WorldWideScience

Sample records for groundwater age dating

  1. Methods for using argon-39 to age-date groundwater using ultra-low-background proportional counting

    Energy Technology Data Exchange (ETDEWEB)

    Mace, Emily; Aalseth, Craig; Brandenberger, Jill; Day, Anthony; Hoppe, Eric; Humble, Paul; Keillor, Martin; Kulongoski, Justin; Overman, Cory; Panisko, Mark; Seifert, Allen; White, Signe; Wilcox Freeburg, Eric; Williams, Richard

    2017-08-01

    Argon-39 can be used as a tracer for age-dating glaciers, oceans, and more recently, groundwater. With a half-life of 269 years, 39Ar fills an intermediate age range gap (50-1,000 years) not currently covered by other common groundwater tracers. Therefore, adding this tracer to the data suite for groundwater studies provides an important tool for improving our understanding of groundwater systems. We present the methods employed for arriving at an age-date for a given sample of argon degassed from groundwater.

  2. Use of radiogenic noble gases for dating groundwater

    International Nuclear Information System (INIS)

    Marine, I.W.

    1981-01-01

    The accumulation in groundwater of products from the radioactive decay of elements naturally found in rocks offers a potential for measuring the time that the groundwater has been in contact with the rock. This method of dating groundwater has an advantage over using decay products from atmospheric radionuclides in that the amount of decay product becomes greater with increasing age rather than less. Different decay products accumulate at different rates, however, and, thus, have a different potential usefulness in age determinations. The most useful decay product is helium, which is produced from uranium and thorium. The use of argon-40 produced from potassium is limited because it is abundant in meteoric water. Neon, xenon, and krypton can be used, but only with great difficulty because they are produced in extremely small quantities. In general, the potential for error increases when a long time is required to produce a small quantity of the dating nuclide. An example is given of the use of helium dissolved in groundwater to obtain an age of 840,000 y for water in crystalline metamorphic rock beneath the Savannah River Plant near Aiken, SC. Combined with other information, this water age can be used to measure the hydraulic conductivity of a large mass of rock (tens of kilometers in length). The hydraulic conductivity so calculated compares favorably with that obtained from hydraulic tests

  3. Coupling 3D groundwater modeling with CFC-based age dating to classify local groundwater circulation in an unconfined crystalline aquifer

    Science.gov (United States)

    Kolbe, Tamara; Marçais, Jean; Thomas, Zahra; Abbott, Benjamin W.; de Dreuzy, Jean-Raynald; Rousseau-Gueutin, Pauline; Aquilina, Luc; Labasque, Thierry; Pinay, Gilles

    2016-12-01

    Nitrogen pollution of freshwater and estuarine environments is one of the most urgent environmental crises. Shallow aquifers with predominantly local flow circulation are particularly vulnerable to agricultural contaminants. Water transit time and flow path are key controls on catchment nitrogen retention and removal capacity, but the relative importance of hydrogeological and topographical factors in determining these parameters is still uncertain. We used groundwater dating and numerical modeling techniques to assess transit time and flow path in an unconfined aquifer in Brittany, France. The 35.5 km2 study catchment has a crystalline basement underneath a ∼60 m thick weathered and fractured layer, and is separated into a distinct upland and lowland area by an 80 m-high butte. We used groundwater discharge and groundwater ages derived from chlorofluorocarbon (CFC) concentration to calibrate a free-surface flow model simulating groundwater flow circulation. We found that groundwater flow was highly local (mean travel distance = 350 m), substantially smaller than the typical distance between neighboring streams (∼1 km), while CFC-based ages were quite old (mean = 40 years). Sensitivity analysis revealed that groundwater travel distances were not sensitive to geological parameters (i.e. arrangement of geological layers and permeability profile) within the constraints of the CFC age data. However, circulation was sensitive to topography in the lowland area where the water table was near the land surface, and to recharge rate in the upland area where water input modulated the free surface of the aquifer. We quantified these differences with a local groundwater ratio (rGW-LOCAL), defined as the mean groundwater travel distance divided by the mean of the reference surface distances (the distance water would have to travel across the surface of the digital elevation model). Lowland, rGW-LOCAL was near 1, indicating primarily topographical controls. Upland, r

  4. Tritium/Helium-3 dating of groundwaters around Chernobyl site

    Energy Technology Data Exchange (ETDEWEB)

    Fourre, E.; Jean-Baptiste, P.; Dapoigny, A.; Baumier, D. [CEA, CNRS, LSCE, UVSQ, IPSL, F-91191 Gif Sur Yvette (France); Aquilina, L.; Labasque, T. [Geosciences Rennes - GR, CNRS UMR 6118, F-35000 Rennes (France); La Salle, C. Le Gal; Lancelot, J. [Nimes Univ, GIS/CEREGE, Nimes (France)

    2010-07-01

    Complete text of publication follows: Estimates of groundwater age allow geo-hydrologists to calculate recharge rates, assess aquifers contamination risks, and calibrate complex flow models. The {sup 3}H/{sup 3}He dating method offers a direct measure for the time since groundwater had its last gas exchange with the atmosphere. The aim of this study is to bring temporal constraints to the radionuclide transport model in the Chernobyl test site. Samples have been collected in the exclusion zone, close to a trench filled with low-level wastes, both in the upper eolian sand layer and deeper in the alluvial deposit. CFCs and SF6 have been measured as well in order to compare dating methods. The {sup 3}H/{sup 3}He results presented in Figure 1 clearly show increasing ages with depth (below groundwater table). This fully supports the groundwater stratification developed in the hydrogeological model of the area. The infiltration recharge rate is a sensitive key parameter of the model, and our data are consistent with a rate about 200 mm/yr (maximum estimate)

  5. Quantifying shallow and deep groundwater inputs to rivers with groundwater dating in hydrological observatories.

    Science.gov (United States)

    Aquilina, Luc; Marçais, Jean; Gauvain, Alexandre; Kolbe, Tamara; de Dreuzy, Jean-Raynald; Labasque, Thierry; Abbott, Benjamin W.; Vergnaud, Virginie; Chatton, Eliot; Thomas, Zahra; Ruiz, Laurent; Bour, Olivier; Pinay, Gilles

    2017-04-01

    River water derives in part from groundwater—water that has spent some time in the subsurface (e.g. soil, unsaturated zone, saturated zone). However, because groundwater residence times vary from months to millennia, determining the proportion of shallow and deep groundwater contribution can be challenging. Groundwater dating with anthropogenic gases and natural geochemical tracers can decipher the origin of groundwater contribution to rivers, particularly when repeat samplings are carried out in different hydrological conditions. Here, we present two different applications of this approach from three hydrological observatories (H+ hydrogeological network; Aghrys and Armorique observatories) in western France, all these observatories belonging to the OZCAR national network. We carried out a regional investigation of mean groundwater ages in hard rock aquifers in Brittany, using long-term chronicles from hydrological observatories and regional monitoring sites. We determined the mean residence-time (RT) and annual renewal rate (RR) of four compartments of these aquifers: the direct contribution of a very young water component (i.e. RT less than 1-2 yr), the upper variably saturated zone (RR 27-33%), the weathered layer (RR 1.8-2.1%) and the fractured zone (RR 0.1%). From these values and a nitrate chronicle, we were able to determine the respective contributions of each compartment to the largest river in Brittany, the Vilaine, which drains 30% of the region. We found that the deep fractured compartment with very slow renewal times contributed to 25-45% of river water in winter and 30-60% in summer. The very young water which includes direct precipitation and soil fluxes constituted 40-65% of the winter river water (Aquilina et al., 2012). To complement these estimates, we investigated the relationship between dissolved silica and groundwater age in the Armorique hydrological observatory in northern Brittany. We computed the silica concentration expected along the

  6. Halon-1301, a new Groundwater Age Tracer

    Science.gov (United States)

    Beyer, Monique; van der Raaij, Rob; Morgenstern, Uwe; Jackson, Bethanna

    2015-04-01

    Groundwater dating is an important tool to assess groundwater resources in regards to direction and time scale of groundwater flow and recharge and to assess contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However ambiguous age interpretations are often faced, due to a limited set of available tracers and limitations of each tracer method when applied alone. There is a need for additional, complementary groundwater age tracers. We recently discovered that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate [Beyer et al, 2014]. Halon-1301 can be determined along with SF6, SF5CF3 and CFC-12 in groundwater using a gas chromatography setup with attached electron capture detector developed by Busenberg and Plummer [2008]. Halon-1301 has not been assessed in groundwater. This study assesses the behaviour of Halon-1301 in water and its suitability as a groundwater age tracer. We determined Halon-1301 in 17 groundwater and various modern (river) waters sites located in 3 different groundwater systems in the Wellington Region, New Zealand. These waters have been previously dated with tritium, CFC-12, CFC-11 and SF6 with mean residence times ranging from 0.5 to over 100 years. The waters range from oxic to anoxic and some show evidence of CFC contamination or degradation. This allows us to assess the different properties affecting the suitability of Halon-1301 as groundwater age tracer, such as its conservativeness in water and local contamination potential. The samples are analysed for Halon-1301 and SF6simultaneously, which allows identification of issues commonly faced when using gaseous tracers such as contamination with modern air during sampling. Overall we found in the assessed groundwater samples Halon-1301 is a feasible new groundwater tracer. No sample indicated significantly elevated

  7. Application of 36Cl as a dating tool for modern groundwater

    International Nuclear Information System (INIS)

    Tosaki, Yuki; Tase, Norio; Massmann, Gudrun; Nagashima, Yasuo; Seki, Riki; Takahashi, Tsutomu; Sasa, Kimikazu; Sueki, Keisuke; Matsuhiro, Takeshi; Miura, Taichi; Bessho, Kotaro; Matsumura, Hiroshi; He, Ming

    2007-01-01

    The 36 Cl/Cl ratios of groundwater samples were measured by accelerator mass spectrometry (AMS) in order to investigate the potential use of 36 Cl as a dating tool for modern groundwater. Groundwater samples were obtained from several piezometers in the Oderbruch in northeastern Germany. The shallow confined aquifer of the area is mainly recharged by the infiltration from the River Oder. From the results of measurements, the pre-bomb and the recent background 36 Cl/Cl ratios in the basin of the Oder were estimated to be 7-9 x 10 -14 . The 36 Cl fallout values estimated from the 36 Cl/Cl ratios of the Oderbruch samples, which were dated by the 3 H/ 3 He method, show good agreement with Dye-3 ice core data. These results suggest that the distribution of 36 Cl in groundwaters reflects the influence of the 36 Cl bomb pulse. This, in turn, suggests that the distribution of 36 Cl/Cl in modern groundwaters could reveal groundwater ages and flow systems in a region

  8. Radiocarbon dating of groundwater in tertiary sediments of the eastern Murray Basin

    International Nuclear Information System (INIS)

    Drury, L.W.; Calf, G.E.

    1984-01-01

    The Tertiary sediments located in the eastern part of the Murray Basin contain one of the most important low salinity groundwater resources in New South Wales. It is imperative that the hydrogeological environment in which the groundwater occurs be thoroughly understood to allow adequate management of the resource. A radiocarbon dating project was carried out on 37 groundwater samples from bores screened in these unconsolidated sediments. The results indicate water ages in the range 'modern' to 15 800 years. Groundwater recharge areas are indicated and rates of groundwater recharge and movement determined. The latter shows close correlation with velocity values quantitatively determined by Darcy's law

  9. Radiocarbon dating of groundwater in Tertiary sediments of the eastern Murray Basin

    Energy Technology Data Exchange (ETDEWEB)

    Drury, L.W. (Water Resources Commission of New South Wales, Sydney (Australia)); Calf, G.E. (Australian Atomic Energy Commission Research Establishment, Lucas Heights. Isotope Div.); Dharmasiri, J.K. (Colombo Univ. (Sri Lanka))

    1984-01-01

    The Tertiary sediments located in the eastern part of the Murray Basin contain one of the most important low salinity groundwater resources in New South Wales. It is imperative that the hydrogeological environment in which the groundwater occurs be thoroughly understood to allow adequate management of the resource. A radiocarbon dating project was carried out on 37 groundwater samples from bores screened in these unconsolidated sediments. The results indicate water ages in the range 'modern' to 15 800 years. Groundwater recharge areas are indicated and rates of groundwater recharge and movement determined. The latter shows close correlation with velocity values quantitatively determined by Darcy's law.

  10. Groundwater dating by means of isotopes

    International Nuclear Information System (INIS)

    Johansson, Barbro

    1980-08-01

    A short review is given of method for dating old groundwater by isotopetechniques. The carbon-14 method is then treated in detail; Carbon dioxide, released by root respiration of plants, and by decomposition of organic matter in the soil, is dissolved in soil water. The production of carbon dioxide in the root zone is high and the 14 C/ 12 C ratio is therefore assumed to be the same as in the plants. The residence time of water in the groundwater zone may then be computed, according to the laws of radioactive decay. No attempts have been made to compute the changes in the carbon-14 content of the soil air due to weathering. To do this, one would need to consider diffusion of gaseous carbon dioxide into and out of the soil. The amount of carbon entering the water through weathering in the groundwater zone may be compute if certain assumptions are made. To know if these assumptions are valid for the water of a special area, detailed knowledge about the area is required. In this report, an attempt is made to follow the changes in the composition of the water as the water moves through the ground. The differentiated equilibrium equations of the carbon dioxide system and the ionic balance are used for the calculations. It is assumed that when calcite is present in the ground, weathering of other minerals may be neglected. In order to test its usefulness, the method has been tried on groundwater from a borehole in Kraakemaala, Sweden. The results are very much dependent on the values of some of the parameters used in the calculations. The σ 13 C values especially have a great influence on the calculated age. As long as additional information on conditions at different depth remains unavailable, it seems impossible to determine the age of water with any accuracy. Only a range, which sometimes embraces several thousand years, can be given. A good aid to a better estimate of the age would be obtained if samples of water along a flow path were available. One way to get such

  11. New Hydrological Age-Dating Techniques Using Cosmogenic Radionuclides Beryllium-7 and Sodium-22

    Energy Technology Data Exchange (ETDEWEB)

    Frey, S.; Kuells, C. [Institute of Hydrology, Albert-Ludwigs-University of Freiburg (Germany); Schlosser, C. [Bundesamt fuer Strahlenschutz, Freiburg (Germany)

    2013-07-15

    Since atmospheric tritium levels have nearly reached the natural background, there is a need for further development of existing or additional methods for the age dating of young water. Non-gaseous age dating tracers are especially needed for hydrological applications in lakes, rivers and springs and for surface-groundwater interaction studies. Cosmogenically produced isotopes of sodium and beryllium ({sup 22}Na, {sup 7}Be, half-lives of 2.602 years and 53.29 days respectively) have been investigated as potential environmental tracers for residence time analysis of surface water. A simple chemical separation scheme for both radionuclides was established and {sup 7}Be was detected in both surface and groundwater samples. The ions were extracted from 500 L water using an ion exchange resin. The water samples were dated to ages of about 165 and 323 days for riverine samples and 475 days for a groundwater sample. Measurement was performed using a lead covered HPGe detector. These ages match ages previously reported using stable isotopes and tritium. (author)

  12. Assessment of Hydrochemistry for Use as Groundwater Age Proxy

    Science.gov (United States)

    Beyer, Monique; Daughney, Chris; Jackson, Bethanna; Morgenstern, Uwe

    2015-04-01

    Groundwater dating can aid groundwater management by providing information on groundwater flow, mixing and residence-, storage- and exposure-time of groundwater in the subsurface. Groundwater age can be inferred from environmental tracers, such as tritium, SF6 and CFCs (CFC-12, -11 and -113). These tracers often need to be applied complementarily, since they have a restricted application range and ambiguous age interpretations can be obtained. Some tracers, such as the CFCs, will become of limited use in near future, due their fading out atmospheric concentration. As a consequence of these limitations, there is a need for additional, complementary tracers to ensure groundwater dating in future. Hydrochemistry parameters, such as the concentrations and ratios of major ions, appear to be promising candidates. Hydro-chemistry data at various spatial and temporal scales are widely available through local, regional and national groundwater monitoring programmes. Promising relationships between hydrochemistry parameters and groundwater residence time or aquifer depth have been found in near piston flow environments. However, most groundwater samples contain proportions of different aged water, due to mixing of water emerging from different flow lines during sampling or discharge, which complicates the establishment of hydrochemistry-time relationships in these environments. In this study, we establish a framework to infer hydrochemistry - (residence) time relationships in non-piston flow environments by using age information inferred from environmental tracer data and lumped parameter models (LPMs). The approach involves the generation of major element concentrations by 'classic' Monte Carlo simulation and subsequent comparison of simulated and observed element concentrations by means of an objective function to establish hydrochemistry-time relationships. The framework also allows for assessment of the hydrochemistry-time relationships with regards to their potential to

  13. 85Kr dating of groundwater

    International Nuclear Information System (INIS)

    Rozanski, K.; Florkowski, T.

    1978-01-01

    The possibility of 85 Kr dating of groundwater is being investigated. The method of gas extraction from 200 to 300 litres of water sample has been developed. The Argon and Krypton mixture, separated from the gas extracted from water, was counted in a 1.5 ml volume proportional counter. The amount of krypton gas in the counter was determined by mass spectrometry. A number of surface and groundwater samples were analyzed indicating an 85 Kr concentration ranging from present atmospheric content (river water) to zero values. 85 Kr 'blank value' was determined to be about 5 per cent of present 85 Kr atmospheric content. For groundwater samples, the mean residence time in the system was calculated assuming the exponential model and known 85 Kr input function. Further improvement of the method should bring higher yield of krypton separation and lower volume of water necessary for analysis. (orig.) [de

  14. Degradation of sucralose in groundwater and implications for age dating contaminated groundwater.

    Science.gov (United States)

    Robertson, W D; Van Stempvoort, D R; Spoelstra, J; Brown, S J; Schiff, S L

    2016-01-01

    The artificial sweetener sucralose has been in use in Canada and the US since about 2000 and in the EU since 2003, and is now ubiquitous in sanitary wastewater in many parts of the world. It persists during sewage treatment and in surface water environments and as such, has been suggested as a powerful tracer of wastewater. In this study, longer-term persistence of sucralose was examined in groundwater by undertaking a series of three sampling snapshots of a well constrained wastewater plume in Canada (Long Point septic system) over a 6-year period from 2008 to 2014. A shrinking sucralose plume in 2014, compared to earlier sampling, during this period when sucralose use was likely increasing, provides clear evidence of degradation. However, depletion of sucralose from a mean of 40 μg/L in the proximal plume zone, occurred at a relatively slow rate over a period of several months to several years. Furthermore, examination of septic tank effluent and impacted groundwater at six other sites in Canada, revealed that sucralose was present in all samples of septic tank effluent (6-98 μg/L, n = 32) and in all groundwater samples (0.7-77 μg/L, n = 64). Even though sucralose degradation is noted in the Long Point plume, its ubiquitous presence in the groundwater plumes at all seven sites implies a relatively slow rate of decay in many groundwater septic plume environments. Thus, sucralose has the potential to be used as an indicator of 'recent' wastewater contamination. The presence of sucralose identifies groundwater that was recharged after 2000 in Canada and the US and after 2003 in the EU and many Asian countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Dating of groundwater with tritium and 14C

    International Nuclear Information System (INIS)

    Muennich, K.O.; Roether, W.; Thilo, L.

    1967-01-01

    Shallow groundwater can be dated with some accuracy on the basis of its bomb tritium content if the unsaturated soil cover and the aquifer itself is sufficiently homogeneous. A few examples from the Rhine valley are presented. The decrease in tritium level from the water table to a few metres below is nearly two orders of magnitude. Agreement between the measured or estimated variation of bomb tritium in rain during the past decade and the tritium found in shallow groundwater can be obtained if one takes into account that (a) practically no summer rain reaches the water table, and (b) water is mixed by diffusion. Both effects can also be observed in the soil moisture of the unsaturated soil above the water table. Carbon-14 increase in groundwater due to bombs is delayed compared to tritium, the reasons being delay in the biological system and exchange with the carbonate in the soil. Nevertheless lysimeters show a marked increase of 14 C, which depends on the plant cover, being high in a plant-covered lysimeter and low in a bare one. A simple model is presented, which allows the evaluation of the influence of exchange on the 14 C age obtained. It turns out that the deviation from the true age depends on the ratio of the carbonate content in the aquifer material to the carbonate content of the water, on the specific contact surface or the grain size but not on the groundwater velocity. On the basis of this model the experimental finding that 14 C ages are usually in agreement with other age estimates despite the loss by exchange is plausible owing to the fact that only material of sufficiently coarse grain size can make up a reasonable aquifer. Assuming only exchange with a monomolecular surface layer of the carbonate grains one finds that the 14 C age is likely to differ by not more than a factor of two in the most unfavourable case. Under natural conditions (steady state of cosmic-ray-produced 14 C) the 14 C content of shallow groundwater is hardly influenced at

  16. Exploring Hydrofluorocarbons as Groundwater Age Tracers (Invited)

    Science.gov (United States)

    Haase, K. B.; Busenberg, E.; Plummer, L. N.; Casile, G.; Sanford, W. E.

    2013-12-01

    Groundwater dating tracers are an essential tool for analyzing hydrologic conditions in groundwater systems. Commonly used tracers for dating post-1940's groundwater include sulfur hexafluoride (SF6), chlorofluorocarbons (CFCs), 3H-3He, and other isotopic tracers (85Kr, δ2H and δ18O isotopes, etc.). Each tracer carries a corresponding set of advantages and limitations imposed by field, analytical, and interpretive methods. Increasing the number available tracers is appealing, particularly if they possess inert chemical properties and unique temporal emission histories from other tracers. Atmospherically derived halogenated trace gases continue to hold untapped potential for new tracers, as they are generally inert and their emission histories are well documented. SF5CF3, and CFC-13 were previously shown to have application as dating tracers, though their low mixing ratios and low solubility require large amounts of water to be degassed for their quantification. Two related groups of compounds, hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) are hypothesized to be potential age tracers, having similar mixing ratios to the CFCs and relatively high solubility. However, these compounds yield gas chromatography electron capture detector (GC-ECD) responses that are 10-2 -10-5 less than CFC-12, making purge and trap or field stripping GC-ECD approaches impractical. Therefore, in order to use dissolved HCFCs and HFCs as age tracers, different approaches are needed. To solve this problem, we developed an analytical method that uses an atomic emission detector (GC-AED) in place of an ECD to detect fluorinated compounds. In contrast to the ECD, the AED is a universally sensitive, highly linear, elementally specific detector. The new GC-AED system is being used to measure chlorodifluoromethane (HCFC-22), 1,1,1,2-tetrafluoroethane (HFC-134a), and other fluorinated compounds in one liter water samples to study their potential as age dating tracers. HCFC-22 is a

  17. Accelerator mass spectrometry (AMS) dating from the modern age to the past million age

    International Nuclear Information System (INIS)

    Sasa, K.; Nagashima, Y.; Seki, R.; Takahashi, T.; Tosaki, Y.; Sueki, K.; Bessyo, K.; Matsumura, H.; Miura, T.

    2006-01-01

    A multi-nuclide Accelerator Mass Spectrometry system at the University of Tsukuba (Tsukuba AMS system) is able to measure the long-lived radioisotopes of 14 C, 26 Al, 36 Cl and 129 I. The Tsukuba AMS system is able to perform AMS measurements with the terminal voltage of more than 10 MV. It is difficult to estimate the modern age dating (timescale of the past ten years) by the AMS dating method because the low attenuation of long-lived radioisotopes. The atomic bomb-produced radioisotopes are proposed as the environmental traces for the modern age dating. There is the advantage that the long half life of radioisotopes makes the attenuation negligilbe compared with the short half life of radioisotopes. We applied the 36 Cl bomb pulse as a dating tool for modern groundwater (∼50 years) instead of the 3 H bomb pulse. In addition, we have developed 32 Si-AMS system. The half life of 32 Si is about 140 years, therefore 32 Si-AMS is a useful tool for the modern age dating. On the other hand, we have started a new project to measure the cosmogenic nuclide of 36 Cl in an ice core retrieved from Dome Fuji station at Antarctic in order to investigate the past solar activity and the past earth environment as the timescale of the past million age. (author)

  18. Groundwater recharge and flow on Montserrat, West Indies: Insights from groundwater dating

    OpenAIRE

    Hemmings, Brioch; Gooddy, Daren; Whitaker, Fiona; George Darling, W.; Jasim, Alia; Gottsmann, Joachim

    2015-01-01

    Study region Montserrat, Lesser Antilles, Caribbean. Study focus Analysis of δ2H and δ18O isotopes, and chlorofluorocarbon (CFC) anthropogenic tracers in Montserrat groundwater provides insights into the age and provenance of the spring waters. New hydrological insights δ2H and δ18O analysis indicates uniform recharge elevations for groundwaters on Montserrat. CFC-11 and CFC-12 analysis reveals age differences between isotopically similar, high elevation springs and low eleva...

  19. Flow of river water into a karstic limestone aquifer - 2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia

    Science.gov (United States)

    Plummer, Niel; Busenberg, E.; Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R.; McConnell, J.B.; Michel, R.L.

    1998-01-01

    Tritium/helium-3 (3H/3He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The 3H/3He age is independent of the extent of dilution with older (3H-free and 3He(trit)-free) water. The groundwater mixtures are designated as Type-I for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl- and ??18O data for water from the Upper Floridan aquifer at Valdosta, Georgia The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most allaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-I water. CFC-12 persists in both SO4-reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg-1) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-I mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water sam pies obtained from the Upper Floridan aquifer have CFC-12-based ages of the young traction that are consistent with the 3H concentration of the groundwater. Because of uncertainties associated with very low 3H and 3He content in dilute mixtures, 3H/3He dating is limited to the river

  20. Age dating and flow path evaluation of groundwater by SF6 and microbe in the foot of Mt. Fuji, central Japan

    Science.gov (United States)

    Yamamoto, Chisato; Tsujimura, Maki; Kato, Kenji; Nagaosa, Kazuyo; Sakakibara, Koichi; Umei, Yohei; Ohara, Kazuma

    2016-04-01

    A variety of industries are developed at the foot of volcanic mountains in Japan and the groundwater is major source for industrial activity in those regions. The age of groundwater has been estimated to be from 10 to 30 years in Mt. Fuji regions by using 36Cl and 3H. However, the age has not been evaluated using SF6 with higher time resolution in these regions. Also, the total number of prokaryotes shows a specific value in each spring water, suggesting different path and age of the groundwater. Therefore, we aim to estimate residence time and the groundwater flow in three dimensions using the multi-tracers approach; CFCs, SF6, the total number of prokaryotes, the stable isotopes of oxygen-18, deuterium. We collected totally 25 spring water samples in Mt. Fuji and analyzed concentration of inorganic ions, the stable isotopes of oxygen-18, deuterium, CFCs, SF6. The apparent age of the spring water was estimated to be ranging from 4 to 19 years at the foot of Mt. Fuji. These results are reasonable as considering the existed age data by36Cl (Tosaki, 2008) in this region. The spring water with younger age tends to show higher total number of prokaryotes, suggesting that the groundwater flows dominantly through the shallow and young lava with the higher total number of prokaryotes, leads to younger age. Focusing on a specific spring water, the seasonal change of SF6 and total number of prokaryotes were monitored. The spring water showed a younger age and higher total number of prokaryotes during the high water flow season, whereas it showed an older age and lower total number of prokaryotes. Therefore, the total number of prokaryotes shows a good negative correlation with the residence time of the spring/ groundwater in space and time. This shows a possibility that the total number of prokaryotes could be a useful tracer of groundwater for time and space in the three dimensions information.

  1. Determination of timescales of nitrate contamination by groundwater age models in a complex aquifer system

    Science.gov (United States)

    Koh, E. H.; Lee, E.; Kaown, D.; Lee, K. K.; Green, C. T.

    2017-12-01

    Timing and magnitudes of nitrate contamination are determined by various factors like contaminant loading, recharge characteristics and geologic system. Information of an elapsed time since recharged water traveling to a certain outlet location, which is defined as groundwater age, can provide indirect interpretation related to the hydrologic characteristics of the aquifer system. There are three major methods (apparent ages, lumped parameter model, and numerical model) to date groundwater ages, which differently characterize groundwater mixing resulted by various groundwater flow pathways in a heterogeneous aquifer system. Therefore, in this study, we compared the three age models in a complex aquifer system by using observed age tracer data and reconstructed history of nitrate contamination by long-term source loading. The 3H-3He and CFC-12 apparent ages, which did not consider the groundwater mixing, estimated the most delayed response time and a highest period of the nitrate loading had not reached yet. However, the lumped parameter model could generate more recent loading response than the apparent ages and the peak loading period influenced the water quality. The numerical model could delineate various groundwater mixing components and its different impacts on nitrate dynamics in the complex aquifer system. The different age estimation methods lead to variations in the estimated contaminant loading history, in which the discrepancy in the age estimation was dominantly observed in the complex aquifer system.

  2. Modeling groundwater age using tritium and groundwater mineralization processes - Morondava sedimentary basin, Southwestern Madagascar

    International Nuclear Information System (INIS)

    RAMAROSON, V.

    2007-01-01

    The tritium method in the lumped parameter approach was used for groundwater dating in the Morondava sedimentary basin, Southwestern Madagascar. Tritium data were interpreted by the dispersion model. The modeling results, with P D values between 0.05 and 0.7, show that shallow groundwater age is ranging from 17 to 56 years. Different types of chemical composition were determined for these shallow ground waters, among others, Ca-HCO 3 , Ca-Na-HCO 3 , Ca-Na-Mg-HCO 3 , Ca-K-HCO 3 -NO 3 -SO 4 , Na-Cl, or Ca-Na-Mg-Cl. Likewise, deeper ground waters show various chemical type such as Ca-Na-HCO 3 , Ca-Mg-Na H CO 3 , Ca-Na-Mg-HCO 3 , Ca-Na-Mg-HCO 3 -Cl-SO 4 , Ca-Mg-HCO 3 , Na-Ca-Mg-HCO 3 -SO 4 -Cl, Na-Cl-HCO 3 or Na-HCO 3 -Cl. To evaluate the geochemical processes, the NETPATH inverse geochemical modeling type was implemented. The modeling results show that silicate minerals dissolution , including olivine, plagioclase, and pyroxene is more important than calcite or dolomite dissolution, for both shallow and deeper groundwater . In the Southern part of the study area, while halite dissolution is likely to be the source of shallow groundwater chloride concentration rise, the mineral precipitation seems to be responsible for less chloride content in deeper groundwater. Besides, ion exchange contributes to the variations of major cations concentrations in groundwater. The major difference between shallow and deep groundwater mineralization process lies in the leaching of marine aerosols deposits by local precipitation, rapidly infiltrated through the sandy formation and giving marine chemical signature to shallow groundwater [fr

  3. Application of krypton-85 in groundwater dating

    International Nuclear Information System (INIS)

    Rozanski, K.

    1979-01-01

    The method for determination 85 Kr activity in groundwater and its application in isotope hydrology is presented. Various aspects of 85 Kr presence in the earth's ecosphere are discussed in the first part of the paper. The method for 85 Kr activity measurement in groundwater is presented in the second part of the paper. Analytical procedure consists of the following steps: extraction of the gases dissolved in water sample, separation of the Ar+Kr mixture from the gases, 85 Kr activity measurement in miniature proportional counter, mass spectrometry determination of the krypton gas volume in the proportional counter. About 7 days is necessary for complete analysis of one sample - the error of analysis not exceeds 10 per cent. The results of 85 Kr activity measurements (together with tritium and carbon 14 C determinations) in 14 different water samples allowed to verify usefulness of 85 Kr dating of young water. (author)

  4. Ground-Water Age and Quality in the High Plains Aquifer near Seward, Nebraska, 2003-04

    Science.gov (United States)

    Stanton, Jennifer S.; Landon, Matthew K.; Turco, Michael J.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the City of Seward, Nebraska, conducted a study of ground-water age and quality to improve understanding of: (1) traveltimes from recharge areas to public-supply wells, (2) the effects of geochemical reactions in the aquifer on water quality, and (3) how water quality has changed historically in response to land-use practices. Samples were collected from four supply wells in the Seward west well field and from nine monitoring wells along two approximate ground-water flow paths leading to the well field. Concentrations of three different chlorofluorocarbons (CFC-12, CFC-11, and CFC-113), sulfur hexafluoride (SF6), and ratios of tritium (3H) to helium-3 (3He) isotope derived from radioactive decay of 3H were used to determine the apparent recharge age of ground-water samples. Age interpretations were based primarily on 3H/3He and CFC-12 data. Estimates of apparent ground-water age from tracer data were complicated by mixing of water of different ages in 10 of the 13 ground-water samples collected. Apparent recharge dates of unmixed ground-water samples or mean recharge dates of young fractions of mixed water in samples collected from monitoring wells ranged from 1985 to 2002. For monitoring-well samples containing mixed water, the fraction of the sample composed of young water ranged from 26 to 77 percent of the sample. Apparent mean recharge dates of young fractions in samples collected from four supply wells in the Seward west well field ranged from about 1980 to 1990. Estimated fractions of the samples composed of young water ranged from 39 to 54 percent. It is implicit in the mixing calculations that the remainder of the sample that is not young water is composed of water that is more than 60 years old and contains no detectable quantities of modern atmospheric tracers. Estimated fractions of the mixed samples composed of 'old' water ranged from 23 to 74 percent. Although alternative mixing models can be used to

  5. Flow of river water into a karstic limestone aquifer-2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, L.N.; Busenberg, E. [U.S. Geological Survey, 432 National Center, Reston, VA (United States); Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R. [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY (United States); McConnell, J.B. [U.S. Geological Survey, 3039 Amwiler Rd., Atlanta, GA (United States); Michel, R.L. [U.S. Geological Survey, Mail Stop 434, 345 Middlefield Road, Menlo Park, CA (United States)

    1998-11-01

    Tritium/helium-3 ({sup 3}H/{sup 3}He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources-the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The {sup 3}H/{sup 3}He age is independent of the extent of dilution with older ({sup 3}H-free and {sup 3}He{sub trit}-free) water. The groundwater mixtures are designated as Type-1 for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl{sup -} and {delta}{sup 18}O data for water from the Upper Floridan aquifer at Valdosta, Georgia.The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most anaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-1 water. CFC-12 persists in both SO{sub 4}-reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg{sup -1}) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-1 mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water samples obtained from the Upper Floridan aquifer have CFC-12-based ages of the young fraction that are consistent with the {sup 3}H concentration of the groundwater. Because of uncertainties associated with very low {sup 3}H

  6. Flow of river water into a karstic limestone aquifer-2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia

    International Nuclear Information System (INIS)

    Plummer, L.N.; Busenberg, E.; Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R.; McConnell, J.B.; Michel, R.L.

    1998-01-01

    Tritium/helium-3 ( 3 H/ 3 He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources-the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The 3 H/ 3 He age is independent of the extent of dilution with older ( 3 H-free and 3 He trit -free) water. The groundwater mixtures are designated as Type-1 for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl - and δ 18 O data for water from the Upper Floridan aquifer at Valdosta, Georgia.The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most anaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-1 water. CFC-12 persists in both SO 4 -reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg -1 ) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-1 mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water samples obtained from the Upper Floridan aquifer have CFC-12-based ages of the young fraction that are consistent with the 3 H concentration of the groundwater. Because of uncertainties associated with very low 3 H and 3 He content in dilute mixtures, 3 H/ 3 He dating is

  7. Analysis of metolachlor ethane sulfonic acid (MESA) chirality in groundwater: A tool for dating groundwater movement in agricultural settings.

    Science.gov (United States)

    Rice, Clifford P; McCarty, Gregory W; Bialek-Kalinski, Krystyna; Zabetakis, Kara; Torrents, Alba; Hapeman, Cathleen J

    2016-08-01

    To better address how much groundwater contributes to the loadings of pollutants from agriculture we developed a specific dating tool for groundwater residence times. This tool is based on metolachlor ethane sulfonic acid, which is a major soil metabolite of metolachlor. The chiral forms of metolachlor ethane sulfonic acid (MESA) and the chiral forms of metolachlor were examined over a 6-year period in samples of groundwater and water from a groundwater-fed stream in a riparian buffer zone. This buffer zone bordered cropland receiving annual treatments with metolachlor. Racemic (rac) metolachlor was applied for two years in the neighboring field, and subsequently S-metolachlor was used which is enriched by 88% with the S-enantiomer. Chiral analyses of the samples showed an exponential increase in abundance of the S-enantiomeric forms for MESA as a function of time for both the first order riparian buffer stream (R(2)=0.80) and for groundwater within the riparian buffer (R(2)=0.96). However, the S-enrichment values for metolachlor were consistently high indicating different delivery mechanisms for MESA and metolachlor. A mean residence time of 3.8years was determined for depletion of the initially-applied rac-metolachlor. This approach could be useful in dating groundwater and determining the effectiveness of conservation measures. A mean residence time of 3.8years was calculated for groundwater feeding a first-order stream by plotting the timed-decay for the R-enantiomer of metolachlor ethane sulfonic acid. Published by Elsevier B.V.

  8. Groundwater age and chemistry, and future nutrient loads for selected Rotorua Lakes catchments

    International Nuclear Information System (INIS)

    Morgenstern, U.; Reevers, R.R.; Daugney, C.J.; Cameron, S.; Gordon, D.

    2005-01-01

    Hydrochemical analysis and age dating of groundwater and groundwater-fed streams were carried out in the Lake Rotorua and Okareka catchments to assess the past and current states, and future trends in groundwater chemistry. The study was undertaken because of declining lake water quality due to observed increases in nutrient loads entering these lakes. THe hydrogeology of the Rotorua Lakes area can be described as a permeable pumiceous surface tephra layer that allows easy penetration of rainwater recharge to deeper rhyolite and ignimbrite aquifers. These aquifers are essentially unconfined and yield high volumes of groundwater that discharges to spring-fed streams or directly to the lake. The hydrochemistry of groundwaters is characterised by much lower concentrations of Ca, Mg and SO 4 and much higher concentrations of PO 4 -P and SiO 2 than other groundwaters in New Zealand. This chemical signature reflects the volcanic origin of the aquifer lithology. Because the aquifers in the Rotorua area have large water storage capacity there is a long residence time for nutrient-laden groundwater. It takes decades for the water after being recharged to reach the spring-fed streams and the lakes. The large groundwater bodies have therefore 'silently' been contaminated over decades, with the old pristine groundwater being progressively replaced by younger nutrient-laden water that will discharge to the spring-fed streams and finally to the lakes. This study involved age dating of springs, wells, and groundwater-fed streams to assess how long it takes for nutrient-enriched groundwater to travel from pastoral land to springs and streams, and to the lakes. Most of the springs and wells in the Lake Rotorua and Okareka catchments contained relatively old groundwaters, with mean residence times between 40 and >170 years (only two wells have younger water of 26 and 31 years mean residence time). This corresponds to young water fractions (water recharged within the last 55 years

  9. Wairarapa Valley groundwater : residence time, flow pattern, and hydrochemistry trends

    International Nuclear Information System (INIS)

    Morgenstern, U.

    2005-01-01

    The Wairarapa groundwater system has a complicated hydrogeological setting as it evolved from sea level changes, tectonic activity, and geomorphic process. Due to increasing groundwater demand a better understanding of the groundwater resources is required to help achieve effective management and sustainable use. In addition to previous 'classical' hydrogeology studies, this report represents the first stage of a comprehensive approach using age dating and chemistry time trends for understanding the Wairarapa groundwater system. The methodology of groundwater age dating and mixing models is described in Appendix 1. Historic tritium data were evaluated, and combined with new tritium and CFC/SF 6 data to allow for robust age dating. (author). 14 refs., 30 figs

  10. Practical problems of groundwater model ages for groundwater protection studies

    International Nuclear Information System (INIS)

    Matthess, G.; Muennich, K.O.; Sonntag, C.

    1976-01-01

    Water authorities in the Federal Republic of Germany have established a system of protection zones for the protection of groundwater supplies from pollution. One zone (Zone II) is defined by an outer boundary from which the groundwater needs 50 days to flow to the well. 50 days is the period accepted for the elimination of pathogenic germs. However, within Zone II carbon-14 measurements of water may give model ages of several thousand years, which may lead to some confusion in the legal and practical aspects of this scheme. These model ages may result from uncertainties in the chemical model, or from mixing of waters of different ages, either within the aquifer or during extraction at the well. The paper discusses scientific aspects of the establishment of protection zones. Two processes affecting the model age determinations are examined in detail. First, the mechanism of diffusion transport downwards through porous, but impermeable, aquicludes is examined for stable trace substances and radioactive isotopes. Secondly, examples are given of model ages resulting from mixtures of new and old waters. It is recommended that such model ages should not be reported as 'ages' since they may be misinterpreted in groundwater protection applications. (author)

  11. Pesticide and transformation product detections and age-dating relations from till and sand deposits

    Science.gov (United States)

    Warner, K.L.; Morrow, W.S.

    2007-01-01

    Pesticide and transformation product concentrations and frequencies in ground water from areas of similar crop and pesticide applications may vary substantially with differing lithologies. Pesticide analysis data for atrazine, metolachlor, alachlor, acetochlor, and cyanazine and their pesticide transformation products were collected at 69 monitoring wells in Illinois and northern Indiana to document occurrence of pesticides and their transformation products in two agricultural areas of differing lithologies, till, and sand. The till is primarily tile drained and has preferential fractured flow, whereas the sand primarily has surface water drainage and primary porosity flow. Transformation products represent most of the agricultural pesticides in ground water regardless of aquifer material - till or sand. Transformation products were detected more frequently than parent pesticides in both the till and sand, with metolachlor ethane sulfonic acid being most frequently detected. Estimated ground-water recharge dates for the sand were based on chlorofluorocarbon analyses. These age-dating data indicate that ground water recharged prior to 1990 is more likely to have a detection of a pesticide or pesticide transformation product. Detections were twice as frequent in ground water recharged prior to 1990 (82%) than in ground water recharged on or after 1990 (33%). The highest concentrations of atrazine, alachlor, metolachlor, and their transformation products, also were detected in samples from ground water recharged prior to 1990. These age/pesticide detection relations are opposite of what would normally be expected, and may be the result of preferential flow and/or ground-water mixing between aquifers and aquitards as evident by the detection of acetochlor transformation products in samples with estimated ground-water ages predating initial pesticide application. ?? 2007 American Water Resources Association.

  12. Paleoclimatic information from deuterium and oxygen-18 in C-14 dated North Saharian groundwaters; groundwater formation in the past

    International Nuclear Information System (INIS)

    Sonntag, C.; Muennich, K.O.; Junghans, C.

    1978-01-01

    A statistical presentation of C-14 groundwater ages for various regions of the Northern Sahara reflects the alternating sequence of humid and arid periods in the late Pleistocene and Holocene. Groundwaters older than 20000 y B.P. are found all over the Sahara. Isoline-presentation of the Continental Effect in deuterium and oxygen-18 of Saharian groundwater is similar to the one in modern European groundwater. This similarity proves the Western Drift influence when in the past winter rains were sufficient for groundwater formation in the Sahara (great pluvial). The postpluvial humid phases of the Sahara during the Holocene were probably of decreasing importance from west to east. The lower deuterium excess d = delta D - 8 x delta 18 O observed in old Saharian groundwaters is interpreted to be due to a lower moisture deficit of the air over the ocean during the last ice-age. Extremely high D- and O-18 contents of modern groundwater in the Sahel zone south of the Sahara are probably due to summer rain originating from tropical rain forest evapotranspiration. (orig.) [de

  13. Groundwater age determination using 85Kr and multiple age tracers (SF6, CFCs, and 3H to elucidate regional groundwater flow systems

    Directory of Open Access Journals (Sweden)

    Makoto Kagabu

    2017-08-01

    New hydrological insights for the region: The groundwater ages could not be estimated using CFCs or SF6, particularly in the urban areas because of artificial additions to the concentration over almost the entire study area. However, even in these regional circumstances, apparent ages of approximately 16, 36, and not less than 55 years were obtained for three locations on the A–A’ line (recharge area, discharge area, and stagnant zone of groundwater, respectively from 85Kr measurements. This trend was also supported by lumped parameter model analysis using a time series of 3H observations. In contrast, along the B–B’ line, the groundwater age of not less than 55 years at three locations, including the recharge to discharge area, where CFCs and SF6 were not detected, implies old groundwater: this is also the area in which denitrification occurs. In the C area, very young groundwater was obtained from shallow water and older groundwater was detected at greater depths, as supported by the long-term fluctuations of the NO3−–N concentration in the groundwater. The results of this study can be effectively used as a “time axis” for sustainable groundwater use and protection of groundwater quality in the study area, where groundwater accounts for almost 100% of the drinking water resources.

  14. Interpretation of stable isotope, denitrification, and groundwater age data for samples collected from Sandia National Laboratories /New Mexico (SNL/NM) Burn Site Groundwater Area of Concern

    Energy Technology Data Exchange (ETDEWEB)

    Madrid, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singleton, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Visser, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-02

    This report combines and summarizes results for two groundwater-sampling events (October 2012 and October/November 2015) from the Sandia National Laboratories/New Mexico (SNL/NM) Burn Site Groundwater (BSG) Area of Concern (AOC) located in the Lurance Canyon Arroyo southeast of Albuquerque, NM in the Manzanita Mountains. The first phase of groundwater sampling occurred in October 2012 including samples from 19 wells at three separate sites that were analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory as part of a nitrate Monitored Natural Attenuation (MNA) evaluation. The three sites (BSG, Technical Area-V, and Tijeras Arroyo) are shown on the regional hydrogeologic map and described in the Sandia Annual Groundwater Monitoring Report. The first phase of groundwater sampling included six monitoring wells at the Burn Site, eight monitoring wells at Technical Area-V, and five monitoring wells at Tijeras Arroyo. Each groundwater sample was analyzed using the two specialized analytical methods, age-dating and denitrification suites. In September 2015, a second phase of groundwater sampling took place at the Burn Site including 10 wells sampled and analyzed by the same two analytical suites. Five of the six wells sampled in 2012 were resampled in 2015. This report summarizes results from two sampling events in order to evaluate evidence for in situ denitrification, the average age of the groundwater, and the extent of recent recharge of the bedrock fracture system beneath the BSG AOC.

  15. Interpretation of stable isotope, denitrification, and groundwater age data for samples collected from Sandia National Laboratories /New Mexico (SNL/NM) Burn Site Groundwater Area of Concern

    International Nuclear Information System (INIS)

    Madrid, V.; Singleton, M. J.; Visser, A.; Esser, B.

    2016-01-01

    This report combines and summarizes results for two groundwater-sampling events (October 2012 and October/November 2015) from the Sandia National Laboratories/New Mexico (SNL/NM) Burn Site Groundwater (BSG) Area of Concern (AOC) located in the Lurance Canyon Arroyo southeast of Albuquerque, NM in the Manzanita Mountains. The first phase of groundwater sampling occurred in October 2012 including samples from 19 wells at three separate sites that were analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory as part of a nitrate Monitored Natural Attenuation (MNA) evaluation. The three sites (BSG, Technical Area-V, and Tijeras Arroyo) are shown on the regional hydrogeologic map and described in the Sandia Annual Groundwater Monitoring Report. The first phase of groundwater sampling included six monitoring wells at the Burn Site, eight monitoring wells at Technical Area-V, and five monitoring wells at Tijeras Arroyo. Each groundwater sample was analyzed using the two specialized analytical methods, age-dating and denitrification suites. In September 2015, a second phase of groundwater sampling took place at the Burn Site including 10 wells sampled and analyzed by the same two analytical suites. Five of the six wells sampled in 2012 were resampled in 2015. This report summarizes results from two sampling events in order to evaluate evidence for in situ denitrification, the average age of the groundwater, and the extent of recent recharge of the bedrock fracture system beneath the BSG AOC.

  16. Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon

    Science.gov (United States)

    Meredith, K. T.; Han, L. F.; Hollins, S. E.; Cendón, D. I.; Jacobsen, G. E.; Baker, A.

    2016-09-01

    Estimating groundwater age is important for any groundwater resource assessment and radiocarbon (14C) dating of dissolved inorganic carbon (DIC) can provide this information. In semi-arid zone (i.e. water-limited environments), there are a multitude of reasons why 14C dating of groundwater and traditional correction models may not be directly transferable. Some include; (1) the complex hydrological responses of these systems that lead to a mixture of different ages in the aquifer(s), (2) the varied sources, origins and ages of organic matter in the unsaturated zone and (3) high evaporation rates. These all influence the evolution of DIC and are not easily accounted for in traditional correction models. In this study, we determined carbon isotope data for; DIC in water, carbonate minerals in the sediments, sediment organic matter, soil gas CO2 from the unsaturated zone, and vegetation samples. The samples were collected after an extended drought, and again after a flood event, to capture the evolution of DIC after varying hydrological regimes. A graphical method (Han et al., 2012) was applied for interpretation of the carbon geochemical and isotopic data. Simple forward mass-balance modelling was carried out on key geochemical processes involving carbon and agreed well with observed data. High values of DIC and δ13CDIC, and low 14CDIC could not be explained by a simple carbonate mineral-CO2 gas dissolution process. Instead it is suggested that during extended drought, water-sediment interaction leads to ion exchange processes within the top ∼10-20 m of the aquifer which promotes greater calcite dissolution in saline groundwater. This process was found to contribute more than half of the DIC, which is from a mostly 'dead' carbon source. DIC is also influenced by carbon exchange between DIC in water and carbonate minerals found in the top 2 m of the unsaturated zone. This process occurs because of repeated dissolution/precipitation of carbonate that is dependent on

  17. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 1. Flow Patterns, Age of Groundwater, and Influence of Lake Water Leakage

    Science.gov (United States)

    Katz, Brian G.; Lee, Terrie M.; Plummer, L. Niel; Busenberg, Eurybiades

    1995-06-01

    Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11-67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.

  18. Water ages of 20 groundwater bodies and its relevance for the implementation of the European Water Framework Directive

    Science.gov (United States)

    Kralik, Martin; Brielmann, Heike; Humer, Franko; Grath, Johannes; Sültenfuß, Jürgen; Philippitsch, Rudolf

    2015-04-01

    The 'Mean Residence Time' (MRT) of groundwater is required to develop reliable hydrogeological concepts of groundwater bodies as a prerequisite for a qualified monitoring and risk assessment. MRTs from monitoring wells help to assess if groundwater bodies are 'at risk' or 'not at risk' failing to meet good groundwater quantitative and chemical status according to the Water Framework Directive and therefore not being able to use the groundwater as drinking water or industrial water resource. A combination of 18O/2H, 3H, 3H/3He and in some cases additional CFC, SF6, 85Kr and 35S measurements allow to calculate reliable MRTs in 20 groundwater bodies covering 13% (approx.10719 km2) of the Austrian territory. Altogether 401 groundwater wells and springs from the existing groundwater monitoring network were analysed for δ18O (n=1500), 3H (n=800) and 3He (n=327) since 2006. Considering both the fact that monitoring wells may have multiple or long well screens and the inherent uncertainties of groundwater age dating techniques, age estimations were classified into 5 categories of short ( 50years) mean residence times for each monitoring site. Subsequently, median values of the MRT categories were assigned to each investigated groundwater body. These are valuable information to fix extraction rates, to set measures to improve the land use and groundwater protection and to validate hydrogeological concepts. Generally, MRTs of groundwater bodies increase from shallow Alpine groundwater bodies over deeper Alpine valley-aquifers to longer MRTs in the Pannonian climate range in the east of Austria.

  19. Ground water dating on the basis of the 14C content of dissolved humic and fulvic acids. Final report

    International Nuclear Information System (INIS)

    Kim, J.I.; Artinger, R.; Buckau, G.; Kardinal, C.; Geyer, S.; Wolf, M.; Halder, H.; Fritz, P.

    1995-05-01

    The groundwater dating on the basis of the 14 C content of dissolved organic carbon (DOC) is studied. Fulvic acids (FA) and humic acids (HA) are used as DOC fractions. In addition, the groundwaters are dated with the 14 C content of the dissolved inorganic carbon (DIC). The isotopic contents of 2 H, 3 H, 13 C, 15 N, 18 O, and 34 S of groundwater and humic substances are alse determined. The isolated humic substances are characterized with regard to their chemical composition as well as their molecular size and spectroscopic properties. For aquifer systems which have a neglectable content of sedimentary organic carbon (SOC), the 14 C dating of FA show plausible groundwater ages. In aquifer systems with a high SOC content, the mixing of 14 C free FA from sediment partly falsifies the 14 C groundwater age as determined by dissolved FA. Due to the high transfer of HA from sediment to groundwater, HA are less suitable for groundwater dating. The FA characterization allows the distinction between FA of sedimentary origin and FA which infiltrate with seepage water. Several starting points for a correction of the calculated 14 C ages of FA exist. The results indicate, 14 C groundwater dating with fulvic acids is a valuable expansion of groundwater dating methods. (orig.) [de

  20. U-ages in soils and groundwater evidencing wet periods 400-600 kyr ago in southeast Brazil

    International Nuclear Information System (INIS)

    Bonotto, D.M.; Jimenez-Rueda, J.R.

    2007-01-01

    238 U and its radiogenic daughter 234 U have been utilized for dating soil formation and groundwater residence time during the last 1.5 million years, in this case based on the U-dissolution/precipitation occurring during modifications of the oxidation-reduction conditions. In this paper, we report a 400-600 kyr proxy of wet periods from sediments occurring in a soil profile developed over rocks outcropping at the Parana sedimentary basin in Brazil, and from groundwater exploited of Guarani aquifer at the same basin. The approaches indicated successful use of the U-modeled ages for suggesting wet periods exceeding the past 116-210 kyr from previous studies

  1. Isotope and chemical tracers in groundwater hydrology

    International Nuclear Information System (INIS)

    Kendall, C.; Stewart, M.K.; Morgenstern, U.; Trompetter, V.

    1999-01-01

    The course sessions cover: session 1, Fundamentals of stable and radioactive isotopes; session 2, Stable oxygen and hydrogen isotopes in hydrology: background, examples, sampling strategy; session 3, Catchment studies using oxygen and hydrogen isotopes: background - the hydrologic water balance, evapotranspiration - the lion's share, runoff generation - new water/old water fractions, groundwater recharge - the crumbs; session 4, Isotopes in catchment hydrology: survey of applications, future developments; session 5, Applications of tritium in hydrology: background and measurement, interpretation, examples; session 6, Case studies using mixing models: Hutt Valley groundwater system, an extended mixing model for simulating tracer transport in the unsaturated zone; session 7, Groundwater dating using CFC concentrations: background, sampling and measurement, use and applications; session 8, Groundwater dating with carbon-14: background, sampling and measurement, use and applications; session 9, NZ case studies: Tauranga warm springs, North Canterbury Plains groundwater; session 10, Stable carbon and nitrogen isotopes: background and examples, biological applications of C-N-S isotopes; session 11, New developments in isotope hydrology: gas isotopes, compound specific applications, age dating of sediments etc; session 12, NZ case studies: North Canterbury Plains groundwater (continued), Waimea Plains groundwater. (author). refs., figs

  2. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  3. A new approach to constrain basal helium flux into aquifers for better estimation of groundwater ages by Helium 4

    Science.gov (United States)

    Matsumoto, Takuya; Sturchio, Neil C.; Chang, Hung K.; Gastmans, Didier; Araguas-Araguas, Luis J.; Jiang, Wei; Lu, Zheng-Tian; Mueller, Peter; Yokochi, Reika; Purtschert, Roland; Zongyu, Chen; Shuiming, Hu; Aggarwal, Pradeep K.

    2016-04-01

    Estimation of groundwater age through the combined use of isotope methods and groundwater flow modelling is the common approach used for developing the required level of knowledge in the case of groundwater pumped from deep aquifers. For more than 50 years radiocarbon and tritium have been the common tools used in isotope hydrology studies to provide first estimates of groundwater age and dynamics. The half-life of carbon-14 (5730 years) and the complex geochemistry of carbon species in most environments have limited the proper characterization of groundwater flow patterns in large sedimentary basins and deep aquifers to ages more recent than about 40 000 years. Over the last years, a number of long-live radionuclides and other isotopes have been tested as more reliable age indicators by specialised laboratories. Among these methods, chlorine-36 (half-life of 300 000 yr) has been used with mixed results, mainly due to problems derived from in-situ production of this radionuclide. Uranium isotopes have also been used in a few instances, but never became a routine tool. Accumulation of helium-4 in deep groundwaters has also been proposed and used in a few instance, but one major obstacle in the 4He dating method is a difficulty in assessing a rate constant of 4He input into aquifers (namely, the entering basal 4He flux). In this context, recent breakthrough developments in analytical methods allow the precise determination of dissolved noble gases in groundwater as well as trace-level noble gas radionuclides present in very old groundwaters. Atom trap trace analysis, or ATTA, has dramatically improved over the last years the processing of very small amount of noble gases, providing now real possibilities for routine measurements of extremely low concentration of exotic radionuclides dissolved in groundwater, such as krypton-81 (half-life 229 000 years). Atom trap trace analysis involves the selective capture of individual atoms of a given isotope using six laser

  4. Mapping groundwater renewability using age data in the Baiyang alluvial fan, NW China

    Science.gov (United States)

    Huang, Tianming; Pang, Zhonghe; Li, Jie; Xiang, Yong; Zhao, Zhijiang

    2017-05-01

    Groundwater age has been used to map renewability of water resources within four groups: strong, partial, and rare renewability, and non-renewable. The Baiyang alluvial fan in NW China is a representative area for examining groundwater recharge from river infiltration and for mapping groundwater renewability, and it has been investigated using multiple isotopes and water chemistry. Systematic sampling included 52 samples for 2H and 18O analysis and 32 samples for 3H, 13C and 14C analysis. The δ13C compositions remain nearly constant throughout the basin (median -12.7‰) and indicate that carbonate dissolution does not alter 14C age. The initial 14C activity of 80 pmC, obtained by plotting 3H and 14C activity, was used to correct groundwater 14C age. The results show that areas closer to the river consist of younger groundwater ages; this suggests that river infiltration is the main recharge source to the shallow groundwater system. However, at distances far away from the river, groundwater ages become older, i.e., from modern water (less than 60 year) to pre-modern water (from 60 to 1,000 years) and paleowater (more than 1,000 yeas). The four classifications of groundwater renewability have been associated with different age ranges. The area of shallow groundwater with strong renewability accounts for 74% of the total study area. Because recharge condition (river infiltration) controls overall renewability, a groundwater renewability map is of significant importance to the management of groundwater exploitation of this area as well as other arid groundwater basins.

  5. Use of environmental tritium in groundwater dating in the upper Jequitibá River Basin, Municipality of Sete Lagoas, Minas Gerais, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Rafael C.; Moreira, Rubens M.; Rocha, Zildete; Linhares, Giovanna M.G.; Duarte, Mayara Pinheiro, E-mail: rcp@cdtn.br, E-mail: rubens@cdtn.br, E-mail: rochaz@cdtn.br, E-mail: gmgl@cdtn.br, E-mail: mpd@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Viana, João Herbert M., E-mail: joao.herbert@embrapa.br [EMBRAPA Milho e Sorgo, Sete Lagoas, MG (Brazil)

    2017-07-01

    Tritium is a natural radioactive isotope that can be used in dating modern groundwater. Due to the increase of this radionuclide content in the atmosphere during the nuclear tests in the 1960s, it became possible to determine the age of recent groundwater. Such a measurement is important inasmuch as it sheds light upon groundwater circulation and the renewability of aquifers. The area where this research was carried out is located at the upper section of the Jequitibá river basin, geologically dominated by limestone rocks of the Bambui Group. At his region the karstic aquifers are responsible for the water supply of the cities of Sete Lagoas and Prudente de Moraes. The tritium activity was determined in samples from wells and the analytic results allowed the calculation of the ages of the water using the Exponential Flow Model, which considers that there was a mixture of more recent waters along the travelled path in the subsoil. The obtained results showed that the water of the deep aquifer is older, between 200 and 60 years, while waters of the free shallow aquifer are less than 37 years old. These results indicate the renewal time in the aquifers and can contribute to the better management of the water resources in regions with water availability problems. (author)

  6. Recent developments on field gas extraction and sample preparation methods for radiokrypton dating of groundwater

    Science.gov (United States)

    Yokochi, Reika

    2016-09-01

    Current and foreseen population growths will lead to an increased demand in freshwater, large quantities of which is stored as groundwater. The ventilation age is crucial to the assessment of groundwater resources, complementing the hydrological model approach based on hydrogeological parameters. Ultra-trace radioactive isotopes of Kr (81 Kr and 85 Kr) possess the ideal physical and chemical properties for groundwater dating. The recent advent of atom trap trace analyses (ATTA) has enabled determination of ultra-trace noble gas radioisotope abundances using 5-10 μ L of pure Kr. Anticipated developments will enable ATTA to analyze radiokrypton isotope abundances at high sample throughput, which necessitates simple and efficient sample preparation techniques that are adaptable to various sample chemistries. Recent developments of field gas extraction devices and simple and rapid Kr separation method at the University of Chicago are presented herein. Two field gas extraction devices optimized for different sampling conditions were recently designed and constructed, aiming at operational simplicity and portability. A newly developed Kr purification system enriches Kr by flowing a sample gas through a moderately cooled (138 K) activated charcoal column, followed by a gentle fractionating desorption. This simple process uses a single adsorbent and separates 99% of the bulk atmospheric gases from Kr without significant loss. The subsequent two stages of gas chromatographic separation and a hot Ti sponge getter further purify the Kr-enriched gas. Abundant CH4 necessitates multiple passages through one of the gas chromatographic separation columns. The presented Kr separation system has a demonstrated capability of extracting Kr with > 90% yield and 99% purity within 75 min from 1.2 to 26.8 L STP of atmospheric air with various concentrations of CH4. The apparatuses have successfully been deployed for sampling in the field and purification of groundwater samples.

  7. Helium-4 characteristics of groundwaters from Central Australia: Comparative chronology with chlorine-36 and carbon-14 dating techniques

    Science.gov (United States)

    Kulongoski, Justin T.; Hilton, David R.; Cresswell, Richard G.; Hostetler, Stephen; Jacobson, Gerry

    2008-01-01

    SummaryHelium isotope and concentration characteristics were determined for a suite of groundwater samples from the Amadeus Basin in Central Australia. Two study areas include a wellfield south of Alice Springs, and the Dune Plains and Mututjulu aquifers near Uluru. Measurements of 36Cl/Cl and 14C on the same sample suite enable us to assess the relative applicability of the three groundwater chronometers over a range of anticipated groundwater residence times (ages), and to investigate possible causes of discordant 'ages' derived from the different groundwater dating techniques. Results from the analyses of 39 groundwater samples reveal helium-4 ( 4He) concentrations that range from 0.80 to 98.8 (×10 -7 cm 3 STP g -1 H 2O) in the Alice Springs samples, and from 0.47 to 65.6 (×10 -7 cm 3 STP g -1 H 2O) in the Uluru samples. 4He concentrations yield uncorrected groundwater residence times (i.e. time since recharge) of between modern to >2500 ka (near Alice Springs) and modern to 1600 ka (near Uluru) assuming an effective porosity of 20%, and uranium and thorium contents of 1.7 and 6.1 ppm, respectively. 36Cl/Cl ratios on the same samples range from 93 to 158 (×10 -15) (near Alice Springs) and from 80 to 335 (×10 -15) (near Uluru) representing groundwater residence times near Alice Springs from modern to >200 ka, and from modern to >300 ka near Uluru. Percent modern carbon (pmc) on the same samples ranged from 64.9 to 12.5 pmc near Alice Springs, and from 93.5 to 30 ka. For the Amadeus Basin groundwater samples, the 4He method (uncorrected) over-estimates groundwater residence time compared to 36Cl and 14C techniques. This implies the presence of an extraneous He component or basal flux of He ( J0). To reconcile groundwater 4He and 14C residence times, it is necessary to adopt J0 values between 0 and 30 (×10 -8) cm 3 STP He cm -2 a -1 which supplements in situ produced He within the aquifer. Adoption of J0 values over this range lowers 4He residence times

  8. Groundwater arsenic concentrations in Vietnam controlled by sediment age

    DEFF Research Database (Denmark)

    Postma, Dieke; Larsen, Flemming; Thai, Nguyen Thi

    2012-01-01

    Arsenic contamination of groundwater continues to threaten the health of millions of people in southeast Asia. The oxidation of organic carbon, coupled to the reductive dissolution of arsenic-bearing iron oxides, is thought to control the release of sediment-bound arsenic into groundwater. However......, the cause of the high spatial variability in groundwater arsenic concentrations—which can range from 5 to 500 μg l−1 within distances of a few kilometres—has been uncertain. Here, we combine measurements of sediment age, organic-matter reactivity and water chemistry at four locations along a cross......-section of the arsenic-contaminated Red River floodplain in Vietnam to determine the origin of variations in groundwater arsenic concentrations. The burial age of the aquifer sediments, determined using optical stimulated luminescence, ranged from 460 years near the course of the present-day river to 5,900 years...

  9. TracerLPM (Version 1): An Excel® workbook for interpreting groundwater age distributions from environmental tracer data

    Science.gov (United States)

    Jurgens, Bryant C.; Böhlke, J.K.; Eberts, Sandra M.

    2012-01-01

    point in time; however, prior knowledge of an appropriate LPM is required because the mean age is often non-unique. LPM output concentrations depend on model parameters and sample date. All of the LPMs have a parameter for mean age. The EPM, PEM, and DM have an additional parameter that characterizes the degree of age mixing in the sample. BMMs have a parameter for the fraction of the first component in the mixture. An LPM, together with its parameter values, provides a description of the age distribution or the fractional contribution of water for every age of recharge contained within a sample. For the PFM, the age distribution is a unit pulse at one distinct age. For the other LPMs, the age distribution can be much broader and span decades, centuries, millennia, or more. For a sample with a mixture of groundwater ages, the reported interpretation of tracer data includes the LPM name, the mean age, and the values of any other independent model parameters. TracerLPM also can be used for simulating the responses of wells, springs, streams, or other groundwater discharge receptors to nonpoint-source contaminants that are introduced in recharge, such as nitrate. This is done by combining an LPM or user-defined age distribution with information on contaminant loading at the water table. Information on historic contaminant loading can be used to help evaluate a model's ability to match real world conditions and understand observed contaminant trends, while information on future contaminant loading scenarios can be used to forecast potential contaminant trends.

  10. The Schmidt hammer as a relative-age dating tool and its potential for calibrated-age dating in Holocene glaciated environments

    Science.gov (United States)

    Shakesby, Richard A.; Matthews, John A.; Owen, Geraint

    2006-11-01

    The Schmidt hammer is a relatively cheap, portable, sturdy instrument with proven value over the last two decades or so in rapidly dating coarse inorganic deposits of diverse origins. Early views were that its dating role was limited to distinguishing recently exposed from much older. Typically, either a few sites of possibly different ages or occasional older surfaces amongst many young sites were studied. More recently, calibration curves based on individual R-value means from small numbers (2-4) of sites of known ages have been used to estimate the ages of undated sites. We present Schmidt hammer rebound ( R-) values from 28 'Little Ice Age' (and younger), 23 Preboreal and 7 Younger Dryas glaciated surfaces in southern Norway in order, first, to test rigorously the robustness of the instrument as a relative-age dating tool. Despite being obtained from different surfaces (moraines, glaciofluvial deposits and bedrock) and varied metamorphic lithologies, the R-value overall means and 95% confidence intervals for the 'Little Ice Age', Preboreal and Younger Dryas age categories (respectively, 60.0±1.6, 41.6±1.4 and 34.2±2.0) are statistically significantly different. Only two outlying sites in the two younger age categories have overlapping confidence intervals, demonstrating remarkable robustness in differentiating early- and late-Holocene surfaces. The distinction between Preboreal and Younger Dryas sites (with terminal dates factors, including some previously considered critical (instrument wear, operator bias, initial rock surface texture), which emerge either as less important than previously argued or as relatively unimportant, together with others previously unreported (e.g. long-term changes in lichen, soil, snow and vegetation covers). Third, we investigate the potential for calibrated-age dating by applying exploratory, linear rates of R-value decline to selected combinations of sites. The results suggest that error limits of ca ±700 to ±1600 years

  11. Estimating the Spatial Distribution of Groundwater Age Using Synoptic Surveys of Environmental Tracers in Streams

    Science.gov (United States)

    Gardner, W. P.

    2017-12-01

    A model which simulates tracer concentration in surface water as a function the age distribution of groundwater discharge is used to characterize groundwater flow systems at a variety of spatial scales. We develop the theory behind the model and demonstrate its application in several groundwater systems of local to regional scale. A 1-D stream transport model, which includes: advection, dispersion, gas exchange, first-order decay and groundwater inflow is coupled a lumped parameter model that calculates the concentration of environmental tracers in discharging groundwater as a function of the groundwater residence time distribution. The lumped parameters, which describe the residence time distribution, are allowed to vary spatially, and multiple environmental tracers can be simulated. This model allows us to calculate the longitudinal profile of tracer concentration in streams as a function of the spatially variable groundwater age distribution. By fitting model results to observations of stream chemistry and discharge, we can then estimate the spatial distribution of groundwater age. The volume of groundwater discharge to streams can be estimated using a subset of environmental tracers, applied tracers, synoptic stream gauging or other methods, and the age of groundwater then estimated using the previously calculated groundwater discharge and observed environmental tracer concentrations. Synoptic surveys of SF6, CFC's, 3H and 222Rn, along with measured stream discharge are used to estimate the groundwater inflow distribution and mean age for regional scale surveys of the Berland River in west-central Alberta. We find that groundwater entering the Berland has observable age, and that the age estimated using our stream survey is of similar order to limited samples from groundwater wells in the region. Our results show that the stream can be used as an easily accessible location to constrain the regional scale spatial distribution of groundwater age.

  12. Groundwater recharge and flow on Montserrat, West Indies: Insights from groundwater dating

    Directory of Open Access Journals (Sweden)

    Brioch Hemmings

    2015-09-01

    New hydrological insights: δ2H and δ18O analysis indicates uniform recharge elevations for groundwaters on Montserrat. CFC-11 and CFC-12 analysis reveals age differences between isotopically similar, high elevation springs and low elevation aquifer waters. Low CFC concentrations within a confined low elevation aquifer suggest water ages of ∼45 years. High CFC concentrations in the northern and western springs are explained by rapid infiltration of cool (high CFC concentration rainfall into saturated compartments, with flow through the vadose zone to the phreatic zone dominated by compartment flow. Lower CFC concentrations in a number of aligned warmer springs suggest a contribution from older, warmer waters from depth. Temperatures and CFC concentrations indicate older component supply rates of up to 8 L/s to the highest yielding spring on Centre Hills, with contributions of up to 75% in the warmest spring waters.

  13. Dating gasoline releases using ground-water chemical analyses: Case studies

    International Nuclear Information System (INIS)

    Worthington, M.A.; Perez, E.J.

    1993-01-01

    This paper presents case studies where geochemical data were analyzed in spatial and temporal relation to documented gasoline releases at typical service station sites. In particular, the authors present ground-water analytical data for sites where (1) the date of the gasoline release is known with a good degree of confidence, (2) the release is confined to a relatively short period of time so as to be considered essentially instantaneous, (3) antecedent geochemical condition are known or can be reasonably expected to have been either unaffected by previous hydrocarbon impacts or minor in comparison to known release events, and (4) where geologic materials can be classified as to structure and composition. The authors' intent is to provide empirical data regarding the hydrogeological fate of certain gasoline components, namely the compounds benzene, toluene, ethylbenzene and xylene isomers (BTEX) and methyl-tertiary-butyl ether (MTBE). Particular emphasis is placed on analysis of gasoline weathering as a means of comparing releases in given hydrogeologic environments. Trends seen in a variety of comparative hydrocarbon compound ratios may provide a basis for evaluating relative release dates

  14. Addressing the Sustainability of Groundwater Extraction in California Using Hydrochronology

    Science.gov (United States)

    Moran, J. E.; Visser, A.; Singleton, M. J.; Esser, B. K.

    2017-12-01

    In urban and agricultural settings in California, intense pressure on water supplies has led to extensive managed aquifer recharge and extensive overdraft in these areas, respectively. The California Sustainable Groundwater Management Act (SGMA) includes criteria for pumping that maintains groundwater levels and basin storage, and avoids stream depletion and degradation of water quality. Most sustainability plans will likely use water level monitoring and water budget balancing based on integrated flow models as evidence of compliance. However, hydrochronology data are applicable to several of the criteria, and provide an independent method of addressing questions related to basin turnover time, recharge rate, surface water-groundwater interaction, and the age distribution at pumping wells. We have applied hydrochronology (mainly tritium-helium groundwater age dating and extrinsic tracers) in urban areas to delineate flowpaths of artificially recharged water, to identify stagnant zones bypassed by the engineered flow system, and to predict vulnerability of drinking water sources to contamination. In agricultural areas, we have applied multi-tracer hydrochronology to delineate groundwater stratigraphy, to identify paleowater, and to project future nitrate concentrations in long-screened wells. This presentation will describe examples in which groundwater dating and other tracer methods can be applied to directly address the SGMA criteria for sustainable groundwater pumping.

  15. Krypton-81, Helium-4 and Carbon-14 based estimation of groundwater ages in the Guarani Aquifer System: implications for the He-4 geochronometer

    Science.gov (United States)

    Aggarwal, P. K.; Chang, H. K.; Gastmans, D.; Sturchio, N. C.; Araguas, L.; Matsumoto, T.; Lu, Z.; Jiang, W.; Yokochi, R.; Mueller, P.

    2012-12-01

    Characterization of aquifer systems remains a challenge, particularly for large aquifers with limited hydrogeological information. Groundwater age is an important parameter that integrates aquifer recharge and flow dynamics and provides the ability to reliably constrain groundwater models. We have used multiple isotope tracers (C-14, He-4, and Kr-81) to estimate the age of groundwater along a 400-km transect in the north-eastern part of the Guarani Aquifer System (GAS) in Brazil. Carbon-14 measurements were made with an AMS, He-4 by mass-spectrometry, and Kr-81 by atom trap trace analysis (ATTA). Groundwater samples were collected along a groundwater flow path that runs from the outcrop area in the east to the deep confined section in the west, where the aquifer is up to about 1000 m deep. Present groundwater recharge occurs in the outcrop areas, as indicated by the presence of tritium and modern 14C. Carbon-14 activities reach values below detection limit at relatively short distances (a few km) from the outcrop. Abundance of 81Kr (half-life 229 Ka), in samples free of C-14, decreases from 0.81±0.11 (expressed as (81Kr/Kr)sample/(81Kr/Kr)air) in the east to 0.18±0.03 in the western-most sample (estimated age = 566±60 ka). Measured 4He-excess is far above that expected from in-situ production rates in sandstone aquifers and overestimates the age by several orders of magnitude. We used 81Kr ages to calibrate the 4He geochronometer which indicates a basal flux of about 2.8 x10-11 cm3STP He/cm2/a. This flux is lower than most estimates of basal flux in previous studies and will allow a wider use of 4He for groundwater dating and aquifer characterization.

  16. Inferring Groundwater Age in an Alluvial Aquifer from Tracer Concentrations in the Stream - Little Wind River, Wyoming

    Science.gov (United States)

    Goble, D.; Gardner, W. P.; Naftz, D. L.; Solder, J. E.

    2017-12-01

    We use environmental tracers: CFC's, SF6, and 222Rn measured in stream water to determine volume and mean age of groundwater discharging to the Little Wind River, near Riverton, Wyoming. Samples of 222Rn were collected every 200 m along a 2 km reach, surrounding a known groundwater discharge zone. Nearby groundwater wells, in-stream piezometers and seepage meters were sampled for 222Rn, CFC's and SF6. Tracer concentrations measured in groundwater and in-stream piezometers were used to estimate the mean age of the subsurface system. High resolution 222Rn samples were used to determine the location and volume of groundwater inflow using a model of instream transport that includes radioactive decay and gas exchange with the atmosphere. The age of groundwater entering the stream was then estimated from in-stream measured CFC and SF6 concentrations using a new coupled stream transport and lumped-parameter groundwater age model. Ages derived from in-stream measurements were then compared to the age of subsurface water measured in piezometers, seepage meters, and groundwater wells. We then asses the ability of groundwater age inferred from in-stream samples to provide constraint on the age of the subsurface discharge to the stream. The ability to asses groundwater age from in-stream samples can provide a convenient method to constrain the regional distribution of groundwater circulation rates when groundwater sampling is challenging or wells are not in place.

  17. A Bayesian modeling approach for estimation of a shape-free groundwater age distribution using multiple tracers

    NARCIS (Netherlands)

    Massoudieh, A.; Visser, A.; Sharifi, S.; Broers, H.P.

    2014-01-01

    Due to the mixing of groundwaters with different ages in aquifers, groundwater age is more appropriately represented by a distribution rather than a scalar number. To infer a groundwater age distribution from environmental tracers, a mathematical form is often assumed for the shape of the

  18. Application of multiple-isotope and groundwater-age data to identify factors affecting the extent of denitrification in a shallow aquifer near a river in South Korea

    Science.gov (United States)

    Kaown, Dugin; Koh, Eun-Hee; Mayer, Bernhard; Kim, Heejung; Park, Dong Kyu; Park, Byeong-Hak; Lee, Kang-Kun

    2018-01-01

    The extent of denitrification in a small agricultural area near a river in Yangpyeong, South Korea, was determined using multiple isotopes, groundwater age, and physicochemical data for groundwater. The shallow groundwater at one monitoring site had high concentrations of NO3-N (74-83 mg L-1). The δ15N-NO3 values for groundwater in the study area ranged between +9.1 and +24.6‰ in June 2014 and +12.2 to +21.6‰ in October 2014. High δ15N-NO3 values (+10.7 to +12.5‰) in both sampling periods indicated that the high concentrations of nitrate in the groundwater originated from application of organic fertilizers and manure. In the northern part of the study area, some groundwater samples showed elevated δ15N-NO3 and δ18O-NO3 values, which suggest that nitrate was removed from the groundwater via denitrification, with N isotope enrichment factors ranging between -4.8 and -7.9‰ and O isotope enrichment factors varying between -3.8 and -4.9‰. Similar δD and δ18O values of the surface water and groundwater in the south appear to indicate that groundwater in that area was affected by surface-water infiltration. The mean residence times (MRTs) of groundwater showed younger ages in the south (10-20 years) than in the north (20-30 years). Hence, it was concluded that denitrification processes under anaerobic conditions with longer groundwater MRT in the northern part of the study area removed considerable amounts of nitrate. This study demonstrates that multi-isotope data combined with physicochemical data and age-dating information can be effectively applied to characterize nitrate contaminant sources and attenuation processes.

  19. Groundwater dating down to the milliliter level

    International Nuclear Information System (INIS)

    Molnar, M.; Janovics, R.; Rinyu, L.

    2010-01-01

    Complete text of publication follows. A novel method was developed for AMS C-14 measurement of carbonate samples using He carrier gas flushing in septum sealed test tubes. The new and powerful pretreatment method can be applied for normal size (0.1-1.0 mg C) and ultra small size (10-100 μg C) carbonate samples. In this study we investigated the applicability of the new method for dissolved inorganic carbonate (DIC) samples for groundwater radiocarbon analysis. The developed pretreatment method does not require vacuum during sample preparation, which significantly reduces the complexity. Reaction time and conditions can be easily controlled as carbon-dioxide content of water samples is extracted by acid addition in He atmosphere using a simple septum sealed test tube. A double needle with flow controlled He carrier gas is used for CO 2 transfer out from the test tube (Fig. 1). Carbon-dioxide is trapped on a zeolite without using liquid N 2 freezing. The new method can be combined with an automatized graphitization system like AGE from ETHZ giving a full automatizable water preparation line for AMS graphite targets. This case the needed typical sample size is between 5-12 ml of water sample. The most powerful application of the new groundwater pretreatment method is to connect it directly to an AMS using gas ion source interface (Fig.2). With a MICADAS type AMS system we demonstrated that you can routinely measure the C-14 content of 1 ml of water sample with better than 1% precision (for a modern sample). This direct C-14 AMS measurement including sample preparation of one water sample takes about 20 minutes.

  20. AMS radiocarbon dating of ancient Japanese documents of known age

    International Nuclear Information System (INIS)

    Oda, H.; Niu, E.; Nakamura, T.

    2003-01-01

    Radiocarbon ages of 17 ancient Japanese documents of known age and 3 unknown samples were measured by AMS. Radiocarbon dating on the known documents concluded that the Japanese paper is a suitable sample for radiocarbon dating because of small discrepancy between the calibrated radiocarbon age and the historical age due to the characteristics of Japanese paper. From the dating of the paper samples of unknown age, the wood-block prints, it was clarified that they had been produced between the 11th century and the first half of the 12th century as the historical information suggested. (author)

  1. Intercomparison test for the determination of low-level tritium activities in natural waters for age dating purposes

    International Nuclear Information System (INIS)

    Mohokar, Hemant; Diksha; Sinha, U.K.; Joseph, T.B.

    2015-01-01

    A world-wide inter-comparison was undertaken to assess the quality of 3 H data produced by laboratories worldwide, primarily aimed at those conducting groundwater age dating applications in hydrogeology. These low-level tritium test samples encompass 3 H concentrations currently observed in modern precipitation, surface and ground waters, whereupon each participating laboratory employed routine pre-treatment or electrolytic enrichment procedures and 3 H counting methods. The test water samples were comprised of one tritium-free water and seven water samples. Fifty-eight laboratories reported test data to the IAEA for all, or a sub-set, of the eight test samples. The method applied by our laboratory was electrolytic enrichment followed by counting in liquid scintillation counter

  2. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater

    Science.gov (United States)

    Han, L. F; Plummer, Niel

    2016-01-01

    Numerous methods have been proposed to estimate the pre-nuclear-detonation 14C content of dissolved inorganic carbon (DIC) recharged to groundwater that has been corrected/adjusted for geochemical processes in the absence of radioactive decay (14C0) - a quantity that is essential for estimation of radiocarbon age of DIC in groundwater. The models/approaches most commonly used are grouped as follows: (1) single-sample-based models, (2) a statistical approach based on the observed (curved) relationship between 14C and δ13C data for the aquifer, and (3) the geochemical mass-balance approach that constructs adjustment models accounting for all the geochemical reactions known to occur along a groundwater flow path. This review discusses first the geochemical processes behind each of the single-sample-based models, followed by discussions of the statistical approach and the geochemical mass-balance approach. Finally, the applications, advantages and limitations of the three groups of models/approaches are discussed.The single-sample-based models constitute the prevailing use of 14C data in hydrogeology and hydrological studies. This is in part because the models are applied to an individual water sample to estimate the 14C age, therefore the measurement data are easily available. These models have been shown to provide realistic radiocarbon ages in many studies. However, they usually are limited to simple carbonate aquifers and selection of model may have significant effects on 14C0 often resulting in a wide range of estimates of 14C ages.Of the single-sample-based models, four are recommended for the estimation of 14C0 of DIC in groundwater: Pearson's model, (Ingerson and Pearson, 1964; Pearson and White, 1967), Han & Plummer's model (Han and Plummer, 2013), the IAEA model (Gonfiantini, 1972; Salem et al., 1980), and Oeschger's model (Geyh, 2000). These four models include all processes considered in single-sample-based models, and can be used in different ranges of

  3. Using 81Kr-age of groundwater in the Guarani Aquifer, Brazil, to constrain estimates of continental degassing flux of 4He

    Science.gov (United States)

    Aggarwal, P. K.; Matsumoto, T.; Sturchio, N. C.; Chang, H. K.; Gastmans, D.; Lu, Z.; Jiang, W.; Müller, P.; Yokochi, R.; Han, L.; Klaus, P.; Torgersen, T.

    2013-12-01

    Continental degassing flux of helium is the dominant component of dissolved helium in deep groundwater together with that produced in-situ in the aquifer. A reliable estimate of the degassing flux is critical to the use of 4He as a dating tool in groundwater studies. The degassing flux is also important for understanding fluid and heat transport in the mantle and the rust. An independent tracer of groundwater age is required in order to deconvolute the two signals of the external, degassing flux and in situ production. Estimates of degassing flux mostly have relied upon shorter-lived radionuclides such as 14C and tritium and the resulting flux estimates have a significant variability (Torgersen, 2010). In the Guarani Aquifer in Brazil, an effective crustal 4He degassing flux into the aquifer was estimated from 81Kr ages ranging from about 70 Ka to 570 Ka. We then used the model framework of Toregesen and Ivey (1985), modified to include a diffusive reduction of originally uniform crustal helium flux from basement rocks through a thick sedimentary layer beneath the aquifer, to calculate a distribution of radiogenic 4He within the aquifer. With this framework, we obtain 4He ages that are consistent with ages based on 81Kr and 14C, and with a crustal degassing flux equivalent to that estimated from U and Th contents in the crust. The model framework for the Guarani Aquifer is also applied to data from other deep aquifers in Africa and Australia and our results suggest that the continental flux of 4He may be uniform, at least in stable continental areas. Additionally, a reliable estimate of the 4He degassing flux also helps to constrain the surficial discharge of deep groundwater.

  4. Dating method with /sup 39/Ar

    Energy Technology Data Exchange (ETDEWEB)

    Loosli, H H [Bern Univ. (Switzerland). Physikalisches Inst.

    1983-04-01

    The principles of a dating method based on the cosmic-ray-produced radioisotope /sup 39/Ar are given. Technical requirements such as background and standard gas samples and gas proportional counting systems are described. With samples extracted from Greenland ice it can be demonstrated that /sup 39/Ar ages agree with ages obtained by other methods. First results on ocean water samples show that with this isotope valuable information on ocean mixing and circulation can be expected. /sup 39/Ar results on groundwater samples disagree for some aquifers with conventional /sup 14/C ages; possible explanations are discussed, especially underground production of /sup 39/Ar.

  5. Influence of thermal treatments on radiocarbon dating of groundwater samples

    Science.gov (United States)

    Stanciu, Iuliana Madalina; Sava, Tiberiu Bogdan; Pacesila, Doru Gheorghe; Gaza, Oana; Simion, Corina Anca; Stefan, Bianca Maria; Sava, Gabriela Odilia; Ghita, Dan Gabriel; Mosu, Vasile

    2017-06-01

    Radiocarbon measurements of dissolved inorganic carbon (DIC) in water provides information about the formation of oceanic circulation of the water volumes, the hydrogeological systems, and also valuable information can be gained about the aquifer storage and the degree of containment relative to the surface waters. Radiocarbon dating refers to the determination of small quantities of the naturally occurring carbon 14 in the water, which can be integrated in the groundwater mass through the gaseous CO2, carbonaceous deposits dissolved by water and organic remains. The aim of this study is to investigate the influence of the temperature and pressure over the amount of each isotope of carbon during the sample preparation stage. The first step was to evaporate several underground water samples at 65°C under different conditions until the carbonates were obtained, then the CO2 was extracted with orto-phosphoric acid and transformed to graphite. The second step was to obtain graphite from an untreated water sample. Finally, the samples were measured with the 1MV Cockcroft-Walton Tandetron Accelerator by Accelerator Mass Spectrometry.

  6. Apparent 85Kr ages of groundwater within the Royal watershed, Maine, USA.

    Science.gov (United States)

    Sidle, W C

    2006-01-01

    Specific 85Kr activity is mapped from 264 domestic and municipal wells sampled during 2002-2004 in the Royal watershed (361 km2), Maine. Gas samples are collected at 20 m, 40 m, and > 50 m interval depths within the unconfined aquifers. Gas extraction for 85Kr from wells is obtained directly via a wellhead methodology avoiding conventional collection of large sample volumes. Atmospheric 85Kr input to the recharge environment is estimated at 1.27 Bq m(-3) by time-series analyses of weighted monthly precipitation (2001-2004). Numerical simulation of Kr gas transport through the variable unsaturated zones to the water table suggests up to 12-year time lags locally, thus biasing the 85Kr groundwater ages. Apparent 85Kr ages suggest that approximately 70% of groundwater near 20 m depth was recharged less than 30 years BP (2004). Mass-age transport modeling suggests that post mid-1950s recharge penetrates to part of the basin's floor and that older groundwater seeps from the underlying fractured bedrock may occur.

  7. Several natural indicators of radial well ageing at the Belgrade groundwater source, part 1.

    Science.gov (United States)

    Dimkić, M; Pusić, M; Vidovic, D; Petković, A; Boreli-Zdravković, D

    2011-01-01

    Over time, the radial collector wells of the Belgrade Groundwater Source, located in the alluvial sediments of the Sava River, exhibit a decline in discharge and a reduction in operating efficiency due to well ageing. An increase in hydraulic losses at the lateral screens, due to chemical and biochemical clogging, has been identified as the primary cause. Certain hydrogeological, hydrochemical and microbiological parameters reflect the well-ageing process and can, therefore, be considered as its indicators. An indicator-based determination of scale is an important aspect in the selection of appropriate well locations, structural characteristics, and maintenance approaches. Well ageing was studied over a period of 5 years (2005-2009). The objective was to investigate the causes of well ageing. The correlations established between the groundwater redox potential, the total iron concentration in groundwater, the grain-size distribution of the aquifer, and well discharge, are presented in the paper.

  8. Groundwater age and lifetime expectancy modelling approach for site characterization and performance assessment of radwaste repository in clay formation

    International Nuclear Information System (INIS)

    Cornaton, F.; Perrochet, P.; Benabderrahmane, H.

    2010-01-01

    Document available in extended abstract form only. A deep geological repository of high level and long lived radwaste requires an understanding of the far field and near field groundwater flow and of the transport properties, at actual and future climatic conditions. Andra, French National radioactive waste management Agency, is developing since last 15 years an integrated multi-scale hydrogeological model of whole Paris basin of 200000 km 2 of area (regional scale) to produce a regional flow field associated to groundwater behavior. It includes locally the Meuse/Haute Marne clay site of about 250 km 2 of area in the eastern part of the Paris basin that was chosen for the emplacement of a repository. The Callovo-Oxfordian host formation is a clay layer characterized by a very low permeability of the order 10 -14 m/s, a mean thickness of 130 m at about 500 m depth, and is embedded by calcareous aquifer formations (Dogger and Oxfordian). The hydrogeological conceptual model is based on stratigraphic and petro-physic modeling of the Paris basin and is accounting for the structural, geological, hydrogeological and geochemical data in an integrated way. This model represents 27 hydrogeological units at the scale of the Paris Basin, and it is refined at the scale of the sector to represent 27 different layers that range in age from the Trias to the Portlandian. The finite element flow and transport simulator Ground Water (GW) is used to solve for groundwater flow at steady-state in a 3 Million elements model, considering current climatic conditions. The model is calibrated against about 1250 hydraulic head measurements, and results in maximum absolute hydraulic head differences of 20 meters at the regional scale and 3 meters at the local scale. The calibrated reference model includes transmissive major faults as well as structures acting as barrier to flow. Groundwater age (the time elapsed since recharge) and lifetime expectancy (the time remaining prior to exit) are

  9. Application of hydrogeology and groundwater-age estimates to assess the travel time of groundwater at the site of a landfill to the Mahomet Aquifer, near Clinton, Illinois

    Science.gov (United States)

    Kay, Robert T.; Buszka, Paul M.

    2016-03-02

    than or longer than those calculated using site data and ranged from 230 to 580 years.Tritium data from 1996 to 2011 USGS regional sampling of groundwater from domestic wells in the confined part of the Mahomet aquifer—which are 2.5 to about 40 miles from the Clinton site—were compared with site-specific data from a production well at the Clinton site. Tritium-based groundwater-age estimates indicated predominantly pre- 1953 recharge dates for USGS and other prior regional samples of groundwater from domestic wells in the Mahomet aquifer. These results agreed with the tritium-based, pre-1953 recharge age estimated for a groundwater sample and a sequential replicate sample from a production well in the confined part of the Mahomet aquifer beneath the Clinton site.The regional tritium-based groundwater age estimates also were compared with pesticide detections in samples from distal domestic wells in the USGS regional network that are about 2.5 to 40 miles from the Clinton site to identify whether very small amounts of post-1952 recharge have in places reached confined parts of the Mahomet aquifer at locations other than the Clinton site in an approximately 2,000 square mile area of the Mahomet aquifer. Very small amounts of post-1952 recharge were defined in this analysis as less than about 2.5 percent of the total recharge contributing to a groundwater sample, based on results from the two-part mixing analysis of tritium data from the Clinton site. Pesticide-based groundwater-age estimates based on 22 detections of pesticides (13 of these detections were estimated concentrations), including atrazine, deethylatrazine (2-Chloro-4-isopropylamino-6-amino- s-triazine), cyanazine, diazinon, metolachlor, molinate, prometon, and trifluralin in groundwater samples from 10 domestic wells 2.5 to about 40 miles distant from the Clinton site indicate that very small amounts of post-1956 to post-1992 recharge can in places reach the confined part of the Mahomet aquifer in other

  10. Chlorine isotopes and their application to groundwater dating at Olkiluoto

    International Nuclear Information System (INIS)

    Gascoyne, M.

    2014-09-01

    The chlorine isotopes 36 Cl and 37 Cl have been shown to be useful tracers of groundwater, and for investigations of sources of dissolved Cl, mixing of fluids, water-rock interactions in sedimentary environments and in identifying solute sources and transport mechanisms. In addition, the radioactive isotope, 36 Cl, is a useful tracer for determining the residence time of groundwater. This report examines the results of Cl isotopic analysis of groundwaters from as deep as 1000 m at the Olkiluoto site in southwest Finland. Thirty-four samples were analysed for 36 Cl/Cl and 29 were analysed for 37 Cl (expressed as δ 37 Cl). The value δ 37 Cl was found to stabilize at higher salinities and the maximum range of δ 37 Cl was from about - 0.6 to +0.6 per mille. Because of this limited range and the relatively large error margins associated with the δ 37 Cl measurement, the usefulness of this ratio appears to be limited. Therefore, the main part of this report is largely focused on 36 Cl. Estimation of residence time of 36 Cl gives results that support the presence of at least five groundwater types at Olkiluoto. The consistency of 36 Cl/Cl ratios in groundwaters of several widely separated, deep locations and different rock compositions, suggests that these deeper groundwaters are in secular equilibrium and, therefore, likely to be older than 1.5 million years. (orig.)

  11. Age determination of ground-waters by means of carbon 14

    International Nuclear Information System (INIS)

    Eichinger, L.

    1982-02-01

    At present the age determination of ground-waters aged between 1,500 and approximately 40,000 years is only possible by measuring their 14 C content. A precise age assignment can be established in slightly mineralised waters, whereas it becomes vague in mineralised waters, particularly in acidulous springs. In general, additional information and data are required about the 13 C, D, 18 O, 3 H, 85 Kr and the 39 Ar contents, about the ph value, temperature and the principal ions. (DG) [de

  12. Age-Sensitive Effect of Adolescent Dating Experience on Delinquency and Substance Use

    Science.gov (United States)

    Kim, Ryang Hui

    2013-01-01

    This study uses a developmental perspective and focuses on examining whether the impact of adolescent dating is age-sensitive. Dating at earlier ages is hypothesized to have a stronger effect on adolescent criminal behavior or substance use, but the effect would be weaker as one ages. The data obtained from the National Longitudinal Survey of…

  13. ESR dating method and the age determination of Peking-Man

    International Nuclear Information System (INIS)

    Jin Sizhao; Liang Renyou; Huang Peihua

    1991-01-01

    ESR dating method and the age determination of the first skull of Zhoukoudian Beijing-Man have been introduced in this paper. Some animal fossil teeth, which are contemporaneous with the Beijing-Man, were used for determination of accumulative dose. The internal and environmental doses of the tooth samples were determined by neutron activation analysis and embeded thermoluminescence dosimeter at the site, respectively. The age of 578 ka of the first skull of Beijing-Man is calculated by the linear uranium accumulation model. According to the ESR dating results, author has given a chronological scale of the cave deposits Loc. 1, Beijing-man site and discussed the mean-life of trapped electron for dating

  14. Oxygen, hydrogen, and helium isotopes for investigating groundwater systems of the Cape Verde Islands, West Africa

    Science.gov (United States)

    Heilweil, V.M.; Solomon, K.D.; Gingerich, S.B.; Verstraeten, Ingrid M.

    2009-01-01

    Stable isotopes (??18O, ??2H), tritium (3H), and helium isotopes (3He, 4He) were used for evaluating groundwater recharge sources, flow paths, and residence times of three watersheds in the Cape Verde Islands (West Africa). Stable isotopes indicate the predominance of high-elevation precipitation that undergoes little evaporation prior to groundwater recharge. In contrast to other active oceanic hotspots, environmental tracers show that deep geothermal circulation does not strongly affect groundwater. Low tritium concentrations at seven groundwater sites indicate groundwater residence times of more than 50 years. Higher tritium values at other sites suggest some recent recharge. High 4He and 3He/4He ratios precluded 3H/3He dating at six sites. These high 3He/4He ratios (R/Ra values of up to 8.3) are consistent with reported mantle derived helium of oceanic island basalts in Cape Verde and provided end-member constraints for improved dating at seven other locations. Tritium and 3H/3He dating shows that S??o Nicolau Island's Ribeira Faj?? Basin has groundwater residence times of more than 50 years, whereas Fogo Island's Mosteiros Basin and Santo Ant??o Island's Ribeira Paul Basin contain a mixture of young and old groundwater. Young ages at selected sites within these two basins indicate local recharge and potential groundwater susceptibility to surface contamination and/or salt-water intrusion. ?? Springer-Verlag 2009.

  15. Absolute dating of the Aegean Late Bronze Age

    International Nuclear Information System (INIS)

    Warren, P.M.

    1987-01-01

    A recent argument for raising the absolute date of the beginning of the Aegean Late Bronze (LB) Age to about 1700 B.C. is critically examined. It is argued here that: (1) the alabaster lid from Knossos did have the stratigraphical context assigned to it by Evans, in all probability Middle Minoan IIIA, c. 1650 B.C.; (2) the attempt to date the alabastron found in an early Eighteenth Dynasty context at Aniba to Late Minoan IIIA:1 is open to objections; (3) radiocarbon dates from Aegean LB I contexts are too wide in their calibrated ranges and too inconsistent both within and between site sets to offer any reliable grounds at present for raising Aegean LB I absolute chronology to 1700 B.C. Other evidence, however, suggests this period began about 1600 B.C., i.e. some fifty years earlier than the conventional date of 1550 B.C. (author)

  16. REIMEP-22 inter-laboratory comparison: "U Age Dating - Determination of the production date of a uranium certified test sample"

    OpenAIRE

    VENCHIARUTTI CELIA; VARGA ZSOLT; RICHTER Stephan; JAKOPIC Rozle; MAYER Klaus; AREGBE Yetunde

    2015-01-01

    The REIMEP-22 inter-laboratory comparison aimed at determining the production date of a uranium certified test sample (i.e. the last chemical separation date of the material). Participants in REIMEP-22 on "U Age Dating - Determination of the production date of a uranium certified test sample" received one low-enriched 20 mg uranium sample for mass spectrometry measurements and/or one 50 mg uranium sample for D-spectrometry measurements, with an undisclosed value for the production date. They ...

  17. 14C age reassessment of groundwater from the discharge zone due to cross-flow mixing in the deep confined aquifer

    Science.gov (United States)

    Mao, Xumei; Wang, Hua; Feng, Liang

    2018-05-01

    In a groundwater flow system, the age of groundwater should gradually increase from the recharge zone to the discharge zone within the same streamline. However, it is occasionally observed that the groundwater age becomes younger in the discharge zone in the piedmont alluvial plain, and the oldest age often appears in the middle of the plain. A new set of groundwater chemistry and isotopes was employed to reassess the groundwater 14C ages from the discharge zone in the North China Plain (NCP). Carbonate precipitation, organic matter oxidation and cross-flow mixing in the groundwater from the recharge zone to the discharge zone are recognized according to the corresponding changes of HCO3- (or DIC) and δ13C in the same streamline of the third aquifer of the NCP. The effects of carbonate precipitation and organic matter oxidation are calibrated with a 13C mixing model and DIC correction, but these corrected 14C ages seem unreasonable because they grow younger from the middle plain to the discharge zone in the NCP. The relationship of Cl- content and the recharge distance is used to estimate the expected Cl- content in the discharge zone, and ln(a14C)/Cl is proposed to correct the a14C in groundwater for the effect of cross-flow mixing. The 14C ages were reassessed with the corrected a14C due to the cross-flow mixing varying from 1.25 to 30.58 ka, and the groundwater becomes older gradually from the recharge zone to the discharge zone. The results suggest that the reassessed 14C ages are more reasonable for the groundwater from the discharge zone due to cross-flow mixing.

  18. Carbon-14 dating of groundwater under Christchurch, 1976 samples

    International Nuclear Information System (INIS)

    Stewart, M.K.; Brenninkmeijer, C.A.M.; Brown, L.J.

    1986-06-01

    Four samples of groundwater from deep aquifers under Christchurch have been analysed for carbon-14, tritium, oxygen-18 and chemical contents. Interpretation of the carbon-14 results requires two steps, (1) correction of the measured 14 C values for input of dead ( 14 C-free) carbon underground (indicating that the measured values of 80 PMC* should be increased to about 120 PMC), and (2) determination of water residence times for given flow models of the groundwater system. Interpretation of tritium results involves step 2 only. Three models are considered, of which the third is considered most appropriate to Christchurch. In this model, the 14 C and T results indicate that a small proportion of young water (post-1954) mixes with a larger proportion of older water (probably at least several hundred years). The oxygen-18 content indicates that recharge is mainly from the Waimakariri River and possibly from rainfall and streams near the foothills of the Canterbury Plains. Other aspect of the groundwater flow under Christchurch are discussed

  19. Groundwater Flow Computed with Modflow and Isotopic Age Tracer Data in the Continental Intercalaire (Sahara)

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, J. O.; Goncalves, J.; Deschamps, P.; Hamelin, B. [Centre Europeen de Recherche et d' Enseignement de Geosciences de l' Environnement, Aix-en-Provence (France); Zouari, K. [Laboratoire de Radio-Analyses et Environnement, Sfax (Tunisia); Guendouz, A. [University of Blida, Science Engineering Faculty, Soummaa Blida (Algeria); Michelot, J. -L. [Interactions et Dynamique des Environnements de Surface, Universite Paris-Sud, Orsay (France)

    2013-07-15

    In one of the largest confined aquifers of the world, the Continental Intercalaire (Sahara), which is located in an arid region (57 mm/y of mean of precipitation), groundwater flow patterns are rather complex. Coupling measurements of isotopic composition of water and age mass calculations obtained by numerical simulations can allow, to a greater extent than a simple comparison, to constrain and validate the recharge scenario, transport and age of groundwater. First, the multiple tracers {sup 14}C, {sup 36}Cl, or {sup 234}U/{sup 238}U used in this study including noble gases such as {sup 4}He, allow investigation of a large range of groundwater ages. Then a MODFLOW simulation is built using (i) the distribution of hydrological parameters, (ii) geometrical limits and iii) the concept of age mass of water, accounting for the tracers data. This approach improves the understanding of the hydrodynamics of this system. In particular, the mixing of old and young waters should be better constrained and the interpretation of paleohydrological conditions is permitted. (author)

  20. The problem of low thermoluminescence age estimates in geological dating

    International Nuclear Information System (INIS)

    Nambi, K.S.V.

    1983-01-01

    A systematic underestimate of the geological age by the TL technique has been observed in a variety of CaCO 3 samples of Quaternary to Precambrian ages. It is concluded that the TL dating clock in the CaCO 3 lattice stops when the alpha palaeodose =alpha (rad a -1 )x geological age (a) reaches about 100,000 rad. At this dose the natural thermoluminescence reaches perhaps a dynamic equilibrium level determined solely by the alpha activity of the sample. There are indications that the limiting alpha palaeodose beyond which TL dating is invalid is more or less the same for CaSO 4 and silicate samples, and it is convenient to note a limiting value of 3 million for the product of alpha activity (cph from 13.86 cm 2 ) and geological age (a). (author)

  1. Old ages of two historical Romanian trees assessed by AMS radiocarbon dating

    Energy Technology Data Exchange (ETDEWEB)

    Patrut, Adrian, E-mail: apatrut@gmail.com [Babes-Bolyai University, Department of Chemistry, Arany Janos 11, 400028 Cluj-Napoca (Romania); Reden, Karl F. von [Woods Hole Oceanographic Institution, Department of Geology and Geophysics, NOSAMS Facility, 360 Woods Hole Rd., Mailstop 8, Woods Hole, MA 02543 (United States); Lowy, Daniel A. [FlexEl, LLC, 387 Technology Drive, College Park, MD 20742 (United States); Patrut, Roxana T. [Babes-Bolyai University, Department of Biology and Geology, Gh. Bilascu 44, 400015 Cluj-Napoca (Romania); Lucian Vaida, D. [Museum of Border Regiment Nasaud, Granicerilor 19, 425200 Nasaud (Romania); Margineanu, Dragos [Babes-Bolyai University, Department of Chemistry, Arany Janos 11, 400028 Cluj-Napoca (Romania)

    2013-01-15

    Two large Romanian poplars are considered to be associated with significant historical events of the past. In order to verify these claims, wood samples collected from the broken trunks of the two poplars were radiocarbon dated by AMS. The oldest radiocarbon dates were found to be 275 {+-} 20 bp for the black poplar of Mocod and 316 {+-} 22 bp for the gray poplar of Rafaila. These values correspond to calibrated ages of 365 {+-} 10 and 465 {+-} 25 years, respectively. The dating results indicate old ages for the two trees, i.e., 455 years for the Mocod poplar and 560 years for the Rafaila poplar. Such age values validate historical information on the two large Romanian trees.

  2. Dating of groundwater using the 14UD accelerator at the Australian National University - a progress report

    International Nuclear Information System (INIS)

    Fifield, L.K.; Ophel, T.R.; Allison, G.B.; Bird, J.R.

    1986-04-01

    A program with the aim of dating water from economically-important Australian groundwater basins was initiated at the ANU in late 1985. In order to span the anticipated time scale, the content of the radioisotope 36 Cl in the water must be determined with a sensitivity of about one part in 10 15 . Accelerator mass spectrometry is the only method capable of such ultra-sensitivity. The work reported has concentrated on an evaluation of the 14UD accelerator facilities for this purpose, and measurements have been made in order to demonstrate the feasibility of the technique and to establish the requirements for routine, accurate measurements

  3. Measuring and understanding total dissolved gas pressure in groundwater

    Science.gov (United States)

    Ryan, C.; Roy, J. W.; Randell, J.; Castellon, L.

    2009-05-01

    Since dissolved gases are important to a number of aspects of groundwater (e.g. age dating, active or passive bioremediation, greenhouse gas fluxes, understanding biogeochemical processes involving gases, assessing potential impacts of coal bed methane activities), accurate concentration measurements, and understanding of their subsurface behaviour are important. Researchers have recently begun using total dissolved gas pressure (TGP) sensor measurements, more commonly applied for surface water monitoring, in concert with gas composition analyses to estimate more accurate groundwater gas concentrations in wells. We have used hydraulic packers to isolate the well screens where TDP is being measured, and pump tests to indicate that in-well degassing may reduce TDG below background groundwater levels. Thus, in gas-charged groundwater zones, TGPs can be considerably underestimated in the absence of pumping or screen isolation. We have also observed transient decreased TGPs during pumping that are thought to result from ebullition induced when the water table or water level in the well is lowered below a critical hydrostatic pressure.

  4. Old ages of two historical Romanian trees assessed by AMS radiocarbon dating

    International Nuclear Information System (INIS)

    Patrut, Adrian; Reden, Karl F. von; Lowy, Daniel A.; Patrut, Roxana T.; Lucian Vaida, D.; Margineanu, Dragos

    2013-01-01

    Two large Romanian poplars are considered to be associated with significant historical events of the past. In order to verify these claims, wood samples collected from the broken trunks of the two poplars were radiocarbon dated by AMS. The oldest radiocarbon dates were found to be 275 ± 20 bp for the black poplar of Mocod and 316 ± 22 bp for the gray poplar of Rafaila. These values correspond to calibrated ages of 365 ± 10 and 465 ± 25 years, respectively. The dating results indicate old ages for the two trees, i.e., 455 years for the Mocod poplar and 560 years for the Rafaila poplar. Such age values validate historical information on the two large Romanian trees.

  5. Reducing the age range of tsunami deposits by 14C dating of rip-up clasts

    Science.gov (United States)

    Ishizawa, Takashi; Goto, Kazuhisa; Yokoyama, Yusuke; Miyairi, Yosuke; Sawada, Chikako; Takada, Keita

    2018-02-01

    Erosion by tsunami waves represents an important issue when determining the age of a tsunami deposit, because the age is usually estimated using dating of sediments above and below the deposit. Dating of material within the tsunami deposit, if suitable material is obtainable, can be used to further constrain its age. Eroded sediments are sometimes incorporated within the tsunami deposits as rip-up clasts, which might therefore be used as minimum age dating material. However, the single calibrated 14C age often shows a wide age range because of fluctuations in the calibration curve. Therefore, it remains uncertain whether rip-up clast measurements are useful to constrain the depositional age of tsunami deposits, or not. In this study, we carried out high-resolution 14C dating of tsunami deposits, including rip-up clasts of peat, in Rikuzentakata, northeastern Japan, where numerous rip-up clasts were observed within a tsunami deposit. Sediments above and below the tsunami deposit and a 5 cm large rip-up clast were dated sequentially. Comparison of these dating results with the calibration curve revealed that the clast was inverted. Its age was better constrained based on the stratigraphic order, and we infer that the clast corresponds to approximately 100 years of sedimentation. The oldest age of the clast was consistent with the age of the peat immediately below the tsunami deposit, suggesting that surface sediments probably formed the rip-up clast at the time of the tsunami. Thus, the dating of the rip-up clast was useful to further constrain the depositional age of the tsunami deposit, as we narrowed the tsunami deposit age range by approximately 100 years. Results show that ignoring tsunami-related erosion might lead to overestimation of the tsunami deposit age. For this reason, an appropriate dating site, which is less affected by minor tsunami-related erosion with regards to the paleo-topography, should be explored. We therefore propose a more effective

  6. Investigation of tritium in groundwater at Pickering NGS

    International Nuclear Information System (INIS)

    DeWilde, J.; Yu, L.; Belanger, D.; Wootton, R.; Hansen, K.; McGurk, E.; Teare, A.

    2001-01-01

    Ontario Power Generation Inc. (OPG) investigated tritium in groundwater at the Pickering Nuclear Generating Station (PNGS). The objectives of the study were to evaluate and define the extent of radio-nuclides, primarily tritium, in groundwater, investigate the causes or sources of contamination, determine impacts on the natural environment, and provide recommendations to prevent future discharges. This paper provides an overview of the investigations conducted in 1999 and 2000 to identify the extent of the tritium beneath the site and the potential sources of tritium released to the groundwater. The investigation and findings are summarized with a focus on unique aspects of the investigation, on lessons learned and benefits. Some of the investigative techniques discussed include process assessments, video inspections, hydrostatic and tracer tests, Helium 3 analysis for tritium age dating, deuterium and tritium in soil analysis. The investigative techniques have widespread applications to other nuclear generating stations. (author)

  7. U/Pb dating: brioverian age of the Erquy series (Armorican massif, France)

    International Nuclear Information System (INIS)

    Cocherie, A.; Chantraine, J.; Egal, E.; Fanning, C.M.; Dabard, M.P.; Paris, F.; Le Herisse, A.

    2001-01-01

    New U/Pb analyses obtained with a high-resolution ion microprobe (SHRIMP) fix an age of 608 ± 7 Ma for spilites of the Erquy series, in Cadomian rocks of the Armorican massif, France. This Neo-proterozoic age re-integrates this unit into the Brioverian, the age it was initially assigned to. A Rb/sr whole-rock dating in the 1970's had undermined the regional Cadomian model, by suggesting an Ordovician age for these rocks; this was apparently further supported by the discovery of organic remains, interpreted as Paleozoic micro-fossils. The reassessment of this paleontologic attribution and the new isotope dating are a final confirmation of the age of this series. (authors)

  8. Analysis of metolachlor ethane sulfonic acid chirality in groundwater: A tool for dating groundwater movement in agricultural settings

    Science.gov (United States)

    Chemical chirality of pesticides can be a useful tool for studying environmental processes. The chiral forms of metolachlor ethane sulfonic acid (MESA), an abundant metabolite of metolachlor, and metolachlor were examined over a 6 year period in groundwater and a groundwater-fed stream in a riparia...

  9. Geostatistical analysis of tritium, groundwater age and other noble gas derived parameters in California.

    Science.gov (United States)

    Visser, A; Moran, J E; Hillegonds, Darren; Singleton, M J; Kulongoski, Justin T; Belitz, Kenneth; Esser, B K

    2016-03-15

    Key characteristics of California groundwater systems related to aquifer vulnerability, sustainability, recharge locations and mechanisms, and anthropogenic impact on recharge are revealed in a spatial geostatistical analysis of a unique data set of tritium, noble gases and other isotopic analyses unprecedented in size at nearly 4000 samples. The correlation length of key groundwater residence time parameters varies between tens of kilometers ((3)H; age) to the order of a hundred kilometers ((4)Heter; (14)C; (3)Hetrit). The correlation length of parameters related to climate, topography and atmospheric processes is on the order of several hundred kilometers (recharge temperature; δ(18)O). Young groundwater ages that highlight regional recharge areas are located in the eastern San Joaquin Valley, in the southern Santa Clara Valley Basin, in the upper LA basin and along unlined canals carrying Colorado River water, showing that much of the recent recharge in central and southern California is dominated by river recharge and managed aquifer recharge. Modern groundwater is found in wells with the top open intervals below 60 m depth in the southeastern San Joaquin Valley, Santa Clara Valley and Los Angeles basin, as the result of intensive pumping and/or managed aquifer recharge operations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Attempt of groundwater dating using the drilled rock core. 1. Development of the rock sampling method for measurement of noble gases dissolved in interstitial water in rock

    International Nuclear Information System (INIS)

    Mahara, Yasunori

    2002-01-01

    Groundwater dating in low permeable rock is very difficult and impracticable, because we take a very long time to collect groundwater sample in a borehole and have to invest much fund in production of the in-situ groundwater sampler and in operation of it. If we can directly measure noble gases dissolved in interstitial groundwater in rock core, we have a big merit to estimate groundwater resident time easy. In this study, we designed and produced a high vacuum container to let dissolved noble gases diffuse until reaching in equilibrium, and we made a handling manual of the rock core into the container and a procedure to vacuum out air from the sealed container. We compared data sets of noble gas concentration obtained from rock cores and groundwater sample collected from boreholes in-situ. The measured rocks are pumice-tuff rock, mud rock and hornfels, which have their permeabilities of 10 -6 cm/s, 10 -9 cm/s and 10 -11 cm/s, respectively. Consequently, we evaluated the rock core method is better than the in-situ groundwater sampling method for low permeable rock. (author)

  11. Veterinary Antibiotics in Young Dutch Groundwater under Intensive Livestock Farming

    Science.gov (United States)

    Vliet, M. V.; Kivits, T.; Broers, H. P.; Beeltje, H.; Griffioen, J.

    2016-12-01

    Dutch groundwater is heavily affected by nutrient loads from agricultural origin. The use of antibiotics is also widespread in Dutch farming practice, 200.000 kg active substance over 1.839.000 ha of agricultural land. National measures were established to reduce the applications. Spreading of manure over farmlands is assumed to be the main pathway for the leaching of antibiotics to groundwater, but actual numbers are lacking. We studied the occurrence of veterinary antibiotics in groundwater in two areas with intensive livestock farming, sampling existing multi-level wells that were previously age dated using tritium-helium. Wells were selected based on the following criteria: the uppermost screen is situated just below the average groundwater level, which is not deeper than 3 meters, the well is in an agricultural field where rainwater infiltrates avoiding areas adjacent to ditches or streams, the groundwater quality is known for several years and the age of the extracted water is known to be young (antibiotics used in in intensive livestock farming were analyzed belonging to the following groups: tetracyclines, sulfonamides, diaminopyrimidines, β-lactams, macrolides, lincosamides, quinolones and in addition nitrofurans and chloramphenicol. The samples were analyzed for antibiotics by liquid chromatography/mass spectrometry preceded by solid phase extraction (Oasis HLB cartridge). Five out of 22 antibiotics were detected: sulfamethazine, sulfadiazine, sulfamethoxazole, lincomycin, chloramphenicol in concentration ranges of 0.2 to 18 ng/l. Sulfamethazine was most frequently found, and shows a continuous concentration-depth profile in 3 out of 4 multi-level wells. Sulfonamides were found in groundwater up to 20 m. depth and in water aged between 1 and 25 years old. The study shows that sulfonamides are omnipresent in groundwater up to 25 years old, which corresponds with the known history of the use of antibiotics in veterinary practice.

  12. Analysis and determination of age of oil spills in soil and groundwater

    International Nuclear Information System (INIS)

    Hoedl, P.; Schindlbauer, H.

    1995-01-01

    The extensive searching for hydrocarbon-based spills in soil and groundwater during the last few years rises the question of whom caused these contaminations. The answer to this very specific question is not easy and often requires the exact determination of age of the contamination. Therefore, the sampling of all imaginable data around the spilled material is necessary. Beginning at the precise check-up of the geological surrounding, including the definition of the condition and construction of the soil as well as the determination of the flow-direction of the groundwater, the chemical analysis should describe the containing substances and/or the products in the best possible way. Summing all these data and taking into consideration of the well-known microbiological pathways of decomposition for one- and/or a group of substances, it should be possible to determine the age of a contamination. (orig.) [de

  13. The Study of Groundwater Age in Semarang Area Considering Beta Activityof Tritium

    International Nuclear Information System (INIS)

    F, Wisjachudin; Agus-Sulistiyono; Fajar-Budi Haendrapratikto

    2000-01-01

    The groundwater age in Semarang regency, they are Genuk, Pedurungan,North Semarang, Urban Semarang, Mijen, Mangkang, Manyaran, Tembalang, Sekaranconsidering tritium content inside has been done. Tritium content ingroundwater given pretreatment that is enriching tritium content usingsynthesize technique by benzene synthesizer (H 2 O converted into C 6 H 6 ).Tritium activity in C 6 H 6 was analyzed using liquid scintillation counterPackard 2000 CA/LL. Optimum condition of volume ratio between cocktail(picofluor) and sample solution is reached ratio of 10 : 10. Efficiencydetection (ε) = 42.16 %, while merit factor = 1.981.10 5 . From twolocations that can be detected show that analysis on groundwater age onManyaran location (damar formation) is younger than Urban Semarang (alluviumsediment), which is match to geological analysis considering geological layershows that on geology layer of volcanic breksi layer is younger than damarformation area and the oldest is the alluvium sediment area. (author)

  14. Using StorAge Selection Functions to Improve Simulation of Groundwater Nitrate Lag Times in the SWAT Modeling Framework.

    Science.gov (United States)

    Wilusz, D. C.; Fuka, D.; Cho, C.; Ball, W. P.; Easton, Z. M.; Harman, C. J.

    2017-12-01

    Intensive agriculture and atmospheric deposition have dramatically increased the input of reactive nitrogen into many watersheds worldwide. Reactive nitrogen can leach as nitrate into groundwater, which is stored and eventually released over years to decades into surface waters, potentially degrading water quality. To simulate the fate and transport of groundwater nitrate, many researchers and practitioners use the Soil and Water Assessment Tool (SWAT) or an enhanced version of SWAT that accounts for topographically-driven variable source areas (TopoSWAT). Both SWAT and TopoSWAT effectively assume that nitrate in the groundwater reservoir is well-mixed, which is known to be a poor assumption at many sites. In this study, we describe modifications to TopoSWAT that (1) relax the assumption of groundwater well-mixedness, (2) more flexibly parameterize groundwater transport as a time-varying distribution of travel times using the recently developed theory of rank StorAge Selection (rSAS) functions, and (3) allow for groundwater age to be represented by position on the hillslope or hydrological distance from the stream. The approach conceptualizes the groundwater aquifer as a population of water parcels entering as recharge with a particular nitrate concentration, aging as they move through storage, and eventually exiting as baseflow. The rSAS function selects the distribution of parcel ages that exit as baseflow based on a parameterized probability distribution; this distribution can be adjusted to preferentially select different distributions of young and old parcels in storage so as to reproduce (in principle) any form of transport. The modified TopoSWAT model (TopoSWAT+rSAS) is tested at a small agricultural catchment in the Eastern Shore, MD with an extensive hydrologic and hydrochemical data record for calibration and evaluation. The results examine (1) the sensitivity of TopoSWAT+rSAS modeling of nitrate transport to assumptions about the distribution of travel

  15. Age of Zhoukoudian Homo erectus determined with (26)Al/(10)Be burial dating.

    Science.gov (United States)

    Shen, Guanjun; Gao, Xing; Gao, Bin; Granger, Darryl E

    2009-03-12

    The age of Zhoukoudian Homo erectus, commonly known as 'Peking Man', has long been pursued, but has remained problematic owing to the lack of suitable dating methods. Here we report cosmogenic (26)Al/(10)Be burial dating of quartz sediments and artefacts from the lower strata of Locality 1 in the southwestern suburb of Beijing, China, where early representatives of Zhoukoudian Homo erectus were discovered. This study marks the first radioisotopic dating of any early hominin site in China beyond the range of mass spectrometric U-series dating. The weighted mean of six meaningful age measurements, 0.77 +/- 0.08 million years (Myr, mean +/- s.e.m.), provides the best age estimate for lower cultural layers 7-10. Together with previously reported U-series dating of speleothem calcite and palaeomagnetic stratigraphy, as well as sedimentological considerations, these layers may be further correlated to S6-S7 in Chinese loess stratigraphy or marine isotope stages (MIS) 17-19, in the range of approximately 0.68 to 0.78 Myr ago. These ages are substantially older than previously supposed and may imply early hominin's presence at the site in northern China through a relatively mild glacial period corresponding to MIS 18.

  16. Constructing Regional Groundwater Models from Geophysical Data of Varying Type, Age, and Quality

    DEFF Research Database (Denmark)

    Vest Christiansen, Anders; Auken, Esben; Marker, Pernille Aabye

    for parameterization of a 3D model of the subsurface, integrating lithological information from boreholes with resistivity models. The objective is to create a direct input to regional groundwater models for sedimentary areas, where the sand/clay distribution governs the groundwater flow. The resistivity input is all......-inclusive in the sense that we include data from a variety of instruments (DC and EM, ground-based and airborne), with a varying spatial density and varying ages and quality. The coupling between hydrological and geophysical parameters is managed using a translator function with spatially variable parameters, which...

  17. Age constraints for Palaeolithic cave art by U-Th dating of thin carbonate crusts

    Science.gov (United States)

    Hoffmann, Dirk; Pike, Alistair; Garcia-Diez, Marcos; Pettitt, Paul; Zilhão, João

    2015-04-01

    U-series dating is an important geochronological tool which is widely applied for instance in speleothem based palaeoclimate research. It has also great potential to provide age constraints for Archaeology, especially for sites or artefacts in cave environments. We present our methods to conduct precise U-Th dating of calcite crusts that formed on top of cave paintings. Recent developments in multi-collector (MC) inductively coupled plasma mass spectrometry (ICPMS) U-series dating greatly improved the precision of this method, and sample sizes needed to obtain reliable results were significantly reduced. Based on these developments the U-series technique can be applied for accurate dating of thin calcite crusts covering cave art at many sites, while taking care not to harm the art underneath. The method provides minimum ages for the covered art and, where possible, also maximum ages by dating the flowstone layer the art is painted on. The U-Th method has been used in a number of recent projects to date calcite precipitates above and occasionally below cave paintings in Spain. Initial results from Cantabria have shown that the earliest dated paintings are older than 41.4 ± 0.6 ka, dating at least to the Early Aurignacian period and present a far longer chronology than that based so far on radiocarbon dating. Here we outline our methodology and the steps we take to demonstrate the reliability of U-Th dates, and present some recent results of our ongoing U-Th dating programme.

  18. Calibration of a transient transport model to tritium data in streams and simulation of groundwater ages in the western Lake Taupo catchment, New Zealand

    Directory of Open Access Journals (Sweden)

    M. A. Gusyev

    2013-03-01

    Full Text Available Here we present a general approach of calibrating transient transport models to tritium concentrations in river waters developed for the MT3DMS/MODFLOW model of the western Lake Taupo catchment, New Zealand. Tritium has a known pulse-shaped input to groundwater systems due to the bomb tritium in the early 1960s and, with its radioactive half-life of 12.32 yr, allows for the determination of the groundwater age. In the transport model, the tritium input (measured in rainfall passes through the groundwater system, and the simulated tritium concentrations are matched to the measured tritium concentrations in the river and stream outlets for the Waihaha, Whanganui, Whareroa, Kuratau and Omori catchments from 2000–2007. For the Kuratau River, tritium was also measured between 1960 and 1970, which allowed us to fine-tune the transport model for the simulated bomb-peak tritium concentrations. In order to incorporate small surface water features in detail, an 80 m uniform grid cell size was selected in the steady-state MODFLOW model for the model area of 1072 km2. The groundwater flow model was first calibrated to groundwater levels and stream baseflow observations. Then, the transient tritium transport MT3DMS model was matched to the measured tritium concentrations in streams and rivers, which are the natural discharge of the groundwater system. The tritium concentrations in the rivers and streams correspond to the residence time of the water in the groundwater system (groundwater age and mixing of water with different age. The transport model output showed a good agreement with the measured tritium values. Finally, the tritium-calibrated MT3DMS model is applied to simulate groundwater ages, which are used to obtain groundwater age distributions with mean residence times (MRTs in streams and rivers for the five catchments. The effect of regional and local hydrogeology on the simulated groundwater ages is investigated by demonstrating groundwater ages

  19. Adolescents' Age Preferences for Dating Partners: Support for an Evolutionary Model of Life-History Strategies.

    Science.gov (United States)

    Kenrick, Douglas T.; And Others

    1996-01-01

    Explored sex differences in adolescent preference for older versus younger mates. Found that teenage males were willing to date females of a wide age range, whereas teenage females prefer dating males from their own age to several years older. Data suggested viewing development of sex differences in dating partner preference from the perspective…

  20. Revision of Fontes & Garnier's model for the initial 14C content of dissolved inorganic carbon used in groundwater dating

    Science.gov (United States)

    Han, Liang-Feng; Plummer, Niel

    2013-01-01

    The widely applied model for groundwater dating using 14C proposed by Fontes and Garnier (F&G) (Fontes and Garnier, 1979) estimates the initial 14C content in waters from carbonate-rock aquifers affected by isotopic exchange. Usually, the model of F&G is applied in one of two ways: (1) using a single 13C fractionation factor of gaseous CO2 with respect to a solid carbonate mineral, εg/s, regardless of whether the carbon isotopic exchange is controlled by soil CO2 in the unsaturated zone, or by solid carbonate mineral in the saturated zone; or (2) using different fractionation factors if the exchange process is dominated by soil CO2 gas as opposed to solid carbonate mineral (typically calcite). An analysis of the F&G model shows an inadequate conceptualization, resulting in underestimation of the initial 14C values (14C0) for groundwater systems that have undergone isotopic exchange. The degree to which the 14C0 is underestimated increases with the extent of isotopic exchange. Examples show that in extreme cases, the error in calculated adjusted initial 14C values can be more than 20% modern carbon (pmc). A model is derived that revises the mass balance method of F&G by using a modified model conceptualization. The derivation yields a “global” model both for carbon isotopic exchange dominated by gaseous CO2 in the unsaturated zone, and for carbon isotopic exchange dominated by solid carbonate mineral in the saturated zone. However, the revised model requires different parameters for exchange dominated by gaseous CO2 as opposed to exchange dominated by solid carbonate minerals. The revised model for exchange dominated by gaseous CO2 is shown to be identical to the model of Mook (Mook, 1976). For groundwater systems where exchange occurs both in the unsaturated zone and saturated zone, the revised model can still be used; however, 14C0 will be slightly underestimated. Finally, in carbonate systems undergoing complex geochemical reactions, such as oxidation of

  1. An astronomical age for the Bishop Tuff and concordance with radioisotopic dates

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Zeeden, Christian; Storey, Michael

    2014-01-01

    The Bishop Tuff forms a key stratigraphic horizon for synchronization of Quaternary sedimentary records in North America. The unit stratigraphically overlies the Matuyama-Brunhes geomagnetic polarity reversal by several thousand years; high-precision dating of this tuff may be valuable for regional...... and global correlation of records. The Quaternary time scale is anchored by 40Ar/39Ar ages on lava flows and ash layers where available, with stage boundaries and geomagnetic reversals including astronomically tuned records. However, astronomical dating has not yet validated the high-precision 238U/206Pb...... ages, including new single crystal 40Ar/39Ar sanidine fusion analyses presented here, which demonstrates that concordance through multiple dating techniques is achievable within the Quaternary...

  2. Effects of aged sorption on pesticide leaching to groundwater simulated with PEARL

    NARCIS (Netherlands)

    Boesten, Jos J.T.I.

    2017-01-01

    Leaching to groundwater is an important element of the regulatory risk assessment of pesticides in western countries. Including aged sorption in this assessment is relevant because there is ample evidence of this process and because it leads to a decrease in simulated leaching. This work assesses

  3. Hydrogeologic controls and geochemical indicators of groundwater movement in the Niles Cone and southern East Bay Plain groundwater subbasins, Alameda County, California

    Science.gov (United States)

    Teague, Nicholas F.; Izbicki, John A.; Borchers, Jim; Kulongoski, Justin T.; Jurgens, Bryant C.

    2018-02-01

    Beginning in the 1970s, Alameda County Water District began infiltrating imported water through ponds in repurposed gravel quarries at the Quarry Lakes Regional Park, in the Niles Cone groundwater subbasin, to recharge groundwater and to minimize intrusion of saline, San Francisco Bay water into freshwater aquifers. Hydraulic connection between distinct aquifers underlying Quarry Lakes allows water to recharge the upper aquifer system to depths of 400 feet below land surface, and the Deep aquifer to depths of more than 650 feet. Previous studies of the Niles Cone and southern East Bay Plain groundwater subbasins suggested that these two subbasins may be hydraulically connected. Characterization of storage capacities and hydraulic properties of the complex aquifers and the structural and stratigraphic controls on groundwater movement aids in optimal storage and recovery of recharged water and provides information on the ability of aquifers shared by different water management agencies to fulfill competing storage and extraction demands. The movement of recharge water through the Niles Cone groundwater subbasin from Quarry Lakes and the possible hydraulic connection between the Niles Cone and the southern East Bay Plain groundwater subbasins were investigated using interferometric synthetic aperture radar (InSAR), water-chemistry, and isotopic data, including tritium/helium-3, helium-4, and carbon-14 age-dating techniques.InSAR data collected during refilling of the Quarry Lakes recharge ponds show corresponding ground-surface displacement. Maximum uplift was about 0.8 inches, reasonable for elastic expansion of sedimentary materials experiencing an increase in hydraulic head that resulted from pond refilling. Sodium concentrations increase while calcium and magnesium concentrations in groundwater decrease along groundwater flowpaths from the Niles Cone groundwater subbasin through the Deep aquifer to the northwest toward the southern East Bay Plain groundwater

  4. Obsidian ages from Ecuador by the fission track dating

    International Nuclear Information System (INIS)

    Osorio, A.M.; Hadler, J.C.; Bigazzi, G.; Norelli, P.; Coltelli, M.; Salazar, E.

    1991-01-01

    Fission track dating was applied in order to study obsidian samples originated from Mullumica and Callejones flows, Oyacachi, Ecuador. Preliminary data show that the ratio between the mean diameter os spontaneous and induced tracks is about 0.9, an indication that the analysed samples were submitted to small fading during their geological histories. Ages were obtained around 0.2 x 10 6 a, in agreement with Miller and Wagners's results. Ages ranging from 0.17 x 10 6 a up to 0.23 x 10 6 a were obtained correcting the apparent ages by means of the plateau method. (author)

  5. Tritium in groundwater investigation at the Pickering Nuclear Generating Station

    International Nuclear Information System (INIS)

    DeWilde, J.; Yu, L.; Wootton, R.; Belanger, D.; Hansen, K.; McGurk, E.; Teare, A.

    2001-01-01

    Ontario Power Generation Inc. (OPG) investigated tritium in groundwater at the Pickering Nuclear Generating Station (PNGS). The objectives of the study were to evaluate and define the extent of radionuclides, primarily tritium, in groundwater, investigate the causes or sources of contamination, determine impacts on the natural environment, and provide recommendations to prevent future discharges. This paper provides an overview of the investigations conducted in 1999 and 2000 to identity the extent of the tritium beneath the site and the potential sources of tritium released to the groundwater. The investigation and findings are summarized with a focus on unique aspects of the investigation, on lessons learned and benefits. Some of the investigative techniques discussed include process assessments, video inspections, hydrostatic and tracer tests, Helium 3 analysis for tritium age dating, deuterium and tritium in soil analysis. The investigative techniques have widespread applications to other nuclear generating stations. (author)

  6. The Acheron rock avalanche deposit, Canterbury, New Zealand : age and implications for dating landslides

    International Nuclear Information System (INIS)

    Smith, G.M.; Bell, D.H.; Davies, T.R.H.

    2012-01-01

    New radiocarbon ages for wood samples retrieved from the base of the Acheron rock avalanche near Porters Pass, Canterbury, show a clustering of ages between 1370 and 1101 yr BP. This is significantly dissimilar to the established radiocarbon age of 500 ± 69 yr BP (NZ547), from weathering-rind thickness measurements and from lichen studies. This contradiction impacts on current calibrations of lichenometric and weathering-rind dating methods, which has serious implications for landslide and earthquake dates based on them. A 500-600 yr BP earthquake event along the Porters Pass-Amberley Fault Zone has been dated in an adjacent trench and is consistent with previous dates but does not correspond to the Acheron rock avalanche emplacement as previously proposed. The landslide may have been caused by either a Porters Pass Fault event (1100-800 yr BP) or by the better-constrained Round Top event (1010 ± 50 yr BP) on the Alpine Fault. (author). 30 refs., 13 figs., 2 tabs.

  7. Using dissolved gases to observe the evolution of groundwater age in a mountain watershed over a period of thirteen years

    Science.gov (United States)

    Manning, Andrew H.

    2011-01-01

    Baseflows in snowmelt-dominated mountain streams are critical for sustaining ecosystems and water resources during periods of greatest demand. Future climate predictions for mountainous areas throughout much of the western U.S. include increasing temperatures, declining snowpacks, and earlier snowmelt periods. The degree to and rate at which these changes will affect baseflows in mountain streams remains unknown, largely because baseflows are groundwater-fed and the relationship between climate and groundwater recharge/discharge rates in mountain watersheds is uncertain. We use groundwater age determinations from multiple dissolved gas tracers (CFCs, SF6, and 3H/3He) to track changes in groundwater age over a period of thirteen years in the Sagehen Creek watershed, Sierra Nevada Mountains, CA. Data were collected from springs and wells in 2009 and 2010 and combined with those obtained in prior studies from 1997 to 2003. Apparent ages range from 0 to >60 years. Comparison between variations in age and variations in snow water equivalent (SWE) and mean annual air temperature reveals the degree of correlation between these climate variables and recharge rate. Further, comparison of apparent ages from individual springs obtained at different times and using different tracers helps constrain the age distribution in the sampled waters. The age data are generally more consistent with an exponential age distribution than with piston-flow. However, many samples, even those with relatively old mean ages, must have a disproportionately large very young fraction that responds directly to annual SWE variations. These findings have important implications for how future baseflows may respond to decreasing SWE.

  8. Groundwater quality, age, and susceptibility and vulnerability to nitrate contamination with linkages to land use and groundwater flow, Upper Black Squirrel Creek Basin, Colorado, 2013

    Science.gov (United States)

    Wellman, Tristan P.; Rupert, Michael G.

    2016-03-03

    The Upper Black Squirrel Creek Basin is located about 25 kilometers east of Colorado Springs, Colorado. The primary aquifer is a productive section of unconsolidated deposits that overlies bedrock units of the Denver Basin and is a critical resource for local water needs, including irrigation, domestic, and commercial use. The primary aquifer also serves an important regional role by the export of water to nearby communities in the Colorado Springs area. Changes in land use and development over the last decade, which includes substantial growth of subdivisions in the Upper Black Squirrel Creek Basin, have led to uncertainty regarding the potential effects to water quality throughout the basin. In response, the U.S. Geological Survey, in cooperation with Cherokee Metropolitan District, El Paso County, Meridian Service Metropolitan District, Mountain View Electric Association, Upper Black Squirrel Creek Groundwater Management District, Woodmen Hills Metropolitan District, Colorado State Land Board, and Colorado Water Conservation Board, and the stakeholders represented in the Groundwater Quality Study Committee of El Paso County conducted an assessment of groundwater quality and groundwater age with an emphasis on characterizing nitrate in the groundwater.

  9. Hydrogeochemistry of deep groundwaters of mafic and ultramafic rocks in Finland

    International Nuclear Information System (INIS)

    Ruskeeniemi, T.; Blomqvist, R.; Lindberg, A.; Ahonen, L.; Frape, S.

    1996-12-01

    The present work reports and interprets the hydrogeochemical and hydrogeological data obtained from deep groundwaters in various mafic-ultramafic formations in Finland. The work is mainly based on the results of the research project 'Geochemistry of deep groundwaters' financed by the Ministry of Trade and Industry and the Geological Survey of Finland. Five sites were selected for this study: (1) Juuka, (2) Keminmaa, (3) Maentsaelae, (4) Ranua, and (5) Ylivieska. Keminmaa and Ranua are located in Early Proterozoic layered intrusions dated at 2.44 Ga. The Juuka site lies within the massive Miihkali serpentinite, which is thought to represent the ultramafic part of a Proterozoic (1.97 Ga) ophiolite complex. The Maentsaelae gabbro represents the deep parts of the Svecofennian volcanic sequence, while the Ylivieska mafic-ultramafic intrusion is one of a group of Svecokarelian Ni-potential intrusions 1.9 Ga in age. For reference, groundwaters from four other sites are also briefly described. Three of these sites are located within the nickel mining regions of Enonkoski, Kotalahti and Vammala, while the fourth is a small Ni mineralization at Hyvelae, Noormarkku. The four reference sites are all of Svecokarelian age. (refs.)

  10. Hydrogeochemistry of deep groundwaters of mafic and ultramafic rocks in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Ruskeeniemi, T.; Blomqvist, R.; Lindberg, A.; Ahonen, L. [Geological Survey of Finland, Espoo (Finland); Frape, S. [Waterloo Univ., ON (Canada)

    1996-12-01

    The present work reports and interprets the hydrogeochemical and hydrogeological data obtained from deep groundwaters in various mafic-ultramafic formations in Finland. The work is mainly based on the results of the research project `Geochemistry of deep groundwaters` financed by the Ministry of Trade and Industry and the Geological Survey of Finland. Five sites were selected for this study: (1) Juuka, (2) Keminmaa, (3) Maentsaelae, (4) Ranua, and (5) Ylivieska. Keminmaa and Ranua are located in Early Proterozoic layered intrusions dated at 2.44 Ga. The Juuka site lies within the massive Miihkali serpentinite, which is thought to represent the ultramafic part of a Proterozoic (1.97 Ga) ophiolite complex. The Maentsaelae gabbro represents the deep parts of the Svecofennian volcanic sequence, while the Ylivieska mafic-ultramafic intrusion is one of a group of Svecokarelian Ni-potential intrusions 1.9 Ga in age. For reference, groundwaters from four other sites are also briefly described. Three of these sites are located within the nickel mining regions of Enonkoski, Kotalahti and Vammala, while the fourth is a small Ni mineralization at Hyvelae, Noormarkku. The four reference sites are all of Svecokarelian age. (refs.).

  11. Extraction and development of inset models in support of groundwater age calculations for glacial aquifers

    Science.gov (United States)

    Feinstein, Daniel T.; Kauffman, Leon J.; Haserodt, Megan J.; Clark, Brian R.; Juckem, Paul F.

    2018-06-22

    The U.S. Geological Survey developed a regional model of Lake Michigan Basin (LMB). This report describes the construction of five MODFLOW inset models extracted from the LMB regional model and their application using the particle-tracking code MODPATH to simulate the groundwater age distribution of discharge to wells pumping from glacial deposits. The five study areas of the inset model correspond to 8-digit hydrologic unit code (HUC8) basins. Two of the basins are tributary to Lake Michigan from the east, two are tributary to the lake from the west, and one is just west of the western boundary of the Lake Michigan topographic basin. The inset models inherited many of the inputs to the parent LMB model, including the hydrostratigraphy and layering scheme, the hydraulic conductivity assigned to bedrock layers, recharge distribution, and water use in the form of pumping rates from glacial and bedrock wells. The construction of the inset models entailed modifying some inputs, most notably the grid spacing (reduced from cells 5,000 feet on a side in the parent LMB model to 500 feet on a side in the inset models). The refined grid spacing allowed for more precise location of pumped wells and more detailed simulation of groundwater/surface-water interactions. The glacial hydraulic conductivity values, the top bedrock surface elevation, and the surface-water network input to the inset models also were modified. The inset models are solved using the MODFLOW–NWT code, which allows for more robust handling of conditions in unconfined aquifers than previous versions of MODFLOW. Comparison of the MODFLOW inset models reveals that they incorporate a range of hydrogeologic conditions relative to the glacial part of the flow system, demonstrated by visualization and analysis of model inputs and outputs and reflected in the range of ages generated by MODPATH for existing and hypothetical glacial wells. Certain inputs and outputs are judged to be candidate predictors that, if

  12. The comparison of benzene and CO2 absorption methods for radioisotope 14C dating

    International Nuclear Information System (INIS)

    Satrio and Zainal Abidin

    2007-01-01

    It had been conducted to research of age determination of carbon samples using CO 2 absorption method. This method as alternative to benzene synthesis method for radioisotope 14 C dating.The aim of the method is to support some hydrology research's especially groundwater dating using environmental radioisotope 14 C.The results which obtain by CO 2 absorption method then compared with the results of benzene synthesis method consists of background counter, standard counter, activity and age limit, age, and material cost or component. The research show that compared with benzene synthesis method, sample preparation using CO 2 absorption method is more simple and relatively low cost. The use of CO 2 absorption method can save the cost about 75 %. The different of both methods is age limit detection. The results of age limit detection when using CO 2 absorption and synthesis benzene methods are 33,310 years and 47,533 years respectively. Whereas, based on t test, the age results of both methods for the same sample are obtained relatively equal. (author)

  13. Preliminary simulation model to determine ground-water flow and ages within the Palo Duro Basin hydrogeologic province

    International Nuclear Information System (INIS)

    Atwood, H.; Picking, L.

    1986-01-01

    Ground-water flow through the Palo Duro and Tucumcari Basins is simulated by developing a hydrogeolgic profile and applying a cross-sectional, finite-element, numerical model to the profile. The profile is 350 miles long and 2 miles deep and extends from east-central New Mexico to the Texas-Oklahoma border. It is comprised of hydrogeologic units that are identified from geophysical well logs, sample logs, and core descriptions. A hydrogeologic unit as used in this profile is a physically continuous rock sequence with hydrologic properties that are relatively consistent throughout and distinct from surrounding units. The resulting hydrogeologic profile, with the exception of the Ogallala Formation and the Dockum Group, is discretized into a 6000-element mesh and a 22,000-element mesh. Permeability values assigned to hydrogeologic units were, in part, calculated from drill stem tests conducted throughout the Palo Duro Basin. Ground-water age and travel paths are determined by applying Darcy's equation to selected flow lines. The 170 million-year age determined from ground-water at points within the Wolfcamp Series compares favorably with the geochemical data for this region. An age of 188 million years is determined for the Pennsylvanian granite wash

  14. An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei: Percomorphaceae).

    Science.gov (United States)

    Arcila, Dahiana; Alexander Pyron, R; Tyler, James C; Ortí, Guillermo; Betancur-R, Ricardo

    2015-01-01

    Time-calibrated phylogenies based on molecular data provide a framework for comparative studies. Calibration methods to combine fossil information with molecular phylogenies are, however, under active development, often generating disagreement about the best way to incorporate paleontological data into these analyses. This study provides an empirical comparison of the most widely used approach based on node-dating priors for relaxed clocks implemented in the programs BEAST and MrBayes, with two recently proposed improvements: one using a new fossilized birth-death process model for node dating (implemented in the program DPPDiv), and the other using a total-evidence or tip-dating method (implemented in MrBayes and BEAST). These methods are applied herein to tetraodontiform fishes, a diverse group of living and extinct taxa that features one of the most extensive fossil records among teleosts. Previous estimates of time-calibrated phylogenies of tetraodontiforms using node-dating methods reported disparate estimates for their age of origin, ranging from the late Jurassic to the early Paleocene (ca. 150-59Ma). We analyzed a comprehensive dataset with 16 loci and 210 morphological characters, including 131 taxa (95 extant and 36 fossil species) representing all families of fossil and extant tetraodontiforms, under different molecular clock calibration approaches. Results from node-dating methods produced consistently younger ages than the tip-dating approaches. The older ages inferred by tip dating imply an unlikely early-late Jurassic (ca. 185-119Ma) origin for this order and the existence of extended ghost lineages in their fossil record. Node-based methods, by contrast, produce time estimates that are more consistent with the stratigraphic record, suggesting a late Cretaceous (ca. 86-96Ma) origin. We show that the precision of clade age estimates using tip dating increases with the number of fossils analyzed and with the proximity of fossil taxa to the node under

  15. Dissolved Organic Carbon 14C in Southern Nevada Groundwater and Implications for Groundwater Travel Times

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Ronald L. [Nevada University, Reno, NV (United States). Desert Research Institute; Fereday, Wyall [Nevada University, Reno, NV (United States). Desert Research Institute; Thomas, James M [Nevada University, Reno, NV (United States). Desert Research Institute

    2016-08-01

    Dissolved inorganic carbon (DIC) carbon-14 (14C) ages must be corrected for complex chemical and physical reactions and processes that change the amount of 14C in groundwater as it flows from recharge to downgradient areas. Because of these reactions, DIC 14C can produce unrealistically old ages and long groundwater travel times that may, or may not, agree with travel times estimated by other methods. Dissolved organic carbon (DOC) 14C ages are often younger than DIC 14C ages because there are few chemical reactions or physical processes that change the amount of DOC 14C in groundwater. However, there are several issues that create uncertainty in DOC 14C groundwater ages including limited knowledge of the initial (A0) DOC 14C in groundwater recharge and potential changes in DOC composition as water moves through an aquifer. This study examines these issues by quantifying A0 DOC 14C in recharge areas of southern Nevada groundwater flow systems and by evaluating changes in DOC composition as water flows from recharge areas to downgradient areas. The effect of these processes on DOC 14C groundwater ages is evaluated and DOC and DIC 14C ages are then compared along several southern Nevada groundwater flow paths. Twenty-seven groundwater samples were collected from springs and wells in southern Nevada in upgradient, midgradient, and downgradient locations. DOC 14C for upgradient samples ranged from 96 to 120 percent modern carbon (pmc) with an average of 106 pmc, verifying modern DOC 14C ages in recharge areas, which decreases uncertainty in DOC 14C A0 values, groundwater ages, and travel times. The HPLC spectra of groundwater along a flow path in the Spring Mountains show the same general pattern indicating that the DOC compound composition does not change along this flow path

  16. Groundwater environmental capacity and its evaluation index.

    Science.gov (United States)

    Xing, Li Ting; Wu, Qiang; Ye, Chun He; Ye, Nan

    2010-10-01

    To date, no unified and acknowledged definition or well-developed evaluation index system of groundwater environment capacity can be found in the academia at home or abroad. The article explores the meaning of water environment capacity, and analyzes the environmental effects caused by the exploitation of groundwater resources. This research defines groundwater environmental capacity as a critical value in terms of time and space, according to which the groundwater system responds to the external influences within certain goal constraint. On the basis of observing the principles of being scientific, dominant, measurable, and applicable, six level 1 evaluation indexes and 11 constraint factors are established. Taking Jinan spring region for a case study, this research will adopt groundwater level and spring flow as constraint factors, and the allowable groundwater yield as the critical value of groundwater environmental capacity, prove the dynamic changeability and its indicating function of groundwater environmental capacity through calculation, and finally point out the development trends of researches on groundwater environmental capacity.

  17. REIMEP-22 U age dating - Determination of the production date of a uranium certified test sample Inter-laboratory comparison, Report to participants

    OpenAIRE

    VENCHIARUTTI CELIA; VARGA ZSOLT; RICHTER Stephan; NICHOLL Adrian; KRAJKO JUDIT; JAKOPIC Rozle; MAYER Klaus; AREGBE Yetunde

    2015-01-01

    The REIMEP-22 inter-laboratory comparison (ILC) "U Age Dating - Determination of the production date of a uranium certified test sample" was organised by JRC-IRMM as support to the Nuclear Forensics International Technical Working Group (ITWG) This ILC was organised prior to the release of the candidate certified reference material IRMM-1000, produced in cooperation with JRC-ITU. The aim of REIMEP-22 was to determine the production date of the uranium certified test sample (i.e. the last chem...

  18. Atmospheric Gas Tracers in Groundwater: Theory, Sampling. Measurement and Interpretation

    International Nuclear Information System (INIS)

    Bayari, C.S.

    2002-01-01

    Some of the atmospheric gasses posses features that are sought in an environmental tracer of hydrogeologic interest. Among these, chlorofluorocarbons, sulfur hegzafluoride, carbon tetrachloride, methyl chloroform, krypton-85 etc. have found increasing use in groundwater age dating studies during the last ten years. This paper explains the theory of their use as tracer and discusses the major concerns as related to their sampling and analyses. Factors affecting their applicability and the approach to interpret tracer gas data is briefly outlined

  19. Hydrogeology, Ground-Water-Age Dating, Water Quality, and Vulnerability of Ground Water to Contamination in a Part of the Whitewater Valley Aquifer System near Richmond, Indiana, 2002-2003

    Science.gov (United States)

    Buszka, Paul M.; Watson, Lee R.; Greeman, Theodore K.

    2007-01-01

    Assessments of the vulnerability to contamination of ground-water sources used by public-water systems, as mandated by the Federal Safe Drinking Water Act Amendments of 1996, commonly have involved qualitative evaluations based on existing information on the geologic and hydrologic setting. The U.S. Geological Survey National Water-Quality Assessment Program has identified ground-water-age dating; detailed water-quality analyses of nitrate, pesticides, trace elements, and wastewater-related organic compounds; and assessed natural processes that affect those constituents as potential, unique improvements to existing methods of qualitative vulnerability assessment. To evaluate the improvement from use of these methods, in 2002 and 2003, the U.S. Geological Survey, in cooperation with the City of Richmond, Indiana, compiled and interpreted hydrogeologic data and chemical analyses of water samples from seven wells in a part of the Whitewater Valley aquifer system in a former glacial valley near Richmond. This study investigated the application of ground-water-age dating, dissolved-gas analyses, and detailed water-quality analyses to quantitatively evaluate the vulnerability of ground water to contamination and to identify processes that affect the vulnerability to specific contaminants in an area of post-1972 greenfield development.

  20. Using accelerator mass spectrometry for radiocarbon dating of textiles

    Energy Technology Data Exchange (ETDEWEB)

    Jull, A.J.T.

    1997-12-01

    Since 1981 we have operated an NSF Accelerator Mass Spectrometry (AMS) Facility at the University of Arizona. The AMS method allows us to use very small samples of carbon, <1 mg for radiocarbon dating in contrast to earlier counting techniques. This has opened a vast array of applications of radiocarbon dating that was difficult to do before AMS because of sample size limitations of decay counting. Some of the many applications of AMS include paleoclimatic studies, archaeological research and the age of first settlement of North America by man, dating of art works and artifacts, fall times and terrestrial residence ages of meteorites, production of {sup 14}C in lunar samples by galactic and solar cosmic rays, studies of in situ {sup 14}C produced by cosmic ray spallation in rocks and ice, and studies of {sup 14}C in groundwater dissolved inorganic carbon and dissolved organic carbon. At our laboratory, we have also successfully applied AMS {sup 14}C to dating of many types of textiles, including silks and linens, art works, documents and artifacts fabricated from wood, parchment, ivory, and bone. The results for many of these samples are often important in questions of the authenticity of these works of art and artifacts. Our studies have encompassed a wide range of art works ranging from the Dead Sea Scrolls, the Shroud of Turin, and the Chinese silk trade to the works of Raphael, Rembrandt, and Picasso. Recently, we also dated the Vinland Map, a controversial document that shows the eastern coast of North America apparently using information from Viking voyages.

  1. Luminescence dating and palaeomagnetic age constraint on hominins from Sima de los Huesos, Atapuerca, Spain.

    Science.gov (United States)

    Arnold, Lee J; Demuro, Martina; Parés, Josep M; Arsuaga, Juan Luis; Aranburu, Arantza; Bermúdez de Castro, José María; Carbonell, Eudald

    2014-02-01

    Establishing a reliable chronology on the extensive hominin remains at Sima de los Huesos is critical for an improved understanding of the complex evolutionary histories and phylogenetic relationships of the European Middle Pleistocene hominin record. In this study, we use a combination of 'extended-range' luminescence dating techniques and palaeomagnetism to provide new age constraint on sedimentary infills that are unambiguously associated with the Sima fossil assemblage. Post-infrared-infrared stimulated luminescence (pIR-IR) dating of K-feldspars and thermally transferred optically stimulated luminescence (TT-OSL) dating of individual quartz grains provide weighted mean ages of 433 ± 15 ka (thousands of years) and 416 ± 19 ka, respectively, for allochthonous sedimentary horizons overlying the hominin-bearing clay breccia. The six replicate luminescence ages obtained for this deposit are reproducible and provide a combined minimum age estimate of 427 ± 12 ka for the underlying hominin fossils. Palaeomagnetic directions for the luminescence dated sediment horizon and underlying fossiliferous clays display exclusively normal polarities. These findings are consistent with the luminescence dating results and confirm that the hominin fossil horizon accumulated during the Brunhes Chron, i.e., within the last 780 ka. The new bracketing age constraint for the Sima hominins is in broad agreement with radiometrically dated Homo heidelbergensis fossil sites, such as Mauer and Arago, and suggests that the split of the H. neanderthalensis and H. sapiens lineages took place during the early Middle Pleistocene. More widespread numerical dating of key Early and Middle Pleistocene fossil sites across Europe is needed to test and refine competing models of hominin evolution. The new luminescence chronologies presented in this study demonstrate the versatility of TT-OSL and pIR-IR techniques and the potential role they could play in helping to refine evolutionary

  2. Use of multiple age tracers to estimate groundwater residence times and long-term recharge rates in arid southern Oman

    International Nuclear Information System (INIS)

    Müller, Th.; Osenbrück, K.; Strauch, G.; Pavetich, S.; Al-Mashaikhi, K.-S.; Herb, C.; Merchel, S.; Rugel, G.; Aeschbach, W.; Sanford, W.

    2016-01-01

    Multiple age tracers were measured to estimate groundwater residence times in the regional aquifer system underlying southwestern Oman. This area, known as the Najd, is one of the most arid areas in the world and is planned to be the main agricultural center of the Sultanate of Oman in the near future. The three isotopic age tracers "4He, "1"4C and "3"6Cl were measured in waters collected from wells along a line that extended roughly from the Dhofar Mountains near the Arabian Sea northward 400 km into the Empty Quarter of the Arabian Peninsula. The wells sampled were mostly open to the Umm Er Radhuma confined aquifer, although, some were completed in the mostly unconfined Rus aquifer. The combined results from the three tracers indicate the age of the confined groundwater is  100 ka in the central section north of the mountains, and up to and > one Ma in the Empty Quarter. The "1"4C data were used to help calibrate the "4He and "3"6Cl data. Mixing models suggest that long open boreholes north of the mountains compromise "1"4C-only interpretations there, in contrast to "4He and "3"6Cl calculations that are less sensitive to borehole mixing. Thus, only the latter two tracers from these more distant wells were considered reliable. In addition to the age tracers, δ"2H and δ"1"8O data suggest that seasonal monsoon and infrequent tropical cyclones are both substantial contributors to the recharge. The study highlights the advantages of using multiple chemical and isotopic data when estimating groundwater travel times and recharge rates, and differentiating recharge mechanisms. - Highlights: • Multiple age tracers are required for the interpretation of the groundwater system. • Different tracers are applicable along different sections of the flowpath. • Groundwater residence times >1 Ma have been determined for the northern Najd area.

  3. Radiometric dating of brittle fault rocks; illite polytype age analysis and application to the Spanish Pyrenees.

    Science.gov (United States)

    van der Pluijm, B. A.; Haines, S. H.

    2008-12-01

    A variety of approaches have been available to indirectly date the timing of deformation and motion on faults, but few approaches for direct, radiometric dating of shallow crustal fault rocks were available until recently. The growing recognition of clay neomineralization at low temperatures in many fault rocks, particularly the 1Md illite polytype, allows the successful application of Ar dating to these K-bearing phases. In this presentation we will discuss our recent illite age analysis approach (sampling, treatments, analytical methods), and present new results from fault dating along the Spanish Pyrenean orogenic front as an example. X-ray quantification of polytype ratios in three or more size fractions is used to define a mixing line between (1Md illite) authigenic and (2M illite) detrital end-member phases that constrain the fault age and host rock provenance/cooling age for each fault. The common problem of recoil in clays is addressed by encapsulating samples before irradiation. Nine fault gouge ages in the south-central and south-eastern Pyrenees support several contractional pulses in the Pyrenean orogen: 1) Late Cretaceous thrusting (Boixols), 2) Latest Paleocene-Early Eocene deformation (Nogueres Zone and Freser antiformal stack), 3) Middle-Late Eocene deformation (Ripoll syncline, Vallfogona, Gavernie, Abocador and L'Escala thrusts), and 4) Middle Oligocene thrusting in the central portion of the Axial Zone (Llavorsi-Senet). The late Paleocene-Early Eocene and Middle-Late Eocene events may or may not be one single phase, due to slightly overlapping error estimates. The outboard thrusts give Hercynian ages for the detrital component of the fault rock, while the inboard thrusts, which juxtapose metamorphic units, give Cretaceous ages for the non-authigenic component, reflecting the cooling age of the adjacent wallrocks. Based on our latest work, the illite polytype dating method complements previously developed illite-smectite dating (van der Pluijm et

  4. Dating violence victimization across the teen years: Abuse frequency, number of abusive partners, and age at first occurrence

    Science.gov (United States)

    2012-01-01

    Background Prior longitudinal studies have shown high cumulative dating violence exposure rates among U.S adolescents, with 36 percent of males and 44 percent to 88 percent of females experiencing victimization across adolescence/young adulthood. Despite promising information characterizing adolescents’ dating violence experiences longitudinally, prior studies tended to concentrate on physical and sexual types of violence only, and did not report information on the number of times dating violence was experienced across multiple abusive partners. We used a method similar to the timeline follow-back interview to query adolescents about dating violence victimization from age 13 to 19—including dating violence types (physical, sexual, and psychological), frequency, age at first occurrence, and number of abusive partners. Methods A total of 730 subjects were randomly sampled from university registrar records and invited to complete an online survey, which utilized methods similar to the timeline follow-back interview, to retrospectively assess relationship histories and dating violence victimization from age 13 to 19 (eight questions adapted from widely-used surveys covering physical, sexual, and psychological abuse). Then, for each dating violence type, we asked about the number of occurrences, number of abusive partners, and age at first occurrence. Of 341 subjects who completed the survey, we included 297 (64 percent females; 36 percent males) who had a dating partner from age 13 to 19. Results Fully 64.7 percent of females and 61.7 percent of males reported dating violence victimization between age 13 and 19, with most experiencing multiple occurrences. More than one-third of abused females had two or more abusive partners: controlling behavior (35.6 percent); put downs/name calling (37.0); pressured sex (42.9); insults (44.3); slapped/hit (50.0); and threats (62.5). Males also had two or more abusive partners, as follows: controlling behavior (42.1 percent

  5. Dating violence victimization across the teen years: Abuse frequency, number of abusive partners, and age at first occurrence

    Directory of Open Access Journals (Sweden)

    Bonomi Amy E

    2012-08-01

    Full Text Available Abstract Background Prior longitudinal studies have shown high cumulative dating violence exposure rates among U.S adolescents, with 36 percent of males and 44 percent to 88 percent of females experiencing victimization across adolescence/young adulthood. Despite promising information characterizing adolescents’ dating violence experiences longitudinally, prior studies tended to concentrate on physical and sexual types of violence only, and did not report information on the number of times dating violence was experienced across multiple abusive partners. We used a method similar to the timeline follow-back interview to query adolescents about dating violence victimization from age 13 to 19—including dating violence types (physical, sexual, and psychological, frequency, age at first occurrence, and number of abusive partners. Methods A total of 730 subjects were randomly sampled from university registrar records and invited to complete an online survey, which utilized methods similar to the timeline follow-back interview, to retrospectively assess relationship histories and dating violence victimization from age 13 to 19 (eight questions adapted from widely-used surveys covering physical, sexual, and psychological abuse. Then, for each dating violence type, we asked about the number of occurrences, number of abusive partners, and age at first occurrence. Of 341 subjects who completed the survey, we included 297 (64 percent females; 36 percent males who had a dating partner from age 13 to 19. Results Fully 64.7 percent of females and 61.7 percent of males reported dating violence victimization between age 13 and 19, with most experiencing multiple occurrences. More than one-third of abused females had two or more abusive partners: controlling behavior (35.6 percent; put downs/name calling (37.0; pressured sex (42.9; insults (44.3; slapped/hit (50.0; and threats (62.5. Males also had two or more abusive partners, as follows: controlling

  6. Dating violence victimization across the teen years: abuse frequency, number of abusive partners, and age at first occurrence.

    Science.gov (United States)

    Bonomi, Amy E; Anderson, Melissa L; Nemeth, Julianna; Bartle-Haring, Suzanne; Buettner, Cynthia; Schipper, Deborah

    2012-08-10

    Prior longitudinal studies have shown high cumulative dating violence exposure rates among U.S adolescents, with 36 percent of males and 44 percent to 88 percent of females experiencing victimization across adolescence/young adulthood. Despite promising information characterizing adolescents' dating violence experiences longitudinally, prior studies tended to concentrate on physical and sexual types of violence only, and did not report information on the number of times dating violence was experienced across multiple abusive partners. We used a method similar to the timeline follow-back interview to query adolescents about dating violence victimization from age 13 to 19-including dating violence types (physical, sexual, and psychological), frequency, age at first occurrence, and number of abusive partners. A total of 730 subjects were randomly sampled from university registrar records and invited to complete an online survey, which utilized methods similar to the timeline follow-back interview, to retrospectively assess relationship histories and dating violence victimization from age 13 to 19 (eight questions adapted from widely-used surveys covering physical, sexual, and psychological abuse). Then, for each dating violence type, we asked about the number of occurrences, number of abusive partners, and age at first occurrence. Of 341 subjects who completed the survey, we included 297 (64 percent females; 36 percent males) who had a dating partner from age 13 to 19. Fully 64.7 percent of females and 61.7 percent of males reported dating violence victimization between age 13 and 19, with most experiencing multiple occurrences. More than one-third of abused females had two or more abusive partners: controlling behavior (35.6 percent); put downs/name calling (37.0); pressured sex (42.9); insults (44.3); slapped/hit (50.0); and threats (62.5). Males also had two or more abusive partners, as follows: controlling behavior (42.1 percent); insults (51.2); put downs (53

  7. Groundwater age, mixing and flow rates in the vicinity of large open pit mines, Pilbara region, northwestern Australia

    Science.gov (United States)

    Cook, Peter; Dogramaci, Shawan; McCallum, James; Hedley, Joanne

    2017-01-01

    Determining groundwater ages from environmental tracer concentrations measured on samples obtained from open bores or long-screened intervals is fraught with difficulty because the sampled water represents a variety of ages. A multi-tracer technique (Cl, 14C, 3H, CFC-11, CFC-12, CFC-113 and SF6) was used to decipher the groundwater ages sampled from long-screened production bores in a regional aquifer around an open pit mine in the Pilbara region of northwest Australia. The changes in tracer concentrations due to continuous dewatering over 7 years (2008-2014) were examined, and the tracer methods were compared. Tracer concentrations suggest that groundwater samples are a mixture of young and old water; the former is inferred to represent localised recharge from an adjacent creek, and the latter to be diffuse recharge. An increase in 14C activity with time in wells closest to the creek suggests that dewatering of the open pit to achieve dry mining conditions has resulted in change in flow direction, so that localised recharge from the creek now forms a larger proportion of the pumped groundwater. The recharge rate prior to development, calculated from a steady-state Cl mass balance, is 6 mm/y, and is consistent with calculations based on the 14C activity. Changes in CFC-12 concentrations with time may be related to the change in water-table position relative to the depth of the well screen.

  8. Chemistry and age of groundwater in bedrock aquifers of the Piceance and Yellow Creek watersheds, Rio Blanco County, Colorado, 2010-12

    Science.gov (United States)

    McMahon, P.B.; Thomas, J.C.; Hunt, A.G.

    2013-01-01

    Fourteen monitoring wells completed in the Uinta and Green River Formations in the Piceance Creek and Yellow Creek watersheds in Rio Blanco County, Colorado, were sampled for chemical, isotopic, and groundwater-age tracers to provide information on the overall groundwater quality, the occurrence and distribution of chemicals that could be related to the development of underlying natural-gas reservoirs, and to better understand groundwater residence times in the flow system. Methane concentrations in groundwater ranged from less than 0.0005 to 387 milligrams per liter. The methane was predominantly biogenic in origin, although the biogenic methane was mixed with thermogenic methane in water from seven wells. Three BTEX compounds (benzene, toluene, and ethylbenzene) were detected in water from six of the wells, but none of the concentrations exceeded Federal drinking-water standards. The presence of thermogenic methane in the aquifers indicates a connection and vulnerability to chemicals in deeper geologic units. Helium-4 data indicate that groundwater had ages ranging from less than 1,000 years to greater than 50,000 years. The presence of old groundwater in parts of the aquifers indicates that these aquifers may not be useful for large-scale water supply because of low recharge rates.

  9. Feasibility Study: Applicability of geochronologic methods involving radiocarbon and other nuclides to the groundwater hydrology of the Rustler Formation, southeastern New Mexico

    International Nuclear Information System (INIS)

    Lambert, S.J.

    1987-12-01

    Radiocarbon, tritium, and 36 Cl were measured in groundwaters from the dolomite aquifers of the Rustler Formation in the northern Delaware Basin of southeastern New Mexico to determine the feasibility of using these nuclides in dating the groundwater at and near the Waste Isolation Pilot Plant, a facility for geological disposal of Radioactive waste. No measurable 36 Cl was found in any of these groundwaters, which derive their dissolved chloride from Permian evaporites. Demonstrably uncontaminated groundwaters contained no significant amounts of tritium ( 13 C does not linearly correlate with bicarbonate, indicating no single source of contaminant radiocarbon. Values of PMC and δ 13 C for groundwaters were used to calculate apparent radiocarbon ages according to an interpretive model that accounts for water/rock interactions in carbonate aquifers. All but six pairs of values give significant negative ages (-1,000 to -7,000 years). This suggests that in contaminated samples the model over-adjusts (based on δ 13 C) for radiocarbon loss due to dilution and isotopic exchange with the rock. 52 refs., 10 figs., 6 tabs

  10. U-Pb zircon dating of the Bassies granite (Pyrenees): a syn-tectonic pluton of Westphalian age

    International Nuclear Information System (INIS)

    Paquette, J.L.

    1997-01-01

    A new U-Pb zircon age of 312 ± 2 Ma for the Bassies pluton (Pyrenees) contradicts the previous whole-rock Rb-Sr dating at 276 ± 16 Ma, which was considered as the age of emplacement, therefore regarded as post-tectonic. The new date is in agreement with recent structural studies which suggest a Hercynian syn-tectonic emplacement for the Bassies pluton. These results strengthen the few U-Pb ages already published for the Pyrenean granites and indicate that the Hercynian plutonism of the Pyrenees is essentially Carboniferous in age and syn-tectonic. (authors)

  11. Effects of aged sorption on pesticide leaching to groundwater simulated with PEARL.

    Science.gov (United States)

    Boesten, Jos J T I

    2017-01-15

    Leaching to groundwater is an important element of the regulatory risk assessment of pesticides in western countries. Including aged sorption in this assessment is relevant because there is ample evidence of this process and because it leads to a decrease in simulated leaching. This work assesses the likely magnitude of this decrease for four groundwater scenarios used for regulatory purpose in the EU (from the UK, Portugal, Austria and Greece) and for ranges of aged-sorption parameters and substance properties using the PEARL model. Three aged-sorption parameters sets were derived from literature, representing approximately 5th, 50th and 95th percentile cases for the magnitude of the effect of aged sorption on leaching concentrations (called S, M and L, respectively). The selection of these percentile cases was based only on the f NE parameter (i.e. the ratio of the aged sorption and the equilibrium sorption coefficients) because leaching was much more affected by the uncertainty in this parameter than by the uncertainty in the desorption rate coefficient of these sites (k d ). For the UK scenario, the annual flux concentration of pesticide leaching at 1m depth decreased by typically a factor of 5, 30 and >1000 for the S, M and L parameter sets, respectively. This decrease by a factor of 30 for the M parameter set appeared to be approximately valid also for the other three scenarios. Decreasing the Freundlich exponent N from 0.9 into 0.7 for the M parameter set, increased this factor of 30 into a factor of typically 1000, considering all four scenarios. The aged-sorption sites were close to their equilibrium conditions during the leaching simulations for two of the four scenarios (for all substances considered and the M parameter set), but this was not the case for the other two scenarios. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Measurements of HFC-134a and HCFC-22 in groundwater and unsaturated-zone air: implications for HFCs and HCFCs as dating tracers

    Science.gov (United States)

    Haase, Karl B.; Busenberg, Eurybiades; Plummer, Niel; Casile, Gerolamo; Sanford, Ward E.

    2014-01-01

    A new analytical method using gas chromatography with an atomic emission detector (GC–AED) was developed for measurement of ambient concentrations of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) in soil, air, and groundwater, with the goal of determining their utility as groundwater age tracers. The analytical detection limits of HCFC-22 (difluorochloromethane, CHClF2) and HFC-134a (1,2,2,2-tetrafluoroethane, C2H2F4) in 1 L groundwater samples are 4.3 × 10− 1 and 2.1 × 10− 1 pmol kg− 1, respectively, corresponding to equilibrium gas-phase mixing ratios of approximately 5–6 parts per trillion by volume (pptv). Under optimal conditions, post-1960 (HCFC-22) and post-1995 (HFC-134a) recharge could be identified using these tracers in stable, unmixed groundwater samples. Ambient concentrations of HCFC-22 and HFC-134a were measured in 50 groundwater samples from 27 locations in northern and western parts of Virginia, Tennessee, and North Carolina (USA), and 3 unsaturated-zone profiles were collected in northern Virginia. Mixing ratios of both HCFC-22 and HFC-134a decrease with depth in unsaturated-zone gas profiles with an accompanying increase in CO2 and loss of O2. Apparently, ambient concentrations of HCFC-22 and HFC-134a are readily consumed by methanotrophic bacteria under aerobic conditions in the unsaturated zone. The results of this study indicate that soils are a sink for these two greenhouse gases. These observations contradict the previously reported results from microcosm experiments that found that degradation was limited above-ambient HFC-134a. The groundwater HFC and HCFC concentrations were compared with concentrations of chlorofluorocarbons (CFCs, CFC-11, CFC-12, CFC-113) and sulfur hexafluoride (SF6). Nearly all samples had measured HCFC-22 or HFC-134a that were below concentrations predicted by the CFCs and SF6, with many samples showing a complete loss of HCFC-22 and HFC-134a. This study indicates that HCFC-22 and HFC-134

  13. What Can Catchment Transit Time Distributions Tell Us About Runoff Mechanisms? Exploring "Age Equifinality" with an Integrated Surface-Groundwater Model.

    Science.gov (United States)

    Wilusz, D. C.; Harman, C. J.; Ball, W. P.; Maxwell, R. M.; Buda, A. R.

    2017-12-01

    The backward transit-time distribution (bTTD) is the time-varying, probabilistic distribution of water travel times or, equivalently, water ages in catchment outflow. The bTTD is increasingly seen as a master variable of catchment hydrology that links flow and transport processes, in part because it is believed to embed information about runoff generation mechanisms (RGMs) that are difficult to directly observe. The ability to use water age to make inferences about RGMs depends on the degree of "age equifinality" in a watershed, defined here as the phenomenon where significant volumes of similarly-aged water are delivered to the outlet by different RGMs at the same time. When age equifinality is low (e.g., all discharge is old groundwater), the mapping of water age to the RGM may be simple; when age equifinality is high (e.g., discharge is a mix of old groundwater and old interflow), this mapping may be impossible. In this study we conduct experiments in a virtual watershed to (1) understand the hydrologic conditions that lead to age equifinality, (2) identify relationships between water age and RGMs that are particularly obscured/unobscured by age equifinality, and (3) test the generalizability of these relationships in other watersheds. Our experiments used the fully-distributed surface-groundwater model ParFlow, which simulates a suite of RGMs, plus SLIM-FAST particle tracking. To improve realism, the watershed model was parameterized and forced using extensive field data from the USDA's Mahantango Creek experimental catchment in PA, USA. The model output is being interrogated to understand the time-varying relationships between the composition of RGMs and the bTTD at the outlet. We are also testing the robustness of these relationships by re-running our model with controlled differences in climate, topography, and scale. Initial results suggest high age equifinality at peak flows due to overlapping young water contributions from infiltration- and saturation

  14. Research on the neutron flux, secular equilibrium of chlorine-36 and groundwater age of the deep quaternary sediments, Hebei plain

    International Nuclear Information System (INIS)

    Dong Yuean; He Ming; Jiang Songsheng; Wu Shaoyong; Jiang Shan

    2001-01-01

    For the study of the neutron flux, secular equilibrium of chlorine-36 in the deep quaternary sediments of Hebei plain, the main chemical composition of water sand and confining bed was determined by neutron activation analysis. The mean neutron flux is 2.79 x 10 -5 cm -2 s -1 which was calculated by the chemical composition of the strata. The mean 36 Cl/Cl ratio in secular equilibrium is 1.27 x 10 -14 in the deep quaternary sediments, Hebei Plain. For the study of the groundwater age of the deep Quaternary sediments of Hebei Plain, the 36 Cl/Cl ratio of groundwater samples were determined by tandem accelerator mass spectrometry. The mixed groundwater 36 Cl/Cl ratio of the second and the third aquifer of Quaternary sediments in Baoding district is 247 x 10 -15 , that of the fourth aquifer in Baoding city is 224 x 10 -15 and the third aquifer in Cangzhou district is 40.5 x 10 -15 . The groundwater age of Baoding district was young and that of the third aquifer in Cangzhou was 229.2 ka

  15. Forever young: Visual representations of gender and age in online dating sites for older adults.

    Science.gov (United States)

    Gewirtz-Meydan, Ateret; Ayalon, Liat

    2017-06-13

    Online dating has become increasingly popular among older adults following broader social media adoption patterns. The current study examined the visual representations of people on 39 dating sites intended for the older population, with a particular focus on the visualization of the intersection between age and gender. All 39 dating sites for older adults were located through the Google search engine. Visual thematic analysis was performed with reference to general, non-age-related signs (e.g., facial expression, skin color), signs of aging (e.g., perceived age, wrinkles), relational features (e.g., proximity between individuals), and additional features such as number of people presented. The visual analysis in the present study revealed a clear intersection between ageism and sexism in the presentation of older adults. The majority of men and women were smiling and had a fair complexion, with light eye color and perceived age of younger than 60. Older women were presented as younger and wore more cosmetics as compared with older men. The present study stresses the social regulation of sexuality, as only heterosexual couples were presented. The narrow representation of older adults and the anti-aging messages portrayed in the pictures convey that love, intimacy, and sexual activity are for older adults who are "forever young."

  16. REIMEP-22 inter-laboratory comparison. ''U Age Dating - determination of the production date of a uranium certified test sample''

    Energy Technology Data Exchange (ETDEWEB)

    Venchiarutti, Celia; Richter, Stephan; Jakopic, Rozle; Aregbe, Yetunde [European Commission, Joint Research Centre (JRC), Geel (Belgium). Institute for Reference Materials and Measurements (IRMM); Varga, Zsolt; Mayer, Klaus [European Commission, Joint Research Centre (JRC), Karlsruhe (Germany). Institute for Transuranium Elements (ITU)

    2015-07-01

    The REIMEP-22 inter-laboratory comparison aimed at determining the production date of a uranium certified test sample (i.e. the last chemical separation date of the material). Participants in REIMEP-22 on ''U Age Dating - Determination of the production date of a uranium certified test sample'' received one low-enriched 20 mg uranium sample for mass spectrometry measurements and/or one 50 mg uranium sample for a-spectrometry measurements, with an undisclosed value for the production date. They were asked to report the isotope amount ratios n({sup 230}Th)/n({sup 234}U) for the 20 mg uranium sample and/or the activity ratios A({sup 230}Th)/A({sup 234}U) for the 50 mg uranium sample in addition to the calculated production date of the certified test samples with its uncertainty. Reporting of the {sup 231}Pa/{sup 235}U ratio and the respective calculated production date was optional. Eleven laboratories reported results in REIMEP-22. Two of them reported results for both the 20 mg and 50 mg uranium certified test samples. The measurement capability of the participants was assessed against the independent REIMEP-22 reference value by means of z- and zeta-scores in compliance with ISO 13528:2005. Furthermore a performance assessment criterion for acceptable uncertainty was applied to evaluate the participants' results. In general, the REIMEP-22 participants' results were satisfactory. This confirms the analytical capabilities of laboratories to determine accurately the age of uranium materials with low amount of ingrown thorium (young certified test sample). The Joint Research Centre of the European Commission (EC-JRC) organised REIMEP-22 in parallel to the preparation and certification of a uranium reference material certified for the production date (IRMM-1000a and IRMM-1000b).

  17. Carbon isotope systematics of the Cambrian–Vendian aquifer system in the northern Baltic Basin: Implications to the age and evolution of groundwater

    International Nuclear Information System (INIS)

    Raidla, Valle; Kirsimäe, Kalle; Vaikmäe, Rein; Kaup, Enn; Martma, Tõnu

    2012-01-01

    Groundwater in the Cambrian–Vendian aquifer system has a strongly depleted stable isotope composition (δ 18 O values of about −22‰) and a low radiocarbon concentration, which suggests that the water is of glacial origin from the last Ice Age. The aim of this paper was to elucidate the timing of infiltration of glacial waters and to understand the geochemical evolution of this groundwater. The composition of the dissolved inorganic C (DIC) in Cambrian–Vendian groundwater is influenced by complex reactions and isotope exchange processes between water, organic materials and rock matrix. The δ 13 C composition of dissolved inorganic C in Cambrian–Vendian water also indicates a bacterial modification of the isotope system. The corrected radiocarbon ages of groundwater are between 14,000 and 27,000 radiocarbon years, which is coeval with the advance of the Weichselian Glacier in the area.

  18. Age of Barrier Canyon-style rock art constrained by cross-cutting relations and luminescence dating techniques.

    Science.gov (United States)

    Pederson, Joel L; Chapot, Melissa S; Simms, Steven R; Sohbati, Reza; Rittenour, Tammy M; Murray, Andrew S; Cox, Gary

    2014-09-09

    Rock art compels interest from both researchers and a broader public, inspiring many hypotheses about its cultural origin and meaning, but it is notoriously difficult to date numerically. Barrier Canyon-style (BCS) pictographs of the Colorado Plateau are among the most debated examples; hypotheses about its age span the entire Holocene epoch and previous attempts at direct radiocarbon dating have failed. We provide multiple age constraints through the use of cross-cutting relations and new and broadly applicable approaches in optically stimulated luminescence dating at the Great Gallery panel, the type section of BCS art in Canyonlands National Park, southeastern Utah. Alluvial chronostratigraphy constrains the burial and exhumation of the alcove containing the panel, and limits are also set by our related research dating both a rockfall that removed some figures and the rock's exposure duration before that time. Results provide a maximum possible age, a minimum age, and an exposure time window for the creation of the Great Gallery panel, respectively. The only prior hypothesis not disproven is a late Archaic origin for BCS rock art, although our age result of A.D. ∼ 1-1100 coincides better with the transition to and rise of the subsequent Fremont culture. This chronology is for the type locality only, and variability in the age of other sites is likely. Nevertheless, results suggest that BCS rock art represents an artistic tradition that spanned cultures and the transition from foraging to farming in the region.

  19. Using geochemistry to identify the source of groundwater to Montezuma Well, a natural spring in Central Arizona, USA: Part 2

    Science.gov (United States)

    Johnson, Raymond H.; DeWitt, Ed; Wirt, Laurie; Manning, Andrew H.; Hunt, Andrew G.

    2012-01-01

    Montezuma Well is a unique natural spring located in a sinkhole surrounded by travertine. Montezuma Well is managed by the National Park Service, and groundwater development in the area is a potential threat to the water source for Montezuma Well. This research was undertaken to better understand the sources of groundwater to Montezuma Well. Strontium isotopes (87Sr/86Sr) indicate that groundwater in the recharge area has flowed through surficial basalts with subsequent contact with the underlying Permian aged sandstones and the deeper, karstic, Mississippian Redwall Limestone. The distinctive geochemistry in Montezuma Well and nearby Soda Springs (higher concentrations of alkalinity, As, B, Cl, and Li) is coincident with added carbon dioxide and mantle-sourced He. The geochemistry and isotopic data from Montezuma Well and Soda Springs allow for the separation of groundwater samples into four categories: (1) upgradient, (2) deep groundwater with carbon dioxide, (3) shallow Verde Formation, and (4) mixing zone. δ18O and δD values, along with noble gas recharge elevation data, indicate that the higher elevation areas to the north and east of Montezuma Well are the groundwater recharge zones for Montezuma Well and most of the groundwater in this portion of the Verde Valley. Adjusted groundwater age dating using likely 14C and δ13C sources indicate an age for Montezuma Well and Soda Springs groundwaters at 5,400–13,300 years, while shallow groundwater in the Verde Formation appears to be older (18,900). Based on water chemistry and isotopic evidence, groundwater flow to Montezuma Well is consistent with a hydrogeologic framework that indicates groundwater flow by (1) recharge in higher elevation basalts to the north and east of Montezuma Well, (2) movement through the upgradient Permian and Mississippian units, especially the Redwall Limestone, and (3) contact with a basalt dike/fracture system that provides a mechanism for groundwater to flow to the surface

  20. Recent and old groundwater in the Niebla-Posadas regional aquifer (southern Spain): Implications for its management

    Science.gov (United States)

    Scheiber, Laura; Ayora, Carlos; Vázquez-Suñé, Enric; Cendón, Dioni I.; Soler, Albert; Custodio, Emilio; Baquero, Juan Carlos

    2015-04-01

    The Niebla-Posadas (NP) aquifer in southern Spain is one of the main groundwater sources for the lower Guadalquivir Valley, a semiarid region supporting an important population, agriculture and industry. To contribute to the understanding of this aquifer the assessment of sustainable use of groundwater, the residence time of groundwater in the NP aquifer has been estimated using 3H, 14C and 36Cl. Along the flow paths, recharged groundwater mixes with NaCl-type waters and undergoes calcite dissolution and is further modified by cation exchange (Ca-Na). Consequently, the water loses most of its calcium and the residual δ13CDIC in the groundwater is isotopically enriched. Further modifications take place along the flow path in deeper zones, where depleted δ13CDIC values are overprinted due to SO42- and iron oxide reduction, triggered by the presence of organic matter. Dating with 3H, 14C and 36Cl has allowed the differentiation of several zones: recharge zone (30 ky). An apparent link between the tectonic structure and the groundwater residence time zonation can be established. Regional faults clearly separates deep zone 1 from the distinctly older age (>30 ky) deep zone 2. From the estimated residence times, two groundwater areas of different behavior can be differentiated within the aquifer.

  1. Recent and ancient recharge deciphered by multi-dating tracer technique

    Science.gov (United States)

    Dogramaci, Shawan; Cook, Peter; Mccallum, Jimes; Purtchert, Roland

    2017-04-01

    Determining groundwater residence time from environmental tracer concentrations obtained from open bores or long screened intervals is fraught with difficulty because the sampled water represents variety of ages. Information on the distribution of groundwater age is commonly obtained by measuring more than one tracer. We examined the use of the multi-tracer technique representing different time frames (39Ar, 85Kr, 14C, 3H, CFC 11- CFC-12 CFC-113, SF6 and Cl,) to decipher the groundwater ages sampled from long screened bores in a regional aquifer in the Pilbara region of northwest Australia. We then applied a technique that assumes limited details of the form of the age distribution. Tracer concentrations suggest that groundwater samples are a mixture of young and old water - the former is inferred to represent localised recharge from an adjacent creek, and the latter to be diffuse recharge. Using our method, we were able to identify distinct age components in the groundwater. The results suggest the presence of four distinct age groups; zero and 20 years, 50 to 100 years, 100 to 600 years and approximately 1000 years old. These relatively high recharge events were consistent with local recharge sources (50-100 years) and confirmed by palaeo-climate record obtained from lake sediments. We found that although the ages of these components were well constrained, the relative proportions of each component was highly sensitive to errors of environmental tracer data. Our results show that the method we implemented can identify distinct age groups in groundwater samples without prior knowledge of the age distribution. The presence of distinct recharge times gives insight into groundwater flow conditions over long periods of time.

  2. Review on the application of electron microprobe chemical dating method in the age research of uranium/pitchblende

    International Nuclear Information System (INIS)

    Ge Xiangkun; Qin Mingkuan; Fan Guang

    2011-01-01

    Different micro dating methods have been developed in recent years, the advantages and disadvantages are simply introduced at first. The recent development of electron microprobe chemical dating method in the age research of uraninite/pitchblende and the used analytical conditions by the precurser are presented in detail by stages. Finally, the application foreground of this method in the age research of uraninite/pitchblende and the possible problems are systematically investigated and discussed. It is believed that this method will play a big role in the age research of uranium minerals, especially in the micro dating research of tiny uranium minerals (φ < 10 μm) and uranium micro-ores of multi-stage. (authors)

  3. Installation and operation of a chain of detection of tritium for groundwater dating at Madagascar-INSTN

    International Nuclear Information System (INIS)

    ANDRIAMIHARITSOA, G.

    2008-01-01

    The present study aims at installing and operating the Madagascar -INSTN tritium line for groundwater dating. The laboratory was first installed in July 2007 and is operational since January 2008. The objective of the laboratory is to determine the tritium activity in water sample by electrolytic enrichment prior to Liquid Scintillation Counting. The spike analyses showed that the mean value of the enrichment factor is 23.78 and that of the enrichment parameter is 0.88 for the first analysis. Such factor value is much higher than the usual determined value of 18 for a first enrichment run and shows that the electrolytic cells are working properly. the standard deviations are 1.6 and 0.02 for the enrichment factor and parameter, respectively. This indicates that the cells performance is approximately the same. The dead water activity is very low, with a value of 1.07cpm, while the inside and outside contamination control water activities are 0.5 cpm and 0.4 cpm, respectively. These values indicate that the laboratory is free of any contamination. [fr

  4. Estimation of submarine mass failure probability from a sequence of deposits with age dates

    Science.gov (United States)

    Geist, Eric L.; Chaytor, Jason D.; Parsons, Thomas E.; ten Brink, Uri S.

    2013-01-01

    The empirical probability of submarine mass failure is quantified from a sequence of dated mass-transport deposits. Several different techniques are described to estimate the parameters for a suite of candidate probability models. The techniques, previously developed for analyzing paleoseismic data, include maximum likelihood and Type II (Bayesian) maximum likelihood methods derived from renewal process theory and Monte Carlo methods. The estimated mean return time from these methods, unlike estimates from a simple arithmetic mean of the center age dates and standard likelihood methods, includes the effects of age-dating uncertainty and of open time intervals before the first and after the last event. The likelihood techniques are evaluated using Akaike’s Information Criterion (AIC) and Akaike’s Bayesian Information Criterion (ABIC) to select the optimal model. The techniques are applied to mass transport deposits recorded in two Integrated Ocean Drilling Program (IODP) drill sites located in the Ursa Basin, northern Gulf of Mexico. Dates of the deposits were constrained by regional bio- and magnetostratigraphy from a previous study. Results of the analysis indicate that submarine mass failures in this location occur primarily according to a Poisson process in which failures are independent and return times follow an exponential distribution. However, some of the model results suggest that submarine mass failures may occur quasiperiodically at one of the sites (U1324). The suite of techniques described in this study provides quantitative probability estimates of submarine mass failure occurrence, for any number of deposits and age uncertainty distributions.

  5. Validation on groundwater flow model including sea level change. Modeling on groundwater flow in coastal granite area

    International Nuclear Information System (INIS)

    Hasegawa, Takuma; Miyakawa, Kimio

    2009-01-01

    It is important to verify the groundwater flow model that reproduces pressure head, water chemistry, and groundwater age. However, water chemistry and groundwater age are considered to be influenced by historical events. In this study, sea level change during glacial-interglacial cycle was taken into account for simulating salinity and groundwater age at coastal granite area. As a result of simulation, salinity movement could not catch up with sea level changes, and mixing zone was formed below the fresh-water zone. This mixing zone was observed in the field measurement, and the observed salinities were agreed with simulated results including sea level change. The simulated residence time including sea level change is one-tenth of steady state. The reason is that the saline water was washed out during regression and modern sea-water was infiltrated during transgression. As mentioned before, considering sea level change are important to reproduce salinity and helium age at coastal area. (author)

  6. Reconstruction of settlement phases at Intermediate Bronze Age structures in the Negev Highlands (Israel) using luminescence dating

    Science.gov (United States)

    Junge, Andrea; Lomax, Johanna; Shahack-Gross, Ruth; Dunseth, Zachary C.; Finkelstein, Israel; Fuchs, Markus

    2016-04-01

    OSL dating is usually applied to sediments in paleoenvironmental sciences. However, there is only limited experience with determining the age of archaeological stone structures by OSL using dust deposits associated with these structures. The age of trapped dust deposits may be used to date the onset of settlement (sediment below structures), settlement activity (occupation layer), or the time after settlement (sediment between collapsed walls and roofs). In this study, OSL dating is applied for establishing a chronology of settlement structures situated in the Negev Highlands, Israel. Two archaeological sites are investigated to identify the occupation history, by dating the aeolian dust trapped within the remains of ancient buildings. OSL dating techniques are applied using coarse grain quartz and a standard SAR protocol. First results indicate that the luminescence properties of the trapped sediments are suitable for OSL dating. Therefore, it was possible to date the onset of sedimentation in a later phase of the human occupation or shortly after the settlement was abandoned, which is supported by archaeological evidence gained from pottery finds and the architecture of the buildings.

  7. MOD-AGE - an algorithm for age-depth model construction; U-series dated speleothems case study

    Science.gov (United States)

    Hercman, H.; Pawlak, J.

    2012-04-01

    We present MOD-AGE - a new system for chronology construction. MOD-AGE can be used for profiles that have been dated by different methods. As input data, the system uses the following basic measurements: activities, atomic ratios or age, as well as depth measurement. Based on probability distributions describing the measurement results, MOD-AGE estimates the age~depth relation and its confidence bands. To avoid the use of difficult-to-meet assumptions, MOD-AGE uses nonparametric methods. We applied a Monte Carlo simulation to model age and depth values based on the real distribution of counted data (activities, atomic ratios, depths etc.). Several fitting methods could be applied for estimating the relationships; based on several tests, we decide to use LOESS method (locally weighted scatterplot smoothing). The stratigraphic correction procedure applied in the MOD-AGE program uses a probability calculus, which assumes that the ages of all the samples are correctly estimated. Information about the probability distribution of the samples' ages is used to estimate the most probable sequence that is concordant according to the superposition rule. MOD-AGE is presented as a tool for the chronology construction of speleothems that have been analyzed by the U-series method, and it is compared to the StalAge algorithm presented by D. Scholtz and D.L Hoffmann (2011). Scholtz, D., Hoffmann, D. L., 2011. StalAge - An algorithm designed for construction of speleothem age models. Quaternary Geochronology 6, 369-382.

  8. Bullying Predicts Reported Dating Violence and Observed Qualities in Adolescent Dating Relationships.

    Science.gov (United States)

    Ellis, Wendy E; Wolfe, David A

    2015-10-01

    The relationship between reported bullying, reported dating violence, and dating relationship quality measured through couple observations was examined. Given past research demonstrating similarity between peer and dating contexts, we expected that bullying would predict negative dating experiences. Participants with dating experience (n = 585; 238 males, M(age) = 15.06) completed self-report assessments of bullying and dating violence perpetration and victimization. One month later, 44 opposite-sex dyads (M(age) = 15.19) participated in behavioral observations. In 10-min sessions, couples were asked to rank and discuss areas of relationship conflict while being video-recorded. Qualities of the relationship were later coded by trained observers. Regression analysis revealed that bullying positively predicted dating violence perpetration and victimization. Self-reported bullying also predicted observations of lower relationship support and higher withdrawal. Age and gender interactions further qualified these findings. The bullying of boys, but not girls, was significantly related to dating violence perpetration. Age interactions showed that bullying was positively predictive of dating violence perpetration and victimization for older, but not younger adolescents. Positive affect was also negatively predicted by bullying, but only for girls. These findings add to the growing body of evidence that adolescents carry forward strategies learned in the peer context to their dating relationships. © The Author(s) 2014.

  9. Dating of young groundwater using tritium and gaseous tracers (SF6, SF5CF3, CFC-12, H-1301): case study from southern Poland

    Science.gov (United States)

    Rozanski, Kazimierz; Bartyzel, Jakub; Dulinski, Marek; Kuc, Tadeusz; Sliwka, Ireneusz; Mochalski, Pawel; Kania, Jaroslaw; Witczak, Stanislaw

    2013-04-01

    Groundwater is an important source of potable water in many countries. While it covers ca. 50% of the global drinking water needs, in Europe this share is even higher, reaching approximately 70%. Nowadays, this strategic resource is at risk due to anthropogenic pollutants of various nature entering shallow aquifers. Proper management of groundwater resources requires thorough understanding of groundwater dynamics on time scales characteristic for the history of pollutant input to groundwater. The bomb-tritium has been used for several decades now as a tracer of choice to detect recent recharge and to quantify groundwater residence times on time scales extending from several years to several decades. The lumped-parameter modeling was the most often employed approach in this context. Since nowadays atmospheric concentrations of tritium are approaching natural levels in most parts of the world, the usage of this tracer has become more problematic. Therefore, there is a growing interest in alternative indicators of groundwater age in shallow aquifers. Anthropogenic trace gases present in the atmosphere, such as freons (CFC-11, CFC-12, CFC-113) and sulfur hexafluoride (SF6), have been applied in numerous case studies as substitutes of tritium. Here we present the results of a comprehensive study aimed at quantifying mean residence time of groundwater in the recharge area of porous sandy aquifer system located in the southern Poland. The principal economic role of the aquifer, consisting of two water-bearing strata, is to provide potable water for public and private users. The yield of the aquifer is insufficient to meet all the needs and, as a consequence, licensing conflicts arise between water supply companies and industry on the amount of water available for safe exploitation. To quantify residence time distribution (RTD) functions of water parcels arriving at the production wells located in the recharge area of the aquifer, tritium along with several gaseous tracers

  10. Distinct kinetics and mechanisms of mZVI particles aging in saline and fresh groundwater: H2 evolution and surface passivation.

    Science.gov (United States)

    Xin, Jia; Tang, Fenglin; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf; Lu, Xin

    2016-09-01

    Application of microscale zero-valent iron (mZVI) is a promising technology for in-situ contaminated groundwater remediation; however, its longevity is negatively impacted by surface passivation, especially in saline groundwater. In this study, the aging behavior of mZVI particles was investigated in three media (milli-Q water, fresh groundwater and saline groundwater) using batch experiments to evaluate their potential corrosion and passivation performance under different field conditions. The results indicated that mZVI was reactive for 0-7 days of exposure to water and then gradually lost H2-generating capacity over the next hundred days in all of the tested media. In comparison, mZVI in saline groundwater exhibited the fastest corrosion rate during the early phase (0-7 d), followed by the sharpest kinetic constant decline in the latter phases. The SEM-EDS and XPS analyses demonstrated that in the saline groundwater, a thin and compact oxide film was immediately formed on the surface and significantly shielded the iron reactive site. Nevertheless, in fresh groundwater and milli-Q water, a passive layer composed of loosely and unevenly distributed precipitates slowly formed, with abundant reactive sites available to support continuous iron corrosion. These findings provide insight into the molecular-scale mechanism that governs mZVI passivation and provide implications for long-term mZVI application in saline contaminated groundwater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. U and Th thin film neutron dosimetry for fission-track dating: application to the age standard Moldavite

    International Nuclear Information System (INIS)

    Iunes, P.J.; Bigazzi, G.; Hadler Neto, J.C.; Laurenzi, M.A.; Balestrieri, M.L.; Norelli, P.; Osorio Araya, A.M.; Guedes, S.; Tello S, C.A.; Paulo, S.R.; Moreira, P.A.F.P.; Palissari, R.; Curvo, E.A.C.

    2005-01-01

    Neutron dosimetry based on U and Th thin films was used for fission-track dating of the age standard Moldavite, the central European tektite, from the Middle Miocene deposit of Jankov (southern Bohemia, Czech Republic). Our fission-track age (13.98+/-0.58Ma) agrees with a recent 40 Ar/ 39 Ar age, 14.34+/-0.04Ma, based on several determinations on Moldavites from different sediments, including the Jankov deposit. This result indicates that the U and Th thin film neutron dosimetry represents a reliable alternative for an absolute approach in fission-track dating

  12. A tracking system for groundwater sampling and data transfer schedules

    International Nuclear Information System (INIS)

    Mercier, T.M.

    1990-12-01

    Since groundwater monitoring programs at the Oak Ridge Y-12 Plant have become more complex and varied and as the occasions to respond to internal and external reporting requirements have become more frequent and time constrained, the need to track groundwater sampling activities and data transfer from the analytical laboratories has become imperative. If backlogs can be caught early, resources can be added or reallocated in the field and in the laboratory in a timely manner to ensure reporting deadlines are met. The tracking system discussed in this paper starts with clear definition of the groundwater monitoring program at the facility. This information is input into base datasets at the beginning of the sampling cycle. As the sampling program progresses, information about well sampling dates and data transfer dates is input into the base datasets. From the base program data and the update data, a status report is periodically generated by a computer program which identifies the type and nature of bottle necks encountered during the implementation of the groundwater monitoring program

  13. Spatial variation in background groundwater geochemistry of the Gurinai Wetland, Gobi Desert, Inner Mongolia

    Science.gov (United States)

    Gu, Weizu; Peters, N.E.

    1995-01-01

    Age dating of groundwater from several hand-dug wells in the Gurinai Wetland of the Badajilin-Gobi Desert, north-central China, indicated a continuum from present to 7625??155 years B.P. Water age correlates with concentration for some constituents. In general, concentrations of Fe, Cr, Se and Sr increase with increasing age, whereas Ca, Br, Zn and Rb decrease. Compared to concentration ranges reported for freshwaters, several constituents were much more concentrated including Na, Cl, Mg, Br and Th, and many others extended the upper concentration limit including Sr, Mo, Rb, Cr, U, Se, Nb and Ce. For Th, the maximum observed concentration extends the previously summarized maximum by more than an order of magnitude.

  14. The combined use of chemical and isotopic information to model the effects of stormwater infiltration on groundwater quality in an urban fractured rock aquifer, Auckland, New Zealand

    International Nuclear Information System (INIS)

    Rosen, M.R.; Hong, Y.S.; Reeves, R.; Sheppard, D.; Roberts, K.; Viljevac, Z.; Smaill, A.

    2002-01-01

    Disposal of storm water in the Mt Eden area of Auckland, New Zealand, is via 'soak holes' drilled directly into the top of fractured basalt. Although this method of disposal has been used for at least 60 years, its sustainability with respect to groundwater quality has not been addressed. The groundwater has relatively low concentrations of dissolved heavy metals, although total metals are higher suggesting that the metals are bound to mobile particulates within the aquifer. PAH concentrations are also low in the aquifer, although sampling after rainfall events show small increases in PAH. Tritium measurements of the groundwater showed that all of the groundwater south of Chamberlin Park is less than 2 years old. This area has many soak holes. The data suggest that infiltration is very rapid and occurs throughout the area almost simultaneously after rainfall events. One well north of Chamberlin Park, where soak holes are absent has an age of 47 years ± 2 years. The groundwater here is low in dissolved oxygen and appears to be slow moving. CFC measurements indicate that all wells sampled south of Chamberlin Park are contaminated by excess CFCs. However, this result indicates rapid recharge from the surface via storm water. The same well north of Chamberlin Park that was dated using tritium, also has a CFC age of approximately 30 years. Thus, CFC dating may be useful in urban areas that are separated from atmospheric contamination by confining beds or slow circulation. A Kohonen self-organising feature maps (KSOFM) neural network was used to analyse the effect on storm water infiltration on groundwater quality, and determine the inter-relationship of the groundwater quality variables. The model shows that where the land use type is industrial or residential with many soak holes, there is a strong correlation of increased concentrations of heavy metals and storm water infiltration. (author)

  15. Dating of Las Mesas Copper Age walled enclosure (La Fuente, Spain

    Directory of Open Access Journals (Sweden)

    Odriozola, Carlos P.

    2014-12-01

    Full Text Available The site of Las Mesas is located in the west bank of the Guadajira river (La Fuente, Badajoz, Spain. It covers a half hectare and is enclosed by a stone wall. Previous assessments based on site surveys suggested a general chronological span from Late Neolithic period (ca. 3600-2900 BC through the Copper Age (3rd millennium BC. Excavations revealed a well-constructed wall with bastions and a domestic space at the centre of the site with three occupational phases. Several functional areas and a votive pit are ascribed to the second phase. A deer antler located in a re-cut ritual pit associated to the second phase was dated by AMS-14C. Samples from a living floor assigned to the second phase (SU-9/10 and the basement of a kiln associated with the first phase (SU-18 was dated by optically stimulated luminescence (OSL using the single aliquot regenerative dose (SAR protocol on 90-160 m quartz grains. Luminescence profiling analysis of 7 samples taken throughout the archaeological stratigraphy was used to assess variations in luminescence behaviour and relative age through the sequence, using infrared-, optically –and thermally– stimulated luminescence (IRSL, OSL, TSL on poly-mineral and etched samples. Luminescence dating and profiling indicates that the upper archaeological layer (SU-1B probably dates to the Late Bronze Age (ca. 1000 BC, but that the sediments in the remainder of this section accumulated during the late Neolithic-Copper Age: the site was most probably inhabited between 3300 and 2900 BC. There were gaps in occupation between the Late Neolithic-Cooper Age phases (I & II, and between the Late Neolithic-Cooper Age phases and Late Bronze Age phase (II & III, indicating that the site was abandoned and reoccupied twice. The AMS-14C date on deer antler of 4254 ± 45 BP (3010-2675 cal BC is consisten with the OSL results for phase II, indicating that the pit was excavated at the beginning of the second occupational phase. Combined OSL

  16. Uncertainty in 14C model ages of groundwater: The influence of soil gas in terranes dominated by C3 plants

    Science.gov (United States)

    Nelson, S.; Hart, R.; Eggett, D.

    2009-12-01

    Groundwater is the largest source of fresh water readily available to humanity and aquifers with long residence times are particularly susceptible to overuse. Thus, it is important to have quantitative estimates of the residence time of water in such aquifers. Many models used to calculate 14C ages of groundwater depend on an estimate of the δ13C value of carbon dioxide in soil at the time of recharge, a value that must be estimated. Other work has suggested that for terranes dominated by C3 plants, -23‰ is an appropriate value, and sensitivity calculations show that the apparent age of a groundwater is strongly dependent on the choice of this parameter. This is especially true where the measured values of δ13C of dissolved inorganic carbon (DIC) are used to estimate the contribution of “dead” carbon to the DIC load via the dissolution of calcite in the aquifer and soil zones. To better understand the temporal and spatial isotopic and abundance variability of soil carbon dioxide, we established soil gas sampling sites that encompassed a wide variety of settings in terms of season, elevation, climate, and plant community that were sampled monthly throughout regions of the state of Utah where C3 flora dominate. Direct measurements of soil gas suggest a value of -21.8 ± 1.4‰ (1σ) is a good input variable as long as: a) C3 vegetation dominates, and b) extreme aridity does not prevail such that plant densities and soil microbial activities are minimized. If recharge is envisaged to occur during spring and early summer in highly vegetated uplands, a value of -24.0 ± 0.6‰ may be more appropriate as statistical analysis reveals that seasonality and plant density are most clearly correlated to the carbon isotope composition of carbon dioxide in soil gas. Although the two values and ranges cited above values do not diverge strongly from other published estimates, they place fairly narrow limits on the uncertainty of ±500 and ±200 yr., respectively, in

  17. K/Ar age dating of Oshnaviyeh plutonic complex

    International Nuclear Information System (INIS)

    Ghalamghash, J.; Vosoughi Abedini, M.; Bellon, H.; Emami, M.H.; Pourmafi, M.; Rashid, H.

    2003-01-01

    Oshnaviyeh plutonic complex, the western member of Urumiyeh-Golpayehgan intrusive plutons is located in northern part of Sanandaj-Sirjan zon. Oshnaviyeh plutonic complex, exposing in an area of about 700 km 2 , comprises 10 plutons that can be divided into three suites, i.e.,diorite,granite,and alkali syenite-alkali granite. Dioritic bodies are the oldest intrusive rocks of the region, which on the basis of the field study, their relative age of emplacement is estimated to be post-Jurassic and pre-miocene. However, with respect to the age of other similar intrusive bodies in Naghadeh area, they are most likely of post early cretaceous-pre miocene age. Hybrid intrusive rocks, occurring at the contact of dioritic and granitic rocks may suggest a simultaneous emplacement of both magmas. Syntetic pluton from alkali syenite-alkali granite has intruded dioritic and granitic rocks, in contrast, flourine bearing alkali granite pluton from this suite shows no contact with other igneous rocks in the area. K-Ar age determinations obtained on amphibole specimens from diorite suite are 91.9±2.3, 94.1±2.3 and 100±2.4 Ma, and on biotite specimens from granite suite are 100±1.5 to 98.9±1.5 Ma. Chronology study using same method on arfvedsonite specimens from syenite pluton shows 78.9±3.1, 79.6±1.9 and 81.7±2.0 Ma and on K-fled par samples of flourine bearing alkali granite pluton from the alkali syenite-alkali granite suite presents 76±3.4 and 77.1±1.8. Therefore, based on field evidence and K/Ar age dating, Oshnaviyeh plutonic complex presumably formed during two episodes: granite and diorite suites formed simultaneously at about 100 Ma, then plutons of alkali syenite-alkali granite suite emplaced at about 80 Ma

  18. Setting a date

    International Nuclear Information System (INIS)

    Moore, Glenis.

    1987-01-01

    Dating techniques are discussed and explained. The age range and sensitivity of different techniques are given. Potassium/argon dating, amino-acid dating, radiocarbon dating, dendrochronology, thermoluminescence and geomagnetic field dating are all mentioned. Each technique is explained and a brief history given. The techniques and equipment used by the British Museum, and some examples of archaeological articles dated are mentioned. (UK)

  19. Accuracy of CFC groundwater dating in a crystalline bedrock aquifer: Data from a site in southern Sweden

    Science.gov (United States)

    Bockgård, Niclas; Rodhe, Allan; Olsson, K. A.

    The concentrations of chlorofluorocarbons (CFC-11, CFC-12, and CFC-113) and tritium were determined in groundwater in fractured crystalline bedrock at Finnsjön, Sweden. The specific goal was to investigate the accuracy of CFC dating in such an environment, taking potential degradation and mixing of water into consideration. The water was sampled to a depth of 42 m in three boreholes along an 800-m transect, from a recharge area to a local discharge area. The CFC-113 concentration was at the detection limit in most samples. The apparent recharge date obtained from CFC-11 was earlier than from CFC-12 for all samples, with a difference of over 20 years for some samples. The difference was probably caused by degradation of CFC-11. The CFC-12 dating of the samples ranged from before 1945 to 1975, with the exception of a sample from the water table, which had a present-day concentration. Conclusions about flow paths or groundwater velocity could not be drawn from the CFCs. The comparison between CFC-12 and tritium concentrations showed that most samples could be unmixed or mixtures of waters with different ages, and the binary mixtures that matched the measured concentrations were determined. The mixing model approach can be extended with additional tracers. Précision de la datation au CFC dans un aquifère rocheux-fracturé: données d'un site du sud de la Suède. Les concentrations en chlorofluorocarbones (CFC-11, CFC-12, CFC-113) et entritium ont été déterminées dans l'eau souterraine d'un massif fracturé à Finnsjön en Suède. Le but de cette étude est de mieux cerner la précision de la méthode de datation au CFC dans ce type d'environnement hydrogéologique, tout en considérant d'éventuels phénomènes de dégradation et de mélange d'eaux. L'eau a été échantillonnée à une profondeur de 42 mètres dans trois forages alignés sur 800 mètres entre une zone de recharge et une zone de déversement. Les concentrations en CFC-113 sont dans la plupart

  20. Age and speciation of iodine in groundwater and mudstones of the Horonobe area, Hokkaido, Japan: Implications for the origin and migration of iodine during basin evolution

    Science.gov (United States)

    Togo, Yoko S.; Takahashi, Yoshio; Amano, Yuki; Matsuzaki, Hiroyuki; Suzuki, Yohey; Terada, Yasuko; Muramatsu, Yasuyuki; Ito, Kazumasa; Iwatsuki, Teruki

    2016-10-01

    This paper reports the concentration, speciation and isotope ratio (129I/127I) of iodine from both groundwater and host rocks in the Horonobe area, northern Hokkaido, Japan, to clarify the origin and migration of iodine in sedimentary rocks. Cretaceous to Quaternary sedimentary rocks deposited nearly horizontally in Tenpoku Basin and in the Horonobe area were uplifted above sea level during active tectonics to form folds and faults in the Quaternary. Samples were collected from the Pliocene Koetoi and late Miocene Wakkanai formations (Fms), which include diatomaceous and siliceous mudstones. The iodine concentration in groundwater, up to 270 μmol/L, is significantly higher than that of seawater, with the iodine enrichment factor relative to seawater reaching 800-1500. The iodine concentration in the rocks decreases from the Koetoi to Wakkanai Fms, suggesting that iodine was released into the water from the rocks of deeper formations. The iodine concentration in the rocks is sufficiently high for forming iodine-rich groundwater as found in this area. X-ray absorption near edge structure (XANES) analysis shows that iodine exists as organic iodine and iodide (I-) in host rocks, whereas it exists mainly as I- in groundwater. The isotope ratio is nearly constant for iodine in the groundwater, at [0.11-0.23] × 10-12, and it is higher for iodine in rocks, at [0.29-1.1] × 10-12, giving iodine ages of 42-60 Ma and 7-38 Ma, respectively. Some iodine in groundwater must have originated from Paleogene and even late Cretaceous Fms, which are also considered as possible sources of oil and gas, in view of the old iodine ages of the groundwater. The iodine ages of the rocks are older than the depositional ages, implying that the rocks adsorbed some iodine from groundwater, which was sourced from greater depths. The iodine concentration in groundwater decreases with decreasing chlorine concentration due to mixing of iodine-rich connate water and meteoric water. A likely scenario

  1. Isotope analyses for classification of the age and origin of bodies of groundwater in the area of the Asse salt mine

    International Nuclear Information System (INIS)

    Wolf, M.; Batsche, H.; Graf, W.; Rauert, W.; Trimborn, P.; Klarr, K.; Stempel, C. v.

    1994-01-01

    Within the framework of a hydrogeological research project which contributes to the evaluation of the long- time safety of the Asse salt mine large-scale hydrological isotope analyses were made to classify bodies of groundwater by their age and origin. The radioactive isotopes carbon-14 and tritium, and the stable isotopes deuterium, oxygen-18 and carbon- 13 from boring, well and spring groundwater in the area of the Asse salt mine were analyzed. The environmental isotope data obtained were interpreted considering the chemical composition of the groundwater through hydrogeochemical model calculations by use of the PHREEQE program. The results of the study are summarized. (HP) [de

  2. Distribution of Isotopic and Environmental Tracers in Groundwater, Northern Ada County, Southwestern Idaho

    Science.gov (United States)

    Adkins, Candice B.; Bartolino, James R.

    2010-01-01

    Residents of northern Ada County, Idaho, depend on groundwater for domestic and agricultural uses. The population of this area is growing rapidly and groundwater resources must be understood for future water-resource management. The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, used a suite of isotopic and environmental tracers to gain a better understanding of groundwater ages, recharge sources, and flowpaths in northern Ada County. Thirteen wells were sampled between September and October 2009 for field parameters, major anions and cations, nutrients, oxygen and hydrogen isotopes, tritium, radiocarbon, chlorofluorocarbons, and dissolved gasses. Well depths ranged from 30 to 580 feet below land surface. Wells were grouped together based on their depth and geographic location into the following four categories: shallow aquifer, intermediate/deep aquifer, Willow Creek aquifer, and Dry Creek aquifer. Major cations and anions indicated calcium-bicarbonate and sodium-bicarbonate water types in the study area. Oxygen and hydrogen isotopes carried an oxygen-18 excess signature, possibly indicating recharge from evaporated sources or water-rock interactions in the subsurface. Chlorofluorocarbons detected modern (post-1940s) recharge in every well sampled; tritium data indicated modern water (post-1951) in seven, predominantly shallow wells. Nutrient concentrations tended to be greater in wells signaling recent recharge based on groundwater age dating, thus confirming the presence of recent recharge in these wells. Corrected radiocarbon results generated estimated residence times from modern to 5,100 years before present. Residence time tended to increase with depth, as confirmed by all three age-tracers. The disagreement among residence times indicates that samples were well-mixed and that the sampled aquifers contain a mixture of young and old recharge. Due to a lack of data, no conclusions about sources of recharge could be drawn

  3. Numerical flow models and their calibration using tracer based ages: Chapter 10

    Science.gov (United States)

    Sanford, W.

    2013-01-01

    Any estimate of ‘age’ of a groundwater sample based on environmental tracers requires some form of geochemical model to interpret the tracer chemistry (chapter 3) and is, therefore, referred to in this chapter as a tracer model age. the tracer model age of a groundwater sample can be useful for obtaining information on the residence time and replenishment rate of an aquifer system, but that type of data is most useful when it can be incorporated with all other information that is known about the groundwater system under study. groundwater fl ow models are constructed of aquifer systems because they are usually the best way of incorporating all of the known information about the system in the context of a mathematical framework that constrains the model to follow the known laws of physics and chemistry as they apply to groundwater flow and transport. It is important that the purpose or objective of the study be identified first before choosing the type and complexity of the model to be constructed, and to make sure such a model is necessary. The purpose of a modelling study is most often to characterize the system within a numerical framework, such that the hydrological responses of the system can be tested under potential stresses that might be imposed given future development scenarios. As this manual discusses dating as it applies to old groundwater, most readers are likely to be interested in studying regional groundwater flow systems and their water resource potential.

  4. Gender, mature appearance, alcohol use, and dating as correlates of sexual partner accumulation from ages 16-26 years.

    Science.gov (United States)

    Zimmer-Gembeck, Melanie J; Collins, W Andrew

    2008-06-01

    To determine growth in sexual partnering from age 16-26 years, and to test whether biological and social factors launched these growth patterns. A prospective design was used. Participants were 176 young people (47% female) followed from birth to age 26 years. Sexual partnering was measured as the accumulated number of different sexual intercourse partners at ages 16, 19, 23, and 26 years. Physical appearance of maturity, alcohol use, and dating were measured at ages 13-16 via observations, interviews, and questionnaires. Mature appearance at age 13 years, use of alcohol more than monthly at age 16, and a history of a steady romantic partner before age 16 were each associated with a greater number of sexual intercourse partners by age 16. However a more mature appearance, more frequent alcohol use, and greater dating involvement did not foreshadow a steeper accumulation of sexual partners between ages 16 and 26. Only gender had such a "growth" influence, with males accruing sexual partners more rapidly from the ages of 16-26 years when compared with females. Adolescents had accumulated a higher number of sexual partners by age 16 years when they looked older, drank alcohol more frequently, and were more involved with dating in early to middle adolescence. Also male gender was associated with accumulation of sexual partners more rapidly between ages 16 and 26 years, and there was little indication that the accumulation of different sexual partners had begun to slow by age 26 for the average participant.

  5. Methods of dating

    Energy Technology Data Exchange (ETDEWEB)

    Gatty, B

    1986-04-01

    Scientific methods of dating, born less than thirty years ago, have recently improved tremendously. First the dating principles will be given; then it will be explained how, through natural radioactivity, we can have access to the age of an event or an object; the case of radiocarbon will be especially emphasized. The principle of relative methods such as thermoluminescence or paleomagnetism will also be shortly given. What is the use for dating. The fields of its application are numerous; through these methods, relatively precise ages can be given to the major events which have been keys in the history of universe, life and man; thus, dating is a useful scientific tool in astrophysics, geology, biology, anthropology and archeology. Even if certain ages are still subject to controversies, we can say that these methods have confirmed evolution's continuity, be it on a cosmic, biologic or human scale, where ages are measured in billions, millions or thousands of years respectively.

  6. Thermoluminescence dating of soils in a semi-arid environment, Yucca Mountain area, Southern Nevada, USA

    International Nuclear Information System (INIS)

    Mahan, S.A.; Paces, J.B.; Peterman, Z.E.

    1995-01-01

    Yucca Mountain, Nevada, is currently being investigated as a potential nuclear waste repository. Because radionuclides must be isolated over a ten to several hundred thousand year time span, an assessment of the performance depends in part on accurate reconstruction of the Quaternary geologic and hydrologic history of the mountain. Reliable geochronology in an oxidizing environment dominated by coarse-grained, clastic surficial deposits has become a central issue for several studies including paleoseismic reconstruction, determination of rates of erosion and deposition, and the history of regional water-table fluctuations documented by ground-water discharge deposits. Thermoluminescence (TL) dating of polymineralic silt fractions in a variety of surface deposits has become an important component of the Quaternary dating strategy, along with uranium-series disequilibrium dating of secondary carbonate and opaline silica, and to a lesser extent, radiocarbon dating of carbonate components. Although the complex mineralogy of these materials contributes to greater amounts of scatter in their TL response relative to typical quartzofeldspathic loess and dune deposits, the derived ages are reproducible, consistent with internal stratigraphy, and generally concordant with other available geochronology

  7. Age validation of canary rockfish (Sebastes pinniger) using two independent otolith techniques: lead-radium and bomb radiocarbon dating.

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, A H; Kerr, L A; Cailliet, G M; Brown, T A; Lundstrom, C C; Stanley, R D

    2007-11-04

    Canary rockfish (Sebastes pinniger) have long been an important part of recreational and commercial rockfish fishing from southeast Alaska to southern California, but localized stock abundances have declined considerably. Based on age estimates from otoliths and other structures, lifespan estimates vary from about 20 years to over 80 years. For the purpose of monitoring stocks, age composition is routinely estimated by counting growth zones in otoliths; however, age estimation procedures and lifespan estimates remain largely unvalidated. Typical age validation techniques have limited application for canary rockfish because they are deep dwelling and may be long lived. In this study, the unaged otolith of the pair from fish aged at the Department of Fisheries and Oceans Canada was used in one of two age validation techniques: (1) lead-radium dating and (2) bomb radiocarbon ({sup 14}C) dating. Age estimate accuracy and the validity of age estimation procedures were validated based on the results from each technique. Lead-radium dating proved successful in determining a minimum estimate of lifespan was 53 years and provided support for age estimation procedures up to about 50-60 years. These findings were further supported by {Delta}{sup 14}C data, which indicated a minimum estimate of lifespan was 44 {+-} 3 years. Both techniques validate, to differing degrees, age estimation procedures and provide support for inferring that canary rockfish can live more than 80 years.

  8. Helium sources to groundwater in active volcanic terrain, and implications for tritium-helium dating at Mount St. Helens

    Energy Technology Data Exchange (ETDEWEB)

    Gates, John B. [Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, 217 Bessey Hall, Lincoln NE 68588 (United States)

    2013-07-01

    Groundwater helium sources and residence times were investigated using groundwater discharging from springs surrounding Mount St. Helens in the Cascades region of the United States. Significant contributions of mantle helium were found in all samples and are attributable to interaction between groundwater and magmatic gases. Bounding calculations for residence times were made on the basis of helium isotope mixing plots and historical tritium data. (authors)

  9. Groundwater problems studies in the Thar desert, India, using isotope techniques

    International Nuclear Information System (INIS)

    Navada, S.V.

    1999-01-01

    In groundwater management, particularly in arid regions like western Rajasthan, it is important to know the presence of modern recharge and to estimate the recharge rate to avoid over-exploitation of the groundwater resource. Isotopes can help to identify modern recharge and to estimate recharge rate to the aquifer. If modern recharge is absent, groundwater dating using radiocarbon could help to identify old groundwater or paleowaters. A number of isotope studies carried out in arid zones (particularly in the Sahara) have shown that the deep groundwater is generally very old. From these studies it was concluded that episodic large scale recharge corresponding to humid phases or pluvials occurred in these arid areas. The paper reviews our experiences on the application of isotope techniques in understanding groundwater recharge process in and western Rajasthan

  10. Double the dates and go for Bayes - Impacts of model choice, dating density and quality on chronologies

    Science.gov (United States)

    Blaauw, Maarten; Christen, J. Andrés; Bennett, K. D.; Reimer, Paula J.

    2018-05-01

    Reliable chronologies are essential for most Quaternary studies, but little is known about how age-depth model choice, as well as dating density and quality, affect the precision and accuracy of chronologies. A meta-analysis suggests that most existing late-Quaternary studies contain fewer than one date per millennium, and provide millennial-scale precision at best. We use existing and simulated sediment cores to estimate what dating density and quality are required to obtain accurate chronologies at a desired precision. For many sites, a doubling in dating density would significantly improve chronologies and thus their value for reconstructing and interpreting past environmental changes. Commonly used classical age-depth models stop becoming more precise after a minimum dating density is reached, but the precision of Bayesian age-depth models which take advantage of chronological ordering continues to improve with more dates. Our simulations show that classical age-depth models severely underestimate uncertainty and are inaccurate at low dating densities, and also perform poorly at high dating densities. On the other hand, Bayesian age-depth models provide more realistic precision estimates, including at low to average dating densities, and are much more robust against dating scatter and outliers. Indeed, Bayesian age-depth models outperform classical ones at all tested dating densities, qualities and time-scales. We recommend that chronologies should be produced using Bayesian age-depth models taking into account chronological ordering and based on a minimum of 2 dates per millennium.

  11. Isotopic Characteristics and Age Dating of the Pumice in Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    陈丽蓉; 翟世奎; 申顺喜

    1994-01-01

    The data on the isotope compositions of rubidium,strontium and oxygen in the pumice ofOkinawa Trough are reported for the first time.The ages of the pumice were successfully dated with themethod of U-series disequilibrium.Then,the material source,crystallization evolution of magma and activi-ty cycles of volcanos are explored.Isotopic data show that pumice magma was originally from the mantle,but had undergone a full crystal-lization differentiation and had been contaminated to a fair extent by crust-derived materials before the mag-ma was erupted out of the sea floor.According to the dating results available so far,the earliest volcaniceruption in Okinawa Trough occurred about 70,000 a ago and the latest eruption was about 10,000 a B.P.During this period,there were three volcanic eruption cycles which were respectively corresponding to themiddle Late Pleistocene,the late Late Pleistocene and the Early Holocene.

  12. Evaluation of baseline ground-water conditions in the Mosteiros, Ribeira Paul, and Ribeira Fajã Basins, Republic of Cape Verde, West Africa, 2005-06

    Science.gov (United States)

    Heilweil, Victor M.; Earle, John D.; Cederberg, Jay R.; Messer, Mickey M.; Jorgensen, Brent E.; Verstraeten, Ingrid M.; Moura, Miguel A.; Querido, Arrigo; Spencer,; Osorio, Tatiana

    2006-01-01

    residence times.In the Mosteiros Basin, measured well and spring discharge is about 220,000 cubic meters per year. For the Ribeira Paul Basin, measured well discharge, spring discharge, and ground-water seepage to springs is about 1,600,000 cubic meters per year. Ribeira Fajã Basin is the driest of the three basins with a precipitation rate of about half that of the other two basins. The only measurable ground-water discharge from this basin is from Galleria Fajã, estimated to be about 150,000 cubic meters per year. Measured discharge for all three basins does not include submarine outflow or agricultural/phreatophyte consumptive use (Paul Basin, only) and is assumed to be less than total ground-water discharge.Ground-water ages indicate that recharge to wells and springs occurred from more than 50 years ago at some locations to within the past decade at other sites. Ground water in Paul is younger than that in the other two basins, indicating that recharge generally occurred within the past 50 years. Ground water at all the dateable sites using tritium/helium in both the Mosteiros and Ribeira Fajã Basins show that recharge occurred more than 50 years before the sampling dates. Ground-water tritium/helium age dating was not possible at some sites in Mosteiros and Ribeira Fajã Basins because of the presence of helium in the aquifer derived from the mantle or aquifer matrix. However, this helium was useful for accurate age dating of the unaffected ground-water sites.Dissolved gases indicate that most ground-water recharge occurs at mid and high altitudes within all three basins; calculated recharge altitudes ranged from 700 to more than 2,000 meters. In the Mosteiros and Ribeira Fajã Basins, recharge altitudes are much higher than the wells and springs. This suggests that it may take many years for artificial recharge to result in a beneficial impact on the aquifer in areas where the agricultural projects are implemented. Recharge altitudes in Paul Basin also were

  13. Applied dendroecology and environmental forensics. Characterizing and age dating environmental releases: fundamentals and case studies

    Science.gov (United States)

    Jean-Christophe Balouet; Gil Oudijk; Kevin T. Smith; Ioana Petrisor; Hakan Grudd; Bengt. Stocklassa

    2007-01-01

    Dendroecology, or the use of ring patterns to assess the age of trees and environmental factors controlling their growth, is a well-developed method in climatologic studies. This method holds great potential as a forensic tool for age dating, contamination assessment, and characterization of releases. Moreover, the method is independent of the physical presence of...

  14. Pleistocene paleo-groundwater as a pristine fresh water resource in southern Germany – evidence from stable and radiogenic isotopes

    International Nuclear Information System (INIS)

    Geldern, Robert van; Baier, Alfons; Subert, Hannah L.; Kowol, Sigrid; Balk, Laura; Barth, Johannes A.C.

    2014-01-01

    Shallow groundwater aquifers are often influenced by anthropogenic contaminants or increased nutrient levels. In contrast, deeper aquifers hold potentially pristine paleo-waters that are not influenced by modern recharge. They thus represent important water resources, but their recharge history is often unknown. In this study groundwater from two aquifers in southern Germany were analyzed for their hydrogen and oxygen stable isotope compositions. One sampling campaign targeted the upper aquifer that is actively recharged by modern precipitation, whereas the second campaign sampled the confined, deep Benkersandstein aquifer. The groundwater samples from both aquifers were compared to the local meteoric water line to investigate sources and conditions of groundwater recharge. In addition, the deep groundwater was dated by tritium and radiocarbon analyses. Stable and radiogenic isotope data indicate that the deep-aquifer groundwater was not part of the hydrological water cycle in the recent human history. The results show that the groundwater is older than ∼20,000 years and most likely originates from isotopically depleted melt waters of the Pleistocene ice age. Today, the use of this aquifer is strictly regulated to preserve the pristine water. Clear identification of such non-renewable paleo-waters by means of isotope geochemistry will help local water authorities to enact and justify measures for conservation of these valuable resources for future generations in the context of a sustainable water management. - Highlights: • Groundwater from deep aquifer identified as paleo-water with age over 20,000 years. • Low stable isotope values indicate recharge during Pleistocene. • Shallow aquifer mirrors stable isotope signature of average modern precipitation. • Identification of non-renewable paleo-waters enhance sustainable water management. • Strict protection measures of authorities justified by isotope geochemistry

  15. Pleistocene paleo-groundwater as a pristine fresh water resource in southern Germany – evidence from stable and radiogenic isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Geldern, Robert van, E-mail: robert.van.geldern@fau.de [Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany); Baier, Alfons; Subert, Hannah L. [Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany); Kowol, Sigrid [Erlanger Stadtwerke AG, Äußere Brucker Str. 33, 91052 Erlangen (Germany); Balk, Laura; Barth, Johannes A.C. [Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany)

    2014-10-15

    Shallow groundwater aquifers are often influenced by anthropogenic contaminants or increased nutrient levels. In contrast, deeper aquifers hold potentially pristine paleo-waters that are not influenced by modern recharge. They thus represent important water resources, but their recharge history is often unknown. In this study groundwater from two aquifers in southern Germany were analyzed for their hydrogen and oxygen stable isotope compositions. One sampling campaign targeted the upper aquifer that is actively recharged by modern precipitation, whereas the second campaign sampled the confined, deep Benkersandstein aquifer. The groundwater samples from both aquifers were compared to the local meteoric water line to investigate sources and conditions of groundwater recharge. In addition, the deep groundwater was dated by tritium and radiocarbon analyses. Stable and radiogenic isotope data indicate that the deep-aquifer groundwater was not part of the hydrological water cycle in the recent human history. The results show that the groundwater is older than ∼20,000 years and most likely originates from isotopically depleted melt waters of the Pleistocene ice age. Today, the use of this aquifer is strictly regulated to preserve the pristine water. Clear identification of such non-renewable paleo-waters by means of isotope geochemistry will help local water authorities to enact and justify measures for conservation of these valuable resources for future generations in the context of a sustainable water management. - Highlights: • Groundwater from deep aquifer identified as paleo-water with age over 20,000 years. • Low stable isotope values indicate recharge during Pleistocene. • Shallow aquifer mirrors stable isotope signature of average modern precipitation. • Identification of non-renewable paleo-waters enhance sustainable water management. • Strict protection measures of authorities justified by isotope geochemistry.

  16. Effect of 222Rn emanation from crystals on their 206Pb/238U age dating

    International Nuclear Information System (INIS)

    Barretto, Paulo M.C.

    2009-01-01

    The escape of radon from certain minerals with high uranium is of particular interest to those concerned with the determination of ages of rocks, minerals and tectonic events. To the extent that radon escapes, these minerals are not closed systems from the thermodynamic point of view and, more particularly, from the geochronological point of view. This investigation aimed to determine the radon escape from zircon crystals and how this fit into the severe isotopic constraints of the concordia dating model. To evaluate the consequences of radon loss on 238 U/ 206 Pb age dating methods, 20 zircon concentrates were analyzed. The observed range of relative percentage of radon loss was of 0.2-12 % and correlations with weathering of the crystals with natural alpha dose and with U-Pb age discordances were found. These correlations indicate relationships between the amount of lattice damage by radiation, the radon leakage out of the crystal and Pb mobility. Some of the stochastic complexities in specific age determinations are also discussed. (author)

  17. Use of multiple age tracers to estimate groundwater residence times and long-term recharge rates in arid southern Oman

    Science.gov (United States)

    Müller, Th.; Osenbrück, K.; Strauch, G.; Pavetich, S.; Al-Mashaikhi, K.-S.; Herb, C.; Merchel, S.; Rugel, G.; Aeschbach, W.; Sanford, Ward E.

    2016-01-01

    Multiple age tracers were measured to estimate groundwater residence times in the regional aquifer system underlying southwestern Oman. This area, known as the Najd, is one of the most arid areas in the world and is planned to be the main agricultural center of the Sultanate of Oman in the near future. The three isotopic age tracers 4He, 14C and 36Cl were measured in waters collected from wells along a line that extended roughly from the Dhofar Mountains near the Arabian Sea northward 400 km into the Empty Quarter of the Arabian Peninsula. The wells sampled were mostly open to the Umm Er Radhuma confined aquifer, although, some were completed in the mostly unconfined Rus aquifer. The combined results from the three tracers indicate the age of the confined groundwater is  100 ka in the central section north of the mountains, and up to and > one Ma in the Empty Quarter. The 14C data were used to help calibrate the 4He and 36Cl data. Mixing models suggest that long open boreholes north of the mountains compromise 14C-only interpretations there, in contrast to 4He and 36Cl calculations that are less sensitive to borehole mixing. Thus, only the latter two tracers from these more distant wells were considered reliable. In addition to the age tracers, δ2H and δ18O data suggest that seasonal monsoon and infrequent tropical cyclones are both substantial contributors to the recharge. The study highlights the advantages of using multiple chemical and isotopic data when estimating groundwater travel times and recharge rates, and differentiating recharge mechanisms.

  18. Geohydrology of Big Bear Valley, California: phase 1--geologic framework, recharge, and preliminary assessment of the source and age of groundwater

    Science.gov (United States)

    Flint, Lorraine E.; Brandt, Justin; Christensen, Allen H.; Flint, Alan L.; Hevesi, Joseph A.; Jachens, Robert; Kulongoski, Justin T.; Martin, Peter; Sneed, Michelle

    2012-01-01

    Big Bear Valley. The INFILv3 model was modified for this study to include a perched zone beneath the root zone to better simulate lateral seepage and recharge in the shallow subsurface in mountainous terrain. The climate input used in the INFILv3 model was developed by using daily climate data from 84 National Climatic Data Center stations and published Parameter Regression on Independent Slopes Model (PRISM) average monthly precipitation maps to match the drier average monthly precipitation measured in the Baldwin Lake drainage basin. This model resulted in a good representation of localized rain-shadow effects and calibrated well to measured lake volumes at Big Bear and Baldwin Lakes. The simulated average annual recharge was about 5,480 acre-ft/yr in the Big Bear study area, with about 2,800 acre-ft/yr in the Big Bear Lake surface-water drainage basin and about 2,680 acre-ft/yr in the Baldwin Lake surface-water drainage basin. One spring and eight wells were sampled and analyzed for chemical and isotopic data in 2005 and 2006 to determine if isotopic techniques could be used to assess the sources and ages of groundwater in the Big Bear Valley. This approach showed that the predominant source of recharge to the Big Bear Valley is winter precipitation falling on the surrounding mountains. The tritium and uncorrected carbon-14 ages of samples collected from wells for this study indicated that the groundwater basin contains water of different ages, ranging from modern to about 17,200-years old.The results of these investigations provide an understanding of the lateral and vertical extent of the groundwater basin, the spatial distribution of groundwater recharge, the processes responsible for the recharge, and the source and age of groundwater in the groundwater basin. Although the studies do not provide an understanding of the detailed water-bearing properties necessary to determine the groundwater availability of the basin, they do provide a framework for the future

  19. Environmental isotopes investigation in groundwater of Challaghatta ...

    African Journals Online (AJOL)

    Administrator

    Radiogenic isotopes (3H and 14C) and stable isotope (18O) together with TDS, EC and salinity of water were used to ..... Tritium (3H). Relative dating of groundwater has been carried ... that falls to Earth has small amounts of tritium. During the.

  20. Application of Isotope Techniques in the Assessment of Groundwater Resource in Water Resources Region 10, Philippines

    International Nuclear Information System (INIS)

    Racadio, Charles Darwin T.; Mendoza, Norman DS.; Castañeda, Soledad S.; Abaño, Susan P.; Rongavilla, Luis S.; Castro, Joey

    2015-01-01

    Groundwater has been the primary source of drinking water of about 50% of the people in the Philippines and the numbers continue to rise. However, data and information on groundwater resources are generally spasmodic or sparse in the country. A specific remedy to address this gap is the use of isotope hydrological techniques. A pilot project utilizing this technique was done in Water Resources Region X with the aim of demonstrating the effectiveness and efficiency of these approach in groundwater resources assessment. When optimized, the technique will be replicated in other areas of the country. Groundwater samples from springs deep wells hand pumps and dug wells and river water were collected within the study area from September 2012 to June 2014. Monthly integrated precipitation samples were also collected at different points within the study area from October 2012 to March 2015. Samples were analyzed for stable isotope (δ”2H and δ”1”8O) using Laser Water Isotope Analyzer and tritium for groundwater dating. Results showed that aquifers in the study area are recharged by infiltrated rain during the heavy rainfall moths (May to November for Cagayan-Tagaloan Basin, and December to April for Agusan Basin). Water in Agusan Basin is isotopically enriched compared with the water in Cagayan-Tagaloan Basin. There appears to be interaction between shallow unconfined aquifer and deep semi-confined aquifer in Cagayan de Oro City. Shallow aquifers appear to be recharged by local precipitation. Groundwater in the study area is of Ca-Mg-HCO 3 type, which is characteristic of dynamic water with short residence time. Tritium-helium aging puts the water at ages between 18 to 72 years. Recharged rates of 422 to 625 mm/year were calculated for Cagayan de Oro City.(author)

  1. Simulations of Ground-Water Flow, Transport, Age, and Particle Tracking near York, Nebraska, for a Study of Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells

    Science.gov (United States)

    Clark, Brian R.; Landon, Matthew K.; Kauffman, Leon J.; Hornberger, George Z.

    2008-01-01

    Contamination of public-supply wells has resulted in public-health threats and negative economic effects for communities that must treat contaminated water or find alternative water supplies. To investigate factors controlling vulnerability of public-supply wells to anthropogenic and natural contaminants using consistent and systematic data collected in a variety of principal aquifer settings in the United States, a study of Transport of Anthropogenic and Natural Contaminants to public-supply wells was begun in 2001 as part of the U.S. Geological Survey National Water-Quality Assessment Program. The area simulated by the ground-water flow model described in this report was selected for a study of processes influencing contaminant distribution and transport along the direction of ground-water flow towards a public-supply well in southeastern York, Nebraska. Ground-water flow is simulated for a 60-year period from September 1, 1944, to August 31, 2004. Steady-state conditions are simulated prior to September 1, 1944, and represent conditions prior to use of ground water for irrigation. Irrigation, municipal, and industrial wells were simulated using the Multi-Node Well package of the modular three-dimensional ground-water flow model code, MODFLOW-2000, which allows simulation of flow and solutes through wells that are simulated in multiple nodes or layers. Ground-water flow, age, and transport of selected tracers were simulated using the Ground-Water Transport process of MODFLOW-2000. Simulated ground-water age was compared to interpreted ground-water age in six monitoring wells in the unconfined aquifer. The tracer chlorofluorocarbon-11 was simulated directly using Ground-Water Transport for comparison with concentrations measured in six monitoring wells and one public supply well screened in the upper confined aquifer. Three alternative model simulations indicate that simulation results are highly sensitive to the distribution of multilayer well bores where leakage

  2. Age of Barrier Canyon-style rock art constrained by cross-cutting relations and luminescence dating techniques

    DEFF Research Database (Denmark)

    Pederson, Joel L.; Chapot, Melissa S.; Simms, Steven R.

    2014-01-01

    Rock art compels interest from both researchers and a broader public, inspiring many hypotheses about its cultural origin and meaning, but it is notoriously difficult to date numerically. Barrier Canyon-style (BCS) pictographs of the Colorado Plateau are among the most debated examples; hypotheses......, the type section of BCS art in Canyon-lands National Park, southeastern Utah. Alluvial chronostratigraphy constrains the burial and exhumation of the alcove containing the panel, and limits are also set by our related research dating both a rockfall that removed some figures and the rock's exposure...... duration before that time. Results provide a maximum possible age, a minimum age, and an exposure time window for the creation of the Great Gallery panel, respectively. The only prior hypothesis not disproven is a late Archaic origin for BCS rock art, although our age result of A. D. similar to 1...

  3. Influence of basalt/groundwater interactions on radionuclide migration

    International Nuclear Information System (INIS)

    Vandegrift, G.F.

    1984-01-01

    The work presented here is a partial summary of the experimental results obtained in the Laboratory Analog Program. Two aspects of this effort are (1) the interaction between simulated basaltic groundwater and basalt fissures that were either freshly cleaved or laboratory altered by hydrothermal treatment with the simulated groundwater and (2) the effect of this interaction on radionuclide migration through these basalt fissures. The following conclusions of this study bear heavily on the predicted safety of a basalt repository: Sorption properties of freshly fissured basalt and naturally aged basalt are quite different for different chemical species. Analog experiments predict that aged basalt would be an effective retarder of cesium, but would be much less so for actinide elements. Distribution ratios measured from batch experiments with finely ground rock samples (presenting unaltered rock surfaces) are not a reliable means of predicting radionuclide migration in geological repositories. As the near-repository area is resaturated by groundwater, its ability to retard actinide migration will be degraded with time. Disturbing the natural flow of groundwater through the repository area by constructing and backfilling the repository will modify the composition of groundwater. This modified groundwater is likely to interact with and to modify naturally aged basalt surfaces downstream from the repository

  4. Age of Sexual Debut and Physical Dating Violence Victimization: Sex Differences among US High School Students

    Science.gov (United States)

    Ihongbe, Timothy O.; Cha, Susan; Masho, Saba W.

    2017-01-01

    Background: Research has shown that early age of sexual debut is associated with physical dating violence (PDV), but sex-specific associations are sparse. We estimated the prevalence of PDV victimization in high school students who have initiated sexual intercourse and examined sex-specific association between age of sexual debut and PDV…

  5. Uranium-series dated authigenic carbonates and Acheulian sites in southern Egypt

    International Nuclear Information System (INIS)

    Szabo, B.J.; McHugh, W.P.; Schaber, G.G.; Breed, C.S.; Haynes, C.V.

    1989-01-01

    Field investigations in southern Egypt have yielded Acheulian artifacts in situ in authigenic carbonate deposits (CaCO 3 -cemented alluvium) along the edges of now-aggraded paleovalleys (Wadi Arid and Wadi Safsaf). Uranium-series dating of 25 carbonate samples from various localities as far apart as 70 kilometers indicates that widespread carbonate deposition occurred about 45, 141 and 212 ka (thousand years ago). Most of the carbonate appears to have been precipitated from groundwater, which suggests that these three episodes of deposition may be related to late Pleistocene humid climates that facilitated human settlement in this now hyperarid region. Carbonate cements from sediments containing Acheulian artifacts provide a minimum age of 212 ka for early occupation of the paleovalleys. 16 refs., 3 figs., 2 tabs

  6. Sources, Speciation and Mobility of Plutonium and Other Transuranics in the Groundwater at the Savannah River Site

    International Nuclear Information System (INIS)

    Buesseler, Ken O.

    2005-01-01

    This annual report summarizes work to date on our EMSP project: ?Sources, Speciation and Mobility of Plutonium and Other Transuranics in the Groundwater at the Savannah River Site (Sept. 2003-Sept. 2006). Our research focus is to further evaluate the sources and fate of Pu and other transuranics in groundwater at the Savannah River Site (SRS). Our overarching goal is to understand Pu speciation and mobility well enough to support safe remediation, containment and long term stewardship at any site with transuranic wastes and sources. Methods developed under prior funding for the determination Pu isotopes, oxidation state and size fractionation in groundwater are providing the best direct evidence for rejecting or not, hypotheses concerning whether colloids enhance the transport of Pu and other transuranics in groundwater. Survey samples collected in the fall of 2003 from F-area well FSB 78 had a 240/239 Pu atom ratio 7.087 +/-0.048 and reflects the continued presences of decayed 244Cm. In October 2004, we returned to the F-area and completed comprehensive field sampling of 7 wells. Field experiments included 6 different extraction rates at well 92D to test sensitivity to artifacts related to well pumping rates, and an aging experiment to evaluate Pu behavior by re-oxidation of reducing groundwater. Sampling of Pond B was included in the site visit to explore unique conditions of redox potential on Pu within the pond. To date, more than 70 Pu redox and whole water samples have been processed and are awaiting analysis at PNNL. Also, five samples from our 1998 visit are undergoing chemistry at PNNL to directly measure Cm with analysis of 2004 samples to follow. Work is continuing to evaluate particle affinity under controlled conditions and a site specific groundwater transport model which we will apply to our lab and field data to obtain a better understanding of the importance of these processes on Pu transport

  7. Research and development of groundwater dating (Part 3). A proposal of determination method for diffusion coefficients of dissolved helium in rock and applicability of estimation of diffusion coefficients using anions

    International Nuclear Information System (INIS)

    Higashihara, Tomohiro; Nakata, Kotaro; Hasegawa, Takuma

    2006-01-01

    Dissolved helium in groundwater is one of the most suitable tracers for the groundwater dating. The diffusion coefficients in aquitard and aquifer were important to estimate an accumulation of the helium in groundwater. However, few papers have been reported about the diffusion of helium in rocks. In this study, effective diffusion coefficients of the helium in sandstones and mudstone were determined using a through-diffusion method. The effective diffusion coefficients of helium were in the range of 1.5 x 10 -10 to 1.1 x 10 -9 m 2 s -1 and larger than those of Br - ions. Geometrical factors for the diffusion of helium were also larger than those for the diffusion of Br - ions. This fact suggests that diffusion path of helium in the rocks is not more restricted than that of Br - ions. The diffusion coefficients of helium were also estimated using the diffusion coefficient of helium in bulk water and formation factors for diffusion of Br - ions. The estimated diffusion coefficients of helium were larger than the effective diffusion coefficients. It is clarified that the effective diffusion coefficients of helium are underestimated by the estimation method using anions. (author)

  8. Composition of Groundwater Bacterial Communities before and after Air Surging in a Groundwater Heat Pump System According to a Pyrosequencing Assay

    Directory of Open Access Journals (Sweden)

    Heejung Kim

    2017-11-01

    Full Text Available The geothermal energy of groundwater has aroused increasing interest as a solution to climate change. The groundwater heat pumps (GWHP system using groundwater is the most environmentally friendly system to date and has been examined in several studies. However, biological clogging by microorganisms negatively affects the thermal efficiency of the GWHP system. In this study, we employed air surging, the most popular among well management methods, and pyrosequencing to analyze the genetic diversity in bacteria before and after air surging in a geothermal well. Furthermore, the diversity of dominant bacterial genera and those related to clogging were evaluated. The bacterial diversity of the groundwater well increased after air surging. Nevertheless, the proportion of bacterial genera thought to be related to microbiological clogging decreased. In cooling and heating systems based on the geothermal energy of groundwater, the wells should be maintained regularly by air surging to reduce efficiency problems caused by microbiological clogging and to prevent secondary damage to human health, e.g., pneumonia due to human pathogenic bacteria including Pseudomonas aeruginosa and Acinetobacter.

  9. Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths

    Science.gov (United States)

    Tesoriero, Anthony J.; Liebscher, Hugh; Cox, Stephen E.

    2000-01-01

    The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive agricultural activity in this area has resulted in nitrate concentrations in groundwater often exceeding drinking water standards. Both the extent and rate of denitrification varied depending on the groundwater flow path. While little or no denitrification occurred in much of the upland portions of the aquifer, a gradual redox gradient is observed as aerobic upland groundwater moves deeper in the aquifer. In contrast, a sharp shallow redox gradient is observed adjacent to a third‐order stream as aerobic groundwater enters reduced sediments. An essentially complete loss of nitrate concurrent with increases in excess N2 provide evidence that denitrification occurs as groundwater enters this zone. Electron and mass balance calculations suggest that iron sulfide (e.g., pyrite) oxidation is the primary source of electrons for denitrification. Denitrification rate estimates were based on mass balance calculations using nitrate and excess N2 coupled with groundwater travel times. Travel times were determined using a groundwater flow model and were constrained by chlorofluorocarbon‐based age dates. Denitrification rates were found to vary considerably between the two areas where denitrification occurs. Denitrification rates in the deep, upland portions of the aquifer were found to range from from 1.0 to 2.7 mM of N per year. Potential denitrification rates in groundwater adjacent to the stream may be much faster, with rates up to 140 mM per year based on an in situ experiment conducted in this zone.

  10. Groundwater monitoring at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Kehrman, R.; Broberg, K.; Tatro, G.; Richardson, R.; Dasczcyszak, W.

    1990-01-01

    This paper discusses the Groundwater Monitoring Program (GMP) being conducted at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The Regulatory and Environmental Programs (REP) section of the Environment, Safety and Health department (ES ampersand H) is responsible for conducting environmental monitoring at the WIPP. Groundwater monitoring is one of the ongoing environmental activities currently taking place. The REP section includes water-quality sampling and water-level monitoring. The WIPP Project is a research and development facility designed to demonstrate the safe disposal of defense-generated TRU and mixed waste in a geologic repository. The Salado Formation of Permian age serves as the repository medium. The Salado Formation consists of bedded salt and associated evaporites. The formation is 602 meters thick at the site area; the top surface is located at a subsurface depth of 262 meters (10). The repository lies at a subsurface depth of 655 meters. Water-quality sampling for physical, chemical, and radiological parameters has been an ongoing activity at the WIPP site for the past six years, and will continue through the life of the project. Data collected from this program to date, has been used by Sandia National Laboratories for site characterization and performance assessment work. The data has also been used to establish a baseline of preoperational radiological and nonradiological groundwater quality. Once the facility begins receiving waste, this baseline will be used to determine if the WIPP facility influences or alters groundwater quality over time. The water quality of a well is determined while the well is continuously pumped. Serial samples of the pumped water are collected and tested for pH, Eh, temperature, specific gravity, specific conductivity, alkalinity, chlorides, divalent cations, ferrous iron, and total iron. 13 refs., 4 figs., 1 tab

  11. Pleistocene paleo-groundwater as a pristine fresh water resource in southern Germany--evidence from stable and radiogenic isotopes.

    Science.gov (United States)

    van Geldern, Robert; Baier, Alfons; Subert, Hannah L; Kowol, Sigrid; Balk, Laura; Barth, Johannes A C

    2014-10-15

    Shallow groundwater aquifers are often influenced by anthropogenic contaminants or increased nutrient levels. In contrast, deeper aquifers hold potentially pristine paleo-waters that are not influenced by modern recharge. They thus represent important water resources, but their recharge history is often unknown. In this study groundwater from two aquifers in southern Germany were analyzed for their hydrogen and oxygen stable isotope compositions. One sampling campaign targeted the upper aquifer that is actively recharged by modern precipitation, whereas the second campaign sampled the confined, deep Benkersandstein aquifer. The groundwater samples from both aquifers were compared to the local meteoric water line to investigate sources and conditions of groundwater recharge. In addition, the deep groundwater was dated by tritium and radiocarbon analyses. Stable and radiogenic isotope data indicate that the deep-aquifer groundwater was not part of the hydrological water cycle in the recent human history. The results show that the groundwater is older than ~20,000 years and most likely originates from isotopically depleted melt waters of the Pleistocene ice age. Today, the use of this aquifer is strictly regulated to preserve the pristine water. Clear identification of such non-renewable paleo-waters by means of isotope geochemistry will help local water authorities to enact and justify measures for conservation of these valuable resources for future generations in the context of a sustainable water management. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. New ages for Middle and Later Stone Age deposits at Mumba rockshelter, Tanzania: optically stimulated luminescence dating of quartz and feldspar grains.

    Science.gov (United States)

    Gliganic, Luke A; Jacobs, Zenobia; Roberts, Richard G; Domínguez-Rodrigo, Manuel; Mabulla, Audax Z P

    2012-04-01

    The archaeological deposits at Mumba rockshelter, northern Tanzania, have been excavated for more than 70 years, starting with Margit and Ludwig Köhl-Larsen in the 1930s. The assemblages of Middle Stone Age (MSA) and Later Stone Age (LSA) artefacts collected from this site constitute the type sequences for these cultural phases in East Africa. Despite its archaeological importance, however, the chronology of the site is poorly constrained, despite the application since the 1980s of several dating methods (radiocarbon, uranium-series and amino acid racemisation) to a variety of materials recovered from the deposits. Here, we review these previous chronologies for Mumba and report new ages obtained from optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) measurements on single grains of quartz and multi-grain aliquots of potassium (K) feldspar from the MSA and LSA deposits. Measurements of single grains of quartz allowed the rejection of unrepresentative grains and the application of appropriate statistical models to obtain the most reliable age estimates, while measurements of K-feldspars allowed the chronology to be extended to older deposits. The seven quartz ages and four K-feldspar ages provide improved temporal constraints on the archaeological sequence at Mumba. The deposits associated with the latest Kisele Industry (Bed VI-A) and the earliest Mumba Industry (Bed V) are dated to 63.4 ± 5.7 and 56.9 ± 4.8 ka (thousands of years ago), respectively, thus constraining the time of transition between these two archaeological phases to ~60 ka. An age of 49.1 ± 4.3 ka has been obtained for the latest deposits associated with the Mumba Industry, which show no evidence for post-depositional mixing and contain ostrich eggshell (OES) beads and abundant microlithics. The Nasera Industry deposits (Bed III) contain large quantities of OES beads and date to 36.8 ± 3.4 ka. We compare the luminescence ages with the previous chronologies for

  13. Radiokrypton dating coming of age

    Institute of Scientific and Technical Information of China (English)

    Zheng-Tian Lu

    2016-01-01

    The dream of radiokrypton dating began in 1969 when Heinz Hugo Loosli and Hans Oeschger of the University of Bern first detected the decay of81Rr(half-life=230 000 yr)in krypton gas extracted from air[1].This isotope is produced in the upper atmosphere by cosmic-ray-induced spallation and neutron-activation of stable krypton.Due to its long residence time(105 yr)in the atmosphere,81Rr is uniformly

  14. Radioisotope distribution characteristics of the groundwater system in volcanic-type U deposits and isotope-dating estimation of the system

    International Nuclear Information System (INIS)

    Zhou Bingguan

    1988-01-01

    On the basis of groundwater sample measurements collected from the uranogenic belt of Mesozoic volcanic rocks in East China, the distribution characteristics of radioisotopes, including the total U content (CΣu), the activity of nuclides (Aui) or their activity ratio (ARu) and the relationship among the three ((Aui,ARu)=f(CΣu)), have been studied. Also, it is performed for radioactive water halos in the area to be divided into four various mineralization tendencies: (1) the convergent tendency of negative correlation, which has the genetic relationship with the primary U accumulation in volcanic rocks; (2) the scattered tendency of positive correlation, which is intimately related to epigenetic U mineralization in the supergene zone of volcanic rocks or in the sandstones; (3) the both positive and negative multiple-correlative tendency, which indicates that the primary volcanic-type U deposit has been leached and destroyed, and the secondary U enrichment has occurred within the supergene zone; (4) non-correlative tendency, which mainly results from increasing dispersion U. For the above recognitions, an evolution model for radioactive water halos related to this type of U deposit has been derived, and an attempt to estimate the radioisotopic age of the groundwater system also has been made. (author). 14 refs, 9 figs, 2 tabs

  15. Tritium/3He measurements in young groundwater: Progress in applications to complex hydrogeological systems

    Science.gov (United States)

    Schlosser, Peter; Shapiro, Stephanie D.; Stute, Martin; Plummer, Niel

    2000-01-01

    Tritium/3He dating has been applied to many problems in groundwater hydrology including, for example, determination of circulation patterns, mean residence times, recharge rates, or bank infiltration. Here, we discuss recent progress in the application of the tritium/3He dating method to sites with complex hydrogeological settings. Specifically, we report on tritium/3He dating at sites with (a) river infiltration into the basaltic fractured rock aquifer of the Eastern Snake River Plain, and (b) river infiltration through sinkholes into the karstic limestone Upper Floridian aquifer near Valdosta, Georgia.Tritium/3He dating has been applied to many problems in groundwater hydrology including, for example, determination of circulation patterns, mean residence times, recharge rates, or bank infiltration. Here, we discuss recent progress in the application of the tritium/3He dating method to sites with complex hydrogeological settings. Specifically, we report on tritium/3He dating at sites with (a) river infiltration into the basaltic fractured rock aquifer of the Eastern Snake River Plain, and (b) river infiltration through sinkholes into the karstic limestone Upper Floridian aquifer near Valdosta, Georgia.

  16. Radiocarbon dating of ancient Japanese documents

    International Nuclear Information System (INIS)

    Oda, H.

    2001-01-01

    History is a reconstruction of past human activity, evidence of which is remained in the form of documents or relics. For the reconstruction of historic period, the radiocarbon dating of ancient documents provides important information. Although radiocarbon age is converted into calendar age with the calibration curve, the calibrated radiocarbon age is still different from the historical age when the document was written. The difference is known as 'old wood effect' for wooden cultural property. The discrepancy becomes more serious problem for recent sample which requires more accurate age determination. Using Tandetron accelerator mass spectrometer at Nagoya University, we have measured radiocarbon ages of Japanese ancient documents, sutras and printed books written dates of which are clarified from the paleographic standpoint. The purpose is to clarify the relation between calibrated radiocarbon age and historical age of ancient Japanese document by AMS radiocarbon dating. This paper reports 23 radiocarbon ages of ancient Japanese documents, sutras and printed books. The calibrated radiocarbon ages are in good agreement with the corresponding historical ages. It was shown by radiocarbon dating of the ancient documents that Japanese paper has little gap by 'old wood effect'; accordingly, ancient Japanese paper is a suitable sample for radiocarbon dating of recent historic period. (author)

  17. Mortar and surface dating with Optically Stimulated Luminescence (OSL): Innovative techniques for the age determination of buildings

    International Nuclear Information System (INIS)

    Panzeri, L.

    2013-01-01

    In this work the results of a dating study on bricks and mortars using both Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) are shown. The samples came from the outside walls of the Certosa di Pavia, located in northern Italy and independently dated (XVII-XVIII century). TL dating, applied to bricks using the fine grain technique, allowed to determine the time of manufacture of the bricks (XII century), that resulted therefore re-used. To circumvent this problem the application of two innovative dating techniques, OSL surface dating and mortar dating, was attempted. The first was applied to the light-shielded surfaces of bricks and allowed to successfully determine the edification of the wall (XVII century). Mortar dating gave instead severe age overestimation: the results obtained on coarse grain quartz with the SAR technique both on multi-grains aliquots and with single-grain analyses were highly dispersed indicating an incomplete bleaching of the quartz grains. The shine-down curves were in fact characterized by the absence of the so-called fast component, as confirmed by Linear Modulated OSL technique.

  18. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    Science.gov (United States)

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  19. A reconnaissance spatial and temporal assessment of methane and inorganic constituents in groundwater in bedrock aquifers, Pike County, Pennsylvania, 2012-13

    Science.gov (United States)

    Senior, Lisa A.

    2014-01-01

    Pike County in northeastern Pennsylvania is underlain by the Devonian-age Marcellus Shale and other shales, formations that have potential for natural gas development. During 2012–13, the U.S. Geological Survey in cooperation with the Pike County Conservation District conducted a reconnaissance study to assess baseline shallow groundwater quality in bedrock aquifers prior to possible shale-gas development in the county. For the spatial component of the assessment, 20 wells were sampled in summer 2012 to provide data on the occurrence of methane and other aspects of existing groundwater quality throughout the county, including concentrations of inorganic constituents commonly present at low levels in shallow, fresh groundwater but elevated in brines. For the temporal component of the assessment, 4 of the 20 wells sampled in summer 2012 were sampled monthly from July 2012 through June 2013 to provide data on seasonal variability in groundwater quality. All water samples were analyzed for major ions, nutrients, selected inorganic trace constituents (including metals and other elements), stable isotopes of water, radon-222, gross alpha- and gross beta-particle activity, dissolved gases (methane, ethane, and ethene), and, if possible, isotopic composition of methane. Additional analyses for boron and strontium isotopes, age-dating of water, and radium-226 were done on water samples collected from six wells in June 2013.

  20. A review of visual MODFLOW applications in groundwater modelling

    Science.gov (United States)

    Hariharan, V.; Shankar, M. Uma

    2017-11-01

    Visual MODLOW is a Graphical User Interface for the USGS MODFLOW. It is a commercial software that is popular among the hydrogeologists for its user-friendly features. The software is mainly used for Groundwater flow and contaminant transport models under different conditions. This article is intended to review the versatility of its applications in groundwater modelling for the last 22 years. Agriculture, airfields, constructed wetlands, climate change, drought studies, Environmental Impact Assessment (EIA), landfills, mining operations, river and flood plain monitoring, salt water intrusion, soil profile surveys, watershed analyses, etc., are the areas where the software has been reportedly used till the current date. The review will provide a clarity on the scope of the software in groundwater modelling and research.

  1. A partial exponential lumped parameter model to evaluate groundwater age distributions and nitrate trends in long-screened wells

    Science.gov (United States)

    Jurgens, Bryant; Böhlke, John Karl; Kauffman, Leon J.; Belitz, Kenneth; Esser, Bradley K.

    2016-01-01

    A partial exponential lumped parameter model (PEM) was derived to determine age distributions and nitrate trends in long-screened production wells. The PEM can simulate age distributions for wells screened over any finite interval of an aquifer that has an exponential distribution of age with depth. The PEM has 3 parameters – the ratio of saturated thickness to the top and bottom of the screen and mean age, but these can be reduced to 1 parameter (mean age) by using well construction information and estimates of the saturated thickness. The PEM was tested with data from 30 production wells in a heterogeneous alluvial fan aquifer in California, USA. Well construction data were used to guide parameterization of a PEM for each well and mean age was calibrated to measured environmental tracer data (3H, 3He, CFC-113, and 14C). Results were compared to age distributions generated for individual wells using advective particle tracking models (PTMs). Age distributions from PTMs were more complex than PEM distributions, but PEMs provided better fits to tracer data, partly because the PTMs did not simulate 14C accurately in wells that captured varying amounts of old groundwater recharged at lower rates prior to groundwater development and irrigation. Nitrate trends were simulated independently of the calibration process and the PEM provided good fits for at least 11 of 24 wells. This work shows that the PEM, and lumped parameter models (LPMs) in general, can often identify critical features of the age distributions in wells that are needed to explain observed tracer data and nonpoint source contaminant trends, even in systems where aquifer heterogeneity and water-use complicate distributions of age. While accurate PTMs are preferable for understanding and predicting aquifer-scale responses to water use and contaminant transport, LPMs can be sensitive to local conditions near individual wells that may be inaccurately represented or missing in an aquifer-scale flow model.

  2. Atmospheric Gas Tracers in Groundwater: Theory, Sampling. Measurement and Interpretation; Yeraltisuyunda Atmosferik Gaz Izleyiciler: Kuram, Oernekleme, Oelcuem ve Yorum

    Energy Technology Data Exchange (ETDEWEB)

    Bayari, C S [Hacettepe University, Ankara(Turkey)

    2002-07-01

    Some of the atmospheric gasses posses features that are sought in an environmental tracer of hydrogeologic interest. Among these, chlorofluorocarbons, sulfur hegzafluoride, carbon tetrachloride, methyl chloroform, krypton-85 etc. have found increasing use in groundwater age dating studies during the last ten years. This paper explains the theory of their use as tracer and discusses the major concerns as related to their sampling and analyses. Factors affecting their applicability and the approach to interpret tracer gas data is briefly outlined.

  3. Windows of Opportunity for Groundwater Management

    Science.gov (United States)

    Foster, T.; Brozovic, N.; Butler, A. P.

    2015-12-01

    To date, there has been little attention focused on how the value and effectiveness of groundwater management is influenced by the timing of regulatory intervention relative to aquifer depletion. To address this question, we develop an integrated framework that couples an agro-economic model of farmers' field-level irrigation decision-making with a model of a groundwater abstraction borehole. Unlike existing models that only consider the impact of aquifer depletion on groundwater extraction costs, our model also captures the dynamic changes in well productivity and how these in turn affect crop yields and farmer incomes. We use our model to analyze how the value of imposing groundwater quotas is affected by the prior level of depletion before regulations are introduced. Our results demonstrate that there is a range of aquifer conditions within which regulating groundwater use will deliver long-term economic benefits for farmers. In this range, restricting abstraction rates slows the rate of change in well yields and, as a result, increases agricultural production over the simulated planning horizon. Contrastingly, when current saturated thickness is outside this range, regulating groundwater use will provide negligible social benefits and will impose large negative impacts on farm-level profits. We suggest that there are 'windows of opportunity' for managing aquifer depletion that are a function of local hydrology as well as economic characteristics. Regulation that is too early will harm the rural economy needlessly, while regulation that is too late will be unable to prevent aquifer exhaustion. The insights from our model can be a valuable tool to help inform policy decisions about when, and at what level, regulations should be implemented in order to maximize the benefits obtained from limited groundwater resources.

  4. 1999 Annual Mixed Waste Management Facility Groundwater Correction - Action Report (Volumes I, II, and III)

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    This Corrective Action Report (CAR) for the Mixed Waste Management Facility (MWMF) is being prepared to comply with the Resource Conservation and Recovery Act (RCRA) Permit Number SC1 890 008 989, dated October 31, 1999. This CAR compiles and presents all groundwater sampling and monitoring activities that are conducted at the MWMF. As set forth in previous agreements with South Carolina Department of Health and Environmental Control (SCDHEC), all groundwater associated with the Burial Ground Complex (BGC) (comprised of the MWMF, Low-Level Radioactive Waste Disposal Facility, and Old Radioactive Waste Burial Ground) will be addressed under this RCRA Permit. This CAR is the first to be written for the MWMF and presents monitoring activities and results as an outcome of Interim Status and limited Permitted Status activities. All 1999 groundwater monitoring activities were conducted while the MWMF was operated during Interim Status. Changes to the groundwater monitoring program were made upon receipt of the RCRA Permit, where feasible. During 1999, 152 single-screened and six multi-screened groundwater monitoring wells at the BGC monitored groundwater quality in the uppermost aquifer as required by the South Carolina Hazardous Waste Management Regulations (SCHWMR), settlement agreements 87-52-SW and 91-51-SW, and RCRA Permit SC1 890 008 989. However, overall compliance with the recently issued RCRA Permit could not be implemented until the year 2000 due to the effective date of the RCRA Permit and scheduling of groundwater monitoring activities. Changes have been made to the groundwater monitoring network to meet Permit requirements for all 2000 sampling events

  5. Trend Analyses of Nitrate in Danish Groundwater

    DEFF Research Database (Denmark)

    Hansen, B.; Thorling, L.; Dalgaard, Tommy

    2012-01-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribut......This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis...... of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first...... two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded...

  6. Comparison of tritium concentrations in rainwater, simulated infiltrating water, and groundwater

    International Nuclear Information System (INIS)

    Ishii, Yoshiyuki; Saito, Masaaki; Imaizumi, Hiroshi; Kato, Norio; Kitaoka, Koichi

    2014-01-01

    The tritium concentration in initial groundwater(i.e., freshly infiltrating rainwater) is necessary for groundwater dating. We collected simulated infiltrating water as the initial groundwater and examined its characteristics for tritium concentration. First, in Tokyo, the tritium concentration of simulated infiltrating water was compared with that of rainwater, atmospheric moisture, groundwater, spring water, and sap water. While rainwater, atmospheric moisture, and simulated infiltrating water remarkably changed month-to-month or with every rainfall event, groundwater and spring water were nearly constant throughout the year. Second, we collected the simulated infiltrating water monthly at four sampling sites widely dispersed across Japan(i.e., Sapporo, Niigata, Tokyo, and Matsuyama) from 2004 to 2010. Sapporo and Niigata showed high tritium concentrations as compared with the relatively low concentrations in Tokyo and Matsuyama. These results indicate that we can obtain annual maximum and minimum concentrations at each site, and that we can estimate the tritium concentration in initial groundwater at each site by using a mixing model composed of these maximum and minimum concentrations. (author)

  7. Detection of 14C in natural trace organics recovered from groundwater

    International Nuclear Information System (INIS)

    Murphy, E.; Long, A.; Davis, S.N.; Donahue, D.

    1985-01-01

    Radiocarbon measurements on dissolved inorganic carbon (DIC) in groundwater have given the authors insight into chemical and hydrological processes occurring in aquifers. Carbon-14 analyses on various dissolved organic carbon (DOC) fractions from groundwater are only starting, but, as is true for DIC 14 C measurements, their significance reaches beyond dating of water and into chemical processes in the aquifer and recharge zone. When combined with information on the chemical character of the DOC, 14 C data may clarify the origin and diagenesis of organic carbon in groundwater. In the past, research into the 14 C has been discouraged by the low concentrations of DOC in groundwater, typically in the μg/l range. The tandem accelerator at the University of Arizona can analyze 14 C in as little as 1 mg of carbon, thus requiring isolation of the DOC from 200 l or less of groundwater. This paper describes the techniques bring used for separation of the DOC in groundwater, some of the data collected, and the significance of these data

  8. Arsenic in Holocene aquifers of the Red River floodplain, Vietnam: Effects of sediment-water interactions, sediment burial age and groundwater residence time

    Science.gov (United States)

    Sø, Helle Ugilt; Postma, Dieke; , Mai Lan, Vi; Pham, Thi Kim Trang; Kazmierczak, Jolanta; Dao, Viet Nga; Pi, Kunfu; Koch, Christian Bender; Pham, Hung Viet; Jakobsen, Rasmus

    2018-03-01

    Water-sediment interactions were investigated in arsenic contaminated Holocene aquifers of the Red River floodplain, Vietnam, in order to elucidate the origin of the spatial variability in the groundwater arsenic concentration. The investigated aquifers are spread over an 8 × 13 km field area with sediments that varied in burial age from V) redox couple was found in disequilibrium with the other redox couples. Using the pe calculated from the CH4/CO2 redox couple we show that the groundwater has a reducing potential towards Fe-oxides ranging from ferrihydrite to poorly crystalline goethite, but not for well crystalline goethite or hematite. Hematite and poorly crystalline goethite were identified as the Fe-oxides present in the sediments. Reductive dissolution experiments identify two phases releasing Fe(II); one rapidly dissolving that also contains As and a second releasing Fe(II) more slowly but without As. The initial release of Fe and As occurs at a near constant As/Fe ratio that varied from site to site between 1.2 and 0.1 mmol As/mol Fe. Siderite (FeCO3) is the main sink for Fe(II), based on saturation calculations as well as the identification of siderite in the sediment. Most of the carbonate incorporated in siderite originates from the dissolution of sedimentary CaCO3. Over time the CaCO3 content of the sediments diminishes and FeCO3 appears instead. No specific secondary phases that incorporate arsenite could be identified. Alternatively, the amount of arsenic mobilized during the dissolution of reactive phases can be contained in the pool of adsorbed arsenite. Combining groundwater age with aquifer sediment age allows the calculation of the total number of pore volumes flushed through the aquifer. Comparison with groundwater chemistry shows the highest arsenic concentration to be present within the first 200 pore volumes flushed through the aquifer. These results agree with reactive transport modeling combining a kinetic description of reductive

  9. Finding the "true" age: ways to read high-precision U-Pb zircon dates

    Science.gov (United States)

    Schaltegger, U.; Schoene, B.; Ovtcharova, M.; Sell, B. K.; Broderick, C. A.; Wotzlaw, J.

    2011-12-01

    Refined U-Pb dating techniques, applying an empirical chemical abrasion treatment prior to analysis [1], and using a precisely calibrated double isotope Pb, U EARTHTIME tracer solution, have led to an unprecedented two problems: (A) Post-crystallization Pb loss from decay damaged areas is considered to be mitigated by applying chemical abrasion techniques. The success of such treatment can, however, not be assumed a priori. The following examples demonstrate that youngest zircons are not biased by lead loss but represent close-to-youngest zircon growth: (i) coincidence of youngest zircon dates with co-magmatic titanite in tonalite; (ii) coincidence with statistically equivalent clusters of 206Pb/238U dates from zircon in residual melts of cogenetic mafic magmas; (iii) youngest zircons in ash beds of sedimentary sequences do not violate the stratigraphic superposition, whereas conventional statistical interpretation (mean or median values) does; (iv) results of published inter-laboratory cross-calibration tests using chemical abrasion on natural zircon crystals of the same sample arrive at the same 206Pb/238U result within case of single, significantly younger dates (>3 sigma), and are common in many pre-Triassic and hydrothermally altered rocks. (B) Pre-eruptive/pre-intrusive growth is found to be the main reason for scattered zircon ages in igneous rocks. Zircons crystallizing from the final magma batch are called autocrystic [3]. Autocrystic growth will happen in a moving or stagnant magma shortly before or after the rheological lockup by the crystals. Last crystallizing zircons in the interstitial melt may therefore postdate emplacement of the magma. The range of 206Pb/238U ages may yield a time frame for the cooling of a given magma batch, which could be added to quantitative thermal models of magma emplacement and cooling. Hf isotopes and trace elements of the dated zircon are used to trace the nature of the dated grains [4], specifically for identification of

  10. Potassium-argon dating in archaeology

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, I. (Australian National Univ., Canberra (Australia). Research School of Earth Sciences)

    1990-01-01

    The potassium-argon (K-Ar) isotopic dating method can provide precise and accurate numerical ages on suitable rocks, especially igneous rocks, over a wide range of age from less than 100,000 years old, with no older limit. Together with its variants, the {sup 40}Ar/{sup 39}Ar technique, the K-Ar method is very useful for the numerical age calibration of stratigraphic sequences, including those containing archaeological or fossil material, in cases where appropriate rocks for dating are present. This brief review of the basis of the K-Ar dating method and the underlying assumptions, concludes with an example of its application to the Plio-Pleistocene stratigraphic sequence in the Turkana Basin, northern Kenya. By dating alkali feldspars separated from pumice blocks in tuffaceous beds, excellent age control has been obtained for the wealth of vertebrate fossils, including hominids, as well as archaeological materials that has been found in the sequence. (author).

  11. Geochemistry and the Understanding of Groundwater Systems

    Science.gov (United States)

    Glynn, P. D.; Plummer, L. N.; Weissmann, G. S.; Stute, M.

    2009-12-01

    Geochemical techniques and concepts have made major contributions to the understanding of groundwater systems. Advances continue to be made through (1) development of measurement and characterization techniques, (2) improvements in computer technology, networks and numerical modeling, (3) investigation of coupled geologic, hydrologic, geochemical and biologic processes, and (4) scaling of individual observations, processes or subsystem models into larger coherent model frameworks. Many applications benefit from progress in these areas, such as: (1) understanding paleoenvironments, in particular paleoclimate, through the use of groundwater archives, (2) assessing the sustainability (recharge and depletion) of groundwater resources, and (3) their vulnerability to contamination, (4) evaluating the capacity and consequences of subsurface waste isolation (e.g. geologic carbon sequestration, nuclear and chemical waste disposal), (5) assessing the potential for mitigation/transformation of anthropogenic contaminants in groundwater systems, and (6) understanding the effect of groundwater lag times in ecosystem-scale responses to natural events, land-use changes, human impacts, and remediation efforts. Obtaining “representative” groundwater samples is difficult and progress in obtaining “representative” samples, or interpreting them, requires new techniques in characterizing groundwater system heterogeneity. Better characterization and simulation of groundwater system heterogeneity (both physical and geochemical) is critical to interpreting the meaning of groundwater “ages”; to understanding and predicting groundwater flow, solute transport, and geochemical evolution; and to quantifying groundwater recharge and discharge processes. Research advances will also come from greater use and progress (1) in the application of environmental tracers to ground water dating and in the analysis of new geochemical tracers (e.g. compound specific isotopic analyses, noble gas

  12. The AMS {sup 14}C dating of Iron Age rice chaff ceramic temper from Ban Non Wat, Thailand: First results and its interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Higham, Charles F.W., E-mail: charles.higham@otago.ac.n [Department of Anthropology, Otago University, Dunedin (New Zealand); Kuzmin, Yaroslav V. [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Koptuyg Ave. 3, Novosibirsk 630090 (Russian Federation); Burr, G.S. [Arizona AMS Laboratory, University of Arizona, Tucson, AZ 85721 0081 (United States)

    2010-04-15

    Pottery tempered with rice chaff from the early Iron Age cemetery of Ban Non Wat site, northeast Thailand, has been subjected to direct AMS {sup 14}C dating, using low temperature combustion with oxygen as originally developed by authors. The carbon yield (0.2-0.5%) testifies the suitability of this pottery for dating. However, not all the results are in agreement with expected archaeological ages and other {sup 14}C dates from the studied site and neighboring site of Noen U-Loke. This calls for a thorough analysis and interpretation of pottery temper dates from the region.

  13. Feasibility Study for the Development of Plutonium Reference Materials for Age Dating in Nuclear Forensics

    International Nuclear Information System (INIS)

    Sturm, M.; Richter, S.; Aregbe, Y.; Wellum, R.; Altzitzoglou, T.; Verbruggen, A.; Mayer, K.; Prohaska, T.

    2010-01-01

    Isotopic reference materials certified for the age of nuclear material (uranium, plutonium) are needed in the fields of nuclear forensics and environmental measurements. Therefore a feasibility study for the development of plutonium reference materials for age dating has been started recently at the Institute for Reference Materials and Measurements (EC-JRC-IRMM). The ''age'' of the material is defined as the time that has passed since the last chemical separation of the mother and daughter isotopes (e.g. 241 Pu and 241 Am). Assuming that the separation has been complete and all the daughter isotopes have been removed from the original material during this last separation, the age of the material can be determined by measuring the ratio of daughter and mother radio-nuclides, e.g. 241 Am/ 241 Pu. At a given time after the last separation and depending on the half lives of the radio-nuclides involved, a certain amount of the daughter radionuclide(s) will be present. For the determination of the unknown age of a material different ''clocks'' can be used; ''clocks'' are pairs of mother and daughter radio-nuclides, such as 241 Am/ 241 Pu, 238 Pu/ 234 U, 239 Pu/ 235 U, 240 Pu/ 236 U, and possibly 242 Pu/ 238 U. For the age estimation of a real sample, such as material seized in nuclear forensics investigations or dust samples in environmental measurements, it is advisable to use more than one clock in order to ensure the reliability of the results and to exclude the possibility that the sample under question is a mixture of two or more materials. Consequently, a future reference material certified for separation date should ideally be certified for more than one ''clock'' or several reference materials for different ''clocks'' should be developed. The first step of this study is to verify the known separation dates of different plutonium materials of different ages and isotopic compositions by measuring the mother ( 238 Pu, 239 Pu, 240 Pu, 241 Pu, 242 Pu) and daughter

  14. 20 CFR 404.630 - Use of date of written statement as filing date.

    Science.gov (United States)

    2010-04-01

    ... data on the Internet Social Security Benefit Application to us, we will use the date of the... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Use of date of written statement as filing date. 404.630 Section 404.630 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE...

  15. Application of groundwater residence time tracers and broad screening for micro-organic contaminants in the Indo-Gangetic aquifer system

    Science.gov (United States)

    Lapworth, Dan; Das, Prerona; Mukherjee, Abhijit; Petersen, Jade; Gooddy, Daren; Krishan, Gopal

    2017-04-01

    Groundwater abstracted from aquifers underlying urban centres across India provide a vital source of domestic water. Abstraction from municipal and private supplies is considerable and growing rapidly with ever increasing demand for water from expanding urban populations. This trend is set to continue. The vulnerability of deeper aquifers (typically >100 m below ground) used for domestic water to contamination migration from often heavily contaminated shallow aquifer systems has not been studies in detail in India. This paper focusses on the occurrence of micro-organic contaminants within sedimentary aquifers beneath urban centres which are intensively pumped for drinking water and domestic use. New preliminary results from a detailed case study undertaken across Varanasi, a city with an estimated population of ca. 1.5 million in Uttar Pradesh. Micro -organic groundwater quality status and evolution with depth is investigated through selection of paired shallow and deep sites across the city. These results are considered within the context of paired groundwater residence time tracers within the top 150m within the sedimentary aquifer system. Groundwater emerging contaminant results are compared with surface water quality from the Ganges which is also used for drinking water supply. Broad screening for >800 micro-organic compounds was undertaken. Age dating tools were employed to constrain and inform a conceptual model of groundwater recharge and contaminant evolution within the sedimentary aquifer system.

  16. Interpretation of environmental isotopic groundwater data. Arid and semi-arid zones

    International Nuclear Information System (INIS)

    Geyh, M.A.

    1980-01-01

    Various hydrodynamic aspects are discussed in order to show their implication for the hydrogeological interpretation of environmental isotope and hydrochemical groundwater data. Special attention is drawn to radiocarbon and tritium studies carried out in arid and semi-arid zones. An exponential model has been utilized to determine the mean residence time of the long-term water from springs in karst and crystalline regions. Hydrogeological parameters such as the porosity can be checked by this result. In addition, the exponential model offers the possibility of determining the initial 14 C content of spring water, which is sensitively dependent on the soil of the recharge area. A base-flow model has been introduced to interpret the 14 C and 3 H data of groundwater samples from older karst regions. Differences between pumped and drawn samples exist with respect to the groundwater budget. Owing to pumping, the old base flow is accelerated and becomes enriched in pumped groundwater in comparison to the short-term water. Radiocarbon ages of groundwater in alluvium may be dubious because of isotope exchange with the CO 2 in the root zone along the river bank. Under confined conditions 14 C groundwater ages are diminished if the hydraulic head of the confined aquifer is lower than that of the shallow one. This is due to the radiocarbon downwards transport by convection of shallow groundwater. The same effect occurs, though much faster, if the groundwater table is depleted by groundwater withdrawal. The decrease of the radiocarbon groundwater ages in time can be used to determine the hydraulic transmissibility coefficient of the aquitarde. According to the practical and theoretic results obtained the hydrodynamic aspects require at least the same attention for the interpretation of environmental isotope and hydrochemical data of groundwater as do hydrochemical and isotope fractionation processes. (author)

  17. Groundwater Drought and Recovery: a Case Study from the United Kingdom

    Science.gov (United States)

    Peach, D.; McKenzie, A. A.; Bloomfield, J.

    2012-12-01

    An understanding of the processes leading to the onset, duration and end of hydrological droughts is necessary to help improve the management of stressed or scarce water resources during such periods. In particular, the role and use of groundwater during episodes of drought is crucially important, since groundwater can provide relatively resilient water supplies during early stages of drought but maybe highly susceptible to relatively persistent or sustained droughts. Nevertheless, groundwater is seldom considered in drought analyses, and compared with other types of hydrological drought there have been few studies to date. The few previous studies of groundwater droughts at catchment- and regional-scale have shown that catchment and aquifer characteristics exert a strong influence on the spatio-temporal development of groundwater droughts as water deficit propagates through the terrestrial water cycle. In this context, the relationships between hydrogeological heterogeneity, catchment engineering infrastructure (storage), and decisions related to water resource management during drought events all shape the evolution and consequences of groundwater droughts. Here we examine the evolution of a recent regionally significant two-year drought across the United Kingdom (UK) and use it to investigate these relationships. We identify the drivers, characterise the development and spatio-temporal extent of the groundwater drought. In particular, we focus on the unusually rapid end and recovery from drought during what would normally be a period of groundwater recession. The UK, and in particular southern England, relies extensively on groundwater for public water supply, agricultural and industrial use, as well as for sustaining river flows that are essential to ecosystem health. In normal years relatively consistent rainfall patterns prevail, recharging aquifers over winter when evapotranspiration is minimal. However, by March 2012 large parts of the southern UK had

  18. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2013-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materials in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  19. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2009-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  20. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2008-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs

  1. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2012-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materials in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  2. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2009-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs

  3. Linking chloride mass balance infiltration rates with chlorofluorocarbon and SF6 groundwater dating in semi-arid settings: potential and limitations.

    Science.gov (United States)

    Stadler, Susanne; Osenbruck, Karsten; Duijnisveld, Wilhelmus H M; Schwiede, Martin; Bottcher, Jurgen

    2010-09-01

    In the framework of the investigation of enrichment processes of nitrate in groundwater of the Kalahari of Botswana near Serowe, recharge processes were investigated. The thick unsaturated zone extending to up to 100 m of mostly unconsolidated sediments and very low recharge rates pose a serious challenge to study solute transport related to infiltration and recharge processes, as this extends past the conventional depths of soil scientific investigations and is difficult to describe using evidence from the groundwater due to the limitations imposed by available tracers. To determine the link between nitrate in the vadose zone and in the uppermost groundwater, sediment from the vadose zone was sampled up to a depth of 15-20 m (in one case also to 65 m) on several sites with natural vegetation in the research area. Among other parameters, sediment and water were analysed to determine chloride and nitrate concentration depth profiles. Using the chloride mass balance method, an estimation of groundwater infiltration rates produced values of 0.2-4 mm a(-1). The uncertainty of these values is, however, high. Because of the extreme thickness of the vadose zone, the travel time in the unsaturated zone might reach extreme values of up to 500 years and more. For investigations using groundwater, we applied the chlorofluorocarbons CFC-113, CFC-12, sulphur hexafluoride (SF(6)) and tritium to identify potential recharge, and found indications for some advective transport of the CFCs and SF(6), which we accounted for as constituting potential active localised recharge. In our contribution, we show the potential and limitations of the applied methods to determine groundwater recharge and coupled solute transport in semi-arid settings, and compare travel time ranges derived from soil science and groundwater investigations.

  4. Microbes Characteristics in Groundwater Flow System in Mountainous Area

    Science.gov (United States)

    Yamamoto, Chisato; Tsujimura, Maki; Kato, Kenji; Sakakibara, Koichi; Ogawa, Mahiro; Sugiyama, Ayumi; Nagaosa, Kazuyo

    2017-04-01

    We focus on a possibility of microbes as a tracer for groundwater flow investigation. Some previous papers showed that the total number of prokaryotes in groundwater has correlation with depth and geology (Parkes et al., 1994; Griebler et al., 2009; Kato et al., 2012). However, there are few studies investigating both microbe characteristics and groundwater flow system. Therefore, we investigated a relationship between the total number of prokaryotes and age of spring water and groundwater. Intensive field survey was conducted at four mountainous areas, namely Mt. Fuji (volcano), a headwater at Mt. Setohachi, a headwater at River Oi and a headwater at River Nagano underlain by volcanic lava at Mt. Fuji, granite at Mt. Setohachi and sedimentary rock at River Oi and River Nagano. We collected totally 40 spring water/ groundwater samples in these mountainous areas in October 2015, August, October and November 2016 and analyzed concentration of inorganic ions, the stable isotopes of oxygen - 18, deuterium, CFCs and SF6. Also, we counted prokaryotic cells under the epifluorescence microscopy after fixation and filteration. The total number of prokaryotes in the spring water/ groundwater ranged from 1.0×102 to 7.0×103cells mL-1 at the Mt. Fuji, 1.3×104 to 2.7×105cells mL-1 at Mt. Setohachi, 3.1×104cells mL-1 at River Oi and 1.8×105 to 3.2×106cells mL-1 at River Nagano. The SF6 age of the spring water/ groundwater ranged from 8 to 64 years at Mt. Fuji, 2 to 32.5 years at Mt. Setohachi, 2.5 years at River Oi and 15 to 16 years at River Nagano. The total number of prokaryotes showed a clear negative correlation with residence time of spring water/ groundwater in all regions. Especially the prokaryotes number increased in the order of 102 cells mL-1 with decreasing of residence time in approximately 10 years in the groundwater and spring water with the age less than 15 years.

  5. 14C dating of the Early to Late Bronze Age stratigraphic sequence of Aegina Kolonna, Greece

    International Nuclear Information System (INIS)

    Wild, E.M.; Gauss, W.; Forstenpointner, G.; Lindblom, M.; Smetana, R.; Steier, P.; Thanheiser, U.; Weninger, F.

    2010-01-01

    Aegina Kolonna, located in the center of the Saronic Gulf in the Aegean Mediterranean (Greece), is one of the major archaeological sites of the Aegean Bronze Age with a continuous stratigraphic settlement sequence from the Late Neolithic to the Late Bronze Age. Due to its position next to the maritime cross roads between central mainland Greece, the northeast Peloponnese, the Cyclades and Crete, the island played an important role in the trade between these regions. In the course of new excavations, which focused on the exploration of the Early, Middle and Late Bronze Age at Kolonna, several short lived samples from different settlement phases have been 14 C-dated with the AMS method at the VERA laboratory. Bayesian sequencing of the 14 C data according to the stratigraphic position of the samples in the profile was performed to enable estimates of the transition time between the cultural phases. The Aegina Kolonna 14 C sequence is one of the longest existing so far for the Aegean Bronze Age, and therefore of major importance for the absolute Bronze Age chronology in this region. Preliminary results indicate that the Middle Helladic period seems to have started earlier and lasted longer than traditionally assumed. Further, at the present stage of our investigation we can give also a very tentative time frame for the Santorini volcanic eruption which seems to be in agreement with the science derived VDL date.

  6. Relative Age Dating of Young Star Clusters from YSOVAR

    Science.gov (United States)

    Johnson, Chelen H.; Gibbs, John C.; Linahan, Marcella; Rebull, Luisa; Bernstein, Alexandra E.; Child, Sierra; Eakins, Emma; Elert, Julia T.; Frey, Grace; Gong, Nathaniel; Hedlund, Audrey R.; Karos, Alexandra D.; Medeiros, Emma M.; Moradi, Madeline; Myers, Keenan; Packer, Benjamin M.; Reader, Livia K.; Sorenson, Benjamin; Stefo, James S.; Strid, Grace; Sumner, Joy; Sundeen, Kiera A.; Taylor, Meghan; Ujjainwala, Zakir L.

    2018-01-01

    The YSOVAR (Young Stellar Object VARiability; Rebull et al. 2014) Spitzer Space Telescope observing program monitored a dozen star forming cores in the mid-infrared (3.6 and 4.5 microns). Rebull et al. (2014) placed these cores in relative age order based on numbers of YSO candidates in SED class bins (I, flat, II, III), which is based on the slope of the SED between 2 and 25 microns. PanSTARRS data have recently been released (Chambers et al. 2016); deep optical data are now available over all the YSOVAR clusters. We worked with eight of the YSOVAR targets (IC1396-N, AFGL 490, NGC 1333, Mon R2, GGD 12-15, L 1688, IRAS 20050+2720, and Ceph C) and the YSO candidates identified therein as part of YSOVAR (through their infrared colors or X-ray detections plus a star-like SED; see Rebull et al. 2014). We created and examined optical and NIR color-magnitude diagrams and color-color diagrams of these YSO candidates to determine if the addition of optical data contradicted or reinforced the relative age dating of the clusters obtained with SED class ratios.This project is a collaborative effort of high school students and teachers from three states. We analyzed data individually and later collaborated online to compare results. This project is the result of many years of work with the NASA/IPAC Teacher Archive Research Program (NITARP).

  7. Discrepancies in 14C dating as illustrated from the Egyptian new and middle kingdoms and from the Aegean bronze age and neolithic

    International Nuclear Information System (INIS)

    Hood, S.

    1978-01-01

    14 C dates available for the Middle and New Kingdoms in Egypt and for the Bronze Age and Neolithic in the Aegean are examined. The possibility is explored that calibrated dates vary from tree-ring dates by different margins in Egypt and the Aegean during the second millenium B.C. Apparent inconsistencies between 14 C dates from different Neolithic sites in the Aegean area are also noted. (author)

  8. Modeling the effects of atmospheric emissions on groundwater composition

    International Nuclear Information System (INIS)

    Brown, T.J.

    1994-01-01

    A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport

  9. A simple radiocarbon dating method for determining the age and growth rate of deep-sea sponges

    International Nuclear Information System (INIS)

    Fallon, S.J.; James, K.; Norman, R.; Kelly, M.; Ellwood, M.J.

    2010-01-01

    The ability to reliably age siliceous sponges is explored using radiocarbon dating of several hexactinellid sponge specimens including Rossella racovitzaeracovitzae Topsent, 1901 (C. Hexactinellida: O. Lyssacinosida: F. Rossellidae), collected from the Ross Sea, Antarctica. The optimal pretreatment was found to consist of both sequential acid digestion and pre-roasting at temperatures >400 deg. C. Subsequent combustion at 900 deg. C liberated the proteinaceous material within the spicule matrix and once the reservoir age of the surrounding water was accounted for, a linear extension rate was calculated to be around 2.9 mm yr -1 , aging the sponge at ∼440 years old.

  10. A simple radiocarbon dating method for determining the age and growth rate of deep-sea sponges

    Science.gov (United States)

    Fallon, S. J.; James, K.; Norman, R.; Kelly, M.; Ellwood, M. J.

    2010-04-01

    The ability to reliably age siliceous sponges is explored using radiocarbon dating of several hexactinellid sponge specimens including Rossella racovitzaeracovitzae Topsent, 1901 ( C. Hexactinellida: O. Lyssacinosida: F. Rossellidae), collected from the Ross Sea, Antarctica. The optimal pretreatment was found to consist of both sequential acid digestion and pre-roasting at temperatures >400 °C. Subsequent combustion at 900 °C liberated the proteinaceous material within the spicule matrix and once the reservoir age of the surrounding water was accounted for, a linear extension rate was calculated to be around 2.9 mm yr -1, aging the sponge at ˜440 years old.

  11. Groundwater flow system under a rapidly urbanizing coastal city as determined by hydrogeochemistry

    Science.gov (United States)

    Kagabu, Makoto; Shimada, Jun; Delinom, Robert; Tsujimura, Maki; Taniguchi, Makoto

    2011-01-01

    In the Jakarta area (Indonesia), excessive groundwater pumping due to the rapidly increasing population has caused groundwater-related problems such as brackish water contamination in coastal areas and land subsidence. In this study, we adopted multiple hydrogeochemical techniques to demonstrate the groundwater flow system in the Jakarta area. Although almost all groundwater existing in the Jakarta basin is recharged at similar elevations, the water quality and residence time demonstrates a clear difference between the shallow and deep aquifers. Due to the rapid decrease in the groundwater potential in urban areas, we found that the seawater intrusion and the shallow and deep groundwaters are mixing, a conclusion confirmed by major ions, Br -:Cl - ratios, and chlorofluorocarbon (CFC)-12 analysis. Spring water and groundwater samples collected from the southern mountainside area show younger age characteristics with high concentrations of 14C and Ca-HCO 3 type water chemistry. We estimated the residence times of these groundwaters within 45 years under piston flow conditions by tritium analysis. Also, these groundwater ages can be limited to 20-30 years with piston flow evaluated by CFCs. Moreover, due to the magnitude of the CFC-12 concentration, we can use a pseudo age indicator in this field study, because we found a positive correlation between the major type of water chemistry and the CFC-12 concentration.

  12. Monitoring effects of river restoration on groundwater with radon

    International Nuclear Information System (INIS)

    Hoehn, Eduard

    2007-01-01

    The restoration of the perialpine river Toess in a floodplain of northern Switzerland (Linsental) included the removal of bank reinforcements and tracer studies in the river and in oberservation wells of the adjacent alluvial groundwater. The river water is continuously recharging the aquifer system and the groundwater is used extensively as drinking water. Radon activity concentrations of freshly infiltrated groundwater are interpreted as radon groundwater age between the river and a well. A first flood after the restoration operations resulted in a widening of the river bed and in a reduction of the flow distance to the wells. Sixteen days after a second flood, the results of radon measurements were compared with those from before the restoration. The radon age of the groundwater between the river and the wells decreased, probably as a result of the reduction of the flow distances. Concentrations of autochthonous and coliform bacteria increased after the restoration operation and even more one day after the first flood. Thus the findings on the bacteria corroborate the interpretation of the radon concentrations. The restoration has not yet reduced the quality of the groundwater, which is pumped for drinking water. The study is contributing to the solution of land-use conflicts between river restoration and the supply of drinking water from the alluvial groundwater. (orig.) [de

  13. Isotopic composition of groundwater in semi-arid regions of Southern Africa

    International Nuclear Information System (INIS)

    Vogel, J.C.; Urk, H. van

    1975-01-01

    Although the isotope content of precipitation in the semi-arid regions of southern Africa is extremely variable, groundwater samples from the same district are found to have a remarkably constant isotopic composition. The oxygen-18 content of the underground water, in general, varies by about 0.5% in a given area. The differences that occur between different regions are sufficiently large to allow the groundwater of an area to be characterized by means of its oxygen-18 content. In order to localize the infiltration area of an aquifer, radiocarbon dating of the water is used. It appears that the groundwater contains, in general, less of the heavy isotopes than does the precipitation in the recharge area. This indicates that infiltration only takes place during periods of heavy rainfall. Examples are given where the isotope content of the groundwater is used to distinguish between different aquifers in the same region

  14. The comparison of absolute dating (Radiocarbon dating) and relative dating of Pringapus and Gondosuli temples

    International Nuclear Information System (INIS)

    Faisal, W; Arumbinang, H; Taftazani, A; Widayati, S; Sumiyatno; Suhardi

    1996-01-01

    The absolute dating (radiocarbon, 14 C dating) and relative dating of Pringapus and Gondosuli temples in Temanggung regency (district) of Central Java Province have been carried out. The field sampling was done especially with the purpose to obtain vertical data, so that excavation method was adopted in the case. The main data were the ecofacts of organic habitation such as bones, woods, charcoals, shells, and paper artefacts. The artefacts data were used as a comparison. The comparative data analysis were conducted at Yogyakarta archaeological Department Laboratory, thus included dating of artefacts which were performed according to archaeological analysis procedures, generally based on the attributes attached to the artefacts, whereas the absolute dating of charcoal samples were performed in the Radiocarbon Dating Laboratory at Yogyakarta Nuclear Research Centre. Based on the relative dating of epigraphy content on the andesit rock from Gondosuli Temple which showed the year of 754 Saka or 832 AD, the Pringapus Temple was estimated to be built in the 850 AD. According to the absolute dating (Radiocarbon Dating with delta 13 C and tree ring corrections) the age for Gondosuli temple based on GDS/LU-2/Spit-7 samples is (384 -602) AD and from GDS/LU-2/Spit-8 = (452 - 652) AD. With these significant differences in the results obtained, it can be concluded that culture environment where the sample were collected already existed before the temple was built. Further investigation is still required

  15. Using environmental tracers in modeling flow in a complex shallow aquifer system

    DEFF Research Database (Denmark)

    Troldborg, Lars; Jensen, Karsten Høgh; Engesgaard, Peter Knudegaard

    2008-01-01

    shapes and sizes without being similar to the assumed age distributions used in the analytical approach. The shape of age distribution to some extent depends on sampling size and on whether the system is modeled in a transient or in a steady state, but shape and size were largely driven......Using environmental tracers in groundwater dating partly relies on the assumption that groundwater age distribution can be described analytically. To investigate the applicability of age dating in complex multiaquifer systems, a methodology for simulating well specific groundwater age distribution...... was developed. Using a groundwater model and particle tracking we modeled age distributions at screen locations. By enveloping modeled age distributions and estimated recharge concentrations, environmental tracer breakthroughs were simulated for specific screens. Simulated age distributions are of irregular...

  16. Quantification of groundwater recharge through application of pilot techniques in the unsaturated zone.

    Science.gov (United States)

    Kallioras, Andreas; Piepenbrink, Matthias; Schuth, Christoph; Pfletschinger, Heike; Dietrich, Peter; Koeniger, Franz; Rausch, Randolf

    2010-05-01

    Accurate determination of groundwater recharge is a key issue for the "smart mining" of groundwater resources. Groundwater recharge estimation techniques depend on the investigated hydrologic zone, and therefore main approaches are based on (a) unsaturated zone, (b) saturated zone and (c) surface water studies. This research contributes to the determination of groundwater recharge by investigating the infiltration of groundwater through the unsaturated zone. The investigations are conducted through the application of a combination of different pilot field as well as lab techniques. The field techniques include the installation of specially designed Time Domain Reflectometry (TDR) sensors, at different depths within the unsaturated zone for in-situ and continuous measurements of the volumetric pore water content. Additionally, the extraction of pore water -for analysis of its isotopic composition- from multilevel undisturbed soil samples through significant depths within the unsaturated zone column, enables the dating of the groundwater age through the determination of its isotopic composition. The in-situ investigation of the unsaturated zone is complemented by the determination of high resolution temperature profiles. The installation of the pilot TDR sensors is achieved by using direct push methods at significant depths within the unsaturated zone, providing continuous readings of the soil moisture content. The direct push methods are also ideal for multilevel sampling of undisturbed -without using any drilling fluids which affect the isotopic composition of the containing pore water- soil and consequent extraction of the included pore water for further isotopic determination. The pore water is extracted by applying the method of azeotropic distillation; a method which has the least isotopic fractionation effects on groundwater samples. The determination of different isotopic signals such as 18O, 2H, 3H, and 36Cl, aims to the investigation of groundwater transit

  17. U Isotope Systematics on Groundwaters from Southwestern France : Mixing Processes and Residence Times

    Science.gov (United States)

    Innocent, C.; Malcuit, E.; Négrel, P.

    2011-12-01

    The Eocene Sands Aquifer of the Aquitanian Basin (Southwestern France) has been extensively studied for its hydrology, hydrogeochemistry and also for stable isotopes (André, 2002; André et al., 2005). 14C dates were also obtained in the southern part of the aquifer (André, 2002). Recently, in the framework of the CARISMEAU research project (Négrel et al., 2007), groundwaters have been analyzed for their U activity ratio in order to put some constraints on their residence time in the aquifer. A excellent correlation has been found between 234U/238U ratios (which can be as high as 13.5) and 14C dates, which allowed to propose residence times for the analyzed groundwaters at the scale of the whole aquifer (including the city of Bordeaux and its suburb) (Innocent and Négrel, 2008; submitted). The second step of the CARISMEAU research project (CARISMEAU 2) now focusses on the restricted "Entre-Deux-Mers" area. New groundwaters have been recovered and analyzed for their U isotopic composition. As for previous data, U activity ratios are typically very high, ranging from 2.9 to 8.6. Owing to additional 14C ages from the northern part of the aquifer, it is shown that most of the measured uranium activity ratios correlate with these 14C dates and fall on or close to the straight line defined previously (see above). As a consequence, residence times derived from U isotopic compositions fairly agree with 14C data, with only one exception from a groundwater which plots apart from the correlation line. Pumping tests have been done at a selected site (EMZM 7), involving pumping times of 1 hour, 8 hours and 16 hours. For each pumping time, waters have been recovered at different, increasing pumping rates of 80 m3 per hour, 120 m3 per hour, 160 m3 per hour, and 120 m3 per hour. The chemical composition of these twelve waters has not been found to vary significantly. Uranium activities are constant for ten of the twelve groundwaters (around 6.5, with a U concentration around

  18. Dating method by fission tracks: some Brazilian examples

    International Nuclear Information System (INIS)

    Fonseca, Ariadne do Carmo

    1996-01-01

    The Fission Track method (TF) complements the dating of a interval of tectonic events occurred in low temperatures not detected by another radiometric methods. In the South part of Craton of Sao Francisco the dating of apatites of archaean rocks produced ages TF between 900 and 500 Ma, reflecting the progressive acting of the Brazilian margin mobile belts in the archaean craton areas. Apatite of some igneous and metamorphic rocks of the Braziliana age, in the Faixa Ribeira segment, between the Rio de Janeiro and Salvador cities, produced TF ages between 140 and 80 Ma. The basaltic and alkaline volcanism related to the Atlantic Ocean opening dated from this interval. The TF dating in apatites of the continental margin rocks allowed to date the event. In the Cabo Frio region (Southeastern part of Rio de Janeiro State), titanite and apatite of the Transamazonic orthognaisses produced TF dates between 190 and 80 to 40 Ma. The age around 190 Ma date previously the rift formation precursor of the South Atlantic Ocean opening, while the ages between 80 and 40 Ma were related to the alkaline rocks intrusion. The examples mentioned demonstrate the event diversity which may be dated by the Fission Tracks method, mainly in the craton area and margin belts study

  19. Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination

    Science.gov (United States)

    Jasechko, Scott; Perrone, Debra; Befus, Kevin M.; Bayani Cardenas, M.; Ferguson, Grant; Gleeson, Tom; Luijendijk, Elco; McDonnell, Jeffrey J.; Taylor, Richard G.; Wada, Yoshihide; Kirchner, James W.

    2017-06-01

    The vulnerability of groundwater to contamination is closely related to its age. Groundwaters that infiltrated prior to the Holocene have been documented in many aquifers and are widely assumed to be unaffected by modern contamination. However, the global prevalence of these `fossil' groundwaters and their vulnerability to modern-era pollutants remain unclear. Here we analyse groundwater carbon isotope data (12C, 13C, 14C) from 6,455 wells around the globe. We show that fossil groundwaters comprise a large share (42-85%) of total aquifer storage in the upper 1 km of the crust, and the majority of waters pumped from wells deeper than 250 m. However, half of the wells in our study that are dominated by fossil groundwater also contain detectable levels of tritium, indicating the presence of much younger, decadal-age waters and suggesting that contemporary contaminants may be able to reach deep wells that tap fossil aquifers. We conclude that water quality risk should be considered along with sustainable use when managing fossil groundwater resources.

  20. Isotope Hydrology Investigation of Zonguldak And Province Groundwater

    International Nuclear Information System (INIS)

    Erduran, B.; Toerk, K.; Oektue, G.

    2002-01-01

    The most important coal area of Turkey is situated in Zonguldak and province. The coal series occurred during Westfalien (Carboniferous) are lower-bounded by Visean aged karstic limestones and upper-bounded by Aptian-Barremian aged karstic limestones. The isotope hydrology, which consists one of the studies dealed with karst hydrogeology, was held to determine the groundwater relations between the karstic limestones adjacent to the coal layers located in the Zonguldak coal mine areas. Environmental isotope samples were collected in the basin during 1994 - 1995 period, from the surface and groundwater. Deuterium ( 2 H), Oxygen 18 ( 18 O) and Tritium ( 3 H) analysis were carried out on the samples. Recharge elevation, water origin and transit time of the groundwater system were determined with the evaluation of the analysis results. Waters encountered in the area are of marine origined rainfall, recharging at an elevation of 400-500 meters and consisting of shallow and deep circulation systems. Groundwater that intruding the coal mine galleries, have a short flow period and are recharged from recent precipitations

  1. Difficulty in assessing low 3H, 14C and 36Cl concentrations in old groundwaters and its implication for groundwater dating - ANDRA 2007/2008 drilling program (Meuse/Haute-Marne)

    International Nuclear Information System (INIS)

    Jean-Baptiste, P.; Fourre, E.; Dapoigny, A.; Michelot, J.L.; Massault, M.; Noret, A.; Rebeix, R.; Le Gal La Salle, C.; Aquilina, L.; Labasque, T.; Vinsot, A.

    2010-01-01

    Document available in extended abstract form only. In 2007-2008, the French Nuclear Waste Agency (Andra) carried out a drilling campaign in the vicinity of its underground laboratory of Bure (Meuse/Haute-Marne), over an area of ∼400 km 2 . The objective was to obtain a detailed description of the geophysical, geological and transport properties of the 150 m thick Callovo-Oxfordian (COx) clay layer in order to check the homogeneity of this geological formation which is potentially suitable for establishing a nuclear waste deep repository. As part of this program, water samples were taken from the two limestone formations adjacent to the COx, to analyse the geochemical and isotopic characteristics of these two deep aquifers and investigate their interactions with the COx layer. Multiple permeable layers were identified in the thickness of the carbonate formations which offered the very interesting opportunity to investigate groundwater circulation in individual permeable layers within the aquifer. As the age of these groundwaters is clearly beyond the detection limit for tritium and also presumably for radiocarbon, the analysis of both tracers was designed as a check of the quality of the samples and possible mixing with younger waters within the boreholes. Besides, CFC and SF 6 samples were collected in the same purpose. Tritium was measured at the LSCE-Saclay noble gas facility using helium-3 mass spectrometry, with a limit of detection limit of 0.1 TU (the detection limit is defined as the minimum concentration of a substance being analyzed that has a 99 percent probability of being identified, thus corresponding to 3-sigma at the blank level). The radiocarbon samples were prepared at IDES (Orsay) and measured by Accelerator Mass Spectrometry at LMC14 (Saclay, Artemis facility, INSU national service). The detection limit was usually lower than 0.2 pmC, corresponding to a radiocarbon apparent age of ∼50 Kyr. CFC and SF 6 were measured at Geosciences

  2. Seasonal forecasting of groundwater levels in natural aquifers in the United Kingdom

    Science.gov (United States)

    Mackay, Jonathan; Jackson, Christopher; Pachocka, Magdalena; Brookshaw, Anca; Scaife, Adam

    2014-05-01

    Groundwater aquifers comprise the world's largest freshwater resource and provide resilience to climate extremes which could become more frequent under future climate changes. Prolonged dry conditions can induce groundwater drought, often characterised by significantly low groundwater levels which may persist for months to years. In contrast, lasting wet conditions can result in anomalously high groundwater levels which result in flooding, potentially at large economic cost. Using computational models to produce groundwater level forecasts allows appropriate management strategies to be considered in advance of extreme events. The majority of groundwater level forecasting studies to date use data-based models, which exploit the long response time of groundwater levels to meteorological drivers and make forecasts based only on the current state of the system. Instead, seasonal meteorological forecasts can be used to drive hydrological models and simulate groundwater levels months into the future. Such approaches have not been used in the past due to a lack of skill in these long-range forecast products. However systems such as the latest version of the Met Office Global Seasonal Forecast System (GloSea5) are now showing increased skill up to a 3-month lead time. We demonstrate the first groundwater level ensemble forecasting system using a multi-member ensemble of hindcasts from GloSea5 between 1996 and 2009 to force 21 simple lumped conceptual groundwater models covering most of the UK's major aquifers. We present the results from this hindcasting study and demonstrate that the system can be used to forecast groundwater levels with some skill up to three months into the future.

  3. Investigation of radionuclides and anthropic tracer migration in groundwater at the Chernobyl site

    Science.gov (United States)

    Le Gal La Salle, Corinnne; Simonucci, Caroline; Roux, Céline; Bugai, Dmitry; Aquilina, Luc; Fourré, Elise; Jean-Baptiste, Philippe; Labasque, Thierry; Michelot, Jean-Luc; Fifield, Keith; Team Aster Team; Van Meir, Nathalie; Kashparov, Valeriy; Diez, Olivier; Bassot, Sylvain; Lancelot, Joel

    2013-04-01

    Following the reactor 4 explosion of the Chernobyl Nuclear Power Plant (ChNPP), at least 1019 Bq of radionuclides (RN) were released in the environment. In order to protect workers and prevent further atmospheric RN dispersion in the area adjacent to the ChNPP, contaminated wastes including fuel particles, topsoil layer and forest remains were buried in approximately 800 shallow trenches in the sand formation in the Red Forest waste dump site [1]. No containment measures were taken, and since then RN have leaked to the unsaturated zone and to the groundwater. Since 1999, migration of RN in the vicinity of the trench 22 at Red Forest site has been investigated within the frame of the EPIC program carried out by IRSN in collaboration with UIAR and IGS [2, 3]. A plume of 90Sr was shown downgradient from the trench 22 with activites reaching 3750 Bq/L [2]. In 2008, further studies were initiated through the TRASSE research group, based on a collaboration between IRSN and CNRS. These programs aim at combining groundwater dating with RN migration monitoring studies in order to constrain RN transport models [3]. Groundwater residence time was investigated based on 3H/He and CFC. Both tracers led to ages ranging from modern (1-3 y) at 2 m depth below the groundwater table to significantly higher apparent ages of 50-60 y at 27 m below the groundwater table [3]. 36Cl/Cl ratios 2 to 4 orders of magnitude higher than the theoretical natural ratio are measured in groundwater. Similarly, SF6 shows concentrations as high as 1200 pptv while natural concentrations are in the order of 6-7 pptv. Based on apparent groundwater ages, both contaminations are linked to the Chernobyl explosion. Hence those tracers show excellent potential to constrain conservative and reactive transport, respectively. In contrast, 238U/235U ratio down gradient from trench 22 remains similar to the natural ratio. This suggests that either most of the U contained in the trench is in a non soluble form

  4. Groundwater sampling with well-points

    International Nuclear Information System (INIS)

    Laubacher, R.C.; Bailey, W.M.

    1992-01-01

    This paper reports that BP Oil Company and Engineering-Science (ES) conducted a groundwater investigation at a BP Oil Distribution facility in the coastal plain of south central Alabama. The predominant lithologies include unconsolidated Quaternary-aged gravels, sands, silts and clay. Wellpoints were used to determine the vertical and horizontal extent of volatile hydrocarbons in the water table aquifer. To determine the vertical extent of contaminant migration, the hollow-stem augers were advanced approximately 10 feet into the aquifer near a suspected source. The drill stem and bit were removed very slowly to prevent sand heaving. The well-point was again driven ahead of the augers and four volumes (18 liters) of groundwater were purged. A sample was collected and the headspace vapor was analyzed as before. Groundwater from a total of seven borings was analyzed using these techniques. Permanent monitoring wells were installed at four boring locations which had volatile concentrations less than 1 part per million. Later groundwater sampling and laboratory analysis confirmed the wells had been installed near or beyond both the horizontal and vertical plume boundaries

  5. Groundwater recharge estimates in the Athabasca and Cold Lake oil sands areas

    International Nuclear Information System (INIS)

    MacMillan, G.J.; Smith, A.D.

    2009-01-01

    Groundwater recharge estimates for the Cold Lake and Athabasca oil sands region were presented. New oil sands projects planned for the future will require approximately 150,000 m 3 per day of groundwater. Regulators and public agencies are now investigating the potential impacts of oil sands operations on both shallow groundwater and surface water in the region. Maximum yields from the aquifers are also being estimated. Measurements are currently being taken to determine transmissivity, hydraulic pressure, storage potential and leakage. Numerical models are currently used to determine saturated zone recharge estimates and water table fluctuations. Isotope tracers are also being used to determine where groundwater flow potential is vertical as well as to determine correction factors for hydrogeological and geochemical conditions at each site. Darcy's Law is used to determine heat flow in the groundwater aquifers. To date, the studies have demonstrated that drilling fluids have been recovered at groundwater sites. Wells are often installed near water supply and supply well networks. It was concluded that new water wells will need to be completed at various depths. Data were presented for aquifers and nest wells. refs., tabs., figs

  6. Simulations of groundwater flow, transport, and age in Albuquerque, New Mexico, for a study of transport of anthropogenic and natural contaminants (TANC) to public-supply wells

    Science.gov (United States)

    Heywood, Charles E.

    2013-01-01

    Vulnerability to contamination from manmade and natural sources can be characterized by the groundwater-age distribution measured in a supply well and the associated implications for the source depths of the withdrawn water. Coupled groundwater flow and transport models were developed to simulate the transport of the geochemical age-tracers carbon-14, tritium, and three chlorofluorocarbon species to public-supply wells in Albuquerque, New Mexico. A separate, regional-scale simulation of transport of carbon-14 that used the flow-field computed by a previously documented regional groundwater flow model was calibrated and used to specify the initial concentrations of carbon-14 in the local-scale transport model. Observations of the concentrations of each of the five chemical species, in addition to water-level observations and measurements of intra-borehole flow within a public-supply well, were used to calibrate parameters of the local-scale groundwater flow and transport models. The calibrated groundwater flow model simulates the mixing of “young” groundwater, which entered the groundwater flow system after 1950 as recharge at the water table, with older resident groundwater that is more likely associated with natural contaminants. Complexity of the aquifer system in the zone of transport between the water table and public-supply well screens was simulated with a geostatistically generated stratigraphic realization based upon observed lithologic transitions at borehole control locations. Because effective porosity was simulated as spatially uniform, the simulated age tracers are more efficiently transported through the portions of the simulated aquifer with relatively higher simulated hydraulic conductivity. Non-pumping groundwater wells with long screens that connect aquifer intervals having different hydraulic heads can provide alternate pathways for contaminant transport that are faster than the advective transport through the aquifer material. Simulation of

  7. California GAMA Special Study. Development of a Capability for the Analysis of Krypton-85 in Groundwater Samples

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Ate [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bibby, Richard K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moran, Jean E. [California State Univ. (CalState), Long Beach, CA (United States); Singleton, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-01

    A capability for the analysis of krypton-85 (85Kr) in groundwater samples was developed at LLNL. Samples are collected by extracting gas from 2000-4000 L of groundwater at the well, yielding approximately 0.2 cm3 STP krypton. Sample collection takes 1 to 4 hours. Krypton is purified in the laboratory using a combination of molecular sieve and activated charcoal traps, and transferred to a liquid scintillation vial. The 85Kr activity is measured by liquid scintillation on a Quantulus 1220 liquid scintillation counter from PerkinElmer. The detection limit for a typical 0.2 cm3Kr sample size is 11% of the present day activity in air, corresponding to the decay corrected activity in air in 1987. The typical measurement uncertainty is below 10% for recently recharged samples. Six groundwater samples were collected, purified and counted. 85Kr was not detected in any of the samples counted at LLNL. 85Kr was detected by the low level counting laboratory of Bern University in all samples between 1.5 and 6.6 decays per minute per cm3 krypton, corresponding to decay corrected activities in air between 1971 and 1985. The new capability is an excellent complement to tritium-helium, expanding the existing suite of age dating tools available to the GAMA program (35S, 3H/3He, 14C and radiogenic helium). 85Kr can replace 3H/3He in settings where 3H/3He ages are impossible to determine (for example where terrigenic helium overwhelms tritiogenic helium) and provides additional insight into travel time distributions in complex mixed groundwater systems.

  8. Integration of ground-water and vadose-zone geochemistry to investigate hydrochemical evolution

    International Nuclear Information System (INIS)

    Fisher, R.S.; Mullican, W.F.

    1990-01-01

    This paper summarizes the results of an extensive groundwater-sampling program conducted in the Hueco Bolson and Diablo Plateau area of West Texas. The origin, hydrochemical evolution, and age of groundwater in arid lands of Trans-Pecos Texas were investigated by combining mineralogic analyses of soils and aquifer matrix, chemical analyses of readily soluble materials in soils and water extracted from the thick, unsaturated zone, and chemical and isotopic analyses of groundwater from three principal aquifers, the Diablo Plateau, Hueco Bolson, and Rio Grande alluvial aquifers. Repeated groundwater sampling over a 3-year period and quarterly sampling of selected wells revealed no significant short-term chemical or isotopic variability. Groundwater ages range from recent to nearly 28,000 years; the distribution of ages reflects relative permeability (transmissivity) of the aquifers. Most groundwaters evolve from calcium-bicarbonate to sodium-sulfate types because of carbonate and sulfate mineral dissolution coupled with exchange of aqueous calcium and magnesium for sodium on clay minerals. Water in the Rio Grande alluvial aquifer evolved to a sodium-chloride type as a result of extensive evapotranspiration on irrigated fields. The appendices list detailed results of field measurements of temperature, pH, Eh, dissolved oxygen, and major ion concentrations

  9. Nitrate in Danish groundwater during the last 60 years

    DEFF Research Database (Denmark)

    Hansen, B; Thorling, L; Dalgaard, Tommy

    2011-01-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribut......This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis...... of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first...... two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater (see Figure 1). Regulation and technical improvements in the intensive farming in Denmark...

  10. A Multi-Methodology for improving Adelaide's Groundwater Management

    Science.gov (United States)

    Batelaan, Okke; Banks, Eddie; Batlle-Aguilar, Jordi; Breciani, Etienne; Cook, Peter; Cranswick, Roger; Smith, Stan; Turnadge, Chris; Partington, Daniel; Post, Vincent; Pool Ramirez, Maria; Werner, Adrian; Xie, Yueqing; Yang, Yuting

    2015-04-01

    Groundwater is a strategic and vital resource in South Australia playing a crucial role in sustaining a healthy environment, as well as supporting industries and economic development. In the Adelaide metropolitan region ten different aquifer units have been identified, extending to more than 500 m below sea level. Although salinity within most of these aquifers is variable, water suitable for commercial, irrigation and/or potable use is predominantly found in the deeper Tertiary aquifers. Groundwater currently contributes only 9000 ML/yr of Adelaide's total water consumption of 216,000 ML, while in the Northern Adelaide Plains 17000 ML/yr is used. However, major industries, market gardeners, golf courses, and local councils are highly dependent on this resource. Despite recent rapid expansion in managed aquifer recharge, and the potential for increased extraction of groundwater, particularly for the commercial and irrigation supplies, little is known about the sources and ages of Adelaide's groundwater. The aim of this study is therefore to provide a robust conceptualisation of Adelaide's groundwater system. The study focuses on three important knowledge gaps: 1. Does groundwater flow from the Adelaide Hills into the sedimentary aquifers on the plains? 2. What is the potential for encroachment of seawater if groundwater extraction increases? 3. How isolated are the different aquifers, or does water leak from one to the other? A multi-tool approach has been used to improve the conceptual understanding of groundwater flow processes; including the installation of new groundwater monitoring wells from the hills to the coast, an extensive groundwater sampling campaign of new and existing groundwater wells for chemistry and environmental tracers analysis, and development of a regional scale numerical model rigorously tested under different scenario conditions. The model allows quantification of otherwise hardly quantifiable quantities such as flow across fault zones and

  11. Groundwater sustainability in Central Australia studied using chlorine-36

    International Nuclear Information System (INIS)

    Cresswell, R.G.; Fifield, L.K.; Jacobson, G.

    1998-01-01

    The sustainability of Aboriginal community water supplies in arid Central Australia has been evaluated using the radioisotope chlorine-36 as a tracer within groundwaters to indicate the age of waters being tapped by local bores. Shallow regional groundwaters from fractured sandstones of the Ngalia Basin, fractured metamorphic rocks and Cainozoic sands and gravels show a bimodal distribution of 36 Cl ratios. The higher ratio probably represents modern (Holocene) recharge diluted with windblown salts from local playa lakes and is seen in bores around the margin. The lower ratio corresponds to a 36 Cl age of 80-100ka, implying that the last major recharge occurred during the last interglacial. These values are mainly observed in the interior of the basin, and are believed to be minimum ages for most of the shallow groundwaters in this region. Substantial recharge only appears to occur during favourable interglacial climatic regimes. Most community water supplies depend on these waters. (authors)

  12. Using multiple chemical indicators to characterize and determine the age of groundwater from selected vents of the Silver Springs Group, central Florida, USA

    Science.gov (United States)

    Knowles, Leel; Katz, Brian G.; Toth, David J.

    2010-12-01

    The Silver Springs Group, Florida (USA), forms the headwaters of the Silver River and supports a diverse ecosystem. The 30 headwater springs divide into five subgroups based on chemistry. Five selected spring vents were sampled in 2007 to better understand the contaminant sources and groundwater flow system. Elevated nitrate-N concentrations (>0.8 mg/L) in the five spring vents likely originate from inorganic (fertilizers) and organic sources, based on nitrogen and oxygen isotope ratios of nitrate. Evidence for denitrification in the Lost River Boil spring includes enriched δ15N and δ18O, excess N2 gas, and low dissolved O2 concentrations (data (SF6, 3H, tritiogenic 3He) for the two uppermost springs (Mammoth East and Mammoth West) indicate a binary mixture dominated by recent recharge water (mean age 6-7 years, and 87-97% young water). Tracer data for the three downstream spring vents (Lost River Boil, Catfish Hotel-1, and Catfish Conventional Hall-1) indicate exponential mixtures with mean ages of 26-35 years. Contamination from non-atmospheric sources of CFCs and SF5CF3 precluded their use as age tracers here. Variations in chemistry were consistent with mean groundwater age, as nitrate-N and dissolved O2 concentrations were higher in younger waters, and the Ca/Mg ratio decreased with increasing mean age.

  13. Quarterly report of RCRA groundwater monitoring data for period April 1, 1993 through June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jungers, D.K.

    1993-10-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control (QC) oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between May 24 and August 20, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from samples collected during the April through June quarter but also data from earlier sampling events that were not previously reported.

  14. Tritium-helium 3 dating under complex conditions in hydraulically stressed areas of a buried-valley aquifer

    Science.gov (United States)

    Shapiro, Stephanie Dunkle; Rowe, Gary L.; Schlosser, Peter; Ludin, Andrea; Stute, Martin

    1998-01-01

    The 3H-3He dating method is applied in a buried-valley aquifer near Dayton, Ohio. The study area is large, not all sampling locations lie along well-defined flow paths, and existing wells with variable screen lengths and diameters are used. Reliable use of the method at this site requires addressing several complications: (1) The flow system is disturbed because of high pumping rates and induced infiltration; (2) tritium contamination is present in several areas of the aquifer; and (3) radiogenic helium concentrations are elevated in a significant number of the wells. The 3H-3He ages are examined for self-consistency by comparing the reconstructed tritium evolution to the annual weighted tritium measured in precipitation; deviations result from dispersion, tritium contamination, and mixing. 3H-3He ages are next examined for consistency with chlorofluorocarbon ages; the agreement is poor because of degradation of CFCs. Finally, the 3H-3He ages are examined for consistency with the current understanding of local hydrologic processes; the ages are generally supported by hydrogeologic data and the results of groundwater flow modeling coupled with particle-tracking analyses.

  15. Dating of cremated bones

    OpenAIRE

    Lanting, JN; Aerts-Bijma, AT; van der Plicht, J; Boaretto, E.; Carmi, I.

    2001-01-01

    When dating unburnt bone, bone collagen, the organic fraction of the bone, is used. Collagen does not survive the heat of the cremation pyre, so dating of cremated bone has been considered impossible. Structural carbonate in the mineral fraction of the bone, however, survives the cremation process. We developed a method of dating cremated bone by accelerator mass spectrometry (AMS), using this carbonate fraction. Here we present results for a variety of prehistoric sites and ages, showing a r...

  16. Estimation of groundwater residence time and evaluation of geomorphological processes using cosmogenic and terrigenic radionuclides and isotopes of noble gases

    International Nuclear Information System (INIS)

    Mahara, Yasunori; Ohta, Tomoko; Igarashi, Toshifumi

    2013-01-01

    In this paper, the estimation of groundwater residence time and geomorphological changing processes are discussed by focusing on isotopes of noble gases and radionuclides with a long half-life as an environmental tracer. Noble gases and radionuclides are produced in the atmospheric air and terrestrial rocks by spallation and various muon reactions during cosmic rays irradiation. Groundwater dating and geomorphological changing are estimated from changes in the number of atoms of cosmogenic and terrigenic nuclides in groundwater and terrestrial rock. The main tools of groundwater dating are combination of the dissolved helium and tritium (half-life T 1/2 =12.3 y) for younger groundwater less than 60 years of residence time, and of the dissolved helium and 36 Cl (T 1/2 =3.01 x 10 5 y) for older groundwater over million years. On the other hand, the main tools on the geomorphological changes are the estimation of exposure time using cosmogenic radionuclides ( 10 Be(half-life T 1/2 =1.6 x 10 6 y), 14 C (T 1/2 =5730 y), 26 Al (T 1/2 =7.16 x 10 5 y) and 36 Cl) and cosmogenic stable noble gases ( 3 He and 21 Ne) produced in rock. (author)

  17. Quaternary dating methods

    International Nuclear Information System (INIS)

    Mahaney, W.C.

    1984-01-01

    The papers in this book cover absolute, relative and multiple dating methods, and have been written by specialists from a number of different earth sciences disciplines - their common interest being the dating of geological materials within the Quaternary. Papers on absolute dating methods discuss radiocarbon, uranium-series, potassium argon, 40 Ar/ 39 Ar, paleomagnetic, obsidian hydration, thermoluminescence, amino acid racemization, tree rings, and lichenometric techniques. Those on relative dating include discussions on various geomorphic relative age indicators such as drainage density changes, hypsometric integrals, bifurcation ratios, stream junction angles, spur morphology, hillslope geometry, and till sheet characteristics. The papers on multiple dating cite examples from the Rocky Mountains, Australia, Lake Agassiz Basin, and the Southern Andes. Also included is the panel discussion which reviews and assesses the information presented, and a field trip guide which discusses the sequences of Wisconian tills and interlayered lacustrine and fluvial sediments. (orig.)

  18. Environmental isotope and hydrochemical investigation of Bauru and Botucatu groundwaters, Parana basin, Brazil

    International Nuclear Information System (INIS)

    Kimmelmann, A.

    1991-06-01

    A combined hydrogeochemical and environmental isotope investigation is being carried out in the Bauru- and Botucatu groundwaters. Based on former isotope data, the 2 H/ 18 O-, 3 H-, 13 C-, 14 C- and 3 He/ 4 He-contents of representative groundwaters out from the Bauru- and Botucatu-aquifer are now investigated to reveal a possible interaction of the groundwater systems and to correlate 14 C-groundwater residence times with groundwater ages derived from other isotope methods. (author)

  19. Recharge sources and residence times of groundwater as determined by geochemical tracers in the Mayfield Area, southwestern Idaho, 2011–12

    Science.gov (United States)

    Hopkins, Candice B.

    2013-01-01

    Parties proposing residential development in the area of Mayfield, Idaho are seeking a sustainable groundwater supply. During 2011–12, the U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, used geochemical tracers in the Mayfield area to evaluate sources of aquifer recharge and differences in groundwater residence time. Fourteen groundwater wells and one surface-water site were sampled for major ion chemistry, metals, stable isotopes, and age tracers; data collected from this study were used to evaluate the sources of groundwater recharge and groundwater residence times in the area. Major ion chemistry varied along a flow path between deeper wells, suggesting an upgradient source of dilute water, and a downgradient source of more concentrated water with the geochemical signature of the Idaho Batholith. Samples from shallow wells had elevated nutrient concentrations, a more positive oxygen-18 signature, and younger carbon-14 dates than deep wells, suggesting that recharge comes from young precipitation and surface-water infiltration. Samples from deep wells generally had higher concentrations of metals typical of geothermal waters, a more negative oxygen-18 signature, and older carbon-14 values than samples from shallow wells, suggesting that recharge comes from both infiltration of meteoric water and another source. The chemistry of groundwater sampled from deep wells is somewhat similar to the chemistry in geothermal waters, suggesting that geothermal water may be a source of recharge to this aquifer. Results of NETPATH mixing models suggest that geothermal water composes 1–23 percent of water in deep wells. Chlorofluorocarbons were detected in every sample, which indicates that all groundwater samples contain at least a component of young recharge, and that groundwater is derived from multiple recharge sources. Conclusions from this study can be used to further refine conceptual hydrological models of the area.

  20. Precise Surface Exposure Dating of Early Holocene and Little Ice Age Moraines in the Cordillera Vilcabamba of Southern Peru

    Science.gov (United States)

    Licciardi, J. M.; Schaefer, J. M.; Lund, D. C.; Taggart, J. R.

    2008-12-01

    We have established precise ages of two glacial events in the tropical Andean highlands of southern Peru. The field site is located on the flanks of Nevado Salcantay (6271 m asl; 13°20'S latitude), the highest peak in the Cordillera Vilcabamba. A two-fold sequence of nested lateral and end moraines was mapped in a glacial trough emanating from the south face of Salcantay. Well-defined outer and inner moraines were deposited by valley glaciers that terminated 5 km and 3 km, respectively, from their head on the Salcantay massif. Cosmogenic 10Be surface exposure dating of boulders on the outer (n = 7) and inner (n = 7) moraine crests expands upon initial age control for these deposits and improves substantially on the precision of earlier 10Be measurements. The new results yield mean ages of 9.0 ± 0.3 ka for the outer moraine and 195 ± 24 years for the inner moraine, corresponding to glacial events during the early and latest Holocene. These ages are derived using the CRONUS-Earth 10Be exposure age calculator with Lal-Stone production rate scaling and the default height-pressure relationship. The inner moraine age correlates with the timing of the Little Ice Age as defined from northern mid- and high latitude records, and indicates considerable expansion of glaciers heading on Nevado Salcantay during this climatic minimum. Recent geomorphic mapping has identified similar sequences of moraines in adjacent drainages on and near Salcantay, suggesting a broader regional signal of two prominent Holocene glacial events in this segment of the southern Peruvian Andes; 10Be dating of these additional moraines is underway. Our new glacier chronologies complement ice core and lacustrine paleoclimate records in the vicinity, thereby increasing spatial and temporal coverage for identifying patterns of climate change in the tropical Andes during the Holocene. Apart from their paleoclimatic significance, the results also demonstrate a newly- developed capability of 10Be exposure

  1. Integrated Assessment Of Groundwater Recharge In The North Kelantan River Basin Using Environmental Water Stable Isotopes, Tritium And Chloride Data

    International Nuclear Information System (INIS)

    Wan Zakaria Wan Muhamad Tahir; Nur Hayati Hussin; Ismail Yusof; Kamaruzaman Mamat; Johari Abdul Latif; Rohaimah Demanah

    2014-01-01

    occurring after 1953. Groundwater age data together with other additional information related to the wells bore could then be applied to translate into semi-qualitative estimation of long term average groundwater recharge rate within the aquifer system (mm/y). Environmental isotopic data suggest recharge rate in a range 11 mm/y to 1270 mm/y with an average of 261.5 mm/y that corresponds to 10.5 % of the total annual rainfall. Recharge estimation obtained by isotopic approach was found smaller than the amount of recharge rates calculated based on CMB methodology in the unsaturated zone ranged between 155 mm/y to 966 mm/year. These data correspond to the average of 484.3 mm/y or 19.4 % of the total effective annual rainfall. Spatial variation of the predicted groundwater recharge map from tritium dating method is established in this preliminary study. Accurate estimation of groundwater recharge and further assessment of its source are useful and recommended for proper sustainable management and utilization of groundwater resources in this basin. (author)

  2. Residence time, chemical and isotopic analysis of nitrate in the groundwater and surface water of a small agricultural watershed in the Coastal Plain, Bucks Branch, Sussex County, Delaware

    Science.gov (United States)

    Clune, John W.; Denver, Judith M.

    2012-01-01

    Nitrate is a common contaminant in groundwater and surface water throughout the Nation, and water-resource managers need more detailed small-scale watershed research to guide conservation efforts aimed at improving water quality. Concentrations of nitrate in Bucks Branch are among the highest in the state of Delaware and a scientific investigation was performed to provide water-quality information to assist with the management of agriculture and water resources. A combination of major-ion chemistry, nitrogen isotopic composition and age-dating techniques was used to estimate the residence time and provide a chemical and isotopic analysis of nitrate in the groundwater in the surficial aquifer of the Bucks Branch watershed in Sussex County, Delaware. The land use was more than 90 percent agricultural and most nitrogen inputs were from manure and fertilizer. The apparent median age of sampled groundwater is 18 years and the estimated residence time of groundwater contributing to the streamflow for the entire Bucks Branch watershed at the outlet is approximately 19 years. Concentrations of nitrate exceeded the U.S. Environmental Protection Agency drinking-water standard of 10 milligrams per liter (as nitrogen) in 60 percent of groundwater samples and 42 percent of surface-water samples. The overall geochemistry in the Bucks Branch watershed indicates that agriculture is the predominant source of nitrate contamination and the observed patterns in major-ion chemistry are similar to those observed in other studies on the Mid-Atlantic Coastal Plain. The pattern of enrichment in nitrogen and oxygen isotopes (δ15N and δ18O) of nitrate in groundwater and surface water indicates there is some loss of nitrate through denitrification, but this process is not sufficient to remove all of the nitrate from groundwater discharging to streams, and concentrations of nitrate in streams remain elevated.

  3. A Black Hills-Madison Aquifer origin for Dakota Aquifer groundwater in northeastern Nebraska.

    Science.gov (United States)

    Stotler, Randy; Harvey, F Edwin; Gosselin, David C

    2010-01-01

    Previous studies of the Dakota Aquifer in South Dakota attributed elevated groundwater sulfate concentrations to Madison Aquifer recharge in the Black Hills with subsequent chemical evolution prior to upward migration into the Dakota Aquifer. This study examines the plausibility of a Madison Aquifer origin for groundwater in northeastern Nebraska. Dakota Aquifer water samples were collected for major ion chemistry and isotopic analysis ((18)O, (2)H, (3)H, (14)C, (13)C, (34)S, (18)O-SO(4), (87)Sr, (37)Cl). Results show that groundwater beneath the eastern, unconfined portion of the study area is distinctly different from groundwater sampled beneath the western, confined portion. In the east, groundwater is calcium-bicarbonate type, with delta(18)O values (-9.6 per thousand to -12.4 per thousand) similar to local, modern precipitation (-7.4 per thousand to -10 per thousand), and tritium values reflecting modern recharge. In the west, groundwater is calcium-sulfate type, having depleted delta(18)O values (-16 per thousand to -18 per thousand) relative to local, modern precipitation, and (14)C ages 32,000 to more than 47,000 years before present. Sulfate, delta(18)O, delta(2)H, delta(34)S, and delta(18)O-SO(4) concentrations are similar to those found in Madison Aquifer groundwater in South Dakota. Thus, it is proposed that Madison Aquifer source water is also present within the Dakota Aquifer beneath northeastern Nebraska. A simple Darcy equation estimate of groundwater velocities and travel times using reported physical parameters from the Madison and Dakota Aquifers suggests such a migration is plausible. However, discrepancies between (14)C and Darcy age estimates indicate that (14)C ages may not accurately reflect aquifer residence time, due to mixtures of varying aged water.

  4. Interstellar Reddening Effect on the Age Dating of Population II Stars

    Directory of Open Access Journals (Sweden)

    Sergio Ortolani

    2017-06-01

    Full Text Available The age measurement of the stellar halo component of the Galaxy is based mainly on the comparison of the main sequence turn-off luminosity of the globular cluster (GC stars with theoretical isochrones. The standard procedure includes a vertical shift, in order to account for the distance and extinction to the cluster, and a horizontal one, to compensate the reddening. However, the photometry is typically performed with broad-band filters where the shape of the stellar spectra introduces a shift of the effective wavelength response of the system, dependent on the effective temperature (or color index of the star. The result is an increasing distortion—actually a rotation and a progressive compression with the temperature—of the color-magnitude diagrams relatively to the standard unreddened isochrones, with increasing reddening. This effect is usually negligible for reddening E ( B - V on the order of or smaller than 0.15, but it can be quite relevant at larger extinction values. While the ratio of the absorption to the reddening is widely discussed in the literature, the importance of the latter effect is often overlooked. In this contribution, we present isochron simulations and discuss the expected effects on age dating of high-reddening globular clusters.

  5. A Multi-Tracer Approach to Characterize Sources and Transport of Nitrate in Groundwater in Mantled Karst, Northern Florida

    Science.gov (United States)

    Katz, B. G.; Bohlke, J.; Hornsby, D.

    2001-05-01

    artificial fertilizer/manure. Dampened nitrate trends in springwaters in both counties, relative to trends in estimated N inputs, likely were related to ages of groundwater discharging from springs that are on the order of decades (10-30 years), based on 3H/3He and CFC age-dating techniques.

  6. Middle School Students' Aggressive Reactions to Dating Situations

    Science.gov (United States)

    Prospero, Moises

    2006-01-01

    The present study investigated age differences in reactions to the perceptions of dating violence using both qualitative and quantitative research methods. Focus groups were conducted to develop age and culturally appropriate questionnaires for each age group (college and middle school). The questionnaires consisted of common dating scenarios that…

  7. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 2. Chemical Patterns, Mass Transfer Modeling, and Rates of Mass Transfer Reactions

    Science.gov (United States)

    Katz, Brian G.; Plummer, L. Niel; Busenberg, Eurybiades; Revesz, Kinga M.; Jones, Blair F.; Lee, Terrie M.

    1995-06-01

    Chemical patterns along evolutionary groundwater flow paths in silicate and carbonate aquifers were interpreted using solute tracers, carbon and sulfur isotopes, and mass balance reaction modeling for a complex hydrologic system involving groundwater inflow to and outflow from a sinkhole lake in northern Florida. Rates of dominant reactions along defined flow paths were estimated from modeled mass transfer and ages obtained from CFC-modeled recharge dates. Groundwater upgradient from Lake Barco remains oxic as it moves downward, reacting with silicate minerals in a system open to carbon dioxide (CO2), producing only small increases in dissolved species. Beneath and downgradient of Lake Barco the oxic groundwater mixes with lake water leakage in a highly reducing, silicate-carbonate mineral environment. A mixing model, developed for anoxic groundwater downgradient from the lake, accounted for the observed chemical and isotopic composition by combining different proportions of lake water leakage and infiltrating meteoric water. The evolution of major ion chemistry and the 13C isotopic composition of dissolved carbon species in groundwater downgradient from the lake can be explained by the aerobic oxidation of organic matter in the lake, anaerobic microbial oxidation of organic carbon, and incongruent dissolution of smectite minerals to kaolinite. The dominant process for the generation of methane was by the CO2 reduction pathway based on the isotopic composition of hydrogen (δ2H(CH4) = -186 to -234‰) and carbon (δ13C(CH4) = -65.7 to -72.3‰). Rates of microbial metabolism of organic matter, estimated from the mass transfer reaction models, ranged from 0.0047 to 0.039 mmol L-1 yr-1 for groundwater downgradient from the lake.

  8. Make a date with a tree

    International Nuclear Information System (INIS)

    Baillie, M.; Pilcher, J.

    1988-01-01

    The paper concerns the use of dendrochronology to check the accuracy of radiocarbon dating. The Belfast chronology is described - this involves wood samples precisely dated by tree ring analysis and analysed by high-precision radiocarbon analysis. The analysis resulted in the first continuous high-precision calibration of the radiocarbon time-scale, and confirmed the relationship between radiocarbon dates and tree-ring dates. The use of radiocarbon dating to reveal the age of wood samples that have too few rings to produce an accurate date, is also outlined. (U.K.)

  9. Optical stimulated luminescence (OSL) dating

    International Nuclear Information System (INIS)

    Banerjee, D.

    1999-01-01

    Since the pioneering work by Huntley et al. (1985), optical dating is being increasingly recognised as an important technique for establishing a time frame of deposition of sediments (Aitken, 1998). Optical dating differs from thermoluminescence (TL) dating in that visible/infrared light from lasers or LEDs (light-emitting-diodes) is used as a means of stimulation, in contrast to thermal stimulation. It has several advantages over TL dating: (i) the resetting of the OSL (optically stimulated luminescence) clock is more effective than that of TL clock; for sediments transported under water or in other situations where the sediment grains have undergone inhomogeneous bleaching, this property ensures that ages based on optical dating are generally more reliable than TL ages, (ii) the optical dating technique is non-destructive, and multiple readouts of the optical signal is possible; this feature has resulted in the development of single-aliquot and single-grain protocols (Murray and Wintle, 1999; Banerjee et al. 1999), (iii) the sample is not heated as in TL; thus, spurious luminescence is avoided and there is a significant reduction in blackbody radiation. Dating of materials which change phase on heating is also practical, and finally, (iv) thermal quenching of luminescence is negligible, allowing accurate estimation of kinetic parameters using standard techniques and providing access to deep OSL traps. This characteristic may be helpful in extending the limits of optical dating beyond the last 150 ka from a global point of view

  10. Amino acid racemisation dating

    International Nuclear Information System (INIS)

    Murray-Wallace, C.V.

    1999-01-01

    The potential of the time-dependent amino acid racemisation reaction as a method of age assessment was first reported by Hare and Abelson (1968). They noted that in specimens of the bivalve mollusc Mercenaria sp., greater concentrations of amino acids in the D-configuration with increasing fossil age. Hare and Abelson (1968) also reported negligible racemisation in a modern specimen of Mecanaria sp. On this basis they suggested that the extent of amino acid racemisation (epimerisation in the case of isoleucine) may be used to assess the age of materials within and beyond the range of radiocarbon dating. For the past thirty years amino acid racemisation has been extensively applied in Quaternary research as a method of relative and numeric dating, and a particularly large literature has emerged on the subject

  11. Recommendations for computer modeling codes to support the UMTRA groundwater restoration project

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, M.D. [Sandia National Labs., Albuquerque, NM (United States); Khan, M.A. [IT Corp., Albuquerque, NM (United States)

    1996-04-01

    The Uranium Mill Tailings Remediation Action (UMTRA) Project is responsible for the assessment and remedial action at the 24 former uranium mill tailings sites located in the US. The surface restoration phase, which includes containment and stabilization of the abandoned uranium mill tailings piles, has a specific termination date and is nearing completion. Therefore, attention has now turned to the groundwater restoration phase, which began in 1991. Regulated constituents in groundwater whose concentrations or activities exceed maximum contaminant levels (MCLs) or background levels at one or more sites include, but are not limited to, uranium, selenium, arsenic, molybdenum, nitrate, gross alpha, radium-226 and radium-228. The purpose of this report is to recommend computer codes that can be used to assist the UMTRA groundwater restoration effort. The report includes a survey of applicable codes in each of the following areas: (1) groundwater flow and contaminant transport modeling codes, (2) hydrogeochemical modeling codes, (3) pump and treat optimization codes, and (4) decision support tools. Following the survey of the applicable codes, specific codes that can best meet the needs of the UMTRA groundwater restoration program in each of the four areas are recommended.

  12. Recommendations for computer modeling codes to support the UMTRA groundwater restoration project

    International Nuclear Information System (INIS)

    Tucker, M.D.; Khan, M.A.

    1996-04-01

    The Uranium Mill Tailings Remediation Action (UMTRA) Project is responsible for the assessment and remedial action at the 24 former uranium mill tailings sites located in the US. The surface restoration phase, which includes containment and stabilization of the abandoned uranium mill tailings piles, has a specific termination date and is nearing completion. Therefore, attention has now turned to the groundwater restoration phase, which began in 1991. Regulated constituents in groundwater whose concentrations or activities exceed maximum contaminant levels (MCLs) or background levels at one or more sites include, but are not limited to, uranium, selenium, arsenic, molybdenum, nitrate, gross alpha, radium-226 and radium-228. The purpose of this report is to recommend computer codes that can be used to assist the UMTRA groundwater restoration effort. The report includes a survey of applicable codes in each of the following areas: (1) groundwater flow and contaminant transport modeling codes, (2) hydrogeochemical modeling codes, (3) pump and treat optimization codes, and (4) decision support tools. Following the survey of the applicable codes, specific codes that can best meet the needs of the UMTRA groundwater restoration program in each of the four areas are recommended

  13. Natural radioactivity in groundwater--a review.

    Science.gov (United States)

    Dinh Chau, Nguyen; Dulinski, Marek; Jodlowski, Pawel; Nowak, Jakub; Rozanski, Kazimierz; Sleziak, Monika; Wachniew, Przemyslaw

    2011-12-01

    The issue of natural radioactivity in groundwater is reviewed, with emphasis on those radioisotopes which contribute in a significant way to the overall effective dose received by members of the public due to the intake of drinking water originating from groundwater systems. The term 'natural radioactivity' is used in this context to cover all radioactivity present in the environment, including man-made (anthropogenic) radioactivity. Comprehensive discussion of radiological aspects of the presence of natural radionuclides in groundwater, including an overview of current regulations dealing with radioactivity in drinking water, is provided. The presented data indicate that thorough assessments of the committed doses resulting from the presence of natural radioactivity in groundwater are needed, particularly when such water is envisaged for regular intake by infants. They should be based on a precise determination of radioactivity concentration levels of the whole suite of radionuclides, including characterisation of their temporal variability. Equally important is a realistic assessment of water intake values for specific age groups. Only such an evaluation may provide the basis for possible remedial actions.

  14. Use of tritium for estimation of groundwater mean residence time, a case study of the Ain Al-Samak Karst springs (Central Syria)

    International Nuclear Information System (INIS)

    Kattan, Z.

    2003-01-01

    This work is an attempt to estimate the mean residence time of groundwater in the Ain Al-Tanour and Ain-Samak, which are the major karst springs in the Upper Orontes Basin (Central Syria). This estimate, which consists on the application of a mathematical modeling approach, was based on the use of tritium, as a natural radioisotope tracer and a tool for ground water age dating. By adopting a completely mixed reservoir model, linked with exponential time distribution function, the mean residence time (turnover time) of these two springs was evaluated to be about 50 years. This result is in good agreement with previous estimation obtained for the Figeh main spring, which belongs to the same aquifer (Cenomanian-Turonian complex) in the Damascus Basin. On the basis of this evaluation, a value of about 800 million m 3 was obtained for the maximum groundwater reservoir size

  15. Application of thermoluminescence dating on pressed crystalline samples to determine the geological age at some areas in Eastern South, Vietnam

    International Nuclear Information System (INIS)

    Do Duy Khiem; Luu Anh Tuyen; Phan Trong Phuc; Nguyen Thi Ngoc Hue; Pham Thi Hue; La Ly Nguyen; Ha Quang Hai

    2016-01-01

    The terrestrial part of eastern margin of the Mekong Basin is formed by outcrop of the pre-Holocen Cenozoic sequence. Almost previous studies concerned in using relative methods in geologic dating at the Mekong Basin, therefore, the ages of its stratigraphy are still unclear. The thermoluminescence (TL) dating was considered as one of the precise methods in geologic dating. In our study, we used TL dating for some areas at Eastern South, Vietnam including Ba Mieu Formation and the Thu Duc Formation at some areas in Dong Nai province and Ho Chi Minh City. This work has been the first application of TL for in geologic dating by a domestic laboratory. Experimental measurements of TL were performed using pressed crystalline quartz specimens from sediment samples. The results show that the Ba Mieu Formation was deposited about 238±22 ka and the Thu Duc Formation was deposited about 199±21 ka. (author)

  16. Assessing groundwater availability and the response of the groundwater system to intensive exploitation in the North China Plain by analysis of long-term isotopic tracer data

    Science.gov (United States)

    Su, Chen; Cheng, Zhongshuang; Wei, Wen; Chen, Zongyu

    2018-03-01

    The use of isotope tracers as a tool for assessing aquifer responses to intensive exploitation is demonstrated and used to attain a better understanding of the sustainability of intensively exploited aquifers in the North China Plain. Eleven well sites were selected that have long-term (years 1985-2014) analysis data of isotopic tracers. The stable isotopes δ18O and δ2H and hydrochemistry were used to understand the hydrodynamic responses of the aquifer system, including unconfined and confined aquifers, to groundwater abstraction. The time series data of 14C activity were also used to assess groundwater age, thereby contributing to an understanding of groundwater sustainability and aquifer depletion. Enrichment of the heavy oxygen isotope (18O) and elevated concentrations of chloride, sulfate, and nitrate were found in groundwater abstracted from the unconfined aquifer, which suggests that intensive exploitation might induce the potential for aquifer contamination. The time series data of 14C activity showed an increase of groundwater age with exploitation of the confined parts of the aquifer system, which indicates that a larger fraction of old water has been exploited over time, and that the groundwater from the deep aquifer has been mined. The current water demand exceeds the sustainable production capabilities of the aquifer system in the North China Plain. Some measures must be taken to ensure major cuts in groundwater withdrawals from the aquifers after a long period of depletion.

  17. 32Si dating of sediments

    International Nuclear Information System (INIS)

    Morgenstern, U.

    2004-01-01

    Brief explanation of the use of 32 Si in the dating of sediments. 32 Si , with a half-life of c.140 years, can be applied in the age range 30-1000 years. An appropriate dating tool for that time range is essential because it includes three very important epochs: the impact of human colonisation and industrialisation during the last 150 years, the Little Ice Age between about 1650 AD and 1850 AD, and the last part of the Medieval Climatic Optimum. 23 refs

  18. Dating simple flakes: Early Bronze Age flake production technology on the Middle Euphrates Steppe, Syria

    Directory of Open Access Journals (Sweden)

    Yoshihiro Nishiaki

    2014-03-01

    Full Text Available Aceramic flint scatters, comprising very crude cores or flakes and no formalised tools, are frequently found on the Middle Euphrates steppe of northern Syria. Previous studies suggest that many of them are residues of short-term activities by the nomads or shepherds of the Early Bronze Age. In order to verify this interpretation, a more precise chronological framework needs to be established for the Early Bronze Age lithic industry. This paper analyses stratified flake assemblages of the Early Bronze Age at Tell Ghanem al-Ali, a securely radiocarbon-dated settlement on the Middle Euphrates, and examines which occupation level yields assemblages most similar to those of the steppe. Results demonstrate that the lithic industry of this period underwent significant diachronic changes in terms of core reduction technology. Based on the chronological framework developed at Tell Ghanem al-Ali, the steppe assemblages in question can be assigned to different phases of the Early Bronze Age. This finding will help identify processes at the beginning of the extensive exploitation of the steppe, which is regarded as one of the most important socioeconomic changes that occurred among Early Bronze Age communities of the Middle Euphrates.

  19. Preliminary estimates of residence times and apparent ages of ground water in the Chesapeake Bay watershed, and water-quality data from a survey of springs

    Science.gov (United States)

    Focazio, Michael J.; Plummer, Niel; Bohlke, John K.; Busenberg, Eurybiades; Bachman, L. Joseph; Powars, David S.

    1998-01-01

    Knowledge of the residence times of the ground-water systems in Chesapeake Bay watershed helps resource managers anticipate potential delays between implementation of land-management practices and any improve-ments in river and estuary water quality. This report presents preliminary estimates of ground-water residence times and apparent ages of water in the shallow aquifers of the Chesapeake Bay watershed. A simple reservoir model, published data, and analyses of spring water were used to estimate residence times and apparent ages of ground-water discharge. Ranges of aquifer hydraulic characteristics throughout the Bay watershed were derived from published literature and were used to estimate ground-water residence times on the basis of a simple reservoir model. Simple combinations of rock type and physiographic province were used to delineate hydrogeomorphic regions (HGMR?s) for the study area. The HGMR?s are used to facilitate organization and display of the data and analyses. Illustrations depicting the relation of aquifer characteristics and associated residence times as a continuum for each HGMR were developed. In this way, the natural variation of aquifer characteristics can be seen graphically by use of data from selected representative studies. Water samples collected in September and November 1996, from 46 springs throughout the watershed were analyzed for chlorofluorocarbons (CFC?s) to estimate the apparent age of ground water. For comparison purposes, apparent ages of water from springs were calculated assuming piston flow. Additi-onal data are given to estimate apparent ages assuming an exponential distribution of ages in spring discharge. Additionally, results from previous studies of CFC-dating of ground water from other springs and wells in the watershed were compiled. The CFC data, and the data on major ions, nutrients, and nitrogen isotopes in the water collected from the 46 springs are included in this report. The apparent ages of water

  20. Ensemble models on palaeoclimate to predict India's groundwater challenge

    Directory of Open Access Journals (Sweden)

    Partha Sarathi Datta

    2013-09-01

    Full Text Available In many parts of the world, freshwater crisis is largely due to increasing water consumption and pollution by rapidly growing population and aspirations for economic development, but, ascribed usually to the climate. However, limited understanding and knowledge gaps in the factors controlling climate and uncertainties in the climate models are unable to assess the probable impacts on water availability in tropical regions. In this context, review of ensemble models on δ18O and δD in rainfall and groundwater, 3H- and 14C- ages of groundwater and 14C- age of lakes sediments helped to reconstruct palaeoclimate and long-term recharge in the North-west India; and predict future groundwater challenge. The annual mean temperature trend indicates both warming/cooling in different parts of India in the past and during 1901–2010. Neither the GCMs (Global Climate Models nor the observational record indicates any significant change/increase in temperature and rainfall over the last century, and climate change during the last 1200 yrs BP. In much of the North-West region, deep groundwater renewal occurred from past humid climate, and shallow groundwater renewal from limited modern recharge over the past decades. To make water management to be more responsive to climate change, the gaps in the science of climate change need to be bridged.

  1. Ground-Water Flow Direction, Water Quality, Recharge Sources, and Age, Great Sand Dunes National Monument, South-Central Colorado, 2000-2001

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2004-01-01

    Great Sand Dunes National Monument is located in south-central Colorado along the eastern edge of the San Luis Valley. The Great Sand Dunes National Monument contains the tallest sand dunes in North America; some rise up to750 feet. Important ecological features of the Great Sand Dunes National Monument are palustrine wetlands associated with interdunal ponds and depressions along the western edge of the dune field. The existence and natural maintenance of the dune field and the interdunal ponds are dependent on maintaining ground-water levels at historic elevations. To address these concerns, the U.S. Geological Survey conducted a study, in collaboration with the National Park Service, of ground-water flow direction, water quality, recharge sources, and age at the Great Sand Dunes National Monument. A shallow unconfined aquifer and a deeper confined aquifer are the two principal aquifers at the Great Sand Dunes National Monument. Ground water in the unconfined aquifer is recharged from Medano and Sand Creeks near the Sangre de Cristo Mountain front, flows underneath the main dune field, and discharges to Big and Little Spring Creeks. The percentage of calcium in ground water in the unconfined aquifer decreases and the percentage of sodium increases because of ionic exchange with clay minerals as the ground water flows underneath the dune field. It takes more than 60 years for the ground water to flow from Medano and Sand Creeks to Big and Little Spring Creeks. During this time, ground water in the upper part of the unconfined aquifer is recharged by numerous precipitation events. Evaporation of precipitation during recharge prior to reaching the water table causes enrichment in deuterium (2H) and oxygen-18 (18O) relative to waters that are not evaporated. This recharge from precipitation events causes the apparent ages determined using chlorofluorocarbons and tritium to become younger, because relatively young precipitation water is mixing with older waters

  2. Groundwater flow in a relatively old oceanic volcanic island: The Betancuria area, Fuerteventura Island, Canary Islands, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Christian, E-mail: cherrera@ucn.cl [Universidad Católica del Norte, Av. Angamos 0610, Antofagasta (Chile); Custodio, Emilio [Department of Geo-Engineering, Technical University of Catalonia (UPC), Barcelona (Spain)

    2014-10-15

    The island of Fuerteventura is the oldest of the Canary Islands' volcanic archipelago. It is constituted by volcanic submarine and subaerial activity and intrusive Miocene events, with some residual later volcanism and Quaternary volcanic deposits that have favored groundwater recharge. The climate is arid, with an average rainfall that barely attains 60 mm/year in the coast and up to 200 mm/year in the highlands. The aquifer recharge is small but significant; it is brackish due to large airborne atmospheric salinity, between 7 and 15 g m{sup −2} year{sup −1} of chloride deposition, and high evapo-concentration in the soil. The average recharge is estimated to be less than about 5 mm/year at low altitude and up to 10 mm/year in the highlands, and up to 20 mm/year associated to recent lava fields. Hydrochemical and water isotopic studies, supported by water table data and well and borehole descriptions, contribute a preliminary conceptual model of groundwater flow and water origin in the Betancuria area, the central area of the island. In general, water from springs and shallow wells tends to be naturally brackish and of recent origin. Deep saline groundwater is found and is explained as remnants of very old marine water trapped in isolated features in the very low permeability intrusive rocks. Preliminary radiocarbon dating indicates that this deep groundwater has an apparent age of less than 5000 years BP but it is the result of mixing recent water recharge with very old deep groundwater. Most of the groundwater flow occurs through the old raised volcanic shield of submarine and subaerial formations and later Miocene subaerial basalts. Groundwater transit time through the unsaturated zone is of a few decades, which allows the consideration of long-term quasi-steady state recharge. Transit times are up to a few centuries through the saturated old volcanics and up to several millennia in the intrusive formations, where isolated pockets of very old water may

  3. Dissolved helium, inert gases, radium and radon in groundwaters from the Altnabreac research site

    International Nuclear Information System (INIS)

    Andrews, J.N.; Kay, R.L.F.

    1985-01-01

    A groundwater geochemical study has been carried out at Altnabreac, Cenithness, Scotland, to investigate the feasibility of disposal of high-level radioactive wastes in crystalline rock. A groundwater flow model was constructed for sampling a section at depths up to 300 m. Measurements of inert gases dissolved in groundwaters are used, with parallel measurements of 14 C, tritium, oxygen and hydrogen isotopes to infer groundwater ages and residence times. (UK)

  4. The behavior of U- and Th-series nuclides in groundwater

    Science.gov (United States)

    Porcelli, D.; Swarzenski, P.W.

    2003-01-01

    Groundwater has long been an active area of research driven by its importance both as a societal resource and as a component in the global hydrological cycle. Key issues in groundwater research include inferring rates of transport of chemical constituents, determining the ages of groundwater, and tracing water masses using chemical fingerprints. While information on the trace elements pertinent to these topics can be obtained from aquifer tests using experimentally introduced tracers, and from laboratory experiments on aquifer materials, these studies are necessarily limited in time and space. Regional studies of aquifers can focus on greater scales and time periods, but must contend with greater complexities and variations. In this regard, the isotopic systematics of the naturally occurring radionuclides in the U- and Th- decay series have been invaluable in investigating aquifer behavior of U, Th, and Ra. These nuclides are present in all groundwaters and are each represented by several isotopes with very different half-lives, so that processes occurring over a range of time-scales can be studied (Table 1⇓). Within the host aquifer minerals, the radionuclides in each decay series are generally expected to be in secular equilibrium and so have equal activities (see Bourdon et al. 2003). In contrast, these nuclides exhibit strong relative fractionations within the surrounding groundwaters that reflect contrasting behavior during release into the water and during interaction with the surrounding host aquifer rocks. Radionuclide data can be used, within the framework of models of the processes involved, to obtain quantitative assessments of radionuclide release from aquifer rocks and groundwater migration rates. The isotopic variations that are generated also have the potential for providing fingerprints for groundwaters from specific aquifer environments, and have even been explored as a means for calculating groundwater ages.

  5. Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs

    Science.gov (United States)

    Toth, David J.; Katz, Brian G.

    2006-06-01

    Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca-HCO3 (six), Na-Cl (four), and mixed (one). The evolution of water chemistry for Ca-HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na-Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4-53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca-HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na-Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.

  6. Resolving the age of Wilson Creek Formation tephras and the Mono Lake excursion using high-resolution SIMS dating of allanite and zircon rims

    Science.gov (United States)

    Vazquez, J. A.; Lidzbarski, M. I.

    2012-12-01

    Sediments of the Wilson Creek Formation surrounding Mono Lake preserve a high-resolution archive of glacial and pluvial responses along the eastern Sierra Nevada due to late Pleistocene climate change. An absolute chronology for the Wilson Creek stratigraphy is critical for correlating the paleoclimate record to other archives in the western U.S. and the North Atlantic region. However, multiple attempts to date the Wilson Creek stratigraphy using carbonates and interbedded rhyolitic tephras yield discordant 14C and 40Ar/39Ar results due to open-system effects, carbon reservoir uncertainties, as well as abundant xenocrysts entrained during eruption. Ion microprobe (SIMS) 238U-230Th dating of the final increments of crystallization recorded by allanite and zircon autocrysts from juvenile pyroclasts yields ages that effectively date eruption of key tephra beds and resolve age uncertainties about the Wilson Creek stratigraphy. To date the final several micrometers of crystal growth, individual allanite and zircon crystals were embedded in soft indium to allow sampling of unpolished rims. Isochron ages derived from rims on coexisting allanite and zircon (± glass) from hand-selected pumiceous pyroclasts delimit the timing of Wilson Creek sedimentation between Ashes 7 and 19 (numbering of Lajoie, 1968) to the interval between ca. 27 to ca. 62 ka. The interiors of individual allanite and zircon crystals sectioned in standard SIMS mounts yield model 238U-230Th ages that are mostly hydrologic responses in the Sierra Nevada and Mono Basin to climate change, with intervals of lake filling and glacial-snowpack melting that are in phase with peaks in spring insolation. Moreover, the results demonstrate that high-spatial resolution SIMS dating of accessory mineral rims is an alternative and promising approach for resolving the depositional ages of silicic tephras containing minerals that crystallized over protracted intervals or that are plagued by incorporation of xenocrysts

  7. Geochemistry and environmental isotope of groundwater from the upper Cretaceous aquifer of Orontes basin (Syria)

    International Nuclear Information System (INIS)

    Al-Charideh, A.

    2010-03-01

    Chemical and environmental isotopes have been used for studying the Upper Cretaceous aquifer systems in the Middle Orontes basin. The results indicate that the salinity of groundwater (0.2 to 2 g/l) reveals the dissolution of evaporate rocks is the main factor of high salinity especially in the Homes depression. The degree of salinity and its spaces distribution are basically related to the pattern of groundwater movement in the Upper cretaceous aquifer. The stable isotopes composition of groundwater in the Homes depression are more depleted by -2.5% and -17.0% for δ 18 O and δ 2 H respectively, than the groundwater from Hama elevation, suggested different origin and recharge time between this two groundwater groups. Estimates of their mean subsurface residence times have been constrained on the basis of 14 C D IC. The corrected ages of groundwater are recent and less to 10 thousand years in Hama uplift. However, the corrected age of groundwater in the Homs depression range between 10 to 25 thousand years indicate late Pleistocene recharge period. (author)

  8. A review of groundwater contamination near municipal solid waste landfill sites in China.

    Science.gov (United States)

    Han, Zhiyong; Ma, Haining; Shi, Guozhong; He, Li; Wei, Luoyu; Shi, Qingqing

    2016-11-01

    Landfills are the most widely used method for municipal solid waste (MSW) disposal method in China. However, these facilities have caused serious groundwater contamination due to the leakage of leachate. This study, analyzed 32 scientific papers, a field survey and an environmental assessment report related to groundwater contamination caused by landfills in China. The groundwater quality in the vicinity of landfills was assessed as "very bad" by a comprehensive score (FI) of 7.85 by the Grading Method in China. Variety of pollutants consisting of 96 groundwater pollutants, 3 organic matter indicators, 2 visual pollutants and 6 aggregative pollutants had been detected in the various studies. Twenty-two kinds of pollutants were considered to be dominant. According to the Kruskal-Wallis test and the median test, groundwater contamination differed significantly between regions in China, but there were no significant differences between dry season and wet season measurements, except for some pollutants in a few landfill sites. Generally, the groundwater contamination appeared in the initial landfill stage after five years and peaked some years afterward. In this stage, the Nemerow Index (PI) of groundwater increased exponentially as landfill age increased at some sites, but afterwards decreased exponentially with increasing age at others. After 25years, the groundwater contamination was very low at selected landfills. The PI values of landfills decreased exponentially as the pollutant migration distance increased. Therefore, the groundwater contamination mainly appeared within 1000m of a landfill and most of serious groundwater contamination occurred within 200m. The results not only indicate that the groundwater contamination near MSW landfills should be a concern, but also are valuable to remediate the groundwater contamination near MSW landfills and to prevent the MSW landfill from secondary pollutions, especially for developing countries considering the similar

  9. Dating fossil opal phytoliths

    International Nuclear Information System (INIS)

    Lentfer, C.; Boyd, B.; Torrence, R.

    1999-01-01

    Full text: Opal phytoliths are microscopic silica bodies formed by the precipitation of hydrated silica dioxide (SiO 2 nH 2 0) in, around and between cell walls. They are relatively resistant to degradation in most environments and thus, can occur in large quantities in palaeosediments. Consequently, they are valuable tools for environmental reconstruction. Furthermore, phytoliths are often the only recoverable organic material in well oxidised sediments, the occluded carbon provides the opportunity for dating sediment whose ages have previously been difficult to determine, and thus, increase the potential for fine resolution determination of environmental change. This poster describes the results of an investigation assessing the viability of AMS radiocarbon dating of fossil phytolith inclusions using samples from Garua Island, West New Britain, PNG. Thirteen phytolith samples, isolated from sediments previously dated using tephrastratigraphy and C14 dating of macroremains of nutshells and wood charcoal, were used in the analysis. As a control measure, thirteen parallel samples of microscopic charcoal were also dated using AMS. The results show that the AMS dates for the microscopic charcoal samples are consistent with ages anticipated from the other dating methods, for all but one sample. However, the dates for eight of the thirteen phytolith samples are considerably younger than expected. This bias could be explained by several factors, including downwashing of phytolith through soils, bioturbation, carbon exchange through the siliceous matrix of the phytolith bodies, and contamination from extraneous sources of modern carbon retained in the samples. Research is currently focusing on the investigation of these issues and selected samples are in the process of being retreated with strong oxidising agents to clear contaminants prior to re-dating. Further to this, a full investigation of one profile with a long sequence is underway. High concentrations of

  10. Spatial distribution of residence time, microbe and storage volume of groundwater in headwater catchments

    Science.gov (United States)

    Tsujimura, Maki; Ogawa, Mahiro; Yamamoto, Chisato; Sakakibara, Koichi; Sugiyama, Ayumi; Kato, Kenji; Nagaosa, Kazuyo; Yano, Shinjiro

    2017-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, and time and stock information of the water is principal to understand hydrological processes in the catchments. Also, a variety of microbes are included in the groundwater and spring water, and those varies in time and space, suggesting that information of microbe could be used as tracer for groundwater flow system. However, there have been few researches to evaluate the relationship among the residence time, microbe and storage volume of the groundwater in headwater catchments. We performed an investigation on age dating using SF6 and CFCs, microbe counting in the spring water, and evaluation of groundwater storage volume based on water budget analysis in 8 regions underlain by different lithology, those are granite, dacite, sedimentary rocks, serpentinite, basalt and volcanic lava all over Japan. We conducted hydrometric measurements and sampling of spring water in base flow conditions during the rainless periods 2015 and 2016 in those regions, and SF6, CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute concentrations and total number of prokaryotes were determined on all water samples. Residence time of spring water ranged from 0 to 16 years in all regions, and storage volume of the groundwater within topographical watershed was estimated to be 0.1 m to 222 m in water height. The spring with the longer residence time tends to have larger storage volume in the watershed, and the spring underlain by dacite tends to have larger storage volume as compared with that underlain by sand stone and chert. Also, total number of prokaryotes in the spring water ranged from 103 to 105 cells/mL, and the spring tends to show clear increasing of total number of prokaryotes with decreasing of residence time. Thus, we observed a certain relationship among residence time, storage volume and total number of prokaryotes in the spring water, and

  11. Current topics in ESR dating

    International Nuclear Information System (INIS)

    Skinner, Anne R.

    2011-01-01

    After over 25 years, the use of electron spin resonance (ESR) is well-established in dating sites of geological, paleontological and archaeological interest. Like any scientific technique, there have been changes in understanding and in methodology. Improvements have not, however, changed the observation that external dose calculations are still a significant source of uncertainty in ages. Examples from Europe, Africa and the Americans illustrate this point. For Pradayrol Cave (France), the occupation age, 330 ka, is unchallenged, making this the oldest known Neanderthal site in France. For Roc de Marsal, also in France, on the other hand, discrepancies between TL and sedimentary dose rates imply substantial differences in interpretation. In the Western Egyptian Desert, where artifacts and datable material are not well-correlated, the dating results show consistency with expectations based on global climate change, even in deflated sites. Climate change is also the question in geological studies in the Bahamas where, despite concerns about cosmic dose history, ESR dates confirm other evidence for sea level changes. We show that an uncertain age is not the same as an impossible one.

  12. Progress in ESR dating of fossils

    International Nuclear Information System (INIS)

    Ikeya, M.

    1983-01-01

    In this review the progress of ESR dating is briefly described together with its historical development. Examples of fossil dating include shells and corals in geological sediments, fossil bones and teeth in anthropology and fossil woods in geology. The total dose of natural radiation (TD) equivalent to the archaeological dose in TL dating was obtained by the additive dose method. Initially, the TDs were plotted against the known ages; using the apparent annual dose-rate thus obtained gives the ESR age within a factor of 2 or 3 for a fossil. Precise assessment of the radiation environment was made later taking the disequilibrium of uranium series disintegration into account. ESR ages of corals agreed well with those obtained by radiocarbon and uranium-thorium methods. The time-independent accumulation rate or a linear accumulation or uranium was adopted as a first sensible model for the opensystem fossil bones: the relation between the TD and the age explains the ages of anthropologically important bones. Lastly, geological assessment of fossil woods was made by ESR based on the organic radicals and electron traps in the silicified part. (author)

  13. Effect of artificial accelerated aging on the optical properties and monomeric conversion of composites used after expiration date.

    Science.gov (United States)

    Garcia, Lucas da Fonseca Roberti; Mundim, Fabricio Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Puppin Rontani, Regina Maria; Consani, Simonides

    2013-01-01

    This study sought to evaluate how artificial accelerated aging (AAA) affected color stability (ΔE), opacity (ΔOP), and degree of conversion (DOC) for 3 composite materials (Tetric Ceram, Tetric Ceram HB, and Tetric Flow) used both 180 days before and 180 days after their expiration dates. To evaluate the materials' optical properties, 10 specimens of each composite-5 prior to expiration and 5 after the materials' expiration date-were made in a teflon matrix. After polishing, the specimens were submitted to initial color and opacity readings and submitted to AAA for 384 hours; at that point, new readings were taken to determine ΔE and ΔOP. To evaluate monomeric conversion evaluation, 6 specimens from each composite and expiration date-3 prior to AAA and 3 after-were submitted to DOC analysis. Results of the 2-way ANOVA and Bonferroni's tests (P 0.05). The expired Tetric Flow had the highest DOC values (71.42% ± 4.21) before AAA, significantly different than that of the other composites (P > 0.05). It was concluded that both expiration date and AAA affected the properties of the composites tested.

  14. Sediment dating in review

    International Nuclear Information System (INIS)

    Prescott, J.R.; Robertson, G.B.

    1997-01-01

    The paper will comment on a few issues of particular relevance to Australasia. Thermoluminescent (TL) methods applied to open sites have been demonstrated to be effective. A particularly good example of this is to be found in the South East of South Australia, where a sequence of low ranges runs roughly parallel with the coast. They represent relict sand dunes left behind, on a slowly rising land surface by successive interglacial incursions of the sea at roughly 120 ka intervals. Comparison with ages established on independent geological grounds allows a test of quartz TL and IRSL ages that is believable back to 500 ka. Older than this, we do not yet understand the physics of the quartz well enough to go unequivocally forward (backward?). Similar results are emerging elsewhere. With dating limits being pushed ever further back, the time variation of the environmental radiation giving rise to the stored luminescent energy needs to be addressed. Particularly at wet sites, radioactive disequilibrium must be considered. In any case, a time profile of the radiation dose rate needs to be determined.In dating a given site or sites the value of ages obtained by any dating method,including C-14, is enhanced by parallel measurements with an different method

  15. Dating Relationships in Older Adulthood: A National Portrait

    Science.gov (United States)

    Brown, Susan L.; Shinohara, Sayaka K.

    2013-01-01

    Dating in later life is likely common, especially as the proportion of older adults who are single continues to rise. Yet there are no recent national estimates of either the prevalence or factors associated with dating during older adulthood. Using data from the 2005-2006 National Social Life, Health, and Aging Project, a nationally representative sample of 3,005 individuals ages 57-85, the authors constructed a national portrait of older adult daters. Roughly 14% of singles were in a dating relationship. Dating was more common among men than women and declined with age. Compared to non-daters, daters were more socially advantaged. Daters were more likely to be college educated and had more assets, were in better health, and reported more social connectedness. This study underscores the importance of new research on partnering in later life, particularly with the aging of the U.S. population and the swelling ranks of older singles. PMID:24319296

  16. Reconstruction of tritium release history from contaminated groundwater using tree ring analysis

    International Nuclear Information System (INIS)

    Kalin, R.M.; Murphy, C.E. Jr.; Hall, G.

    1995-01-01

    The history of tritium releases to the groundwater from buried waste was reconstructed through dendrochronology. Wood from dated tree rings was sectioned from a cross-section of a tree that was thought to tap the groundwater. Cellulose was chemically separated from the wood. The cellulose was combusted and the water of combustion collected for liquid scintillation counting. The tritium concentration in the rings rose rapidly after 1972 which was prior to the first measurements made in this area. Trends in the tritium concentration of water outcropping to the surface are similar to the trends in tritium concentration in tree rings. 14 refs., 3 figs

  17. Recharge and discharge of near-surface groundwater in Forsmark. Comparison of classification methods

    International Nuclear Information System (INIS)

    Werner, Kent; Johansson, Per-Olof; Brydsten, Lars; Bosson, Emma; Berglund, Sten

    2007-03-01

    This report presents and compares data and models for identification of near-surface groundwater recharge and discharge (RD) areas in Forsmark. The general principles of groundwater recharge and discharge are demonstrated and applied to interpret hydrological and hydrogeological observations made in the Forsmark area. 'Continuous' RD classification methods considered in the study include topographical modelling, map overlays, and hydrological-hydrogeological flow modelling. 'Discrete' (point) methods include field-based and hydrochemistry-based RD classifications of groundwater monitoring well locations. The topographical RD modelling uses the digital elevation model as the only input. The map overlays use background maps of Quaternary deposits, soils, and ground- and field layers of the vegetation/land use map. Further, the hydrological-hydrogeological modelling is performed using the MIKE SHE-MIKE 11 software packages, taking into account e.g. topography, meteorology, hydrogeology, and geometry of watercourses and lakes. The best between-model agreement is found for the topography-based model and the MIKE SHE-MIKE 11 model. The agreement between the topographical model and the map overlays is less good. The agreement between the map overlays on the one hand, and the MIKE SHE and field-based RD classifications on the other, is thought to be less good, as inferred from the comparison made with the topography-based model. However, much improvement of the map overlays can likely be obtained, e.g. by using 'weights' and calibration (such exercises were outside the scope of the present study). For field-classified 'recharge wells', there is a good agreement to the hydrochemistry-based (Piper plot) well classification, but less good for the field-classified 'discharge wells'. In addition, the concentration of the age-dating parameter tritium shows low variability among recharge wells, but a large spread among discharge wells. The usefulness of hydrochemistry-based RD

  18. Groundwater quota versus tiered groundwater pricing : two cases of groundwater management in north-west China

    NARCIS (Netherlands)

    Aarnoudse, Eefje; Qu, Wei; Bluemling, B.; Herzfeld, Thomas

    2017-01-01

    Difficulties in monitoring groundwater extraction cause groundwater regulations to fail worldwide. In two counties in north-west China local water authorities have installed smart card machines to monitor and regulate farmers’ groundwater use. Data from a household survey and in-depth interviews are

  19. Ar-Ar dating techniques for terrestrial meteorite impacts

    Science.gov (United States)

    Kelley, S. P.

    2003-04-01

    The ages of the largest (>100 km) known impacts on Earth are now well characterised. However the ages of many intermediate sized craters (20-100 km) are still poorly known, often the only constraints are stratigraphic - the difference between the target rock age and the age of crater filling sediments. The largest impacts result in significant melt bodies which cool to form igneous rocks and can be dated using conventional radiometric techniques. Smaller impacts give rise to thin bands of melted rock or melt clasts intimately mixed with country rock clasts in breccia deposits, and present much more of a challenge to dating. The Ar-Ar dating technique can address a wide variety of complex and heterogeneous samples associated with meteorite impacts and obtain reasonable ages. Ar-Ar results will be presented from a series of terrestrial meteorite impact craters including Boltysh (65.17±0.64 Ma, Strangways (646±42 Ma), and St Martin (220±32 Ma) and a Late Triassic spherule bed, possibly representing distal deposits from Manicouagan (214±1 Ma) crater. Samples from the Boltysh and Strangways craters demonstrate the importance of rapid cooling upon the retention of old ages in glassy impact rocks. A Late Triassic spherule bed in SW England is cemented by both carbonate and K-feldspar cements allowing Ar-Ar dating of fine grained cement to place a mimimum age upon the age of the associated impact. An age of 214.7±2.5 Ma places the deposit with errors of the age of the Manicouagan impact, raising the possibility that it may represent a distal deposit (the deposit lay around 2000 km away from the site of the Manicouagan crater during the Late Triassic). Finally the limits of the technique will be demonstrated using an attempt to date melt rocks from the St Martin Crater in Canada.

  20. Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode

    Science.gov (United States)

    Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.

    2017-12-01

    Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.

  1. The survey reasarch about groundwater in a mine making use of the sour method to immerse at originl place in Xinjiang province

    International Nuclear Information System (INIS)

    Xu Yiqun; Yang Yihan

    2014-01-01

    Basing on a mine making use of a sour method to immerse at original place in Xiniang province, building up a monitor network of mine and its Surroundings groundwater, by the mispreads experiment at the spot and the Earth physical method to mointer Pollute scope and imitate the flow of groundwater and the movement of dissolve quality. Making use of the method speaking of to investigate groundwater in mineral layer completely. According to the investigating result, Comparing the original date of groundwater in mineral layer and the national Quality standard of groundwater to evaluate the present Pollute condition of groundwater existmg in the A # , B # mine ore aquifer. This studies Proves that Pollution mainly exists in the A # , B # mine ore aquifer and its surrounding limited area, groundwater upper or lower the ore aquifer is not affected by pollution. (authors)

  2. Dating base flow in streams using dissolved gases and diurnal temperature changes

    Science.gov (United States)

    Sanford, Ward E.; Casile, Gerolamo C.; Haase, Karl B.

    2015-01-01

    A method is presented for using dissolved CFCs or SF6 to estimate the apparent age of stream base flow by indirectly estimating the mean concentration of the tracer in the inflowing groundwater. The mean value is estimated simultaneously with the mean residence times of the gas and water in the stream by sampling the stream for one or both age tracers, along with dissolved nitrogen and argon at a single location over a period of approximately 12–14 h. The data are fitted to an equation representing the temporal in-stream gas exchange as it responds to the diurnal temperature fluctuation. The efficacy of the method is demonstrated by collecting and analyzing samples at six different stream locations across parts of northern Virginia, USA. The studied streams drain watersheds with areas of between 2 and 122 km2 during periods when the diurnal stream temperature ranged between 2 and 5°C. The method has the advantage of estimating the mean groundwater residence time of discharge from the watershed to the stream without the need for the collection of groundwater infiltrating to streambeds or local groundwater sampled from shallow observation wells near the stream.

  3. Quarterly report of RCRA groundwater monitoring data for period October 1 through December 31, 1994

    International Nuclear Information System (INIS)

    1995-04-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and open-quotes Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilitiesclose quotes (Title 40 Code of Federal Regulations [CFR] Part 265), as amended. Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. The location of each facility is shown. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Performing project management, preparing groundwater monitoring plans, well network design and installation, specifying groundwater data needs, performing quality control (QC) oversight, data management, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between October and December 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the October through December quarter, but also data from earlier sampling events that were not previously reported

  4. Simulation of Groundwater Flow, Denpasar-Tabanan Groundwater Basin, Bali Province

    Directory of Open Access Journals (Sweden)

    Heryadi Tirtomihardjo

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i3.123Due to the complex structure of the aquifer systems and its hydrogeological units related with the space in which groundwater occurs, groundwater flows were calculated in three-dimensional method (3D Calculation. The geometrical descritization and iteration procedures were based on an integrated finite difference method. In this paper, all figures and graphs represent the results of the calibrated model. Hence, the model results were simulated by using the actual input data which were calibrated during the simulation runs. Groundwater flow simulation of the model area of the Denpasar-Tabanan Groundwater Basin (Denpasar-Tabanan GB comprises steady state run, transient runs using groundwater abstraction in the period of 1989 (Qabs-1989 and period of 2009 (Qabs-2009, and prognosis run as well. Simulation results show, in general, the differences of calculated groundwater heads and observed groundwater heads at steady and transient states (Qabs-1989 and Qabs-2009 are relatively small. So, the groundwater heads situation simulated by the prognosis run (scenario Qabs-2012 are considerably valid and can properly be used for controlling the plan of groundwater utilization in Denpasar-Tabanan GB.

  5. Occurrence and distribution of organophosphorus flame retardants and plasticizers in anthropogenically affected groundwater.

    Science.gov (United States)

    Regnery, J; Püttmann, W; Merz, C; Berthold, G

    2011-02-01

    Occurrence and distribution of chlorinated and non-chlorinated organophosphates in 72 groundwater samples from Germany under different recharge/infiltration conditions were investigated. Tris(2-chloro-1-methylethyl) phosphate (TCPP) and tris(2-chloroethyl) phosphate (TCEP) were the most frequently detected organophosphates in groundwater samples. Highest individual organophosphate concentrations (>0.1 µg L(-1)) were determined in groundwater polluted by infiltrating leachate and groundwater recharged via riverbank filtration of organophosphate-loaded recipients. In samples from springs and deep groundwater monitoring wells that are not affected by surface waters, organophosphate concentrations were mostly below the limit of detection. The occurrence (3-9 ng L(-1)) of TCPP and TCEP in samples from aquifers with groundwater ages between 20 and 45 years indicates the persistence of both compounds within the aquifer. At urban sites organophosphate-loaded precipitation, surface runoff, and leakage of wastewater influenced groundwater quality. For rural sites, where groundwater recharge is only influenced by precipitation, organophosphates were very rarely detectable in groundwater.

  6. Groundwater availability in the Atlantic Coastal Plain of North and South Carolina

    Science.gov (United States)

    Campbell, Bruce G.; Coes, Alissa L.

    2010-01-01

    The Atlantic Coastal Plain aquifers and confining units of North and South Carolina are composed of crystalline carbonate rocks, sand, clay, silt, and gravel and contain large volumes of high-quality groundwater. The aquifers have a long history of use dating back to the earliest days of European settlement in the late 1600s. Although extensive areas of some of the aquifers have or currently (2009) are areas of groundwater level declines from large-scale, concentrated pumping centers, large areas of the Atlantic Coastal Plain contain substantial quantities of high-quality groundwater that currently (2009) are unused. Groundwater use from the Atlantic Coastal Plain aquifers in North Carolina and South Carolina has increased during the past 60 years as the population has increased along with demands for municipal, industrial, and agricultural water needs. While North Carolina and South Carolina work to increase development of water supplies in response to the rapid growth in these coastal populations, both States recognize that they are facing a number of unanswered questions regarding availability of groundwater supplies and the best methods to manage these important supplies. An in-depth assessment of groundwater availability of the Atlantic Coastal Plain aquifers of North and South Carolina has been completed by the U.S. Geological Survey Groundwater Resources Program. This assessment includes (1) a determination of the present status of the Atlantic Coastal Plain groundwater resources; (2) an explanation for how these resources have changed over time; and (3) development of tools to assess the system's response to stresses from potential future climate variability. Results from numerous previous investigations of the Atlantic Coastal Plain by Federal and State agencies have been incorporated into this effort. The primary products of this effort are (1) comprehensive hydrologic datasets such as groundwater levels, groundwater use, and aquifer properties; (2) a

  7. Estimating Groundwater Development area in Jianan Plain using Standardized Groundwater Index

    Science.gov (United States)

    Yu, Chang Hsiang; Haw, Lee Cheng

    2017-04-01

    Taiwan has been facing severe water crises in recent years owing to the effects of extreme weather conditions. Changes in precipitation patterns have also made the drought phenomenon increasingly prominent, which has indirectly affected groundwater recharge. Hence, in the present study, long-term monitoring data were collected from the study area of the Jianan plain. The standardized groundwater index (SGI) and was then used to analyse the region's drought characteristics. To analyse the groundwater level by using SGI, making SGI180 groundwater level be the medium water crises, and SGI360 groundwater level be the extreme water crises. Through the different water crises signal in SGI180 and SGI360, we divide groundwater in Jianan plain into two sections. Thereby the water crises indicators establishing groundwater level standard line in Jianan Plain, then using the groundwater level standard line to find the study area where could be groundwater development area in Jianan plain. Taking into account relatively more water scarcity in dry season, so the study screen out another emergency backup groundwater development area, but the long-term groundwater development area is still as a priority development area. After finding suitable locations, groundwater modeling systems(GMS) software is used to simulate our sites to evaluate development volume. Finally, the result of study will help the government to grasp the water shortage situation immediately and solve the problem of water resources deployment.

  8. Arsenic transport in groundwater, surface water, and the hyporheic zone of a mine-influenced stream-aquifer system

    OpenAIRE

    Brown, Brendan

    2005-01-01

    We investigated the transport of dissolved arsenic in groundwater, surface water and the hyporheic zone in a stream-aquifer system influenced by an abandoned arsenopyrite mine. Mine tailing piles consisting of a host of arsenic-bearing minerals including arsenopyrite and scorodite remain adjacent to the stream and represent a continuous source of arsenic. Arsenic loads from the stream, springs, and groundwater were quantified at the study reach on nine dates from January to August 2005 and ...

  9. Groundwater flow pattern in the Ruataniwha Plains as derived from the isotope and chemistry signature of the water

    International Nuclear Information System (INIS)

    Morgenstern, U.; van der Raaij, R.; Baalousha, H.

    2012-01-01

    The Ruataniwha Basin is situated in the upper Tukituki catchment, approximately 70 km south west of Napier City. The boundaries of the Ruataniwha Basin are the foothills of the Ruahine Range in the west, Turiri Range and Raukawa Range in the east and rolling hills in the north. The Ruataniwha Plains groundwater system is a multi-layered aquifer system that has a complex hydrogeological setting, as the plains evolved in response to sea-level changes, tectonic activity, and geomorphic processes. Aquifers in the basin occur in gravel, sandstone, pumice and limestone strata within a basin structure. In this study, groundwater samples have been collected for hydrochemistry, dissolved gases, and age tracer analysis. Tracer results were interpreted in terms of groundwater recharge source and rate, groundwater age, changes in groundwater source, and the homogeneity of the aquifers. This helps with conceptual understanding of Ruataniwha Basin groundwater flow patterns, and provides data for calibration of a numerical surface-groundwater flow model. Most water samples across the Ruataniwha Basin contain old water, with a mean residence time (MRT) > 25 years. The old age of most of the waters indicates that these groundwaters are not directly linked to surface water. In the south eastern part of the basin, all groundwater samples are old (>100 years), indicating slow movement of groundwater and slow recharge, consistent with the geology of the area. In the south eastern part of the basin the geologic units have low permeability. The age depth relationship is biased by upwelling groundwater and reflects the closed nature of the basin. The average vertical flow velocity indicates a recharge rate of 0.19 m/y. Four wells in the vicinity of the lower Waipawa River show excellent age-depth relationships, indicating absence of disturbance by groundwater upwelling. The recharge rate there of 0.42 m/y is substantially higher than in the other parts of the basin, indicating river

  10. Radiocarbon dating of soils, a review

    International Nuclear Information System (INIS)

    Scharpenseel, H.W.; Schiffmann, H.

    1977-01-01

    The application of radiocarbon dating techniques for pedological purposes is reviewed in chronological sequence of its phases of introduction. Initially dating of charcoal and buried paleosols was dominating and accompanied by few soil dating attempts of recent soil formations on the basis of extracted humic acid-C. The following controversy regarding the potentialities and limitations of recent soil dating, still being involved in the intact turnover processes of modern biodynamics, led to intensive search for the relatively oldest, most favorable C-fraction, particularly a biologically inert C-fraction of the organic C-pool. Inclusion of C-14 dating in pedogenetic working concepts required soil profile date-scanning in order to reveal the age versus depth interdependence. (orig./HK) [de

  11. Quarterly report of RCRA groundwater monitoring data for period January 1--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This quarterly report contains data received between January and March 1995, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter, but also data from earlier sampling events that were not previously reported. Nineteen Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring projects are conducted at the Hanford Site. These projects include treatment, storage, and disposal facilities for both solid and liquid waste. The groundwater monitoring programs described in this report comply with the interim-status federal (Title 40 Code of Federal Regulation [CFR] Part 265) and state (Washington Administrative Code [WAC] 173-303-400) regulations. The RCRA projects are monitored under one of three programs: background monitoring, indicator parameter evaluation, or groundwater quality assessment.

  12. Nuclear techniques in groundwater hydrology and their application in the country

    International Nuclear Information System (INIS)

    Raju, K.C.B.

    1982-01-01

    Two main branches of isotope hydrology, namely, environmental isotope hydrology and artificial isotope hydrology are briefly described. At present these techniques are used in a limited way in India. Some of the applications of these techniques in India are mentioned. They include: (1) dating of groundwater, (2) determining recharge values of formations, and (3) studying flow characteristics of acquifers. (M.G.B.)

  13. Aberrant thermoluminescence dates obtained from primary volcanic quartz

    International Nuclear Information System (INIS)

    Guerin, Gilles; Samper, Agnes

    2007-01-01

    This study deals with the dating by thermoluminescence (TL) of quartz from six volcanic formations of the Saint Lucia Island (Lesser Antilles Arc). Quartz microcrystals up to one millimetre in size were extracted from dacites and pumice flows and prepared in a way similar to the well-known inclusion technique. The TL properties of these quartz were used to estimate apparent palaeodoses using the multi-aliquot protocol. The quartz TL was studied in three different spectral domains: red, green and ultraviolet/blue. The calculated annual dose-rates yielded a set of 18 age-estimates. For some samples complementary dates were obtained using high temperature TL (HTTL) of plagioclase feldspars. These latter dates combined with previously determined radiocarbon and unspiked K-Ar dates were used to explore the validity of ages computed from the TL of quartz. Individual values for quartz appear to be scattered and do not match ages deduced from 14 C, unspiked K-Ar or HTTL on plagioclase dates. These results indicate that when conventional TL methodologies derived from the inclusion method are applied to volcanic quartz major dating problems are to be expected

  14. Aberrant thermoluminescence dates obtained from primary volcanic quartz

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, Gilles [Laboratoire des Sciences du Climat et de l' Environnement, CEA-CNRS, avenue de la Terrasse, 91191 Gif-sur-Yvette (France)], E-mail: gilles.guerin@u-psud.fr; Samper, Agnes [Laboratoire de geochronologie multitechnique (UPS-IPGP), Universite de Paris-Sud Orsay, 91405 Orsay Cedex (France)

    2007-10-15

    This study deals with the dating by thermoluminescence (TL) of quartz from six volcanic formations of the Saint Lucia Island (Lesser Antilles Arc). Quartz microcrystals up to one millimetre in size were extracted from dacites and pumice flows and prepared in a way similar to the well-known inclusion technique. The TL properties of these quartz were used to estimate apparent palaeodoses using the multi-aliquot protocol. The quartz TL was studied in three different spectral domains: red, green and ultraviolet/blue. The calculated annual dose-rates yielded a set of 18 age-estimates. For some samples complementary dates were obtained using high temperature TL (HTTL) of plagioclase feldspars. These latter dates combined with previously determined radiocarbon and unspiked K-Ar dates were used to explore the validity of ages computed from the TL of quartz. Individual values for quartz appear to be scattered and do not match ages deduced from {sup 14}C, unspiked K-Ar or HTTL on plagioclase dates. These results indicate that when conventional TL methodologies derived from the inclusion method are applied to volcanic quartz major dating problems are to be expected.

  15. Environmental isotope study related to groundwater age, flow system and saline water origin in Quaternary aquifers of North China Plain

    International Nuclear Information System (INIS)

    Zhang Zhigan; Payne, B.R.

    1988-01-01

    An isotopic hydrology section across the North China Plain has been studied to investigate problems of groundwater age, flow system and saline water origin in a semi-arid pre-mountain artesian basin. Two local and one regional flow system along the section have been recognized. Turnover time of water for alluvial fan, shallow and regional systems are estimated to be the order of 10 2 , 10 3 , and 10 4 years respectively. Specific flow rates for the three systems have been calculated. Only less than 5 percent of flow from alluvial fan is drained by the regional flow system and the rest, in natural conditions, discharges at surface in the front edge of an alluvial fan and forms a groundwater discharge belt at a good distance away from the mountain foot. Developed in the alluvial plain and coastal plain areas the shallow flow system embraces a series of small local systems. Groundwater in these systems appears to be the salt carrier during continental salinization. It washes salt out of the recharge area and deep-occurred strata by circulating and carries it up to the surface in lowland areas. Consequently, in parallel with salinization at surface a desalinization process occurs at depth, which provides an additional explanation for the existing thick deep fresh water zone in most arid and semi-arid regions, where continental salting process is in progress. (author). 6 refs, 8 figs, 4 tabs

  16. A conceptual model for the analysis of multi-stressors in linked groundwater-surface water systems.

    Science.gov (United States)

    Kaandorp, Vince P; Molina-Navarro, Eugenio; Andersen, Hans E; Bloomfield, John P; Kuijper, Martina J M; de Louw, Perry G B

    2018-06-15

    Groundwater and surface water are often closely coupled and are both under the influence of multiple stressors. Stressed groundwater systems may lead to a poor ecological status of surface waters but to date no conceptual framework to analyse linked multi-stressed groundwater - surface water systems has been developed. In this paper, a framework is proposed showing the effect of groundwater on surface waters in multiple stressed systems. This framework will be illustrated by applying it to four European catchments, the Odense, Denmark, the Regge and Dinkel, Netherlands, and the Thames, UK, and by assessing its utility in analysing the propagation or buffering of multi-stressors through groundwater to surface waters in these catchments. It is shown that groundwater affects surface water flow, nutrients and temperature, and can both propagate stressors towards surface waters and buffer the effect of stressors in space and time. The effect of groundwater on drivers and states depends on catchment characteristics, stressor combinations, scale and management practises. The proposed framework shows how groundwater in lowland catchments acts as a bridge between stressors and their effects within surface waters. It shows water managers how their management areas might be influenced by groundwater, and helps them to include this important, but often overlooked part of the water cycle in their basin management plans. The analysis of the study catchments also revealed a lack of data on the temperature of both groundwater and surface water, while it is an important parameter considering future climate warming. Copyright © 2018. Published by Elsevier B.V.

  17. Appraisal of groundwater resources of Ziarat valley using isotopic techniques

    International Nuclear Information System (INIS)

    Ahmad, M.; Akram, W.; Tasneem, M.A.; Rafique, M.

    2009-07-01

    Study of water resources of Ziarat Valley was carried out to investigate groundwater recharge mechanism and effectiveness of delay action dams. Samples of precipitation (rain, snow), dam reservoirs and groundwater (dug wells, tube wells, karezes, springs) were periodically collected from different locations and analyzed for environmental isotopes (/sup 2/H, /sup 3/H, /sup 18/O, /sup 34/S). The data indicate that rainfall and snow samples show wide ranges of delta /sup 2/H and delta /sup 18/O. However, the mean values for these isotopes are -6.4% and -37% respectively. Mean tritium value of rain is 9TU. Delta /sup 2/H and delta /sup 18/O values of dam reservoirs range from -6.7 to +4.9% and -42 to +30% respectively. Average isotopic indices of all the karezes are close to each other. Mean delta /sup 18/O and delta /sup 2/H values of Sandaman Tangi, Faran Tangi and Quaid springs vary from -6.3 to -6% and -40 to -31%. Tritium concentration of Sandaman Tangi and Faran Tangi springs (7 TU) is less than Quaid spring (11TU). Ranges of mean delta /sup 18/O and delta /sup 2/H values of all the groundwater samples (wells, karezes, springs) are -6.6 to -2.2% and -40 to -16% respectively. Delta /sup 34/S values of dissolved sulphates in groundwater vary from -8.5 to -0.8%. In /sup 18/O vs. /sup 2/H plot, most of the groundwater samples lie close to LMWL indicating the meteoric origin. Reservoir water in Pechi Dam shows highly enriched isotopic values in summer due to evaporation. Such enriched values are not depicted by the groundwater in the wells and karezes downstream of the dam. This implies that there is no significant recharge from this dam. Similar is the case of Mana Dam. Vouch Ghouski Dam has some contribution towards groundwater recharge while Warchoom Dam is much effective and makes significant contribution. Results of tritium dating suggest that residence time of groundwater is quite short (only few years). (author)

  18. Monitoring concentration and isotopic composition of methane in groundwater in the Utica Shale hydraulic fracturing region of Ohio.

    Science.gov (United States)

    Claire Botner, E; Townsend-Small, Amy; Nash, David B; Xu, Xiaomei; Schimmelmann, Arndt; Miller, Joshua H

    2018-05-03

    Degradation of groundwater quality is a primary public concern in rural hydraulic fracturing areas. Previous studies have shown that natural gas methane (CH 4 ) is present in groundwater near shale gas wells in the Marcellus Shale of Pennsylvania, but did not have pre-drilling baseline measurements. Here, we present the results of a free public water testing program in the Utica Shale of Ohio, where we measured CH 4 concentration, CH 4 stable isotopic composition, and pH and conductivity along temporal and spatial gradients of hydraulic fracturing activity. Dissolved CH 4 ranged from 0.2 μg/L to 25 mg/L, and stable isotopic measurements indicated a predominantly biogenic carbonate reduction CH 4 source. Radiocarbon dating of CH 4 in combination with stable isotopic analysis of CH 4 in three samples indicated that fossil C substrates are the source of CH 4 in groundwater, with one 14 C date indicative of modern biogenic carbonate reduction. We found no relationship between CH 4 concentration or source in groundwater and proximity to active gas well sites. No significant changes in CH 4 concentration, CH 4 isotopic composition, pH, or conductivity in water wells were observed during the study period. These data indicate that high levels of biogenic CH 4 can be present in groundwater wells independent of hydraulic fracturing activity and affirm the need for isotopic or other fingerprinting techniques for CH 4 source identification. Continued monitoring of private drinking water wells is critical to ensure that groundwater quality is not altered as hydraulic fracturing activity continues in the region. Graphical abstract A shale gas well in rural Appalachian Ohio. Photo credit: Claire Botner.

  19. TL dating of vases with elephant ears in Yuan Dynasty

    International Nuclear Information System (INIS)

    Xia Junding; Wang Weida; Leung, P.L.

    2005-01-01

    Thermoluminescence (TL) dating using an activation method in pre-dose technique was described. Three vases in underglaze blue with elephant ears and one vase in underglaze red with elephant ears in Yuan Dynasty were dated by this method. The results show that the TL ages are all less than 100 a B.P., and in which sbc 648 and sbc 649 were imitated in recent years. This method is quick, convenient and reliable for porcelain dating with the age of less than 1000 a B.P.. As a comparison, a porcelain sample with underglaze blue in Yuan Dynasty was dated too, and its TL age is 620 ± 140 B.P.. In addition, some complex factors associated with dating have been discussed and a resolution has been raised, which will help improve the accuracy of TL dating. (authors)

  20. Assessing groundwater policy with coupled economic-groundwater hydrologic modeling

    Science.gov (United States)

    Mulligan, Kevin B.; Brown, Casey; Yang, Yi-Chen E.; Ahlfeld, David P.

    2014-03-01

    This study explores groundwater management policies and the effect of modeling assumptions on the projected performance of those policies. The study compares an optimal economic allocation for groundwater use subject to streamflow constraints, achieved by a central planner with perfect foresight, with a uniform tax on groundwater use and a uniform quota on groundwater use. The policies are compared with two modeling approaches, the Optimal Control Model (OCM) and the Multi-Agent System Simulation (MASS). The economic decision models are coupled with a physically based representation of the aquifer using a calibrated MODFLOW groundwater model. The results indicate that uniformly applied policies perform poorly when simulated with more realistic, heterogeneous, myopic, and self-interested agents. In particular, the effects of the physical heterogeneity of the basin and the agents undercut the perceived benefits of policy instruments assessed with simple, single-cell groundwater modeling. This study demonstrates the results of coupling realistic hydrogeology and human behavior models to assess groundwater management policies. The Republican River Basin, which overlies a portion of the Ogallala aquifer in the High Plains of the United States, is used as a case study for this analysis.

  1. Isotopes reveal dynamics of groundwater system in Region 2, Philippines

    International Nuclear Information System (INIS)

    Mendoza, N.D.S.; Racadio, C.D.T.; Sucgang, R.J.; Castañeda, S.S.

    2015-01-01

    Steady economic and population growth in Region 2 could lead to an exponential increase freshwater demand. However, region 2’s main source of freshwater is groundwater and, if not checked and managed carefully, it could eventually affect the availability and sustainability of groundwater resources in Water Resource Region 2 (WRR2). Stable isotopes along with Tritium analysis in different water bodies such as rain, shallow and deep groundwater, springs and rivers were used to gain insight about the hydrological process in WRR2. Local meteoric water line for WRR2 was found to be δ2H = 8.6 δ 18O + 13.3 (r = 0.98). The estimated annual mean, which was used as a local index was to be -7.1 ‰ δ “1”8O_v_s_m_o_w_-_s_l_a_p. Shallow wells (20 – 30 m) and production wells (multi-screened wells, max depth of about 100 – 120m) were found to exhibit relatively more enrich than the index (i.e. -7.1‰) with means of -6.2 ‰ (s.d. 1.1‰, n=19) and -6.6 ‰ (s.d. 0.9; n= 151), respectively, which was an indication of infiltration of evaporated waters possibly from river and irrigation waters. Tritium analysis were done on selected sites to identify groundwater age (GWA) and possibly track the flow of groundwater from recharge areas (such as in Nueva Vizcaya, GWA = 3 years) down to the plains (Tuguegarao, GWA range from 9 to 30 years). Groundwaters drawn from production wells in Tuguegarao with ages of more than 30 years suggest that more fraction of water were being drawn from deeper aquifers. Such scenario could mean that were less water in shallow aquifers (e.g. 30 m deep) which are typically younger in age than waters found at deeper aquifers (e.g. 100 m deep). (author)

  2. Monitoring and Assessing Groundwater Impacts on Vegetation Health in Groundwater Dependent Ecosystems

    Science.gov (United States)

    Rohde, M. M.; Ulrich, C.; Howard, J.; Sweet, S.

    2017-12-01

    Sustainable groundwater management is important for preserving our economy, society, and environment. Groundwater supports important habitat throughout California, by providing a reliable source of water for these Groundwater Dependent Ecosystems (GDEs). Groundwater is particularly important in California since it supplies an additional source of water during the dry summer months and periods of drought. The drought and unsustainable pumping practices have, in some areas, lowered groundwater levels causing undesirable results to ecosystems. The Sustainable Groundwater Management Act requires local agencies to avoid undesirable results in the future, but the location and vulnerabilities of the ecosystems that depend on groundwater and interconnected surface water is often poorly understood. This presentation will feature results from a research study conducted by The Nature Conservancy and Lawrence Berkeley National Laboratory that investigated how changes in groundwater availability along an interconnected surface water body can impact the overall health of GDEs. This study was conducted in California's Central Valley along the Cosumnes River, and situated at the boundary of a high and a medium groundwater basin: South American Basin (Sacramento Hydrologic Region) and Cosumnes Basin (San Joaquin Hydrologic Region). By employing geophysical methodology (electrical resistivity tomography) in this study, spatial changes in groundwater availability were determined under groundwater-dependent vegetation. Vegetation survey data were also applied to this study to develop ecosystem health indicators for groundwater-dependent vegetation. Health indicators for groundwater-dependent vegetation were found to directly correlate with groundwater availability, such that greater availability to groundwater resulted in healthier vegetation. This study provides a case study example on how to use hydrological and biological data for setting appropriate minimum thresholds and

  3. Slow arsenic poisoning of the contaminated groundwater users

    International Nuclear Information System (INIS)

    Uddin, M. M.; Harun-Ar-Rashid, A. K. M.; Hossain, S. M.; Hafiz, M. A.; Nahar, K.; Mubin, S. H.

    2006-01-01

    This paper gives impact of Arsenic contaminated water on human health as well as overview of the extent and severity of groundwater arsenic contamination in Bangladesh. Scalp hair is the most important part of the human body to monitor the accumulation of this type of poison. Therefore, an experiment has been carried out by Neutron Activation Analysis at Atomic Energy Research Establishment , Savar, Dhaka, Bangladesh on human hair of corresponding tube well water users of these areas to determine the total accumulation of arsenic to their body. Hair samples collected from the region where the groundwater was found highly contaminated with arsenic. The obtained results of arsenic concentration in the lower age (Hb) categories of users (below 12 years of age users) is in the range of 0.33 to 3.29 μg/g (ppm) and that in the Hu categories (upper 12 years of age users) is 0.47 to 6.64 μg/g (ppm). Where as maximum permissible range is 1 ppm certified from WHO. Results show that the peoples are highly affected where the groundwater is highly contaminated with arsenic and acts as the primary source of arsenic poisoning among the peoples of those areas. The results indicate that human population is affected with arsenic locally using the contaminated water for a long time

  4. Erratum: Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs

    Science.gov (United States)

    Toth, David J.; Katz, Brian G.

    2006-09-01

    Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca-HCO3 (six), Na-Cl (four), and mixed (one). The evolution of water chemistry for Ca-HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na-Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4-53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca-HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na-Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.

  5. Radium mobility and the age of groundwater in public-drinking-water supplies from the Cambrian-Ordovician aquifer system, north-central USA

    Science.gov (United States)

    Stackelberg, Paul E.; Szabo, Zoltan; Jurgens, Bryant C.

    2018-01-01

    High radium (Ra) concentrations in potable portions of the Cambrian-Ordovician (C-O) aquifer system were investigated using water-quality data and environmental tracers (3H, 3Hetrit, SF6, 14C and 4Herad) of groundwater age from 80 public-supply wells (PSWs). Groundwater ages were estimated by calibration of tracers to lumped parameter models and ranged from modern (1 Myr) in the most downgradient, confined portions of the potable system. More than 80 and 40 percent of mean groundwater ages were older than 1000 and 50,000 yr, respectively. Anoxic, Fe-reducing conditions and increased mineralization develop with time in the aquifer system and mobilize Ra into solution resulting in the frequent occurrence of combined Ra (Rac = 226Ra + 228Ra) at concentrations exceeding the USEPA MCL of 185 mBq/L (5 pCi/L). The distribution of the three Ra isotopes comprising total Ra (Rat = 224Ra + 226Ra + 228Ra) differed across the aquifer system. The concentrations of 224Ra and 228Ra were strongly correlated and comprised a larger proportion of the Rat concentration in samples from the regionally unconfined area, where arkosic sandstones provide an enhanced source for progeny from the 232Th decay series. 226Ra comprised a larger proportion of the Ratconcentration in samples from downgradient confined regions. Concentrations of Rat were significantly greater in samples from the regionally confined area of the aquifer system because of the increase in 226Ra concentrations there as compared to the regionally unconfined area. 226Ra distribution coefficients decreased substantially with anoxic conditions and increasing ionic strength of groundwater (mineralization), indicating that Ra is mobilized to solution from solid phases of the aquifer as adsorption capacity is diminished. The amount of 226Ra released from solid phases by alpha-recoil mechanisms and retained in solution increases relative to the amount of Ra sequestered by adsorption processes or co

  6. Environmental isotope investigation of groundwaters in the region of Taiyuan, Shanxi Province of China

    International Nuclear Information System (INIS)

    Wei Keqin; Lin Ruifen; Wang Zhixiang

    1988-01-01

    A comprehensive environmental isotope investigation of several complex groundwater systems and the mixing of groundwater with surface water in the region of Taiyuan, Shanxi Province of China, is presented. Environmental isotopes, including stable isotopes, tritium and uranium series in water and its activity ratio 234 U/ 238 U are applied to divide karstic groundwaters into separate Xishan and Dongshan systems. The Xishan karstic water system shows a great scattering of isotope data. This results from the mixing of karstic groundwater and surface water from the Fenhe River. The Dongshan system is homogeneous and karstic water is tritium free and its age should be more than 50-100 a. The increase in uranium activity ratio, which is correlated with the length of the flow paths, shows the run-off direction of the Dongshan karstic water system towards the major natural outlet, the Lancun Spring. The altitudes of recharge of Xishan and Dongshan karstic waters are evaluated as 1400 m and 1300 m, respectively. The ages of fissure groundwaters in metamorphic rocks are determined in terms of their tritium content. Some practical considerations upon groundwater management are also drawn from isotope results. (author). 9 refs, 10 figs, 9 tabs

  7. European dendrochronoloy and C-14 dating of timber

    International Nuclear Information System (INIS)

    Fletcher, J.M.

    1975-01-01

    An account is given of the development of dendrochronology and C-14 dating in Europe. Corrections to raw C-14 dates, sampling and the uncertainty of C-14 ages of wood, and correlation of dates obtained by the two methods, are discussed. (U.K.)

  8. Application of the 227Th/230Th method to dating Pleistocene carbonates and comparison with other dating methods

    International Nuclear Information System (INIS)

    Gascoyne, M.

    1985-01-01

    The 227 Th/ 230 Th dating method is described in detail and its usefulness investigated by comparing ages of sixteen Pleistocene carbonates (mainly cave deposits) with those determined by the 231 Pa/ 235 U and 230 Th/ 234 U methods. The 227 Th/ 230 Th ages are found to be critically dependent on corrections for decay of 227 Th prior to alpha counting and ingrowth of daughter isotopes of 232 Th derived from clastic detritus. Of nineteen sets of ages determined for the sixteen samples, good agreement is found for only seven sets. Differences are attributed to low U content of some samples and the possibility of excess 227 Th in the calcite of samples younger than approx. 50 ky, possibly due to the coprecipitation of 231 Pa during formation. Calculated 'negative' 227 Th/ 230 Th ages may be a direct result of this process and the fact that unlike the other methods, the activity ratio is non-zero at zero age. Nevertheless, the 227 Th/ 230 Th is found to be a useful alternative dating technique for carbonates which are between approx. 50 and 300 ky, because no spiking is required. It also serves as a check for partial concordancy with ages dated by the other methods. (author)

  9. Scoping assessment of groundwater doses to biota at the Sellafield site, UK

    International Nuclear Information System (INIS)

    McDonald, P.; Gleizon, P.; Coleman, I.A.; Watts, S.J.; Batlle, L.V.; Smith, A.D.

    2008-01-01

    In the current climate of investigating the impact of discharges from the nuclear industry on non-human biota, much attention has been given to biota in marine and terrestrial environments in receipt of authorised discharges of liquid and gaseous effluent. Relatively little attention to date has been given to the exposure of biota to groundwater containing man-made radio-nuclides. This area of interest is growing especially in the field of nuclear waste repositories. A scoping assessment has been performed here to determine the impacts due to radiological contamination on organisms living within or coming into contact with groundwater at the Sellafield site, UK. The following potential exposure routes to biota were identified: 1) Organisms living within groundwater; 2) Groundwater discharges to the surface at beach springs (i.e. emerging above the low water line; 3) Groundwater discharges to nearby surface water bodies (e.g. rivers); 4) Groundwater discharges directly to the Irish Sea.. In order to evaluate impacts on organisms living within, contacting or ingesting groundwater, it was necessary to determine the activity concentration of radio-nuclides in the groundwater. For time periods up to 2120, modeling of contaminant release from in-ground inventories and transport in groundwater was carried out for this scoping study using a relatively simple assessment methodology with the MONDRIAN modeling suite. Screening assessments of radiological impacts upon wildlife have been performed for liquid discharges to groundwater from the Sellafield Ltd reprocessing plant at Sellafield, Cumbria. Impacts have been considered for biota at sites within reach of the groundwater flow network. Most calculated total weighted absorbed doses appear to be of no radiological significance whatsoever in relation to the new Environment Agency freshwater ecosystem trigger level (40 microGy h -1 ), thereby obviating the need to conduct further investigations. The one exception to this is

  10. Groundwater Discharges to Rivers in the Western Canadian Oil Sands Region

    Science.gov (United States)

    Ellis, J.; Jasechko, S.

    2016-12-01

    Groundwater discharges into rivers impacts the movement and fate of nutrients and contaminants in the environment. Understanding groundwater-surface water interactions is especially important in the western Canadian oil sands, where groundwater contamination risks are elevated and baseline water chemistry data is lacking, leading to substantial uncertainties about anthropogenic influences on local river quality. High salinity groundwater springs sourced from deep aquifers, comprised of Pleistocene-aged glacial meltwater, are known to discharge into many rivers in the oil sands. Understanding connections between deep aquifers and surficial waterways is important in order to determine natural inputs into these rivers and to assess the potential for injected wastewater or oil extraction fluids to enter surface waters. While these springs have been identified, their spatial distribution along rivers has not been fully characterized. Here we present river chemistry data collected along a number of major river corridors in the Canadian oil sands region. We show that saline groundwater springs vary spatially along the course of these rivers and tend to be concentrated where the rivers incise Devonian- or Cretaceous-aged aquifers along an evaporite dissolution front. Our results suggest that water sourced from Devonian aquifers may travel through bitumen-bearing Cretaceous units and discharge into local rivers, implying a strong groundwater-surface water connection in specialized locations. These findings indicate that oil sands process-affected waters that are injected at depth have the potential to move through these aquifers and reach the rivers at the surface at some time in the future. Groundwater-surface water interactions remain key to understanding the risks oil sands activities pose to aquatic ecosystems and downstream communities.

  11. Groundwater recharge mechanism in an integrated tableland of the Loess Plateau, northern China: insights from environmental tracers

    Science.gov (United States)

    Huang, Tianming; Pang, Zhonghe; Liu, Jilai; Ma, Jinzhu; Gates, John

    2017-11-01

    Assessing groundwater recharge characteristics (recharge rate, history, mechanisms (piston and preferential flow)) and groundwater age in arid and semi-arid environments remains a difficult but important research frontier. Such assessments are particularly important when the unsaturated zone (UZ) is thick and the recharge rate is limited. This study combined evaluations of the thick UZ with those of the saturated zone and used multiple tracers, such as Cl, NO3, Br, 2H, 18O, 13C, 3H and 14C, to study groundwater recharge characteristics in an integrated loess tableland in the Loess Plateau, China, where precipitation infiltration is the only recharge source for shallow groundwater. The results indicate that diffuse recharge beneath crops, as the main land use of the study area, is 55-71 mm yr-1 based on the chloride mass balance of soil profiles. The length of time required for annual precipitation to reach the water table is 160-400 yrs. The groundwater is all pre-modern water and paleowater, with corrected 14C age ranging from 136 to 23,412 yrs. Most of the water that eventually becomes recharge originally infiltrated in July-September. The Cl and NO3 contents in the upper UZ are considerably higher than those in the deep UZ and shallow groundwater because of recent human activities. The shallow groundwater has not been in hydraulic equilibrium with present near-surface boundary conditions. The homogeneous material of the UZ and relatively old groundwater age imply that piston flow is the dominant recharge mechanism for the shallow groundwater in the tableland.

  12. Venture Guidance Appraisal cost estimates for groundwater protection Environmental Impact Statement

    International Nuclear Information System (INIS)

    Moyer, R.A.

    1987-01-01

    Cost estimates were prepared for closure options at criteria waste sites and alternatives for new disposal facilities for hazardous wastes, mixed wastes, low level radioactive wastes and slurry from liquid waste treatment facilities. Because these cost estimates will be used in the Groundwater Protection EIS, the goal was to develop ''enveloping'' costs, i.e., the alternative or option chosen for execution at a later date should cost no more than the estimate. This report summarizes scenarios for making detailed cost estimates. Also included are unit costs for disposition of potential excavations, for operational activities, and for groundwater monitoring and site maintenance after closure of the site. The cost numbers presented are intended for study purposes only and not for budgetary activities

  13. Fake age hiatus in a loess section revealed by OSL dating of calcrete nodules

    Science.gov (United States)

    Zhang, Junjie; Li, Sheng-Hua; Sun, Jimin; Hao, Qingzhen

    2018-04-01

    Optically stimulated luminescence (OSL) dating on potassium feldspar has been performed with high resolution in the Luochuan section in the Chinese Loess Plateau. An age hiatus of ∼ 15 ka is found at the top of L2 layer within the loess/paleosol sequences. The age of the potassium feldspar from the calcrete nodules along the S1/L2 boundary is significantly older than those of the paleosol and loess samples lying above and below the boundary. The age overestimation of the potassium feldspar from calcrete nodules is caused by the underestimation of the dose rate, because accretion of carbonates could dilute the radioactivity. The age hiatus at the top of L2 also resulted from the underestimation of the dose rates of four loess samples beneath this hiatus. These four loess samples have high CaO concentrations. Ages of these samples are overestimated in the similar way as the nodules, but with smaller degrees. All results suggest that the accretion of carbonates happened after the loess deposition. The carbonate accretion process of the calcrete nodules has been simulated with accumulation models. The accretion can be as young as 46 ka, assuming the calcrete nodules formed rapidly at a certain time point. For slow and gradual accretion models, the carbonate started to accumulate slowly since the dust deposition and the accumulation became faster afterwards. The transition of the accretion rate may relate to the climate change or a change in the carbonate leaching and re-precipitation system.

  14. Radiocarbon Dating of an Olive Tree Cross-Section: New Insights on Growth Patterns and Implications for Age Estimation of Olive Trees

    Directory of Open Access Journals (Sweden)

    Yael Ehrlich

    2017-11-01

    Full Text Available The age of living massive olive trees is often assumed to be between hundreds and even thousands of years. These estimations are usually based on the girth of the trunk and an extrapolation based on a theoretical annual growth rate. It is difficult to objectively verify these claims, as a monumental tree may not be cut down for analysis of its cross-section. In addition, the inner and oldest part of the trunk in olive trees usually rots, precluding the possibility of carting out radiocarbon analysis of material from the first years of life of the tree. In this work we present a cross-section of an olive tree, previously estimated to be hundreds of years old, which was cut down post-mortem in 2013. The cross-section was radiocarbon dated at numerous points following the natural growth pattern, which was made possible to observe by viewing the entire cross-section. Annual growth rate values were calculated and compared between different radii. The cross-section also revealed a nearly independent segment of growth, which would clearly offset any estimations based solely on girth calculations. Multiple piths were identified, indicating the beginning of branching within the trunk. Different radii were found to have comparable growth rates, resulting in similar estimates dating the piths to the 19th century. The estimated age of the piths represent a terminus ante quem for the age of the tree, as these are piths of separate branches. However, the tree is likely not many years older than the dated piths, and certainly not centuries older. The oldest radiocarbon-datable material in this cross-section was less than 200 years old, which is in agreement with most other radiocarbon dates of internal wood from living olive trees, rarely older than 300 years.

  15. Strategy of valid 14C dates choice in syngenetic permafrost

    Science.gov (United States)

    Vasil'chuk, Y. K.; Vasil'chuk, A. C.

    2014-11-01

    The main problem of radiocarbon dating within permafrost is the uncertain reliability of the 14C dates. Syngenetic sediments contain allochthonous organic deposit that originated at a distance from its present position. Due to the very good preservation of organic materials in permafrost conditions and numerous re-burials of the fossils from ancient deposits into younger ones the dates could be both younger and older than the true age of dated material. The strategy for the most authentic radiocarbon date selection for dating of syncryogenic sediments is considered taking into account the fluvial origin of the syngenetic sediments. The re-deposition of organic material is discussed in terms of cyclic syncryogenic sedimentation and also the possible re-deposition of organic material in subaerial-subaqueous conditions. The advantages and the complications of dating organic micro-inclusions from ice wedges by the accelerator mass spectrometry (AMS) method are discussed applying to true age of dated material search. Radiocarbon dates of different organic materials from the same samples are compared. The younger age of the yedoma from cross-sections of Duvanny Yar in Kolyma River and Mamontova Khayata in the mouth of Lena River is substantiated due to the principle of the choice of the youngest 14C date from the set.

  16. Correction of systematic bias in ultrasound dating in studies of small-for-gestational-age birth: an example from the Iowa Health in Pregnancy Study.

    Science.gov (United States)

    Harland, Karisa K; Saftlas, Audrey F; Wallis, Anne B; Yankowitz, Jerome; Triche, Elizabeth W; Zimmerman, M Bridget

    2012-09-01

    The authors examined whether early ultrasound dating (≤20 weeks) of gestational age (GA) in small-for-gestational-age (SGA) fetuses may underestimate gestational duration and therefore the incidence of SGA birth. Within a population-based case-control study (May 2002-June 2005) of Iowa SGA births and preterm deliveries identified from birth records (n = 2,709), the authors illustrate a novel methodological approach with which to assess and correct for systematic underestimation of GA by early ultrasound in women with suspected SGA fetuses. After restricting the analysis to subjects with first-trimester prenatal care, a nonmissing date of the last menstrual period (LMP), and early ultrasound (n = 1,135), SGA subjects' ultrasound GA was 5.5 days less than their LMP GA, on average. Multivariable linear regression was conducted to determine the extent to which ultrasound GA predicted LMP dating and to correct for systematic misclassification that results after applying standard guidelines to adjudicate differences in these measures. In the unadjusted model, SGA subjects required a correction of +1.5 weeks to the ultrasound estimate. With adjustment for maternal age, smoking, and first-trimester vaginal bleeding, standard guidelines for adjudicating differences in ultrasound and LMP dating underestimated SGA birth by 12.9% and overestimated preterm delivery by 8.7%. This methodological approach can be applied by researchers using different study populations in similar research contexts.

  17. An Arctic perspective on dating Mid-Late Pleistocene environmental history

    DEFF Research Database (Denmark)

    Alexanderson, Helena; Backman, Jan; Cronin, Thomas M.

    2014-01-01

    we discuss, from an Arctic perspective, methods and correlation tools that are commonly used to date Arctic Pleistocene marine and terrestrial events. We review the state of the art of Arctic geochronology, with focus on factors that affect the possibility and quality of dating, and support...... this overview by examples of application of modern dating methods to Arctic terrestrial and marine sequences. Event stratigraphy and numerical ages are important tools used in the Arctic to correlate fragmented terrestrial records and to establish regional stratigraphic schemes. Age control is commonly provided...... of these proxies reveal cyclical patterns that provide a basis for astronomical tuning. Recent advances in dating technology, calibration and age modelling allow for measuring smaller quantities of material and to more precisely date previously undatable material (i.e. foraminifera for 14C, and single...

  18. ESR dating of fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon

    2002-03-01

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene

  19. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2002-03-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene.

  20. Hanford Site Composite Analysis Technical Approach Description: Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Budge, T. J. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2017-10-02

    The groundwater facet of the revised CA is responsible for generating predicted contaminant concentration values over the entire analysis spatial and temporal domain. These estimates will be used as part of the groundwater pathway dose calculation facet to estimate dose for exposure scenarios. Based on the analysis of existing models and available information, the P2R Model was selected as the numerical simulator to provide these estimates over the 10,000-year temporal domain of the CA. The P2R Model will use inputs from initial plume distributions, updated for a start date of 1/1/2017, and inputs from the vadose zone facet, created by a tool under development as part of the ICF, to produce estimates of hydraulic head, transmissivity, and contaminant concentration over time. A recommendation of acquiring 12 computer processors and 2 TB of hard drive space is made to ensure that the work can be completed within the anticipated schedule of the revised CA.

  1. Dating, sexual activity, and well-being in Italian adolescents

    NARCIS (Netherlands)

    Ciairano, S; Bonino, S; Kliewer, W; Miceli, R; Jackson, S

    Associations among dating, sexual activity, gender and adjustment were investigated in 2,2 73 Italian adolescents (54% female, ages 14 to 19 years) attending public high schools. After controlling for age and type of school attended, both being in a dating relationship and being male were associated

  2. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  3. Groundwater-surface water interaction

    International Nuclear Information System (INIS)

    White, P.A.; Clausen, B.; Hunt, B.; Cameron, S.; Weir, J.J.

    2001-01-01

    This chapter discusses natural and modified interactions between groundwater and surface water. Theory on recharge to groundwater from rivers is introduced, and the relative importance of groundwater recharge from rivers is illustrated with an example from the Ngaruroro River, Hawke's Bay. Some of the techniques used to identify and measure recharge to groundwater from gravel-bed rivers will be outlined, with examples from the Ngaruroro River, where the recharge reach is relatively well defined, and from the Rakaia River, where it is poorly defined. Groundwater recharged from rivers can have characteristic chemical and isotopic signatures, as shown by Waimakariri River water in the Christchurch-West Melton groundwater system. The incorporation of groundwater-river interaction in a regional groundwater flow model is outlined for the Waimea Plains, and relationships between river scour and groundwater recharge are examined for the Waimakariri River. Springs are the result of natural discharge from groundwater systems and are important water sources. The interactions between groundwater systems, springs, and river flow for the Avon River in New Zealand will be outlined. The theory of depletion of stream flow by groundwater pumpage will be introduced with a case study from Canterbury, and salt-water intrusion into groundwater systems with examples from Nelson and Christchurch. The theory of artificial recharge to groundwater systems is introduced with a case study from Hawke's Bay. Wetlands are important to flora, and the relationship of the wetland environment to groundwater hydrology will be discussed, with an example from the South Taupo wetland. (author). 56 refs., 25 figs., 3 tabs

  4. Presence of Antibiotics in Shallow Groundwater in the Northern and Southwestern Regions of China.

    Science.gov (United States)

    Chen, Liang; Lang, Hang; Liu, Fei; Jin, Song; Yan, Tao

    2018-05-01

    Antibiotics are widely used, and there is a serious concern about its adverse impacts on the environment and human health. To our knowledge, prior to this work, there was no evidence of the potential presence of antibiotics in groundwater in China, despite populous speculations. This study reported the detection of 35 target antibiotics of 6 groups (chloramphenicois, lincosamides, marcrolides, quinolones, sulfonamides, and tetracyclines), in shallow groundwater samples collected in northern and southwestern China. Thirty-four of thirty-five target antibiotics were detected in the groundwater samples; 73 of 74 monitoring wells contained at least one antibiotic; and at least two antibiotics were detected in 72 of the 74 wells. Ofloxacin (1199.7 ng/L), lincomycin (860.7 ng/L), and norfloxacin (441.9 ng/L) as well as antibiotics with the highest detection frequency such as sulfapyridine (70%), norfloxacin (69%), and lincomycin (64%) were detected at elevated concentrations. The highest detection frequency and concentration of lincosamides were observed in those groundwater samples, but no clear distribution patterns were observed for the six antibiotic groups. Moreover, shallow groundwater in southwestern China seemed to contain most antibiotics, likely due to the high antibiotics discharge and frequent exchange of groundwater with surface matrices. The findings from this work suggest that groundwater in China has been widely contaminated by antibiotics, and presumably other pharmaceutical compounds that have not been investigated to date. © 2017, National Ground Water Association.

  5. Recharge and discharge of near-surface groundwater in Forsmark. Comparison of classification methods

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent [Golder Associates AB, Uppsala (Sweden); Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Taeby (Sweden); Brydsten, Lars [Umeaa University, Dept. of Ecology and Environmental Science (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2007-03-15

    This report presents and compares data and models for identification of near-surface groundwater recharge and discharge (RD) areas in Forsmark. The general principles of groundwater recharge and discharge are demonstrated and applied to interpret hydrological and hydrogeological observations made in the Forsmark area. 'Continuous' RD classification methods considered in the study include topographical modelling, map overlays, and hydrological-hydrogeological flow modelling. 'Discrete' (point) methods include field-based and hydrochemistry-based RD classifications of groundwater monitoring well locations. The topographical RD modelling uses the digital elevation model as the only input. The map overlays use background maps of Quaternary deposits, soils, and ground- and field layers of the vegetation/land use map. Further, the hydrological-hydrogeological modelling is performed using the MIKE SHE-MIKE 11 software packages, taking into account e.g. topography, meteorology, hydrogeology, and geometry of watercourses and lakes. The best between-model agreement is found for the topography-based model and the MIKE SHE-MIKE 11 model. The agreement between the topographical model and the map overlays is less good. The agreement between the map overlays on the one hand, and the MIKE SHE and field-based RD classifications on the other, is thought to be less good, as inferred from the comparison made with the topography-based model. However, much improvement of the map overlays can likely be obtained, e.g. by using 'weights' and calibration (such exercises were outside the scope of the present study). For field-classified 'recharge wells', there is a good agreement to the hydrochemistry-based (Piper plot) well classification, but less good for the field-classified 'discharge wells'. In addition, the concentration of the age-dating parameter tritium shows low variability among recharge wells, but a large spread among discharge

  6. A multiple-tracer approach to understanding regional groundwater flow in the Snake Valley area of the eastern Great Basin, USA

    International Nuclear Information System (INIS)

    Gardner, Philip M.; Heilweil, Victor M.

    2014-01-01

    Highlights: • Age tracers and noble gases constrain intra- and inter-basin groundwater flow. • Tritium indicates modern (<60 yr) recharge occurring in all mountain areas. • Noble-gas data identify an important interbasin hydraulic discontinuity. • Further groundwater development may significantly impact Snake Valley springs. - Abstract: Groundwater in Snake Valley and surrounding basins in the eastern Great Basin province of the western United States is being targeted for large-scale groundwater extraction and export. Concern about declining groundwater levels and spring flows in western Utah as a result of the proposed groundwater withdrawals has led to efforts that have improved the understanding of this regional groundwater flow system. In this study, environmental tracers (δ 2 H, δ 18 O, 3 H, 14 C, 3 He, 4 He, 20 Ne, 40 Ar, 84 Kr, and 129 Xe) and major ions from 142 sites were evaluated to investigate groundwater recharge and flow-path characteristics. With few exceptions, δ 2 H and δ 18 O show that most valley groundwater has similar ratios to mountain springs, indicating recharge is dominated by relatively high-altitude precipitation. The spatial distribution of 3 H, terrigenic helium ( 4 He terr ), and 3 H/ 3 He ages shows that modern groundwater (<60 yr) in valley aquifers is found only in the western third of the study area. Pleistocene and late-Holocene groundwater is found in the eastern parts of the study area. The age of Pleistocene groundwater is supported by minimum adjusted radiocarbon ages of up to 32 ka. Noble gas recharge temperatures (NGTs) are generally 1–11 °C in Snake and southern Spring Valleys and >11 °C to the east of Snake Valley and indicate a hydraulic discontinuity between Snake and Tule Valleys across the northern Confusion Range. The combination of NGTs and 4 He terr shows that the majority of Snake Valley groundwater discharges as springs, evapotranspiration, and well withdrawals within Snake Valley rather than

  7. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    Science.gov (United States)

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  8. Groundwater Resources Isotope Study of Eastern and Southeastern Areas of Jordan

    International Nuclear Information System (INIS)

    Al-Momani, M. R.

    2004-01-01

    Since Jordan depends on the groundwater resources especially for municipal use so, water resources studies and development takes priority on the national level. For this reason the environmental isotope technique and application contributed and supported the hydrological studies as a research tool confirmed some scientific facts including natural and environmental changes of water resources. The isotope analyses has been implemented for upper and deep aquifer systems in the eastern and southeastern areas of Jordan for Hamad, Sirhan, Azraq and Jafr basins. The analyses included the stable isotopes for 18 O, Deuterium ( 2 H) and 13 C also the radioactive isotopes for Tritium ( 3 H ) and 14 C in nineties of the last century until 2002 and this indicates the following: * The origin and mechanism of the nonrenewable groundwater recharge in the deep aquifer systems of (B2/A7) Campanian and Turonian age for Hamad and Azraq basins has been defined. This refers that the groundwater recharge existed within humid, cold and wet climatologic conditions which is completely different from the present climate where the groundwater age exceeds thirty thousand years. * Also this indicates that the stable isotopic composition of the upper aquifers in Hamad and Sirhan basins in Shallala and Rijam aquifers (B5/B4) of Eocene and Paleocene age lie on the Global Meteoric Water Line (GMWL) where the deuterium excess (d) is 10 %. Actually this water is not tritiated and the 14 C content in the groundwater is close to zero which is a strong indication of humid and wet climate where the age of the groundwater range between 20000 and exceeds 300000 years. In comparison this situation with the same aquifer in Jafr basin located in the southeastern part of Jordan, there are differences in the deuterium excess (d), Tritium and 14 C content which depends on the climatologic conditions existed during the recharge period. Also the isotopic signaure for the middle groundwater system (B2/A7) and the

  9. Comparison between agricultural and urban ground-water quality in the Mobile River Basin

    Science.gov (United States)

    Robinson, James L.

    2003-01-01

    . Samples from 8 of the agricultural wells and all 30 urban wells were age dated using analyses of chlorofluorocarbon, sulfur hexafluoride, and dissolved gases. Ground water sampled from the agricultural wells ranged in age from about 14 to 34 years, with a median age of about 18.5 years. Ground water sampled from the urban wells ranged in age from about 1 to 45 years, with a median age of about 12 years. The ages estimated for the ground water are consistent with the geology and hydrology of the study area and the design of the wells. All of the agricultural and urban wells sampled for this study produce water from the shallow aquifer that overlies and recharges the Black Warrior River aquifer, or from the uppermost unit of the Black Warrior River aquifer. The wells are located in the same physiographic setting, have similar depths, and the water collected from the wells had a similar range in age. Statistically significant differences in ground-water quality beneath the agricultural and urban areas can reasonably be attributed to the effects of land use. Ground water from the agricultural wells typically had acidic pH values and low specific conductance and alkalinity values. The water contained few dissolved solids, and typically had small concentrations of ions. Some of the agricultural ground-water contained concentrations of ammonia, nitrite plus nitrate, phosphorus, orthophosphate, and dissolved organic carbon in concentrations that exceeded those typically found in ground water. Pesticides were detected in ground water collected from 25 of the 29 agricultural wells. Nineteen different pesticide compounds were detected a total of 83 times. Herbicides were the most frequently detected class of pesticides. The greatest concentration of any pesticide was an estimated value of 1.4 microgram per liter of fluometuron. The Wilcoxan rank sum test was used to determine statistically significant differences in water quality between the agricultural and urba

  10. Flow, origin, and age of groundwater in some deep-lying poorly permeable aquifers in the Netherlands; implications for geological waste disposal

    International Nuclear Information System (INIS)

    Glasbergen, P.

    1985-01-01

    Interest in the hydrological properties of deep strata has been increasing rapidly, especially in relation to waste disposal. For the assessment of the geohydrological stability of the host-rock itself as well as of the migration of contaminants leached from a disposal facility, investigation of the hydrological system is obligatory. Three drillings down to and beyond 500 m through very thick clay layers yielded a number of data providing new information about the hydrological system of deep strata in the Netherlands. Clay samples were taken profiles of water quality vs. depth were established, and groundwater present above and below the deep clay strata was subjected to chemical analyses in isotope determinations. Well tests and slug tests were performed to determine the permeability of the underlying aquifers. Hydraulic conductivity was found to range from 10 -7 to 10 -6 m/s. The estimated age of the deep groundwater below the Oligocene clay is at most about 4 x 10 4 years. An interpretation of the flow system is given on the basis of the relations found between water quality, depth, the conductivity, and the measured water pressures. The present observations and interpretations lead to the conclusion that the groundwater in the investigated deep strata is part of a hydrological cycle whose scale is probably limited and in some places very limited. Studies based on a model support the presented conclusions. 18 references, 9 figures

  11. AMEC GEOMATRIX/ARA GROUNDWATER REMEDIAITON TRIP REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SIMMONS SA

    2008-08-07

    City of Rialto, Well No.3 Demonstration System Integration Project, and Baldwin Park Operable Unit, Baldwin Park, California. The groundwater remediation contractors are AMEC Geomatrix and ARA. The sites were visited on July 22, 2008. Fluor Hanford and the U.S. Department of Energy are currently looking at a variety of alternatives to capture carbon tetrachloride, nitrates, and other COCs from 200-ZP-l groundwater. A few of the more important objectives of our visits were to: (1) Evaluate the treatment systems being used by AMEC Geomatrix to address VOCs, perchlorate, NDMA, 1,4,-Dioxane, and 1,2,3 TCP in a drinking water source; (2) Evaluate how effective these treatment methods have been; (3) Determine the types of problems they have encountered with these treatment systems and how they addressed these problems; (4) Determine the types of secondary wastes being generated by the system; (5) Determine how clean of an operation these companies run; and (6) Determine if the site is worth being visited by DOE-RL at a later date.

  12. Peer Involvement in Adolescent Dating Violence

    Science.gov (United States)

    Stephenson, Pam S.; Martsolf, Donna; Draucker, Claire Burke

    2013-01-01

    This study investigated the ways in which peers are involved in adolescent dating violence. Eighty-eight young adults aged 18-21 were interviewed and asked to reflect on aggressive dating relationships they experienced as teens. The researchers used grounded theory to analyze the data. Findings showed that male and female peers were involved in…

  13. Mechanism of Inflammation in Age-Related Macular Degeneration: An Up-to-Date on Genetic Landmarks

    Directory of Open Access Journals (Sweden)

    Francesco Parmeggiani

    2013-01-01

    Full Text Available Age-related macular degeneration (AMD is the most common cause of irreversible visual impairment among people over 50 years of age, accounting for up to 50% of all cases of legal blindness in Western countries. Although the aging represents the main determinant of AMD, it must be considered a multifaceted disease caused by interactions among environmental risk factors and genetic backgrounds. Mounting evidence and/or arguments document the crucial role of inflammation and immune-mediated processes in the pathogenesis of AMD. Proinflammatory effects secondary to chronic inflammation (e.g., alternative complement activation and heterogeneous types of oxidative stress (e.g., impaired cholesterol homeostasis can result in degenerative damages at the level of crucial macular structures, that is photoreceptors, retinal pigment epithelium, and Bruch’s membrane. In the most recent years, the association of AMD with genes, directly or indirectly, involved in immunoinflammatory pathways is increasingly becoming an essential core for AMD knowledge. Starting from the key basic-research notions detectable at the root of AMD pathogenesis, the present up-to-date paper reviews the best-known and/or the most attractive genetic findings linked to the mechanisms of inflammation of this complex disease.

  14. Thermoluminescence dating in the South-West Pacific region

    International Nuclear Information System (INIS)

    Prescott, J.R.

    1982-01-01

    The archaeometry laboratory of the University of Adelaide has undertaken a variety of dating projects for archaeologists in the region. For example, a survey of Pacific Island pottery has shown that themoluminescence dating is likely to be severely limited in usefulness on islands remote from the continental shelf i.e., the andesitic island arcs and oceanic islands. On the mainland of Australia, we have dated prehistoric campsites using ovenstones from fireplaces and have compared C-14 ages with themoluminescent ages. Where there is a close stratigraphic association of the C-14 and TL materials, there is good agreement between the two methods. (author)

  15. From groundwater baselines to numerical groundwater flow modelling for the Milan metropolitan area

    Science.gov (United States)

    Crosta, Giovanni B.; Frattini, Paolo; Peretti, Lidia; Villa, Federica; Gorla, Maurizio

    2015-04-01

    Contamination of major aquifers in highly densely populated areas is a major concern for stakeholders involved in the use and protection of groundwater resources. Sustainable groundwater withdrawal and management, and the identification of trends in groundwater contamination require a careful hydrochemical baseline characterization. This characterization is fundamental to investigate the presence and evolutionary trend of contaminants. In fact, it allows recovering and understanding: the spatial-temporal trend of contamination; the relative age of the contamination episodes; the reasons for anomalous behavior of some compounds during migration to and in the groundwater; the associations with which some contaminants can be found; the different behaviors in phreatic and semi-confined and confined aquifers. To attain such a characterization for the Milan metropolitan area (about 2,500 km2, ca 4.000.000 inhabitants, Lombardy, Italy), we carried out three main activities. (1) Collection of complete and reliable datasets concerning the geological, hydrogeological and hydrochemical (over 60,000 chemical analysis since 2003 to 2013) characteristics of the area and of the involved aquifers. This activity was very demanding because the available data are provided by different authorities (Lombardy Region, Provinces, Lombardy Environmental Agency - ARPA Lombardia, public own companies in charge of water system managements) in raw format and with different database standard, which required a large effort of manual verification and harmonization. (2) Completion of a hydrochemical characterization of the metropolitan area aquifers by classical statistical and multivariate statistical analyses, in order to define a baseline both for some major physical chemical characteristics and for the most relevant contaminants. (3) Development of a three dimensional hydrogeological model for the metropolitan area starting from the above listed datasets and existing models. This model will

  16. Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic fracturing operations.

    Science.gov (United States)

    Gross, Sherilyn A; Avens, Heather J; Banducci, Amber M; Sahmel, Jennifer; Panko, Julie M; Tvermoes, Brooke E

    2013-04-01

    Concerns have arisen among the public regarding the potentialfor drinking-water contamination from the migration of methane gas and hazardous chemicals associated with hydraulic fracturing and horizontal drilling. However, little attention has been paid to the potentialfor groundwater contamination resulting from surface spills from storage and production facilities at active well sites. We performed a search for publically available data regarding groundwater contamination from spills at ULS. drilling sites. The Colorado Oil and Gas Conservation Commission (COGCC) database was selected for further analysis because it was the most detailed. The majority ofspills were in Weld County, Colorado, which has the highest density of wells that used hydraulic fracturing for completion, many producing both methane gas and crude oil. We analyzed publically available data reported by operators to the COGCC regarding surface spills that impacted groundwater From July 2010 to July 2011, we noted 77 reported surface spills impacting the groundwater in Weld County, which resulted in surface spills associated with less than 0.5% of the active wells. The reported data included groundwater samples that were analyzed for benzene, toluene, ethylbenzene, andxylene (BTEX) components of crude oil. For groundwater samples taken both within the spill excavation area and on the first reported date of sampling, the BTEX measurements exceeded National Drinking Water maximum contaminant levels (MCLs) in 90, 30, 12, and 8% of the samples, respectively. However, actions taken to remediate the spills were effective at reducing BJTEX levels, with at least 84% of the spills reportedly achieving remediation as of May 2012. Our analysis demonstrates that surface spills are an important route of potential groundwater contamination from hydraulic fracturing activities and should be a focus of programs to protect groundwater While benzene can occur naturally in groundwater sources, spills and migration

  17. DOE groundwater protection strategy

    International Nuclear Information System (INIS)

    Lichtman, S.

    1988-01-01

    EH is developing a DOE-wide Groundwater Quality Protection Strategy to express DOE's commitment to the protection of groundwater quality at or near its facilities. This strategy responds to a September 1986 recommendation of the General Accounting Office. It builds on EPA's August 1984 Ground-Water Protection Strategy, which establishes a classification system designed to protect groundwater according to its value and vulnerability. The purposes of DOE's strategy are to highlight groundwater protection as part of current DOE programs and future Departmental planning, to guide DOE managers in developing site-specific groundwater protection practices where DOE has discretion, and to guide DOE's approach to negotiations with EPA/states where regulatory processes apply to groundwater protection at Departmental facilities. The strategy calls for the prevention of groundwater contamination and the cleanup of groundwater commensurate with its usefulness. It would require long-term groundwater protection with reliance on physical rather than institutional control methods. The strategy provides guidance on providing long-term protection of groundwater resources; standards for new remedial actions;guidance on establishing points of compliance; requirements for establishing classification review area; and general guidance on obtaining variances, where applicable, from regulatory requirements. It also outlines management tools to implement this strategy

  18. Environmental water requirements of groundwater dependent ecosystems: conflict between nature and man

    Science.gov (United States)

    Witczak, S.; Kania, J.; Rozanski, K.; Wachniew, P.; Zurek, A.; Dulinski, M.

    2012-04-01

    new pumping wells has been set up close to the northern border of Niepolomice Forest. There is a growing concern that exploitation of those wells may lead to lowering of water table in the Niepolomice Forest area and, as a consequence, trigger drastic changes of this unique groundwater dependent ecosystem. In order to quantify dynamics of groundwater flow in the area of the Niepolomice Forest and Wielkie Bloto fen, physicochemical parameters and concentrations of environmental tracers (stable isotopes of water, tritium, radiocarbon) were measured in wells located in the recharge area of the Bogucice Sands aquifer and in the newly established wellfield. Also, surface water appearances in the area of Wielkie Bloto fen were investigated. To detect potential discharge of deeper groundwater in the area of Wielkie Bloto fen a dedicated Geoprobe sampling of water from different levels of shallow phreatic aquifer was performed for chemical and isotope analyses. Appropriate modeling runs of the existing 3D flow and transport model of the Bogucice Sands aquifer were also made to investigate possible impact of the newly establish wellfield on the groundwater flow in the Niepolomice Forest area. The chemical and isotope data available to date indicate that in the recharge area, upstream of Wielkie Bloto fen groundwater is relatively young. Presence of appreciable amounts of tritium points to recharge in the past several decades. Radiocarbon content fluctuates between 48 and 65 pmc. In contrast, in the newly established wellfield tritium is absent while radiocarbon content drops to a few pmc. Significant age of groundwater in this area is confirmed by stable isotopes of water revealing characteristic shift towards more negative delta values indicating glacial origin of water. The work was carried out as part of the GENESIS project on groundwater systems (http:/www.thegenesisproject.eu) financed by the European Commission 7FP contract 226536 and the statutory funds of the AGH

  19. Radiocarbon dating with the Chalk River MP Tandem accelerator

    International Nuclear Information System (INIS)

    Ball, G.C.; Andrews, H.R.; Brown, R.M.; Burn, N.; Davies, W.G.; Imahori, Y.; Milton, J.C.D.

    1981-01-01

    During the past three years an automated radiocarbon dating system based on the MP Tandem accelerator has been developed for the analysis of 14 C in groundwater samples from the nuclear waste disposal research program and other small samples of scientific interest. At the present time 14 C/ 12 C ratio measurements can be determined with an accuracy of about 5% and the system background levels (approx. 35000 to 45000 years) are totally determined by sample and/or ion source contamination. Our goal has been to develop a dedicated reliable system for routine analysis that will produce accurate results with a minimum expenditure of human resources and accelerator beam time. Improvements required to operate the tandem accelerator as a quantitative tool have also benefited the rest of the experimental nuclear physics program. The early evolution of the dating facility was described previously. This paper is a brief report of the current status at Chalk River

  20. Thermoluminescence dating of sand dunes at Roonka, South Australia

    International Nuclear Information System (INIS)

    Prescott, J.R.

    1983-01-01

    Thermoluminescence has been used to date sediments associated with the archaeological excavations at Roonka. An age of 65,000 +- 12,000 years has been found for the terra rossa soil immediately underlying the oldest 14 C dated feature at the main site (18,000 years). At the East Bank site, an age of 2700 +- 300 years is found for the top of the dune at a depth of 30 cm. An age of 14,500 +- 2000 years is found for a stratigraphically distinct and sealed layer at a depth of 1 m. A similar (or possibly older) date is found at 1.7 m. These ages are consistent with the archaeological and geomorphological evidence. There is some evidence that bleaching of sediments by daylight may not be complete in the field. If this is confirmed the ages will need to be revised downwards. (author)

  1. Seasonal change of residence time in spring water and groundwater at a mountainous headwater catchment

    Science.gov (United States)

    Nagano, Kosuke; Tsujimura, Maki; Onda, Yuichi; Iwagami, Sho; Sakakibara, Koichi; Sato, Yutaro

    2017-04-01

    Determination of water age in headwater is important to consider water pathway, source and storage in the catchment. Previous studies showed that groundwater residence time changes seasonally. These studies reported that mean residence time of water in dry season tends to be longer than that in rainy season, and it becomes shorter as precipitation and discharge amount increases. However, there are few studies to clarify factors causing seasonal change in mean residence time in spring water and groundwater based on observed data. Therefore, this study aims to reveal the relationship between mean residence time and groundwater flow system using SFconcentration in spring and 10 minutes interval hydrological data such as discharge volume, groundwater level and precipitation amount in a headwater catchment in Fukushima, Japan. The SF6 concentration data in spring water observed from April 2015 to November 2016 shows the mean residence time of springs ranged from zero to 14 years. We also observed a clear negative correlation between discharge rate and residence time in the spring. The residence time in shallow groundwater in rainy season was younger as compared with that in low rainfall period. Therefore, the shallow groundwater with young residence time seems to contribute to the spring in rainy season, causing shorter residence time. Additionally, the residence time of groundwater ranged from 3 to 5 years even in low rainfall period. The residence time in high groundwater table level in ridge was older as compared with that in low groundwater table level. These suggest that the contribution of groundwater with older age in the ridge becomes dominant in the low discharge.

  2. Quarterly report of RCRA groundwater monitoring data for period January 1, 1993 through March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. This quarterly report contains data received between March 8 and May 24, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter but also data from earlier sampling events that were not previously reported.

  3. Effects of Sea Level Rise on Groundwater Flow Paths in a Coastal Aquifer System

    Science.gov (United States)

    Morrissey, S. K.; Clark, J. F.; Bennett, M. W.; Richardson, E.; Stute, M.

    2008-05-01

    Changes in groundwater flow in the Floridan aquifer system, South Florida, from the rise in sea level at the end of the last glacial period may be indicative of changes coastal aquifers will experience with continued sea level rise. As sea level rises, the hydraulic head near the coast increases. Coastal aquifers can therefore experience decreased groundwater gradients (increased residence times) and seawater intrusion. Stable isotopes of water, dissolved noble gas temperatures, radiocarbon and He concentrations were analyzed in water collected from 68 wells in the Floridan aquifer system throughout South Florida. Near the recharge area, geochemical data along groundwater flow paths in the Upper Floridan aquifer show a transition from recently recharged groundwater to glacial-aged water. Down gradient from this transition, little variation is apparent in the stable isotopes and noble gas recharge temperatures, indicating that most of the Upper Floridan aquifer contains groundwater recharged during the last glacial period. The rapid 120-meter rise in sea level marking the end of the last glacial period increased the hydraulic head in the Floridan aquifer system near the coast, slowing the flow of groundwater from the recharge area to the ocean and trapping glacial-aged groundwater. The raised sea level also flooded half of the Florida platform and caused seawater to intrude into the Lower Floridan. This circulation of seawater in the Lower Floridan continues today as our data indicate that the groundwater is similar to modern seawater with a freshwater component entering vertically from the recharge area to the Upper Floridan.

  4. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China

    International Nuclear Information System (INIS)

    Han, Dongmei; Cao, Guoliang; McCallum, James; Song, Xianfang

    2015-01-01

    Groundwater within the coastal aquifer systems of the Daweijia area in northeastern China is characterized by a large of variations (33–521 mg/L) in NO_3"− concentrations. Elevated nitrate concentrations, in addition to seawater intrusion in the Daweijia well field, both attributable to anthropogenic activities, may impact future water-management practices. Chemical and stable isotopic (δ"1"8O, δ"2H) analysis, "3H and CFCs methods were applied to provide a better understanding of the relationship between the distribution of groundwater mean residence time (MRT) and nitrate transport, and to identify sources of nitrate concentrations in the complex coastal aquifer systems. There is a relatively narrow range of isotopic composition (ranging from − 8.5 to − 7.0‰) in most groundwater. Generally higher tritium contents observed in the wet season relative to the dry season may result from rapid groundwater circulation in response to the rainfall through the preferential flow paths. In the well field, the relatively increased nitrate concentrations of groundwater, accompanied by the higher tritium contents in the wet season, indicate the nitrate pollution can be attributed to domestic wastes. The binary exponential and piston-flow mixing model (BEP) yielded feasible age distributions based on the conceptual model. The good inverse relationship between groundwater MRTs (92–467 years) and the NO_3"− concentrations in the shallow Quaternary aquifers indicates that elevated nitrate concentrations are attributable to more recent recharge for shallow groundwater. However, there is no significant relationship between the MRTs (8–411 years) and the NO_3"− concentrations existing in the carbonate aquifer system, due to the complex hydrogeological conditions, groundwater age distributions and the range of contaminant source areas. Nitrate in the groundwater system without denitrification effects could accumulate and be transported for tens of years, through the

  5. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dongmei [Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); National Centre for Groundwater Research and Training, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Cao, Guoliang [National Centre for Groundwater Research and Training, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Center for Water Research, College of Engineering, Peking University, Beijing 100871 (China); McCallum, James [National Centre for Groundwater Research and Training, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); School of the Environment, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Song, Xianfang [Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China)

    2015-12-15

    Groundwater within the coastal aquifer systems of the Daweijia area in northeastern China is characterized by a large of variations (33–521 mg/L) in NO{sub 3}{sup −} concentrations. Elevated nitrate concentrations, in addition to seawater intrusion in the Daweijia well field, both attributable to anthropogenic activities, may impact future water-management practices. Chemical and stable isotopic (δ{sup 18}O, δ{sup 2}H) analysis, {sup 3}H and CFCs methods were applied to provide a better understanding of the relationship between the distribution of groundwater mean residence time (MRT) and nitrate transport, and to identify sources of nitrate concentrations in the complex coastal aquifer systems. There is a relatively narrow range of isotopic composition (ranging from − 8.5 to − 7.0‰) in most groundwater. Generally higher tritium contents observed in the wet season relative to the dry season may result from rapid groundwater circulation in response to the rainfall through the preferential flow paths. In the well field, the relatively increased nitrate concentrations of groundwater, accompanied by the higher tritium contents in the wet season, indicate the nitrate pollution can be attributed to domestic wastes. The binary exponential and piston-flow mixing model (BEP) yielded feasible age distributions based on the conceptual model. The good inverse relationship between groundwater MRTs (92–467 years) and the NO{sub 3}{sup −} concentrations in the shallow Quaternary aquifers indicates that elevated nitrate concentrations are attributable to more recent recharge for shallow groundwater. However, there is no significant relationship between the MRTs (8–411 years) and the NO{sub 3}{sup −} concentrations existing in the carbonate aquifer system, due to the complex hydrogeological conditions, groundwater age distributions and the range of contaminant source areas. Nitrate in the groundwater system without denitrification effects could accumulate and be

  6. Using 14C and 3H to understand groundwater flow and recharge in an aquifer window

    Science.gov (United States)

    Atkinson, A. P.; Cartwright, I.; Gilfedder, B. S.; Cendón, D. I.; Unland, N. P.; Hofmann, H.

    2014-12-01

    Knowledge of groundwater residence times and recharge locations is vital to the sustainable management of groundwater resources. Here we investigate groundwater residence times and patterns of recharge in the Gellibrand Valley, southeast Australia, where outcropping aquifer sediments of the Eastern View Formation form an "aquifer window" that may receive diffuse recharge from rainfall and recharge from the Gellibrand River. To determine recharge patterns and groundwater flow paths, environmental isotopes (3H, 14C, δ13C, δ18O, δ2H) are used in conjunction with groundwater geochemistry and continuous monitoring of groundwater elevation and electrical conductivity. The water table fluctuates by 0.9 to 3.7 m annually, implying recharge rates of 90 and 372 mm yr-1. However, residence times of shallow (11 to 29 m) groundwater determined by 14C are between 100 and 10 000 years, 3H activities are negligible in most of the groundwater, and groundwater electrical conductivity remains constant over the period of study. Deeper groundwater with older 14C ages has lower δ18O values than younger, shallower groundwater, which is consistent with it being derived from greater altitudes. The combined geochemistry data indicate that local recharge from precipitation within the valley occurs through the aquifer window, however much of the groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High. The Gellibrand Valley is a regional discharge zone with upward head gradients that limits local recharge to the upper 10 m of the aquifer. Additionally, the groundwater head gradients adjacent to the Gellibrand River are generally upwards, implying that it does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10

  7. Remedial Investigation/Feasibility Study Work Plan for the 200-UP-1 Groundwater Operable Unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-01-01

    This work plan identifies the objectives, tasks, and schedule for conducting a Remedial Investigation/Feasibility Study for the 200-UP-1 Groundwater Operable Unit in the southern portion of the 200 West Groundwater Aggregate Area of the Hanford Site. The 200-UP-1 Groundwater Operable Unit addresses contamination identified in the aquifer soils and groundwater within its boundary, as determined in the 200 West Groundwater Aggregate Area Management Study Report (AAMSR) (DOE/RL 1992b). The objectives of this work plan are to develop a program to investigate groundwater contaminants in the southern portion of the 200 West Groundwater Aggregate Area that were designated for Limited Field Investigations (LFIs) and to implement Interim Remedial Measures (IRMs) recommended in the 200 West Groundwater AAMSR. The purpose of an LFI is to evaluate high priority groundwater contaminants where existing data are insufficient to determine whether an IRM is warranted and collect sufficient data to justify and implement an IRM, if needed. A Qualitative Risk Assessment (QRA) will be performed as part of the LFI. The purpose of an IRM is to develop and implement activities, such as contaminant source removal and groundwater treatment, that will ameliorate some of the more severe potential risks of groundwater contaminants prior to the RI and baseline Risk Assessment (RA) to be conducted under the Final Remedy Selection (FRS) at a later date. This work plan addresses needs of a Treatability Study to support the design and implementation of an interim remedial action for the Uranium- 99 T c -Nitrate multi-contaminant IRM plume identified beneath U Plant

  8. Quarterly report of RCRA groundwater monitoring data for period April 1 through June 30, 1994

    International Nuclear Information System (INIS)

    1994-10-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and ''Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities,'' as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company manages RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. This quarterly report contains data received between May 20 and August 19, 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the April through June quarter but also data from earlier sampling events that were not previously reported

  9. Temporal change of SF6 age in spring during rainstorms in a forested headwater catchment, Fukushima, Japan

    Science.gov (United States)

    Sakakibara, Koichi; Tsujimura, Maki; Onda, Yuichi; Iwagami, Sho; Sato, Yutaro; Nagano, Kosuke

    2017-04-01

    Time variant water age in catchments can fundamentally describe catchment function, controlling rainfall-runoff generation, groundwater flow pathway, and water storage. We observed sulfur hexafluoride concentration in the stream and groundwater with 1 - 2 hours interval during rainstorm events in order to reveal temporal variations of rainfall-runoff water age. Target's spring is perennial in a forested headwater catchment with an area of 0.045 square km, Fukushima, Japan. The observed hydrological data and tracer data of water in the catchment (stable isotopic compositions, inorganic solute concentrations) were used for clarifying rainfall-runoff processes related to water age variances. The storm hydrograph and groundwater table clearly responded to rainfall especially with more than 30 mm per day throughout the monitoring period (May 2015 - October 2016). Large variations of SF6 age in spring ranging from zero to 14 years were found in the short period during rainstorms. In particular, the SF6 age in spring was evidently old when the runoff was over 2 mm per day. At the high runoff condition, the SF6 age in spring positively correlated with discharge rate: the spring age became older as the discharge rate increased. With regard to spatial distributions of SF6 age in groundwater, the old groundwater age (9 - 13 years) in the shallow subsurface area along the valley was confirmed after heavy rainfall. This groundwater age was similar age to the deep groundwater at no-rainfall conditions. In addition, inorganic solute concentrations such as chloride ion, sodium ion, and silica in spring water showed dominant levels in the deep and ridge groundwater. All facts suggest that the old groundwater, stored in the ridge or deeper subsurface area, replaced the shallow groundwater in the vicinity of the spring due to heavy rainfall, then it contributed to the spring discharge. Therefore, rainstorm events play important roles as triggers for discharging older water stored in

  10. Summary of the results and interpretation of tritium and noble gas measurements on groundwater samples from the Perch Lake Basin Area

    International Nuclear Information System (INIS)

    Kotzer, T.G.

    1999-02-01

    Along the west-central margin of the Lower Perch Lake Basin, a limited number of groundwaters have been sampled from piezometers at depths of between 8 and 17 m and distances of between 100 and 900 m downgradient from their recharge location near Area A. Concentrations of tritium in these groundwaters varied between approximately 100 and 2800 TU. Measurements of dissolved gases in these groundwaters indicate concentrations of 4 He and neon approximating those in recently recharged groundwaters; however, the concentrations of 3 He are as much as 100 times higher, indicating the waters have accumulated tritiogenic 3 He. Using the 3 H/ 3 He dating technique, groundwater residence times on the order of 29 ± 8 years and groundwater velocities on the order of 0.1 m/day have been calculated for the flow system in the middle sand unit between Area A recharge and Perch Lake. These results, although based on a very small number of groundwater analyses, are comparable to earlier estimates of groundwater residence times and velocities obtained using Darcy calculations, borehole dilution experiments and tracer-test results from previous hydrogeologic studies in the area. (author)

  11. Numerical simulation of groundwater flow in LILW Repository site:I. Groundwater flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Park, Koung Woo; Ji, Sung Hoon; Kim, Chun Soo; Kim, Kyoung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Ji Yeon [Korea Hydro and Nuclear Power Co. Ltd., Seoul (Korea, Republic of)

    2008-12-15

    Based on the site characterization works in a low and intermediate level waste (LILW) repository site, the numerical simulations for groundwater flow were carried out in order to understand the groundwater flow system of repository site. To accomplish the groundwater flow modeling in the repository site, the discrete fracture network (DFN) model was constructed using the characteristics of fracture zones and background fractures. At result, the total 10 different hydraulic conductivity(K) fields were obtained from DFN model stochastically and K distributions of constructed mesh were inputted into the 10 cases of groundwater flow simulations in FEFLOW. From the total 10 numerical simulation results, the simulated groundwater levels were strongly governed by topography and the groundwater fluxes were governed by locally existed high permeable fracture zones in repository depth. Especially, the groundwater table was predicted to have several tens meters below the groundwater table compared with the undisturbed condition around disposal silo after construction of underground facilities. After closure of disposal facilities, the groundwater level would be almost recovered within 1 year and have a tendency to keep a steady state of groundwater level in 2 year.

  12. ESR dating of tooth enamel samples

    International Nuclear Information System (INIS)

    Chen Tiemei; Yang quan; Wu En

    1993-01-01

    Five tooth samples from the palaeoanthropological site of Jinniushan were dated with both electron-spin-resonance (ESR) and uranium-series techniques. The ESR age of about 230 ka is in good agreement with the U-series dating result, which confirms the hypothesis of possible coexistence of Homo erect us and Homo sapiens in China. Problems in ESR dating are discussed such as: 1) inappropriate of simple exponential extrapolation for accumulated dose determination; 2)experimental measurement of alpha detection efficiency and radon emanation and 3)selection of U-uptake model

  13. Geochemical Investigations of Groundwater Stability

    International Nuclear Information System (INIS)

    Bath, Adrian

    2006-05-01

    The report describes geochemical parameters and methods that provide information about the hydrodynamic stability of groundwaters in low permeability fractured rocks that are potential hosts for radioactive waste repositories. Hydrodynamic stability describes the propensity for changes in groundwater flows over long timescales, in terms of flow rates and flow directions. Hydrodynamic changes may also cause changes in water compositions, but the related issue of geochemical stability of a potential repository host rock system is outside the scope of this report. The main approaches to assessing groundwater stability are numerical modelling, measurement and interpretation of geochemical indicators in groundwater compositions, and analyses and interpretations of secondary minerals and fluid inclusions in these minerals. This report covers the latter two topics, with emphasis on geochemical indicators. The extent to which palaeohydrogeology and geochemical stability indicators have been used in past safety cases is reviewed. It has been very variable, both in terms of the scenarios considered, the stability indicators considered and the extent to which the information was explicitly or implicitly used in assessing FEPs and scenarios in the safety cases. Geochemical indicators of hydrodynamic stability provide various categories of information that are of hydrogeological relevance. Information about groundwater mixing, flows and water sources is potentially provided by the total salinity of groundwaters, their contents of specific non-reactive solutes (principally chloride) and possibly of other solutes, the stable isotopic ratio of water, and certain characteristics of secondary minerals and fluid inclusions. Information pertaining directly to groundwater ages and the timing of water and solute movements is provided by isotopic systems including tritium, carbon-14, chlorine-36, stable oxygen and hydrogen isotopes, uranium isotopes and dissolved mobile gases in

  14. The Geological Survey of Canada Radiocarbon Dating Laboratory

    International Nuclear Information System (INIS)

    Lowdon, J.A.

    1985-01-01

    The Radiocarbon Dating Laboratory of the Geological Survey of Canada began routine 14 C age determinations in 1961 using a 2 litre copper, proportional counter and CO 2 as the counting gas. This counter is operated routinely at a pressure of 2 atmospheres where the maximum dating limit is approximately 40 000 years using the 4σ criterion. In 1964 a 5 litre counter was put into operation. Routinely this counter is operated at a pressure of 1 atmosphere where its dating limit is approximately 40 000 years. When operated at 4 atmospheres its age limit increases to about 54 000 years. Organic samples are burned in a stream of oxygen and the CO 2 released is purified on passage through a series of chemicals and traps. Inorganic samples are dissolved in phosphoric acid. Up to the end of 1983 more than 3700 age determinations have been carried out on various types of sample material. Since 1963 twenty-three Geological Survey of Canada Date Lists have been published. The Laboratory also carries out a program of 14 C determinations of samples of known age for the purpose of assessing the accuracy of the method and learning more about the natural and man-made 14 C distribution and circulation in nature

  15. Evaluation of high-frequency mean streamwater transit-time estimates using groundwater age and dissolved silica concentrations in a small forested watershed

    Science.gov (United States)

    Peters, Norman E.; Burns, Douglas A.; Aulenbach, Brent T.

    2014-01-01

    Many previous investigations of mean streamwater transit times (MTT) have been limited by an inability to quantify the MTT dynamics. Here, we draw on (1) a linear relation (r 2 = 0.97) between groundwater 3H/3He ages and dissolved silica (Si) concentrations, combined with (2) predicted streamwater Si concentrations from a multiple-regression relation (R 2 = 0.87) to estimate MTT at 5-min intervals for a 23-year time series of streamflow [water year (WY) 1986 through 2008] at the Panola Mountain Research Watershed, Georgia. The time-based average MTT derived from the 5-min data was ~8.4 ± 2.9 years and the volume-weighted (VW) MTT was ~4.7 years for the study period, reflecting the importance of younger runoff water during high flow. The 5-min MTTs are normally distributed and ranged from 0 to 15 years. Monthly VW MTTs averaged 7.0 ± 3.3 years and ranged from 4 to 6 years during winter and 8–10 years during summer. The annual VW MTTs averaged 5.6 ± 2.0 years and ranged from ~5 years during wet years (2003 and 2005) to >10 years during dry years (2002 and 2008). Stormflows are composed of much younger water than baseflows, and although stormflow only occurs ~17 % of the time, this runoff fraction contributed 39 % of the runoff during the 23-year study period. Combining the 23-year VW MTT (including stormflow) with the annual average baseflow for the period (~212 mm) indicates that active groundwater storage is ~1,000 mm. However, the groundwater storage ranged from 1,040 to 1,950 mm using WY baseflow and WY VW MTT. The approach described herein may be applicable to other watersheds underlain by granitoid bedrock, where weathering is the dominant control on Si concentrations in soils, groundwater, and streamwater.

  16. Potassium-argon dating of polyhalite in southeastern New Mexico

    International Nuclear Information System (INIS)

    Brookins, D.G.; Register, J.K. Jr.; Krueger, H.W.

    1980-01-01

    Polyhalite, K 2 Ca 2 Mg(SO 4 ) 4 .2H 2 O, is an important mineral in many evaporites. Although its use for K-Ar dating has never been investigated, present results indicate that it is a very useful mineral for dating events ranging from the time of potash mineralization to any younger events which may have affected the evaporite. Five K-Ar dates on pure polyhalite, including two from included material and from beds distorted by the formation of a rubble chimney, yield dates between 198 and 216 Myp, in good agreement with Rb-Sr dates and the diagenetic age of the potash deposits from the same rocks. Two polyhalites mixed with sylvite gave lower dates, which is to be expected because of radiogenic 40 Ar loss from the sylvite phase. One polyhalite, formed after the intrusion of a 31 Myr lamprophyre dike, yielded 21 Myr. Collectively, the results indicate that pure polyhalite is satisfactory for K-Ar dating and may provide critical age information in studies of the geologic history of the evaporite sequences. (author)

  17. Potential for timing high-energy marine inundation events in the recent geological past through age-dating of reef boulders in Fiji

    Science.gov (United States)

    Terry, James P.; Etienne, Samuel

    2014-12-01

    Transported coastal boulders have increasingly come to represent a valuable element of investigations within the broader framework of multi-proxy approaches applied to coastal hazard studies. Through a case study on Taveuni Island in Fiji, this paper outlines some approaches and hindrances to effective timing of prehistorical high-energy marine inundation events (storms and tsunamis) on tropical coastlines from the evidence of reef-platform carbonate boulders. Various sources of errors are outlined that investigators must consider when attempting to use carbonate boulder ages as a surrogate for timing past events. On Taveuni, uranium : thorium dates with a high level of precision (1-7 years) suggest that major inundation events have a return period of approximately 40-45 years since 1650 AD. Of particular importance, considerably different age dates are provided by coral samples sourced from the top and bottom (i.e. opposite faces) of individual boulders, so highlighting interpretation biases that must be avoided.

  18. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    Science.gov (United States)

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of

  19. Features of groundwater pollution and its relation to overexploitation of groundwater in Shijiazhuang city

    International Nuclear Information System (INIS)

    Guo Yonghai; Wang Zhiming; Liu Shufen; Li Ping

    2005-01-01

    The groundwater pollution in Shijiazhuang city is characterized by an excess of some components and parameters over permitted values. The main pollutants are originated from the city sewage which is quite typical for groundwater pollution in many cities of China. On the basis of agonizingly features of groundwater pollution, the relationship between the groundwater pollution and the groundwater overexploitation is discussed in this paper, and the mechanism of intensifying the pollution by overexploitation has been revealed. Finally, it is proposed that the overexploitation of groundwater is an important inducing factor leading to the groundwater pollution in cities. (authors)

  20. Thorium-230 dating of natural waters at the Nevada Test Site

    International Nuclear Information System (INIS)

    Bakhtiar, S.N.

    1990-01-01

    Radiocarbon determinations have been used in the past to estimate the ages of groundwater from the Paleozoic aquifer underlying the Nevada Test Site and adjacent areas. We measured the concentrations of 230 Th, 232 Th, 234 U and 238 U in several water samples taken from the wells and spring at the Nevada Test Site and calculated the 230 Th ages. 2 refs

  1. Dating methods and their relevance in physics

    International Nuclear Information System (INIS)

    Schneider, H.

    1981-01-01

    The article describes some of the most important radiometric clocks. It is pointed out how much the chronological interpretation of isotopic ratios depends on preconceived models about origin and history of investigated minerals. A number of physico-chemical effects are discussed, which give rise to fictitious datings. The possibility is considered that all the radiometric ages used for establishing the geologic time scale might be due to such effects. The history and foundations of the latter are reviewed, and the possibility of a wrong decision is mentioned. Several results from fossil objects indicate very young ages. The usual treatment of anomalous results is criticised. Long-time clocks fails to reproduce documented young ages. It is suggested that in the age interpretation of isotopic ratios much younger than conventional ages be also taken into consideration. The importance of directly dating fossils is stressed. (orig./HP) [de

  2. Chlorine-36 dating of continental evaporites

    International Nuclear Information System (INIS)

    Huang Qi

    1990-01-01

    Teh chloring-36 production, principle and experimental method of 36 Cl dating are briefly described. The ages calculated from the 36 Cl/Cl ratios are generally concordant with those obtained by using 14 C, 230 Th and magnetostratigraphic techniques. It confirms the constancy of the chlorine input ratio over the last million years and implys that 36 Cl can provide accurate dates on continental saline sediments

  3. Primary estimation of forming date for carbonate weathering crust in Guizhou province

    International Nuclear Information System (INIS)

    Liu Chunru; Liu Xiuming; Wang Shijie; Wan Jinglin; Zheng Dewen

    2008-01-01

    The problem of directed dating of carbonate weathering crust in Guizhou Province hasn't been resolved. On the base of our previous study, we tested in detail the ages of antigenic quartz grains by fission track dating method and give a limitation of the forming date to carbonate weathering crust. The results show that the age of Xinpu profile is younger than 8.5 Ma, and the age of Guanba profile is younger than 7.3 Ma, and the age of Daxing profile is younger than 4.6 Ma. (authors)

  4. Geological Dating by 40 Ar - 39 Ar method

    International Nuclear Information System (INIS)

    Vollbert Romero, M.E.

    1992-01-01

    The isotope 40 K is radioactive, it decays to 40 Ar stable. The number of 40 Ar atoms produced from 40 K, permits to calculate the date of rocks and minerals. This dating technique is named 'Conventional K-Ar Dating Method'. The 40 Ar - 39 Ar dating method permits to calculate the age of rocks and minerals eliminating the limitation of the K-Ar method by calculating potassium and argon concentrations in a single measurement of the ratio of argon isotopes. In this work, the irradiation of the sample with fast neutrons in the nuclear reactor was established. 39 Ar is obtained from the induced reaction 39 K (n,p) 39 Ar. Thus the ration of 40 Ar - 39 Ar allows to obtain the date of rocks and minerals. This ratio was measured in a mass spectrometer. If the measurement of argon concentration in the sample is carried out at different increasing temperature values, it is possible to get information of paleotemperatures. The number of atoms 39 Ar is a function of the number 39 K atoms, irradiation time, neutrons flux, its energy E and the capture cross section σ of 39 K. These parameters are calculate indirectly by obtaining the so called 'J value ' by using a standard mineral with known age (HD-BI y Biot-133), this mineral is irradiated together with the unknown age sample. The values of 'J' obtained are in the interval of 2.85 a 3.03 (x 10 - 3)J/h. Rocks from 'Tres Virgenes' were dated by the method described in this work, showing an agreement with previous values of different authors. The age of this rocks are from Cenozoico era, mainly in the miocene period. (Author)

  5. Drinking and Dating: Examining the Link among Relationship Satisfaction, Hazardous Drinking, and Readiness-to-Change in College Dating Relationships

    Science.gov (United States)

    Khaddouma, Alexander; Shorey, Ryan C.; Brasfield, Hope; Febres, Jeniimarie; Zapor, Heather; Elmquist, Joanna; Stuart, Gregory L.

    2016-01-01

    For this study we examined the association between relationship satisfaction and readiness-to-change alcohol use, as well as the associations between hazardous drinking and readiness-to-change relationship issues in college dating relationships. A sample of 219 college students in a current dating relationship (aged 18-25) completed self-report…

  6. Dating fractures in infants

    Energy Technology Data Exchange (ETDEWEB)

    Halliday, K.E., E-mail: kath.halliday@nuh.nhs.uk [Department of Radiology, Nottingham University Hospitals, Queen' s Medical Centre, Nottingham (United Kingdom); Broderick, N J; Somers, J M [Department of Radiology, Nottingham University Hospitals, Queen' s Medical Centre, Nottingham (United Kingdom); Hawkes, R [Department of Radiology, Paul O' Gorman Building, Bristol (United Kingdom)

    2011-11-15

    Aim: To document the timing of the appearance of the radiological features of fracture healing in a group of infants in which the date of injury was known and to assess the degree of interobserver agreement. Materials and methods: Three paediatric radiologists independently assessed 161 images of 37 long bone fractures in 31 patients aged 0-44 months. The following features were assessed: soft-tissue swelling, subperiosteal new bone formation (SPNBF), definition of fracture line, presence or absence of callus, whether callus was well or ill defined, and the presence of endosteal callus. Results: Agreement between observers was only moderate for all discriminators except SPNBF. SPNBF was invariably seen after 11 days but was uncommon before this time even in the very young. In one case SPNBF was seen at 4 days. Conclusion: With the exception of SPNBF, the criteria relied on to date fractures are either not reproducible or are poor discriminators of fracture age.

  7. Dating fractures in infants

    International Nuclear Information System (INIS)

    Halliday, K.E.; Broderick, N.J.; Somers, J.M.; Hawkes, R.

    2011-01-01

    Aim: To document the timing of the appearance of the radiological features of fracture healing in a group of infants in which the date of injury was known and to assess the degree of interobserver agreement. Materials and methods: Three paediatric radiologists independently assessed 161 images of 37 long bone fractures in 31 patients aged 0-44 months. The following features were assessed: soft-tissue swelling, subperiosteal new bone formation (SPNBF), definition of fracture line, presence or absence of callus, whether callus was well or ill defined, and the presence of endosteal callus. Results: Agreement between observers was only moderate for all discriminators except SPNBF. SPNBF was invariably seen after 11 days but was uncommon before this time even in the very young. In one case SPNBF was seen at 4 days. Conclusion: With the exception of SPNBF, the criteria relied on to date fractures are either not reproducible or are poor discriminators of fracture age.

  8. Preparation of water and ice samples for 39Ar dating by atom trap trace analysis (ATTA)

    Science.gov (United States)

    Schwefel, R.; Reichel, T.; Aeschbach-Hertig, W.; Wagenbach, D.

    2012-04-01

    Atom trap trace analysis (ATTA) is a new and promising method to measure very rare noble gas radioisotopes in the environment. The applicability of this method for the dating of very old groundwater with 81Kr has already been demonstrated [1]. Recent developments now show its feasibility also for the analysis of 39Ar [2,3], which is an ideal dating tracer for the age range between 50 and 1000 years. This range is of interest in the fields of hydro(geo)logy, oceanography, and glaciology. We present preparation (gas extraction and Ar separation) methods for groundwater and ice samples for later analysis by the ATTA technique. For groundwater, the sample size is less of a limitation than for applications in oceanography or glaciology. Large samples are furthermore needed to enable a comparison with the classical method of 39Ar detection by low-level counting. Therefore, a system was built that enables gas extraction from several thousand liters of water using membrane contactors. This system provides degassing efficiencies greater than 80 % and has successfully been tested in the field. Gas samples are further processed to separate a pure Ar fraction by a gas-chromatographic method based on Li-LSX zeolite as selective adsorber material at very low temperatures. The gas separation achieved by this system is controlled by a quadrupole mass spectrometer. It has successfully been tested and used on real samples. The separation efficiency was found to be strongly temperature dependent in the range of -118 to -130 °C. Since ATTA should enable the analysis of 39Ar on samples of less than 1 ccSTP of Ar (corresponding to about 100 ml of air, 2.5 l of water or 1 kg of ice), a method to separate Ar from small amounts of gas was developed. Titanium sponge was found to absorb 60 ccSTP of reactive gases per g of the getter material with reasonably high absorption rates at high operating temperatures (~ 800 ° C). Good separation (higher than 92 % Ar content in residual gas) was

  9. Advantages of conducting in-situ U-Pb age dating of multiple U-bearing minerals from a single complex: Case in point - the Oka Carbonatite Complex

    Science.gov (United States)

    Chen, W.; Simonetti, A.

    2012-12-01

    A detailed radiometric investigation is currently underway focusing on U-bearing accessory minerals apatite, perovskite, and niocalite from the Oka Carbonatite Complex (Canada). One of the main objectives is to obtain a comparative chronology of melt crystallization for the complex. Unlike other commonly adopted U-bearing minerals (e.g., zircon, monazite) for in-situ dating investigations, apatite, perovskite, and niocalite contain relatively high contents of common Pb. Hence, careful assessment of the proportion and composition of the common Pb, and usage of appropriate matrix-matched external standards are imperative. The Madagascar apatite was utilized as the external standard for apatite dating, and the Emerald Lake and Durango apatites were adopted as secondary standards; the latter yield ages of 92.6 ±1.8 and 32.2 ±1.1 Ma, respectively, and these are identical to their accepted ages. Pb/U ages for apatite from Oka were obtained for different rock types, including 8 carbonatites, 4 okaites, 3 ijolites and 3 alnoites, and these define a range of ages between ~105 and ~135 Ma; this result suggests a protracted crystallization history. In total, 266 individual analyses define two peaks at ~115 and ~125Ma. For perovskite dating, the Ice River perovskite standard was utilized as the external standard. The perovskites from one okaite sample yield an age of 112.2 ±1.9 Ma, and is much younger than the previously reported U-Pb perovskite age of 131 ±7 Ma. Hence, the combined U-Pb perovskite ages also suggest a rather prolonged time of melt crystallization. Niocalite is a rare, accessory silicate mineral that occurs within the carbonatites at Oka. The international zircon standard BR266 was selected for use as the external standard and rastering was employed to minimize the Pb-U fractionation. Two niocalite samples give young ages at 110.6 ±1.2 and 115.0 ±1.9 Ma, and are identical to their respective apatite ages (given associated uncertainties) from the same

  10. Work plan for the Oak Ridge National Laboratory groundwater program: Continuous groundwater collection

    International Nuclear Information System (INIS)

    1995-08-01

    The continuous collection of groundwater data is a basic and necessary part of Lockeheed Martin Energy Systems' ORNL Environmental Restoration Area-Wide Groundwater Program. Continuous groundwater data consist primarily of continually recorded groundwater levels, and in some instances, specific conductivity, pH, and/or temperature measurements. These data will be collected throughout the ORNL site. This Work Plan (WP) addresses technical objectives, equipment requirements, procedures, documentation requirements, and technical instructions for the acquisition of the continuous groundwater data. Intent of this WP is to provide an approved document that meets all the necessary requirements while retaining the flexibility necessary to effectively address ORNL's groundwater problems

  11. Assessment of the lower ESR dating range in Greek speleothems

    International Nuclear Information System (INIS)

    Bassiakos, Y.

    2001-01-01

    Pilot ESR dating studies on geologically young calcitic sinters were carried out, aiming at assessment of the lower ESR dating range in characteristic Greek speleoenvironments. Five stalactites were dated, coming from an ancient mining gallery, idle for the last 2,500 years, found on Siphnos island (Aegean). The calculated ages range between 1,7-2,0 ka. Medium to low measured external dose rates (aprox. 900 μGy/a) and very low measured radioelement concentration in samples are very usual in the Mediterranean environments. The study concludes that ESR dating of speleothems younger than two millenia is practically unattainable. Some geoarchaeological implications of the obtained ages are discussed. (author)

  12. Environmental isotope studies on groundwater problems in the Thar Desert, India

    International Nuclear Information System (INIS)

    Nair, A.R.; Navada, S.V.; Rao, S.M.

    1997-01-01

    One of the groundwater problems encountered in arid areas like the Thar Desert in Rajasthan is to know whether the shallow groundwater is being actively recharged. Environmental isotopes particularly tritium are very useful in providing evidence of recent recharge. In the Barmer area, the shallow groundwaters have tritium levels generally in the range 3-6 TU showing modern recharge. Most of the recharge possibly occurs by direct infiltration of precipitation. Indirect recharge through wadis (river channels) could sometimes be an important mechanism of groundwater recharge. Environmental isotope study in Jalore area showed that the shallow groundwaters near the Sukri river course had δ 2 H and δ 18 O are depleted compared to present day precipitation but not as depleted as the present day Himalayan rivers. Carbon-24 values of some of these groundwaters are in the range of 54-58 pMC showing that they possibly represent old river with headwater connection outside the desert. In the Thar, the deep groundwaters which sometimes form the bulk of water supply are generally paleowaters as sown by environmental δ 2 H, δ 18 O, 3 H and 14 C. For example in the Barmer area, deep groundwaters (depth > 150m) have depleted δ 2 H and δ 18 O compared to the shallow groundwaters and present day precipitation. They have negligible 3 H and 14 C model ages ranging from 4000 to 9500 BP. Hence the isotope data of the deep groundwaters indicate they are paleowaters recharged during humid periods in the Holocene. Over-exploitation of deep groundwaters could lead to mixing of shallow and deep groundwaters or influx of waters from adjoining aquifers. In the Bikaner area similar δ 2 H and δ 18 O of the shallow and deep wells and young waters encountered in some of the deep wells indicated mixing between the two aquifers due to heavy exploitation of groundwaters in the area. In a limestone belt of Jodhpur-Nagaur district heavy exploitation of groundwaters is taking place in the southern

  13. Groundwater sustainability and groundwater/surface-water interaction in arid Dunhuang Basin, northwest China

    Science.gov (United States)

    Lin, Jingjing; Ma, Rui; Hu, Yalu; Sun, Ziyong; Wang, Yanxin; McCarter, Colin P. R.

    2018-03-01

    The Dunhuang Basin, a typical inland basin in northwestern China, suffers a net loss of groundwater and the occasional disappearance of the Crescent Lake. Within this region, the groundwater/surface-water interactions are important for the sustainability of the groundwater resources. A three-dimensional transient groundwater flow model was established and calibrated using MODFLOW 2000, which was used to predict changes to these interactions once a water diversion project is completed. The simulated results indicate that introducing water from outside of the basin into the Shule and Danghe rivers could reverse the negative groundwater balance in the Basin. River-water/groundwater interactions control the groundwater hydrology, where river leakage to the groundwater in the Basin will increase from 3,114 × 104 m3/year in 2017 to 11,875 × 104 m3/year in 2021, and to 17,039 × 104 m3/year in 2036. In comparison, groundwater discharge to the rivers will decrease from 3277 × 104 m3/year in 2017 to 1857 × 104 m3/year in 2021, and to 510 × 104 m3/year by 2036; thus, the hydrology will switch from groundwater discharge to groundwater recharge after implementing the water diversion project. The simulation indicates that the increased net river infiltration due to the water diversion project will raise the water table and then effectively increasing the water level of the Crescent Lake, as the lake level is contiguous with the water table. However, the regional phreatic evaporation will be enhanced, which may intensify soil salinization in the Dunhuang Basin. These results can guide the water allocation scheme for the water diversion project to alleviate groundwater depletion and mitigate geo-environmental problem.

  14. Use of Tritium and Helium to Define Groundwater Flow Conditions in a Coastal Aquifer Influenced by Seawater Intrusion: Everglades National Park

    Science.gov (United States)

    Price, R. M.; Top, Z.; Happell, J. D.; Swart, P. K.

    2002-05-01

    The concentrations of tritium (3H) and helium isotopes (3He, 4He) were used as tracers of groundwater flow in Everglades National Park, South Florida (USA). Both fresh and brackish groundwaters were collected from 47 wells completed at depths ranging from 2 m to 73 m within the Surficial Aquifer System (SAS). Ages as determined by 3H/3He techniques indicate that groundwater within the upper 28 m originated after the nuclear era (within the last 42 yr) and below 28 m before then with evidence of some mixing at the interface. Inter-annual variation of the 3H/3He ages within the upper 28 m was significant throughout the three year investigation, suggesting varying hydrologic conditions. The age of the shallow groundwater in the southern regions of ENP (Rocky Glades and Taylor Slough) tended to be younger following times of high water level when the dominant direction of groundwater flow water was to the southeast. In the same region, significantly older groundwater was observed following times of low water levels and a shift in the groundwater flow direction toward the southwest. Near the canals, the reverse occurred with the ages of shallow groundwater tending to be younger following times of low water levels, suggesting a greater influence of recharge water from the canals to the surrounding aquifer. Although water levels and the direction of hydrologic gradients vary greatly within a 3-month time period, the average age of the shallow (Aquifer suggesting a preferential flow path to the deeper formation. An increase in 4He with depth suggests that radiogenic 4He produced in the underlying Hawthorn Group is dispersed into the SAS. Higher Δ 4He values in brackish groundwaters compared to fresh waters from similar depths indicate an enhanced vertical transport of 4He in the seawater mixing zone. Seawater intrudes at distances of 6 to 28 km at shallow depths (Florida Bay and the Gulf of Mexico over an approximately 6 to 28 km wide strip that parallels the coastline.

  15. Questa baseline and pre-mining ground-water quality investigation. 14. Interpretation of ground-water geochemistry in catchments other than the Straight Creek catchment, Red River Valley, Taos County, New Mexico, 2002-2003

    Science.gov (United States)

    Nordstrom, D. Kirk; McCleskey, R. Blaine; Hunt, Andrew G.; Naus, Cheryl A.

    2005-01-01

    determined on selected samples. Dissolved organic carbon (DOC), mercury, sulfate stable isotope composition (d34S and d18O of sulfate), stable isotope composition of water (d2H and d18O of water) were measured for selected samples. Chlorofluorocarbons (CFC) and 3He and 3H were measured for age dating on selected samples. Linear regressions from the Straight Creek ground-water data were used to compare ground-water chemistry trends in non-Straight Creek ground waters with Straight Creek alluvial ground-water chemistry dilution trends. Most of the solute trends for the ground waters are similar to those for Straight Creek but there are some notable exceptions. In lithologies that contain substantial pyrite mineralization, acid waters form with similar chemistries to those in Straight Creek and all the waters tend to be calcium-sulfate type. Hottentot ground waters contain substantially lower calcium concentrations relative to those in Straight Creek. This anomaly results from the exposure of rhyolite porphyry in the Hottentot scar and weathering zone. The rhyolite contains less calcium than the altered andesites and tuffs in the Straight Creek catchment and probably does not have the abundant gypsum and calcite. The Hansen ground waters have reached gypsum saturation and have similar calcium, magnesium, and beryllium concentrations as Straight Creek ground waters but have lower concentrations of fluoride, manganese, zinc, cobalt, nickel, copper, and lithium. Lower concentrations of elements related to mineralization at Hansen likely reflect the more distal location of Hansen with respect to intrusive centers that provided the heat source for hydrothermal alteration. The other ground water with water chemistry trends that are outside the Straight Creek trends was from an alluvial well from Capulin Canyon (CC2A). Although it had pH values near 6.0 and most major ions similar to the other Capulin Canyon ground waters, it contained high concentrations

  16. ESR dating of fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon

    2003-02-01

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene

  17. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2003-02-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene.

  18. Geochemical Investigations of Groundwater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2006-05-15

    The report describes geochemical parameters and methods that provide information about the hydrodynamic stability of groundwaters in low permeability fractured rocks that are potential hosts for radioactive waste repositories. Hydrodynamic stability describes the propensity for changes in groundwater flows over long timescales, in terms of flow rates and flow directions. Hydrodynamic changes may also cause changes in water compositions, but the related issue of geochemical stability of a potential repository host rock system is outside the scope of this report. The main approaches to assessing groundwater stability are numerical modelling, measurement and interpretation of geochemical indicators in groundwater compositions, and analyses and interpretations of secondary minerals and fluid inclusions in these minerals. This report covers the latter two topics, with emphasis on geochemical indicators. The extent to which palaeohydrogeology and geochemical stability indicators have been used in past safety cases is reviewed. It has been very variable, both in terms of the scenarios considered, the stability indicators considered and the extent to which the information was explicitly or implicitly used in assessing FEPs and scenarios in the safety cases. Geochemical indicators of hydrodynamic stability provide various categories of information that are of hydrogeological relevance. Information about groundwater mixing, flows and water sources is potentially provided by the total salinity of groundwaters, their contents of specific non-reactive solutes (principally chloride) and possibly of other solutes, the stable isotopic ratio of water, and certain characteristics of secondary minerals and fluid inclusions. Information pertaining directly to groundwater ages and the timing of water and solute movements is provided by isotopic systems including tritium, carbon-14, chlorine-36, stable oxygen and hydrogen isotopes, uranium isotopes and dissolved mobile gases in

  19. Characterizing the Occurrence and Transport of Brackish Groundwater in Southwest Bangladesh

    Science.gov (United States)

    worland, S.; Hornberger, G. M.

    2013-12-01

    Bangladesh is host to the largest and the most active delta system in the world. The morphology of the southern part of the country is characterized by low lying deltaic plains partitioned by the distributary networks of the Ganges, Brahmaputra and Meghna river systems. Much of the tidal mangrove forest ecosystem of the lower delta has been converted into poldered islands that sustain shrimp farming and rice production. The polder inhabitants depend on shallow groundwater as a primary source for drinking water and sanitation. Understanding the origin and hydrologic controls on the distribution of the brackish water and freshwater on the polder is a necessary step to ensuring a sustainable and potable freshwater source for drinking and irrigation. Preliminary sampling from shallow tube wells on Polder 32 in southwest Bangladesh suggests sporadic lateral apportioning of fresh water in the primarily brackish aquifer. This research characterizes the occurrence, transport and fate of the brackish groundwater through a combination of 3H and 14C dating, geochemical signatures, subsurface mapping using inversions from electromagnetic induction, and a 1D finite difference model and a 2D finite element model. The geochemical analysis and radiometric dating suggest that the salt water originates from paleo-brackish estuarine water deposited ~5000 years ago along with the sediments that compose the shallow aquifer. Inversions of electromagnetic survey data show potential freshwater recharge areas where the clay cap pinches out. The finite difference model demonstrates that recharge from the distributary channels is unlikely due to the low transmissivity of the clay channel beds. The finite element model gives reasonable estimates of the flushing rates of the connate brackish water beneath the polder. Inversion of electromagnetic data from a two hundred meter transect taken on Polder 32 Head gradient and groundwater flow vectors for fixed head boundary conditions across Polder

  20. Groundwater Monitoring and Engineered Geothermal Systems: The Newberry EGS Demonstration

    Science.gov (United States)

    Grasso, K.; Cladouhos, T. T.; Garrison, G.

    2013-12-01

    Engineered Geothermal Systems (EGS) represent the next generation of geothermal energy development. Stimulation of multiple zones within a single geothermal reservoir could significantly reduce the cost of geothermal energy production. Newberry Volcano in central Oregon represents an ideal location for EGS research and development. As such, the goals of the Newberry EGS Demonstration, operated by AltaRock Energy, Inc., include stimulation of a multiple-zone EGS reservoir, testing of single-well tracers and a demonstration of EGS reservoir viability through flow-back and circulation tests. A shallow, local aquifer supplied the approximately 41,630 m3 (11 million gals) of water used during stimulation of NWG 55-29, a deep geothermal well on the western flank of Newberry Volcano. Protection of the local aquifer is of primary importance to both the Newberry EGS Demonstration and the public. As part of the Demonstration, AltaRock Energy, Inc. has developed and implemented a groundwater monitoring plan to characterize the geochemistry of the local aquifer before, during and after stimulation. Background geochemical conditions were established prior to stimulation of NWG 55-29, which was completed in 2012. Nine sites were chosen for groundwater monitoring. These include the water supply well used during stimulation of NWG 55-29, three monitoring wells, three domestic water wells and two hot seeps located in the Newberry Caldera. Together, these nine monitoring sites represent up-, down- and cross-gradient locations. Groundwater samples are analyzed for 25 chemical constituents, stable isotopes, and geothermal tracers used during stimulation. In addition, water level data is collected at three monitoring sites in order to better characterize the effects of stimulation on the shallow aquifer. To date, no significant geochemical changes and no geothermal tracers have been detected in groundwater samples from these monitoring sites. The Newberry EGS Demonstration groundwater

  1. Dating Saharan dust deposits on Lanzarote (Canary Islands) by luminescence dating techniques and their implication for palaeoclimate reconstruction of NW Africa

    Science.gov (United States)

    von Suchodoletz, H.; Fuchs, M.; ZöLler, L.

    2008-02-01

    Lava flow dammed valleys (Vegas) on Lanzarote (Canary Islands) represent unique sediment traps, filled with autochthonous volcanic material and allochthonous Saharan dust. These sediments and the intercalated palaeosoil sediments document past environmental change of the last glacial-interglacial cycles, both on Lanzarote and in NW Africa. A reliable chronology must be established to use these sediment archives for palaeoclimate reconstructions. Owing to the lack of organic material and the limiting time range of the 14C-dating method, luminescence dating is the most promising method for these sediments. However, the fluvio-eolian character of these sediments is a major problem for luminescence dating, because these sediments are prone to insufficient resetting of the parent luminescence signal (bleaching) prior to sedimentation. To check for the best age estimates, we compare the bleaching behavior of (1) different grain sizes (coarse- versus fine-grain quartz OSL) and (2) different minerals (fine-grain feldspar IRSL versus fine-grain quartz OSL). The results show that owing to its bleaching characteristics, quartz is the preferable mineral for luminescence dating. On the basis of the fine- and coarse-grain quartz OSL age estimates, a chronostratigraphy up to 100 ka could be established. Beyond this age limit for OSL quartz, the chronostratigraphy could be extended up to 180 ka by correlating the vega sediments with dated marine sediment archives.

  2. An early warning system for groundwater pollution based on the assessment of groundwater pollution risks.

    Science.gov (United States)

    Zhang, Weihong.; Zhao, Yongsheng; Hong, Mei; Guo, Xiaodong

    2009-04-01

    Groundwater pollution usually is complex and concealed, remediation of which is difficult, high cost, time-consuming, and ineffective. An early warning system for groundwater pollution is needed that detects groundwater quality problems and gets the information necessary to make sound decisions before massive groundwater quality degradation occurs. Groundwater pollution early warning were performed by considering comprehensively the current groundwater quality, groundwater quality varying trend and groundwater pollution risk . The map of the basic quality of the groundwater was obtained by fuzzy comprehensive evaluation or BP neural network evaluation. Based on multi-annual groundwater monitoring datasets, Water quality state in sometime of the future was forecasted using time-sequenced analyzing methods. Water quality varying trend was analyzed by Spearman's rank correlative coefficient.The relative risk map of groundwater pollution was estimated through a procedure that identifies, cell by cell,the values of three factors, that is inherent vulnerability, load risk of pollution source and contamination hazard. DRASTIC method was used to assess inherent vulnerability of aquifer. Load risk of pollution source was analyzed based on the potential of contamination and pollution degree. Assessment index of load risk of pollution source which involves the variety of pollution source, quantity of contaminants, releasing potential of pollutants, and distance were determined. The load risks of all sources considered by GIS overlay technology. Early warning model of groundwater pollution combined with ComGIS technology organically, the regional groundwater pollution early-warning information system was developed, and applied it into Qiqiha'er groundwater early warning. It can be used to evaluate current water quality, to forecast water quality changing trend, and to analyze space-time influencing range of groundwater quality by natural process and human activities. Keywords

  3. Assessing regional groundwater stress for nations using multiple data sources with the groundwater footprint

    International Nuclear Information System (INIS)

    Gleeson, Tom; Wada, Yoshihide

    2013-01-01

    Groundwater is a critical resource for agricultural production, ecosystems, drinking water and industry, yet groundwater depletion is accelerating, especially in a number of agriculturally important regions. Assessing the stress of groundwater resources is crucial for science-based policy and management, yet water stress assessments have often neglected groundwater and used single data sources, which may underestimate the uncertainty of the assessment. We consistently analyze and interpret groundwater stress across whole nations using multiple data sources for the first time. We focus on two nations with the highest national groundwater abstraction rates in the world, the United States and India, and use the recently developed groundwater footprint and multiple datasets of groundwater recharge and withdrawal derived from hydrologic models and data synthesis. A minority of aquifers, mostly with known groundwater depletion, show groundwater stress regardless of the input dataset. The majority of aquifers are not stressed with any input data while less than a third are stressed for some input data. In both countries groundwater stress affects agriculturally important regions. In the United States, groundwater stress impacts a lower proportion of the national area and population, and is focused in regions with lower population and water well density compared to India. Importantly, the results indicate that the uncertainty is generally greater between datasets than within datasets and that much of the uncertainty is due to recharge estimates. Assessment of groundwater stress consistently across a nation and assessment of uncertainty using multiple datasets are critical for the development of a science-based rationale for policy and management, especially with regard to where and to what extent to focus limited research and management resources. (letter)

  4. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  5. Fluoride contamination in groundwater resources of Alleppey, southern India

    Directory of Open Access Journals (Sweden)

    Dhanya Raj

    2017-01-01

    Full Text Available Alleppey is one of the thickly populated coastal towns of the Kerala state in southern India. Groundwater is the main source of drinking water for the 240,991 people living in this region. The groundwater is being extracted from a multi-layer aquifer system of unconsolidated to semi-consolidated sedimentary formations, which range in age from Recent to Tertiary. The public water distribution system uses dug and tube wells. Though there were reports on fluoride contamination, this study reports for the first time excess fluoride and excess salinity in the drinking water of the region. The quality parameters, like Electrical Conductivity (EC ranges from 266 to 3900 μs/cm, the fluoride content ranges from 0.68 to 2.88 mg/L, and the chloride ranges between the 5.7 to 1253 mg/L. The main water types are Na-HCO3, Na-CO3 and Na-Cl. The aqueous concentrations of F− and CO32− show positive correlation whereas F− and Ca2+ show negative correlation. The source of fluoride in the groundwater could be from dissolution of fluorapatite, which is a common mineral in the Tertiary sediments of the area. Long residence time, sediment–groundwater interaction and facies changes (Ca-HCO3 to Na-HCO3 during groundwater flow regime are the major factors responsible for the high fluoride content in the groundwater of the area. High strontium content and high EC in some of the wells indicate saline water intrusion that could be due to the excess pumping from the deeper aquifers of the area. The water quality index computation has revealed that 62% of groundwater belongs to poor quality and is not suitable for domestic purposes as per BIS and WHO standards. Since the groundwater is the only source of drinking water in the area, proper treatment strategies and regulating the groundwater extraction are required as the quality deterioration poses serious threat to human health.

  6. The Influence of Dating Anxiety on Normative Experiences of Dating, Sexual Interactions, and Alcohol Consumption among Canadian Middle Adolescents

    Science.gov (United States)

    Boyle, Andrea M.; O'Sullivan, Lucia F.

    2013-01-01

    Adolescents tend to consume alcohol and find romantic and sexual partners in mixed-group settings that are unmonitored by adults. Relatively little is known about the influence that dating anxiety may have with these social interactions. A sample of 163 high school students (aged 14-17 years) completed online surveys assessing dating, sex, and…

  7. 3D modeling of groundwater heat transport in the shallow Westliches Leibnitzer Feld aquifer, Austria

    Science.gov (United States)

    Rock, Gerhard; Kupfersberger, Hans

    2018-02-01

    For the shallow Westliches Leibnitzer feld aquifer (45 km2) we applied the recently developed methodology by Kupfersberger et al. (2017a) to derive the thermal upper boundary for a 3D heat transport model from observed air temperatures. We distinguished between land uses of grass and agriculture, sealed surfaces, forest and water bodies. To represent the heat flux from heated buildings and the mixture between different land surfaces in urban areas we ran the 1D vertical heat conduction module SoilTemp which is coupled to the heat transport model (using FEFLOW) on a time step basis. Over a simulation period of 23 years the comparison between measured and observed groundwater temperatures yielded NSE values ranging from 0.41 to 0.92 including readings at different depths. The model results showed that the thermal input signals lead to distinctly different vertical groundwater temperature distributions. To overcome the influence of specific warm or cold years we introduced the computation of an annual averaged groundwater temperature profile. With respect to the use of groundwater cooling or heating facilities we evaluated the application of vertically averaged statistical groundwater temperature distributions compared to the use of temperature distributions at selected dates. We concluded that the heat transport model serves well as an aquifer scale management tool to optimize the use of the shallow subsurface for thermal purposes and to analyze the impacts of corresponding measures on groundwater temperatures.

  8. Modelling the distribution of tritium in groundwater across South Africa to assess the vulnerability and sustainability of groundwater resources in response to climate change

    Science.gov (United States)

    van Rooyen, Jared; Miller, Jodie; Watson, Andrew; Butler, Mike

    2017-04-01

    Groundwater is critical for sustaining human populations, especially in semi-arid to arid areas, where surface water availability is low. Shallow groundwater is usually abstracted for this purpose because it is the easiest to access and assumed to be renewable and regularly recharged by precipitation. Renewable, regularly recharged groundwater is also called modern groundwater, ie groundwater that has recently been in contact with the atmosphere. Tritium can be used to determine whether or not a groundwater resource is modern because the half-life of tritium is only 12.36 years and tritium is dominantly produced in the upper atmosphere and not in the rock mass. For this reason, groundwater with detectable tritium activities likely has a residence age of less than 50 years. In this study, tritium activities in 277 boreholes distributed across South Africa were used to develop a national model for tritium activity in groundwater in order to establish the extent of modern groundwater across South Africa. The tritium model was combined with modelled depth to water using 3079 measured static water levels obtained from the National Groundwater Archive and validated against a separate set of 40 tritium activities along the west coast of South Africa. The model showed good agreement with the distribution of rainfall which has been previously documented across the globe (Gleeson et al., 2015), although the arid Karoo basin in south west South Africa shows higher than expected tritium levels given the very low regional precipitation levels. To assess the vulnerability of groundwater to degradation in quality and quantity, the tritium model was incorporated into a multi-criteria evaluation (MCE) model which incorporated other indicators of groundwater stress including mean annual precipitation, mean annual surface temperature, electrical conductivity (as a proxy for groundwater salinization), potential evaporation, population density and cultivated land usage. The MCE model

  9. A hybrid machine learning model to estimate nitrate contamination of production zone groundwater in the Central Valley, California

    Science.gov (United States)

    Ransom, K.; Nolan, B. T.; Faunt, C. C.; Bell, A.; Gronberg, J.; Traum, J.; Wheeler, D. C.; Rosecrans, C.; Belitz, K.; Eberts, S.; Harter, T.

    2016-12-01

    A hybrid, non-linear, machine learning statistical model was developed within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface in the Central Valley, California. A database of 213 predictor variables representing well characteristics, historical and current field and county scale nitrogen mass balance, historical and current landuse, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6,000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The machine learning method, gradient boosting machine (GBM) was used to screen predictor variables and rank them in order of importance in relation to the groundwater nitrate measurements. The top five most important predictor variables included oxidation/reduction characteristics, historical field scale nitrogen mass balance, climate, and depth to 60 year old water. Twenty-two variables were selected for the final model and final model errors for log-transformed hold-out data were R squared of 0.45 and root mean square error (RMSE) of 1.124. Modeled mean groundwater age was tested separately for error improvement in the model and when included decreased model RMSE by 0.5% compared to the same model without age and by 0.20% compared to the model with all 213 variables. 1D and 2D partial plots were examined to determine how variables behave individually and interact in the model. Some variables behaved as expected: log nitrate decreased with increasing probability of anoxic conditions and depth to 60 year old water, generally decreased with increasing natural landuse surrounding wells and increasing mean groundwater age, generally increased with increased minimum depth to high water table and with increased base flow index value. Other variables exhibited much more erratic or noisy behavior in

  10. Understanding the carbon cycle in a Late Quaternary-age limestone aquifer system using radiocarbon of dissolved inorganic and organic carbon

    Science.gov (United States)

    Bryan, Eliza; Meredith, Karina T.; Baker, Andy; Andersen, Martin S.; Post, Vincent E. A.

    2017-04-01

    Estimating groundwater residence time is critical for our understanding of hydrogeological systems, for groundwater resource assessments and for the sustainable management of groundwater resources. Due to its capacity to date groundwater up to 30 thousand years old, as well as the ubiquitous nature of dissolved carbon (as organic and inorganic forms) in groundwater, 14C is the most widely used radiogenic dating technique in regional aquifers. However, the geochemistry of carbon in groundwater systems includes interaction with the atmosphere, biosphere and geosphere, which results in multiple sources and sinks of carbon that vary in time and space. Identifying these sources of carbon and processes relating to its release or removal is important for understanding the evolution of the groundwater and essential for residence time calculations. This study investigates both the inorganic and organic facets of the carbon cycle in groundwaters throughout a freshwater lens and mixing zone of a carbonate island aquifer and identifies the sources of carbon that contribute to the groundwater system. Groundwater samples were collected from shallow (5-20 m) groundwater wells on a small carbonate Island in Western Australia in September 2014 and analysed for major and minor ions, stable water isotopes (SWIs: δ18O, δ2H), 3H, 14C and 13C carbon isotope values of both DIC and DOC, and 3H. The composition of groundwater DOC was investigated by Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis. The presence of 3H (0.12 to 1.35 TU) in most samples indicates that groundwaters on the Island are modern, however the measured 14CDIC values (8.4 to 97.2 pmc) suggest that most samples are significantly older due to carbonate dissolution and recrystallisation reactions that are identified and quantified in this work. 14CDOC values (46.6 to 105.6 pMC) were higher than 14CDIC values and were well correlated with 3H values, however deeper groundwaters had lower 14CDOC values than

  11. ESR dating of the fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2004-01-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs, grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Ulzin nuclear reactor. ESR signals of quartz grains separated from fault rocks collected from the E-W trend fault are saturated. This indicates that the last movement of these faults had occurred before the quaternary period. ESR dates from the NW trend faults range from 300ka to 700ka. On the other hand, ESR date of the NS trend fault is about 50ka. Results of this research suggest that long-term cyclic fault activity near the Ulzin nuclear reactor continued into the pleistocene.

  12. AMS radiocarbon dating of 'Grotta Cappuccini' in Southern Italy

    International Nuclear Information System (INIS)

    Quarta, G.; Calcagnile, L.; D'Elia, M.; Rizzo, A.; Ingravallo, E.

    2004-01-01

    We present the results of AMS radiocarbon dating of human bones recovered in 'Grotta Cappuccini', a prehistoric cave in Galatone, Lecce (Southern Italy). The AMS analysis has confirmed the archaeological dating of the cave to the period between the end of the Copper Age and the early Bronze Age, and has given a fundamental contribution to the chronological definition of an important cultural aspect of the prehistory of Southern Italy

  13. Childhood Corporal Punishment and Future Perpetration of Physical Dating Violence.

    Science.gov (United States)

    Temple, Jeff R; Choi, Hye Jeong; Reuter, Tyson; Wolfe, David; Taylor, Catherine A; Madigan, Sheri; Scott, Lauren E

    2018-03-01

    To test whether experiencing childhood corporal punishment is linked to later perpetration of dating violence. Young adults (n = 758; 61% female; mean age of 20 years), originally recruited for a longitudinal study as 9th- and 10th-grade Texas high school students, were asked about their childhood experiences with corporal punishment and physical abuse, as well as current experiences with dating violence. A path model was used to determine whether childhood corporal punishment was related to recent perpetration of physical dating violence, while controlling for childhood physical abuse, age, sex, ethnicity, and socioeconomic status. In all, 19% of participants (n = 134) reported physical dating violence perpetration and 68% reported experiencing corporal punishment as children (n = 498). Analysis showed a significant positive association between corporal punishment and physical perpetration of dating violence (OR 1.30, 95% CI 1.07-1.59). Even after controlling for sex, ethnicity, age, parental education, and child physical abuse, childhood corporal punishment was associated significantly with physical dating violence perpetration (aOR 1.29, 95% CI 1.02-1.62). The finding that childhood corporal punishment was associated with perpetration of young adult physical dating violence, even after controlling for several demographic variables and childhood physical abuse, adds to the growing literature demonstrating deleterious outcomes associated with corporal punishment. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Constructing deposition chronologies for peat deposits using radiocarbon dating

    Directory of Open Access Journals (Sweden)

    N. Piotrowska

    2011-06-01

    Full Text Available Radiocarbon dating is one of the main methods used to establish peat chronologies. This article reviews the basis of the method and its application to dating of peat deposits. Important steps in the radiocarbon dating procedure are described, including selection and extraction of material (and fractions for dating, chemical and physical preparation of media suitable for measurements, measurements of 14C activity or concentration, calculations, calibration of results and age-depth modelling.

  15. Radiocarbon dating of a very large African baobab.

    Science.gov (United States)

    Patrut, Adrian; von Reden, Karl F; Lowy, Daniel A; Alberts, Andries H; Pohlman, John W; Wittmann, Rudolf; Gerlach, Dana; Xu, Li; Mitchell, Clark S

    2007-11-01

    In late 2004, Grootboom, probably the largest known African baobab (Adansonia digitata L.), collapsed unexpectedly in northeastern Namibia. Ten wood samples collected from different areas of the trunk were processed and investigated by accelerator mass spectrometry radiocarbon dating. The radiocarbon dates of three samples were greater than 1000 years BP (radiocarbon years before present, i.e., before AD 1950). The corresponding calibrated calendar age of the oldest sample was 1275 +/- 50 years, making Grootboom the oldest known angiosperm tree with reliable dating results. Variations in radiocarbon dates among the wood samples indicated that, morphologically, Grootboom was a quintuple tree, whereas genetically, it was a single individual. Ages of extreme lateral samples revealed that, over the past 500-600 years, Grootbooom had almost ceased growing, providing information about climate changes in central southern Africa. The sudden demise of Grootboom coincided with the spread of the poorly studied baobab disease, which has become epidemic in Namibia.

  16. Using accelerator mass spectrometry for radiocarbon dating of textiles

    International Nuclear Information System (INIS)

    Jull, A.J.T.

    1997-01-01

    Since 1981 we have operated an NSF Accelerator Mass Spectrometry (AMS) Facility at the University of Arizona. The AMS method allows us to use very small samples of carbon, 14 C in lunar samples by galactic and solar cosmic rays, studies of in situ 14 C produced by cosmic ray spallation in rocks and ice, and studies of 14 C in groundwater dissolved inorganic carbon and dissolved organic carbon. At our laboratory, we have also successfully applied AMS 14 C to dating of many types of textiles, including silks and linens, art works, documents and artifacts fabricated from wood, parchment, ivory, and bone. The results for many of these samples are often important in questions of the authenticity of these works of art and artifacts. Our studies have encompassed a wide range of art works ranging from the Dead Sea Scrolls, the Shroud of Turin, and the Chinese silk trade to the works of Raphael, Rembrandt, and Picasso. Recently, we also dated the Vinland Map, a controversial document that shows the eastern coast of North America apparently using information from Viking voyages

  17. Groundwater Monitoring and Tritium-Tracking Plan for the 200 Area State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    DB Barnett

    2000-08-31

    The 200 Area State-Approved Land Disposal Site (SALDS) is a drainfield which receives treated wastewater, occasionally containing tritium from treatment of Hanford Site liquid wastes at the 200 Area Effluent Treatment Facility (ETF). Since operation of the SALDS began in December 1995, discharges of tritium have totaled {approx}304 Ci, only half of what was originally predicted for tritium quantity through 1999. Total discharge volumes ({approx}2.7E+8 L) have been commensurate with predicted volumes to date. This document reports the results of all tritium analyses in groundwater as determined from the SALDS tritium-tracking network since the first SALDS wells were installed in 1992 through July 1999, and provides interpretation of these results as they relate to SALDS operation and its effect on groundwater. Hydrologic and geochemical information are synthesized to derive a conceptual model, which is in turn used to arrive at an appropriate approach to continued groundwater monitoring at the facility.

  18. Identifying Effective Policy and Technologic Reforms for Sustainable Groundwater Management in Oman

    Science.gov (United States)

    Madani, K.; Zekri, S.; Karimi, A.

    2014-12-01

    Oman has gone through three decades of efforts aimed at addressing groundwater over-pumping and the consequent seawater intrusion. Example of measures adopted by the government since the 1990's include a vast subsidy program of irrigation modernization, a freeze on drilling new wells, delimitation of several no-drill zones, a crop substitution program, re-use of treated wastewater and construction of recharge dams. With no major success through these measures, the government laid the ground for water quotas by creating a new regulation in 1995. Nevertheless, groundwater quotas have not been enforced to date due to the high implementation and monitoring costs of traditional flow meters. This presentation discusses how sustainable groundwater management can be secured in Oman using a suit of policy and technologic reforms at a reasonable economic, political and practical cost. Data collected from farms with smart meters and low-cost wireless smart irrigation systems have been used to propose sustainable groundwater withdrawal strategies for Oman using a detailed hydro-economic model that couples a MODFLOW-SEAWAT model of the coastal aquifers with a dynamic profit maximization model. The hydro-economic optimization model was flexible to be run both as a social planner model to maximize the social welfare in the region, and as an agent-based model to capture the behavior of farmers interested in maximizing their profits independently. This flexibility helped capturing the trade-off between the optimality of the social planner solution developed at the system's level and its practicality (stability) with respect to the concerns and behaviors of the profit-maximizing farmers. The idetified promising policy and technolgical reforms for Oman include strict enforcement of groundwater quotas, smart metering, changing crop mixes, improving irrigation technologies, and revising geographical distribution of the farming activities. The presentation will discuss how different

  19. Dating and Sex among Emerging Adults in Nepal

    Science.gov (United States)

    Regmi, Pramod R.; van Teijlingen, Edwin R.; Simkhada, Padam; Acharya, Dev R.

    2011-01-01

    Social and cultural changes in Nepal, including better communication facilities and transport, more urbanization and a rising age at which people marry, have created more opportunities for young people for "dating." Our qualitative study explores whether the existence of dating cultures influences young people's sexual behavior in Nepal.…

  20. Groundwater remediation of hexavalent chromium along the Columbia River at the Hanford site in Washington state, USA - 59030

    International Nuclear Information System (INIS)

    Foss, Dyan L.; Charboneau, Briant L.

    2012-01-01

    The U.S. Department of Energy Hanford Site, formerly used for nuclear weapons production, encompasses 1500 square kilometers in southeast Washington State along the Columbia River. A principle threat to the river are the groundwater plumes of hexavalent chromium (Cr(VI)), which affect approximately 9.8 square kilometers, and 4.1 kilometers of shoreline. Cleanup goals are to stop Cr(VI) from entering the river by the end of 2012 and remediate the groundwater plumes to the drinking water standards by the end of 2020. Five groundwater pump-and-treat systems are currently in operation for the remediation of Cr(VI). Since the 1990's, over 13.6 billion L of groundwater have been treated; over 1, 435 kg of Cr(VI) have been removed. This paper describes the unique aspects of the site, its environmental setting, hydrogeology, groundwater-river interface, riverine hydraulic effects, remediation activities completed to date, a summary of the current and proposed pump-and-treat operations, the in situ redox manipulation barrier, and the effectiveness of passive barriers, resins, and treatability testing results of calcium polysulfide, bio-stimulation, and electrocoagulation, currently under evaluation. (authors)

  1. Global depletion of groundwater resources

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P.

    2010-01-01

    In regions with frequent water stress and large aquifer systems groundwater is often used as an additional water source. If groundwater abstraction exceeds the natural groundwater recharge for extensive areas and long times, overexploitation or persistent groundwater depletion occurs. Here we

  2. Dating of two human fossil bones from Romania by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Olariu, Agata; Skog, Goeran; Hellborg, Ragnar; Stenstroem, Kristina; Faarinen, Mikko; Persson, Per; Alexandrescu, Emilian

    2005-01-01

    In this study we have dated two fossil remains found in Romania, by the method of radiocarbon using the technique of the accelerator mass spectrometry. The human fossil remains from Woman's cave, Baia de Fier, have been dated to the age 30150 ± 800 years BP, and the skull, from the Cioclovina cave has been dated to the age 29000 ± 700 years BP. These are among the most ancient dated human fossil remains from Romania, possibly belonging to the upper Paleolithic, the Aurignacian period. (authors)

  3. Thermal activation and radiation quenching effects in pre-dose dating of porcelain

    International Nuclear Information System (INIS)

    Wang Weida; Xia Junding

    2005-01-01

    The pre-dose technique is very useful for thermoluminescence dating of porcelain. It incorporates two characteristics in the porcelain dating, i.e. thermal activation and radiation quenching. Two methods, activation method and quenching method, for evaluation of paleodose were introduced. The results show that activation method and quenching method one suitable for dating of lower limit age (less than 100 years B.P.) and upper limit age (greater than 1000 years B.P.), respectively. When both methods are co-used, the dating will be more accurate. (authors)

  4. Luminescence quartz dating of lime mortars. A first research approach

    International Nuclear Information System (INIS)

    Zacharias, N.; Mauz, B.; Michael, C.T.

    2002-01-01

    Lime mortars mixed with sand are well suited for connecting structural materials, like stones and bricks, due to the mechanical properties this material exhibits. Their extensive use in architectural and decorative works during the last 4000 years motivated the introduction of the 'Luminescence clock' for age determination of mortars. The same principles as for quartz optically stimulated luminescence (OSL) dating of sediments were applied for age estimation of a mortar fragment removed from a Byzantine church monument dated by archaeological means to 1050-1100 years ago (the first half of the 10th century). The OSL from the quartz was monitored under blue light stimulation and UV detection, using a single-aliquot-regenerative-dose protocol. The quartz-OSL dating of the mortar resulted in 870±230 a. TL polymineral fine grain dating was also performed on a brick fragment which was connected to the mortar, resulting in a TL age of 1095±190 a. (author)

  5. Chronic groundwater decline: A multi-decadal analysis of groundwater trends under extreme climate cycles

    Science.gov (United States)

    Le Brocque, Andrew F.; Kath, Jarrod; Reardon-Smith, Kathryn

    2018-06-01

    Chronic groundwater decline is a concern in many of the world's major agricultural areas. However, a general lack of accurate long-term in situ measurement of groundwater depth and analysis of trends prevents understanding of the dynamics of these systems at landscape scales. This is particularly worrying in the context of future climate uncertainties. This study examines long-term groundwater responses to climate variability in a major agricultural production landscape in southern Queensland, Australia. Based on records for 381 groundwater bores, we used a modified Mann-Kendall non-parametric test and Sen's slope estimator to determine groundwater trends across a 26-year period (1989-2015) and in distinct wet and dry climatic phases. Comparison of trends between climatic phases showed groundwater level recovery during wet phases was insufficient to offset the decline in groundwater level from the previous dry phase. Across the entire 26-year sampling period, groundwater bore levels (all bores) showed an overall significant declining trend (p 0.05). Spatially, both declining and rising bores were highly clustered. We conclude that over 1989-2015 there is a significant net decline in groundwater levels driven by a smaller subset of highly responsive bores in high irrigation areas within the catchment. Despite a number of targeted policy interventions, chronic groundwater decline remains evident in the catchment. We argue that this is likely to continue and to occur more widely under potential climate change and that policy makers, groundwater users and managers need to engage in planning to ensure the sustainability of this vital resource.

  6. Estimating the tritium input to groundwater from wine samples: Groundwater and direct run-off contribution to Central European surface waters

    International Nuclear Information System (INIS)

    Roether, W.

    1967-01-01

    A model is derived which allows a quantitative evaluation of wine tritium data. It is shown that the tritium content of a wine sample is not determined exclusively by water taken up by the roots, but is also influenced to a large extent by direct exchange with atmospheric moisture. The soil-water fraction amounts normally to not more than 40%. Thus, wine is a sample partly of atmospheric moisture at ground level, partly of soil moisture, integrated over a period around three weeks before vintage. The tritium content of two sets of wine samples originating from two selected sites in the Federal Republic of Germany and dating back to 1949 is reported. For the period since records of the tritium content of rain in Europe have become available comparisons of wine tritium with reported tritium activities of rain are in favour of the model outlined. The first distinguishable influence of bomb tritium shows up in the 1953 wine, whilst no detectable response to Castle tritium is found in 1954. By comparison with recorded rain activities at Ottawa, Canada, it is concluded that Castle influenced the tritium fall-out in Central Europe much less than it did at Ottawa. For the period before 1955 the tritium activity of the annual groundwater recharge, including pre-thermonuclear recharge in Central Europe, is estimated from the wine data. An estimation of the total assimilation of pre-thermonuclear tritium into the ocean at 50 degrees N is also given, which points to a value of 1-1.5 atoms/cm 2 s. It is shown that in further uses of pre-thermonuclear wines the possibility that samples have been contaminated by penetration of thermonuclear tritium through the bottle seals must be considered. The estimates of the tritium activities of groundwater recharge are based on the fact that in our climate the main contribution to groundwater is made up by autumn and winter precipitation. Because of this correlation with season the groundwater recharge is much lower in tritium than the

  7. Geochemistry and isotope hydrology of groundwaters in the Stripa Granite: results and preliminary interpretation

    International Nuclear Information System (INIS)

    Fritz, P.; Barker, J.F.; Gale, J.E.

    1979-04-01

    The results of geochemical and isotopic analyses on water samples from the granite at Stripa, Sweden, are presented. Groundwater samples collected from shallow, private wells; surface boreholes; and boreholes drilled from the 330 m and 410 m mine levels were analyzed for their major ion chemistry, dissolved gases, and environmental isotope contents. The principal change in the chemical load with depth is typified by chloride concentration, which increases from less than 5 mg/liter to about 300 mg/liter. There is a parallel increase in pH, which changes from about 6.5 to over 9.75. It is important to notice that calcite saturation is maintained and that, because of rising pH, dissolved inorganic carbon is lost. The total carbonate content thus decreases from about 70 mg/liter to less than 7 mg/liter. The 18 O and deuterium analyses demonstrate that different fracture systems contain different water masses, whose age increases with depth. Groundwater age determinations with 14 C and isotopes of the uranium decay series strongly indicate that water ages exceed 25,000 years. The 13 C contents of the aqueous carbonate in these groundwaters indicate groundwater recharge through vegetated soil, presumably during an interglacial period. The 13 C and 18 O determinations show that most fracture calcites have formed in a wide variety of depositional environments, and not in the waters circulating today

  8. Dating Trinil: towards establishing an age framework for the hominin-bearing deposits at the Homo erectus site Trinil (Indonesia)

    Science.gov (United States)

    Joordens, Josephine; Adhityatama, Shinatria; Yurnaldi, Dida; Reimann, Tony; Rahayu Ekowati, Dian; Huffman, Frank; Barianto, Didit; Sutisna, Indra; Pop, Eduard; Alink, Gerrit; Kuiper, Klaudia; Priyatno, Hadi; Simanjuntak, Truman; Verpoorte, Alexander

    2017-04-01

    In the 1890s, the anatomist Eugène Dubois found the first fossils of our extinct relative Homo erectus at Trinil on Java (Indonesia). Since then, one of the major questions of humankind has been to find out "what made us human". H. erectus was morphologically in many ways like us, and the first hominin species to spread, from about 1.8 Ma onwards, over Africa, Eurasia and Southeast Asia. However, it is still unknown what behavioural and lifestyle characteristics allowed H. erectus to achieve this cosmopolitan distribution, and reach the island of Java at 1.5 Ma. Dating of Javanese hominin sites is notoriously difficult, yet crucial to resolve the climatic-environmental backdrop and biogeography of hominin species in the region. At present, there is still a lack of well-constrained ages for the important hominin-bearing Hauptknochenschicht (HK) at Trinil. Moreover, the fossiliferous layers above the HK have not been dated at all. Also, there is a paucity of climatic-environmental data on the HK and overlying layers. This hampers the reconstruction of a climatic-environmental framework with temporal correlations to hominin fossils from Trinil, and placement Trinil layers in the context of Asian hominin biogeography. Here, we report on our pilot fieldwork at Trinil in August 2016, as part of an ongoing collaborative project of the ARKENAS Jakarta (Indonesia) and the Faculty of Archaeology, Leiden University (The Netherlands). We have collected geochronological sediment samples from a number of carefully measured and described stratigraphic sections covering the HK and overlying layers, for the application of three dating methods (OSL, Ar/Ar, paleomagnetism). The aim is to provide a first reliable age model for the hominin-bearing and other fossiliferous layers at Trinil. We will present preliminary fieldwork results and discuss the implications for dispersal of fauna (including hominins).

  9. Estimating nitrate concentrations in groundwater at selected wells and springs in the surficial aquifer system and Upper Floridan aquifer, Dougherty Plain and Marianna Lowlands, Georgia, Florida, and Alabama, 2002-50

    Science.gov (United States)

    Crandall, Christy A.; Katz, Brian G.; Berndt, Marian P.

    2013-01-01

    RF-41 peaked at 1.10 milligrams per liter in 2020. The simulated particle travel times were longer than indicated by age dating analysis for groundwater in well CP-18A; to account for the poor calibration fit at this well, nitrate concentrations were shifted 21 years. With the shift, simulated nitrate concentrations in groundwater at CP-18A peaked at 13.76 milligrams per liter in 2026. For groundwater in Baltzell Springs Group, Jackson Blue Spring, and Sandbag Spring, simulated nitrate concentrations peaked at 3.77 milligrams per liter in 2006, 3.51 milligrams per liter in 2011, and 0.81 milligram per liter in 2018, respectively, under the three management scenarios. In management scenario 3 (elimination of nitrate input after 2001), simulated nitrate concentrations in Baltzell Springs Group decreased to less than background concentrations (0.10 milligram per liter) by 2033, and in Sandbag Spring concentrations decreased to less than background by 2041. Simulations using nitrate management scenarios 1 (fixed input of nitrate at 2001 levels) and 2 (reduction of 4.0 percent per year) indicate that nitrate concentrations in groundwater may remain above background concentrations through 2050 at all sites.

  10. In situ LA-ICPMS U–Pb dating of cassiterite without a known-age matrix-matched reference material: Examples from worldwide tin deposits spanning the Proterozoic to the Tertiary

    Science.gov (United States)

    Neymark, Leonid; Holm-Denoma, Christopher S.; Moscati, Richard J.

    2018-01-01

    Cassiterite (SnO2), a main ore mineral in tin deposits, is suitable for U–Pb isotopic dating because of its relatively high U/Pb ratios and typically low common Pb. We report a LA-ICPMS analytical procedure for U–Pb dating of this mineral with no need for an independently dated matrix-matched cassiterite standard. LA-ICPMS U-Th-Pb data were acquired while using NIST 612 glass as a primary non-matrix-matched standard. Raw data are reduced using a combination of Iolite™ and other off-line data reduction methods. Cassiterite is extremely difficult to digest, so traditional approaches in LA-ICPMS U-Pb geochronology that utilize well-characterized matrix-matched reference materials (e.g., age values determined by ID-TIMS) cannot be easily implemented. We propose a new approach for in situ LA-ICPMS dating of cassiterite, which benefits from the unique chemistry of cassiterite with extremely low Th concentrations (Th/U ratio of 10−4 or lower) in some cassiterite samples. Accordingly, it is assumed that 208Pb measured in cassiterite is mostly of non-radiogenic origin—it was initially incorporated in cassiterite during mineral formation, and can be used as a proxy for common Pb. Using 208Pb as a common Pb proxy instead of 204Pb is preferred as 204Pb is much less abundant and is also compromised by 204Hg interference during the LA-ICPMS analyses.Our procedure relies on 208Pb/206Pb vs 207Pb/206Pb (Pb-Pb) and Tera-Wasserburg 207Pb/206Pb vs 238U/206Pb (U-Pb) isochron dates that are calculated for a ~1.54 Ga low-Th cassiterite reference material with varying amounts of common Pb that we assume remained a closed U-Pb system. The difference between the NIST 612 glass normalized biased U-Pb date and the Pb-Pb age of the reference material is used to calculate a correction factor (F) for instrumental U-Pb fractionation. The correction factor (F) is then applied to measured U/Pb ratios and Tera-Wasserburg isochron dates are obtained for the unknown

  11. Archaeomagnetic dating of Copper Age furnaces at Croce di Papa village and relations on Vesuvius and Phlegraean Fields volcanic activity

    Science.gov (United States)

    Principe, Claudia; Gogichaishvili, Avto; Arrighi, Simone; Devidze, Marina; La Felice, Sonia; Paolillo, Annarita; Giordano, Daniele; Morales, Juan

    2018-01-01

    Metallurgic furnaces, discovered in the archaeological site of Croce di Papa, Nola, at 15 km NE from the Vesuvius summit, were dated here by using archaeomagnetic technique. They are positioned between the deposits of the Vesuvius eruption of Pomici di Avellino and of the Phlegraean eruption of Agnano-Monte Spina. A revision of available age data and associated uncertainties for these two eruptions was carried out in order to provide constraints on the Croce di Papa furnaces age determination. The adopted archaeomagnetic technique provides an accurate age of 3136-3027 BCE corresponding to 5085 to 4976 a BP that represents the upper age limit of the Agnano-Monte Spina eruption. This study provides evidences for the existence of human settlements in the Campanian Plain in the first century of the forth millennium BC and allow to assess the limited impact of the Agnano-Monte Spina eruption on climate and human settlement.

  12. The O and H stable isotope composition of freshwaters in the British Isles. 2. Surface waters and groundwater

    Directory of Open Access Journals (Sweden)

    W. G. Darling

    2003-01-01

    some ‰ for δ18O and 30‰ for δ2H. Over lowland areas the 'altitude effect' is of little significance, but in upland areas is consistent with a range of –0.2 to –0.3‰ per 100 m increase in altitude. Groundwaters dating from the late Pleistocene are usually modified in δ18O and δ2H owing to the effects of climate change on the isotopic composition of rainfall and thus of recharge. Contour maps of isotopic variability prior to 10 ka BP, based on the relatively limited information available from the British Isles, allow a first comparison between groundwaters now and at the end of the last Ice Age. The position of the British Isles in the context of the stable isotope systematics of NW Europe is reviewed briefly. Keywords: Stable isotopes, surfacewaters, groundwater, British Isles

  13. Partitioning sources of recharge in environments with groundwater recirculation using carbon-14 and CFC-12

    Science.gov (United States)

    Bourke, Sarah A.; Cook, Peter G.; Dogramaci, Shawan; Kipfer, Rolf

    2015-06-01

    Groundwater recirculation occurs when groundwater is pumped from an aquifer onto the land surface, and a portion of that water subsequently infiltrates back to the aquifer. In environments where groundwater is recirculated, differentiation between various sources of recharge (e.g. natural rainfall recharge vs. recirculated water) can be difficult. Groundwater age indicators, in particular transient trace gases, are likely to be more sensitive tracers of recharge than stable isotopes or chloride in this setting. This is because, unlike stable isotopes or chloride, they undergo a process of equilibration with the atmosphere, and historical atmospheric concentrations are known. In this paper, groundwater age indicators (14C and CFC-12) were used as tracers of recharge by surplus mine water that is discharged to streams. Ternary mixing ratios were calculated based on 14C and CFC-12 concentrations measured along three transects of piezometers and monitoring wells perpendicular to the creeks, and from dewatering wells. Uncertainty in calculated mixing ratios was estimated using a Monte Carlo approach. Ternary mixing ratios in dewatering wells suggest that recharge by mine water accounted for between 10% and 87% of water currently abstracted by dewatering wells. The calculated mixing ratios suggest that recharge by mine water extends to a distance of more than 550 m from the creeks. These results are supported by seepage flux estimates based on the water and chloride balance along the creeks, which suggest that 85-90% of mine water discharged to the creeks recharges the aquifer and recharge by mine water extends between 110 and 730 m from the creeks. Mixing calculations based on gaseous groundwater age indicators could also be used to partition recharge associated with agricultural irrigation or artificial wetland supplementation.

  14. Simulating groundwater-induced sewer flooding

    Science.gov (United States)

    Mijic, A.; Mansour, M.; Stanic, M.; Jackson, C. R.

    2016-12-01

    During the last decade, Chalk catchments of southern England experienced severe groundwater flooding. High groundwater levels resulted in the groundwater ingress into the sewer network that led to restricted toilet use and the overflow of diluted, but untreated sewage to road surfaces, rivers and water courses. In response to these events the water and sewerage company Thames Water Utilities Ltd (TWUL) had to allocate significant funds to mitigate the impacts. It was estimated that approximately £19m was spent responding to the extreme wet weather of 2013-14, along with the use of a fleet of over 100 tankers. However, the magnitude of the event was so large that these efforts could not stop the discharge of sewage to the environment. This work presents the analysis of the risk of groundwater-induced sewer flooding within the Chalk catchment of the River Lambourn, Berkshire. A spatially distributed groundwater model was used to assess historic groundwater flood risk and the potential impacts of changes in future climate. We then linked this model to an urban groundwater model to enable us to simulate groundwater-sewer interaction in detail. The modelling setup was used to identify relationships between infiltration into sewers and groundwater levels at specific points on TWUL's sewer network, and to estimate historic and future groundwater flood risk, and how this varies across the catchment. The study showed the significance of understanding the impact of groundwater on the urban water systems, and producing information that can inform a water company's response to groundwater flood risk, their decision making process and their asset management planning. However, the knowledge gained through integrated modelling of groundwater-sewer interactions has highlighted limitations of existing approaches for the simulation of these coupled systems. We conclude this work with number of recommendations about how to improve such hydrological/sewer analysis.

  15. Radiocarbon dates for the earliest period of habitation in the Baltic States

    International Nuclear Information System (INIS)

    Zagorska, I.

    2003-01-01

    Hitherto, the Stone age of the East Baltic was known for its series of Late Mesolithic - Early Neolithic dates, but over the past decade the number of the dates for the Middle Stone Age and the Final Palaeolithic has also increased. The article brings together the published Palaeolithic and Mesolithic dates from the East Baltic, based on radiocarbon age. This is because a proportion of the dates has never been calibrated, while a proportion of the new dates have been calibrated using various software programmes, often without stating the programme used. For the first time, radiocarbon dates have been obtained for the Late Palaeolithic in Lithuania: 10 550-9820 BP (cal. 10 600-9000 BC). This period is connected with the Swidry Culture in the central and southern part of the East Baltic. At the present best-dated stage of the Mesolithic is the Early Mesolithic, with several dates from Estonia (Pulli, Kunda-Lammasmagi) and Latvia, covering the period 9600 to around 9000 BP (cal. 8900-8300 BC). These dates are also supported by dates obtained from Mesolithic sites in neighbouring areas: northern Poland, southern Finland and north-east Russia. Much has been gained from the dating in recent years of burials in Lithuania and Latvia. Currently the oldest known burial is male buried in the cultural layer of Zvejnieki II settlement site, dated to 8240 BP. Another three burials in Lithuania,in the Spiginas and Duonkalnis cemeteries, as well as eight burials at Zvejnieki cemetery, date from the late Mesolithic, confirming the idea that it was in the Late Mesolithic that large special burial sites developed adjacent to settlements in the Baltic basin, both in the east and west. The development of cemeteries in Lithuania began in the period 7780-7470 BP, while the Late Mesolithic graves at Zvejnieki date from 6900-6400 BP. The dates show that a special feature of the cemeteries in the Baltic is their long duration of use, starting from the Middle Mesolithic up to the end of the

  16. Direct fault dating trials at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Maddock, R.H.; Hailwood, E.A.

    1993-10-01

    Over seventy rock samples were collected from fault and fracture zones in the Aespoe Hard Rock Laboratory tunnel for a study of direct fault dating techniques. Following microstructural and mineralogical analysis, isotopic, palaeomagnetic and electron spin resonance (ESR) methods were employed in an attempt to determine the age of the most recent movements on the sampled faults. The larger fracture zones contain faultrock assemblages and microstructures which are consistent with a prolonged and polyphase movement history, although the cumulative displacements involved formation of fault gouge cemented by authigenic 'illite'. Dating studies were targeted particularly at the gouge but also at older fault rock and vein phases. ESR dating of quartz graines, separated from gouge from fracture zones NE-4 and NE-3, strongly indicates that the ESR signals have not been reset by fault movements for a minimum time period of several hundred thousand to one million years. Palaeomagnetic dating of gouge from fracture zone NE-4 shows that a stable component of magnetisation overlaps both Precambrian and Permo-Triassic parts of the apparent polar wander curve. The younger age of magnetisation is preferred on geological grounds and by comparison with the isotopic dating results. The magnetisation may correspond to a diagenetic event following fault movement. Palaeomagnetic ages determined on countryrock and epidote vein samples are largely consistent with independent age constraints. K-Ar dating of clay fractions (<2 to <0.05μm) separated from gouge from four faults, including fracture zones NE-4 and NE-3, gave model ages in the range 706-301Ma. Accounting for the effects of contamination by potassium-bearing porphyroclasts, it is likely that authigenic 'illite' was formed at least 250 million years ago, after the most recent significant fault movements. 100 refs., 60 figs., 26 tabs

  17. Groundwater-quality data in the Klamath Mountains study unit, 2010: results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2014-01-01

    radioactivity, and microbial indicators (total coliform and Escherichia coli [E. coli]). Isotopic tracers (stable isotopes of hydrogen and oxygen in water, isotopic ratios of dissolved strontium in water, and stable isotopes of carbon in dissolved inorganic carbon), dissolved noble gases, and age-dating tracers (tritium and carbon-14) were measured to help identify sources and ages of sampled groundwater. Quality-control samples (field blanks, replicate sample pairs, and matrix spikes) were collected at 13 percent of the sites in the KLAM study unit, and the results were used to evaluate the quality of the data from the groundwater samples. Field blank samples rarely contained detectable concentrations of any constituent, indicating that contamination from sample collection or analysis was not a significant source of bias in the data for the groundwater samples. More than 99 percent of the replicate pair samples were within acceptable limits of variability. Matrix-spike sample recoveries were within the acceptable range (70 to 130 percent) for approximately 91 percent of the compounds. This study did not evaluate the quality of water delivered to consumers. After withdrawal, groundwater typically is treated, disinfected, and (or) blended with other waters to maintain water quality. Regulatory benchmarks apply to water that is delivered to the consumer, not to untreated groundwater. However, to provide some context for the results, concentrations of constituents measured in the untreated groundwater were compared with regulatory and non-regulatory health-based benchmarks established by the U.S. Environmental Protection Agency (USEPA) and CDPH, and to non-health-based benchmarks established for aesthetic concerns by the CDPH. Comparisons between data collected for this study and benchmarks for drinking water are for illustrative purposes only and are not indicative of compliance or non-compliance with those benchmarks. All concentrations of organic constituents from grid sites

  18. Fission track dating of kimberlitic zircons

    International Nuclear Information System (INIS)

    Haggerty, S.E.

    1983-01-01

    The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206 Pb and 238 U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.0 +- 6.5 m.y.), Orapa (87.4 +- 5.7 and 92.4 +- 6.1 m.y.), Nzega (51.1 +- 3.8 m.y.), Koffiefontein (90.9 +- 8.2 m.y.), and Val do Queve (133.4 +- 11.5 m.y.). In addition we report the first radiometric ages (707.9 +- 59.6 and 705.5 +- 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption. (orig.)

  19. Radiocarbon dating for tree rings of dendro-chronologically dated Japan cedars buried in the paddy field at Fukui

    International Nuclear Information System (INIS)

    Shibata, S.; Kawano, E.; Kimura, K.; Mine, T.; Harada, M.

    1999-01-01

    14 C dating of 6 Japan cedars having the relative growing ages were made. On the basis of correlation analysis of our data to a 14 C age data set, INTCAL of CALIB (Stuiver), the growing ages of these Japan cedars were estimated (BC 1090-2375). The atmospheric 14 C concentration (Δ 14 C) at their growing ages were obtained from the 14 C age data. The variation of Δ 14 C shows basically the same pattern with that of Europe or America (r=0.783). (author)

  20. U-Th Burial Dates on Ostrich Eggshell

    Science.gov (United States)

    Sharp, W. D.; Fylstra, N. D.; Tryon, C. A.; Faith, J. T.; Peppe, D. J.

    2015-12-01

    Obtaining precise and accurate dates at archaeological sites beyond the range of radiocarbon dating is challenging but essential for understanding human origins. Eggshells of ratites (large flightless birds including ostrich, emu and others) are common in many archaeological sequences in Africa, Australia and elsewhere. Ancient eggshells are geochemically suitable for the U-Th technique (1), which has about ten times the range of radiocarbon dating (>500 rather than 50 ka), making eggshells attractive dating targets. Moreover, C and N isotopic studies of eggshell provide insights into paleovegetation and paleoprecipitation central to assessing past human-environment interactions (2,3). But until now, U-Th dates on ratite eggshell have not accounted for the secondary origin of essentially all of their U. We report a novel approach to U-Th dating of eggshell that explicitly accounts for secondary U uptake that begins with burial. Using ostrich eggshell (OES) from Pleistocene-Holocene east African sites, we have measured U and 232Th concentration profiles across OES by laser ablation ICP-MS. U commonly peaks at 10s to 100s of ppb and varies 10-fold or more across the ~2 mm thickness of OES, with gradients modulated by the layered structure of the eggshell. Common Th is high near the shell surfaces, but low in the middle "pallisade" layer of OES, making it optimal for U-Th dating. We determine U-Th ages along the U concentration gradient by solution ICP-MS analyses of two or more fractions of the pallisade layer. We then estimate OES burial dates using a simple model for diffusive uptake of uranium. Comparing such "U-Th burial dates" with radiocarbon dates for OES calcite from the same shells, we find good agreement in 7 out of 9 cases, consistent with rapid burial and confirming the accuracy of the approach. The remaining 2 eggshells have anomalous patterns of apparent ages that reveal they are unsuitable for U-Th dating, thereby providing reliability criteria innate

  1. Violence exposure and teen dating violence among African American youth.

    Science.gov (United States)

    Black, Beverly M; Chido, Lisa M; Preble, Kathleen M; Weisz, Arlene N; Yoon, Jina S; Delaney-Black, Virginia; Kernsmith, Poco; Lewandowski, Linda

    2015-07-01

    This study examines the relationships between exposure to violence in the community, school, and family with dating violence attitudes and behaviors among 175 urban African American youth. Age, gender, state support and experiences with neglect, school violence, and community violence were the most significant predictors of acceptance of dating violence. Experiences with community violence and age were important predictors of dating violence perpetration and victimization. Findings highlight the importance of planning prevention programs that address variables affecting attitudes and behaviors of high-risk youth who have already been exposed to multiple types of violence. © The Author(s) 2014.

  2. Dating the Naisiusiu Beds, Olduvai Gorge, by electron spin resonance

    Science.gov (United States)

    Skinner, A. R.; Hay, R. L.; Masao, F.; Blackwell, B. A. B.

    2003-05-01

    The lower beds at Olduvai Gorge are well known for containing early hominid fossils and Oldowan stone tools, and their ages have been established by 40Ar/ 39Ar dating and paleomagnetic stratigraphy. Ages are generally less certain for the upper deposits at Olduvai Gorge because of the scarcity of datable tuffs. The youngest archaeologically significant site at Olduvai is microlithic LSA, which lies in the type section of the Naisiusiu Beds. The age for the site is controversial, with 14C dates of 17,000-17,550 (Hay, R.L., 1976 Geology of Olduvai Gorge, University of California Press, Berkeley) and >42,000 BP (Manega, P.C., 1993. Geochronology, geochemistry, and isotopic study of the Plio-Pleistocene Hominid sites and the Ngorongoro Volcanic Highland in Northern Tanzania. Unpublished Ph.D. Thesis, University of Colorado, Boulder, CO). The tuff bed in the zone with artifacts does not contain materials datable by 40Ar/ 39Ar, and some other dating method was needed. In the summer of 2001, five equid teeth were collected from the type Naisiusiu site. Another tooth had previously been collected. ESR ages have been determined for three teeth from the archaeological level and their ages cluster around 62±5 ka, assuming linear uranium uptake. Another tooth from a level without artifacts and believed to be significantly younger dated to 39±5 ka, again assuming LU. These dates are considerably older than previous estimates and suggest that the East African MSA/LSA transition occurred very early.

  3. Assessment of Groundwater Susceptibility to Non-Point Source Contaminants Using Three-Dimensional Transient Indexes.

    Science.gov (United States)

    Zhang, Yong; Weissmann, Gary S; Fogg, Graham E; Lu, Bingqing; Sun, HongGuang; Zheng, Chunmiao

    2018-06-05

    Groundwater susceptibility to non-point source contamination is typically quantified by stable indexes, while groundwater quality evolution (or deterioration globally) can be a long-term process that may last for decades and exhibit strong temporal variations. This study proposes a three-dimensional (3- d ), transient index map built upon physical models to characterize the complete temporal evolution of deep aquifer susceptibility. For illustration purposes, the previous travel time probability density (BTTPD) approach is extended to assess the 3- d deep groundwater susceptibility to non-point source contamination within a sequence stratigraphic framework observed in the Kings River fluvial fan (KRFF) aquifer. The BTTPD, which represents complete age distributions underlying a single groundwater sample in a regional-scale aquifer, is used as a quantitative, transient measure of aquifer susceptibility. The resultant 3- d imaging of susceptibility using the simulated BTTPDs in KRFF reveals the strong influence of regional-scale heterogeneity on susceptibility. The regional-scale incised-valley fill deposits increase the susceptibility of aquifers by enhancing rapid downward solute movement and displaying relatively narrow and young age distributions. In contrast, the regional-scale sequence-boundary paleosols within the open-fan deposits "protect" deep aquifers by slowing downward solute movement and displaying a relatively broad and old age distribution. Further comparison of the simulated susceptibility index maps to known contaminant distributions shows that these maps are generally consistent with the high concentration and quick evolution of 1,2-dibromo-3-chloropropane (DBCP) in groundwater around the incised-valley fill since the 1970s'. This application demonstrates that the BTTPDs can be used as quantitative and transient measures of deep aquifer susceptibility to non-point source contamination.

  4. Using environmental isotopes along with major hydro-geochemical compositions to assess deep groundwater formation and evolution in eastern coastal China

    Science.gov (United States)

    Xu, Naizheng; Gong, Jianshi; Yang, Guoqiang

    2018-01-01

    Hydrochemical analysis and environmental isotopic tracing are successfully applied to study groundwater evolution processes. Located in eastern China, the Jiangsu Coastal Plain is characterized by an extensively exploited deep groundwater system, and groundwater salinization has become the primary water environmental problem. This paper provides a case study on the use of a hydrochemical and environmental isotopic approach to assess possible mixing and evolution processes at Yoco Port, Jiangsu Province, China. Hydrochemical and isotopic patterns of deep groundwater allow one to distinguish different origins in deep water systems. HCO3- is the dominant anion in the freshwater samples, whereas Na+ and Cl- are the dominant major ions in the saline samples. According to δ18O, δ2H and 14C dating, the fresh water is derived from precipitation under a colder climate during the Glacial Maximum (Dali Glacial), while the saline groundwater is influenced by glacial-interglacial cycles during the Holocene Hypsithermal. The δ18O, δ2H and 3H data confirm that deep groundwater in some boreholes is mixed with overlying saline water. The deep groundwater reservoir can be divided into a saline water sector and a fresh water sector, and each show distinct hydrochemical and isotopic compositions. The saline groundwater found in the deep aquifer cannot be associated with present seawater intrusion. Since the Last Glacial Maximum in the Late Pleistocene, the deep groundwater flow system has evolved to its current status with the decrease in ice cover and the rising of sea level. However, the hydraulic connection is strengthened by continuous overexploitation, and deep groundwater is mixed with shallow groundwater at some points.

  5. A new groundwater radiocarbon correction approach accounting for palaeoclimate conditions during recharge and hydrochemical evolution: The Ledo-Paniselian Aquifer, Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Blaser, P.C., E-mail: petra.blaser@petraconsult.com [Petraconsult buero fuer angewandte geologie dipl. geol. petra c. blaser, Bergstrasse 269, CH 8707 Uetikon am See (Switzerland); Coetsiers, M. [Laboratory for Applied Geology and Hydrogeology, Ghent University, B-9000 Ghent (Belgium); Aeschbach-Hertig, W. [Institut fuer Umweltphysik, Universitaet Heidelberg, D-69120 Heidelberg (Germany); Kipfer, R. [Department of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Duebendorf (Switzerland)] [Institute of Isotope Geochemistry and Mineral Resources, ETH Zurich, CH-8092 Zurich (Switzerland); Van Camp, M. [Laboratory for Applied Geology and Hydrogeology, Ghent University, B-9000 Ghent (Belgium); Loosli, H.H. [Department of Climate and Environmental Physics, University of Bern, CH 3012 Bern (Switzerland); Walraevens, K. [Laboratory for Applied Geology and Hydrogeology, Ghent University, B-9000 Ghent (Belgium)

    2010-03-15

    The particular objective of the present work is the development of a new radiocarbon correction approach accounting for palaeoclimate conditions at recharge and hydrochemical evolution. Relevant climate conditions at recharge are atmospheric pCO{sub 2} and infiltration temperatures, influencing C isotope concentrations in recharge waters. The new method is applied to the Ledo-Paniselian Aquifer in Belgium. This is a typical freshening aquifer where recharge takes place through the semi-confining cover of the Bartonian Clay. Besides cation exchange which is the major influencing process for the evolution of groundwater chemistry (particularly in the Bartonian Clay), also mixing with the original porewater solution (fossil seawater) occurs in the aquifer. Recharge temperatures were based on noble gas measurements. Potential infiltration water compositions, for a range of possible pCO{sub 2}, temperature and calcite dissolution system conditions, were calculated by means of PHREEQC. Then the sampled groundwaters were modelled starting from these infiltration waters, using the computer code NETPATH and considering a wide range of geochemical processes. Fitting models were selected on the basis of correspondence of calculated {delta}{sup 13}C with measured {delta}{sup 13}C. The {sup 14}C modelling resulted in residence times ranging from Holocene to Pleistocene (few hundred years to over 40 ka) and yielded consistent results within the uncertainty estimation. Comparison was made with the {delta}{sup 13}C and Fontes and Garnier correction models, that do not take climate conditions at recharge into account. To date these are considered as the most representative process-oriented existing models, yet differences in calculated residence times of mostly several thousands of years (up to 19 ka) are revealed with the newly calculated ages being mostly (though not always) younger. Not accounting for climate conditions at recharge (pCO{sub 2} and temperature) is thus producing

  6. Groundwater quality in the Western San Joaquin Valley study unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    groundwater quality were evaluated by using results from statistical testing of associations between constituent concentrations and values of potential explanatory factors, inferences from geochemical and age-dating tracer results, and by considering the water-quality results in the context of the hydrogeologic setting of the WSJV study unit.Natural factors, particularly the lithologies of the source areas for groundwater recharge and of the aquifers, were the dominant factors affecting groundwater quality in most of the WSJV study unit. However, where groundwater resources used for public supply included groundwater recharged in the modern era, mobilization of constituents by recharge of water used for irrigation also affected groundwater quality. Public-supply wells in the Westside study area had a median depth of 305 m and primarily tapped groundwater recharged hundreds to thousands of years ago, whereas public-supply wells in the Delta–Mendota study area had a median depth of 85 m and primarily tapped either groundwater recharged within the last 60 years or groundwater consisting of mixtures of this modern recharge and older recharge.Public-supply wells in the WSJV study unit are screened in the Tulare Formation and zones above and below the Corcoran Clay Member are used. The Tulare Formation primarily consists of alluvial sediments derived from the Coast Ranges to the west, except along the valley trough at the eastern margin of the WSJV study unit where the Tulare Formation consists of fluvial sands derived from the Sierra Nevada to the east. Groundwater from wells screened in the Sierra Nevada sands had manganese-reducing or manganese- and iron-reducing oxidation-reduction (redox) conditions. These redox conditions commonly were associated with elevated arsenic or molybdenum concentrations, and the dominance of arsenic(III) in the dissolved arsenic supports reductive dissolution of iron and manganese oxyhydroxides as the mechanism. In addition, groundwater from many

  7. Groundwater Managment Districts

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset outlines the location of the five Groundwater Management Districts in Kansas. GMDs are locally formed and elected boards for regional groundwater...

  8. The effects of land application of farm dairy effluent on groundwater quality : West Coast 2001

    International Nuclear Information System (INIS)

    Baker, T.M.; Hawke, R.M.

    2007-01-01

    Land application of agricultural effluent is becoming a standard farming practice. The application of farm dairy effluent to land, as opposed to direct discharge to waterways, is the preferred method for disposal in New Zealand as regulatory authorities move to protect and enhance water quality and meet Maori spiritual and cultural values. Land application recognises the nutrient value of dairy effluent; however, it is not without risks. Careful management of land application of the effluent is required because of the potential nutrient and bacterial contamination of groundwater. In 2001, 19 groundwater bores were sampled on four occasions to assess the effects of farm dairy effluent on groundwater quality. Elevated (> 1.6 g m -3 nitrate-nitrogen concentrations were found in 14 of these bores (43 of 74 samples). The available long-term data shows statistically significant increasing trends in nitrate-nitrogen and chloride over the period 1998 to 2007. The nitrate-nitrogen and chloride results suggest effluent is the source of the elevated nitrate-nitrogen; however, the nitrogen isotope analysis indicates that the source of the nitrate-nitrogen may be from fertiliser or soil organic matter (average δ 15 N value of 3.5 permille). Spatially isolated occurrences of bacterial contamination were also recorded: in 7 bores and 12% of all samples analysed. Groundwater dating, using chlorofluorocarbons, suggested that the groundwater in the region was young (8 to 12 years). Overall, the spatial and temporal data suggests human influences are affecting groundwater quality on the West Coast. (author). 27 refs., 5 figs., 2 tabs

  9. Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

    1994-07-01

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year.

  10. Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

    1994-07-01

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year

  11. The freshwater reservoir effect in radiocarbon dating

    DEFF Research Database (Denmark)

    Philippsen, Bente

    case studies will show the degree of variability of the freshwater reservoir effect over short and long timescales. Radiocarbon dating of recent water samples, aquatic plants and animals, shows that age differences of up to 2000 years can occur within one river. In the Limfjord, freshwater influence......The freshwater reservoir effect can result in too high radiocarbon ages of samples from lakes and rivers, including the bones of people whose subsistence was based on freshwater fish, and pottery in which fish was cooked. In my talk, I will explain the causes and consequences of this effect. Two...... caused reservoir ages to vary between 250 and 700 years during the period 5400 BC - AD 700. Finally, I will discuss the implications of the freshwater reservoir effect for radiocarbon dating of Mesolithic pottery from inland sites of the Ertebølle culture in Northern Germany....

  12. Obsidian dating prospects

    International Nuclear Information System (INIS)

    Ambrose, W.

    1997-01-01

    Full text: Developments in the nuclear industry have shown that some of the problems related to the glassification of waste for long term storage are centred on the rate of glass weathering in various repositories. Long term weathering of artificial glasses is paralleled by the archaeological problem of determining hydration rates in obsidian artefacts as a means of dating their manufacture. Figures available for sites in Papua New Guinea indicate that the weathering rate is sufficiently fast to render conventional hydration measurement completely unreliable. This follows from the range of calculated surface reduction rates which range between .0002μ to .004μ per year depending on the site's location and the obsidian source. Hydration rates for key Papua New Guinea obsidians have been determined from long term experimental laboratory exposure and these are used to evaluate the age of obsidians from selected archaeological sites. By adopting a strategy of measuring hydration in concealed fissures both the weathering rate and the dating of the Papua New Guinea obsidians have been successfully achieved. The dissolution rates of natural obsidians could be useful in considering weathering rates for artificial glasses. An improved system for calculating the annual effective hydration temperature is presented which gives a better control of micro-environmental temperature in its crucial rate determining role. The combined result of these developments gives obsidian hydration dating an enhanced capacity to be a useful and independent dating system

  13. Dating violence and nursing student well-being.

    Science.gov (United States)

    Martins, Conceição; Gouveia, Ana; Chaves, Melanie; Lourenço, Rafael; Marques, Sara; Santos, Telmo

    2014-11-01

    Violence in dating relationships involves dimensions such as physical, psychological and sexual abuse, requiring strategies for prevention and early intervention. To identify the socio-demographic variables that influence violence in dating relationships; to identify whether having been a victim and/or witnessing violence in childhood has significant effect on violence in dating relationships; to verify the correlation between violence in dating relationships and psychological well-being. Quantitative non-experimental, cross-sectional, descriptive correlational study. Data collection conducted by a socio-demographic characterisation questionnaire; Dating Relationship Victimization Practices and Behaviours Scale and Demonstration of Psychological Well-Being Measurement Scale. The non-probabilistic, convenience sample consisted of 203 students from the Health School of Viseu. Mostly female students gender; Mean age of 18.85 years, minimum of 18 and maximum of 34; Gender and having been a victim or witness of violence against children and sexual violence are variables that seem to intervene in dating violence and psychological well-being. Age has an influence on psychological well-being. Stalking violence and psychological violence were more prevalent in the study sample. It was found that the presence of any type of violence is associated with a decrease in student psychological well-being. By analysing the results we can infer the need to include this topic in education/training, active methodologies and effective participation of all stakeholders in the process, with a view to promoting and developing relationship and affective skills. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  14. Optical dating of dune ridges on Rømø

    DEFF Research Database (Denmark)

    Madsen, Anni Tindahl; Murray, A. S.; Andersen, Thorbjørn Joest

    2007-01-01

    The application of optically stimulated luminescence (OSL) to the dating of recent aeolian sand ridges on Rømø, an island off the southwest coast of Denmark, is tested. These sand ridges began to form approximately 300 years ago, and estimates of the ages are available from historical records....... Samples for OSL dating were taken ~0.5 m below the crests of four different dune ridges; at least five samples were recovered from each ridge to test the internal consistency of the ages. Additional samples were recovered from the low lying areas in the swales and from the scattered dune formations......-defined building phases separated by inactive periods and the first major ridge formed ~235 years ago. This study demonstrates that optical dating can be successfully applied to these young aeolian sand deposits, and we conclude that OSL dating is a powerful chronological tool in studies of coastal change....

  15. Characterisation of organic matter associated with groundwater arsenic in reducing aquifers of southwestern Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Al Lawati, Wafa M. [School of Earth, Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester (United Kingdom); Higher College of Technology, Ministry of Manpower, Muscat (Oman); Jean, Jiin-Shuh [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Kulp, Thomas R. [Department of Earth Sciences and Environmental Studies, State University of New York, Binghamton, NY (United States); Lee, Ming-Kuo [Department of Geology and Geography, Auburn University, Auburn, AL (United States); Polya, David A. [School of Earth, Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester (United Kingdom); Liu, Chia-Chuan [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Dongen, Bart E. van, E-mail: Bart.vanDongen@manchester.ac.uk [School of Earth, Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester (United Kingdom)

    2013-11-15

    Highlights: ► First lipid analysis of Taiwanese aquifer sediments from groundwater As-prone region. ► Both plant-derived terrestrial and mature hydrocarbon lipid sources identified. ► Organic matter sources similar to those of other high As groundwater aquifers. ► Groundwater arsenic at depth controlled by biotic As mobilisation processes. ► Biotic As mobilisation not controlled by a specific source of analysed organic matter. -- Abstract: Arsenic (As) in groundwaters extensively used by people across the world constitutes a serious public health threat. The importance of organic matter (OM) as an electron donor in microbially-mediated reduction of As(V) or Fe(III)-bearing As-host minerals leading to mobilisation of solid-phase arsenic is widely recognised. Notwithstanding this, there are few studies characterising OM in such aquifers and, in particular, there is a dearth of data from the classic arsenic bearing aquifers in southwestern Taiwan. Organic geochemical analyses of sediments from a known groundwater arsenic hot-spot in southwestern Taiwan revealed contributions of thermally mature and plant derived origin, consistent with OM sources in all other Asian groundwater aquifer sediments analysed to date, indicating comparable sources and routes of OM transfer. The combined results of amended As(V) reduction assays with the organic geochemical analysis revealed that the microbiological process of dissimilatory As(V) reduction is active in this aquifer, but it is not controlled by a specific source of analysed OM. These indicate that (i) part of the OM that was considered to be less bio-available could still be used as an electron donor or (ii) other electron donors, not analysed in present study, could be controlling the rate of As release.

  16. Characterisation of organic matter associated with groundwater arsenic in reducing aquifers of southwestern Taiwan

    International Nuclear Information System (INIS)

    Al Lawati, Wafa M.; Jean, Jiin-Shuh; Kulp, Thomas R.; Lee, Ming-Kuo; Polya, David A.; Liu, Chia-Chuan; Dongen, Bart E. van

    2013-01-01

    Highlights: ► First lipid analysis of Taiwanese aquifer sediments from groundwater As-prone region. ► Both plant-derived terrestrial and mature hydrocarbon lipid sources identified. ► Organic matter sources similar to those of other high As groundwater aquifers. ► Groundwater arsenic at depth controlled by biotic As mobilisation processes. ► Biotic As mobilisation not controlled by a specific source of analysed organic matter. -- Abstract: Arsenic (As) in groundwaters extensively used by people across the world constitutes a serious public health threat. The importance of organic matter (OM) as an electron donor in microbially-mediated reduction of As(V) or Fe(III)-bearing As-host minerals leading to mobilisation of solid-phase arsenic is widely recognised. Notwithstanding this, there are few studies characterising OM in such aquifers and, in particular, there is a dearth of data from the classic arsenic bearing aquifers in southwestern Taiwan. Organic geochemical analyses of sediments from a known groundwater arsenic hot-spot in southwestern Taiwan revealed contributions of thermally mature and plant derived origin, consistent with OM sources in all other Asian groundwater aquifer sediments analysed to date, indicating comparable sources and routes of OM transfer. The combined results of amended As(V) reduction assays with the organic geochemical analysis revealed that the microbiological process of dissimilatory As(V) reduction is active in this aquifer, but it is not controlled by a specific source of analysed OM. These indicate that (i) part of the OM that was considered to be less bio-available could still be used as an electron donor or (ii) other electron donors, not analysed in present study, could be controlling the rate of As release

  17. Mercury in dated Greenland marine sediments

    DEFF Research Database (Denmark)

    Asmund, G.; Nielsen, S.P.

    2000-01-01

    Twenty marine sediment cores from Greenland were analysed for mercury, and dated by the lead-210 method. In general the cores exhibit a mercury profile with higher mercury concentrations in the upper centimetres of the core. The cores were studied by linear regression of In Hg vs, age of the sedi......Twenty marine sediment cores from Greenland were analysed for mercury, and dated by the lead-210 method. In general the cores exhibit a mercury profile with higher mercury concentrations in the upper centimetres of the core. The cores were studied by linear regression of In Hg vs, age...... indicating that the mercury mainly originates from atmospheric washout. But the large variability indicates that other processes also influence the mercury flux to Arctic marine sediments. (C) 2000 Elsevier Science B.V. All rights reserved....

  18. 650 nm Laser stimulated dating from Side Antique Theatre, Turkey

    International Nuclear Information System (INIS)

    Doğan, M.; Meriç, N.

    2014-01-01

    Samples were taken from the archeological excavation site, which was at the backs of the Side Antique Theatre. Samples were taken from under the base rock in this area. Polymineral fine grains were examined to determine the ages of the sediments. Samples gathered from the Side Antique Theatre were investigated through using the SAR method. Firstly, one part of the samples were evaluated by using conventional IRSL reading head model of (ELSEC-9010) which is infrared (880±80 nm) stimulation source with Schott BG39 filter. The IRSL age dating with feldspar minerals, gives a number of overestimated or underestimated age values as a result. A new reading head was proposed with the following configuration attachments for overestimation of equivalent dose rates. Measurements were done with this newly designed red laser stimulating reading head which works with Elsec 9010 OSL age dating system. SAR measurements were performed by (650±10 nm) red laser light source with two Schott BG3 filters. With usage of the new designed reading head; closer results were obtained in comparision with the Antique Theatre′s expected age range. Fading rates were taken into consideration and these corrections were also handled for true age results. - Highlights: • Polymineral fine grain feldspar minerals were used for dating. • Two different reading heads were used to determine equivalent doses. • IR stimulated (880 nm) and laser stimulated (650 nm) dating results were compared

  19. ESR Dating Research of Glacial Tills in Tibetan Plateau

    Science.gov (United States)

    Bi, W.; Yi, C.

    2016-12-01

    In recent years, Quaternary Glacial-chronology has been made remarkable progress in the Tibetan Platean(TP) with the development of several numeric dating techniques, such as cosmogenic nuclides(NC), optically stimulated luminescence(OSL) and 14C. In constrast, the dating of Quaternary glacial tills in 100,000 years even more than million-year has been a challenge, just because the techniques has defects themselves and the sediments were stransformed during the geological and geomorphology progress later. Electron Spin Resonance(ESR) has been becoming one of the key methods of Quaternary Glacial-chronology with wide range of dating, expecially for the sample older than 100,000 years up to million-year scale. The accurate measurement of equivalent dose significantly impacts on accuracy and reliability of ESR dating method. Therefore, the study of the mechanisms of resetting processes is fundamental for accurate and reliable ESR dating. To understand the mechanism and characteristics of quartz ESR signal resetting of different samples, a series of laboratory simulation and field observation studies were carried out, which made lots of important breakthrough. But the research in quartz ESR signal of moraines is less and the test of ESR dating method is still in the qualitative investigation. Therefor, we use ESR dating and study on the mechanism and characteristics of quartz ESR signals in tills in the Tibetan Platean. In the adjust method of Modern, the quartz ESR signals in Modern glacial tills represent residual values which can be adjusted signals in the older glacial tills. As a consequence, ESR dating of the quartz in moraines needs to be explored in deep with building models to adjust ages which are measured by ESR dating. Therefore, ESR dating will become the trusted one of the cross dating methods in Quaternary Glacial-chronology with the adjust mothod improving the accuracy of ESR dating ages.

  20. Considerations on fluorides anomalies in Botucatu-Piramboia aquifers system, Parana basin, Brazil

    International Nuclear Information System (INIS)

    Kimmelmann, A.A.; Reboucas, A.C.; Reboucas, A.M.; Heine, C.A.

    1991-01-01

    Groundwater of a great number of deep wells dug to exploit the Botucatu-Piramboia aquifer system in the Parana Basin, Brazil, have high fluoride concentrations, over 1 ppm, that turns groundwater useless for human supply. Investigations being carried out a the Center for Groundwater Research (CEPAS) of the Institute of Geosciences at USP, Sao Paulo, indicate a relationship between fluoride concentration and groundwater age, dated with radiocarbon. (author)

  1. Groundwater residence time downgradient of Trench No. 22 at the Chernobyl Pilot Site: Constraints on hydrogeological aquifer functioning

    International Nuclear Information System (INIS)

    Le Gal La Salle, C.; Aquilina, L.; Fourre, E.; Jean-Baptiste, P.; Michelot, J.-L.; Roux, C.; Bugai, D.; Labasque, T.; Simonucci, C.; Van Meir, N.; Noret, A.; Bassot, S.; Dapoigny, A.; Baumier, D.

    2012-01-01

    Following the explosion of reactor 4 at the Chernobyl power plant in northern Ukraine in 1986, contaminated soil and vegetation were buried in shallow trenches dug directly on-site in an Aeolian sand deposit. These trenches are sources of radionuclide (RN) pollution. The objective of the present study is to provide constraints for the Chernobyl flow and RN transport models by characterising groundwater residence time. A radiochronometer 3 H/ 3 He method (t 1/2 = 12.3 a) and anthropogenic tracers including CFC and SF 6 are investigated along with the water mass natural tracers Na, Cl, 18 O and 2 H. The groundwater is stratified, as evidenced by Na and Cl concentrations and stable isotopes ( 18 O, 2 H). In the upper aeolian layer, the Na–Cl relationship corresponds to evapotranspiration of precipitation, while in the underlying alluvial layer, an increase in Na and Cl with depth suggests both water–rock interactions and mixing processes. The 3 H/ 3 He and CFC apparent groundwater ages increase with depth, ranging from ‘recent’ (1–3 a) at a 2 m depth below the groundwater table to much higher apparent ages of 50–60 a at 27 m depth below the groundwater table. Discrepancies in 3 H/ 3 He and CFC apparent ages (20–25 a and 3–10 a, respectively) were observed during the 2008 campaign at an intermediate depth immediately below the aeolian/alluvial sand limit, which were attributed to the complex water transfer processes. Extremely high SF 6 concentrations, well above equilibrium with the atmosphere and up to 1112 pptv, are attributed to significant contamination of the soils following the nuclear reactor explosion in 1986. The SF 6 concentration vs. the apparent groundwater ages agrees with this interpretation, as the high SF 6 concentrations are all more recent than 1985. The persistence of the SF 6 concentration suggests that SF 6 was introduced in the soil atmosphere and slowly integrated in the groundwater moving along the hydraulic gradient. The

  2. Thermoluminescence dating of late Devensian loesses in southern England

    International Nuclear Information System (INIS)

    Wintle, A.G.

    1981-01-01

    The results are reported of thermoluminescence dating of six relatively recent deposits of loess-like material from southern Britiain between the Scilly Isles and Kent. The dates have been obtained on the loess itself and confirm the ages as being late Devensian. (U.K.)

  3. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China.

    Science.gov (United States)

    Han, Dongmei; Cao, Guoliang; McCallum, James; Song, Xianfang

    2015-12-15

    Groundwater within the coastal aquifer systems of the Daweijia area in northeastern China is characterized by a large of variations (33-521mg/L) in NO3(-) concentrations. Elevated nitrate concentrations, in addition to seawater intrusion in the Daweijia well field, both attributable to anthropogenic activities, may impact future water-management practices. Chemical and stable isotopic (δ(18)O, δ(2)H) analysis, (3)H and CFCs methods were applied to provide a better understanding of the relationship between the distribution of groundwater mean residence time (MRT) and nitrate transport, and to identify sources of nitrate concentrations in the complex coastal aquifer systems. There is a relatively narrow range of isotopic composition (ranging from -8.5 to -7.0‰) in most groundwater. Generally higher tritium contents observed in the wet season relative to the dry season may result from rapid groundwater circulation in response to the rainfall through the preferential flow paths. In the well field, the relatively increased nitrate concentrations of groundwater, accompanied by the higher tritium contents in the wet season, indicate the nitrate pollution can be attributed to domestic wastes. The binary exponential and piston-flow mixing model (BEP) yielded feasible age distributions based on the conceptual model. The good inverse relationship between groundwater MRTs (92-467years) and the NO3(-) concentrations in the shallow Quaternary aquifers indicates that elevated nitrate concentrations are attributable to more recent recharge for shallow groundwater. However, there is no significant relationship between the MRTs (8-411years) and the NO3(-) concentrations existing in the carbonate aquifer system, due to the complex hydrogeological conditions, groundwater age distributions and the range of contaminant source areas. Nitrate in the groundwater system without denitrification effects could accumulate and be transported for tens of years, through the complex carbonate

  4. Groundwater Resource Assessment and Conceptualization in the Pilbara Region, Western Australia

    Science.gov (United States)

    Rojas, Rodrigo; Commander, Philip; McFarlane, Don; Ali, Riasat; Dawes, Warrick; Barron, Olga; Hodgson, Geoff; Charles, Steve

    2018-05-01

    The Pilbara region is one of the most important mining hubs in Australia. It is also a region characterised by an extreme climate, featuring environmental assets of national significance, and considered a valued land by indigenous people. Given the arid conditions, surface water is scarce, shows large variability, and is an unreliable source of water for drinking and industrial/mining purposes. In such conditions, groundwater has become a strategic resource in the Pilbara region. To date, however, an integrated regional characterization and conceptualization of the occurrence of groundwater resources in this region were missing. This article addresses this gap by integrating disperse knowledge, collating available data on aquifer properties, by reviewing groundwater systems (aquifer types) present in the region and identifying their potential, and proposing conceptualizations for the occurrence and functioning of the groundwater systems identified. Results show that aquifers across the Pilbara Region vary substantially and can be classified in seven main types: coastal alluvial systems, concealed channel iron deposits, inland valley-fill aquifers, karstified dolomites, sandstone aquifers (West Canning Basin), Permian/Cenozoic Paleochannels, and Fractured Rock aquifers. Coastal alluvial systems show the greatest regional potential as water sources and are currently intensively utilised. Conceptually, the main recharge processes are infiltration of precipitation associated with cyclonic events and the interaction with streamflows during summer season, whereas the main discharge mechanisms correspond to evapotranspiration from riverine and coastal vegetation, discharge into the Indian Ocean, and dewatering of iron-ore bodies to facilitate mining activities. Important gaps in the knowledge relate to aquifer connectivity and accurate quantification of recharge/discharge mechanisms.

  5. Assessing the recharge of a coastal aquifer using physical observations, tritium, groundwater chemistry and modelling.

    Science.gov (United States)

    Santos, Isaac R; Zhang, Chenming; Maher, Damien T; Atkins, Marnie L; Holland, Rodney; Morgenstern, Uwe; Li, Ling

    2017-02-15

    Assessing recharge is critical to understanding groundwater and preventing pollution. Here, we investigate recharge in an Australian coastal aquifer using a combination of physical, modelling and geochemical techniques. We assess whether recharge may occur through a pervasive layer of floodplain muds that was initially hypothesized to be impermeable. At least 59% of the precipitation volume could be accounted for in the shallow aquifer using the water table fluctuation method during four significant recharge events. Precipitation events rates were estimated in the area underneath the floodplain clay layer rather than in the sandy area. A steady-state chloride method implied recharge rates of at least 200mm/year (>14% of annual precipitation). Tritium dating revealed long term net vertical recharge rates ranging from 27 to 114mm/year (average 58mm/year) which were interpreted as minimum net long term recharge. Borehole experiments revealed more permeable conditions and heterogeneous infiltration rates when the floodplain soils were dry. Wet conditions apparently expand floodplain clays, closing macropores and cracks that act as conduits for groundwater recharge. Modelled groundwater flow paths were consistent with tritium dating and provided independent evidence that the clay layer does not prevent local recharge. Overall, all lines of evidence demonstrated that the coastal floodplain muds do not prevent the infiltration of rainwater into the underlying sand aquifer, and that local recharge across the muds was widespread. Therefore, assuming fine-grained floodplain soils prevent recharge and protect underlying aquifers from pollution may not be reasonable. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. History of dating violence and the association with late adolescent health

    Science.gov (United States)

    2013-01-01

    Background The present investigation expands upon prior studies by examining the relationship between health in late adolescence and the experience of physical/sexual and non-physical dating violence victimization, including dating violence types that are relevant to today’s adolescents (e.g., harassment via email and text messaging). We examined the relationship between physical/sexual and non-physical dating violence victimization from age 13 to 19 and health in late adolescence/early adulthood. Methods The sample comprised 585 subjects (ages 18 to 21; mean age, 19.8, SD = 1.0) recruited from The Ohio State University who completed an online survey to assess: 1) current health (depression, disordered eating, binge drinking, smoking, and frequent sexual behavior); and 2) dating violence victimization from age 13 to 19 (retrospectively assessed using eight questions covering physical, sexual, and non-physical abuse, including technology-related abuse involving stalking/harassment via text messaging and email). Multivariable models compared health indicators in never-exposed subjects to those exposed to physical/sexual or non-physical dating violence only. The multivariable models were adjusted for age and other non-dating abuse victimization (bullying; punched, kicked, choked by a parent/guardian; touched in a sexual place, forced to touch someone sexually). Results In adjusted analyses, compared to non-exposed females, females with physical/sexual dating violence victimization were at increased risk of smoking (prevalence ratio = 3.95); depressive symptoms (down/hopeless, PR = 2.00; lost interest, PR = 1.79); eating disorders (using diet aids, PR = 1.98; fasting, PR = 4.71; vomiting to lose weight, PR = 4.33); and frequent sexual behavior (5+ intercourse and oral sex partners, PR = 2.49, PR = 2.02; having anal sex, PR = 2.82). Compared to non-exposed females, females with non-physical dating violence only were at increased risk of smoking (PR = 3

  7. Considering groundwater use to improve the assessment of groundwater pumping for irrigation in North Africa

    Science.gov (United States)

    Massuel, Sylvain; Amichi, Farida; Ameur, Fatah; Calvez, Roger; Jenhaoui, Zakia; Bouarfa, Sami; Kuper, Marcel; Habaieb, Hamadi; Hartani, Tarik; Hammani, Ali

    2017-09-01

    Groundwater resources in semi-arid areas and especially in the Mediterranean face a growing demand for irrigated agriculture and, to a lesser extent, for domestic uses. Consequently, groundwater reserves are affected and water-table drops are widely observed. This leads to strong constraints on groundwater access for farmers, while managers worry about the future evolution of the water resources. A common problem for building proper groundwater management plans is the difficulty in assessing individual groundwater withdrawals at regional scale. Predicting future trends of these groundwater withdrawals is even more challenging. The basic question is how to assess the water budget variables and their evolution when they are deeply linked to human activities, themselves driven by countless factors (access to natural resources, public policies, market, etc.). This study provides some possible answers by focusing on the assessment of groundwater withdrawals for irrigated agriculture at three sites in North Africa (Morocco, Tunisia and Algeria). Efforts were made to understand the different features that influence irrigation practices, and an adaptive user-oriented methodology was used to monitor groundwater withdrawals. For each site, different key factors affecting the regional groundwater abstraction and its past evolution were identified by involving farmers' knowledge. Factors such as farmer access to land and groundwater or development of public infrastructures (electrical distribution network) are crucial to decode the results of well inventories and assess the regional groundwater abstraction and its future trend. This leads one to look with caution at the number of wells cited in the literature, which could be oversimplified.

  8. Uranium-series dating of pedogenic carbonates from the Livermore Valley, California

    International Nuclear Information System (INIS)

    Knauss, K.G.

    1981-01-01

    A uranium-series dating technique has been applied to pedogenic carbonates from the Livermore Valley in California. The results from geomorphologically distinct Quaternary alluvial units are internally consistent and for one alluvial unit are corroborated by a concordant 14 C age for an associated wood fragment. In appropriate situations, age dates for pedogenic carbonates derived using this technique may provide a time stratigraphy for alluvial units and hence provide some limits (minimum age) for last fault movement

  9. Groundwater management based on monitoring of land subsidence and groundwater levels in the Kanto Groundwater Basin, Central Japan

    Science.gov (United States)

    Furuno, K.; Kagawa, A.; Kazaoka, O.; Kusuda, T.; Nirei, H.

    2015-11-01

    Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.

  10. Using isotope techniques to assess groundwater resources in the upper Jezireh region

    International Nuclear Information System (INIS)

    Kattan, Z.; Abou Zakhem, B.; Al-Charideh, A.; Kadkoy, N

    2008-07-01

    This work discuses in details the hydrochemical and environmental isotopes ( 2 H, 3 H, 13 C, 14 C, 18 O and 34 S) characteristics of groundwaters resources in the Palaeogene aquifer in the Upper Syrian Jezireh Region in order to evaluate these resources in terms of recharge zones and water ages in such an aquifer system that undergone during the last decades to intensive exploitation as a consequence of sever pumping in both Syria and Turkey. The results show that the main recharge zones for the Palaeogene aquifer exists in Turkey within lands of more than 700 m.a.s.l, and effectively coincide well with the exposure of the Karstified Nummulitic limestone in Mardin uplift. The chemical and isotopic behaviors of groundwaters, together with the radiometric 14 C ages reflect the existence of three different groundwater groups: (1) the fresh and cold water, percolating in short and shallow flow paths, such as the case of the major cold springs in Ras Al-Ain and Ain El-Arous areas and most wells located in the vicinity of the Syrian-Turkish borders, for which the main replenishment processes were occurred after the palaeoclimatic humid conditions of the Holocene period, placed between 4.5-6 ka BP; (2) the brackish and thermal waters containing certain amounts of H 2 S gas, that percolate in longer and deeper flow paths, for which the main replenishment processes were occurred during the palaeoclimatic humid conditions of the Pleistocene time, placed at 9-18 ka BP; (3) the brackish and admixed thermal groundwaters with intermediate 14 C ages, which seem to be formed as a result of mixing between the previous two groups. (Authors)

  11. Geochemical investigation of groundwater in the Tono area, Japan. Chemical characteristics and groundwater evolution

    International Nuclear Information System (INIS)

    Iwatsuki, Teruki; Hama, Katsuhiro; Yoshida, Hidekazu

    1997-01-01

    Geochemical investigations form an important part of the R and D program at the Tono study site, central Japan. Detailed geological structure and groundwater chemistry have been studied to understand the geochemical environment in the sedimentary and crystalline rocks distributed in this area. The chemical evolution of the groundwater in the sedimentary rocks is characterized with the variation in Na + , Ca 2+ and HCO 3 - concentrations, and ion exchange and dissolution of calcite are dominant reactions in the evolution of groundwater. Geological investigation shows that a fracture system of crystalline rock can be classified into:intact zone, moderately fractured zone and intensely fractured zone, according to the frequency and the width of fractures and fractured zones. The groundwater in the intact and fractured zones of crystalline rock are characterized by Na + -Ca 2+ -HCO 3 - or Na + -HCO 3 - dominated water, and Na + -Ca 2+ -Fe 2+ -HCO 3 - dominated water. The chemical evolution of groundwater is, generally, controlled by water-rock interaction between plagioclase, iron minerals and groundwater. The groundwater at depth of G.L.-186m in the crystalline rock at the Tono area is characterized by the mixture between the oxidized surface water and the reduced groundwater. The investigation based on correlation between geological structures and groundwater chemistry can be applied to understand the geochemical environment in deep crystalline rock, and will support the development of a realistic hydrogeochemical model. (author)

  12. Groundwater recharge ages in the eastern nile delta based on environmental tritium

    International Nuclear Information System (INIS)

    Hamza, M.S.; Aly, A.I.M.; Swailem, F.M.; Nada, A.

    1986-01-01

    The results of the tritium composition of groundwater from eastern Nile delta is presented and compared with the tritium content of the nile according to a given model. A contour map of isoline of tritium in the area was drawn. The decrease of tritium content values in the direction from southwest to northeast was attributed to salt water intrusion. The clustered tritium isoline could be due to local geophysical structures or mixing with other water of older recharge (paleowater).2 fig.,1 tab

  13. A groundwater mass flux model for screening the groundwater-to-indoor-air exposure pathway

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, T.; Blanc, P.C. de; Connor, J. [Groundwater Services Inc, Houston, TX (United States)

    2003-07-01

    The potential for human exposure via volatilisation of groundwater contaminants into indoor air has been a focus of increasing concern in recent years. At a small number of sites, elevated indoor vapour concentrations have been measured within buildings overlying shallow groundwater contaminated with chlorinated solvents, causing public concern over the potential for similar problems at other corrective action sites. In addition, use of the screening-levelmodel developed by Johnson and Ettinger (1991) for the groundwater-to-indoor-air exposure pathway has suggested that low microgram per litre (ug/L)-range concentrations of either chlorinated or non-chlorinated volatile organic compounds dissolved in groundwater could result in indoor vapour concentrations in excess of applicable risk-based exposure limits. As an alternative screening tool, this paper presents a groundwater mass flux model for evaluation of transport to indoor air. The mass flux model is intended to serve as a highly conservative screening tool that over-predicts groundwater-to-indoor-air mass flux, yet still provides sufficient sensitivity to identify sites for which the groundwater-to-indoor air exposure pathway is not a concern. (orig.)

  14. Age of origin of the polymetamorphosed Copperton Formation, Namaqua-Natal Province, determined by single grain zircon Pb-Pb dating

    International Nuclear Information System (INIS)

    Cornell, D.H.; Griffin, G.; Kroener, A.; Humphreys, H.

    1990-01-01

    The Copperton Formation of the Areachap Group in the Northern Cape Province is a strongly metamorphosed, predominantly metavolcanic unit which contains several massive sulphide deposits. Previous work on this unit has established a complex metamorphic history, the four main phases of which are fairly well dated by a combination of methods; however, the age of origin is still poorly constrained. Zircons extracted from the Smouspan Gneiss Member of the Copperton formation are euhedral and show a crystal habit which indicates an igneous and probably volcanic origin, with no discernable metamorphic component. Whole-grain thermal evaporation on four such zircon grains yielded a precise set of 207 Pb/ 206 Pb data which establishes a 1 285 ± 14 Ma age for the origin of the Smouspan Gneiss and Copperton Formation. Indications of a ∼1 600 Ma age from other parts of the Areachap Group should be treated with caution until more reliable data are obtained. 9 figs., 2 tabs., 29 refs

  15. Radiocarbon dating of a pine tree (Pinus densiflora) from Yeongwol, Korea

    International Nuclear Information System (INIS)

    Kim, C.H.; Lee, J.H.; Kang, J.; Song, S.; Yun, M.H.; Kim, J.C.

    2015-01-01

    We report the results of the dating of a pine tree (Pinus densiflora) from Yeongwol, Korea. The age of the tree was estimated to be in the range of hundreds of years, however, the tree had been broken by a strong wind in March 2010 and now only the stump of the tree is left. At the time of sampling in 2014, there were several decayed parts in the stump, so using the usual dendrochronological method (i.e. ring counting) for dating was difficult. However, we found a small wood sample with tree rings near the center of the stump that could be used for radiocarbon wiggle-match dating. Radiocarbon dates were determined using Accelerator mass spectrometry (AMS). The IntCal13 curve was used to calibrate the radiocarbon dates, and the wiggle matching technique was used to reduce the error of the calibrated ages. Based on the dating results, we suggest that the pine tree is approximately 300 years or older.

  16. Radiocarbon dating of a pine tree (Pinus densiflora) from Yeongwol, Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.H.; Lee, J.H.; Kang, J.; Song, S.; Yun, M.H. [AMS Lab., NCIRF, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, J.C. [Dept. of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2015-10-15

    We report the results of the dating of a pine tree (Pinus densiflora) from Yeongwol, Korea. The age of the tree was estimated to be in the range of hundreds of years, however, the tree had been broken by a strong wind in March 2010 and now only the stump of the tree is left. At the time of sampling in 2014, there were several decayed parts in the stump, so using the usual dendrochronological method (i.e. ring counting) for dating was difficult. However, we found a small wood sample with tree rings near the center of the stump that could be used for radiocarbon wiggle-match dating. Radiocarbon dates were determined using Accelerator mass spectrometry (AMS). The IntCal13 curve was used to calibrate the radiocarbon dates, and the wiggle matching technique was used to reduce the error of the calibrated ages. Based on the dating results, we suggest that the pine tree is approximately 300 years or older.

  17. Radiocarbon dating of a pine tree (Pinus densiflora) from Yeongwol, Korea

    Science.gov (United States)

    Kim, C. H.; Lee, J. H.; Kang, J.; Song, S.; Yun, M. H.; Kim, J. C.

    2015-10-01

    We report the results of the dating of a pine tree (Pinus densiflora) from Yeongwol, Korea. The age of the tree was estimated to be in the range of hundreds of years, however, the tree had been broken by a strong wind in March 2010 and now only the stump of the tree is left. At the time of sampling in 2014, there were several decayed parts in the stump, so using the usual dendrochronological method (i.e. ring counting) for dating was difficult. However, we found a small wood sample with tree rings near the center of the stump that could be used for radiocarbon wiggle-match dating. Radiocarbon dates were determined using Accelerator mass spectrometry (AMS). The IntCal13 curve was used to calibrate the radiocarbon dates, and the wiggle matching technique was used to reduce the error of the calibrated ages. Based on the dating results, we suggest that the pine tree is approximately 300 years or older.

  18. Dating violence among male and female youth seeking emergency department care.

    Science.gov (United States)

    Singh, Vijay; Walton, Maureen A; Whiteside, Lauren K; Stoddard, Sarah; Epstein-Ngo, Quyen; Chermack, Stephen T; Cunningham, Rebecca M

    2014-10-01

    We determine prevalence and correlates of dating violence, dating victimization, and dating aggression among male and female patients aged 14 to 20 years seeking emergency department (ED) care. This was a systematic sampling of subjects aged 14 to 20 years seeking care at a single large academic ED between September 2010 and March 2013. Participants completed a computerized, self-administered, cross-sectional survey of demographics, dating violence from physical abuse measures of the Conflict in Adolescent Dating Relationships Inventory, associated behaviors, and ED health service use. Separate analyses were conducted for male and female patients. Four thousand three hundred eighty-nine youths (86.1% participation rate) were screened, and 4,089 (mean age 17.5 years; 58% female patients) were eligible for analysis. Almost 1 in 5 female patients (n=215; 18.4%) and 1 in 8 male patients (n=212; 12.5%) reported past-year dating violence. Of female patients, 10.6% reported dating victimization and 14.6% dating aggression, whereas of male patients, 11.7% reported dating victimization and 4.9% reported dating aggression. Multivariate analyses showed that variables associated with any male dating violence were black race (adjusted odds ratio [AOR] 2.26; 95% CI 1.54 to 3.32), alcohol misuse (AOR 1.03; 95% CI 1.00 to 1.06), illicit drug use (AOR 2.38; 95% CI 1.68 to 3.38), and depression (AOR 2.13; 95% CI 1.46 to 3.10); any female dating violence was associated with black race (AOR 1.68; 95% CI 1.25 to 2.25), public assistance (AOR 1.64; 95% CI 1.28 to 2.09), grades D and below (AOR 1.62; 95% CI 1.07 to 2.43), alcohol misuse (AOR 1.04; 95% CI 1.02 to 1.07), illicit drug use (AOR 2.85; 95% CI 2.22 to 3.66), depression (AOR 1.86; 95% CI 1.42 to 2.44), and any past year ED visit for intentional injury (AOR 2.64; 95% CI 1.30 to 5.40). Nearly 1 of 6 male and female patients aged 14 to 20 years and seeking ED care report recent dating violence, and health disparities remain among

  19. Sources of groundwater and characteristics of surface-water recharge at Bell, White, and Suwannee Springs, Florida, 2012–13

    Science.gov (United States)

    Stamm, John F.; McBride, W. Scott

    2016-12-21

    Discharge from springs in Florida is sourced from aquifers, such as the Upper Floridan aquifer, which is overlain by an upper confining unit that locally can have properties of an aquifer. Water levels in aquifers are affected by several factors, such as precipitation, recharge, and groundwater withdrawals, which in turn can affect discharge from springs. Therefore, identifying groundwater sources and recharge characteristics can be important in assessing how these factors might affect flows and water levels in springs and can be informative in broader applications such as groundwater modeling. Recharge characteristics include the residence time of water at the surface, apparent age of recharge, and recharge water temperature.The groundwater sources and recharge characteristics of three springs that discharge from the banks of the Suwannee River in northern Florida were assessed for this study: Bell Springs, White Springs, and Suwannee Springs. Sources of groundwater were also assessed for a 150-foot-deep well finished within the Upper Floridan aquifer, hereafter referred to as the UFA well. Water samples were collected for geochemical analyses in November 2012 and October 2013 from the three springs and the UFA well. Samples were analyzed for a suite of major ions, dissolved gases, and isotopes of sulfur, strontium, oxygen, and hydrogen. Daily means of water level and specific conductance at White Springs were continuously recorded from October 2012 through December 2013 by the Suwannee River Water Management District. Suwannee River stage at White Springs was computed on the basis of stage at a U.S. Geological Survey streamgage about 2.4 miles upstream. Water levels in two wells, located about 2.5 miles northwest and 13 miles southeast of White Springs, were also used in the analyses.Major ion concentrations were used to differentiate water from the springs and Upper Floridan aquifer into three groups: Bell Springs, UFA well, and White and Suwannee Springs. When

  20. Precision radiocarbon dating of a Late Holocene vegetation history

    International Nuclear Information System (INIS)

    Prior, C.A.; Chester, P.I.

    2001-01-01

    The purpose of this research is to precisely date vegetation changes associated with early human presence in the Hawkes Bay region. A sequence of AMS radiocarbon ages was obtained using a new technique developed at Rafter Radiocarbon Laboratory. A density separation method was used to concentrate pollen and spores extracted from unconsolidated lake sediments from a small-enclosed lake in coastal foothills of southern Hawkes Bay. Radiocarbon measurements were made on fractions of concentrated pollen, separated from associated organic debris. These ages directly date vegetation communities used to reconstruct the vegetation history of the region. This technique results in more accurate dating of Late Holocene vegetation changes interpreted from palynological analyses than techniques formerly used. Precision dating of palynological studies of New Zealand prehistory and history is necessary for correlation of vegetation changes to cultural changes because of the short time span of human occupation of New Zealand. (author). 35 refs., 3 figs., 1 tab

  1. Simulation of groundwater flow in the glacial aquifer system of northeastern Wisconsin with variable model complexity

    Science.gov (United States)

    Juckem, Paul F.; Clark, Brian R.; Feinstein, Daniel T.

    2017-05-04

    The U.S. Geological Survey, National Water-Quality Assessment seeks to map estimated intrinsic susceptibility of the glacial aquifer system of the conterminous United States. Improved understanding of the hydrogeologic characteristics that explain spatial patterns of intrinsic susceptibility, commonly inferred from estimates of groundwater age distributions, is sought so that methods used for the estimation process are properly equipped. An important step beyond identifying relevant hydrogeologic datasets, such as glacial geology maps, is to evaluate how incorporation of these resources into process-based models using differing levels of detail could affect resulting simulations of groundwater age distributions and, thus, estimates of intrinsic susceptibility.This report describes the construction and calibration of three groundwater-flow models of northeastern Wisconsin that were developed with differing levels of complexity to provide a framework for subsequent evaluations of the effects of process-based model complexity on estimations of groundwater age distributions for withdrawal wells and streams. Preliminary assessments, which focused on the effects of model complexity on simulated water levels and base flows in the glacial aquifer system, illustrate that simulation of vertical gradients using multiple model layers improves simulated heads more in low-permeability units than in high-permeability units. Moreover, simulation of heterogeneous hydraulic conductivity fields in coarse-grained and some fine-grained glacial materials produced a larger improvement in simulated water levels in the glacial aquifer system compared with simulation of uniform hydraulic conductivity within zones. The relation between base flows and model complexity was less clear; however, the relation generally seemed to follow a similar pattern as water levels. Although increased model complexity resulted in improved calibrations, future application of the models using simulated particle

  2. Radiocarbon dating with accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Blake, W. Jr.

    1985-01-01

    Radiocarbon dating by means of accelerator mass spectrometry (AMS) has two great advantages over conventional dating: 1) much smaller samples can be handled and 2) counting time is significantly shorter. Three examples are given for Holocene-age material from east-central Ellesmere Island. The results demonstrate the potential use of this technique as a powerful research tool in studies of Quaternary chronology. Individual fragments of marine shells as small as 0.1 g have been dated successfully at the IsoTrace Laboratory, University of Toronto. In the case of an aquatic moss from a lake sediment core, an increment 0.5 cm thick could be used instead of a 5 cm-thick slice, thus allowing a much more precise estimate of the onset of organic sedimentation

  3. New argon-argon (40Ar/39Ar) radiometric age dates from selected subsurface basalt flows at the Idaho National Laboratory, Idaho

    Science.gov (United States)

    Hodges, Mary K. V.; Turrin, Brent D.; Champion, Duane E.; Swisher, Carl C.

    2015-01-01

    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected samples for 12 new argon-argon radiometric ages from eastern Snake River Plain olivine tholeiite basalt flows in the subsurface at the Idaho National Laboratory. The core samples were collected from flows that had previously published paleomagnetic data. Samples were sent to Rutgers University for argon-argon radiometric dating analyses.

  4. Hanford Sitewide Groundwater Remediation Strategy

    International Nuclear Information System (INIS)

    Knepp, A.J.; Isaacs, J.D.

    1997-09-01

    This document fulfills the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-13-81, to develop a concise statement of strategy that describe show the Hanford Site groundwater remediation will be accomplished. The strategy addresses objectives and goals, prioritization of activities, and technical approaches for groundwater cleanup. The strategy establishes that the overall goal of groundwater remediation on the Hanford Site is to restore groundwater to its beneficial uses in terms of protecting human health and the environment, and its use as a natural resource. The Hanford Future Site Uses Working Group established two categories for groundwater commensurate with various proposed landuses: (1) restricted use or access to groundwater in the Central Plateau and in a buffer zone surrounding it and (2) unrestricted use or access to groundwater for all other areas. In recognition of the Hanford Future Site Uses Working Group and public values, the strategy establishes that the sitewide approach to groundwater cleanup is to remediate the major plumes found in the reactor areas that enter the Columbia River and to contain the spread and reduce the mass of the major plumes found in the Central Plateau

  5. Technical approach to groundwater restoration

    International Nuclear Information System (INIS)

    1993-01-01

    The Technical Approach to Groundwater Restoration (TAGR) provides general technical guidance to implement the groundwater restoration phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The TAGR includes a brief overview of the surface remediation and groundwater restoration phases of the UMTRA Project and describes the regulatory requirements, the National Environmental Policy Act (NEPA) process, and regulatory compliance. A section on program strategy discusses program optimization, the role of risk assessment, the observational approach, strategies for meeting groundwater cleanup standards, and remedial action decision-making. A section on data requirements for groundwater restoration evaluates the data quality objectives (DQO) and minimum data required to implement the options and comply with the standards. A section on sits implementation explores the development of a conceptual site model, approaches to site characterization, development of remedial action alternatives, selection of the groundwater restoration method, and remedial design and implementation in the context of site-specific documentation in the site observational work plan (SOWP) and the remedial action plan (RAP). Finally, the TAGR elaborates on groundwater monitoring necessary to evaluate compliance with the groundwater cleanup standards and protection of human health and the environment, and outlines licensing procedures

  6. Issues of Sustainability of Coastal Groundwater Resources: Benin, West Africa

    Directory of Open Access Journals (Sweden)

    Andrew D. Mullen

    2010-08-01

    Full Text Available The largest city in Benin, West Africa (Cotonou, is reliant upon groundwater for its public water supply. This groundwater is derived from the Godomey well field which is located approximately 5 Km north of the coast of the Atlantic Ocean and in close proximity to Lake Nokoue—a shallow lake containing water with elevated concentration of chloride and other elements. Historical data indicate increased chloride concentration in a number of wells nearest to the lake, with unknown contribution from groundwater encroachment from the coastal area. Hence, there is substantial interest in better characterizing this groundwater system for the purpose of determining appropriate management practices and degree of sustainability. Among the efforts attempted to date are a series of numerical models ranging from assessment of flow to a recent effort to include density-dependent transport from the lake. In addition, substantial field characterization has been pursued including assessment of shallow water chemistry along the region of the coastal lagoon and border of the lake, characterization of hydraulic response to pumpage in the aquifer system, estimation of the distribution of electrical resistivity with depth along the coastal lagoons, and installation of multi-level piezometers at seven locations in the lake. When integrated across methods, these numerical and field results indicate that the lake remains a primary concern in terms of a source of salinity in the aquifer. Further, the coastal region appears to be more complex than previously suggested and may represent a future source of salt-water encroachment as suggested by current presence of saline waters at relatively shallow depths along the coast. Finally, hydraulic testing suggests that both natural and pumping-based fluctuations in water levels are present in this system. Substantial additional characterization and modeling efforts may provide a significantly greater understanding of the

  7. Radiocarbon dating uncertainties and their effects on studies of the past

    International Nuclear Information System (INIS)

    Chappell, J.

    1982-01-01

    The handling of sets of age results and their errors for hypothesis testing is discussed. The paper focusses on radiocarbon dating but most of the principles apply to other dating methods, although some formulae will be different. One conclusion is that the conventional age error should be enlarged to allow for past variations of 14 C level in the atmosphere

  8. Sedimentological time-averaging and 14C dating of marine shells

    International Nuclear Information System (INIS)

    Fujiwara, Osamu; Kamataki, Takanobu; Masuda, Fujio

    2004-01-01

    The radiocarbon dating of sediments using marine shells involves uncertainties due to the mixed ages of the shells mainly attributed to depositional processes also known as 'sedimentological time-averaging'. This stratigraphic disorder can be removed by selecting the well-preserved indigenous shells based on ecological and taphonomic criteria. These criteria on sample selection are recommended for accurate estimation of the depositional age of geologic strata from 14 C dating of marine shells

  9. Ink dating part II: Interpretation of results in a legal perspective

    OpenAIRE

    Koenig, Agnès; Weyermann, Céline

    2018-01-01

    The development of an ink dating method requires an important investment of resources in order to step from the monitoring of ink ageing on paper to the determination of the actual age of a questioned ink entry. This article aimed at developing and evaluating the potential of three interpretation models to date ink entries in a legal perspective: (1) the threshold model comparing analytical results to tabulated values in order to determine the maximal possible age of an ink entry, (2) the tre...

  10. Ink dating part II: Interpretation of results in a legal perspective.

    Science.gov (United States)

    Koenig, Agnès; Weyermann, Céline

    2018-01-01

    The development of an ink dating method requires an important investment of resources in order to step from the monitoring of ink ageing on paper to the determination of the actual age of a questioned ink entry. This article aimed at developing and evaluating the potential of three interpretation models to date ink entries in a legal perspective: (1) the threshold model comparing analytical results to tabulated values in order to determine the maximal possible age of an ink entry, (2) the trend tests that focusing on the "ageing status" of an ink entry, and (3) the likelihood ratio calculation comparing the probabilities to observe the results under at least two alternative hypotheses. This is the first report showing ink dating interpretation results on a ballpoint be ink reference population. In the first part of this paper three ageing parameters were selected as promising from the population of 25 ink entries aged during 4 to 304days: the quantity of phenoxyethanol (PE), the difference between the PE quantities contained in a naturally aged sample and an artificially aged sample (R NORM ) and the solvent loss ratio (R%). In the current part, each model was tested using the three selected ageing parameters. Results showed that threshold definition remains a simple model easily applicable in practice, but that the risk of false positive cannot be completely avoided without reducing significantly the feasibility of the ink dating approaches. The trend tests from the literature showed unreliable results and an alternative had to be developed yielding encouraging results. The likelihood ratio calculation introduced a degree of certainty to the ink dating conclusion in comparison to the threshold approach. The proposed model remains quite simple to apply in practice, but should be further developed in order to yield reliable results in practice. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  11. Air abrasion experiments in U-Pb dating of zircon

    Science.gov (United States)

    Goldich, S.S.; Fischer, L.B.

    1986-01-01

    Air abrasion of zircon grains can remove metamict material that has lost radiogenic Pb and zircon overgrowths that were added during younger events and thereby improve the precision of the age measurements and permit closer estimates of the original age. Age discordance that resulted from a single disturbance of the U-Pb isotopic decay systems, as had been demonstrated by T.E. Krogh, can be considerably reduced, and, under favorable conditions, the ages brought into concordancy. Two or more events complicate the U-Pb systematics, but a series of abrasion experiments can be helpful in deciphering the geologic history and in arriving at a useful interpretation of the probable times of origin and disturbances. In east-central Minnesota, U.S.A., Penokean tonalite gneiss is dated at 1869 ?? 5 Ma, and sheared granite gneiss is shown to have been a high-level granite intrusion at 1982 ?? 5 Ma in the McGrath Gneiss precursor. Tonalite gneiss and a mafic granodiorite in the Rainy Lake area, Ontario, Canada, are dated at 2736 ?? 16 and 2682 ?? 4 Ma, respectively. The tonalitic phase of the Morton Gneiss, southwestern Minnesota, is dated at 3662 ?? 42 Ma. ?? 1986.

  12. Approaches to groundwater travel time

    International Nuclear Information System (INIS)

    Kaplan, P.; Klavetter, E.; Peters, R.

    1989-01-01

    One of the objectives of performance assessment for the Yucca Mountain Project is to estimate the groundwater travel time at Yucca Mountain, Nevada, to determine whether the site complies with the criteria specified in the Code of Federal Regulations, Title 10 CFR 60.113 (a). The numerical standard for performance in these criteria is based on the groundwater travel time along the fastest path of likely radionuclide transport from the disturbed zone to the accessible environment. The concept of groundwater travel time as proposed in the regulations, does not have a unique mathematical statement. The purpose of this paper is to discuss the ambiguities associated with the regulatory specification of groundwater travel time, two different interpretations of groundwater travel time, and the effect of the two interpretations on estimates of the groundwater travel time

  13. Research within the coordinated programme on comparison of methods of ''age'' determination of ground water based on decay of long-lived radioisotopes, especially 32-Si

    International Nuclear Information System (INIS)

    Clausen, H.

    1982-06-01

    Groundwater samples from two investigation areas have been analysed for the content of 32 Si. The possible presence of 32 Si in groundwater indicates that the ''younger'' component as underground production of 32 Si is unlikely. The concentration of 32 Si in measured samples except one (shallow groundwater) is low (around measurement error) which may indicate the exchange of silicone between radioactive and ''dead'' silica in the soil. At this stage the 32 Si ''dating'' method is not feasible for groundwater

  14. Case study: Free product recovery and site remediation using horizontal trenching, soil vapor treatment and groundwater extraction

    International Nuclear Information System (INIS)

    Sanderson, E.P.; Johnston, H.S. Jr.; Farrell, M.; Twedell, D.B.

    1993-01-01

    Sites with soil and groundwater impacted by petroleum hydrocarbons have been remediated using a variety of traditional techniques. However, when the site impacted lies within a very confined downtown area of an expanding metropolitan city, a more complex array of technologies must be considered. The Law Enforcement Center site is the City of Charlotte's worst known underground storage tank (UST) release to date. A cost effective free product recovery, soil vapor and groundwater extraction system is being piloted here using new horizontal trenching technology and state of the art equipment. On-site low permeability soil required that an alternative to standard recovery wells be developed for groundwater recovery and vapor extraction. Operation and maintenance (O and M) of the large number of recovery wells required would have been extremely costly over the expected lifetime of the project. Although horizontal trenching was the best solution to the O and M costs, many problems were encountered during their installation

  15. Ages of the solar system: Isotopic dating

    International Nuclear Information System (INIS)

    Turner, G.

    1982-01-01

    The major concern of this section will be to outline the ways in which measurements of isotope abundances have been used to determine the chronology of the origin and evolution of the solar system. In passing it should be remembered that the use of isotopic information is by no means restricted simply to the measurement of time scales and, particularly in recent years, isotope abundances have been used to investigate problems as diverse as the heat sources in the early solar nebula and the chemical evolution of the Earth's mantle. The fundamental property of isotopes which makes them especially useful for dating and other applications is the fact that, apart from a limited amount of mass fractionation, the composition of an isotopic mixture is unaffected by chemical processes. In those cases where mass fractionation does occur this effect may itself be useful, particularly as a source of information on temperatures. Since our main theme is time the events discussed in this section will be most conveniently presented as a chronological sequence, progressing from some time before the solar system existed down to the present day. (orig./WL)

  16. Groundwater Discharge of Legacy Nitrogen to River Networks: Linking Regional Groundwater Models to Streambed Groundwater-Surface Water Exchange and Nitrogen Processing

    Science.gov (United States)

    Barclay, J. R.; Helton, A. M.; Briggs, M. A.; Starn, J. J.; Hunt, A.

    2017-12-01

    Despite years of management, excess nitrogen (N) is a pervasive problem in many aquatic ecosystems. More than half of surface water in the United States is derived from groundwater, and widespread N contamination in aquifers from decades of watershed N inputs suggest legacy N discharging from groundwater may contribute to contemporary N pollution problems in surface waters. Legacy N loads to streams and rivers are controlled by both regional scale flow paths and fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients that occur at stream bed interfaces. Adequately incorporating these disparate scales is a challenge, but it is essential to understanding legacy N transport and making informed management decisions. We developed a regional groundwater flow model for the Farmington River, a HUC-8 basin that drains to the Long Island Sound, a coastal estuary that suffers from elevated N loads despite decades of management, to understand broad patterns of regional transport. To evaluate and refine the regional model, we used thermal infrared imagery paired with vertical temperature profiling to estimate groundwater discharge at the streambed interface. We also analyzed discharging groundwater for multiple N species to quantify fine scale patterns of N loading and transformation via denitrification at the streambed interface. Integrating regional and local estimates of groundwater discharge of legacy N to river networks should improve our ability to predict spatiotemporal patterns of legacy N loading to and transformation within surface waters.

  17. Groundwater chemical changes at SFR in Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus [GeoPoint AB, Sollentuna (Sweden); Gurban, Ioana [3DTerra (Sweden)

    2003-01-01

    The examination of the groundwater sampled at the SFR tunnel system indicated that the groundwater consist mainly of a Na-Cl to Na-Ca-Cl type of water. Most of the samples fall within the Cl range of 2500-5500 mg/l having a neutral pH (6.6-7.7 units). The water is reducing and despite the fact that the tunnel acts like a hydraulic sink constantly withdrawing water out from the rock into the tunnel the groundwater changes are moderate with time. Most of the sampling points in the SFR tunnel system are located under the Sea and M3 calculations indicated that most of the sampling points have a change of water types from an older marine water type affected by glacial melt water to an more modern marine water type such as Baltic Sea water which has been modified by possibly microbial sulphate reduction and ion exchange. Mass balance calculations indicated that the waters seem to be in equilibrium with the fracture filling mineral such as calcite. The quality of the aluminium data made the modelling with the major rock forming aluminium silicates such as feldspars and clay minerals uncertain and was therefore not reported. The conclusion is that the groundwater evolution and patterns at SFR are a result of many factors such as: 1. the changes in hydrogeology related to glaciation/deglaciation and land uplift, 2. repeated Sea/lake water regressions/transgressions 3. the closeness to Baltic Sea resulting in relative small hydrogeological driving forces which could preserve old water types from being flushed out, 4. organic or inorganic alteration of the groundwater caused by microbial processes or in situ water/rock interactions 5. tunnel construction which changed the flow system The modelled present-day groundwater conditions of the SFR site consist of a mixture in varying degrees of different water types. The data indicate that all the groundwater at SFR is strongly affected by Sea water of different origin and ages. The meteoric (0- 1000 B.P) portion is located close

  18. Toxic aluminium and heavy metals in groundwater of middle Russia: health risk assessment.

    Science.gov (United States)

    Momot, Olga; Synzynys, Boris

    2005-08-01

    Two approaches are distinguished in modern ecological monitoring. The first one is physicochemical analysis of environmental objects with respect to maximum allowable concentrations (MACs) of chemical substances, which is performed by standards methods in accordance with state regulations. The second approach (biological monitoring) is based on the methodology of biotesting and bio indication. The task of this work is to create biotests for estimation of Al and other metals toxicity in ground water and to compare these results with physicochemical analysis dates. Risk assessment for heavy metals contaminated groundwater was also performed. Risk assessment was performed accordingly EPA US recommendation and gave results about 90 per 100000 citizens for Al and 402 per 100000 for mixture of different heavy metals. For comparison: risk for earth background radiation for Middle Russia is (Individual dose 1 millisivert per year) consist 5 per 100000 people. It was shown that groundwater consist HCO3- ions (360 mg/l), sometimes Al compounds 0.21-0.65 mg/l (MAC for Al is 0.5 mg/l for Russia). Other groundwater contain Hg - 0.004 mg/l (MAC - 0.0005 mg/l); Cr - 0.072 mg/l (MAC - 0.05 mg/l); As - less than 0.03 mg/l (MAC - 0.05 mg/l). We developed plant biotest for estimation of groundwater quality with barley roots, tradescatia and others. Some biotests parameters correlate with HCO3-, Cl-, SO(4)2- and metal ions content positively, for another biotest this correlation is strongly negative. The quality of groundwater near Obninsk and in Kaluga Region is very different but hasnit been changed since the year 1998.

  19. Technical framework for groundwater restoration

    International Nuclear Information System (INIS)

    1991-04-01

    This document provides the technical framework for groundwater restoration under Phase II of the Uranium Mill Tailings Remedial Action (UMTRA) Project. A preliminary management plan for Phase II has been set forth in a companion document titled ''Preplanning Guidance Document for Groundwater Restoration''. General principles of site characterization for groundwater restoration, restoration methods, and treatment are discussed in this document to provide an overview of standard technical approaches to groundwater restoration

  20. Isotope-geochemical studies on fractions of dissolved organic carbon (DOC) for determining the origin and evolution of DOC for purposes of groundwater dating

    International Nuclear Information System (INIS)

    Geyer, S.

    1994-01-01

    The laboratory work consisted in developing and testing methods of extraction and enrichment of individual high-purity DOC fractions (fulvic acids, humic acids, and low-molecular substances) with the aim of preparing large quantities of groundwaters (> 1000 l) with low DOC concentrations so as to obtain sufficient sampling material. Chemical characterisation of DOC consisted in an analysis of humic and fulvic acids with regard to element composition (C, H, N, O, S) and inorganic trace elements. Isotopic characterization of the DOC fractions consisted in determining 14 C, 13 C, and 2 H levels. For the first time δ 34 S and δ 15 N relations in humic and fulvic acids dissolved in groundwater were determined. (orig./DG) [de