-closure like operations on the latter. By repeatedly invoking the inter-record Associations and Interactions, the records are grouped into sizes of cardinality "k", where k is the security parameter in the algorithm. Our experimental results, which are done on artificial data and on the benchmark data sets for real-life data, demonstrate that the newly proposed method is superior to the state-of-the-art by as much as 13%.

  14. Use of relational databases to evaluate regional petroleum accumulation, groundwater flow, and CO2 sequestration in Kansas

    Science.gov (United States)

    Carr, T.R.; Merriam, D.F.; Bartley, J.D.

    2005-01-01

    Large-scale relational databases and geographic information system tools are used to integrate temperature, pressure, and water geo-chemistry data from numerous wells to better understand regional-scale geothermal and hydrogeological regimes of the lower Paleozoic aquifer systems in the mid-continent and to evaluate their potential for geologic CO2 sequestration. The lower Paleozoic (Cambrian to Mississippian) aquifer systems in Kansas, Missouri, and Oklahoma comprise one of the largest regional-scale saline aquifer systems in North America. Understanding hydrologic conditions and processes of these regional-scale aquifer systems provides insight to the evolution of the various sedimentary basins, migration of hydrocarbons out of the Anadarko and Arkoma basins, and the distribution of Arbuckle petroleum reservoirs across Kansas and provides a basis to evaluate CO2 sequestration potential. The Cambrian and Ordovician stratigraphic units form a saline aquifer that is in hydrologic continuity with the freshwater recharge from the Ozark plateau and along the Nemaha anticline. The hydrologic continuity with areas of freshwater recharge provides an explanation for the apparent underpressure in the Arbuckle Group. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  15. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Everglades restoration. A century of water management for flood control and water storage in the Everglades resulted in the creation of the Water Conservation Areas (WCAs). Construction of the major canals began in the 1910s and the systems of levees that enclose the basins and structures that move water between basins were largely completed by the 1950s. The abandoned wetlands that remained outside of the Water Conservation areas tended to dry out and subside by 10 feet or more, which created abrupt transitions in land-surface elevations and water levels across the levees. The increases in topographic and hydraulic gradients near the margins of the WCAs, along with rapid pumping of water between basins to achieve management objectives, have together altered the patterns of recharge and discharge in the Everglades. The most evident change is the increase in the magnitude of recharge (on the upgradient side) and discharge (on the downgradient side) of levees separating WCA-2A from other basins or areas outside. Recharge and discharge in the vast interior of WCA-2A also likely have increased, but fluxes in the interior wetlands are more subtle and more difficult to quantify compared with areas close to the levees. Surface-water and ground-water interactions differ in fundamental ways between wetlands near WCA-2A's boundaries and wetlands in the basin's interior. The levees that form the WCA's boundaries have introduced step functions in the topographic and hydraulic gradients that are important as a force to drive water flow across the wetland ground surface. The resulting recharge and discharge fluxes tend to be unidirectional (connecting points of recharge on the upgradient side of the levee with points of discharge on the downgradient side), and fluxes are also relatively steady in magnitude compared with fluxes in the interior. Recharge flow paths are also relatively deep in their extent near levees, with fluxes passing entirely through the 1-m peat layer and inte

  16. An Integrated Model of Surface Water and Groundwater Interactions at Yi-lan Area in Northeastern Taiwan

    Science.gov (United States)

    Chiu, Y.; Yeh, C. K.

    2015-12-01

    Interaction between surface water (SW) and groundwater (GW) plays an important role in local society and ecosystem, especially in areas with limited water resources. Historically, hydrologic simulations have not accounted for feedback looks between the GW system and other hydrologic processes. Integrated SW-GW modelling can provide a comprehensive and coherent understanding on basin-scale water cycle and better manage the water resources for sustainable usage. At Yi-lan area, hydrological modelling has been performed for both the entire SW and GW systems along, but fully integrated SW-GW modeling has not been attempted for this area. In order to enhance the efficiency of water useage, a coupled GW and SW flow model (GSFLOW), developed by U.S. Geological Survey, is selected as the numerical model to simulate the major processes of the hydrologic cycle. GSFLOW integrated PRMS with MODFLOW-2005 which perform surface hydrology simulation and 3-D groundwater simulation, respectively. The data of solar radiation, land use, precipitation, temperature, river stage, stream flow rate, groundwater level, and digital elevation model were collected from 2004-2012 to develop the simulation model. The coupled GSFLOW model is calibrated by automatic parameter estimation approach of using streamflows and groundwater levels. The singular value decomposition (SVD) method is performed to avoid the instability of solution during the model calibration. The calibrated results show that the state variables and fluxes in basin-scale water cycle can be simulated with high spatial and temporal resolutions, and all the important hydrologic processes can be characterized simultaneously in an integrated framework. The scenarios with different precipitation distributions and temperature patterns are conducted on the calibrated model to forecast the dynamic variations of hydrologic processes in the entire water basin. This study clearly demonstrated the benefits of using a physically based

  17. Case studies of groundwater- surface water interactions and scale relationships in small alluvial aquifers

    NARCIS (Netherlands)

    Love, Dave; de Hamer, Wouter; Owen, Richard J.S.; Booij, Martijn J.; Uhlenbrook, Stefan; Hoekstra, Arjen Ysbert; van der Zaag, Pieter

    2007-01-01

    An alluvial aquifer can be described as a groundwater system, generally unconfined, that is hosted in laterally discontinuous layers of gravel, sand, silt and clay, deposited by a river in a river channel, banks or flood plain. In semi-arid regions, streams that are associated with alluvial aquifers

  18. Investigating temporal and spatial patterns of groundwater-surface water interaction on a river reach by applying transient thermal modelling

    Science.gov (United States)

    Anibas, Christian; Debele Tolche, Abebe; Ghysels, Gert; Schneidewind, Uwe; Nossent, Jiri; Touhidul Mustafa, Syed Md; Huysmans, Marijke; Batelaan, Okke

    2017-04-01

    The quantification of groundwater-surface water interaction is an important challenge for hydrologists and ecologists. Within the last decade, many new analytical and numerical estimation methods have been developed, including heat tracer techniques. In a number of publications, their sources of errors were investigated, and future directions for the research in groundwater-surface water exchange were discussed. To improve our respective knowledge of the Belgian lowland Aa River we reinvestigate temperature data which was gathered in the river bed and used for the quantification of the 1D vertical groundwater-surface water exchange. By assuming a thermal steady state of the river bed temperature distribution, Anibas et al. (2011) were unable to use the full potential of the entire large data set. The analysis tool STRIVE is modified to use the river water temperature time series as the upper model boundary. This transient thermal set up overcomes many of the limitations of the steady state assumption and allows for the analysis of vertical 1D exchange fluxes in space and time. Results of about 380 transient simulations covering a period of more than 1.5 years show high absolute changes in exchange fluxes in the upstream part of the river. However, in the downstream part, the relative changes in fluxes are larger. The 26 spatially distributed thermal profiles along the river reach are interpolated using kriging based on variograms calculated from the temperature dataset. Results indicate gaining conditions for most locations and most of the time. Few places in the downstream part show losing conditions in late winter and early spring. While in autumn and winter the mean exchange fluxes can be -90 mmd-1, in spring to early summer fluxes are only -42 mmd-1. The river bed near the banks shows elevated fluxes compared to the center of the river. Probably driven by regional groundwater flow, the river bed near the left and right bank shows fluxes respectively a factor 3

  19. Lithologic Framework Modeling of the Fruitvale Oil Field Investigating Interaction Between Wastewater Injection Wells and Usable Groundwater

    Science.gov (United States)

    Treguboff, E. W.; Crandall-Bear, A. T.

    2015-12-01

    The Fruitvale Oil Field lies in a populated area where oil production, water disposal injection wells, and drinking water wells lie in close proximity. The purpose of this project is to build a lithological framework of the area that can then be used to determine if water disposal from petroleum production has a chance of reaching usable groundwater aquifers. Using the DOGGR database, data were collected from well logs. Lithologic data from drilling logs and cores were coded and entered into a relational database, where it was combined with the surface elevation and location coordinates of each well. Elevation data was acquired through ArcGIS using a USGS 24k 10 m DEM. Drillers logs that started at the surface, and were continuous, were sorted by the density of intervals recorded, in order to select high quality drillers logs for use in creating a model. About 900 wells were coded and approximately 150 wells were used in the model. These wells were entered into the modeling program (Rockworks), which allowed the wells to be visualized as strip logs and also as cross sections, and 2D fence models were created to represent subsurface conditions. The data were interpolated into 3D models of the subsurface. Water disposal wells, with the depths of the perforation intervals as well as injection volume, were added to the model, and analyzed. Techniques of interpolation used in this project included kriging, which requires statistical analysis of the data collected. This allowed correlation between widely-spaced wells. Up scaling the data to a coarse or fine texture was also been found to be effective with the kriging technique. The methods developed on this field can be used to build framework models of other fields in the Central Valley to explore the relationship between water disposal injection and usable groundwater.

  20. Assessment of database for interaction of tritium with ITER plasma facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, T.J.; Anderl, R.A.

    1994-09-01

    The present work surveys recent literature on hydrogen isotope interactions with Be, SS and Inconels, Cu, C, and V, and alloys of Cu and V. The goals are (1) to provide input to the International Thermonuclear Experimental Reactor (ITER) team to help with tritium source term estimates for the Early Safety and Environmental Characterization Study and (2) to provide guidance for planning additional research that will be needed to fill gaps in the present materials database. Properties of diffusivity, solubility, permeability, chemical reactions, Soret effect, recombination coefficient, surface effects, trapping, porosity, layered structures, interfaces, and oxides are considered. Various materials data are tabulated, and a matrix display shows an assessment of the quality of the data available for each main property of each material. Recommendations are made for interim values of diffusivity and solubility to be used, pending further discussion by the ITER community.

  1. Covariant Evolutionary Event Analysis for Base Interaction Prediction Using a Relational Database Management System for RNA.

    Science.gov (United States)

    Xu, Weijia; Ozer, Stuart; Gutell, Robin R

    2009-01-01

    With an increasingly large amount of sequences properly aligned, comparative sequence analysis can accurately identify not only common structures formed by standard base pairing but also new types of structural elements and constraints. However, traditional methods are too computationally expensive to perform well on large scale alignment and less effective with the sequences from diversified phylogenetic classifications. We propose a new approach that utilizes coevolutional rates among pairs of nucleotide positions using phylogenetic and evolutionary relationships of the organisms of aligned sequences. With a novel data schema to manage relevant information within a relational database, our method, implemented with a Microsoft SQL Server 2005, showed 90% sensitivity in identifying base pair interactions among 16S ribosomal RNA sequences from Bacteria, at a scale 40 times bigger and 50% better sensitivity than a previous study. The results also indicated covariation signals for a few sets of cross-strand base stacking pairs in secondary structure helices, and other subtle constraints in the RNA structure.

  2. Investigat ing the effect of surface water – groundwater interactions on stream temperature using D istributed Temperature Sensing and instream temperature model

    DEFF Research Database (Denmark)

    Matheswaran, K.; Blemmer, M.; Mortensen, J.

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using the...

  3. Investigat ing the effect of surface water – groundwater interactions on stream temperature using D istributed Temperature Sensing and instream temperature model

    DEFF Research Database (Denmark)

    Matheswaran, K.; Blemmer, M.; Mortensen, J.;

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using the...

  4. Utilizing Resistivity Soundings and Forensic Geochemistry to Better Understand the Groundwater Contributions and the Interaction with Surface Water in a Streambed in the Texas Gulf Coast Area

    Science.gov (United States)

    Bighash, P.

    2012-12-01

    Water quality and quantity in a reservoir can be significantly affected by interactions between surface waters and adjacent aquifers. Environments that exhibit transient hydraulic conditions, such as changes in recharge and groundwater flow rates, are not well understood. The associated impacts to coastal water resources during elevated drought conditions can be better managed with a better understanding of the groundwater-surface water interaction and the transition zone. Proper characterization of the spatial and temporal extent of groundwater discharge is important for water resource management and contaminant migration pathways. The Texas coastal area has been experiencing exceptional drought conditions over the past few years which are expected to persist or intensify in the coming years. An investigation of how the hydrologic system is impacted by these conditions can be a valuable tool regarding water resource management, sustainability and conservation of the Gulf Coast region of South Texas. This study will be using resistivity soundings to vertically and laterally characterize groundwater-surface water interaction and provide a stratigraphic characterization of the transition zone in this area. Chemical and isotope tracers will be used to compliment the resistivity data in order to trace water sources in the surface water and transition zone. This information can aid in evaluating the extent of interaction and degree of mixing between the surface water and groundwater. The ultimate goal of this research is to provide new valuable information that could help professionals and researchers understand complex processes such as groundwater-surface water interaction using new methods that would improve the speed and accuracy of existing systems or techniques. This multidisciplinary approach can be useful in investigating land use impacts on groundwater inflow and in forecasting the availability of water resources in environmentally sensitive ecosystems such as

  5. The groundwater nitrate isotope quandary: Is the dual isotopic composition of groundwater nitrate a recorder of interactions between N and Fe in the subsurface?

    Science.gov (United States)

    Wankel, S. D.; Hansel, C. M.; Tang, Y.; Johnston, D. T.

    2012-12-01

    Recent work continues to reveal the existence of new metabolic processes, novel elemental interactions and unique microbial groups that play potentially central roles in governing the global N cycle. These findings emphasize large gaps in our comprehensive understanding including which processes control ecosystem N loss and emission, how interactions among functional N cycling communities and other elemental cycles are structured, and how these processes and communities are affected by both natural and anthropogenic change. Among these recent advances, evidence for an intimate coupling of microbial N and Fe cycling is mounting. Here we explore N - Fe interactions in the terrestrial subsurface, by examining reactions between NO3- and Fe(II) and their influence on the dual isotopic composition (δ15N and δ18O) of NO3-. Specifically, there is a fundamental discrepancy of coupled O and N isotope effects (18ɛ:15ɛ) between culture-based isotopic studies of denitrifying bacteria and field-based isotopic measurements of groundwater NO3- loss under anaerobic conditions (having been interpreted as denitrification). We suggest this discrepancy may be the result of a ubiquitous, yet largely unrecognized, coupling of abiotic and/or biotic Fe cycling with both reductive and anaerobic oxidative N cycling pathways and present preliminary data in support of this hypothesis. Experimental data show substantial abiotic reduction of NO3- by Fe(II). Though kinetically slow, the presence of metals such as Cu greatly increased rates, although were not required for abiotic NO3- reduction by Fe(II). Kinetic isotope effects for N (15ɛ) and O (18ɛ) during NO3- reduction (with and without catalyst) varied widely across experimental conditions and was influenced by the interaction of Fe(II) with mineral surfaces. The magnitude of 15ɛ, 18ɛ and 18ɛ:15ɛ did not appear to be related to reduction rate. Values of 15ɛ always exceeded 18ɛ (18ɛ:15ɛ = 0.48 to 0.71), which are consistent with

  6. Groundwater-ocean interaction and its effects on coastal ecological processes - are there groundwater-dependant ecosystems in the coastal zone?

    Science.gov (United States)

    Stieglitz, T. C.

    2013-05-01

    Hydrological land-ocean connectivity is an important driver of coastal ecosystems. Rivers are obvious and visible pathways for terrestrial runoff. The critical role of surface water discharge from rivers to coastal ecosystems has been well documented. Hidden from view, 'downstream' effects of coastal (supra-tidal, intertidal and submarine) groundwater discharge are far less well understood. Whilst hydrological and geochemical processes associated with coastal groundwater discharge have received an increasing amount of scientific attention over the past decade or so, the effects of groundwater flow on productivity, composition, diversity and functioning of coastal ecosystems along the world's shorelines have received little attention to date. Coastal groundwater discharge includes both terrestrial (fresh) groundwater fluxes and the recirculation of seawater through sediments, analogous to hyporheic flow in rivers. I will present an overview over relevant coastal hydrological processes, and will illustrate their ecological effects on examples from diverse tropical coastal ecosystems, e.g. (1) perennial fresh groundwater discharge from coastal sand dune systems permitting growth of freshwater-dependent vegetation in the intertidal zone of the Great Barrier Reef (Australia), (2) recirculation of seawater through mangrove forest floors directly affecting tree health and providing a pathway for carbon export from these ecosystems, (3) the local hydrology of groundwater-fed coastal inlets on Mexico's Yucatan peninsula affecting the movement behaviour of and habitat use by the queen conch Strombus gigas, an economically important species in the Caribbean region. These examples for hydrological-ecological coupling in the coastal zone invite the question if we should not consider these coastal ecosystems to be groundwater-dependent, in analogy to groundwater-dependency in freshwater aquatic systems.

  7. Water-rock interaction induced by contaminated groundwater in a karst aquifer, Greece

    Science.gov (United States)

    Panagopoulos, G.; Lambrakis, N.; Katagas, C.; Papoulis, D.; Tsolis-Katagas, P.

    2005-12-01

    The karst system of SW Trifilia is composed of a thick sequence of carbonate sediments, which have experienced two types of dolomitization and dedolomitization processes and comprise an extended aquifer. The application of fertilizers in the region have not only caused the degradation of the groundwater quality but also induced hydrochemical changes exerting major control on dolomitization processes. Factor analysis indicates high correlation coefficient between NH{4/+}, NO{3/-}, Ca2+ and Mg2+, which can be attributed to cation-exchange processes involving clay minerals. The application of a conservative mixing model showed that the calculated groundwater types indicate a cation-exchange process between NH{4/+}, derived from fertilizers, and between Ca2+ and Mg2+. Mg2+ released from smectite interlayers, exchanged for NH{4/+} in the groundwater and favor a dolomitization process through the partial replacement of Ca2+ in the lattice of calcite (dedolomite) contained in precursor dolomites. This recent stage dolomitization occurred near the water level and within the phreatic zone only and had not influenced the whole karst massif; it also resulted in low Mg/Ca values found in the zone characterized by intensive application of nitrogen-based fertilizers and the absence of overlying impermeable strata.

  8. A GIS-Enabled, Michigan-Specific, Hierarchical Groundwater Modeling and Visualization System

    Science.gov (United States)

    Liu, Q.; Li, S.; Mandle, R.; Simard, A.; Fisher, B.; Brown, E.; Ross, S.

    2005-12-01

    Efficient management of groundwater resources relies on a comprehensive database that represents the characteristics of the natural groundwater system as well as analysis and modeling tools to describe the impacts of decision alternatives. Many agencies in Michigan have spent several years compiling expensive and comprehensive surface water and groundwater inventories and other related spatial data that describe their respective areas of responsibility. However, most often this wealth of descriptive data has only been utilized for basic mapping purposes. The benefits from analyzing these data, using GIS analysis functions or externally developed analysis models or programs, has yet to be systematically realized. In this talk, we present a comprehensive software environment that allows Michigan groundwater resources managers and frontline professionals to make more effective use of the available data and improve their ability to manage and protect groundwater resources, address potential conflicts, design cleanup schemes, and prioritize investigation activities. In particular, we take advantage of the Interactive Ground Water (IGW) modeling system and convert it to a customized software environment specifically for analyzing, modeling, and visualizing the Michigan statewide groundwater database. The resulting Michigan IGW modeling system (IGW-M) is completely window-based, fully interactive, and seamlessly integrated with a GIS mapping engine. The system operates in real-time (on the fly) providing dynamic, hierarchical mapping, modeling, spatial analysis, and visualization. Specifically, IGW-M allows water resources and environmental professionals in Michigan to: * Access and utilize the extensive data from the statewide groundwater database, interactively manipulate GIS objects, and display and query the associated data and attributes; * Analyze and model the statewide groundwater database, interactively convert GIS objects into numerical model features

  9. Lake-groundwater relationships and fluid-rock interaction in the East African Rift Valley: isotopic evidence

    Science.gov (United States)

    Darling, W. George; Gizaw, Berhanu; Arusei, Musa K.

    1996-05-01

    The assessment of water resources in the Rift Valley environment is important for population, agriculture and energy-related issues and depends on a good understanding of the relationship between freshwater lakes and regional groundwater. This can be hampered by the amount of fluid-rock interaction which occurs throughout the rift, obscuring original hydrochemical signatures. However, O and H stable isotope ratios can be used as tracers of infiltration over sometimes considerable distances, while showing that the volcanic edifices of the rift floor have varying effects on groundwater flow patterns. Specific cases from Kenya and Ethiopia are considered, including Lakes Naivasha, Baringo, Awasa and Zwai. In addition to their physical tracing role, stable isotopes can reveal information about processes of fluid-rock interaction. The general lack of O isotope shifting in rift hydrothermal systems suggests a high water:rock ratio, with the implication that these systems are mature. Carbon isotope studies on the predominantly bicarbonate waters of the rift show how they evolve from dilute meteoric recharge to highly alkaline waters, via the widespread silicate hydrolysis promoted by the flux of mantle carbon dioxide which occurs in most parts of the rift. There appears to be only minor differences in the C cycle between Kenya and Ethiopia.

  10. Watershed Scale Analysis of Groundwater Surface Water Interactions and Its Application to Conjunctive Management under Climatic and Anthropogenic Stresses over the US Sunbelt

    Science.gov (United States)

    Seo, Seung Beom

    Although water is one of the most essential natural resources, human activities have been exerting pressure on water resources. In order to reduce these stresses on water resources, two key issues threatening water resources sustainability - interaction between surface water and groundwater resources and groundwater withdrawal impacts of streamflow depletion - were investigated in this study. First, a systematic decomposition procedure was proposed for quantifying the errors arising from various sources in the model chain in projecting the changes in hydrologic attributes using near-term climate change projections. Apart from the unexplained changes by GCMs, the process of customizing GCM projections to watershed scale through a model chain - spatial downscaling, temporal disaggregation and hydrologic model - also introduces errors, thereby limiting the ability to explain the observed changes in hydrologic variability. Towards this, we first propose metrics for quantifying the errors arising from different steps in the model chain in explaining the observed changes in hydrologic variables (streamflow, groundwater). The proposed metrics are then evaluated using a detailed retrospective analyses in projecting the changes in streamflow and groundwater attributes in four target basins that span across a diverse hydroclimatic regimes over the US Sunbelt. Our analyses focused on quantifying the dominant sources of errors in projecting the changes in eight hydrologic variables - mean and variability of seasonal streamflow, mean and variability of 3-day peak seasonal streamflow, mean and variability of 7-day low seasonal streamflow and mean and standard deviation of groundwater depth - over four target basins using an Penn state Integrated Hydrologic Model (PIHM) between the period 1956-1980 and 1981-2005. Retrospective analyses show that small/humid (large/arid) basins show increased (reduced) uncertainty in projecting the changes in hydrologic attributes. Further

  11. TECHNICAL EVALUATION OF THE INTERACTION OF GROUNDWATER WITH THE COLUMBIA RIVER AT THE DEPARTMENT OF ENERGY HANFORD SITE 100-D AREA

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2008-11-05

    river water and site groundwater in this zone has been estimated to be equal parts of groundwater and river water, a wide range of mixing ratios likely occurs at various times of the day and year. The degree of mixing and dilution appears to be greatly influenced by the river stage and other groundwater/surface water interaction. The extent of mixing, thus, has implications for the design and operation of the groundwater remediation systems. Improved understanding of this 'dilution' mechanism is needed to design an optimum 'systems approach' to accelerate remediation of the near-shore contaminant plumes. More information on the pathway from near-river mapped plumes to riverbed receptor locations is also needed to develop a defensible proposed plan for a future ROD for final remedial action of contaminated groundwater. In April 2008, an expert panel of scientists was convened to review existing information and provide observations and suggestions to improve the current understanding of groundwater surface water interactions in the 100 Areas (primarily focusing on 100-D Area), and to identify what additional analyses or approaches may provide critical information needed to design and implement remediation systems that will minimize impacts to river aquatic systems. Specific objectives provided to the panel included: (1) comment on approaches and methods to improve the current understanding of groundwater-surface water interactions, specifically how contaminated groundwater enters the riverbed and how this relates to remediation of chromate in the groundwater in the 100 Areas; (2) evaluate past and current data collection methods, data analysis techniques, assumptions, and groundwater transport and mixing mechanisms; (3) evaluate the current monitoring network (monitoring wells, aquifer tubes, and shoreline/river monitoring); (4) evaluate the role played by modeling; and (5) suggest additional research to fill data gaps and perform modeling.

  12. Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model

    KAUST Repository

    Ajami, Hoori

    2014-03-01

    Integrated land surface-groundwater models are valuable tools in simulating the terrestrial hydrologic cycle as a continuous system and exploring the extent of land surface-subsurface interactions from catchment to regional scales. However, the fidelity of model simulations is impacted not only by the vegetation and subsurface parameterizations, but also by the antecedent condition of model state variables, such as the initial soil moisture, depth to groundwater, and ground temperature. In land surface modeling, a given model is often run repeatedly over a single year of forcing data until it reaches an equilibrium state: the point at which there is minimal artificial drift in the model state or prognostic variables (most often the soil moisture). For more complex coupled and integrated systems, where there is an increased computational cost of simulation and the number of variables sensitive to initialization is greater than in traditional uncoupled land surface modeling schemes, the challenge is to minimize the impact of initialization while using the smallest spin-up time possible. In this study, multicriteria analysis was performed to assess the spin-up behavior of the ParFlow.CLM integrated groundwater-surface water-land surface model over a 208 km2 subcatchment of the Ringkobing Fjord catchment in Denmark. Various measures of spin-up performance were computed for model state variables such as the soil moisture and groundwater storage, as well as for diagnostic variables such as the latent and sensible heat fluxes. The impacts of initial conditions on surface water-groundwater interactions were then explored. Our analysis illustrates that the determination of an equilibrium state depends strongly on the variable and performance measure used. Choosing an improper initialization of the model can generate simulations that lead to a misinterpretation of land surface-subsurface feedback processes and result in large biases in simulated discharge. Estimated spin

  13. Delineating groundwater/surface water interaction in a karst watershed: Lower Flint River Basin, southwestern Georgia, USA

    Directory of Open Access Journals (Sweden)

    Kathleen Rugel

    2016-03-01

    New hydrological insights for the region: Prior water resource studies in the LFRB were based on regional modeling that neglected local heterogeneities in groundwater/surface water connectivity. Our results demonstrated groundwater inputs were concentrated around five of fifty sampled reaches, evidenced by increases in multiple groundwater indicators at these sites. These five reaches contributed up to 42% of the groundwater detected along the entire 50-km sampling section, with ∼24% entering through one groundwater-dominated tributary, Chickasawhatchee Creek. Intermittent flows occurred in two of these upstream reaches during extreme drought and heavy groundwater pumping, suggesting reach-scale behaviors should be considered in resource management and policy.

  14. microPIR2: a comprehensive database for human-mouse comparative study of microRNA-promoter interactions.

    Science.gov (United States)

    Piriyapongsa, Jittima; Bootchai, Chaiwat; Ngamphiw, Chumpol; Tongsima, Sissades

    2014-01-01

    microRNA (miRNA)-promoter interaction resource (microPIR) is a public database containing over 15 million predicted miRNA target sites located within human promoter sequences. These predicted targets are presented along with their related genomic and experimental data, making the microPIR database the most comprehensive repository of miRNA promoter target sites. Here, we describe major updates of the microPIR database including new target predictions in the mouse genome and revised human target predictions. The updated database (microPIR2) now provides ∼80 million human and 40 million mouse predicted target sites. In addition to being a reference database, microPIR2 is a tool for comparative analysis of target sites on the promoters of human-mouse orthologous genes. In particular, this new feature was designed to identify potential miRNA-promoter interactions conserved between species that could be stronger candidates for further experimental validation. We also incorporated additional supporting information to microPIR2 such as nuclear and cytoplasmic localization of miRNAs and miRNA-disease association. Extra search features were also implemented to enable various investigations of targets of interest. Database URL: http://www4a.biotec.or.th/micropir2

  15. Subsurface crustacean communities as proxy for groundwater-surface water interactions in the Henares and Tajuña Rivers floodplains, central Spain

    Science.gov (United States)

    Rasines Ladero, Ruben; Iepure, Sanda; Careño, Francisco; de Bustamante, Irene

    2013-04-01

    In the last decades, the linkage between surface water - groundwater via the hyporheic zone and the alluvial floodplains become more and more acknowledged. Hydrological exchanges between the stream and hyporheic zone ensure the transport of matter and energy and provide support for biogeochemical processes occurring in-stream bed sediments. Furthermore, the hyporheic zone is directly linked to permeable alluvial aquifers of which exchanges in both directions ensure the withstanding of a mixt biotic community's that may originate either from the surface benthic habitats or from the shallow aquifer. Data on the subsurface crustacean assemblages are used to infer the surface-groundwater interaction in two-groundwater fed-streams in central Spain. The survey was conducted on 20 hyporheic sites (20-40 cm depth) and 28 shallow or deep boreholes. Multivariate statistics were applied to test for differences in crustacean communities resulting from changes in water chemistry between the upstream and downstream parts of the alluvial aquifer, and between the hyporheic zone and the alluvial aquifer. Our aims were to: 1) test whether groundwater discharges in-stream bed sediments are reflected in changes in the crustacean assemblage's structure; and 2) establish whether the surface water influence decreases with increasing groundwater depth and distance from the river. We further aimed to test whether the diversity-stability ecotonal paradigm associated with the distinct level of disturbances and stability at the interface surface-groundwater and the aquifer is reflected in groundwater crustacean community structure. We start from the assumption that groundwater ecosystems undergo significant changes in space and time, and that classical groundwater stability hypothesis ought to be changed to concepts operative for surface ecosystems: disturbance and resilience. The streams are characterised by distinct gradients of surface-groundwater exchanges at spatial scale, with major

  16. Surface-water and groundwater interactions in an extensively mined watershed, upper Schuylkill River, Pennsylvania, USA

    Science.gov (United States)

    Cravotta, Charles A.; Goode, Daniel J.; Bartles, Michael D.; Risser, Dennis W.; Galeone, Daniel G.

    2014-01-01

    Streams crossing underground coal mines may lose flow, while abandoned mine drainage (AMD) restores flow downstream. During 2005-12, discharge from the Pine Knot Mine Tunnel, the largest AMD source in the upper Schuylkill River Basin, had near-neutral pH and elevated concentrations of iron, manganese, and sulfate. Discharge from the tunnel responded rapidly to recharge but exhibited a prolonged recession compared to nearby streams, consistent with rapid infiltration and slow release of groundwater from the mine. Downstream of the AMD, dissolved iron was attenuated by oxidation and precipitation while dissolved CO2 degassed and pH increased. During high-flow conditions, the AMD and downstream waters exhibited decreased pH, iron, and sulfate with increased acidity that were modeled by mixing net-alkaline AMD with recharge or runoff having low ionic strength and low pH. Attenuation of dissolved iron within the river was least effective during high-flow conditions because of decreased transport time coupled with inhibitory effects of low pH on oxidation kinetics. A numerical model of groundwater flow was calibrated using groundwater levels in the Pine Knot Mine and discharge data for the Pine Knot Mine Tunnel and the West Branch Schuylkill River during a snowmelt event in January 2012. Although the calibrated model indicated substantial recharge to the mine complex took place away from streams, simulation of rapid changes in mine pool level and tunnel discharge during a high flow event in May 2012 required a source of direct recharge to the Pine Knot Mine. Such recharge produced small changes in mine pool level and rapid changes in tunnel flow rate because of extensive unsaturated storage capacity and high transmissivity within the mine complex. Thus, elimination of stream leakage could have a small effect on the annual discharge from the tunnel, but a large effect on peak discharge and associated water quality in streams.

  17. Groundwater and surface-water interaction, water quality, and processes affecting loads of dissolved solids, selenium, and uranium in Fountain Creek near Pueblo, Colorado, 2012–2014

    Science.gov (United States)

    Arnold, L. Rick; Ortiz, Roderick F.; Brown, Christopher R.; Watts, Kenneth R.

    2016-11-28

    In 2012, the U.S. Geological Survey, in cooperation with the Arkansas River Basin Regional Resource Planning Group, initiated a study of groundwater and surface-water interaction, water quality, and loading of dissolved solids, selenium, and uranium to Fountain Creek near Pueblo, Colorado, to improve understanding of sources and processes affecting loading of these constituents to streams in the Arkansas River Basin. Fourteen monitoring wells were installed in a series of three transects across Fountain Creek near Pueblo, and temporary streamgages were established at each transect to facilitate data collection for the study. Groundwater and surface-water interaction was characterized by using hydrogeologic mapping, groundwater and stream-surface levels, groundwater and stream temperatures, vertical hydraulic-head gradients and ratios of oxygen and hydrogen isotopes in the hyporheic zone, and streamflow mass-balance measurements. Water quality was characterized by collecting periodic samples from groundwater, surface water, and the hyporheic zone for analysis of dissolved solids, selenium, uranium, and other selected constituents and by evaluating the oxidation-reduction condition for each groundwater sample under different hydrologic conditions throughout the study period. Groundwater loads to Fountain Creek and in-stream loads were computed for the study area, and processes affecting loads of dissolved solids, selenium, and uranium were evaluated on the basis of geology, geochemical conditions, land and water use, and evapoconcentration.During the study period, the groundwater-flow system generally contributed flow to Fountain Creek and its hyporheic zone (as a single system) except for the reach between the north and middle transects. However, the direction of flow between the stream, the hyporheic zone, and the near-stream aquifer was variable in response to streamflow and stage. During periods of low streamflow, Fountain Creek generally gained flow from

  18. The Role of Channel Bar Influences on Groundwater / Surface Water Interactions

    Science.gov (United States)

    Shope, C. L.; Constantz, J. E.; Cooper, C. A.; McKay, W. A.

    2010-12-01

    Channel bars are dominant in-stream geomorphic island features present in a large range of river classes throughout the world, particularly in the arid western United States. A quantitative understanding of groundwater and surface water exchange through channel bar features is necessary to understand near-stream hyporheic flow patterns. The Truckee River in northwestern Nevada was used as a research site to quantitatively examine the influence of channel bars on near-stream water fluxes using heat as a tracer. This study provided the near-stream hydraulic physical framework for current and future research on nutrient cycling and biogeochemical impacts of near-stream exchange and can be used for assessing critical water quality impacts. Field activities included the installation and development of monitoring wells and piezometers, instrumentation of the piezometers with pressure transducers and temperature thermistors, and slug tests to estimate hydraulic conductivity. The potentiometric surface throughout the study site was monitored over time and the temperature thermistors were used to estimate transport using heat as a tracer. Horizontal and vertical Darcian water fluxes were estimated from field observations. To increase confidence in the hydraulic conductivity values for water flux estimates, heat-based numerical simulations were completed. Three-dimensional models of the channel bar study area were constructed and hydraulic conductivity was inversely estimated by minimizing the difference between observed and simulated head and temperature measurements. Numerical simulations indicated that lateral water fluxes between the channel bar and the stream were an order of magnitude greater than between the adjacent streambank and the stream. The fluxes at the downstream end of the channel bar were an order of magnitude greater than upstream fluxes. Net groundwater and surface water fluxes at the channel bar and stream interface were at least 2 times greater than

  19. Groundwater interactions with Lobelia lakes- effects on the aquatic plant, Littorella uniflora

    DEFF Research Database (Denmark)

    Ommen, Daniela Oliveira; Vinther, Hanne Fogh; Krüger, Laila

    hydrology to the lake shore ecosystem; in that highly productive areas coincide with seepage sites in the littoral zone. The changes in seepage flux will affect the pore water biogeochemistry by altering the transport of gases and dissolved substrates, these changes will in turn affect the rooted vegetation....... The macrophytes themselves can also affect the biogeochemistry by changing the concentration of the dissolved CO2, O2 and nutrients in the sediment. The main objective of this project is to investigate how plant growth in Lobelia lakes is influenced by the inlet and outlet of groundwater; and which role...

  20. Towards improved instrumentation for assessing river-groundwater interactions in a restored river corridor

    Directory of Open Access Journals (Sweden)

    P. Schneider

    2011-03-01

    Full Text Available River restoration projects have been launched over the last two decades to improve the ecological status and water quality of regulated rivers. As most restored rivers are not monitored at all, it is difficult to predict consequences of restoration projects or analyze why restorations fail or are successful. It is thus necessary to implement efficient field assessment strategies, for example by employing sensor networks that continuously measure physical parameters at high spatial and temporal resolution. This paper focuses on the design and implementation of an instrumentation strategy for monitoring changes in bank filtration, hydrological connectivity, groundwater travel time and quality due to river restoration. We specifically designed and instrumented a network of monitoring wells at the Thur River (NE Switzerland, which is partly restored and mainly channelized since more than 100 years. Our results show that bank filtration – especially in a restored section with alternating riverbed morphology – is variable in time and space. Consequently, our monitoring network sensing physical and sampling chemical water quality parameters was adapted in response to that variability. Although not available at our test site, we consider long-term measurements – ideally initialized before and continued after restoration – as a fundamental step, towards predicting consequences of river restoration for groundwater quality. As a result, process-based models could be adapted and evaluated using these types of high-resolution data sets.

  1. Towards improved instrumentation for assessing river-groundwater interactions in a restored river corridor

    Directory of Open Access Journals (Sweden)

    P. Schneider

    2011-08-01

    Full Text Available River restoration projects have been launched over the last two decades to improve the ecological status and water quality of regulated rivers. As most restored rivers are not monitored at all, it is difficult to predict consequences of restoration projects or analyze why restorations fail or are successful. It is thus necessary to implement efficient field assessment strategies, for example by employing sensor networks that continuously measure physical parameters at high spatial and temporal resolution. This paper focuses on the design and implementation of an instrumentation strategy for monitoring changes in bank filtration, hydrological connectivity, groundwater travel time and quality due to river restoration. We specifically designed and instrumented a network of monitoring wells at the Thur River (NE Switzerland, which is partly restored and has been mainly channelized for more than 100 years. Our results show that bank filtration – especially in a restored section with alternating riverbed morphology – is variable in time and space. Consequently, our monitoring network has been adapted in response to that variability. Although not available at our test site, we consider long-term measurements – ideally initiated before and continued after restoration – as a fundamental step towards predicting consequences of river restoration for groundwater quality. As a result, process-based models could be adapted and evaluated using these types of high-resolution data sets.

  2. A hierarchical approach on groundwater-surface water interaction in wetlands along the upper Biebrza River, Poland

    Directory of Open Access Journals (Sweden)

    C. Anibas

    2011-10-01

    Full Text Available Groundwater-surface water exchange studies on natural rivers and wetlands dominated by organic soils are scarce. We present a hierarchical approach to quantitatively investigate and interpret groundwater-surface water interaction in space and time by applying a combination of different field methods including piezometer nests, temperature and seepage measurements. The numerical 1-D heat transport model of STRIVE is used in transient mode to calculate vertical fluxes from thermal profiles measured along the upper Biebrza River, Poland over a period of nine months. The calculated fluxes show no clear spatial pattern of exchange fluxes unless an interpolation of the point estimates on a reach scale is performed. Significance of differences in net exchange rates versus morphological features are investigated with statistical tests. Time series of temperature and hydraulic head of the hyporheic zone are used to estimate the temporal variability of the groundwater-surface water exchange. Seepage meter measurements and slug tests were used for cross validation of modelled fluxes. Results show a strong heterogeneity of the thermal and physical soil properties along the reach, leading to a classification of these parameters for modelling purposes. The groundwater-surface water exchange shows predominantly upward water fluxes, however alternating sections of recharge exist. The exchange fluxes are significantly different dependent on the position of the river in the valley floor and the river morphology where fluxes are more dependent on hydraulic gradients than on river bed conductivity. Sections of higher fluxes are linked to the vicinity of the morainic plateau surrounding the rivers alluvium and to meanders, indicating that a perspective on the fluvio-plain scale is required for interpreting the estimated exchange fluxes. Since the vertical component of the exchange fluxes cannot explain the magnitude of the change in river discharge, a lateral flow

  3. Hydrological budget of Lake Chad: assessment of lake-groundwater interaction by coupling Bayesian approach and chemical budget

    Science.gov (United States)

    Bouchez, Camille; Goncalves, Julio; Deschamps, Pierre; Seidel, Jean-Luc; Doumnang, Jean-Claude; Sylvestre, Florence

    2014-05-01

    Estimation of lake-groundwater interactions is a crucial step to constrain water balance of lacustrine and aquifer systems. Located in the Sahel, the Lake Chad is at the center of an endorheic basin of 2,5.106 km2. One of the most remarkable features of this terminal lake is that, despite the semi-arid context and high evaporation rates of the area, its waters are fresh. It is proposed in the literature that the solutes are evacuated in the underlying quaternary aquifer bearing witness to the importance of surface water and groundwater exchanges for the chemical regulation of the lake. The water balance of this system is still not fully understood. The respective roles of evaporation versus infiltration into the quaternary aquifer are particularly under constrained. To assess lake-groundwater flows, we used the previous conceptual hydrological model of the lake Chad proposed by Bader et al. (Hydrological Sciences Journal, 2011). This model involves six parameters including infiltration rate. A probabilistic inversion of parameters, based on an exploration of the parameters space through a Metropolis algorithm (a Monte Carlo Markov Chain method), allows the construction of an a posteriori Probability Density Function of each parameter yielding to the best fits between observed lake levels and simulated. Then, a chemical budget of a conservative element, such as chloride, is introduced in the water balance model using the optimal parameters resulting from the Bayesian inverse approach. The model simulates lake level and chloride concentration variations of lake Chad from 1956 up to 2008. Simulated lake levels are in overall agreement with the observations, with a Nash-Sutcliffe efficiency coefficient above 0.94 for all sets of parameters retained. The infiltration value, obtained by such probabilistic inversion approach, accounts for 120±20 mm/yr, representing 5% of the total outputs of the lake. However, simulated chloride concentrations are overestimated in

  4. Evaluating the impact of irrigation on surface water – groundwater interaction and stream temperature in an agricultural watershed

    Science.gov (United States)

    Essaid, Hedeff I.; Caldwell, Rodney R.

    2017-01-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  5. Simulation of groundwater flow and the interaction of groundwater and surface water in the Willamette Basin and Central Willamette subbasin, Oregon

    Science.gov (United States)

    Herrera, Nora B.; Burns, Erick R.; Conlon, Terrence D.

    2014-01-01

    Full appropriation of tributary streamflow during summer, a growing population, and agricultural needs are increasing the demand for groundwater in the Willamette Basin. Greater groundwater use could diminish streamflow and create seasonal and long-term declines in groundwater levels. The U.S. Geological Survey (USGS) and the Oregon Water Resources Department (OWRD) cooperated in a study to develop a conceptual and quantitative understanding of the groundwater-flow system of the Willamette Basin with an emphasis on the Central Willamette subbasin. This final report from the cooperative study describes numerical models of the regional and local groundwater-flow systems and evaluates the effects of pumping on groundwater and surface‑water resources. The models described in this report can be used to evaluate spatial and temporal effects of pumping on groundwater, base flow, and stream capture. The regional model covers about 6,700 square miles of the 12,000-square mile Willamette and Sandy River drainage basins in northwestern Oregon—referred to as the Willamette Basin in this report. The Willamette Basin is a topographic and structural trough that lies between the Coast Range and the Cascade Range and is divided into five sedimentary subbasins underlain and separated by basalts of the Columbia River Basalt Group (Columbia River basalt) that crop out as local uplands. From north to south, these five subbasins are the Portland subbasin, the Tualatin subbasin, the Central Willamette subbasin, the Stayton subbasin, and the Southern Willamette subbasin. Recharge in the Willamette Basin is primarily from precipitation in the uplands of the Cascade Range, Coast Range, and western Cascades areas. Groundwater moves downward and laterally through sedimentary or basalt units until it discharges locally to wells, evapotranspiration, or streams. Mean annual groundwater withdrawal for water years 1995 and 1996 was about 400 cubic feet per second; irrigation withdrawals

  6. Groundwater and surface-water interaction and effects of pumping in a complex glacial-sediment aquifer, phase 2, east-central Massachusetts

    Science.gov (United States)

    Eggleston, Jack R.; Zarriello, Phillip J.; Carlson, Carl S.

    2015-12-31

    The U.S. Geological Survey, in cooperation with the Town of Framingham, Massachusetts, has investigated the potential of proposed groundwater withdrawals at the Birch Road well site to affect nearby surface water bodies and wetlands, including Lake Cochituate, the Sudbury River, and the Great Meadows National Wildlife Refuge in east-central Massachusetts. In 2012, the U.S. Geological Survey developed a Phase 1 numerical groundwater model of a complex glacial-sediment aquifer to synthesize hydrogeologic information and simulate potential future pumping scenarios. The model was developed with MODFLOW-NWT, an updated version of a standard USGS numerical groundwater flow modeling program that improves solution of unconfined groundwater flow problems. The groundwater model and investigations of the aquifer improved understanding of groundwater–surface-water interaction and the effects of groundwater withdrawals on surface-water bodies and wetlands in the study area. The initial work also revealed a need for additional information and model refinements to better understand this complex aquifer system.

  7. Simulation of groundwater and surface-water interaction and effects of pumping in a complex glacial-sediment aquifer, east central Massachusetts

    Science.gov (United States)

    Eggleston, Jack R.; Carlson, Carl S.; Fairchild, Gillian M.; Zarriello, Phillip J.

    2012-01-01

    The effects of groundwater pumping on surface-water features were evaluated by use of a numerical groundwater model developed for a complex glacial-sediment aquifer in northeastern Framingham, Massachusetts, and parts of surrounding towns. The aquifer is composed of sand, gravel, silt, and clay glacial-fill sediments up to 270 feet thick over an irregular fractured bedrock surface. Surface-water bodies, including Cochituate Brook, the Sudbury River, Lake Cochituate, Dudley Pond, and adjoining wetlands, are in hydraulic connection with the aquifer and can be affected by groundwater withdrawals. Groundwater and surface-water interaction was simulated with MODFLOW-NWT under current conditions and a variety of hypothetical pumping conditions. Simulations of hypothetical pumping at reactivated water supply wells indicate that captured groundwater would decrease baseflow to the Sudbury River and induce recharge from Lake Cochituate. Under constant (steady-state) pumping, induced groundwater recharge from Lake Cochituate was equal to about 32 percent of the simulated pumping rate, and flow downstream in the Sudbury River decreased at the same rate as pumping. However, surface water responded quickly to pumping stresses. When pumping was simulated for 1 month and then stopped, streamflow depletions decreased by about 80 percent within 2 months and by about 90 percent within about 4 months. The fast surface water response to groundwater pumping offers the potential to substantially reduce streamflow depletions during periods of low flow, which are of greatest concern to the ecological integrity of the river. Results indicate that streamflow depletion during September, typically the month of lowest flow, can be reduced by 29 percent by lowering the maximum pumping rates to near zero during September. Lowering pumping rates for 3 months (July through September) reduces streamflow depletion during September by 79 percent as compared to constant pumping. These results

  8. Surface water?groundwater interactions in an alluvial plain: Chemical and isotopic systematics

    Science.gov (United States)

    Négrel, Ph.; Petelet-Giraud, E.; Barbier, J.; Gautier, E.

    2003-06-01

    Our work on the Loire River forms part of a French National Research Program dedicated to wetlands and aims to better understand the global functioning of the system from the hydrological, geochemical, ecological and sociological aspects. The present study, using a coupled hydrological and geochemical (stable and Sr isotopes) approach, focuses on the 'Soulangy' site with its secondary anastomosing channels just below the confluence of the Loire and Allier rivers, and also on the 'Dorna``nt' site with two unconnected oxbow lakes 50 km upstream of the confluence. The stable isotopes of water ( δ18O, δ2H) show that the alluvial (or riverbank) aquifer feeds the Loire River during the summer, but is not recharged by the river during flood periods in the winter; the alluvial groundwater thus has a purely local origin from precipitation. The major elements reveal an anthropogenic input of Cl and more importantly of NO 3, especially near farms. The 87Sr/ 86Sr isotopes identify different groundwater layers in the alluvium, i.e. an upper and a lower alluvial aquifer, and a perched aquifer at Dornant, that have relatively complex relationships with the surface water. The two main rivers (Loire and Allier) present distinct geochemical characteristics reflecting the different lithologies that they drain upstream. In addition, the secondary channels, lying parallel to the Loire main stream at the Soulangy site, give different geochemical signatures, which shows that they are not fed by the same overflows of the Loire; they are more-or-less well connected to the upper level of the alluvial plain, and a longitudinal study of one of these channels has revealed a Loire River influence progressively replaced by a water contribution from the upper alluvial aquifer. Similarly, the two oxbow lakes at the Dornant site are not supplied by the same water during the summer months. A conceptual scheme of the Loire hydrosystem based on δ18O and 87Sr/ 86Sr suggests that the isotopic

  9. Radon as a tracer to characterize the interactions between groundwater and surface water around the ground source heat pump system in riverside area

    Science.gov (United States)

    Kim, Jaeyeon; Lee, Seong-Sun; Lee, Kang-Kun

    2016-04-01

    The interaction characteristics between groundwater and surface water was examined by using Radon-222 at Han River Environmental Research Center (HRERC) in Korea where a geothermal resource using indirect open loop ground source heat pump (GSHP) has been developed. For designing a high efficiency performance of the open loop system in shallow aquifer, the riverside area was selected for great advantage of full capacity of well. From this reason groundwater properties of the study site can be easily influenced by influx of surrounding Han River. Therefore, 12 groundwater wells were used for monitoring radon concentration and groundwater level with fluctuation of river stage from May, 2014 to Apr., 2015. The short term monitoring data showed that the radon concentration was changed in accordance with flow meter data which was reflected well by the river stage fluctuation. The spatial distribution of radon concentration from long term monitoring data was also found to be affected by water level fluctuation by nearby dam activity and seasonal effect such as heavy rainfall and groundwater pumping. The estimated residence time indicates that river flows to the study site change its direction according to the combined effect of river stage and groundwater hydrology. In the linear regression of the values, flow velocities were yielded around 0.04 to 0.25 m/day which were similar to flow meter data. These results reveal that Radon-222 can be used as an appropriate environmental tracer in examining the characteristics of interaction in consideration of fluctuating river flow on operation of GSHP in the riverside area. ACKNOWLEDGEMENT This work was supported by the research project of "Advanced Technology for Groundwater Development and Application in Riversides (Geowater+) in "Water Resources Management Program (code 11 Technology Innovation C05)" of the MOLIT and the KAIA in Korea.

  10. Isotopic Estimation of Water Balance and Groundwater-Surface Water Interactions of Tropical Wetland Lakes in the Pantanal, Brazil

    Science.gov (United States)

    Schwerdtfeger, J.; Johnson, M. S.; Weiler, M.; Couto, E. G.

    2009-12-01

    The Pantanal is the largest and most pristine wetland of the world, yet hydrological research there is still in its infancy. In particular the water balance of the millions of lakes and ponds and their interaction with the groundwater and the rivers are not known. The aim of this study was to assess the hydrological behaviour between different water bodies in the dry season of the northern Pantanal wetland, Brazil, to provide a more general understanding of the hydrological functioning of tropical floodplain lakes and surface water-groundwater interactions of wetlands. In the field 6-9 water sample of seven different lakes were taken during 3 months and were analyzed for stable water isotopes and chloride. In addition meteorological data from a nearby station was used to estimate daily evaporation from the water surface. This information was then used to predict the hydrological dynamics to determine whether the lakes are evaporation-controlled or throughflow-dominated systems. A chloride mass balance served to evaluate whether Cl- enrichment took place due to evaporation only, or whether the system has significant inflow and/or outflow rates. The results of those methods showed that for all lakes the water budget in the dry season, output was controlled by strong evaporation while significant inflow rates were also apparent. Inflow rates and their specific concentrations in stable isotopes and chloride were successfully estimated using the simple mass balance model MINA TrêS. This approach enabled us to calculate the water balance for the lakes as well as providing an information on source water flowing into the lakes.

  11. Undergraduate Use of CD-ROM Databases: Observations of Human-Computer Interaction and Relevance Judgments.

    Science.gov (United States)

    Shaw, Debora

    1996-01-01

    Describes a study that observed undergraduates as they searched bibliographic databases on a CD-ROM local area network. Topics include related research, information needs, evolution of search topics, database selection, search strategies, relevance judgments, CD-ROM interfaces, and library instruction. (Author/LRW)

  12. The human interactome knowledge base (hint-kb): An integrative human protein interaction database enriched with predicted protein–protein interaction scores using a novel hybrid technique

    KAUST Repository

    Theofilatos, Konstantinos A.

    2013-07-12

    Proteins are the functional components of many cellular processes and the identification of their physical protein–protein interactions (PPIs) is an area of mature academic research. Various databases have been developed containing information about experimentally and computationally detected human PPIs as well as their corresponding annotation data. However, these databases contain many false positive interactions, are partial and only a few of them incorporate data from various sources. To overcome these limitations, we have developed HINT-KB (http://biotools.ceid.upatras.gr/hint-kb/), a knowledge base that integrates data from various sources, provides a user-friendly interface for their retrieval, cal-culatesasetoffeaturesofinterest and computesaconfidence score for every candidate protein interaction. This confidence score is essential for filtering the false positive interactions which are present in existing databases, predicting new protein interactions and measuring the frequency of each true protein interaction. For this reason, a novel machine learning hybrid methodology, called (Evolutionary Kalman Mathematical Modelling—EvoKalMaModel), was used to achieve an accurate and interpretable scoring methodology. The experimental results indicated that the proposed scoring scheme outperforms existing computational methods for the prediction of PPIs.

  13. Integrated modeling of groundwater-surface water interactions in a tile-drained agricultural field: The importance of directly measured flow route contributions

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, Y. van der; McLaren, R.G.; Geer, F.C. van; Broers, H.P.; Bierkens, M.F.P.

    2010-01-01

    Understanding the dynamics of groundwater-surface water interaction is needed to evaluate and simulate water and solute transport in catchments. However, direct measurements of the contributions of different flow routes from specific surfaces within a catchment toward the surface water are rarely av

  14. Researches on Cartographic Database-Based Interactive Three-Dimensional Topographic Map

    Institute of Scientific and Technical Information of China (English)

    Jiang Wenping; Xi Daping

    2003-01-01

    With the development of computer graphics, the three-dimensional (3D) visualization brings new technological revolution to the traditional cartography. Therefore, the topographic 3D-map emerges to adapt to this technological revolution, and the applications of topographic 3D-map are spread rapidly to other relevant fields due to its incomparable advantage. The researches on digital map and the construction of map database offer strong technical support and abundant data source for this new technology, so the research and development of topographic 3D-map will receive greater concern. The basic data of the topographic 3D-map are rooted mainly in digital map and its basic model is derived from digital elevation model (DEM) and 3D-models of other DEM-based geographic features. In view of the potential enormous data and the complexity of geographic features, the dynamic representation of geographic information becomes the focus of the research of topographic 3D-map and also the prerequisite condition of 3D query and analysis. In addition to the equipment of hardware that are restraining, to a certain extent, the 3D representation, the data organization structure of geographic information will be the core problem of research on 3D-map. Level of detail (LOD), space partitioning, dynamic object loading (DOL) and object culling are core technologies of the dynamic 3D representation. The objectselection, attribute-query and model-editing are important functions and interaction tools for users with 3D-maps provided by topographic 3D-map system, all of which are based on the data structure of the 3Dmodel. This paper discusses the basic theories, concepts and cardinal principles of topographic 3D-map,expounds the basic way to organize the scene hierarchy of topographic 3D-map based on the node mechanism and studies the dynamic representation technologies of topographic 3D-map based on LOD, space partitioning, DOL and object culling. Moreover, such interactive operation

  15. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    Science.gov (United States)

    Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-01-01

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  16. PARPs database: A LIMS systems for protein-protein interaction data mining or laboratory information management system

    Science.gov (United States)

    Droit, Arnaud; Hunter, Joanna M; Rouleau, Michèle; Ethier, Chantal; Picard-Cloutier, Aude; Bourgais, David; Poirier, Guy G

    2007-01-01

    Background In the "post-genome" era, mass spectrometry (MS) has become an important method for the analysis of proteins and the rapid advancement of this technique, in combination with other proteomics methods, results in an increasing amount of proteome data. This data must be archived and analysed using specialized bioinformatics tools. Description We herein describe "PARPs database," a data analysis and management pipeline for liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics. PARPs database is a web-based tool whose features include experiment annotation, protein database searching, protein sequence management, as well as data-mining of the peptides and proteins identified. Conclusion Using this pipeline, we have successfully identified several interactions of biological significance between PARP-1 and other proteins, namely RFC-1, 2, 3, 4 and 5. PMID:18093328

  17. PARPs database: A LIMS systems for protein-protein interaction data mining or laboratory information management system

    Directory of Open Access Journals (Sweden)

    Picard-Cloutier Aude

    2007-12-01

    Full Text Available Abstract Background In the "post-genome" era, mass spectrometry (MS has become an important method for the analysis of proteins and the rapid advancement of this technique, in combination with other proteomics methods, results in an increasing amount of proteome data. This data must be archived and analysed using specialized bioinformatics tools. Description We herein describe "PARPs database," a data analysis and management pipeline for liquid chromatography tandem mass spectrometry (LC-MS/MS proteomics. PARPs database is a web-based tool whose features include experiment annotation, protein database searching, protein sequence management, as well as data-mining of the peptides and proteins identified. Conclusion Using this pipeline, we have successfully identified several interactions of biological significance between PARP-1 and other proteins, namely RFC-1, 2, 3, 4 and 5.

  18. Simulating groundwater-surface water interactions in the Canadian Prairies using a coupled land-atmosphere model (ParFlow-CLM)

    Science.gov (United States)

    Ali, M. A.; Ireson, A. M.; Keim, D.

    2015-12-01

    The Canadian prairies are cold and dry. Surface depressions are ubiquitous, and contain permanent or ephemeral ponds. The ponds are filled by snowmelt and precipitation on the ponds and lose a significant portion of their water to evaporation, but also, depending on their landscape position, may spill to other ponds or channels, recharge groundwater, or received groundwater discharge. Since precipitation and actual evaporation are closely balanced, the pond water balances are very sensitive to change in climate, and the prairies in general have been subject to damaging floods and droughts, in particular in the last decade or two. A 2.25 km2 field site at St Denis, central Saskatchewan, contains over 100 ponds, some permanent, some ephemeral, some saline, some fresh, some recharging groundwater, some receiving groundwater discharge. The site has been extensively studied for almost 50 years, with about one decade of continuous meteorological data, and three years of detailed pond level, soil moisture and temperature, and groundwater data. The objective of this study was to assess the performance of PARFLOW-CLM (a coupled land-atmosphere model) in simulating the pond-groundwater interactions at this site. Our conceptual model of the site includes soil properties that are progressively weathered with depth, and we implement this in a simplified dual permeability mathematical model of the soil hydraulic properties, whereby storage is dominated by the matrix and flow is dominated by macropores. The model performance was surprisingly good, doing quite a good job of capturing the observed groundwater and pond level dynamics. The soil freezing regime is also captured reasonably well, though the timing and pattern of the zero degree isotherm during soil thaw, which is critically important for runoff generation processes, was not captured as well. The model provides credible insights into the spatial patterns of evapotranspiration, and the seasonal dynamics of subsurface

  19. Comparing Drug-Drug Interaction Severity Ratings between Bedside Clinicians and Proprietary Databases

    OpenAIRE

    Armahizer, Michael J.; Kane-Gill, Sandra L.; Pamela L. Smithburger; Anthes, Ananth M.; Seybert, Amy L.

    2013-01-01

    Purpose. The purpose of this project was to compare DDI severity for clinician opinion in the context of the patient’s clinical status to the severity of proprietary databases. Methods. This was a single-center, prospective evaluation of DDIs at a large, tertiary care academic medical center in a 10-bed cardiac intensive care unit (CCU). A pharmacist identified DDIs using two proprietary databases. The physicians and pharmacists caring for the patients evaluated the DDIs for severity while in...

  20. Drug epidemiology, interactions and pharmacogenetics : A post-mortem database study

    OpenAIRE

    Launiainen, Terhi

    2011-01-01

    Use of adverse drug combinations, abuse of medicinal drugs and substance abuse are considerable social problems that are difficult to study. Prescription database studies might fail to incorporate factors like use of over-the-counter drugs and patient compliance, and spontaneous reporting databases suffer from underreporting. Substance abuse and smoking studies might be impeded by poor participation activity and reliability. The Forensic Toxicology Unit at the University of Helsinki is t...

  1. Interactions of water quality and integrated groundwater management: Examples from the United States and Europe: Chapter 14

    Science.gov (United States)

    Warner, Kelly L.; Barataud, Fabienne; Hunt, Randall J.; Benoit, Marc; Anglade, Juliette; Borchardt, Mark A.

    2015-01-01

    Groundwater is available in many parts of the world, but the quality of the water may limit its use. Contaminants can limit the use of groundwater through concerns associated with human health, aquatic health, economic costs, or even societal perception. Given this broad range of concerns, this chapter focuses on examples of how water quality issues influence integrated groundwater management. One example evaluates the importance of a naturally occurring contaminant Arsenic (As) for drinking water supply, one explores issues resulting from agricultural activities on the land surface and factors that influence related groundwater management, and the last examines unique issues that result from human-introduced viral pathogens for groundwater-derived drinking water vulnerability. The examples underscore how integrated groundwater management lies at the intersections of environmental characterization, engineering constraints, societal needs, and human perception of acceptable water quality. As such, water quality factors can be a key driver for societal decision making.

  2. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2

    Science.gov (United States)

    Xu, Zexuan; Hu, Bill X.; Davis, Hal; Kish, Stephen

    2015-11-01

    In this study, a groundwater flow cycling in a karst springshed and an interaction between two springs, Spring Creek Springs and Wakulla Springs, through a subground conduit network are numerically simulated using CFPv2, the latest research version of MODFLOW-CFP (Conduit Flow Process). The Spring Creek Springs and Wakulla Springs, located in a marine estuary and 11 miles inland, respectively, are two major groundwater discharge spots in the Woodville Karst Plain (WKP), North Florida, USA. A three-phase conceptual model of groundwater flow cycling between the two springs and surface water recharge from a major surface creek (Lost Creek) was proposed in various rainfall conditions. A high permeable subground karst conduit network connecting the two springs was found by tracer tests and cave diving. Flow rate of discharge, salinity, sea level and tide height at Spring Creek Springs could significantly affect groundwater discharge and water stage at Wakulla Springs simultaneously. Based on the conceptual model, a numerical hybrid discrete-continuum groundwater flow model is developed using CFPv2 and calibrated by field measurements. Non-laminar flows in conduits and flow exchange between conduits and porous medium are implemented in the hybrid coupling numerical model. Time-variable salinity and equivalent freshwater head boundary conditions at the submarine spring as well as changing recharges have significant impacts on seawater/freshwater interaction and springs' discharges. The developed numerical model is used to simulate the dynamic hydrological process and quantitatively represent the three-phase conceptual model from June 2007 to June 2010. Simulated results of two springs' discharges match reasonably well to measurements with correlation coefficients 0.891 and 0.866 at Spring Creeks Springs and Wakulla Springs, respectively. The impacts of sea level rise on regional groundwater flow field and relationship between the inland springs and submarine springs are

  3. A case-study of complex gas-water-rock-pollutants interactions in shallow groundwater: Šalek Valley (Slovenia)

    Science.gov (United States)

    Giammanco, Salvatore; Justin, Barbara; Speh, Natalija; Veder, Marta

    2009-03-01

    The complex geochemical interactions in the groundwater of the industrial area of Šalek Valley (Slovenia) between natural and anthropogenic fluids were studied by means of major (Ca, Mg, Na, K, HCO3 -, Cl- and SO4 2-) and trace elements’ (As , Cd, Cu, Pb, Zn, Hg, Se and V) abundances, geochemical classification and statistical analysis of data. Cation abundances indicate mixing between a dolomitic end-member and an evaporitic or geothermal end-member. Anion abundances indicate mixing between bicarbonate waters and either sulphate-enriched waters (suggesting hydrothermalism) or chlorine-rich waters. Principal component analysis (PCA) allowed the extraction of seven factors, which describe, respectively: water-rock interaction mainly on dolomitic rocks; redox conditions of water; Cd-Zn enrichment in chlorine-rich waters (probably from industrial wastes); hydrothermal conditions in waters close to major faults; Pb and Cu pollution; V and K enrichments, indicating their common organic source; the role of partial pressure of CO2 dissolved in water, which is highest in three wells with bubbling gases. Average underground discharge rates of solutes from the Valley range between 0.09 t/a (V) and 1.8 × 104 t/a (HCO3 -) and indicate how natural fluids can significantly contribute to the levels of elements in the environment, in addition to the amount of elements released by human activities.

  4. Modeling substrate-bacteria-grazer interactions coupled to substrate transport in groundwater

    Science.gov (United States)

    Bajracharya, Bijendra M.; Lu, Chuanhe; Cirpka, Olaf A.

    2014-05-01

    Models of microbial dynamics coupled to solute transport in aquifers typically require the introduction of a bacterial capacity term to prevent excessive microbial growth close to substrate-injection boundaries. The factors controlling this carrying capacity, however, are not fully understood. In this study, we propose that grazers or bacteriophages may control the density of bacterial biomass in continuously fed porous media. We conceptualize the flow-through porous medium as a series of retentostats, in which the dissolved substrate is advected with water flow whereas the biomasses of bacteria and grazers are considered essentially immobile. We first model a single retentostat with Monod kinetics of bacterial growth and a second-order grazing law, which shows that the system oscillates but approaches a stable steady state with nonzero concentrations of substrate, bacteria, and grazers. The steady state concentration of the bacteria biomass is independent of the substrate concentration in the inflow. When coupling several retentostats in a series to mimic a groundwater column, the steady state bacteria concentrations thus remain at a constant level over a significant travel distance. The one-dimensional reactive transport model also accounts for substrate dispersion and a random walk of grazers influenced by the bacteria concentration. These dispersive-diffusive terms affect the oscillations until steady state is reached, but hardly the steady state value itself. We conclude that grazing, or infection by bacteriophages, is a possible explanation of the maximum biomass concentration frequently needed in bioreactive transport models. Its value depends on parameters related to the grazers or bacteriophages and is independent of bacterial growth parameters or substrate concentration, provided that there is enough substrate to sustain bacteria and grazers.

  5. Enhancing Student Learning in and out of the Classroom with Electronic Teaching and Study Aids Built Around Interactive Groundwater Visualization Software

    Science.gov (United States)

    Fish, W.; McKillip, M.; Li, S.

    2003-12-01

    Advances in electronic resources allow more realistic student problems, increased student engagement and self learning, and the use of interactive, exploratory learning. We are using a sophisticated yet easy-to-use groundwater modeling and visualization program (Interactive Groundwater, IGW, Li and Liu: www.egr.msu.edu/ ˜lishug/research/igw) to build packages of innovative tools for instructors and students. Equipped with an advanced graphical interface, IGW allows interactive visualization and manipulation of complex, multidimensional subsurface systems including hydrology, contaminant transport and assessment of contaminated sites. Two principle product packages are the Graphical Teaching Aid (GTA) and the Student Learning Exercise (SLE), developed as part of the NSF-supported Virtual Interactive Remediation in the Groundwater Environment (VIRGE). A GTA is a classroom-presentation guide that includes text materials for the instructor as well as supporting electronic IGW files for interactive graphical demonstrations and discussions in the classroom. Text files include a conceptual outline and a list of principles to be examined in the lecture as well as a flexible script punctuated and illustrated throughout by use of IGW as a highly interactive "electronic chalkboard". The thorough text guides the instructor in the effective use of IGW, suggests ideas to engage student interaction, and provides ways to tailor the interactive presentation to student needs. An SLE complements the GTA as an interactive exercise to engage students in discovery learning. As with GTAs, SLEs are designed for specific levels of classes (undergraduate or graduate) and specific populations (non-technical, science, or engineering majors). Text files (background and instruction) and IGW files (for problem visualization, interactive manipulation and solution) are provided. The SLEs include interactive computer-based exercises ranging from introductory investigations to extensive, open

  6. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.

    Science.gov (United States)

    Essaid, Hedeff I; Caldwell, Rodney R

    2017-12-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  7. Groundwater interaction with surface drains in the Ord River Irrigation Area, northern Australia: investigation by multiple methods

    Science.gov (United States)

    Smith, Anthony J.; Pollock, Daniel W.; Palmer, Duncan

    2010-08-01

    Following 35 years of persistent groundwater rise beneath northern Ivanhoe Plain in the Ord River Irrigation Area, northern Australia, the water table appears to have stabilized near the base of the irrigation surface-drain network. Hydrometric evidence indicates that intersection of the deepest surface drains by the rising water table simultaneously reduced aquifer recharge from surface-water infiltration and increased aquifer discharge by groundwater exfiltration. Water-table analysis supports the working hypothesis that the largest irrigation drain D4 on north Ivanhoe Plain has been receiving a significant amount of groundwater discharge since the mid-1990s. The rate of groundwater discharge to surface drains on north Ivanhoe Plain was estimated to be around 15-20 million (M)L/day based on groundwater-flow modelling. Groundwater tracing using radon and electrical conductivity indicated that groundwater discharge to drain D4 was ˜6-12 ML/day in August 2007. The rate of groundwater discharge was significantly larger where the drain traverses a very-permeable sand and gravel palaeochannel. Relatively modest exfiltration rates of order of magnitude tens to hundreds of mm/day into the drain were estimated to mitigate 0.5 m/year groundwater accretion for a land area of order of magnitude hundreds to thousands of ha.

  8. CancerResource: a comprehensive database of cancer-relevant proteins and compound interactions supported by experimental knowledge.

    Science.gov (United States)

    Ahmed, Jessica; Meinel, Thomas; Dunkel, Mathias; Murgueitio, Manuela S; Adams, Robert; Blasse, Corinna; Eckert, Andreas; Preissner, Saskia; Preissner, Robert

    2011-01-01

    During the development of methods for cancer diagnosis and treatment, a vast amount of information is generated. Novel cancer target proteins have been identified and many compounds that activate or inhibit cancer-relevant target genes have been developed. This knowledge is based on an immense number of experimentally validated compound-target interactions in the literature, and excerpts from literature text mining are spread over numerous data sources. Our own analysis shows that the overlap between important existing repositories such as Comparative Toxicogenomics Database (CTD), Therapeutic Target Database (TTD), Pharmacogenomics Knowledge Base (PharmGKB) and DrugBank as well as between our own literature mining for cancer-annotated entries is surprisingly small. In order to provide an easy overview of interaction data, it is essential to integrate this information into a single, comprehensive data repository. Here, we present CancerResource, a database that integrates cancer-relevant relationships of compounds and targets from (i) our own literature mining and (ii) external resources complemented with (iii) essential experimental and supporting information on genes and cellular effects. In order to facilitate an overview of existing and supporting information, a series of novel information connections have been established. CancerResource addresses the spectrum of research on compound-target interactions in natural sciences as well as in individualized medicine; CancerResource is available at: http://bioinformatics.charite.de/cancerresource/.

  9. Interactions Between Diffuse Groundwater Recharge and Hyporheic Zone Chemistry in Spring-Fed River: Implications for Metal, Nutrient & Carbonate Cycling

    Science.gov (United States)

    Kurz, M. J.; Martin, J. B.; Cohen, M.

    2012-12-01

    Diffuse groundwater flow through stream-bed sediments can represent water with a chemically distinct composition, influencing elemental cycling and ecosystem dynamics. Diffuse flow may be particularly important in systems where hyporheic exchange is small. The entirely spring-sourced Ichetucknee River (north-central Florida) is a model system for distinguishing the processes controlling solute sources and cycling due to its stable discharge (6-9 m3/s), constant but distinct spring chemistry through time, and minimal hyporheic exchange. Most stream solute concentrations exhibit large diel cycles, but these changes do not explain all observed longitudinal changes in river chemistry. Ca, Fe, and PO4 concentrations are all elevated in river water over the flow-weighted average of the source springs (Ca = 1.37 vs 1.31 mM; Fe = 8 vs. 0.4 μg/L; PO4 = 54 vs. 49 μg/L) despite evidence of in-stream removal of these solutes by biotic and abiotic processes. Cl concentrations are also elevated in the river over the spring sources and previous calculations estimated an additional 0.75 m3/s of water was needed to close the Cl budget of the river. Diffuse groundwater flow could be the source of these additional solutes and flow. To estimate the impact of diffuse flow interacting with hyporheic zone chemistry on the metal, nutrient, and carbonate chemistry of the Ichetucknee River we compared the chemistry of the springs and river with measurements of pore-water chemistry and hydraulic gradients within the unconsolidated channel sediments. A cross-river transect of four pore-water chemical profiles indicate that pore-water chemistry is dominated by the mineralization of organic carbon, resulting in pore-waters undersaturated with respect to calcite and elevated in Ca, Fe, and PO4 concentrations (ca. 1.44 mM, 2000 μg/L, and 150-300 μg/L, respectively) relative to the river. A diffuse flow rate through the river sediments of 0.2-0.7 m3/s, would account for the addition of both PO

  10. Another Look at Taurus Littrow: An Interactive Geographic Information System DataBase

    Science.gov (United States)

    Coombs, Cassandra R.; Meisburger, J. L.; Nettles, J. W.

    1998-01-01

    A variety of data has been amassed for the Apollo 17 landing site, including topography, sample locations, and imagery. These data were compiled into a Geographic Information System (GIS) to analyze their interrelationships more easily. The database will allow the evaluation of the resource potential of the Taurus Littrow region pyroclastic deposits. The database also serves as a catalog for the returned lunar samples. This catalog includes rock type, size, and location. While this project specifically targets the Taurus Littrow region, it is applicable to other regions as well.

  11. Geothopica and the interactive analysis and visualization of the updated Italian National Geothermal Database

    Science.gov (United States)

    Trumpy, Eugenio; Manzella, Adele

    2017-02-01

    The Italian National Geothermal Database (BDNG), is the largest collection of Italian Geothermal data and was set up in the 1980s. It has since been updated both in terms of content and management tools: information on deep wells and thermal springs (with temperature > 30 °C) are currently organized and stored in a PostgreSQL relational database management system, which guarantees high performance, data security and easy access through different client applications. The BDNG is the core of the Geothopica web site, whose webGIS tool allows different types of user to access geothermal data, to visualize multiple types of datasets, and to perform integrated analyses. The webGIS tool has been recently improved by two specially designed, programmed and implemented visualization tools to display data on well lithology and underground temperatures. This paper describes the contents of the database and its software and data update, as well as the webGIS tool including the new tools for data lithology and temperature visualization. The geoinformation organized in the database and accessible through Geothopica is of use not only for geothermal purposes, but also for any kind of georesource and CO2 storage project requiring the organization of, and access to, deep underground data. Geothopica also supports project developers, researchers, and decision makers in the assessment, management and sustainable deployment of georesources.

  12. An Interactive Iterative Method for Electronic Searching of Large Literature Databases

    Science.gov (United States)

    Hernandez, Marco A.

    2013-01-01

    PubMed® is an on-line literature database hosted by the U.S. National Library of Medicine. Containing over 21 million citations for biomedical literature--both abstracts and full text--in the areas of the life sciences, behavioral studies, chemistry, and bioengineering, PubMed® represents an important tool for researchers. PubMed® searches return…

  13. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  14. Use of detailed thermochemical databases to model chemical interactions in the Severe Accident codes

    Energy Technology Data Exchange (ETDEWEB)

    Barrachin, M. [IPSN/DRS, CEA Cadarache (France)

    2001-07-01

    For the prevention, mitigation and management of severe accidents, many problems related to core melt have to be solved: fuel degradation, melting and relocation, convection in the core melt(s), coolability of the core melt(s), fission product release, hydrogen production, behavior of the materials of the protective layers, ex-vessel spreading of the core melt(s).. To solve these problems such properties like thermal conductivity, heat capacity, density, viscosity, evaporation or sublimation of melts, the solidification behavior (solid/liquid fraction), the tendency to trap or to release the fission products, the stratification of melts notably metallic and oxide, must be known. However most of these properties are delicate to measure directly at high temperature and/or in the radio-active environment produced by the fission products. Therefore some of them must be derived by calculations from the physical-chemical description of the melt: number of phases, phase compositions, proportions of solids and liquids and their respective oxidation state, miscibility of the liquids, solubility of one phase in another, etc. This information is given by the phase diagrams of the materials in presence. Since more than ten years, IPSN has developed in collaboration with THERMODATA (Grenoble, France) a very detailed thermochemical database for the complex system U-O-Zr-Fe-Ni-La-Ba-Ru-Sr-Si-Mg-Ca-Al-(H-Ar). The direct coupling between the severe accident (SA) Codes and a thermochemical code with its database is not actually possible because of the computer time consuming and the size of the database. For this reason, most of the Severe Accident codes usually have a very simplified description for the phase diagrams which are not in agreement with the status of the art. In this presentation, alternative methodologies are detailed with their respective difficulties, the goal being to build an interface between a thermochemical database and a SA Code and to get a fast, accurate and

  15. A Database of Transition-Metal-Coordinated Peptide Cross-Sections: Selective Interaction with Specific Amino Acid Residues

    Science.gov (United States)

    Dilger, Jonathan M.; Glover, Matthew S.; Clemmer, David E.

    2017-07-01

    Ion mobility mass spectrometry (IMS-MS) techniques were used to generate a database of 2288 collision cross sections of transition-metal-coordinated tryptic peptide ions. This database consists of cross sections for 1253 [Pep + X]2+ and 1035 [Pep + X + H]3+, where X2+ corresponds to Mn2+, Co2+, Ni2+, Cu2+, or Zn2+. This number of measurements enables the extraction of structural trends for transition-metal-coordinated peptide ions. The range of structures and changes in collision cross sections for X2+-coordinated species (compared with protonated species of the same charge state) is similar to Mg2+-coordinated species. This suggests that the structures are largely determined by similarities in cation size with differences among the cross section distributions presumably caused by X2+ interactions with specific functional groups offered by the residue R-groups or the peptide backbone. Cross section contributions for individual residues upon X2+ solvation are assessed with the derivation of intrinsic size parameters (ISPs). The comparison of the [Pep + X]2+ ISPs with those previously reported for [Pep + Mg]2+ ions displays a lower contribution to the cross section for His, carboxyamidomethylated Cys, and Met, and is consistent with specific metal-residue interactions identified within protein X-ray crystallography databases.

  16. Delineation of Surface-Groundwater Interactions Using Statistical Analysis of Temperature Time-Series and Resistivity Methods

    Science.gov (United States)

    Scotch, C. G.; Murgulet, D.; Hay, R.

    2013-12-01

    Although surface-water and groundwater are often referred to as separate domains, they are intimately related as a change in one domain can ultimately affect the other domain. Since the two domains act as linked pathways for contaminant transport in the hydrologic cycle a comprehensive understanding of this relationship is essential for improved SW-GW management practices. The main objective of this study is to develop new statistical methods to better identify and characterize the advective component or water movement between SW-GW in a coastal area along the South Texas coast, adjacent to the Gulf of Mexico (GOM) margin, characterized by low gradients and low-conductivity stream beds. Identifying advection zones using temperature data in regions with low topographic relief and numerous small-scale flow paths is difficult. To overcome this challenge this study proposes the use of seasonal-trend decomposition (STL) of time series temperature data to analyze exchanges in this type of environment. Seasonal decomposition analysis was used to remove the daily and annual cyclic components leaving the random or non-cyclic component. It can be inferred that high variances of the random component indicate periods of advection. This statistically-derived advective component correlates well with advection periods identified from the conventional time-series temperature profile analysis. This correlation is a good validation of the statistical approach as means of identifying periods of advection and SW-GW interaction. Electrical resistivity imaging will be used for validation of the statistical model.

  17. Improving the representation of river-groundwater interactions in land surface modeling at the regional scale: Observational evidence and parameterization applied in the Community Land Model

    KAUST Repository

    Zampieri, Matteo

    2012-02-01

    Groundwater is an important component of the hydrological cycle, included in many land surface models to provide a lower boundary condition for soil moisture, which in turn plays a key role in the land-vegetation-atmosphere interactions and the ecosystem dynamics. In regional-scale climate applications land surface models (LSMs) are commonly coupled to atmospheric models to close the surface energy, mass and carbon balance. LSMs in these applications are used to resolve the momentum, heat, water and carbon vertical fluxes, accounting for the effect of vegetation, soil type and other surface parameters, while lack of adequate resolution prevents using them to resolve horizontal sub-grid processes. Specifically, LSMs resolve the large-scale runoff production associated with infiltration excess and sub-grid groundwater convergence, but they neglect the effect from loosing streams to groundwater. Through the analysis of observed data of soil moisture obtained from the Oklahoma Mesoscale Network stations and land surface temperature derived from MODIS we provide evidence that the regional scale soil moisture and surface temperature patterns are affected by the rivers. This is demonstrated on the basis of simulations from a land surface model (i.e., Community Land Model - CLM, version 3.5). We show that the model cannot reproduce the features of the observed soil moisture and temperature spatial patterns that are related to the underlying mechanism of reinfiltration of river water to groundwater. Therefore, we implement a simple parameterization of this process in CLM showing the ability to reproduce the soil moisture and surface temperature spatial variabilities that relate to the river distribution at regional scale. The CLM with this new parameterization is used to evaluate impacts of the improved representation of river-groundwater interactions on the simulated water cycle parameters and the surface energy budget at the regional scale. © 2011 Elsevier B.V.

  18. Representing spatial and temporal complexity in ecohydrological models: a meta-analysis focusing on groundwater - surface water interactions

    Science.gov (United States)

    McDonald, Karlie; Mika, Sarah; Kolbe, Tamara; Abbott, Ben; Ciocca, Francesco; Marruedo, Amaia; Hannah, David; Schmidt, Christian; Fleckenstein, Jan; Karuse, Stefan

    2016-04-01

    Sub-surface hydrologic processes are highly dynamic, varying spatially and temporally with strong links to the geomorphology and hydrogeologic properties of an area. This spatial and temporal complexity is a critical regulator of biogeochemical and ecological processes within the interface groundwater - surface water (GW-SW) ecohydrological interface and adjacent ecosystems. Many GW-SW models have attempted to capture this spatial and temporal complexity with varying degrees of success. The incorporation of spatial and temporal complexity within GW-SW model configuration is important to investigate interactions with transient storage and subsurface geology, infiltration and recharge, and mass balance of exchange fluxes at the GW-SW ecohydrological interface. Additionally, characterising spatial and temporal complexity in GW-SW models is essential to derive predictions using realistic environmental conditions. In this paper we conduct a systematic Web of Science meta-analysis of conceptual, hydrodynamic, and reactive and heat transport models of the GW-SW ecohydrological interface since 2004 to explore how these models handled spatial and temporal complexity. The freshwater - groundwater ecohydrological interface was the most commonly represented in publications between 2004 and 2014 with 91% of papers followed by marine 6% and estuarine systems with 3% of papers. Of the GW-SW models published since 2004, the 52% have focused on hydrodynamic processes and heat and reactive transport). Within the hydrodynamic subset, 25% of models focused on a vertical depth of limitations of incorporating spatial and temporal variability into GW-SW models are identified as the inclusion of woody debris, carbon sources, subsurface geological structures and bioclogging into model parameterization. The technological limitations influence the types of models applied, such as hydrostatic coupled models and fully intrinsic saturated and unsaturated models, and the assumptions or

  19. Influence of geology on groundwater-sediment interactions in arsenic enriched tectono-morphic aquifers of the Himalayan Brahmaputra river basin

    Science.gov (United States)

    Verma, Swati; Mukherjee, Abhijit; Mahanta, Chandan; Choudhury, Runti; Mitra, Kaushik

    2016-09-01

    those being major constituents in a gabbroic complex (ophiolite) and basalt terrain in S-region. The aquifers of S-region are severely contaminated with dissolved As compared to NW and N regions. Almost more than 92% of groundwater samples in the southern part (maximum 5.53 μM or 415 μg/L) are enriched with As, which draws a distinct difference from the NW and N parts of BRB aquifers. The redox-sensitive solutes (i.e., Fe, Mn, HCO3- and TOC) are positively correlated with As in NW and N-parts; whereas EH shows negative to very weak positive correlation which suggests that a redox-dependent mobilization plays important role in As liberation in NW and N parts of the basin. However, As in southern aquifers is not showing any correlation or weak negative correlation with redox-sensitive solutes; suggesting that multiple reactions and hydrogeochemical processes and their interaction control As mobilization and fate in the S-region of BRB. The occurrence of high concentrations of arsenic in groundwater of Brahmaputra basin is described through a crustal recycling model and tectonic movement between the Indian-Eurasian plates and Burmese micro-continents. As-enriched groundwater in Himalayan foreland basin in the BRB is probably a result of crustal evolution through which As is subsequently mobilized from aquifer matrix to solution in groundwater by water-sediment reaction under favorable biogeochemical conditions. The results of the study indicate geological control (i.e. change in lithofacies, tectonic set-up) on groundwater chemistry and distribution of redox-sensitive solutes such as As.

  20. Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes

    Directory of Open Access Journals (Sweden)

    L. Yang

    2012-05-01

    Full Text Available The Jialu River, a secondary tributary of the Huaihe River, has been severely contaminated for the major contaminant sources, such as a number of untreated or lightly treated sewage wastes in some cities. Groundwater along the river is not an isolated component of the hydrologic system, but instead connected with the surface water. This study aims to characterize the relationships between surface water (e.g. reservoirs, lakes and rivers and groundwater near the river in the shallow Quaternary aquifer. The concentration of Cl in North Zhengzhou City increased prominently due to the discharge of a large amount of domestic water. Nitrate and potassium show maximum concentrations in groundwater in Fugou County. These high levels can be attributed to the use of a large quantity of fertilizer over this region. The regional well had water with a constant stable isotopic signature, which illustrates that the groundwater never or rarely receive recharge from surface water. However, the groundwater of transitional well (location SY3 seemed to be recharged by river water via bank infiltration in September 2010. Fractional contributions of river water to the groundwater were calculated based on isotopic and chemical data using a mass-balance approach. Results show that the groundwater was approximately composed of 60–70% river water. These findings would be useful for a better understanding of hydrogeological processes at the river-aquifer interface and ultimately benefit water management in the future.

  1. The Influence of Interactivity Features of Databases on Scientific Behavior: A user perspective survey based on the Flow theory

    Directory of Open Access Journals (Sweden)

    Rahmatollah Fatthai

    2014-02-01

    Full Text Available We followed two aims: testing the effects of databases' user interface interactivity (UII on Scientific Behavior (SB and exploring the flow experience (FE as mediator between interface interactivity and SB, as well as self-efficacy (SE role as an interferer. We used mixed method in this research. We made a SB questionnaire via a comparative literature study, FE and user UII through literature review. Faculty members and PhD students participated as scholars. Structural Equation Modeling was used for quantitative data analysis and interpretative approach to analyze qualitative data. The role of typological variables, such as gender, area of study, academic degree and English language skill level on SE, UII, FE and SB means are investigated. Finally, we tested the effects of databases' UII on SB and mediator role of FE and interfering role of SE. We found that the more self-efficient participants, the more they experience user interface interactivity and scientific behavior changes/adaptations. In other words, self-efficacy is an important characteristic to establish interactive search session and to upgrade scientific behavior in scholars. Also, we found those participants who experience more flow, have more chance to experience SB changes and adaptation in UII environment. So UII may have effect on researchers' SB. Results may be used in: 1 distance education or researcher training, since these areas are interested in developing, changing and adapting SB; 2 Human-Computer Interaction field, because SB seems to be a new aspect of computer interaction effect on human; 3 The Flow theory will be supported by this new implementation. We proposed a new theoretical framework for research

  2. TcoF-DB: dragon database for human transcription co-factors and transcription factor interacting proteins

    KAUST Repository

    Schaefer, Ulf

    2010-10-21

    The initiation and regulation of transcription in eukaryotes is complex and involves a large number of transcription factors (TFs), which are known to bind to the regulatory regions of eukaryotic DNA. Apart from TF-DNA binding, protein-protein interaction involving TFs is an essential component of the machinery facilitating transcriptional regulation. Proteins that interact with TFs in the context of transcription regulation but do not bind to the DNA themselves, we consider transcription co-factors (TcoFs). The influence of TcoFs on transcriptional regulation and initiation, although indirect, has been shown to be significant with the functionality of TFs strongly influenced by the presence of TcoFs. While the role of TFs and their interaction with regulatory DNA regions has been well-studied, the association between TFs and TcoFs has so far been given less attention. Here, we present a resource that is comprised of a collection of human TFs and the TcoFs with which they interact. Other proteins that have a proven interaction with a TF, but are not considered TcoFs are also included. Our database contains 157 high-confidence TcoFs and additionally 379 hypothetical TcoFs. These have been identified and classified according to the type of available evidence for their involvement in transcriptional regulation and their presence in the cell nucleus. We have divided TcoFs into four groups, one of which contains high-confidence TcoFs and three others contain TcoFs which are hypothetical to different extents. We have developed the Dragon Database for Human Transcription Co-Factors and Transcription Factor Interacting Proteins (TcoF-DB). A web-based interface for this resource can be freely accessed at http://cbrc.kaust.edu.sa/tcof/ and http://apps.sanbi.ac.za/tcof/. © The Author(s) 2010.

  3. Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction

    Science.gov (United States)

    Tóth, Ádám; Havril, Tímea; Simon, Szilvia; Galsa, Attila; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2016-08-01

    Groundwater flow, driven, controlled and determined by topography, geology and climate, is responsible for several natural surface manifestations and affected by anthropogenic processes. Therefore, flowing groundwater can be regarded as an environmental agent. Numerical simulation of groundwater flow could reveal the flow pattern and explain the observed features. In complex geologic framework, where the geologic-hydrogeologic knowledge is limited, the groundwater flow model could not be constructed based solely on borehole data, but geophysical information could aid the model building. The integrated model construction was presented via the case study of the Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, such as wetlands, surface water-groundwater interaction, slope instability, and revealing the potential effect of anthropogenic activity and climate change. The hydrogeologic model was prepared on the basis of the compiled archive geophysical database and the results of recently performed geophysical measurements complemented with geologic-hydrogeologic data. Derivation of different electrostratigraphic units, revealing fracturing and detecting tectonic elements was achieved by systematically combined electromagnetic geophysical methods. The deduced information can be used as model input for groundwater flow simulation concerning hydrostratigraphy, geometry and boundary conditions. The results of numerical modelling were interpreted on the basis of gravity-driven regional groundwater flow concept and validated by field mapping of groundwater-related phenomena. The 3D model clarified the hydraulic behaviour of the formations, revealed the subsurface hydraulic connection between groundwater and wetlands and displayed the groundwater discharge pattern, as well. The position of wetlands, their vegetation type, discharge features and induced landslides were explained as

  4. Evaluation of groundwater recharge in Choushui River alluvial fan and Mingchu Basin for specific rainfall events

    Science.gov (United States)

    Lin, Zong Sheng; Chen, Jui-Sheng; Jang, Cheng-Shin

    2014-05-01

    Sound groundwater resources planning and management are lack in the Choushui River alluvial fan, resulting in the occurrence of serious land subsidence and seawater intrusion. Even the disasters induced by overpumping of groundwater pose a potential threat on the Taiwan High Speed Rail. In addition to improving the water resources management in the alluvial fan, the development of groundwater resources in the neighboring hills. Mingchu Basin, which is located on the midstream segment of the Choushui River and comprised of the gravel formation of Pleistocene, is an effective solution to resolve the problem in limited water resources. Moreover, the Dongpurui River and Qingshui River both converge into Choushui River in this basin. Because of wide drainage areas and good hydrogeological conditions, the Mingchu Basin is considered a high potential recharging region of groundwater. This work is to evaluate the groundwater recharge in the Choushui River alluvial fan and Mingchu Basin, using the WASH123D model equipped with the Groundwater Modeling System (GMS) to simulate the interaction of surface water and groundwater for specific five rainfall events. This study particularly focuses on the simulation of the groundwater flow, and evaluates the effect of different rainfall events on the groundwater recharge. First, to meet in-situ hydrogeological structure and hydraulic parameters, the GMS is used to construct hydrogeological database, mesh, hydrogeological parameters, initial condition and boundary conditions. Then, simulated parameters, such as hydraulic conductivity and pumping rates, need to be calibrated and verified in the model. After the calibration and verification, the simulated groundwater flow can reflect actual groundwater situation. Finally, when specific five rainfall events impose on the ground, groundwater recharge can be determined using the groundwater model.

  5. Groundwater-surface water interaction along the Upper Biebrza River, Poland: a spatial-temporal approach with temperature, head and seepage measurements

    Science.gov (United States)

    Anibas, C.; Batelaan, O.; Verbeiren, B.; Buis, K.; Chormanski, J.; de Doncker, L.

    2010-12-01

    The knowledge of mechanisms of interaction of surface and groundwater in the hyporheic zone in rivers is essential for conserving, managing and restoring river adjacent wetlands and its habitats. Reliable estimation of groundwater-surface water exchange challenges hydrological sciences. A promising approach, overcoming limitations of individual methods, is the combination of different methodologies including flux estimates based on thermal measurements, piezometer nests, slug tests and seepage meters. In this contribution such a multi-methodology approach is tested for the Upper Biebrza River, Poland. Time series of thermal profiles are obtained for a period of 9 months. The thermal and physical soil properties show strong spatial and vertical heterogeneities typical for the peat soils of the area. Transient simulations with the numerical 1D heat transport model STRIVE were used to quantify the vertical advective fluxes in the riverbed allowing a first level investigation of groundwater-surface water exchange. The net exchange along the examined section during the 9 month is estimated as a 10.4 mm/d upward flux, which is evaluated as a relatively low intensity of groundwater seepage. Time series of both temperature and hydraulic head gradients were used to calculate hydraulic conductivities and to quantify transient groundwater-surface water exchanges for three locations. They indicated an exchange flux relatively relative stable in time only interrupted by peak values during flood events. Seepage meter measurements provided independent verification results. Interpolating calculated fluxes along the river with GIS techniques resulted in spatially distributed interaction maps. Sections of higher fluxes are statistically correlated to the proximity of the river to the morainic plateaus, which border the river alluvium. In sections where the river is central in the alluvium and relatively far away from the upland low or infiltrating conditions are obtained. This

  6. The TissueNet v.2 database: A quantitative view of protein-protein interactions across human tissues

    Science.gov (United States)

    Basha, Omer; Barshir, Ruth; Sharon, Moran; Lerman, Eugene; Kirson, Binyamin F.; Hekselman, Idan; Yeger-Lotem, Esti

    2017-01-01

    Knowledge of the molecular interactions of human proteins within tissues is important for identifying their tissue-specific roles and for shedding light on tissue phenotypes. However, many protein–protein interactions (PPIs) have no tissue-contexts. The TissueNet database bridges this gap by associating experimentally-identified PPIs with human tissues that were shown to express both pair-mates. Users can select a protein and a tissue, and obtain a network view of the query protein and its tissue-associated PPIs. TissueNet v.2 is an updated version of the TissueNet database previously featured in NAR. It includes over 40 human tissues profiled via RNA-sequencing or protein-based assays. Users can select their preferred expression data source and interactively set the expression threshold for determining tissue-association. The output of TissueNet v.2 emphasizes qualitative and quantitative features of query proteins and their PPIs. The tissue-specificity view highlights tissue-specific and globally-expressed proteins, and the quantitative view highlights proteins that were differentially expressed in the selected tissue relative to all other tissues. Together, these views allow users to quickly assess the unique versus global functionality of query proteins. Thus, TissueNet v.2 offers an extensive, quantitative and user-friendly interface to study the roles of human proteins across tissues. TissueNet v.2 is available at http://netbio.bgu.ac.il/tissuenet. PMID:27899616

  7. CO2 leakage up from a geological storage site to shallow fresh groundwater: CO2-water-rock interaction assessment and development of sensitive monitoring

    Science.gov (United States)

    Humez, Pauline; Audigane, Pascal; Lions, Julie; Négrel, Philippe; Lagneau, Vincent

    2010-05-01

    The assessment of environmental impacts of carbon dioxide storage in geological repository requires the investigation of the potential CO2 leakage back into fresh groundwater, particularly with respect to protected groundwater reserves. We are starting a new project with the aims of developing sensitive monitoring techniques in order to detect potential CO2 leaks and their magnitude as well as their geochemical impacts on the groundwater. In a predictive approach goal, a modelling study of the geochemical impact on fresh groundwaters of a CO2 intrusion during geological storage was performed and serves as a basis for the development of sensitive monitoring techniques (e.g. isotope tracing). Then, isotopic monitoring opportunities will be explored. A modeling study of the geochemical impact on fresh groundwaters of the ingress of CO2 during geological storage was conducted. The 3D model includes (i) storage saline aquifer, (ii) impacted overlying aquifer containing freshwater and (iii) a leakage path way up through an abandoned well represented as 1D porous medium and corresponding to the cement-rock formation interface. This model was used to simulate the supercritical CO2 migration path and the interaction between the fluid and the host rock. The model uses the carbonate saline Dogger aquifer in the Paris Basin as the storage reservoir and the Albian formation (located above the Dogger) as the fresh groundwater aquifer. The principal geochemical process simulated is the acidification of groundwaters due to CO2 dissolution, inducing the dissolution of minerals in the Albian formation. Knowing the mineralogical composition of the impacted aquifer is therefore crucial if we are to correctly determine which elements might be release during the arrival of CO2 in freshwater. Estimates of increases in element concentrations are proposed along with a direct control of the injection procedure. This predictive modeling approach impact of CO2 intrusion to fresh groundwaters

  8. MODFLOW-NWT model used to evaluate groundwater/surface-water interactions in the Bad River Watershed, Wisconsin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A groundwater-flow model was developed for the Bad River Watershed and surrounding area by using the U.S. Geological Survey (USGS) finite-difference code...

  9. Interactions between groundwater and surface water in a Virginia coastal plain watershed. 2. Acid-base chemistry

    Science.gov (United States)

    O'Brien, A. K.; Eshleman, K.N.; Pollard, J.S.

    1994-01-01

    At the Reedy Creek watershed sulphate concentrations were higher and alkalinity lower in the groundwater in the hillslope than in the stream. Sulphate concentrations and alkalinity observed in groundwater in the wetland were usually between those of the hillslope and stream. These data suggest that the wetland is a sink for sulphate and acidity; sulphate reduction may be an important mechanism for generating alkalinity in the wetland. The DOC concentrations were higher in the stream and wetland groundwater than in hillslope groundwater. No consistent spatial patterns in sulphate concentrations were observed in surface water chemistry under base flow conditions. Stream discharge was found to be positively correlated with base flow sulphate concentrations and inversely correlated with alkalinity. A sulphate mass balance indicated that approximately 30% of the estimated 24.9 kg SO42-/ha yr wet atmospheric input was exported from the watershed as sulphate in stream runoff in the water year 1990. -from Authors

  10. Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes

    Directory of Open Access Journals (Sweden)

    L. Yang

    2012-11-01

    Full Text Available The Jialu River, a secondary tributary of the Huaihe River, has been severely contaminated from major contaminant sources, such as a number of untreated or lightly treated sewage waste in some cities. Groundwater along the river is not an isolated component of the hydrologic system, but is instead connected with the surface water. This study aims to investigate temporal and spatial variations in water chemistry affected by humans and to characterize the relationships between surface water (e.g. reservoirs, lakes and rivers and groundwater near the river in the shallow Quaternary aquifer. Concentration of Cl in north Zhengzhou City increased prominently due to the discharge of a large amount of domestic water. Nitrate and potassium show maximum concentrations in groundwater in Fugou County. These high levels can be attributed to the use of a large quantity of fertilizer over this region. Most surface water appeared to be continuously recharged from the surrounding groundwater (regional wells based on comparison surface water with groundwater levels, stable-isotopes and major ion signatures. However, the groundwater of a transitional well (location SY3 seemed to be recharged by river water via bank infiltration in September 2010. Fractional contributions of river water to the groundwater were calculated based on isotopic and chemical data using a mass-balance approach. Results show that the groundwater was approximately composed of 60–70% river water. These findings should be useful for a better understanding of hydrogeological processes at the river-aquifer interface and ultimately benefit water management in the future.

  11. Using radon-222 to study coastal groundwater/surface-water interaction in the Crau coastal aquifer (southeastern France)

    Science.gov (United States)

    Mayer, Adriano; Nguyen, Bach Thao; Banton, Olivier

    2016-11-01

    Radon has been used to determine groundwater velocity and groundwater discharge into wetlands at the southern downstream boundary of the Crau aquifer, southeastern France. This aquifer constitutes an important high-quality freshwater resource exploited for agriculture, industry and human consumption. An increase in salinity occurs close to the sea, highlighting the need to investigate the water balance and groundwater behavior. Darcy velocity was estimated using radon activities in well waters according to the Hamada "single-well method" (involving comparison with radon in groundwater in the aquifer itself). Measurements done at three depths (7, 15 and 21 m) provided velocity ranging from a few mm/day to more than 20 cm/day, with highest velocities observed at the 15-m depth. Resulting hydraulic conductivities agree with the known geology. Waters showing high radon activity and high salinity were found near the presumed shoreline at 3,000 years BP, highlighting the presence of ancient saltwater. Radon activity has also been measured in canals, rivers and ponds, to trace groundwater discharges and evaluate water balance. A model of the radon spatial evolution explains the observed radon activities. Groundwater discharge to surface water is low in pond waters (4 % of total inputs) but significant in canals (55 l/m2/day).

  12. Limits to Global Groundwater Consumption

    Science.gov (United States)

    Graaf, I. D.; Van Beek, R.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2015-12-01

    In regions with frequent water stress and large aquifer systems, groundwater is often used as an additional fresh water source. For many regions of the world groundwater abstraction exceeds groundwater recharge and persistent groundwater depletion occurs. The most direct effect of groundwater depletion is declining of water tables, leading to reduced groundwater discharge needed to sustain base-flow to e.g. rivers. Next to that, pumping costs increase, wells dry up and land subsidence occurs. These problems are expected to increase in the near future due to growing population and climate changes. This poses the urgent question of what the limits are of groundwater consumption worldwide. We simulate global water availability (5 arc-minute resolution, for 1960-2050) using the hydrological model PCR-GLOBWB (van Beek et al. 2011), coupled to a groundwater model based on MODFLOW (de Graaf et al. 2015), allowing for groundwater - surface water interactions. The groundwater model includes a parameterization of world's confined and unconfined aquifer systems needed for a realistic simulation of groundwater head dynamics. Water demands are included (from Wada et al. 2014). We study the limits to water consumption, focusing on locally attainable groundwater and groundwater levels critical to rivers to sustain low flows. We show an increasing trend (1960-2050) in groundwater head declines, due to increase in groundwater demand. Also, stream flow will decrease and low flow conditions will occur more frequent and will be longer in duration in the near future, especially for irrigated areas. Next to that, we provide a global overview of the years it takes until groundwater gets unattainable for e.g. a local farmer (100 m below land-surface used as a proxy), and estimate the increase in pumping cost for the near future. The results show where and when limits of groundwater consumption are reached globally.

  13. Evaluation of faults and their effect on ground-water flow southwest of Frenchman Flat, Nye and Clark counties, Nevada: a digital database

    Science.gov (United States)

    McKee, Edwin H.; Wickham, Thomas A.; Wheeler, Karen L.

    1998-01-01

    Ground-water flow through the region south and west of Frenchman Flat, in the Ash Meadows subbasin of the Death Valley ground-water flow system, is controlled mostly by faults which arrange the distribution of permeable and impermeable rocks. In addition, most permeability is along fractures caused by faulting in carbonate rocks. Large faults are more likely to reach the potentiometric surface as deep as 325 meters below the ground surface and are more likely to effect the flow path than small faults. This study concentrated on identifying large faults, especially where they cut carbonate rocks. Small faults, however, may develop as much permeability as large faults if they are penetrative and are part of an anastomosing fault_zone. The overall pattern of faults and joints at the ground surface in the Spotted and Specter Ranges is an indication of the fracture system at the depth of the water table. Most of the faults in these ranges are west-southwest-striking, high-angle faults, 100 to 3,500 meters long, with 10 to 300 meters of displacement. Many of them, such as those in the Spotted Range and Rock Valley are left-lateral strike-slip faults that are conjugate to the NW-striking right-lateral faults of the Las Vegas Valley shear zone. These faults control the ground-water flow path, which runs west-southwest beneath the Spotted Range, Mercury Valley and the Specter Range. The Specter Range thrust is a significant geologic structure with respect to ground- water flow. This regional thrust fault emplaces siliceous clastic strata into the north central and western parts of the Specter Range. These rocks act as a barrier that confines ground- water flow to the southern part of the range, directing it southwestward toward springs at Ash Meadows. These siliceous clastic aquitard rocks and overlying Cenozoic deposits probably also block westward flow of ground-water in Rock Valley, diverting it southward to the flow path beneath the southern part of the Specter Range.

  14. Crystal structures of four δ-keto esters and a Cambridge Structural Database analysis of cyano-halogen interactions.

    Science.gov (United States)

    Kamal, Kulsoom; Maurya, Hardesh K; Gupta, Atul; Vasudev, Prema G

    2015-10-01

    The revived interest in halogen bonding as a tool in pharmaceutical cocrystals and drug design has indicated that cyano-halogen interactions could play an important role. The crystal structures of four closely related δ-keto esters, which differ only in the substitution at a single C atom (by H, OMe, Cl and Br), are compared, namely ethyl 2-cyano-5-oxo-5-phenyl-3-(piperidin-1-yl)pent-2-enoate, C19H22N2O3, (1), ethyl 2-cyano-5-(4-methoxyphenyl)-5-oxo-3-(piperidin-1-yl)pent-2-enoate, C20H24N2O4, (2), ethyl 5-(4-chlorophenyl)-2-cyano-5-oxo-3-(piperidin-1-yl)pent-2-enoate, C19H21ClN2O3, (3), and the previously published ethyl 5-(4-bromophenyl)-2-cyano-5-oxo-3-(piperidin-1-yl)pent-2-enoate, C19H21BrN2O3, (4) [Maurya, Vasudev & Gupta (2013). RSC Adv. 3, 12955-12962]. The molecular conformations are very similar, while there are differences in the molecular assemblies. Intermolecular C-H...O hydrogen bonds are found to be the primary interactions in the crystal packing and are present in all four structures. The halogenated derivatives have additional aromatic-aromatic interactions and cyano-halogen interactions, further stabilizing the molecular packing. A database analysis of cyano-halogen interactions using the Cambridge Structural Database [CSD; Groom & Allen (2014). Angew. Chem. Int. Ed. 53, 662-671] revealed that about 13% of the organic molecular crystals containing both cyano and halogen groups have cyano-halogen interactions in their packing. Three geometric parameters for the C-X...N[triple-bond]C interaction (X = F, Cl, Br or I), viz. the N...X distance and the C-X...N and C-N...X angles, were analysed. The results indicate that all the short cyano-halogen contacts in the CSD can be classified as halogen bonds, which are directional noncovalent interactions.

  15. The impact of surface water - groundwater interactions on nitrate cycling assessed by means of hydrogeologic and isotopic techniques in the Alento river basin (Italy)

    Science.gov (United States)

    Stellato, Luisa; Di Rienzo, Brunella; Di Fusco, Egidio; Rubino, Mauro; Marzaioli, Fabio; Terrasi, Filippo; D'Onofrio, Antonio; De Vita, Pantaleone; Allocca, Vincenzo; Salluzzo, Antonio; Rimauro, Juri; Romano, Nunzio; Celico, Fulvio

    2017-04-01

    Currently a major concern of water resources managers is to understand the fate and dynamics of nutrients in riverine ecosystems because of their potential impacts on both river quality and human health (e.g., European Council Directive 91/676/EEC). Nutrients are released within a catchment (or river basin) mainly by agricultural practices and urban/industrial activities, in addition to natural sources such as soils and organic matter. They are discharged into surface water bodies by means of nutrient-rich groundwater inflows and/or overland flow pathways, which can be important controls on hot moment/hot spot type biogeochemical behaviors. Groundwater has been recognized to have a major role in controlling stream ecosystem health since it influences stream ecology when surface and subsurface water are hydraulically connected. In particular, processes occurring at the reach or sub-reach scale more directly influence nutrient transport to rivers than larger scale processes. In this general context, the main scope of this study, within the framework of the IAEA Coordinated Research Project (CRP) "Environmental Isotopes and Age Dating Methods to Assess Nitrogen Pollution and Other Quality Issues in Rivers", was to spatially and temporally quantify groundwater inflows to the Alento river (Southern Italy) to characterize sw-gw interactions in the catchment in order to finally assess nitrates contamination of a groundwater dependent river ecosystem. Four sampling campaigns have been carried out in July and October 2014, in April 2015 and in June 2016 during which 1 spring, rain water, 17 surface water and 27 groundwater points were sampled all over the plain. The piezometric reconstruction has been realized by means of the monitoring of groundwater levels in 43 domestic and agricultural wells (10-15 m deep). The preliminary hydrogeological (water table morphology and stream discharge measurements), physico-chemical (T and EC), hydrochemical and isotopic (222Rn, δD and

  16. Clinically significant interactions between antiretroviral and co-prescribed drugs for HIV-infected children: profiling and comparison of two drug databases

    Directory of Open Access Journals (Sweden)

    Oshikoya KA

    2013-05-01

    Full Text Available Kazeem A Oshikoya,1 Ibrahim A Oreagba,2 Olayinka O Ogunleye,1 Saheed Lawal,2 Idowu O Senbanjo3 1Department of Pharmacology, Lagos State University College of Medicine, Ikeja, Lagos, Nigeria; 2Department of Pharmacology, College of Medicine, University of Lagos, Idi Araba, Lagos, Nigeria; 3Department of Paediatric and Child Health, Lagos State University College of Medicine, Ikeja, Lagos, Nigeria Background: Drug–drug interactions are an important therapeutic challenge among human immunodeficiency virus-infected patients. Early recognition of drug–drug interactions is important, but conflicts do exist among drug compendia on drug interaction information. We aimed to evaluate the consistencies of two drug information resources with regards to the severity rating and categorization of the potential interactions between antiretroviral and co-prescribed drugs. Methods: We reviewed the case files of human immunodeficiency virus-infected children who were receiving treatment at the human immunodeficiency virus (HIV clinic of the Lagos University Teaching Hospital, Idi Araba, between January 2005 and December 2010. All of the co-prescribed and antiretroviral drug pairs were screened for potential interactions using the Medscape Drug Interaction Checker and the Monthly Index of Medical Specialties Interaction Checker. Drug–drug interaction (DDI severity and categorization were rated on a scale of A (no known interaction; B (minor/no action needed; C (moderate/monitor therapy; D (major/therapy modification; and X (contraindicated/avoid combination. Results: A total of 280 patients were at risk of 596 potential DDIs. The databases showed discrepancies, with Medscape database identifying 504 (84.6% and USA MIMS database identifying 302 (50.7% potential DDIs. Simultaneous identification of DDIs by both databases occurred for only 275 (46.1% listed interactions. Both databases have a weak correlation on the severity rating (rs = 0.45; P < 0.001. The

  17. The Role of Groundwater and Reservoir Interaction in Salinity Distribution in a Saline Area in the Northeastern Part of Thailand

    Science.gov (United States)

    Seeboonruang, U.

    2012-12-01

    Salinity is a process by which the concentration of soluble salt in soil and water increases. Human activities can, however, disrupt this natural equilibrium by changing the distribution of salt in the environment. Reservoirs have played a number of crucial roles in the development of human civilization. The main purposes of reservoirs are to prevent floods, to supply water for domestic consumption, to generate electricity, and to irrigate farmlands. Despite various benefits, reservoirs could bring about adverse environmental and social impacts. Infiltration or leakage from man-made reservoirs or dams could cause the change of the groundwater level, thus forcing the deposited salt onto the soil surface and/or waterways. Until now, it is nevertheless unclear as to how the operation and maintenance of reservoirs could impact in a saline soil area physically, environmentally, and/or socially. The purpose of this research is therefore to assess the impacts of reservoirs on groundwater and salinity levels in a saline soil area in the northeastern part of Thailand. Saline soil can be found in many regions of Thailand, particularly in the northeast of Thailand where the Maha Sarakham Foundation, which is composed of imbedded salt rock layers, is the main source of salinity in the region. The salinity accumulation on the surface soil is influenced by the brackish groundwater upward flow and evaporation processes. The study area is located in Nakhon Panom Province in the northeastern part of Thailand along the Great Mekong River and has a total area of approximately 1,300 km2. The yearly evaporation rate in this region is as high as the annual evaporation rate. A reservoir was constructed in the low-lying floodplain area of the Nam Kam basin and started operation since a few years ago. The reservoir is located right in the middle of the floodplain where flood always occurs every rainy season. Groundwater levels are measured and groundwater samples are collected for p

  18. An interactive three-dimensional digital atlas and quantitative database of human development.

    Science.gov (United States)

    de Bakker, Bernadette S; de Jong, Kees H; Hagoort, Jaco; de Bree, Karel; Besselink, Clara T; de Kanter, Froukje E C; Veldhuis, Tyas; Bais, Babette; Schildmeijer, Reggie; Ruijter, Jan M; Oostra, Roelof-Jan; Christoffels, Vincent M; Moorman, Antoon F M

    2016-11-25

    Current knowledge about human development is based on the description of a limited number of embryonic specimens published in original articles and textbooks, often more than 100 years ago. It is exceedingly difficult to verify this knowledge, given the restricted availability of human embryos. We created a three-dimensional digital atlas and database spanning the first 2 months of human development, based on analysis of nearly 15,000 histological sections of the renowned Carnegie Collection of human embryonic specimens. We identified and labeled up to 150 organs and structures per specimen and made three-dimensional models to quantify growth, establish changes in the position of organs, and clarify current ambiguities. The atlas provides an educational and reference resource for studies on early human development, growth, and congenital malformations. Copyright © 2016, American Association for the Advancement of Science.

  19. Database of Ground-Water Levels in the Vicinity of Rainier Mesa, Nevada Test Site, Nye County, Nevada, 1957-2005

    Science.gov (United States)

    Fenelon, Joseph M.

    2006-01-01

    More than 1,200 water-level measurements from 1957 to 2005 in the Rainier Mesa area of the Nevada Test Site were quality assured and analyzed. Water levels were measured from 50 discrete intervals within 18 boreholes and from 4 tunnel sites. An interpretive database was constructed that describes water-level conditions for each water level measured in the Rainier Mesa area. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes hydrograph narratives that describe the water-level history of each well.

  20. PHI-base: a new interface and further additions for the multi-species pathogen-host interactions database.

    Science.gov (United States)

    Urban, Martin; Cuzick, Alayne; Rutherford, Kim; Irvine, Alistair; Pedro, Helder; Pant, Rashmi; Sadanadan, Vidyendra; Khamari, Lokanath; Billal, Santoshkumar; Mohanty, Sagar; Hammond-Kosack, Kim E

    2017-01-04

    The pathogen-host interactions database (PHI-base) is available at www.phi-base.org PHI-base contains expertly curated molecular and biological information on genes proven to affect the outcome of pathogen-host interactions reported in peer reviewed research articles. In addition, literature that indicates specific gene alterations that did not affect the disease interaction phenotype are curated to provide complete datasets for comparative purposes. Viruses are not included. Here we describe a revised PHI-base Version 4 data platform with improved search, filtering and extended data display functions. A PHIB-BLAST search function is provided and a link to PHI-Canto, a tool for authors to directly curate their own published data into PHI-base. The new release of PHI-base Version 4.2 (October 2016) has an increased data content containing information from 2219 manually curated references. The data provide information on 4460 genes from 264 pathogens tested on 176 hosts in 8046 interactions. Prokaryotic and eukaryotic pathogens are represented in almost equal numbers. Host species belong ∼70% to plants and 30% to other species of medical and/or environmental importance. Additional data types included into PHI-base 4 are the direct targets of pathogen effector proteins in experimental and natural host organisms. The curation problems encountered and the future directions of the PHI-base project are briefly discussed. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. PHI-base: a new interface and further additions for the multi-species pathogen–host interactions database

    Science.gov (United States)

    Urban, Martin; Cuzick, Alayne; Rutherford, Kim; Irvine, Alistair; Pedro, Helder; Pant, Rashmi; Sadanadan, Vidyendra; Khamari, Lokanath; Billal, Santoshkumar; Mohanty, Sagar; Hammond-Kosack, Kim E.

    2017-01-01

    The pathogen–host interactions database (PHI-base) is available at www.phi-base.org. PHI-base contains expertly curated molecular and biological information on genes proven to affect the outcome of pathogen–host interactions reported in peer reviewed research articles. In addition, literature that indicates specific gene alterations that did not affect the disease interaction phenotype are curated to provide complete datasets for comparative purposes. Viruses are not included. Here we describe a revised PHI-base Version 4 data platform with improved search, filtering and extended data display functions. A PHIB-BLAST search function is provided and a link to PHI-Canto, a tool for authors to directly curate their own published data into PHI-base. The new release of PHI-base Version 4.2 (October 2016) has an increased data content containing information from 2219 manually curated references. The data provide information on 4460 genes from 264 pathogens tested on 176 hosts in 8046 interactions. Prokaryotic and eukaryotic pathogens are represented in almost equal numbers. Host species belong ∼70% to plants and 30% to other species of medical and/or environmental importance. Additional data types included into PHI-base 4 are the direct targets of pathogen effector proteins in experimental and natural host organisms. The curation problems encountered and the future directions of the PHI-base project are briefly discussed. PMID:27915230

  2. JET2 Viewer: a database of predicted multiple, possibly overlapping, protein–protein interaction sites for PDB structures

    Science.gov (United States)

    Ripoche, Hugues; Laine, Elodie; Ceres, Nicoletta; Carbone, Alessandra

    2017-01-01

    The database JET2 Viewer, openly accessible at http://www.jet2viewer.upmc.fr/, reports putative protein binding sites for all three-dimensional (3D) structures available in the Protein Data Bank (PDB). This knowledge base was generated by applying the computational method JET2 at large-scale on more than 20 000 chains. JET2 strategy yields very precise predictions of interacting surfaces and unravels their evolutionary process and complexity. JET2 Viewer provides an online intelligent display, including interactive 3D visualization of the binding sites mapped onto PDB structures and suitable files recording JET2 analyses. Predictions were evaluated on more than 15 000 experimentally characterized protein interfaces. This is, to our knowledge, the largest evaluation of a protein binding site prediction method. The overall performance of JET2 on all interfaces are: Sen = 52.52, PPV = 51.24, Spe = 80.05, Acc = 75.89. The data can be used to foster new strategies for protein–protein interactions modulation and interaction surface redesign. PMID:27899675

  3. The GEISA 2009 Spectroscopic Database System and its CNES/CNRS Ether Products and Services Center Interactive Distribution

    Science.gov (United States)

    Jacquinet-Husson, Nicole; Crépeau, Laurent; Capelle, Virginie; Scott, Noëlle; Armante, Raymond; Chédin, Alain; Boonne, Cathy; Poulet-Crovisier, Nathalie

    2010-05-01

    The GEISA (1) (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) computer-accessible database, initiated in 1976, is developed and maintained at LMD (Laboratoire de Météorologie Dynamique, France) a system comprising three independent sub-databases devoted respectively to : line transition parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols. The updated 2009 edition (GEISA-09) archives, in its line transition parameters sub-section, 50 molecules, corresponding to 111 isotopes, for a total of 3,807,997 entries, in the spectral range from 10-6 to 35,877.031 cm-1. Detailed description of the whole database contents will be documented. GEISA and GEISA/IASI are implemented on the CNES/CNRS Ether Products and Services Centre WEB site (http://ether.ipsl.jussieu.fr), where all archived spectroscopic data can be handled through general and user friendly associated management software facilities. These facilities will be described and widely illustrated, as well. Interactive demonstrations will be given if technical possibilities are feasible at the time of the Poster Display Session. More than 350 researchers are registered for on line use of GEISA on Ether. Currently, GEISA is involved in activities (2) related to the remote sensing of the terrestrial atmosphere thanks to the sounding performances of new generation of hyperspectral Earth' atmospheric sounders, like AIRS (Atmospheric Infrared Sounder -http://www-airs.jpl.nasa.gov/), in the USA, and IASI (Infrared Atmospheric Sounding Interferometer -http://earth-sciences.cnes.fr/IASI/) in Europe, using the 4A radiative transfer model (3) (4A/LMD http://ara.lmd.polytechnique.fr; 4A/OP co-developed by LMD and NOVELTIS -http://www.noveltis.fr/) with the support of CNES (2006). Refs: (1) Jacquinet-Husson N., N.A. Scott, A. Chédin,L. Crépeau, R. Armante, V. Capelle

  4. The TissueNet v.2 database: A quantitative view of protein-protein interactions across human tissues.

    Science.gov (United States)

    Basha, Omer; Barshir, Ruth; Sharon, Moran; Lerman, Eugene; Kirson, Binyamin F; Hekselman, Idan; Yeger-Lotem, Esti

    2017-01-04

    Knowledge of the molecular interactions of human proteins within tissues is important for identifying their tissue-specific roles and for shedding light on tissue phenotypes. However, many protein-protein interactions (PPIs) have no tissue-contexts. The TissueNet database bridges this gap by associating experimentally-identified PPIs with human tissues that were shown to express both pair-mates. Users can select a protein and a tissue, and obtain a network view of the query protein and its tissue-associated PPIs. TissueNet v.2 is an updated version of the TissueNet database previously featured in NAR. It includes over 40 human tissues profiled via RNA-sequencing or protein-based assays. Users can select their preferred expression data source and interactively set the expression threshold for determining tissue-association. The output of TissueNet v.2 emphasizes qualitative and quantitative features of query proteins and their PPIs. The tissue-specificity view highlights tissue-specific and globally-expressed proteins, and the quantitative view highlights proteins that were differentially expressed in the selected tissue relative to all other tissues. Together, these views allow users to quickly assess the unique versus global functionality of query proteins. Thus, TissueNet v.2 offers an extensive, quantitative and user-friendly interface to study the roles of human proteins across tissues. TissueNet v.2 is available at http://netbio.bgu.ac.il/tissuenet. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Coastal groundwater table estimation by an elevation fluctuation neural model

    Institute of Scientific and Technical Information of China (English)

    HE Bin; WANG Yi

    2007-01-01

    Restrictions of groundwater management are often derived from the insufficient or missing groundwater database. A suitable and complete groundwater database will allow sound engineering plans for sustainable water usage, including the drilling of wells, rates of water withdrawal, and eventually artificial recharge of the aquifer. The spatial-temporal variations of groundwater monitoring data are fluently influenced by the presence of manual factors, monitor equipment malfunctioning, natural phenomena, etc. Thus, it is necessary for researchers to check and infill the groundwater database before running the numerical groundwater model. In this paper, an artificial neural network (ANN)-based model is formulated using the hydrological and meteorological data to infill the inadequate data in the groundwater database. Prediction results present that ANN method could be a desirable choice for estimating the missing groundwater data.

  6. Density-dependent surface water-groundwater interaction and nutrient discharge in the Swan-Canning Estuary

    Science.gov (United States)

    Smith, Anthony J.; Turner, Jeffrey V.

    2001-09-01

    Salinity in the Swan-Canning Estuary, Western Australia, varies seasonally from freshwater conditions in winter up to the salinity of seawater in summer. Field observations show that the resulting seasonal density contrasts between the estuary and the adjacent fresh groundwater system are sufficient to drive mixed-convection cells that give rise to circulation of river water in the aquifer. In this study, we examine the role of steady density-driven convection as a mechanism that contributes to the exchange of dissolved nutrients, particularly ammonium, between the Swan-Canning Estuary and the local groundwater system. We present results from two-dimensional (section) and three-dimensional density-coupled flow and mass transport modelling, in comparison with Glover's abrupt-interface solution for saltwater intrusion. The modelling is focused on developing an understanding of the physical processes that influence the long-term or mean convective behaviour of groundwater beneath the estuary. It is shown that the convective stability depends fundamentally on the interplay between two factors: (1) the downward destabilizing buoyancy effect of density contrasts between the estuary and aquifer; and (2) the upward stabilizing influence of regional groundwater discharge. The structure of convection cells beneath the estuary and recirculation rates of estuary water within the groundwater system are shown to be related to a flow-modified Rayleigh number that depends critically on the aquifer anisotropy and estuary meander pattern. The recirculation of estuary water by these mechanisms is responsible for transport of high concentrations of ammonium, observed in pore fluids in the estuary bed sediments, into groundwater and its eventual return to the estuary.

  7. Interactive Online Real-time Groundwater Model for Irrigation Water Allocation in the Heihe Mid-reaches, China

    Science.gov (United States)

    Pedrazzini, G.; Kinzelbach, W.

    2016-12-01

    In the Heihe Basin and many other semi-arid regions in the world the ongoing introduction of smart meter IC-card systems on farmers' pumping wells will soon allow monitoring and control of abstractions with the goal of preventing further depletion of the resource. In this regard, a major interest of policy makers concerns the development of new and the improvement of existing legislation on pricing schemes and groundwater/surface water quotas. Predictive knowledge on the development of groundwater levels for different allocation schemes or climatic change scenarios is required to support decision-makers in this task. In the past groundwater models have been a static component of investigations and their results delivered in the form of reports. We set up and integrated a groundwater model into a user-friendly web-based environment, allowing direct and easy access to the novice user. Through operating sliders the user can select an irrigation district, change irrigation patterns such as partitioning of surface- and groundwater, size of irrigation area, irrigation efficiency, as well as a number of climate related parameters. Reactive handles allow to display the results in real-time. The implemented software is all license free. The tool is currently being introduced to irrigation district managers in the project area. Findings will be available after some practical experience to be expected in a given time. The accessibility via a web-interface is a novelty in the context of groundwater models. It allows delivering a product accessible from everywhere and from any device. The maintenance and if necessary updating of model or software can occur remotely. Feedback mechanisms between reality and prediction will be introduced and the model periodically updated through data assimilation as new data becomes available. This will render the model a dynamic tool steadily available and evolving over time.

  8. Highlighting the Role of Groundwater in Lake– Aquifer Interaction to Reduce Vulnerability and  Enhance Resilience to Climate Change

    Directory of Open Access Journals (Sweden)

    Yohannes Yihdego

    2017-02-01

    Full Text Available method is presented to analyze the interaction between groundwater and Lake Linlithgow (Australia as a case study. A simplistic approach based on a “node” representing the groundwater component is employed in a spreadsheet of water balance modeling to analyze and highlight the effect of groundwater on the lake level over time. A comparison is made between the simulated and observed lake levels over a period of time by switching the groundwater “node “on and off. A bucket model is assumed to represent the lake behaviour. Although this study demonstrates the understanding of Lake Linlithgow’s groundwater system, the current model reflects the contemporary understanding of the local groundwater system, illustrates how to go about modeling in data-scarce environments, and provides a means to assess focal areas for future data collection and model improvements. Results show that this approach is convenient for getting first‐hand information on the effect of groundwater on wetland or lake levels through lake water budget computation via a node representing the groundwater component. The method can be used anywhere and the applicability of such a method is useful to put in place relevant adaptation mechanisms for future water resources management, reducing vulnerability and enhancing resilience to climate change within the lake basin.

  9. Evaluation of groundwater-surface water interaction through groundwater modelling: simulation of the effects of removal of a dam along a river at a contaminated site in Northern France

    National Research Council Canada - National Science Library

    Remonti, Michele; Mori, Piero

    .... The scope of the work was the optimisation of the existing groundwater pump and treat system and the prediction of possible effects on groundwater circulation after the future removal of a dam located along the river...

  10. World-wide interactive access to scientific databases via satellite and terrestrial data network

    Science.gov (United States)

    Sanderson, T. R.; Albrecht, M. A.; Ciarlo, A.; Brett, M.; Blank, K.; Hughes, P. M. T.; Wallum, G.; Hills, H. K.; Green, J. L.; Mcguire, R. E.; hide

    1990-01-01

    In order to demonstrate the possibilities for scientific networking and data transfer, a first temporary satellite network link was installed between Czecholovakia and the European space operations center in Darmstadt, during the meeting of the inter-agency consultative group for space science in Prague. Several experiments to show interactive nature of the facility and the capability of the system were carried out, and it was proven that, despite the temporary nature of the installation, the planned demonstrations could be conducted in real time. Demonstrations included electronic mail message, orbit prediction and solar X-ray data. The results of the experiment provided insight into possibilities of data exchange.

  11. World-wide interactive access to scientific databases via satellite and terrestrial data network

    Science.gov (United States)

    Sanderson, T. R.; Albrecht, M. A.; Ciarlo, A.; Brett, M.; Blank, K.; Hughes, P. M. T.; Wallum, G.; Hills, H. K.; Green, J. L.; Mcguire, R. E.; Kamei, T.; Kiplinger, A.; Waite, J. H., Jr.

    1990-01-01

    In order to demonstrate the possibilities for scientific networking and data transfer, a first temporary satellite network link was installed between Czecholovakia and the European space operations center in Darmstadt, during the meeting of the inter-agency consultative group for space science in Prague. Several experiments to show interactive nature of the facility and the capability of the system were carried out, and it was proven that, despite the temporary nature of the installation, the planned demonstrations could be conducted in real time. Demonstrations included electronic mail message, orbit prediction and solar X-ray data. The results of the experiment provided insight into possibilities of data exchange.

  12. Groundwater-soil moisture-climate interactions: lessons from idealized model experiments with forced water table depth

    Science.gov (United States)

    Ducharne, Agnès; Lo, Min-Hui; Decharme, Bertrand; Wang, Fuxing; Cheruy, Frédérique; Ghattas, Josefine; Chien, Rong-You; lan, Chia-Wei; Colin, Jeanne; Tyteca, Sophie

    2016-04-01

    Groundwater (GW) constitutes by far the largest volume of liquid freshwater on Earth. The most active part is soil moisture (SM), recognized as a key variable of land/atmosphere interactions, especially in so-called transition zones, where/when SM varies between wet and dry values. But GW can also be stored in deeper reservoirs than soils, in particular unconfined aquifer systems, in which the saturated part is called the water table (WT). The latter is characterized by slow and mostly horizontal water flows towards the river network, with well-known buffering effects on streamflow variability. Where/when the WT is shallow enough, it can also sustain SM by means of capillary rise, thus increase evapotranspiration (ET), with potential impact on the climate system (including temperatures and precipitation). The large residence time of GW may also increase the Earth system's memory, with consequences on the persistence of extreme events, hydro-climatic predictability, and anthropogenic climate change, particularly the magnitude of regional warming. Here, our main goal is to explore the potential impacts of the water table depth (WTD) on historical climate through idealized model analyses. To this end, we force three state-of-the art land surface models (LSMs), namely CLM, ORCHIDEE, and SURFEX, with prescribed WTDs ranging from 0.5 to 10 m. The LSMs are run either off-line or coupled to their parent climate model, following LMIP/AMIP-like protocols for intercomparability. Within this framework, we want to assess the sensitivity of ET and the simulated climate to the WTD in a systematic way. In particular, we will identify and compare the patterns of the critical WTD, defined as the deepest one to achieve a significant change in ET. To this end, we estimate derivatives of ET with respect to WTD, which tell how the sensitivity of ET to a unit change in WTD evolves with WTD. In each grid-point, these derivatives can be used to define the critical WTD, given a threshold ET

  13. Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States

    Science.gov (United States)

    Webb, R.H.; Leake, S.A.

    2006-01-01

    Riverine riparian vegetation has changed throughout the southwestern United States, prompting concern about losses of habitat and biodiversity. Woody riparian vegetation grows in a variety of geomorphic settings ranging from bedrock-lined channels to perennial streams crossing deep alluvium and is dependent on interaction between ground-water and surface-water resources. Historically, few reaches in Arizona, southern Utah, or eastern California below 1530 m elevation had closed gallery forests of cottonwood and willow; instead, many alluvial reaches that now support riparian gallery forests once had marshy grasslands and most bedrock canyons were essentially barren. Repeat photography using more than 3000 historical images of rivers indicates that riparian vegetation has increased over much of the region. These increases appear to be related to several factors, notably the reduction in beaver populations by trappers in the 19th century, downcutting of arroyos that drained alluvial aquifers between 1880 and 1910, the frequent recurrence of winter floods during discrete periods of the 20th century, an increased growing season, and stable ground-water levels. Reductions in riparian vegetation result from agricultural clearing, excessive ground-water use, complete flow diversion, and impoundment of reservoirs. Elimination of riparian vegetation occurs either where high ground-water use lowers the water table below the rooting depth of riparian species, where base flow is completely diverted, or both. We illustrate regional changes using case histories of the San Pedro and Santa Cruz Rivers, which are adjacent watersheds in southern Arizona with long histories of water development and different trajectories of change in riparian vegetation.

  14. Simulation of Groundwater-Surface Water Interactions under Different Land Use Scenarios in the Bulang Catchment, Northwest China

    NARCIS (Netherlands)

    Yang, Z.; Zhou, Y.; Wenninger, J.; Uhlenbrook, S.; Wan, L.

    2015-01-01

    Groundwater is the most important resource for local society and the ecosystem in the semi-arid Hailiutu River catchment. The catchment water balance was analyzed by considering vegetation types with the Normalized Difference Vegetation Index (NDVI), determining evapotranspiration rates by combining

  15. Hydrologic, abiotic and biotic interactions: plant density, windspeed, leaf size and groundwater all affect oak water use efficiency

    Science.gov (United States)

    Darin J. Law; Deborah M. Finch

    2011-01-01

    Plant water use in drylands can be complex due to variation in hydrologic, abiotic and biotic factors, particularly near ephemeral or intermittent streams. Plant use of groundwater may be important but is usually uncertain. Disturbances like fire contribute to complex spatiotemporal heterogeneity. Improved understanding of how such hydrologic, abiotic, and biotic...

  16. Temporal dynamics of groundwater-surface water interaction under the effects of climate change: A case study in the Kiskatinaw River Watershed, Canada

    Science.gov (United States)

    Saha, Gopal Chandra; Li, Jianbing; Thring, Ronald W.; Hirshfield, Faye; Paul, Siddhartho Shekhar

    2017-08-01

    Groundwater-surface water (GW-SW) interaction plays a vital role in the functioning of riparian ecosystem, as well as sustainable water resources management. In this study, temporal dynamics of GW-SW interaction were investigated under climate change. A case study was chosen for a study area along the Kiskatinaw River in Mainstem sub-watershed of the Kiskatinaw River Watershed, British Columbia, Canada. A physically based and distributed GW-SW interaction model, Gridded Surface Subsurface Hydrologic Analysis (GSSHA), was used. Two different greenhouse gas (GHG) emission scenarios (i.e., A2: heterogeneous world with self-reliance and preservation of local identities, and B1: more integrated and environmental friendly world) of SRES (Special Report on Emissions Scenarios) from Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) were used for climate change study for 2020-2040. The simulation results showed that climate change influences significantly the temporal patterns of GW-SW interaction by generating variable temporal mean groundwater contributions to streamflow. Due to precipitation variability, these contributions varied monthly, seasonally, and annually. The mean annual groundwater contribution to streamflow during 2020-2040 under the A2 and B1 scenarios is expected to be 74.5% (σ = 2%) and 75.6% (σ = 3%), respectively. As compared to that during the base modeling period (2007-2011), the mean annual groundwater contribution to streamflow during 2020-2040 under the A2 and B1 scenarios is expected to decrease by 5.5% and 4.4%, respectively, due to the increased precipitation (on average 6.7% in the A2 and 4.8% in the B1 scenarios) and temperature (on average 0.83 °C in the A2 and 0.64 °C in the B1 scenarios). The results obtained from this study will provide useful information in the long-term seasonal and annual water extractions from the river for future water supply, as well as for evaluating the ecological conditions of the

  17. PhID: an open-access integrated pharmacology interactions database for drugs, targets, diseases, genes, side-effects and pathways.

    Science.gov (United States)

    Deng, Zhe; Tu, Weizhong; Deng, Zixin; Hu, Qian-Nan

    2017-09-14

    The current network pharmacology study encountered a bottleneck with a lot of public data scattered in different databases. There is the lack of open-access and consolidated platform that integrates this information for systemic research. To address this issue, we have developed PhID, an integrated pharmacology database which integrates >400,000 pharmacology elements (drug, target, disease, gene, side-effect, and pathway) and >200,000 element interactions in branches of public databases. The PhID has three major applications: (1) assists scientists searching through the overwhelming amount of pharmacology elements interaction data by names, public IDs, molecule structures, or molecular sub-structures; (2) helps visualizing pharmacology elements and their interactions with a web-based network graph; (3) provides prediction of drug-target interactions through two modules: PreDPI-ki and FIM, by which users can predict drug-target interactions of the PhID entities or some drug-target pairs they interest. To get a systems-level understanding of drug action and disease complexity, PhID as a network pharmacology tool was established from the perspective of data layer, visualization layer and prediction model layer to present information untapped by current databases. Database URL: http://phid.ditad.org/.

  18. Characterization of Interactions between Surface Water and Near-Stream Groundwater along Fish Creek, Teton County, Wyoming, by Using Heat as a Tracer

    Science.gov (United States)

    Eddy-Miller, Cheryl A.; Wheeler, Jerrod D.; Essaid, Hedeff I.

    2009-01-01

    Fish Creek, a tributary of the Snake River, is about 25 river kilometers long and is located in Teton County in western Wyoming near the town of Wilson. Local residents began observing an increase in the growth of algae and aquatic plants in the stream during the last decade. Due to the known importance of groundwater to surface water in the area, the U.S. Geological Survey (USGS), in cooperation with the Teton Conservation District, conducted a study to characterize the interactions between surface water and near-stream groundwater along Fish Creek. The study has two main objectives: (1) develop an improved spatial and temporal understanding of water flow (fluxes) between surface water and groundwater, and (2) use a two-dimensional groundwater-flow and heat-transport model to interpret observed temperature and hydraulic-head distributions and to describe groundwater flow near Fish Creek. The study is intended to augment hydrologic information derived from previously published results of a seepage investigation on Fish Creek. Seepage measurements provide spatially averaged gains and losses over an entire reach for one point in time, whereas continuous temperature and water-level measurements provide continuous estimates of gain and loss at a specific location. Stage, water-level, and temperature data were collected from surface water and from piezometers completed in an alluvial aquifer at three cross sections on Fish Creek at Teton Village, Resor's Bridge, and Wilson from October 2004 to October 2006. The flow and energy (heat) transport model VS2DH was used to simulate flow through the streambed of Fish Creek at the Teton Village cross section from April 15 to October 14, 2006, (183 recharge periods) and at the Resor's Bridge and Wilson cross sections from June 6, 2005, to October 14, 2006 (496 recharge periods). A trial-and-error technique was used to determine the best match between simulated and measured data. These results were then used to calibrate the

  19. Combined electrical resistivity tomography and magnetic resonance sounding investigation of the surface-water/groundwater interaction in the Urema Graben, Mozambique

    Science.gov (United States)

    Chirindja, F. J.; Dahlin, T.; Perttu, N.; Steinbruch, F.; Owen, R.

    2016-09-01

    This study focusses on the hydrogeology of Urema Graben, especially possible interactions between surface water and groundwater around Lake Urema, in Gorongosa National Park (GNP). Lake Urema is the only permanent water source for wildlife inside GNP, and there are concerns that it will disappear due to interferences in surface-water/groundwater interactions as a result of changes in the hydraulic environment. As the lake is the only permanent water source, this would be a disaster for the ecosystem of the park. The sub-surface geology in Urema Graben was investigated by 20 km of electrical resistivity tomography (ERT) and three magnetic resonance sounding (MRS) surveys. The average depth penetration was 60 and 100 m, respectively. The location of the ERT lines was decided based on general rift morphology and therefore orientated perpendicular to Urema Graben, from the transitional areas of the margins of the Barue platform in the west to the Cheringoma plateau escarpments in the east. ERT and MRS both indicate a second aquifer, where Urema Lake is a window of the first upper semi-confined aquifer, while the lower aquifer is confined by a clay layer 30-40 m thick. The location and depth of this aquifer suggest that it is probably linked to the Pungwe River which could be a main source of recharge during the dry season. If a dam or any other infra-structure is constructed in Pungwe River upstream of GNP, the groundwater level will decrease which could lead to drying out of Urema Lake.

  20. Groundwater Energy Designer (GED). Computerized design tool for use of groundwater as heating and cooling source - Final report; Groundwater Energy Designer (GED). Computergestuetztes Auslegungstool zur Waerme- und Kaeltenutzung von Grundwasser - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Poppei, J.; Mayer, G.; Schwarz, R.

    2006-11-15

    We have developed the graphic-based tool Groundwater Energy Designer (GED) for the dimensioning of groundwater withdrawal and reinjection facilities for the purpose of thermal energy exploitation. The tool is designed to support persons planning and constructing small and medium sized installations as well as licensing authorities. GED takes into account the site-specific energy demand and hydrogeological situation. Starting from the analysis of heating or cooling demand, the possibilities of a direct utilization of the groundwater are tested interactively. The well bores for groundwater withdrawal are dimensioned based on a simplified hydrogeological characterisation. The options for the reinjection of used water are investigated considering the local situation (available area and natural groundwater flow). The situation is assessed with consideration of: (i) the technical feasibility at the site (drawdown in the well, distance between production and reinjection wells); (ii) the potential thermal impact on the groundwater (delineation of the heat propagation front for an evaluation of licensing feasibility). GED combines interactive user interfaces for the input of data and characterisation of the local situation, a database with technical and hydrogeological parameters and a flow and heat transfer simulator based on a finite volume code with an automatic mesh generator. The program is available for purchase from the developer. (authors)

  1. Reviving the Ganges Water Machine: Accelerating surface water and groundwater interactions in the Ramganga sub-basin

    Science.gov (United States)

    Surinaidu, L.; Muthuwatta, L.; Amarasinghe, U. A.; Jain, S. K.; Ghosh, N. C.; Kumar, Sudhir; Singh, Surjeet

    2016-09-01

    Reviving the Ganges Water Machine (GWM), coined 40 years ago, is the most opportune solution for mitigating the impacts of recurrent droughts and floods in the Ganges River Basin in South Asia. GWM create subsurface storage (SSS) by pumping more groundwater from the aquifers before the monsoon for irrigation and other uses and recharge it during the monsoon. The present study uses fully processed and physically based numerical models, MODFLOW and SWAT, in a semi-coupled modelling framework to examine the technical feasibility of recharging the SSS. The aquifer was simulated as a two-layer system using hydrogeological and groundwater data, model was calibrated from 1999 to 2005 and validated from 2006 to 2010. It assesses the impacts of gradual increase of SSS in 10 years from the base year 2010 under two scenarios (increased rainfall or controlled pumping and recharge) to meet a potential unmet demand of 1.68 billion cubic meters (Bm3) in the Ramganga sub-basin with an area of 18,668 km2. The results show that 3-4 m of subsurface storage can be created by groundwater pumping of 0.25 Bm3/year by 2020. Under the controlled pumping and recharge scenario, groundwater recharge and river seepage could increase by 14% (4.21-4.80 Bm3) and 31% (1.10-1.44 Bm3), respectively. However, baseflow will decrease by 30% (0.18-0.12 Bm3) over the same time period. The results also show that recharge increased 44% (4.21-6.05 Bm3) under an increased rainfall scenario. Simultaneously, river seepage and baseflows would increase 36% (1.10-1.14 Bm3) and 11% (0.18-0.20 Bm3), respectively. A well-designed managed aquifer recharge program is required to eliminate the negative impact of river flows in the low flow season.

  2. An Interactive Geospatial Database and Visualization Approach to Early Warning Systems and Monitoring of Active Volcanoes: GEOWARN

    Science.gov (United States)

    Gogu, R. C.; Schwandner, F. M.; Hurni, L.; Dietrich, V. J.

    2002-12-01

    Large parts of southern and central Europe and the Pacific rim are situated in tectonically, seismic and volcanological extremely active zones. With the growth of population and tourism, vulnerability and risk towards natural hazards have expanded over large areas. Socio-economical aspects, land use, tourist and industrial planning as well as environmental protection increasingly require needs of natural hazard assessment. The availability of powerful and reliable satellite, geophysical and geochemical information and warning systems is therefore increasingly vital. Besides, once such systems have proven to be effective, they can be applied for similar purposes in other European areas and worldwide. Technologies today have proven that early warning of volcanic activity can be achieved by monitoring measurable changes in geophysical and geochemical parameters. Correlation between different monitored data sets, which would improve any prediction, is very scarce or missing. Visualisation of all spatial information and integration into an "intelligent cartographic concept" is of paramount interest in order to develop 2-, 3- and 4-dimensional models to approach the risk and emergency assessment as well as environmental and socio-economic planning. In the framework of the GEOWARN project, a database prototype for an Early Warning System (EWS) and monitoring of volcanic activity in case of hydrothermal-explosive and volcanic reactivation has been designed. The platform-independent, web-based, JAVA-programmed, interactive multidisciplinary multiparameter visualization software being developed at ETH allows expansion and utilization to other volcanoes, world-wide databases of volcanic unrest, or other types of natural hazard assessment. Within the project consortium, scientific data have been acquired on two pilot sites: Campi Flegrei (Italy) and Nisyros Greece, including 2&3D Topography and Bathymetry, Elevation (DEM) and Landscape models (DLM) derived from conventional

  3. Comparison of two databases to detect potential drug-drug interactions between prescriptions of HIV/AIDS patients in critical care.

    Science.gov (United States)

    Ramos, G V; Guaraldo, L; Japiassú, A M; Bozza, F A

    2015-02-01

    Adverse drug events (ADE), common and underestimated in ICU patients, have direct consequences on length of stay, mortality and hospital costs. Critically ill patients with HIV/AIDS are at a high risk of ADE because of their need for multiple drug therapies. ADE can be prevented, especially by the identification of potentially harmful drug-drug interactions (DDIs). Electronic databases are useful tools for the investigation of DDIs to avoid potential ADEs, thereby increasing patient safety. The purpose of this study was to compare the classification and severity rating of potential adverse drug interactions seen in the prescriptions for patients with HIV/AIDS in two databases, one with free access (Drugs.com(™)) and another requiring payment for access (Micromedex(®)). A cross-sectional retrospective study of the prescriptions issued for 40 ICU HIV/AIDS patients on mechanical ventilation, admitted for more than 48 h, in a referral hospital for infectious diseases in Rio de Janeiro, Brazil, was undertaken. One prescription was reviewed each week for each patient from the second day after admission. A list of all drug-drug interactions was generated for each patient using the two drug-drug interactions databases. The weighted kappa index was estimated to assess the agreement between the classifications of DDIs identified by both databases and qualitative assessment made of any discordant classification of recorded drug-drug interactions. Of the 106 prescriptions analysed, Micromedex(®) and Drugs.com identified 347 and 615 potential DDIs, respectively. A predominance of moderate interactions and pharmacokinetic interactions was observed. The agreement between the databases regarding the severity rating was only 68.3%. The weighted kappa of 0.44 is considered moderate. Better agreement (82.4%) was observed in the classification of mechanism of interaction, with a weighted kappa of 0.61. DDIs are common between the prescriptions of patients with HIV/AIDS admitted to

  4. Field scale interaction and nutrient exchange between surface water and shallow groundwater in the Baiyang Lake region, North China Plain.

    Science.gov (United States)

    Brauns, Bentje; Bjerg, Poul L; Song, Xianfang; Jakobsen, Rasmus

    2016-07-01

    Fertilizer input for agricultural food production, as well as the discharge of domestic and industrial water pollutants, increases pressures on locally scarce and vulnerable water resources in the North China Plain. In order to: (a) understand pollutant exchange between surface water and groundwater, (b) quantify nutrient loadings, and (c) identify major nutrient removal pathways by using qualitative and quantitative methods, including the geochemical model PHREEQC) a one-year study at a wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping system in the Baiyang Lake area in Hebei Province, China, was undertaken. The study showed a high influence of low-quality surface water on the shallow aquifer. Major inflowing pollutants into the aquifer were ammonium and nitrate via inflow from the adjacent Fu River (up to 29.8mg/L NH4-N and 6.8mg/L NO3-N), as well as nitrate via vertical transport from the field surface (up to 134.8mg/L NO3-N in soil water). Results from a conceptual model show an excess nitrogen input of about 320kg/ha/a. Nevertheless, both nitrogen species were only detected at low concentrations in shallow groundwater, averaging at 3.6mg/L NH4-N and 1.8mg/L NO3-N. Measurement results supported by PHREEQC-modeling indicated cation exchange, denitrification, and anaerobic ammonium oxidation coupled with partial denitrification as major nitrogen removal pathways. Despite the current removal capacity, the excessive nitrogen fertilization may pose a future threat to groundwater quality. Surface water quality improvements are therefore recommended in conjunction with simultaneous monitoring of nitrate in the aquifer, and reduced agricultural N-inputs should be considered.

  5. Identification of fluoride contamination with the interaction of physico-chemical characteristics in groundwater of Jodhpur (India).

    Science.gov (United States)

    Modi, A N; Kumar, Pushpendra

    2012-10-01

    A hydrogeochemical investigation has been carried out in Jodhpur district of western Rajasthan in India. The investigated area has been classified into four types with reference to concentration of F(-) prescribed for drinking: low-F(-) ( 3.0 mgl(-1)). Twenty three percent of the total groundwater samples belong to the very high-F(-) category, Twenty two percent samples belong to the high-F(-) category, Thirty four percent samples belong to the moderate-F(-) category and twenty one percent samples belong to the low-F(-) category. The correlation study suggests a positive correlation (r = 0.396) between the pH and fluoride concentration, indicating that higher alkalinity of the water promotes the leaching of fluoride and thus affect the concentration of fluoride in groundwaters. Highest positive correlation coefficient was observed between fluoride and alkalinity (r = 0.516) indicating that alkalinity favors the higher values of fluoride in the study area. The regression equations have been developed by taking fluoride as dependent variable and other water quality parameters as independent variable. Possible sources of fluoride (F(-)) are weathering and leaching of F(-) bearing minerals under the alkaline environment. Arid environment, high rate of evapotranspiration and longer residence time of waters in the aquifer zone are the supplementary factors to further increase the F(-) content in the ground waters.

  6. Water level observations from Unmanned Aerial Vehicles (UAVs) for improving probabilistic estimations of interaction between rivers and groundwater

    Science.gov (United States)

    Bandini, Filippo; Butts, Michael; Vammen Jacobsen, Torsten; Bauer-Gottwein, Peter

    2016-04-01

    Integrated hydrological models are generally calibrated against observations of river discharge and piezometric head in groundwater aquifers. Integrated hydrological models are rarely calibrated against spatially distributed water level observations measured by either in-situ stations or spaceborne platforms. Indeed in-situ observations derived from ground-based stations are generally spaced too far apart to capture spatial patterns in the water surface. On the other hand spaceborne observations have limited spatial resolution. Additionally satellite observations have a temporal resolution which is not ideal for observing the temporal patterns of the hydrological variables during extreme events. UAVs (Unmanned Aerial Vehicles) offer several advantages: i) high spatial resolution; ii) tracking of the water body better than any satellite technology; iii) timing of the sampling merely depending on the operators. In this case study the Mølleåen river (Denmark) and its catchment have been simulated through an integrated hydrological model (MIKE 11-MIKE SHE). This model was initially calibrated against observations of river discharge retrieved by in-situ stations and against piezometric head of the aquifers. Subsequently the hydrological model has been calibrated against dense spatially distributed water level observations, which could potentially be retrieved by UAVs. Error characteristics of synthetic UAV water level observations were taken from a recent proof-of-concept study. Since the technology for ranging water level is under development, UAV synthetic water level observations were extracted from another model of the river with higher spatial resolution (cross sections located every 10 m). This model with high resolution is assumed to be absolute truth for the purpose of this work. The river model with the coarser resolution has been calibrated against the synthetic water level observations through Differential Evolution Adaptive Metropolis (DREAM) algorithm, an

  7. Identification of surface water-groundwater interaction by hydrogeochemical indicators and assessing its suitability for drinking and irrigational purposes in Chennai, Southern India

    Science.gov (United States)

    Brindha, K.; Neena Vaman, K. V.; Srinivasan, K.; Sathis Babu, M.; Elango, L.

    2014-06-01

    Large cities face water quality and quantity problems due to increasing population and improper disposal of solid and liquid wastes. It is essential to monitor the water quality to take corrective measures. This study was carried out in one of the densely populated metropolitan cities in India to ascertain the suitability of groundwater for drinking and irrigation activity, identify the processes controlling the geochemistry of groundwater and the impact of Adyar River on the groundwater quality. Magnesium and pH concentration in groundwater of this area were within the maximum permissible limits of WHO standards. Sodium and potassium concentration of groundwater were greater than the permissible limit in 30.8 % and in 50 % of the samples, respectively. About 35 % of the groundwater samples were not permissible for drinking based on the electrical conductivity (EC). The EC of groundwater was increasing towards the coast. In general, the quality of groundwater for irrigation purpose vary from moderate to good based on Na%, magnesium hazard, residual sodium carbonate, sodium absorption ratio, permeability index, and USDA classification. Na-Cl and Ca-Mg-Cl were the dominant groundwater and surface water type. Increased ionic concentration of groundwater towards the eastern part of the study area is due to the discharge of industrial effluents and domestic sewage into the Adyar River. Seawater intrusion is also one of the reasons for Na-Cl dominant groundwater near the coast. Evaporation and ion exchange were the major processes controlling groundwater chemistry in this area. The groundwater quality of this region is affected by the contaminated surface water.

  8. Hydrologic response to multimodel climate output using a physically based model of groundwater/surface water interactions

    Science.gov (United States)

    Sulis, M.; Paniconi, C.; Marrocu, M.; Huard, D.; Chaumont, D.

    2012-12-01

    General circulation models (GCMs) are the primary instruments for obtaining projections of future global climate change. Outputs from GCMs, aided by dynamical and/or statistical downscaling techniques, have long been used to simulate changes in regional climate systems over wide spatiotemporal scales. Numerous studies have acknowledged the disagreements between the various GCMs and between the different downscaling methods designed to compensate for the mismatch between climate model output and the spatial scale at which hydrological models are applied. Very little is known, however, about the importance of these differences once they have been input or assimilated by a nonlinear hydrological model. This issue is investigated here at the catchment scale using a process-based model of integrated surface and subsurface hydrologic response driven by outputs from 12 members of a multimodel climate ensemble. The data set consists of daily values of precipitation and min/max temperatures obtained by combining four regional climate models and five GCMs. The regional scenarios were downscaled using a quantile scaling bias-correction technique. The hydrologic response was simulated for the 690 km2des Anglais catchment in southwestern Quebec, Canada. The results show that different hydrological components (river discharge, aquifer recharge, and soil moisture storage) respond differently to precipitation and temperature anomalies in the multimodel climate output, with greater variability for annual discharge compared to recharge and soil moisture storage. We also find that runoff generation and extreme event-driven peak hydrograph flows are highly sensitive to any uncertainty in climate data. Finally, the results show the significant impact of changing sequences of rainy days on groundwater recharge fluxes and the influence of longer dry spells in modifying soil moisture spatial variability.

  9. groundwater contribution to crop water requirement groundwater ...

    African Journals Online (AJOL)

    eobe

    Keywords: Groundwater, water table, capillary rise, soil type, waterleaf, ... GROUNDWATER CONTRIBUTION TO WATERLEAF (TALINUM TRIANGULARE) IN OXISOLS, I. J. ... Nutritionally, ... information to facilitate increased crop production,.

  10. AUTOMATING GROUNDWATER SAMPLING AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    CONNELL CW; HILDEBRAND RD; CONLEY SF; CUNNINGHAM DE

    2009-01-16

    Until this past October, Fluor Hanford managed Hanford's integrated groundwater program for the U.S. Department of Energy (DOE). With the new contract awards at the Site, however, the CH2M HILL Plateau Remediation Company (CHPRC) has assumed responsibility for the groundwater-monitoring programs at the 586-square-mile reservation in southeastern Washington State. These programs are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. More than 1,200 wells are sampled each year. Historically, field personnel or 'samplers' have been issued pre-printed forms that have information about the well(s) for a particular sampling evolution. This information is taken from the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS)--official electronic databases. The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and the collected information was posted onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. This is a pilot project for automating this tedious process by providing an electronic tool for automating water-level measurements and groundwater field-sampling activities. The automation will eliminate the manual forms and associated data entry, improve the

  11. Groundwater hydrology instructional system

    Science.gov (United States)

    Schmidt, Ronald G.

    Wright State University, Dayton, Ohio, is preparing for its third cycle of the Interactive Remote Instructional System (IRIS) in groundwater hydrology, beginning January 15, 1986. The first cycle finished with an impressive completion ratio for registered participants, and the second cycle has currently been underway since July. This comprehensive hydrogeology program was originally developed for the Soil Conservation Service (of the U.S. Department of Agriculture) to prepare their personnel for professional practice work. Since its evolution into IRIS, an 80% participant completion rate has been recorded for the first cycle, which is a significant departure from success rates traditionally recorded by correspondence courses. This excellent rate of success is the result of 2 years of refinement and demonstrates the progressive nature of the program. IRIS has met the needs of participants by developing a curriculum that reflects current trends in the groundwater industry and has provided a unique educational approach that ensures maximum interaction between the instructional staff and participants.

  12. Groundwater contamination from waste management sites: The interaction between risk-based engineering design and regulatory policy: 1. Methodology

    Science.gov (United States)

    Massmann, Joel; Freeze, R. Allan

    1987-02-01

    This paper puts in place a risk-cost-benefit analysis for waste management facilities that explicitly recognizes the adversarial relationship that exists in a regulated market economy between the owner/operator of a waste management facility and the government regulatory agency under whose terms the facility must be licensed. The risk-cost-benefit analysis is set up from the perspective of the owner/operator. It can be used directly by the owner/operator to assess alternative design strategies. It can also be used by the regulatory agency to assess alternative regulatory policy, but only in an indirect manner, by examining the response of an owner/operator to the stimuli of various policies. The objective function is couched in terms of a discounted stream of benefits, costs, and risks over an engineering time horizon. Benefits are in the form of revenues for services provided; costs are those of construction and operation of the facility. Risk is defined as the cost associated with the probability of failure, with failure defined as the occurrence of a groundwater contamination event that violates the licensing requirements established for the facility. Failure requires a breach of the containment structure and contaminant migration through the hydrogeological environment to a compliance surface. The probability of failure can be estimated on the basis of reliability theory for the breach of containment and with a Monte-Carlo finite-element simulation for the advective contaminant transport. In the hydrogeological environment the hydraulic conductivity values are defined stochastically. The probability of failure is reduced by the presence of a monitoring network operated by the owner/operator and located between the source and the regulatory compliance surface. The level of reduction in the probability of failure depends on the probability of detection of the monitoring network, which can be calculated from the stochastic contaminant transport simulations. While

  13. ChiTaRS-3.1—the enhanced chimeric transcripts and RNA-seq database matched with protein–protein interactions

    Science.gov (United States)

    Gorohovski, Alessandro; Tagore, Somnath; Palande, Vikrant; Malka, Assaf; Raviv-Shay, Dorith; Frenkel-Morgenstern, Milana

    2017-01-01

    Discovery of chimeric RNAs, which are produced by chromosomal translocations as well as the joining of exons from different genes by trans-splicing, has added a new level of complexity to our study and understanding of the transcriptome. The enhanced ChiTaRS-3.1 database (http://chitars.md.biu.ac.il) is designed to make widely accessible a wealth of mined data on chimeric RNAs, with easy-to-use analytical tools built-in. The database comprises 34 922 chimeric transcripts along with 11 714 cancer breakpoints. In this latest version, we have included multiple cross-references to GeneCards, iHop, PubMed, NCBI, Ensembl, OMIM, RefSeq and the Mitelman collection for every entry in the ‘Full Collection’. In addition, for every chimera, we have added a predicted chimeric protein–protein interaction (ChiPPI) network, which allows for easy visualization of protein partners of both parental and fusion proteins for all human chimeras. The database contains a comprehensive annotation for 34 922 chimeric transcripts from eight organisms, and includes the manual annotation of 200 sense-antiSense (SaS) chimeras. The current improvements in the content and functionality to the ChiTaRS database make it a central resource for the study of chimeric transcripts and fusion proteins. PMID:27899596

  14. A global-scale two-layer transient groundwater model: Development and application to groundwater depletion

    Science.gov (United States)

    de Graaf, Inge E. M.; van Beek, Rens L. P. H.; Gleeson, Tom; Moosdorf, Nils; Schmitz, Oliver; Sutanudjaja, Edwin H.; Bierkens, Marc F. P.

    2017-04-01

    Groundwater is the world's largest accessible source of freshwater to satisfy human water needs. Moreover, groundwater buffers variable precipitation rates over time, thereby effectively sustaining river flows in times of droughts and evaporation in areas with shallow water tables. In this study, building on previous work, we simulate groundwater head fluctuations and groundwater storage changes in both confined and unconfined aquifer systems using a global-scale high-resolution (5‧) groundwater model by deriving new estimates of the distribution and thickness of confining layers. Inclusion of confined aquifer systems (estimated 6-20% of the total aquifer area) improves estimates of timing and amplitude of groundwater head fluctuations and changes groundwater flow paths and groundwater-surface water interaction rates. Groundwater flow paths within confining layers are shorter than paths in the underlying aquifer, while flows within the confined aquifer can get disconnected from the local drainage system due to the low conductivity of the confining layer. Lateral groundwater flows between basins are significant in the model, especially for areas with (partially) confined aquifers were long flow paths crossing catchment boundaries are simulated, thereby supporting water budgets of neighboring catchments or aquifer systems. The developed two-layer transient groundwater model is used to identify hot-spots of groundwater depletion. Global groundwater depletion is estimated as 7013 km3 (137 km3y-1) over 1960-2010, which is consistent with estimates of previous studies.

  15. Evaluation of groundwater-surface water interaction through groundwater modelling: simulation of the effects of removal of a dam along a river at a contaminated site in Northern France

    Directory of Open Access Journals (Sweden)

    Michele Remonti

    2013-06-01

    Full Text Available A numerical groundwater flow model has been developed for an industrial site bounded by a river in in Basse Normandie, Northern France. The scope of the work was the optimisation of the existing groundwater pump and treat system and the prediction of possible effects on groundwater circulation after the future removal of a dam located along the river. The model has been implemented with the finite difference code MODFLOW 2005 and represents an area with an extension of approximately 800 x 500 m. It has been calibrated using static conditions groundwater head data (wells deactivated and verified with 1 abstracting conditions (wells abstracting head data, 2 simulating pumping tests with transient simulations and 3 comparing measured average river baseflow with modelled river drainage. The model indicates that the hydraulic barrier in the present abstraction scenario has some problematic areas and needs some improvements, as confirmed by the hydrochemical data of the river water. A first predictive scenario has been developed to optimise the barrier, indicating that a flow rate of 0.5 m3/h each at three new barrier wells, in addition to the present abstraction scenario, should ensure the hydraulic containment of the site. A second predictive scenario simulates the optimised groundwater abstractions without the presence of the dam along the neighbouring river. In these conditions, the river will increase the drainage effect on the aquifer, requiring a further increase in the rate of abstraction from the existing and new wells to ensure the hydraulic containment. With this paper we would like to present an example of what we think is a correct professional approach, with the design of the simplest model as possible depending on the hydrogeological conceptual model complexity, the abundance of data and the model objectives, and where multiple confirmations of the correctness of groundwater model results have been searched for.

  16. Benchmarking of the 2010 BioCreative Challenge III text-mining competition by the BioGRID and MINT interaction databases

    Directory of Open Access Journals (Sweden)

    Cesareni Gianni

    2011-10-01

    Full Text Available Abstract Background The vast amount of data published in the primary biomedical literature represents a challenge for the automated extraction and codification of individual data elements. Biological databases that rely solely on manual extraction by expert curators are unable to comprehensively annotate the information dispersed across the entire biomedical literature. The development of efficient tools based on natural language processing (NLP systems is essential for the selection of relevant publications, identification of data attributes and partially automated annotation. One of the tasks of the Biocreative 2010 Challenge III was devoted to the evaluation of NLP systems developed to identify articles for curation and extraction of protein-protein interaction (PPI data. Results The Biocreative 2010 competition addressed three tasks: gene normalization, article classification and interaction method identification. The BioGRID and MINT protein interaction databases both participated in the generation of the test publication set for gene normalization, annotated the development and test sets for article classification, and curated the test set for interaction method classification. These test datasets served as a gold standard for the evaluation of data extraction algorithms. Conclusion The development of efficient tools for extraction of PPI data is a necessary step to achieve full curation of the biomedical literature. NLP systems can in the first instance facilitate expert curation by refining the list of candidate publications that contain PPI data; more ambitiously, NLP approaches may be able to directly extract relevant information from full-text articles for rapid inspection by expert curators. Close collaboration between biological databases and NLP systems developers will continue to facilitate the long-term objectives of both disciplines.

  17. The role of weak intermolecular C-H…F interactions in supramolecular assembly: Structural investigations on 3,5- dibenzylidene-piperidin-4-one and database analysis

    Indian Academy of Sciences (India)

    R S Rathore; N S Karthikeyan; Y Alekhya; K Sathiyanarayanan; P G Aravindan

    2011-07-01

    The fluorinated and non-fluorinated dibenzylidene-4-piperidones were synthesized and their structures examined using X-ray crystallography. Interestingly, the para-fluorosubstituted dibenzylidene compound, in contrast to other analogs, is characterized by C-H…F bonded one-dimensional packing motif. To evaluate the ability of hydrogen bond donors and acceptors for forming interactions, in general and competitive situation, we have defined statistical descriptors. Analysis of Cambridge Structural Database using these newly defined parameters reveals high propensity of C-H…F interactions in organic crystals. The present structural study suggests much larger role of fluorine driven intermolecular interactions that are even though weak, but possess significant ability to direct and alter the packing.

  18. Thermal management of an urban groundwater body

    Directory of Open Access Journals (Sweden)

    J. Epting

    2012-06-01

    Full Text Available This study presents a management concept for the sustainable thermal use of an urban groundwater body. The concept is designed to be applied for shallow thermal groundwater use and is based on (1 a characterization of the present thermal state of the investigated urban groundwater body; (2 the definition of development goals for specific aquifer regions, including future aquifer use and urbanization; and (3 an evaluation of the thermal use potential for these regions.

    The investigations conducted in the city of Basel (Switzerland focus on thermal processes down-gradient of thermal groundwater use, effects of heated buildings in the aquifer as well as the thermal influence of river-groundwater interaction. Investigation methods include: (1 short- and long-term data analysis; (2 high-resolution multilevel groundwater temperature monitoring; as well as (3 3-D numerical groundwater flow and heat-transport modeling and scenario development. The combination of these methods allows quantifying the thermal influence on the investigated urban groundwater body, including the influences of thermal groundwater use and additional heat from urbanization. Subsequently, management strategies for minimizing further groundwater temperature increase, targeting "potential natural" groundwater temperatures for specific aquifer regions and exploiting the thermal use potential are discussed.

  19. Apparent Resistivity and Estimated Interaction Potential of Surface Water and Groundwater along Selected Canals and Streams in the Elkhorn-Loup Model Study Area, North-Central Nebraska, 2006-07

    Science.gov (United States)

    Teeple, Andrew P.; Vrabel, Joseph; Kress, Wade H.; Cannia, James C.

    2009-01-01

    In 2005, the State of Nebraska adopted new legislation that in part requires local Natural Resources Districts to include the effect of groundwater use on surface-water systems in their groundwater management plan. In response the U.S. Geological Survey, in cooperation with the Upper Elkhorn, Lower Elkhorn, Upper Loup, Lower Loup, Middle Niobrara, Lower Niobrara, Lewis and Clark, and Lower Platte North Natural Resources Districts, did a study during 2006-07 to investigate the surface-water and groundwater interaction within a 79,800-square-kilometer area in north-central Nebraska. To determine how streambed materials affect surface-water and groundwater interaction, surface geophysical and lithologic data were integrated at four sites to characterize the hydrogeologic conditions within the study area. Frequency-domain electromagnetic and waterborne direct- current resistivity profiles were collected to map the near-surface hydrogeologic conditions along sections of Ainsworth Canal near Ainsworth, Nebraska; Mirdan and Geranium Canals near Ord, Nebraska; North Loup River near Ord, Nebraska; and Middle Loup River near Thedford, Nebraska. Lithologic data were collected from test holes at each site to aid interpretation of the geophysical data. Geostatistical analysis incorporating the spatial variability of resistivity was used to account for the effect of lithologic heterogeneity on effective hydraulic permeability. The geostatistical analysis and lithologic data descriptions were used to make an interpretation of the hydrogeologic system and derive estimates of surface-water/groundwater interaction potential within the canals and streambeds. The estimated interaction potential at the Ainsworth Canal site and the Mirdan and Geranium Canal site is generally low to moderately low. The sediment textures at nearby test holes typically were silt and clay and fine-to-medium sand. The apparent resistivity values for these sites ranged from 2 to 120 ohm-meters. The vertical

  20. Error Propagation in Geochemical Calculations of Groundwater-Mineral Interactions: A Case Study from the Pingdingshan Coalfield, Henan

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The WATEQ4F-based "multiple step method", or the method of running WATEQ4F repeatedly, was used to evaluate the error propagation in computations of water-mineral interactions under the circumstances of constant and varied temperatures due to the uncertainties of input variables. The results show the following: the errors of water chemistry analysis can strongly affect the modelling results of water-mineral reactions; different input variables (errors) have different effects on the saturation indices (S.I.) of different minerals; in many cases, the S.I. errors of minerals change with temperatures.

  1. Modeling multicomponent ionic transport in groundwater with IPhreeqc coupling: Electrostatic interactions and geochemical reactions in homogeneous and heterogeneous domains

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2016-01-01

    The key role of small-scale processes like molecular diffusion and electrochemical migration has been increasingly recognized in multicomponent reactive transport in saturated porous media. In this study, we propose a two-dimensional multicomponent reactive transport model taking into account...... the electrostatic interactions during transport of charged ions in physically and chemically heterogeneous porous media. The modeling approach is based on the local charge balance and on the description of compound-specific and spatially variable diffusive/dispersive fluxes. The multicomponent ionic transport code...

  2. Study on the Interaction Relationship Between Surface Water and Groundwater in Nalingguole River Alluvial-Oroluvial Fan%那陵郭勒河冲洪积扇地表水-地下水转化关系

    Institute of Scientific and Technical Information of China (English)

    朱谱成; 苏小四; 张世广; 黄勇; 杨峰田; 徐威

    2014-01-01

    On the Basis of the hydrogen and oxygen stable isotopes data about water in the Nalingguole River(called the Na River for short)alluvi-al-proluvial fan area,this study illustrated the interaction relationship between groundwater and surface water along the Na River in alluvial-proluvi-al fan area. The results demonstrate that groundwater in the alluvial-proluvial fan is mainly recharged by atmospheric precipitation and snowmelt from the southern mountains. Groundwater and surface water have the same origin and the interactions between them occur repeatedly. It shows dif-ferent kinds of conversion modes in different sections of the Na River alluvial-proluvial fan area. In the upper reaches of the river(the mountain zone),the hydraulic connection between surface water and groundwater is weak. In the middle reaches of the river(the uplift zone),groundwater recharges the surface water. In the downstream of the river(middle of the alluvial-proluvial fan),groundwater is recharged by surface water. In the front of the alluvial-proluvial fan,the groundwater overflows and forms springs,then springs are collected into the surface water.%通过分析那陵郭勒河冲洪积扇地区地表水与地下水的氢氧稳定同位素特征,揭示冲洪积扇地区不同地带的地表水-地下水转化关系。研究结果表明:冲洪积扇地区地下水主要补给来源是南部山区的大气降水和冰雪融水。河水与地下水具有同一起源,且二者相互转化,在冲洪积扇地区不同地段表现出不同的转化方式:上游山区河水与地下水水力联系较弱;中游山前隆起带地下水补给河水;下游冲洪积扇中部河水补给地下水;在冲洪积扇前缘溢出带,河水主要由地下水溢流形成的泉水汇流而成。

  3. Simulating groundwater-induced sewer flooding

    Science.gov (United States)

    Mijic, A.; Mansour, M.; Stanic, M.; Jackson, C. R.

    2016-12-01

    During the last decade, Chalk catchments of southern England experienced severe groundwater flooding. High groundwater levels resulted in the groundwater ingress into the sewer network that led to restricted toilet use and the overflow of diluted, but untreated sewage to road surfaces, rivers and water courses. In response to these events the water and sewerage company Thames Water Utilities Ltd (TWUL) had to allocate significant funds to mitigate the impacts. It was estimated that approximately £19m was spent responding to the extreme wet weather of 2013-14, along with the use of a fleet of over 100 tankers. However, the magnitude of the event was so large that these efforts could not stop the discharge of sewage to the environment. This work presents the analysis of the risk of groundwater-induced sewer flooding within the Chalk catchment of the River Lambourn, Berkshire. A spatially distributed groundwater model was used to assess historic groundwater flood risk and the potential impacts of changes in future climate. We then linked this model to an urban groundwater model to enable us to simulate groundwater-sewer interaction in detail. The modelling setup was used to identify relationships between infiltration into sewers and groundwater levels at specific points on TWUL's sewer network, and to estimate historic and future groundwater flood risk, and how this varies across the catchment. The study showed the significance of understanding the impact of groundwater on the urban water systems, and producing information that can inform a water company's response to groundwater flood risk, their decision making process and their asset management planning. However, the knowledge gained through integrated modelling of groundwater-sewer interactions has highlighted limitations of existing approaches for the simulation of these coupled systems. We conclude this work with number of recommendations about how to improve such hydrological/sewer analysis.

  4. Reconstruction of groundwater depletion using a global scale groundwater model

    Science.gov (United States)

    de Graaf, Inge; van Beek, Rens; Sutanudjaja, Edwin; Wada, Yoshi; Bierkens, Marc

    2015-04-01

    Groundwater forms an integral part of the global hydrological cycle and is the world's largest accessible source of fresh water to satisfy human water needs. It buffers variable recharge rates over time, thereby effectively sustaining river flows in times of drought as well as evaporation in areas with shallow water tables. Moreover, although lateral groundwater flows are often slow, they cross topographic and administrative boundaries at appreciable rates. Despite the importance of groundwater, most global scale hydrological models do not consider surface water-groundwater interactions or include a lateral groundwater flow component. The main reason of this omission is the lack of consistent global-scale hydrogeological information needed to arrive at a more realistic representation of the groundwater system, i.e. including information on aquifer depths and the presence of confining layers. The latter holds vital information on the accessibility and quality of the global groundwater resource. In this study we developed a high resolution (5 arc-minutes) global scale transient groundwater model comprising confined and unconfined aquifers. This model is based on MODFLOW (McDonald and Harbaugh, 1988) and coupled with the land-surface model PCR GLOBWB (van Beek et al., 2011) via recharge and surface water levels. Aquifers properties were based on newly derived estimates of aquifer depths (de Graaf et al., 2014b) and thickness of confining layers from an integration of lithological and topographical information. They were further parameterized using available global datasets on lithology (Hartmann and Moosdorf, 2011) and permeability (Gleeson et al., 2014). In a sensitivity analysis the model was run with various hydrogeological parameter settings, under natural recharge only. Scenarios of past groundwater abstractions and corresponding recharge (Wada et al., 2012, de Graaf et al. 2014a) were evaluated. The resulting estimates of groundwater depletion are lower than

  5. Groundwater Waters

    Directory of Open Access Journals (Sweden)

    Ramón Llamas

    1999-10-01

    Full Text Available The groundwaters released through springs constituted a basic element for the survival and progressive development of human beings. Man came to learn how to take better advantage of these waters by digging wells, irrigation channels, and galleries. Nevertheless, these activities do not require cooperation nor the collective agreement of relatively large groups of people, as in the case of creating the necessary structures to take advantage of the resources of surfacewaters. The construction and operation of these structures was a powerful factor in the birth of an urban or civil society – the designated water civilizations. The difference between people taking advantage of groundwater, quasi-individually, and those of surface water, where people work in a group, has continued to the present day. Whereas earlier, this difference did not bring about any special problems, the technological advances of this century, especially theturbine pump, have led to a spectacular increase in the use of roundwater. This advance has significantly contributed to reducing hunger in the world and has provided potable water in developing countries. However, the almost generalized lack of planning and control in the exploitation of these groundwaters reflects that they are little or badly understood by the managers of water policy in almost every country. As such, problems have occurred which have often become exaggerated, giving rise to water-myths. These problems, though, should be addressed if the aim is the sustainable usage of surface water as well as groundwater. To counter any misconceptions and to seek solutions to the problems, distinct plans of action can be highlighted: educating the public; fomenting a system of participative management and decisive support for the communities of users of subterranean waters; integrating a sufficient number of experts in hydrology in the various water management organizations;and assuring transparency of the data on

  6. Modeling multicomponent ionic transport in groundwater with IPhreeqc coupling: Electrostatic interactions and geochemical reactions in homogeneous and heterogeneous domains

    Science.gov (United States)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2016-12-01

    The key role of small-scale processes like molecular diffusion and electrochemical migration has been increasingly recognized in multicomponent reactive transport in saturated porous media. In this study, we propose a two-dimensional multicomponent reactive transport model taking into account the electrostatic interactions during transport of charged ions in physically and chemically heterogeneous porous media. The modeling approach is based on the local charge balance and on the description of compound-specific and spatially variable diffusive/dispersive fluxes. The multicomponent ionic transport code is coupled with the geochemical code PHREEQC-3 by utilizing the IPhreeqc module, thus enabling to perform the geochemical calculations included in the PHREEQC's reaction package. The multicomponent reactive transport code is benchmarked with different 1-D and 2-D transport problems. Successively, conservative and reactive transport examples are presented to demonstrate the capability of the proposed model to simulate transport of charged species in heterogeneous porous media with spatially variable physical and chemical properties. The results reveal that the Coulombic cross-coupling between dispersive fluxes can significantly influence conservative as well as reactive transport of charged species both at the laboratory and at the field scale.

  7. Databases for Microbiologists

    Science.gov (United States)

    2015-01-01

    Databases play an increasingly important role in biology. They archive, store, maintain, and share information on genes, genomes, expression data, protein sequences and structures, metabolites and reactions, interactions, and pathways. All these data are critically important to microbiologists. Furthermore, microbiology has its own databases that deal with model microorganisms, microbial diversity, physiology, and pathogenesis. Thousands of biological databases are currently available, and it becomes increasingly difficult to keep up with their development. The purpose of this minireview is to provide a brief survey of current databases that are of interest to microbiologists. PMID:26013493

  8. Putative Vitis vinifera Rop- and Rab-GAP-, GEF-, and GDI-interacting proteins uncovered with novel methods for public genomic and EST database analysis.

    Science.gov (United States)

    Abbal, Philippe; Tesniere, Catherine

    2010-01-01

    To understand how grapevine Rop and Rab proteins achieve their functional versatility in signalling, identification of the putative VvRop- and VvRab-interacting proteins was performed using newly designed tools. In this study, sequences encoding eight full-length proteins for VvRop GTPase-activating proteins (GAPs), five for VvRabGAPs, six for VvRop guanine nucleotide exchange factors (GEFs), one for VvRabGEF, five for VvRop GDP dissociation inhibitors (GDIs), and three for VvRabGDIs were identified. These proteins had a CRIB motif or PH domain, a TBC domain, a PRONE domain, a DENN domain, or GDI signatures, respectively. By bootstrap analysis, an unrooted consensus phylogenetic tree was constructed which indicated that VvRopGDIs and VvRopGEFs--but not VvRopGAP--belonged to the same clade, and that VvRabGEF1 protein was more closely related to VvRopGAPs than to the other putative VvRab-interacting proteins. Twenty-two genes out of 28 encoding putative VvRop- and VvRab-interacting proteins could be located on identified grapevine chromosomes. Generally one gene was anchored on one chromosome, but in some cases up to four genes were located on the same chromosome. Expression patterns of the genes encoding putative VvRop- and VvRab-interacting proteins were also examined using a newly developed tool based on public expressed sequence tag (EST) database analysis. Expression patterns were sometimes found to be specific to an organ or a developmental stage. Although some limitations exist, the use of EST database analysis is stressed, in particular in the case of species where expression data are obtained at high costs in terms of time and effort.

  9. Relational databases

    CERN Document Server

    Bell, D A

    1986-01-01

    Relational Databases explores the major advances in relational databases and provides a balanced analysis of the state of the art in relational databases. Topics covered include capture and analysis of data placement requirements; distributed relational database systems; data dependency manipulation in database schemata; and relational database support for computer graphics and computer aided design. This book is divided into three sections and begins with an overview of the theory and practice of distributed systems, using the example of INGRES from Relational Technology as illustration. The

  10. Megacity pumping and preferential flow threaten groundwater quality

    Science.gov (United States)

    Khan, Mahfuzur R.; Koneshloo, Mohammad; Knappett, Peter S. K.; Ahmed, Kazi M.; Bostick, Benjamin C.; Mailloux, Brian J.; Mozumder, Rajib H.; Zahid, Anwar; Harvey, Charles F.; van Geen, Alexander; Michael, Holly A.

    2016-09-01

    Many of the world's megacities depend on groundwater from geologically complex aquifers that are over-exploited and threatened by contamination. Here, using the example of Dhaka, Bangladesh, we illustrate how interactions between aquifer heterogeneity and groundwater exploitation jeopardize groundwater resources regionally. Groundwater pumping in Dhaka has caused large-scale drawdown that extends into outlying areas where arsenic-contaminated shallow groundwater is pervasive and has potential to migrate downward. We evaluate the vulnerability of deep, low-arsenic groundwater with groundwater models that incorporate geostatistical simulations of aquifer heterogeneity. Simulations show that preferential flow through stratigraphy typical of fluvio-deltaic aquifers could contaminate deep (>150 m) groundwater within a decade, nearly a century faster than predicted through homogeneous models calibrated to the same data. The most critical fast flowpaths cannot be predicted by simplified models or identified by standard measurements. Such complex vulnerability beyond city limits could become a limiting factor for megacity groundwater supplies in aquifers worldwide.

  11. Groundwater Interference

    Data.gov (United States)

    Vermont Center for Geographic Information — "This is a searchable database representing over 40 years of hydrogeologic information based on yield testing required for new and existing public water supply...

  12. Fully integrated surface-subsurface flow modelling of groundwater-lake interaction in an esker aquifer: Model verification with stable isotopes and airborne thermal imaging

    Science.gov (United States)

    Ala-aho, Pertti; Rossi, Pekka M.; Isokangas, Elina; Kløve, Bjørn

    2015-03-01

    Water resources management is moving towards integration, where groundwater (GW), surface water (SW) and related aquatic ecosystems are considered one management unit. Because of this paradigm shift, more information and new tools are needed to understand the ecologically relevant fluxes (water, heat, solutes) at the GW-SW interface. This study estimated the magnitude, temporal variability and spatial distribution of water fluxes at the GW-SW interface using a fully integrated hydrological modelling code (HydroGeoSphere). The model domain comprised a hydrologically complex esker aquifer in Northern Finland with interconnected lakes, streams and wetlands. The model was calibrated in steady state for soil hydraulic conductivity and anisotropy and it reproduced the hydraulic head and stream baseflow distribution throughout the aquifer in both transient and steady state modes. In a novel analysis, model outputs were compared with the locations and magnitude of GW discharge to lakes estimated using field techniques. Spatial occurrence of GW-lake interaction was interpreted from airborne thermal infrared imaging. The observed GW inflow locations coincided well with model nodes showing positive exchange flux between surface and subsurface domains. Order of magnitude of simulated GW inflow to lakes showed good agreement with flux values calculated with a stable water isotope technique. Finally, time series of GW inflow, extracted as model output, showed moderate annual variability and demonstrated different interannual inflow changes in seepage and drainage lakes of the aquifer. Overall, this study demonstrated the ability of a fully integrated numerical model to reproduce observed GW-SW exchange processes in a complex unconfined aquifer system. The model-based estimates obtained for GW influx magnitude and spatial distribution, along with information on GW quality can be used to estimate ecologically relevant fluxes in future water resources management.

  13. Parenting-by-gender interactions in child psychopathology: attempting to address inconsistencies with a Canadian national database

    Directory of Open Access Journals (Sweden)

    Thabane Lehana

    2010-01-01

    Full Text Available Abstract Background Research has shown strong links between parenting and child psychopathology. The moderating role of child gender is of particular interest, due to gender differences in socialization history and in the prevalence of psychiatric disorders. Currently there is little agreement on how gender moderates the relationship between parenting and child psychopathology. This study attempts to address this lack of consensus by drawing upon two theories (self-salience vs. gender stereotyped misbehaviour to determine how child gender moderates the role of parenting, if at all. Methods Using generalized estimating equations (GEE associations between three parenting dimensions (hostile-ineffective parenting, parental consistency, and positive interaction were examined in relationship to child externalizing (physical aggression, indirect aggression, and hyperactivity-inattention and internalizing (emotional disorder-anxiety dimensions of psychopathology. A sample 4 and 5 year olds from the National Longitudinal Survey of Children and Youth (NLSCY were selected for analysis and followed over 6 years (N = 1214. Two models with main effects (Model 1 and main effects plus interactions (Model 2 were tested. Results No child gender-by-parenting interactions were observed for child physical aggression and indirect aggression. The association between hostile-ineffective parenting and child hyperactivity was stronger for girls, though this effect did not reach conventional levels of statistical significance (p = .059. The associations between parenting and child emotional disorder did vary as a function of gender, where influences of parental consistency and positive interaction were stronger for boys. Discussion Despite the presence of a few significant interaction effects, hypotheses were not supported for either theory (i.e. self-salience or gender stereotyped misbehaviour. We believe that the inconsistencies in the literature regarding child gender

  14. Groundwater and Global Palaeoclimate Signals (G@GPS)

    NARCIS (Netherlands)

    Haldorsen, Sylvi; Ploeg, van der Martine J.; Cendon, Dioni I.; Chen, Jianyao; Jemaa, Najiba Chkir Ben; Gurdak, Jason J.; Purtschert, Roland; Tujchneider, Ofelia; Vaikmae, Rein; Perez, Marcela; Zouari, Kamel

    2016-01-01

    Groundwater sources supply fresh drinking water to almost half of the World's population and are a main source of water for irrigation across world. Characterization of groundwater resources, surface groundwater interactions and their link to the global water cycle and modern global change are

  15. Product Licenses Database Application

    CERN Document Server

    Tonkovikj, Petar

    2016-01-01

    The goal of this project is to organize and centralize the data about software tools available to CERN employees, as well as provide a system that would simplify the license management process by providing information about the available licenses and their expiry dates. The project development process is consisted of two steps: modeling the products (software tools), product licenses, legal agreements and other data related to these entities in a relational database and developing the front-end user interface so that the user can interact with the database. The result is an ASP.NET MVC web application with interactive views for displaying and managing the data in the underlying database.

  16. Biofuel Database

    Science.gov (United States)

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  17. Onzekere databases

    NARCIS (Netherlands)

    van Keulen, Maurice

    Een recente ontwikkeling in het databaseonderzoek betret zogenaamde 'onzekere databases'. Dit artikel beschrijft wat onzekere databases zijn, hoe ze gebruikt kunnen worden en welke toepassingen met name voordeel zouden kunnen hebben van deze technologie.

  18. Community Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This excel spreadsheet is the result of merging at the port level of several of the in-house fisheries databases in combination with other demographic databases such...

  19. Database Administrator

    Science.gov (United States)

    Moore, Pam

    2010-01-01

    The Internet and electronic commerce (e-commerce) generate lots of data. Data must be stored, organized, and managed. Database administrators, or DBAs, work with database software to find ways to do this. They identify user needs, set up computer databases, and test systems. They ensure that systems perform as they should and add people to the…

  20. Database Administrator

    Science.gov (United States)

    Moore, Pam

    2010-01-01

    The Internet and electronic commerce (e-commerce) generate lots of data. Data must be stored, organized, and managed. Database administrators, or DBAs, work with database software to find ways to do this. They identify user needs, set up computer databases, and test systems. They ensure that systems perform as they should and add people to the…

  1. Water and carbon stable isotope records from natural archives: a new database and interactive online platform for data browsing, visualizing and downloading

    Science.gov (United States)

    Bolliet, Timothé; Brockmann, Patrick; Masson-Delmotte, Valérie; Bassinot, Franck; Daux, Valérie; Genty, Dominique; Landais, Amaelle; Lavrieux, Marlène; Michel, Elisabeth; Ortega, Pablo; Risi, Camille; Roche, Didier M.; Vimeux, Françoise; Waelbroeck, Claire

    2016-08-01

    Past climate is an important benchmark to assess the ability of climate models to simulate key processes and feedbacks. Numerous proxy records exist for stable isotopes of water and/or carbon, which are also implemented inside the components of a growing number of Earth system model. Model-data comparisons can help to constrain the uncertainties associated with transfer functions. This motivates the need of producing a comprehensive compilation of different proxy sources. We have put together a global database of proxy records of oxygen (δ18O), hydrogen (δD) and carbon (δ13C) stable isotopes from different archives: ocean and lake sediments, corals, ice cores, speleothems and tree-ring cellulose. Source records were obtained from the georeferenced open access PANGAEA and NOAA libraries, complemented by additional data obtained from a literature survey. About 3000 source records were screened for chronological information and temporal resolution of proxy records. Altogether, this database consists of hundreds of dated δ18O, δ13C and δD records in a standardized simple text format, complemented with a metadata Excel catalog. A quality control flag was implemented to describe age markers and inform on chronological uncertainty. This compilation effort highlights the need to homogenize and structure the format of datasets and chronological information as well as enhance the distribution of published datasets that are currently highly fragmented and scattered. We also provide an online portal based on the records included in this database with an intuitive and interactive platform (http://climateproxiesfinder.ipsl.fr/), allowing one to easily select, visualize and download subsets of the homogeneously formatted records that constitute this database, following a choice of search criteria, and to upload new datasets. In the last part, we illustrate the type of application allowed by our database by comparing several key periods highly investigated by the

  2. RegTransBase--a database of regulatory sequences and interactions based on literature: a resource for investigating transcriptional regulation in prokaryotes.

    Science.gov (United States)

    Cipriano, Michael J; Novichkov, Pavel N; Kazakov, Alexey E; Rodionov, Dmitry A; Arkin, Adam P; Gelfand, Mikhail S; Dubchak, Inna

    2013-04-02

    Due to the constantly growing number of sequenced microbial genomes, comparative genomics has been playing a major role in the investigation of regulatory interactions in bacteria. Regulon inference mostly remains a field of semi-manual examination since absence of a knowledgebase and informatics platform for automated and systematic investigation restricts opportunities for computational prediction. Additionally, confirming computationally inferred regulons by experimental data is critically important. RegTransBase is an open-access platform with a user-friendly web interface publicly available at http://regtransbase.lbl.gov. It consists of two databases - a manually collected hierarchical regulatory interactions database based on more than 7000 scientific papers which can serve as a knowledgebase for verification of predictions, and a large set of curated by experts transcription factor binding sites used in regulon inference by a variety of tools. RegTransBase captures the knowledge from published scientific literature using controlled vocabularies and contains various types of experimental data, such as: the activation or repression of transcription by an identified direct regulator; determination of the transcriptional regulatory function of a protein (or RNA) directly binding to DNA or RNA; mapping of binding sites for a regulatory protein; characterization of regulatory mutations. Analysis of the data collected from literature resulted in the creation of Putative Regulons from Experimental Data that are also available in RegTransBase. RegTransBase is a powerful user-friendly platform for the investigation of regulation in prokaryotes. It uses a collection of validated regulatory sequences that can be easily extracted and used to infer regulatory interactions by comparative genomics techniques thus assisting researchers in the interpretation of transcriptional regulation data.

  3. Consideration on thermodynamic data for predicting solubility and chemical species of elements in groundwater. Part 1: Tc, U, Am

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Tetsuji; Takeda, Seiji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-01-01

    The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Complexations of radionuclides by ligands in groundwater affect the interaction between radionuclides and geologic media, thus affect their migration behavior. Thermodynamic data for Tc, Am and U were reviewed and compiled to be used for predicting the solubility and chemical species in groundwater. Thermodynamic data were reviewed with emphasis on the hydrolysis and carbonate complexation that can dominate the speciation in typical groundwater. Thermodynamic data for other species were selected based on existing database. Thermodynamic data for other important elements are under investigation, thus shown in an appendix for temporary use. (author)

  4. Brackish groundwater in the United States

    Science.gov (United States)

    Stanton, Jennifer S.; Anning, David W.; Brown, Craig J.; Moore, Richard B.; McGuire, Virginia L.; Qi, Sharon L.; Harris, Alta C.; Dennehy, Kevin F.; McMahon, Peter B.; Degnan, James R.; Böhlke, John Karl

    2017-04-05

    For some parts of the Nation, large-scale development of groundwater has caused decreases in the amount of groundwater that is present in aquifer storage and that discharges to surface-water bodies. Water supply in some areas, particularly in arid and semiarid regions, is not adequate to meet demand, and severe drought is affecting large parts of the United States. Future water demand is projected to heighten the current stress on groundwater resources. This combination of factors has led to concerns about the availability of freshwater to meet domestic, agricultural, industrial, mining, and environmental needs. To ensure the water security of the Nation, currently [2016] untapped water sources may need to be developed.Brackish groundwater is an unconventional water source that may offer a partial solution to current and future water demands. In support of the national census of water resources, the U.S. Geological Survey completed the national brackish groundwater assessment to better understand the occurrence and characteristics of brackish groundwater in the United States as a potential water resource. Analyses completed as part of this assessment relied on previously collected data from multiple sources; no new data were collected. Compiled data included readily available information about groundwater chemistry, horizontal and vertical extents and hydrogeologic characteristics of principal aquifers (regionally extensive aquifers or aquifer systems that have the potential to be used as a source of potable water), and groundwater use. Although these data were obtained from a wide variety of sources, the compiled data are biased toward shallow and fresh groundwater resources; data representing groundwater that is at great depths and is saline were not as readily available.One of the most important contributions of this assessment is the creation of a database containing chemical characteristics and aquifer information for the known areas with brackish groundwater

  5. A multitracer approach for characterizing interactions between shallow groundwater and the hydrothermal system in the Norris Geyser Basin area, Yellowstone National Park

    Science.gov (United States)

    Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.

    2011-01-01

    Multiple environmental tracers are used to investigate age distribution, evolution, and mixing in local- to regional-scale groundwater circulation around the Norris Geyser Basin area in Yellowstone National Park. Springs ranging in temperature from 3??C to 90??C in the Norris Geyser Basin area were sampled for stable isotopes of hydrogen and oxygen, major and minor element chemistry, dissolved chlorofluorocarbons, and tritium. Groundwater near Norris Geyser Basin is comprised of two distinct systems: a shallow, cool water system and a deep, high-temperature hydrothermal system. These two end-member systems mix to create springs with intermediate temperature and composition. Using multiple tracers from a large number of springs, it is possible constrain the distribution of possible flow paths and refine conceptual models of groundwater circulation in and around a large, complex hydrothermal system. Copyright 2011 by the American Geophysical Union.

  6. Characterization and interaction of precipitation, river water and groundwater in the Vietnamese Mekong Delta - A case study in the Plain of Reeds

    Science.gov (United States)

    Duy Nguyen, Le; Heidbüchel, Ingo; Merz, Bruno; Apel, Heiko

    2016-04-01

    An understanding of the interactions between surface water and groundwater systems in the Vietnamese Mekong Delta (VMD) is important not only for water resources planning and management, but also for the livelihood of the majority of the population in the delta. Precipitation and ground water, but also river water is used as drinking water in the communes of the Delta. Particularly the ground water is increasingly exploited, but the important processes like river - aquifer interaction and ground water recharge rates are largely unknown. This study thus aims at the characterization of processes between the different water resources. For this the different water sources were sampled over longer time periods and analysed for isotopic composition (2H, 18O). Additionally surface and ground water levels were recorded, as well as the temperature profile at and under the river bed in order to identify the river-ground water interaction. First results indicate that the isotopic composition and the local meteoric water line of the precipitation is very similar to the GNIP data for Bangkok, indicating similar isotopic sequestration and origin of the rainfall in the region (near ocean areas of SE-Asia). The isotopic composition of precipitation and river water exhibits a strong seasonal signal indicating the monsoonal influence. During the monsoon season both precipitation and river water is depleted in stable isotopes, while the dry season shows an enriched composition. This also indicates the different composition of the river water over the seasons. During the rainy season the portion of rain water, i.e. surface runoff stemming from the Mekong basin but also direct rainfall contribution in the Mekong Delta is considerably larger, as expected. The enriched composition during the dry season indicates a larger ground water, i.e. base flow portion, but also a generally higher evaporation due to the lower atmospheric moisture. The isotopic composition of the ground water differs

  7. Review of Groundwater-Surface Water Interactions in Wetland%湿地地表水—地下水交互作用的研究综述

    Institute of Scientific and Technical Information of China (English)

    范伟; 章光新; 李然然

    2012-01-01

    impacts on hydrological and water supply regimes,which will in turn impose additional pressures on wetland.Subsequently the interactions among multi-interfaces integrating physical,chemical and biological processes will be enhanced for better understanding under changing conditions,and it is supposed to be counteractive to the SW-GW system extensively indeed.Concerted efforts from multidisciplinary approaches must be encouraged to elucidate the different interfaces effects,which help to understand the eco-environmental response to SW-GW interactions and provide insight into the research methodologies in return,because the interfaces effects display a function of fingerprinting to the characteristics of the interactions.Finally,the SW-GW interactions models are reviewed,and it is important to note that the models of SW-GW interactions coupling the water quantity and quality should be constructed based upon the understanding of hydrologic characteristics in wetland.To identify the information on different scales,coupling several mechanisms and verifying the parameters in the model are the key points in future study.Overall,the SW-GW interactions strongly influence the spatial/ temporal availability of the water resources and the structure/ function of the wetland ecosystem.Therefore,further study will be necessary to help water resources managers to deal with such issues as fiood mitigation,groundwater exploitation,and biodiversity conservation in a more integrated and sustainable manner.

  8. TcoF-DB v2: update of the database of human and mouse transcription co-factors and transcription factor interactions

    KAUST Repository

    Schmeier, Sebastian

    2016-10-17

    Transcription factors (TFs) play a pivotal role in transcriptional regulation, making them crucial for cell survival and important biological functions. For the regulation of transcription, interactions of different regulatory proteins known as transcription co-factors (TcoFs) and TFs are essential in forming necessary protein complexes. Although TcoFs themselves do not bind DNA directly, their influence on transcriptional regulation and initiation, although indirect, has been shown to be significant, with the functionality of TFs strongly influenced by the presence of TcoFs. In the TcoF-DB v2 database, we collect information on TcoFs. In this article, we describe updates and improvements implemented in TcoF-DB v2. TcoF-DB v2 provides several new features that enables exploration of the roles of TcoFs. The content of the database has significantly expanded, and is enriched with information from Gene Ontology, biological pathways, diseases and molecular signatures. TcoF-DB v2 now includes many more TFs; has substantially increased the number of human TcoFs to 958, and now includes information on mouse (418 new TcoFs). TcoF-DB v2 enables the exploration of information on TcoFs and allows investigations into their influence on transcriptional regulation in humans and mice. TcoF-DB v2 can be accessed at http://tcofdb.org/.

  9. Extensive database of liquid phase diffusion coefficients of some frequently used test molecules in reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Song, Huiying; Vanderheyden, Yoachim; Adams, Erwin; Desmet, Gert; Cabooter, Deirdre

    2016-07-15

    Diffusion plays an important role in all aspects of band broadening in chromatography. An accurate knowledge of molecular diffusion coefficients in different mobile phases is therefore crucial in fundamental column performance studies. Correlations available in literature, such as the Wilke-Chang equation, can provide good approximations of molecular diffusion under reversed-phase conditions. However, these correlations have been demonstrated to be less accurate for mobile phases containing a large percentage of acetonitrile, as is the case in hydrophilic interaction liquid chromatography. A database of experimentally measured molecular diffusion coefficients of some 45 polar and apolar compounds that are frequently used as test molecules under hydrophilic interaction liquid chromatography and reversed-phase conditions is therefore presented. Special attention is given to diffusion coefficients of polar compounds obtained in large percentages of acetonitrile (>90%). The effect of the buffer concentration (5-10mM ammonium acetate) on the obtained diffusion coefficients is investigated and is demonstrated to mainly influence the molecular diffusion of charged molecules. Diffusion coefficients are measured using the Taylor-Aris method and hence deduced from the peak broadening of a solute when flowing through a long open tube. The validity of the set-up employed for the measurement of the diffusion coefficients is demonstrated by ruling out the occurrence of longitudinal diffusion, secondary flow interactions and extra-column effects, while it is also shown that radial equilibration in the 15m long capillary is effective.

  10. Groundwater subsidies and penalties to corn yield

    Science.gov (United States)

    Zipper, S. C.; Booth, E.; Loheide, S. P.

    2013-12-01

    Proper water management is critical to closing yield gaps (observed yield below potential yield) as global populations continue to expand. However, the impacts of shallow groundwater on crop production and surface processes are poorly understood. The presence of groundwater within or just below the root zone has the potential to cause (via oxygen stress in poorly drained soils) or eliminate (via water supply in dry regions) yield gaps. The additional water use by a plant in the presence of shallow groundwater, compared to free drainage conditions, is called the groundwater subsidy; the depth at which the groundwater subsidy is greatest is the optimal depth to groundwater (DTGW). In wet years or under very shallow water table conditions, the groundwater subsidy is likely to be negative due to increased oxygen stress, and can be thought of as a groundwater penalty. Understanding the spatial dynamics of groundwater subsidies/penalties and how they interact with weather is critical to making sustainable agricultural and land-use decisions under a range of potential climates. Here, we examine patterns of groundwater subsidies and penalties in two commercial cornfields in the Yahara River Watershed, an urbanizing agricultural watershed in south-central Wisconsin. Water table levels are generally rising in the region due to a long-term trend of increasing precipitation over the last several decades. Biophysical indicators tracked throughout both the 2012 and 2013 growing seasons show a strong response to variable groundwater levels on a field scale. Sections of the field with optimal DTGW exhibit consistently higher stomatal conductance rates, taller canopies and higher leaf area index, higher ET rates, and higher pollination success rates. Patterns in these biophysical lines of evidence allow us to pinpoint specific periods within the growing season that plants were experiencing either oxygen or water stress. Most importantly, groundwater subsidies and penalties are

  11. Plasma-wall interactions data compendium-1. ''Hydrogen retention property, diffusion and recombination coefficients database for selected plasma-facing materials''

    Energy Technology Data Exchange (ETDEWEB)

    Iwakiri, Hirotomo [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Matsuhiro, Kenjirou [Osaka Univ., Osaka (Japan); Hirooka, Yoshi [National Inst. for Fusion Science, Toki, Gifu (Japan); Yamamura, Yasunori [Okayama Univ. of Scinece, Okayama (Japan)

    2002-05-01

    A summary on the recent activities of the plasma-wall interactions database task group at the National Institute for Fusion Science is presented in this report. These activities are focused on the compilation of literature data on the key parameters related to wall recycling characteristics that affect dynamic particle balance during plasma discharges and also on-site tritium inventory. More specifically, in this task group a universal fitting formula has been proposed and successfully applied to help compile hydrogen implantation-induced retention data. Also, presented here are the data on hydrogen diffusion and surface recombination coefficients, both critical in modeling dynamic wall recycling behavior. Data compilation has been conducted on beryllium, carbon, tungsten and molybdenum, all currently used for plasma-facing components in magnetic fusion experiments. (author)

  12. A groundwater quality index map for Namibia

    Science.gov (United States)

    Bergmann, Thomas; Schulz, Oliver; Wanke, Heike; Püttmann, Wilhelm

    2016-04-01

    Groundwater quality and contamination is a huge concern for the population of Namibia, especially for those living in remote areas. There, most farmers use their own wells to supply themselves and their animals with drinking water. In many cases, except for a few studies that were done in some areas, the only groundwater quality measurements that took place were taken at the time the well was drilled. These data were collected and are available through the national GROWAS-Database. Information on measurements determining the amount of contaminants such as fluoride, TDS, other major ions and nitrate for several thousand wells are provided there. The aim of this study was I) to check the database for its reliability by comparing it to results from different studies and statistical analysis, II) to analyze the database on groundwater quality using different methods (statistical-, pattern- and correlation analysis) and III) to embed our own field work that took place within a selected Namibian region into that analysis. In order to get a better understanding of the groundwater problems in different areas of Namibia, a groundwater quality index map based on GROWAS was created using GIS processing techniques. This map uses several indicators for groundwater quality in relation to selected guidelines and combines them into an index, thus enabling the assessment of groundwater quality with regard to more than one pollutant. The goal of the groundwater quality map is to help identify where the overall groundwater quality is problematic and to communicate these problems. Additionally, suggestions for an enhancement of the database and for new field surveys will be given. The field work was focusing on three farms within an area known for its problematic nitrate concentration in groundwater. There, 23 wells were probed. In order to identify the sources of the contamination, isotopic measurements were executed for three of these wells with high nitrate concentrations

  13. Looking at groundwater research landscape of Jakarta Basin for better water management

    Science.gov (United States)

    Irawan, Dasapta Erwin; Priyambodho, Adhi; Novianti Rachmi, Cut; Maulana Wibowo, Dimas

    2017-07-01

    Based on our experience, defining the gap between what we know and what we don’t know is the hardest part in proposing water management strategy. Many techniques have been introduced to make this stage easier, and one of them is bibliometric analysis. The following paper is the second part of our bibliometric project in the search for a gap in the water resources research in Jakarta. This paper starts to analyse the visualisations that had been extracted from the previous paper based on our database. Using the keyword “groundwater Jakarta”, we managed to get 70 relevant papers. Several visualisations have been built using open source applications. Word cloud analysis shows that the trend to discuss groundwater in scientific sense had only been started in the early 2000’s. This is presumably due to the emerging regional autonomy in which forcing regions to understand their groundwater setting before creating a management strategy. More papers in the later time has been induced by more geo-hazards (land subsidence and floods) resulted in the vast groundwater pumping. More and more resources have been utilized to get more groundwater data. Water scientists by then understood that these hazards had been started long before the 2000’s. This had become the starting point of data era later on. The next era will be the era of water management. Hydrologists had been proposing integrated water management Jakarta and its nearby groundwater basins. Most of them have been strongly suggested to manage all water bodies, rainfall, surface water, and groundwater as one system. In the 2010’s we identify more papers are discussing in water quality following the vast discussion in water quantity in the previous era. People have been more aware the importance of quality in providing water system for the citizen. Then five years later, we believe that water researchers have also put their mind in the interactions between surface water and groundwater, especially in the

  14. A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes

    Energy Technology Data Exchange (ETDEWEB)

    Tynan, Mark C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Russell, Glenn P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Perry, Frank V. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kelley, Richard E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Champenois, Sean T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-13

    These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  15. Groundwater and surface-water interaction and potential for underground water storage in the Buena Vista-Salida Basin, Chaffee County, Colorado, 2011

    Science.gov (United States)

    Watts, Kenneth R.; Ivahnenko, Tamara I.; Stogner, Robert W.; Bruce, James F.

    2014-01-01

    By 2030, the population of the Arkansas Headwaters Region, which includes all of Chaffee and Lake Counties and parts of Custer, Fremont, and Park Counties, Colorado, is forecast to increase about 73 percent. As the region’s population increases, it is anticipated that groundwater will be used to meet much of the increased demand. In September 2009, the U.S. Geological Survey, in cooperation with the Upper Arkansas Water Conservancy District and with support from the Colorado Water Conservation Board; Chaffee, Custer, and Fremont Counties; Buena Vista, Cañon City, Poncha Springs, and Salida; and Round Mountain Water and Sanitation District, began a 3-year study of groundwater and surface-water conditions in the Buena Vista-Salida Basin. This report presents results from the study of the Buena Vista-Salida Basin including synoptic gain-loss measurements and water budgets of Cottonwood, Chalk, and Browns Creeks, changes in groundwater storage, estimates of specific yield, transmissivity and hydraulic conductivity from aquifer tests and slug tests, an evaluation of areas with potential for underground water storage, and estimates of stream-accretion response-time factors for hypothetical recharge and selected streams in the basin. The four synoptic measurements of flow of Cottonwood, Chalk, and Browns Creeks, suggest quantifiable groundwater gains and losses in selected segments in all three perennial streams. The synoptic measurements of flow of Cottonwood and Browns Creeks suggest a seasonal variability, where positive later-irrigation season values in these creeks suggest groundwater discharge, possibly as infiltrated irrigation water. The overall sum of gains and losses on Chalk Creek does not indicate a seasonal variability but indicates a gaining stream in April and August/September. Gains and losses in the measured upper segments of Chalk Creek likely are affected by the Chalk Cliffs Rearing Unit (fish hatchery). Monthly water budgets were estimated for

  16. Database Manager

    Science.gov (United States)

    Martin, Andrew

    2010-01-01

    It is normal practice today for organizations to store large quantities of records of related information as computer-based files or databases. Purposeful information is retrieved by performing queries on the data sets. The purpose of DATABASE MANAGER is to communicate to students the method by which the computer performs these queries. This…

  17. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junxia; Wang, Yanxin, E-mail: yx.wang@cug.edu.cn; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000–10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ{sup 37}Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. - Highlights: • Natural high arsenic, fluoride and iodine groundwater co-occur with saline water.

  18. Genome databases

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, J.

    1991-10-11

    Since the Genome Project began several years ago, a plethora of databases have been developed or are in the works. They range from the massive Genome Data Base at Johns Hopkins University, the central repository of all gene mapping information, to small databases focusing on single chromosomes or organisms. Some are publicly available, others are essentially private electronic lab notebooks. Still others limit access to a consortium of researchers working on, say, a single human chromosome. An increasing number incorporate sophisticated search and analytical software, while others operate as little more than data lists. In consultation with numerous experts in the field, a list has been compiled of some key genome-related databases. The list was not limited to map and sequence databases but also included the tools investigators use to interpret and elucidate genetic data, such as protein sequence and protein structure databases. Because a major goal of the Genome Project is to map and sequence the genomes of several experimental animals, including E. coli, yeast, fruit fly, nematode, and mouse, the available databases for those organisms are listed as well. The author also includes several databases that are still under development - including some ambitious efforts that go beyond data compilation to create what are being called electronic research communities, enabling many users, rather than just one or a few curators, to add or edit the data and tag it as raw or confirmed.

  19. Moving Observer Support for Databases

    DEFF Research Database (Denmark)

    Bukauskas, Linas

    Interactive visual data explorations impose rigid requirements on database and visualization systems. Systems that visualize huge amounts of data tend to request large amounts of memory resources and heavily use the CPU to process and visualize data. Current systems employ a loosely coupled...... architecture to exchange data between database and visualization. Thus, the interaction of the visualizer and the database is kept to the minimum, which most often leads to superfluous data being passed from database to visualizer. This Ph.D. thesis presents a novel tight coupling of database and visualizer...... together with the VR-tree enables the fast extraction of appearing and disappearing objects from the observer's view as he navigates through the data space. Usage of VAST structure significantly reduces the number of objects to be extracted from the VR-tree and VAST enables a fast interaction of database...

  20. Groundwater recharge: Accurately representing evapotranspiration

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2011-09-01

    Full Text Available Groundwater recharge is the basis for accurate estimation of groundwater resources, for determining the modes of water allocation and groundwater resource susceptibility to climate change. Accurate estimations of groundwater recharge with models...

  1. Database Replication

    CERN Document Server

    Kemme, Bettina

    2010-01-01

    Database replication is widely used for fault-tolerance, scalability and performance. The failure of one database replica does not stop the system from working as available replicas can take over the tasks of the failed replica. Scalability can be achieved by distributing the load across all replicas, and adding new replicas should the load increase. Finally, database replication can provide fast local access, even if clients are geographically distributed clients, if data copies are located close to clients. Despite its advantages, replication is not a straightforward technique to apply, and

  2. Probabilistic Databases

    CERN Document Server

    Suciu, Dan; Koch, Christop

    2011-01-01

    Probabilistic databases are databases where the value of some attributes or the presence of some records are uncertain and known only with some probability. Applications in many areas such as information extraction, RFID and scientific data management, data cleaning, data integration, and financial risk assessment produce large volumes of uncertain data, which are best modeled and processed by a probabilistic database. This book presents the state of the art in representation formalisms and query processing techniques for probabilistic data. It starts by discussing the basic principles for rep

  3. 不同潜水埋深下土壤水盐运移特征及其交互效应%Migration characteristics of soil water and salt and their interaction under different groundwater levels

    Institute of Scientific and Technical Information of China (English)

    夏江宝; 赵西梅; 赵自国; 陈印平; 刘俊华

    2015-01-01

    为探讨盐水矿化度下土壤水盐分布特征对潜水埋深的响应规律及其水盐交互效应,以黄河三角洲建群种柽柳(Tamarix chinensis Lour)栽植的土壤柱体为研究对象,模拟设置0.3、0.6、0.9、1.2、1.5和1.8 m共6种潜水水位,测定分析各水位处理下不同土壤剖面的相对含水率、含盐量及土壤溶液绝对浓度等水盐参数。结果表明:随潜水水位的增加,整个土柱水分均值显著降低,土壤含盐量和溶液绝对浓度均值先升高后降低,1.2 m水位是土壤水盐变化的转折点,此水位下各土壤剖面的含盐量和土壤溶液绝对浓度均达最高。土柱水分和盐分变化幅度最大的水位分别在中水位0.9~1.2 m,浅水位0.6 m,土壤溶液绝对浓度变化最剧烈的是深水位1.5~1.8 m。随土壤深度的增加,土壤水分显著升高,土壤盐分先降低后升高,表土层盐分均值最高达1.36%,但土壤溶液绝对浓度显著减小。土壤含盐量、土壤相对含水率与潜水水位分别呈极显著(P<0.01)和显著(P<0.05)负相关,土壤相对含水率与盐分呈极显著正相关(P<0.01)。地下盐水矿化度下,柽柳幼苗栽植深度应超过20 cm深,适宜潜水水位在1.5~1.8 m,栽植深度以30~40 cm较好。研究结果可为地下盐水作用条件下土壤次生盐渍化的防治和柽柳栽植管理提供参考。%Soil salt and water closely related to groundwater depth mainly affect vegetation distribution pattern and community succession of the Yellow River Delta. Thus,it is important to explain the changing process of water and salt in groundwater and soil and their effects on the occurrence of the secondary salinization. This study aimed to understand the response of soil water-salt distribution characteristics to groundwater depth and their interactive effects under saline groundwater conditions. To achieve the objective, a laboratory experiment was

  4. Dealer Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dealer reporting databases contain the primary data reported by federally permitted seafood dealers in the northeast. Electronic reporting was implemented May 1,...

  5. RDD Databases

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database was established to oversee documents issued in support of fishery research activities including experimental fishing permits (EFP), letters of...

  6. National database

    DEFF Research Database (Denmark)

    Kristensen, Helen Grundtvig; Stjernø, Henrik

    1995-01-01

    Artikel om national database for sygeplejeforskning oprettet på Dansk Institut for Sundheds- og Sygeplejeforskning. Det er målet med databasen at samle viden om forsknings- og udviklingsaktiviteter inden for sygeplejen.......Artikel om national database for sygeplejeforskning oprettet på Dansk Institut for Sundheds- og Sygeplejeforskning. Det er målet med databasen at samle viden om forsknings- og udviklingsaktiviteter inden for sygeplejen....

  7. PADB : Published Association Database

    Directory of Open Access Journals (Sweden)

    Lee Jin-Sung

    2007-09-01

    Full Text Available Abstract Background Although molecular pathway information and the International HapMap Project data can help biomedical researchers to investigate the aetiology of complex diseases more effectively, such information is missing or insufficient in current genetic association databases. In addition, only a few of the environmental risk factors are included as gene-environment interactions, and the risk measures of associations are not indexed in any association databases. Description We have developed a published association database (PADB; http://www.medclue.com/padb that includes both the genetic associations and the environmental risk factors available in PubMed database. Each genetic risk factor is linked to a molecular pathway database and the HapMap database through human gene symbols identified in the abstracts. And the risk measures such as odds ratios or hazard ratios are extracted automatically from the abstracts when available. Thus, users can review the association data sorted by the risk measures, and genetic associations can be grouped by human genes or molecular pathways. The search results can also be saved to tab-delimited text files for further sorting or analysis. Currently, PADB indexes more than 1,500,000 PubMed abstracts that include 3442 human genes, 461 molecular pathways and about 190,000 risk measures ranging from 0.00001 to 4878.9. Conclusion PADB is a unique online database of published associations that will serve as a novel and powerful resource for reviewing and interpreting huge association data of complex human diseases.

  8. Groundwater Managment Districts

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset outlines the location of the five Groundwater Management Districts in Kansas. GMDs are locally formed and elected boards for regional groundwater...

  9. DoRiNA 2.0--upgrading the doRiNA database of RNA interactions in post-transcriptional regulation.

    Science.gov (United States)

    Blin, Kai; Dieterich, Christoph; Wurmus, Ricardo; Rajewsky, Nikolaus; Landthaler, Markus; Akalin, Altuna

    2015-01-01

    The expression of almost all genes in animals is subject to post-transcriptional regulation by RNA binding proteins (RBPs) and microRNAs (miRNAs). The interactions between both RBPs and miRNAs with mRNA can be mapped on a whole-transcriptome level using experimental and computational techniques established in the past years. The combined action of RBPs and miRNAs is thought to form a post-transcriptional regulatory code. Here we present doRiNA 2.0, available at http://dorina.mdc-berlin.de. In this highly improved new version, we have completely reworked the user interface and expanded the database to improve the usability of the website. Taking into account user feedback over the past years, the input forms for both the simple and the combinatorial search function have been streamlined and combined into a single web page that will also display the search results. Especially, custom uploads is one of the key new features in doRiNA 2.0. To enable the inclusion of doRiNA into third-party analysis pipelines, all operations are accessible via a REST API. Alternatively, local installations can be queried using a Python API. Both the web application and the APIs are available under an OSI-approved Open Source license that allows research and commercial access and re-use.

  10. Drug Interactions In Female Oncologic Inpatients: Differences Among Databases [interações Medicamentosas Em Mulheres Internadas Com Câncer: Diferenças Entre Bases De Dados

    OpenAIRE

    Moriel P.; Siqueira J.A.; Carnevale R.C.; Rezende Costa C.G.; da Cruz A.A.; da Silva N.M.O.; Bernardes A.C.; Carvalho R.P.; Mazzola P.G.

    2013-01-01

    The aim of the present study was to quantify drug interactions in prescriptions for women undergoing supportive therapy in an oncology setting at a women's hospital in Brazil and compare the information provided by different databases regarding these drug interactions. A convenience sample was selected of prescriptions for patients diagnosed with breast or gynecological tumors hospitalized in the clinical oncology and surgery wards from April to June 2009. DRUGDEX/Micromedex (Thomson Micromed...

  11. Remote instruction in groundwater hydrology

    Science.gov (United States)

    staff of the Interactive Remote Instructional System

    Wright State University (Dayton, Ohio) is preparing for its fourth cycle of the Interactive Remote Instructional System (IRIS) in groundwater hydrology beginning July 15, 1986. The Department of Geological Sciences proudly announces that the first two cycles recorded an impressive 83% completion ratio for registered participants. This completion rate is a significant departure from success rates traditionally recorded by courses of this nature; it is the result of 2 years of implementation and refinement and demonstrates the progressive orientation of the program. The third cycle has been underway since January. This comprehensive hydrogeology program was originally developed for the U.S. Department of Agriculture Soil Conservation Service to prepare their personnel for professional practice work. As a result of that cooperative effort, the IRIS program has evolved to meet the needs of participants by developing a curriculum that reflects current trends in the groundwater industry and has provided a unique educational approach that ensures maximum interaction between the instructional staff and participants.

  12. Analysis of the geochemical gradient created by surface-groundwater interactions within riverbanks of the East River in Crested Butte, Colorado

    Science.gov (United States)

    Lunzer, J.; Williams, K. H.; Malenda, H. F.; Nararne-Sitchler, A.

    2016-12-01

    An improved understanding of the geochemical gradient created by the mixing of surface and groundwater of a river system will have considerable impact on our understanding of microorganisms, organic cycling and biogeochemical processes within these zones. In this study, the geochemical gradient in the hyporheic zone is described using a variety of geochemical properties. A system of shallow groundwater wells were installed in a series of transects along a stream bank. Each transect consists of several wells that progress away from the river bank in a perpendicular fashion. From these wells, temperature, conductivity and pH of water samples were obtained via hand pumping or bailing. These data show a clear geochemical gradient that displays a distinct zone in the subsurface where the geochemical conditions change from surface water dominated to groundwater dominated. For this study, the East River near Crested Butte, Colorado has been selected as the river of interest due the river being a relatively undisturbed floodplain. Additionally, the specific section chosen on the East River displays relatively high sinuosity meaning that these meandering sections will produce hyporheic zones that are more laterally expansive than what would be expected on a river of lower sinuosity. This increase in lateral extension of the hyporheic zone will make depicting the subtle changes in the geochemical gradient much easier than that of a river system in which the hyporheic zone is not as laterally extensive. Data has been and will be continued to be collected at different river discharges to evaluate the geochemical gradient at differing rates. Overall, this characterization of the geochemical gradient along stream banks will produce results that will aid in the further use of geochemical methods to classify and understand hyporheic exchange zones and the potential expansion of these techniques to river systems of differing geologic and geographic conditions.

  13. Groundwater regulation and integrated planning

    Science.gov (United States)

    Quevauviller, Philippe; Batelaan, Okke; Hunt, Randall J.

    2016-01-01

    The complex nature of groundwater and the diversity of uses and environmental interactions call for emerging groundwater problems to be addressed through integrated management and planning approaches. Planning requires different levels of integration dealing with: the hydrologic cycle (the physical process) including the temporal dimension; river basins and aquifers (spatial integration); socioeconomic considerations at regional, national and international levels; and scientific knowledge. The great natural variation in groundwater conditions obviously affects planning needs and options as well as perceptions from highly localised to regionally-based approaches. The scale at which planning is done therefore needs to be carefully evaluated against available policy choices and options in each particular setting. A solid planning approach is based on River Basin Management Planning (RBMP), which covers: (1) objectives that management planning are designed to address; (2) the way various types of measures fit into the overall management planning; and (3) the criteria against which the success or failure of specific strategies or interventions can be evaluated (e.g. compliance with environmental quality standards). A management planning framework is to be conceived as a “living” or iterated document that can be updated, refined and if necessary changed as information and experience are gained. This chapter discusses these aspects, providing an insight into European Union (EU), United States and Australia groundwater planning practices.

  14. Implementation of an interactive database interface utilizing HTML, PHP, JavaScript, and MySQL in support of water quality assessments in the Northeastern North Carolina Pasquotank Watershed

    Science.gov (United States)

    Guion, A., Jr.; Hodgkins, H.

    2015-12-01

    The Center of Excellence in Remote Sensing Education and Research (CERSER) has implemented three research projects during the summer Research Experience for Undergraduates (REU) program gathering water quality data for local waterways. The data has been compiled manually utilizing pen and paper and then entered into a spreadsheet. With the spread of electronic devices capable of interacting with databases, the development of an electronic method of entering and manipulating the water quality data was pursued during this project. This project focused on the development of an interactive database to gather, display, and analyze data collected from local waterways. The database and entry form was built in MySQL on a PHP server allowing participants to enter data from anywhere Internet access is available. This project then researched applying this data to the Google Maps site to provide labeling and information to users. The NIA server at http://nia.ecsu.edu is used to host the application for download and for storage of the databases. Water Quality Database Team members included the authors plus Derek Morris Jr., Kathryne Burton and Mr. Jeff Wood as mentor.

  15. Biological Databases

    Directory of Open Access Journals (Sweden)

    Kaviena Baskaran

    2013-12-01

    Full Text Available Biology has entered a new era in distributing information based on database and this collection of database become primary in publishing information. This data publishing is done through Internet Gopher where information resources easy and affordable offered by powerful research tools. The more important thing now is the development of high quality and professionally operated electronic data publishing sites. To enhance the service and appropriate editorial and policies for electronic data publishing has been established and editors of article shoulder the responsibility.

  16. Thermal management of an unconsolidated shallow urban groundwater body

    Directory of Open Access Journals (Sweden)

    J. Epting

    2013-05-01

    Full Text Available This study presents the development of tools for the sustainable thermal management of a shallow unconsolidated urban groundwater body in the city of Basel (Switzerland. The concept of the investigations is based on (1 a characterization of the present thermal state of the urban groundwater body, and (2 the evaluation of potential mitigation measures for the future thermal management of specific regions within the groundwater body. The investigations focus on thermal processes down-gradient of thermal groundwater use, effects of heated buildings in the subsurface as well as the thermal influence of river–groundwater interaction. Investigation methods include (1 short- and long-term data analysis, (2 high-resolution multilevel groundwater temperature monitoring, as well as (3 3-D numerical groundwater flow and heat transport modeling and scenario development. The combination of these methods allows for the quantifying of the thermal influences on the investigated urban groundwater body, including the influences of thermal groundwater use and heated subsurface constructions. Subsequently, first implications for management strategies are discussed, including minimizing further groundwater temperature increase, targeting "potential natural" groundwater temperatures for specific aquifer regions and exploiting the thermal potential.

  17. Hydrogeochemical modeling of groundwater chemical environmental evolution in Hebei Plain

    Institute of Scientific and Technical Information of China (English)

    郭永海; 沈照理; 钟佐燊

    1997-01-01

    Using the hydrogeochemical modeling method, the groundwater chemical environmental problems of the Hebei Plain which involve increasing of hardness and total dissolved solids in piedmont area and mixing of saline water with fresh water in middle-eastern area are studied. The water-rock interactions and mass transfer along a ground-water flow path and in mixing processes are calculated. Thus the evolution mechanisms of the groundwater chemical environment are brought to light.

  18. BAID: The Barrow Area Information Database - an interactive web mapping portal and cyberinfrastructure for scientific activities in the vicinity of Barrow, Alaska.

    Science.gov (United States)

    Cody, R. P.; Kassin, A.; Kofoed, K. B.; Copenhaver, W.; Laney, C. M.; Gaylord, A. G.; Collins, J. A.; Tweedie, C. E.

    2014-12-01

    The Barrow area of northern Alaska is one of the most intensely researched locations in the Arctic and the Barrow Area Information Database (BAID, www.barrowmapped.org) tracks and facilitates a gamut of research, management, and educational activities in the area. BAID is a cyberinfrastructure (CI) that details much of the historic and extant research undertaken within in the Barrow region in a suite of interactive web-based mapping and information portals (geobrowsers). The BAID user community and target audience for BAID is diverse and includes research scientists, science logisticians, land managers, educators, students, and the general public. BAID contains information on more than 12,000 Barrow area research sites that extend back to the 1940's and more than 640 remote sensing images and geospatial datasets. In a web-based setting, users can zoom, pan, query, measure distance, save or print maps and query results, and filter or view information by space, time, and/or other tags. Data are described with metadata that meet Federal Geographic Data Committee standards and are archived at the University Corporation for Atmospheric Research Earth Observing Laboratory (EOL) where non-proprietary BAID data can be freely downloaded. Recent advances include the addition of more than 2000 new research sites, provision of differential global position system (dGPS) and Unmanned Aerial Vehicle (UAV) support to visiting scientists, surveying over 80 miles of coastline to document rates of erosion, training of local GIS personal to better make use of science in local decision making, deployment and near real time connectivity to a wireless micrometeorological sensor network, links to Barrow area datasets housed at national data archives and substantial upgrades to the BAID website and web mapping applications.

  19. A novel silicon diffusion membrane method for high-resolution continuous quantification of groundwater-surface water interaction using 222Rn

    Science.gov (United States)

    Cartwright, I.; Hofmann, H.; Gilfedder, B.

    2011-12-01

    222Rn is a naturally produced radioactive isotopic tracer that is commonly used to quantify groundwater discharge to streams, rivers, and wetlands. Traditional sampling and analysis techniques are usually confined to point measurements taken at a specific time. However, it is difficult to constrain short- or medium-term processes occurring at the groundwater-surface water interface using single measurements. Here we describe a method for high-resolution, autonomous, and continuous, measurement of radon in rivers and streams using a silicon diffusion membrane system coupled to a solid state radon-in-air detector (Durridge RAD7). In this system, water is pumped through a silicon diffusion tube placed inside an outer air circuit tube that is connected to the radon-in-air detector. Radon diffuses from the water into the air loop and is measured by the detector. By optimising the membrane tube length, wall thickness, and water flow rates through the membrane, it was possible to quantify the variability of 222Rn concentrations over timescales of about 3 hours and qualitatively observe changes in as little as 20 minutes. The detection limit for the entire system with 20 minutes counting was 0.018 Bq/L at the 3σ level, which is solely determined by the sensitivity of the detector. Results from the diffusion membrane agree well with conventional measurements of 222Rn made using a RAD7 and an air-water exchanger at both high (20 Bq/L) and low (Membrana system), the system is not prone to clogging with sediment or biofilms even in turbid water; additionally, the silicon membrane is flexible and can be coiled for installation at sites where space is restricted. While the response times are slower than air-water exchangers, the silicon membrane system uses less power and there is little possibility of flooding of the RAD7. The system has been deployed on an urban stream for 3 days and in a wetland for periods of >30 days without requiring attendance. In both cases the system

  20. Arsenic and Associated Trace Metals in Texas Groundwater

    Science.gov (United States)

    Lee, L.; Herbert, B. E.

    2002-12-01

    The value of groundwater has increased substantially worldwide due to expanding human consumption. Both the quantity and quality of groundwater are important considerations when constructing policies on natural resource conservation. This study is focused on evaluating groundwater quality in the state of Texas. Historical data from the Texas Water Development Board and the National Uranium Resource Evaluation were collected into a GIS database for spatial and temporal analyses. Specific attentions were placed on arsenic and other trace metals in groundwater. Recent studies in the United States have focused on isolated incidences of high arsenic occurrence, ignoring possible connections between arsenic and other trace metals. Descriptive statistics revealed strong correlations in groundwater between arsenic and other oxyanions including vanadium, selenium and molybdenum. Arsenic and associated trace metals were clustered at three physiographic hotspots, the Southern High Plains, the Gulf Coastal Plains of Texas, and West Texas. A geologic survey showed that arsenic and other trace metals in Texas groundwater follow local geologic trends. Uranium deposits and associated mineralization were found to occur in the same physiographic locations. Uranium mineralization may be a significant natural source of arsenic and other trace metals in Texas groundwater. Recharge, evaporative concentration, and aquifer characteristics were also contributing factors to the occurrence of trace metals in Texas groundwater. Spatial statistics were used to delineate natural sources from anthropogenic inputs. Similarly, the natural background was estimated from the spatial distribution of trace metal observations in Texas groundwater.

  1. Effect of Groundwater Abstraction on Fen Ecosystems

    DEFF Research Database (Denmark)

    Johansen, Ole; Pedersen, Morten Lauge; Jensen, Jacob Birk

    2011-01-01

    Quantifying the effects of groundwater abstraction on fen ecosystems located in discharge areas can be complicated. The water level in fens is close to the terrain surface most of the year and it is controlled by a relatively constant groundwater exfiltration. It is difficult to measure...... the exfiltration fluxes and thus water level data is typically used to evaluate if the ecosystem is affected. The paper presents collected data and analysis from a case study, where the hydrological effect of groundwater abstraction on rich fens and springs in a Danish river valley has been studied. The natural...... within a distance of 1.5 km to a planned well field. In the river valley the interaction between groundwater and surface water is strongly affected by low permeable sediments. These sediments reduce the direct discharge to the river and have a large impact on the functioning and presence of the rich fen...

  2. Natural uranium and strontium isotope tracers of water sources and surface water-groundwater interactions in arid wetlands: Pahranagat Valley, Nevada, USA

    Science.gov (United States)

    Paces, James B.; Wurster, Frederic C.

    2014-01-01

    Near-surface physical and chemical process can strongly affect dissolved-ion concentrations and stable isotope compositions of water in wetland settings, especially under arid climate conditions. In contrast, heavy radiogenic isotopes of strontium (87Sr/86Sr) and uranium (234U/238U) remain largely unaffected and can be used to help identify unique signatures from different sources and quantify end-member mixing that would otherwise be difficult to determine. The utility of combined Sr and U isotopes are demonstrated in this study of wetland habitats on the Pahranagat National Wildlife Refuge, which depend on supply from large-volume springs north of the Refuge, and from small-volume springs and seeps within the Refuge. Water budgets from these sources have not been quantified previously. Evaporation, transpiration, seasonally variable surface flow, and water management practices complicate the use of conventional methods for determining source contributions and mixing relations. In contrast, 87Sr/86Sr and 234U/238U remain unfractionated under these conditions, and compositions at a given site remain constant. Differences in Sr- and U-isotopic signatures between individual sites can be related by simple two- or three-component mixing models. Results indicate that surface flow constituting the Refuge’s irrigation source consists of a 65:25:10 mixture of water from two distinct regionally sourced carbonate aquifer springs, and groundwater from locally sourced volcanic aquifers. Within the Refuge, contributions from the irrigation source and local groundwater are readily determined and depend on proximity to those sources as well as water management practices.

  3. Distribution of acidic groundwater around quaternary volcanoes in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Asamori, Koichi; Ishimaru, Tsuneari; Iwatsuki, Teruki [Japan Nuclear Cycle Development Inst., Toki, Gifu (Japan). Tono Geoscience Center

    2002-06-01

    One important key issue in the understanding of the long-term stability of the geological environment is the influence of magmatism. In this study, we examined the general spatial distribution of acidic groundwater around Quaternary volcanoes in Japan using a database of groundwater geochemistry. The results may be summarized as follows: Acidic groundwater with pH < 4.8 mainly occur in present volcanic regions and are distributed from several kilometers to about 20 km from Quaternary volcanoes. The pH value of groundwater tends to decrease with increasing distance from a volcano. However, these results may be affected by inhomogeneity of groundwater data distribution and the characteristic activity of each volcano. In order to assess a specific volcanic region, a detailed analysis that considers volcanic activity, using a data set with high spatial density is necessary. (author)

  4. DYNAMICS OF AGRICULTURAL GROUNDWATER EXTRACTION

    OpenAIRE

    Hellegers, Petra J.G.J.; Zilberman, David; van Ierland, Ekko C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

  5. DYNAMICS OF AGRICULTURAL GROUNDWATER EXTRACTION

    OpenAIRE

    Hellegers, Petra J.G.J.; Zilberman, David; van Ierland, Ekko C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

  6. Groundwater Energy Designer (GED); Groundwater Energy Designer (GED). Computergestuetztes Auslegungstool zur Waerme- und Kaeltenutzung von Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    Poppei, J.; Mayer, G.; Schwarz, R.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at a computer-aided dimensioning tool (Groundwater Energy Designer, GED) for use in the calculation work involved in designing systems for the thermal use of groundwater. The interactive tool is designed to support those involved in the analysis of heating and cooling demands and the direct use of groundwater to help meet such needs. The program and its user interface in German and French are described in detail, as are the basic models and data used in the calculations. Simulation aspects and the verification of the software are also discussed. Results of tests made are presented and discussed.

  7. Network-based Database Course

    DEFF Research Database (Denmark)

    Nielsen, J.N.; Knudsen, Morten; Nielsen, Jens Frederik Dalsgaard

    A course in database design and implementation has been de- signed, utilizing existing network facilities. The course is an elementary course for students of computer engineering. Its purpose is to give the students a theoretical database knowledge as well as practical experience with design...... and implementation. A tutorial relational database and the students self-designed databases are implemented on the UNIX system of Aalborg University, thus giving the teacher the possibility of live demonstrations in the lecture room, and the students the possibility of interactive learning in their working rooms...

  8. Network-based Database Course

    DEFF Research Database (Denmark)

    Nielsen, J.N.; Knudsen, Morten; Nielsen, Jens Frederik Dalsgaard

    A course in database design and implementation has been de- signed, utilizing existing network facilities. The course is an elementary course for students of computer engineering. Its purpose is to give the students a theoretical database knowledge as well as practical experience with design...... and implementation. A tutorial relational database and the students self-designed databases are implemented on the UNIX system of Aalborg University, thus giving the teacher the possibility of live demonstrations in the lecture room, and the students the possibility of interactive learning in their working rooms...

  9. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  10. Groundwater sustainability assessment in coastal aquifers

    Indian Academy of Sciences (India)

    U A Lathashri; A Mahesha

    2016-08-01

    The present work investigates the response of shallow, coastal unconfined aquifers to anticipated overdraft conditions and climate change effect using numerical simulation. The groundwater flow model MODFLOW and variable density groundwater model SEAWAT are used for this investigation. The transmissivity and specific yield estimated from the existing database range from 10 to 810 m^2/day and 0.08% to 10.92% respectively. After successful calibration with Nash–Sutcliffe efficiency greater than 0.80, the values of horizontal hydraulic conductivity and specific yield of the unconfined aquifer were set in the range 1.85–61.90 m/day and 0.006–0.24 respectively. After validating the model, it is applied for forecasting the aquifer’s response to anticipated future scenarios of groundwater draft, recharge rate and sea level rise. The findings of the study illustrate that saltwater intrusion is intensified in the area adjoining the tidal rivers, rather than that due to the sea alone. Of all the scenarios simulated, the immense negative impact on groundwater quality emerges due to overdraft conditions and reduced recharge with the areal extent of seawater intrusion exceeding about 67% (TDS>1 kg/m^3). The study also arrivesat the conclusion that, regional sea level rise of 1 mm/year has no impact on the groundwater dynamics of the aquifer.

  11. Groundwater-Quality Data in the South Coast Range-Coastal Study Unit, 2008: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Burton, Carmen A.; Land, Michael; Belitz, Kenneth

    2010-01-01

    Groundwater quality in the approximately 766-square-mile South Coast Range-Coastal (SCRC) study unit was investigated from May to December 2008, as part of the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project was developed in response to legislative mandates (Supplemental Report of the 1999 Budget Act 1999-00 Fiscal Year; and, the Groundwater Quality Monitoring Act of 2001 [Sections 10780-10782.3 of the California Water Code, Assembly Bill 599]) to assess and monitor the quality of groundwater in California, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The SCRC study unit was the 25th study unit to be sampled as part of the GAMA Priority Basins Project. The SCRC study unit was designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems and to facilitate statistically consistent comparisons of untreated groundwater quality throughout California. The primary aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health (CDPH) database for the SCRC study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from the quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to surficial contamination. In the SCRC study unit, groundwater samples were collected from 70 wells in two study areas (Basins and Uplands) in Santa Barbara and San Luis Obispo Counties. Fifty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 15 wells were selected to aid in evaluation of specific water-quality issues (understanding wells). In addition to

  12. Groundwater institutions and management problems in the developing world

    NARCIS (Netherlands)

    Wegerich, K.

    2006-01-01

    The Role of Groundwater in Delhi¿s Water Supply: Interaction between formal and informal Development of the Water System, and possible scenarios of Evolution; A. Maria. Water Supply and Sanitation Sector Analysis of the Secondary Towns of Azerbaijan: Does groundwater play a role? S. Puri and T. Roma

  13. A New Geochemical Reaction Model for Groundwater Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Through a survey of the literature on geology, hydrogeology and hydrogeochemistry, this paper presents a hydrogeochemical model for the groundwater system in a dross-dumping area of the Shandong Aluminium Plant. It is considered that the groundwater-bearing medium is a mineral aggregate and that the interactions between groundwater and the groundwater-bearing medium can be described as a series of geochemical reactions. On that basis, the principle of minimum energy and the equations of mass balance, electron balance and electric neutrality are applied to construct a linear programming mathematical model for the calculation of mass transfer between water and rock with the simplex method.

  14. The Chandra Bibliography Database

    Science.gov (United States)

    Rots, A. H.; Winkelman, S. L.; Paltani, S.; Blecksmith, S. E.; Bright, J. D.

    2004-07-01

    Early in the mission, the Chandra Data Archive started the development of a bibliography database, tracking publications in refereed journals and on-line conference proceedings that are based on Chandra observations, allowing our users to link directly to articles in the ADS from our archive, and to link to the relevant data in the archive from the ADS entries. Subsequently, we have been working closely with the ADS and other data centers, in the context of the ADEC-ITWG, on standardizing the literature-data linking. We have also extended our bibliography database to include all Chandra-related articles and we are also keeping track of the number of citations of each paper. Obviously, in addition to providing valuable services to our users, this database allows us to extract a wide variety of statistical information. The project comprises five components: the bibliography database-proper, a maintenance database, an interactive maintenance tool, a user browsing interface, and a web services component for exchanging information with the ADS. All of these elements are nearly mission-independent and we intend make the package as a whole available for use by other data centers. The capabilities thus provided represent support for an essential component of the Virtual Observatory.

  15. MODFLOW-NWT groundwater flow model used to evaluate conditions in the Northern High Plains Aquifer in Colorado, Kansas, Nebraska, South Dakota, and Wyoming: U.S. Geological Survey data release

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A three-dimensional groundwater flow model was developed to characterize groundwater resources and the interaction of groundwater with streams and other hydrologic...

  16. Properties of basin-fill deposits, a 1971–2000 water budget, and surface-water-groundwater interactions in the upper Humboldt River basin, northeastern Nevada

    Science.gov (United States)

    Plume, Russell W.; Smith, Jody L.

    2013-01-01

    This study was done in cooperation with Elko County, Nevada in response to concerns over growing demand for water within the county and increasing external demands that are occurring statewide. The upper Humboldt River basin encompasses 4,360 square miles in northeastern Nevada and includes the headwaters area of the Humboldt River. Nearly all of the mean annual flow of the Humboldt River originates in this area. Basin-fill deposits function as the principal aquifers in the upper Humboldt River basin. Over much of the basin lowlands, the upper 200 feet of basin fill consists of clay, silt, sand, and gravel deposited in a lake of middle to late Pliocene age. Fine-grained lacustrine sediments compose from 30 to more than 70 percent of the deposits. Mean values of transmissivity are less than 1,000 feet squared per day. Total inflow to the upper Humboldt River basin, about 3,330,000 acre-feet per year, is entirely from annual precipitation. Total outflow from the basin, about 3,330,000 acre-feet per year, occurs as evapotranspiration, streamflow, subsurface flow, and pumpage. The uncertainty of these values of inflow and outflow is estimated to be 25 percent. Baseflow of the Humboldt River is minimal upstream of the Elko Hills and in downstream reaches almost all baseflow comes from tributary inflow of the North Fork and South Fork Humboldt Rivers. However, the baseflow of these two tributaries comes from groundwater discharge to their respective channels in canyons incised in volcanic rocks along the North Fork and in carbonate rocks along the South Fork. Water levels in the shallow water-table aquifer along the Humboldt River flood plain fluctuate with changes in stage of the river. During high rising river stage in spring and early summer, streamflow enters the aquifer as bank storage. As stage begins to decline in early to mid-summer groundwater in bank storage begins discharging back into the river channel and this continues through late summer. In years of below

  17. Replikasi Unidirectional pada Heterogen Database

    Directory of Open Access Journals (Sweden)

    Hendro Nindito

    2013-12-01

    Full Text Available The use of diverse database technology in enterprise today can not be avoided. Thus, technology is needed to generate information in real time. The purpose of this research is to discuss a database replication technology that can be applied in heterogeneous database environments. In this study we use Windows-based MS SQL Server database to Linux-based Oracle database as the goal. The research method used is prototyping where development can be done quickly and testing of working models of the interaction process is done through repeated. From this research it is obtained that the database replication technolgy using Oracle Golden Gate can be applied in heterogeneous environments in real time as well.

  18. Proceedings of GeoHalifax 2009 : the 62. Canadian geotechnical conference and 10. joint CGS/IAH-CNC groundwater conference

    Energy Technology Data Exchange (ETDEWEB)

    Lake, C.; Fenton, G. [Dalhousie Univ., Halifax, NS (Canada); Taylor, B. [Stantec Consulting Ltd., Surrey, BC (Canada); Ferguson, G. [Saint Francis Xavier Univ., Antigonish, NS (Canada)] (comps.) (and others)

    2009-07-01

    More than 500 delegates from industry, government, universities and research centres attended this conference to exchange professional knowledge on research and development that affects all sectors of geotechnical engineering, applied geology and hydrogeology. The conference also highlighted recent geoenvironmental achievements. The geotechnical sessions were entitled: soil mechanics; soil mechanics and brownfields; foundation engineering; landslide and slopes engineering; rock mechanics; risk assessment; reliability-based design; geoenvironmental issues; transportation geotechniques; marine geotechniques and geohazards; non-textbook soils and waste soils; covers and liners; instrumentation; harbour and shoreline geotechniques; geosynthetic mechanically stabilized earth (MSE) systems; cold regions and climate change; computer applications; regional hydrogeology; groundwater-surface water interaction; well hydraulics; radioactive waste management; groundwater sustainability; source water protection; mine waters; field techniques in hydrogeology; and hydrogeology of fractured rocks. The conference featured more than 230 presentations, of which 37 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  19. Vulnerability assessment of groundwater-dependent ecosystems based on integrated groundwater flow modell construction

    Science.gov (United States)

    Tóth, Ádám; Simon, Szilvia; Galsa, Attila; Havril, Timea; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2017-04-01

    Groundwater-dependent ecosystems (GDEs) are highly influenced by the amount of groundwater, seasonal variation of precipitation and consequent water table fluctuation and also the anthropogenic activities. They can be regarded as natural surface manifestations of the flowing groundwater. The preservation of environment and biodiversity of these GDEs is an important issue worldwide, however, the water management policy and action plan could not be constructed in absense of proper hydrogeological knowledge. The concept of gravity-driven regional groundwater flow could aid the understanding of flow pattern and interpretation of environmental processes and conditions. Unless the required well data are available, the geological-hydrogeological numerical model of the study area cannot be constructed based only on borehole information. In this case, spatially continuous geophysical data can support groundwater flow model building: systematically combined geophysical methods can provide model input. Integration of lithostratigraphic, electrostratigraphic and hydrostratigraphic information could aid groundwater flow model construction: hydrostratigraphic units and their hydraulic behaviour, boundaries and geometry can be obtained. Groundwater-related natural manifestations, such as GDEs, can be explained with the help of the revealed flow pattern and field mapping of features. Integrated groundwater flow model construction for assessing the vulnerability of GDEs was presented via the case study of the geologically complex area of Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, surface water-groundwater interaction, and revealing the potential effect of anthropogenic activity and climate change. In spite of its important and protected status, fluid flow model of the area, which could support water management and natural protection policy, had not been constructed previously. The 3D

  20. Dynamics of Agricultural Groundwater Extraction

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Zilberman, D.; Ierland, van E.C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is