WorldWideScience

Sample records for grounds retention basins

  1. Removal of Heavy Metals and PAH in Retention Basins

    DEFF Research Database (Denmark)

    Larsen, Torben; Neerup-Jensen, Ole

    2004-01-01

    Solid seperation in retention basins is strongly non-linear and depends significantly on the flow rate and the settling characteristics of the particles. Accordingly the calculation of the annual loads of pollutants from storm overflows including basins is rather complex and time consuming....... The paper describes how laboratory investigations and CFD-modelling of flow dependant particle separation in retention basins are combined with long-simulation of storm water overflows including basins based on historical time series of rainfalls also taking into account the flow dependant solid seperation...... in order to calculate annual loads of pollutants from urban catchments. The study cover Cd, Cu, Ni, Pb, Zn and PAH....

  2. Nitrogen surface water retention in the Baltic Sea drainage basin

    Directory of Open Access Journals (Sweden)

    P. Stålnacke

    2014-09-01

    Full Text Available In this paper, we estimate the surface water retention of nitrogen (N in all the 117 drainage basins to the Baltic Sea with the use of a statistical model (MESAW for source apportionment of riverine loads of pollutants. Our results show that the MESAW model was able to estimate the N load at the river mouth of 88 Baltic Sea rivers, for which we had observed data, with a sufficient degree of precision and accuracy. The estimated retention parameters were also statistically significant. Our results show that around 380 000 t of N are annually retained in surface waters draining to the Baltic Sea. The total annual riverine load from the 117 basins to the Baltic Sea was estimated to 570 000 t of N, giving a total surface water N retention of around 40%. In terms of absolute retention values, three major river basins account for 50% of the total retention in the 117 basins; i.e. around 104 000 t of N is retained in Neva, 55 000 t in Vistula and 32 000 t in Oder. The largest retention was found in river basins with a high percentage of lakes as indicated by a strong relationship between N retention (% and share of lake area in the river drainage areas. For example in Göta älv, we estimated a total N retention of 72%, whereof 67% of the retention occurred in the lakes of that drainage area (Lake Vänern primarily. The obtained results will hopefully enable the Helsinki Commission (HELCOM to refine the nutrient load targets in the Baltic Sea Action Plan (BSAP, as well as to better identify cost-efficient measures to reduce nutrient loadings to the Baltic Sea.

  3. Sedimentation retention basin utilization for best management practice

    Institute of Scientific and Technical Information of China (English)

    Zaheer Iqbal; CUI Guang-bo; ZHANG Li-qiong

    2003-01-01

    Approaches to the artificial impoundment and theoretical design of sedimentation retention basin are reviewed with particular attention to best management practice(BMP) to control agriculture and surface runoff. Sediments retention basins are the small version of farm pond used where a criteria of farm pond is not met. Such basin traps the pollutants and suspended solids prior to entry into streams and lakes. The study is focused with special reference to the assessment and control of non-point source pollution(NPSP) from the sub-basin area of Tai Lake in the Xishan County of Wuxi City of China. The author suggested two different approaches to conduct this study including theoretical design for sedimentation retention basin and computation of flow, sediment transport and deposition during the artificial impoundment of retention basin for BMP's utilization. Theoretical design will provide a useful function as a first line defense against the movement of sediments and transport of pollutants into the Tai Lake while the assessment of sediments deposition will help to make its proper use and periodic cleanup.

  4. Removal of Heavy Metals and PAH in Retention Basins

    DEFF Research Database (Denmark)

    Larsen, Torben; Neerup-Jensen, Ole

    2004-01-01

    Solid seperation in retention basins is strongly non-linear and depends significantly on the flow rate and the settling characteristics of the particles. Accordingly the calculation of the annual loads of pollutants from storm overflows including basins is rather complex and time consuming. The p...... in order to calculate annual loads of pollutants from urban catchments. The study cover Cd, Cu, Ni, Pb, Zn and PAH....

  5. Effective retention time of the Hanford 107 reactor effluent retention basins

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J.K.; Quimby, G.R.

    1953-08-03

    Studies of the radioactive decay of the gross beta particle emitters in reactor effluent water indicated that the retention time for basins at the different reactor areas varied from 1.5 hours to 4.0 hours for flow rates occurring during the last three years. A statistical analysis of the data from 100-B, 100-D, and 100-F indicated a significant relationship between the two variables, effective retention time and water flow rate. The limited data from 100-DR and 100-H showed no significant relationship. The uranyl nitrate tests, which were conducted at the 107-H West basin by Pile Physics personnel, indicated that a fraction of the uranium passed through the basin in less than one hour and that a maximum concentration was reached in approximately 2.5 hours. This test indicated a more complicated system of flow through the basin than the decay studies had shown and it further explained the large fluctuation in results obtained for the retention time by the decay method. A study of the variation with time of the activity density of water leaving the 107-H basin indicated that a cyclic effect might be occurring in which the variation from the mean was found to be as high as 15%.

  6. 207-A retention basins system design description

    Energy Technology Data Exchange (ETDEWEB)

    Wahlquist, R.A.

    1994-09-29

    The 242-A Evaporator is a waste treatment facility designed to reduce liquid waste volumes currently stored in the Hanford Area double shell Waste Storage Tanks. The evaporator uses evaporative concentration to achieve this volume reduction, returning the concentrated slurry to the double-shell tanks for storage. The process effluent is transferred to various retention/treatment facilities for eventual release to the environment. The process utilizes an evaporator vessel and various supporting systems for heating, evaporating, and condensing low-heat-generating liquid waste produced it the Hanford Site. The process reduces the total volume of the liquid waste requiring storage in a double shell tank, making it more manageable for current storage as well as for future treatment and disposal. The main components of the 242-A Evaporator are the Reboiler, Vapor-Liquid Separator, Recirculation Pump and Pump Loop, Slurry System, Condenser System, Steam Jet Vacuum System, Condensate Collection Tank, and Ion Exchange System.

  7. Classification of different sustainable flood retention basin types.

    Science.gov (United States)

    Robinson, Michelle; Scholz, Miklas; Bastien, Nicolas; Carfrae, Jennifer

    2010-01-01

    Using a revised version of a previously published expert classification system, a database of potential Sustainable Flood Retention Basins has been developed for Scotland. The research shows that the majority of small and former (often old) drinking water reservoirs are kept full and their spillways are continuously in operation. Utilising some of the available capacity to contribute to flood control could significantly reduce the costs of complying with the European Union Flood Directive. Furthermore, the application of a previously developed classification model for Baden in Germany for the Scottish data set showed a lower diversity for basins in Scotland due to less developed infrastructure. The classification system appears to be robust and has the potential, with minor modifications, to be applied across Europe. The principle value of this approach is a clear and unambiguous categorisation, based on standard variables, which can help to promote communication and understanding between stakeholders.

  8. LIQUID EFFLUENT RETENTION FACILITY (LERF) BASIN 42 STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB

    2004-10-29

    This report documents laboratory results obtained under test plan RPP-21533 for samples submitted by the Effluent Treatment Facility (ETF) from the Liquid Effluent Retention Facility (LERF) Basin 42 (Reference 1). The LERF Basin 42 contains process condensate (PC) from the 242-A Evaporator and landfill leachate. The ETF processes one PC campaign approximately every 12 to 18 months. A typical PC campaign volume can range from 1.5 to 2.5 million gallons. During the September 2003 ETF Basin 42 processing campaign, a recurring problem with 'gelatinous buildup' on the outlet filters from 60A-TK-I (surge tank) was observed (Figure 1). This buildup appeared on the filters after the contents of the surge tank were adjusted to a pH of between 5 and 6 using sulfuric acid. Biological activity in the PC feed was suspected to be the cause of the gelatinous material. Due to this buildup, the filters (10 {micro}m CUNO) required daily change out to maintain process throughput.

  9. Recent ground fissures in the Hetao basin, Inner Mongolia, China

    Science.gov (United States)

    He, Zhongtai; Ma, Baoqi; Long, Jianyu; Zhang, Hao; Liang, Kuan; Jiang, Dawei

    2017-10-01

    Ground fissures are a geological hazard with complex formation mechanisms. Increasing amounts of human activity have created more ground fissures, which can destroy buildings and threaten human security. Some ground fissures indicate potentially devastating earthquakes, so we must pay attention to these hazards. This paper documents recently discovered ground fissures in the Hetao basin. These ground fissures are located along the frontal margins of the terraces of the Sertengshan piedmont fault. These fissures are 600-1600 m long, 5-50 cm wide, and at most 1 m deep. These ground fissures emerged after 2010 and ruptured newly constructed roads and field ridges. The deep geodynamic mechanisms within this extensional environment, which is dominated by NE-SW principal compressive shear, involve N-S tensile stress, which has produced continuous subsidence in the Hetao basin and continuous activity along the Sertengshan piedmont fault since the late Quaternary. Trenches across the ground fissures reveal that the fissures are the latest manifestation of the activity of preexisting faults and are the result of creep-slip movement along the faults. The groundwater level in the Hetao basin has been dropping since the 1960s because of overexploitation, resulting in subsidence. When the tensile stress exceeds the ultimate tensile strength of the strata, the strata rupture along preexisting faults, producing ground fissures. Thus, the Sertengshan piedmont fault planes are the structural foundation of the ground fissures, and groundwater extraction induces the development of ground fissures.

  10. Routine dose estimates for the removal of soil from a basin to the burial ground at the Savannah River Site.

    Science.gov (United States)

    Simpkins, Ali A

    2004-02-01

    Worker dose estimates have been made for various exposure scenarios resulting from the relocation of soil from the H Area Retention Basin to the Old Radioactive Waste Burial Ground at the Savannah River Site. Estimates were performed by hand calculations and using RESRAD and MAXDOSE-SR. Doses were estimated for the following pathways: (1) shine and inhalation as a result of standing on contaminated soil at the H Area Retention Basin and the Old Radioactive Waste Burial Ground; (2) exposure to off-unit receptors due to soil disturbances from excavation type activities at the H Area Retention Basin and the Old Radioactive Waste Burial Ground; (3) exposure to off-unit receptors due to soil disturbances from dumping of soil from bucket and from roll-off pan; and (4) exposure to off-unit receptors from wind driven dust from contaminated area. The highest dose estimates (0.25 mSv h(-1)) resulted from the receptor standing on the H Area Retention Basin.

  11. Ground-water resources in the Hood Basin, Oregon

    Science.gov (United States)

    Grady, Stephen J.

    1983-01-01

    The Hood Basin, an area of 1,035 square miles in north-central Oregon, includes the drainage basins of all tributaries of the Columbia River between Eagle Creek and Fifteenmile Creek. The physical characteristics and climate of the basin are diverse. The Wasco subarea, in the eastern half of the basin, has moderate relief, mostly intermittent streams, and semiarid climate. The Hood subarea, in the western half, has rugged topography, numerous perennial streams, and a humid climate.Water-bearing geologic units that underlie the basin include volcanic, volcaniclastic, and sedimentary rocks of Miocene to Holocene age, and unconsolidated surficial deposits of Pleistocene and Holocene age. The most important water-bearing unit, the Columbia River Basalt Group, underlies almost the entire basin. Total thickness probably exceeds 2,000 feet, but by 1980 only the upper 1,000 feet or less had been developed by wells. Wells in this unit generally yield from 15 to 1,000 gallons per minute and a few yield as much as 3,300 gallons per minute.The most productive aquifer in the Columbia River Basalt Group is The Dalles Ground Water Reservoir, a permeable zone of fractured basalt about 25 to 30 square miles in extent that underlies the city of The Dalles. During the late 1950's and mid-1960's, withdrawals of 15,000 acre-feet per year or more caused water levels in the aquifer to decline sharply. Pumpage had diminished to about 5,000 acre-feet per year in 1979 and water levels have stabilized, indicating that ground water recharge and discharge, including the pumping, are in balance.The other principal geologic units in the basin have more limited areal distribution and less saturated thickness than the Columbia River Basalt Group. Generally, these units are capable of yielding from a few to a hundred gallons per minute to wells.Most of the ground water in the basin is chemically suitable for domestic, irrigation, or other uses. Some ground water has objectionable concentrations of

  12. Earthquake Ground Motion in the Valley of Mexico: Basin Effects

    Science.gov (United States)

    Ramirez, L.; Contreras, M.; Bielak, J.; Aguirre, J.

    2007-12-01

    We present a study of the ground motion and resulting amplification in the Mexico City Basin due to strong earthquakes in the Mexican Pacific Coast. We propose an approximation of the regional structure and Mexico City's basin and analyze their response to two shallow earthquakes generated near the coast. We compare two sets of three dimensional simulations: the first includes a soft structure similar in shape and properties to the Valley of Mexico, while the second excludes the soft soil deposits. Our 3D computations, with a maximum resolution of 0.75 Hz, reproduce the amplitude and long durations characteristics usually observed in the basin. We confirm that stations inside the Mexican Volcanic Belt experience amplification. In the frequency band 0.2-0.4 Hz additional amplification occurs inside the valley due to the shallow soil deposits in the lake bed region. We compare the normalized durations of the ground motion at several stations against observed data, and speculate on the durations of the soil motion as being a local effect due to the basin's shape and low velocities.

  13. Energy autonomous automation for rainwater retention basins; Energieautarke Automatisierung fuer Regenrueckhaltebecken

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Helmuth [Festo AG und Co. KG, Esslingen am Neckar (Germany)

    2013-06-15

    In case of rain retention basins in areas without regular power supply, the valves can be operated with solar and wind energy. This saves time and personnel expenses. [German] Bei Regenrueckhaltebecken in Gebieten ohne regulaere Stromversorgung koennen die Schieberventile mit Sonnen- und Windenergie betrieben werden. Das spart Zeit und Personalaufwand.

  14. USE THE METHOD OF DIMENSIONING OF INFILTRATION-RETENTION BASINS FOR MANAGEMENT OF RAINWATER

    Directory of Open Access Journals (Sweden)

    Ewa Suchanek

    2015-01-01

    Full Text Available The easiest way to “use” rainwater is its detention in places where it falls, and referral to the ground. Systems of rainwater utilization system can be implemented in different variants. In the simplest configuration it is a tank, with a runoff from the roof. The principle of operation of the tank (basin is a method for rain water management. The article presents a practical application of methods of dimensioning infiltration basins by performing calculations showing how to alter the dimensions of the basin when changing the ground conditions while maintaining the same filling.

  15. Implications of Texture and Erodibility for Sediment Retention in Receiving Basins of Coastal Louisiana Diversions

    Directory of Open Access Journals (Sweden)

    Kehui Xu

    2016-01-01

    Full Text Available Although the Mississippi River deltaic plain has been the subject of abundant research over recent decades, there is a paucity of data concerning field measurement of sediment erodibility in Louisiana estuaries. Two contrasting receiving basins for active diversions were studied: West Bay on the western part of Mississippi River Delta and Big Mar, which is the receiving basin for the Caernarvon freshwater diversion. Push cores and water samples were collected at six stations in West Bay and six stations in Big Mar. The average erodibility of Big Mar sediment was similar to that of Louisiana shelf sediment, but was higher than that of West Bay. Critical shear stress to suspend sediment in both West Bay and Big Mar receiving basins was around 0.2 Pa. A synthesis of 1191 laser grain size data from surficial and down-core sediment reveals that silt (4–63 μm is the largest fraction of retained sediment in receiving basins, larger than the total of sand (>63 μm and clay (<4 μm. It is suggested that preferential delivery of fine grained sediment to more landward and protected receiving basins would enhance mud retention. In addition, small fetch sizes and fragmentation of large receiving basins are favorable for sediment retention.

  16. Long Term Estimates of Removal of Heavy Metals and PAH in Retention Basins

    DEFF Research Database (Denmark)

    Larsen, Torben; Neerup-Jensen, O.

    2004-01-01

    The paper describes a method for the long-term simulation of the discharge of pollutants to the environment from storm sewer overflows in combined sewer systems, which have a connected retention basins. This study covers heavy metals (Cd, Cu, Ni, Pb, Zn) and PAH. The method includes both the infl......The paper describes a method for the long-term simulation of the discharge of pollutants to the environment from storm sewer overflows in combined sewer systems, which have a connected retention basins. This study covers heavy metals (Cd, Cu, Ni, Pb, Zn) and PAH. The method includes both...... which cover realistic sizes show that the long-term discharges of PAH are about half of the expected values without removal....

  17. Geotechnical Analysis of Five Shelby Tube Samples from H-Area Retention Basin

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.A.

    1999-06-02

    Geotechnical and geochemical analyses were performed on five Shelby tube samples collected in the H-Area Retention Basin (HRB) during July and August of 1998. The samples were collected as part of the HRB characterization study. The test results, which are documented in this report, will be used to support the HRB contaminant fate and transport modeling/analysis and to evaluate remedial options. The results will also be used as a base line for future treatability studies.

  18. Seismic ground motion scenarios in Lower Tagus Valley Basin

    Science.gov (United States)

    Borges, José; Torres, Ricardo; Furtado, José; Silva, Hugo; Caldeira, Bento; Pinto, Carlos; Bezzeghoud, Mourad; Carvalho, João

    2013-04-01

    Throughout its history the Lower Tagus Valley (LTV) has been struck by several earthquakes which produced important material damage and loss of lives: The 1st of November 1755 Lisbon earthquake and the 1969 earthquake (Mw=7.3), located in the SW Iberia Margin and the 1344, 1531 and 1909 (M= 6 to 7) with epicenter located inside the LTV basin. Since this region is the most highly populated region in Portugal, it is expected that an earthquake of similar magnitude of those that have occurred in the past will cause an enormous destruction and casualties. This fact makes LTV a high priority area for earthquake research in Portugal. In order to overcome the problems related to the absence of geological outcrops, low slip-rates (based on Seismic reflection, Seismic Noise and potential field data [2,3]. In order to improve assessment of the seismic hazard in the LTV basin, we simulate long-period (0-1 Hz) ground motion time histories for a suite of scenarios earthquakes (Mw =5.5 to 7) within the basin, using fault geometries and the 3D seismic velocity structure based on the previous mentioned works. References [1] Pinto, Carlos C. (2011). Identification of Seismogenic Structures in the Lower Tagus Basin. Master Thesis, Universidade de Évora, 128 pp. [2] Torres, R.J.G., (2012). Modelo de velocidade da Bacia do Vale do Tejo: uma abordagem baseada no estudo do ruído sísmico ambiental, Master Thesis, Universidade de Évora, 83pp. [3] Furtado, J.A (2010). Confirmação do modelo da estrutura 3D do Vale Inverior do Tejo a partir de dados de ruído sísmico ambiente, Master Thesis, Universidade de Évora, 136pp.

  19. Projected effects of proposed salinity-control projects on shallow ground water; preliminary results for the upper Brazos River basin, Texas

    Science.gov (United States)

    Garza, Sergio

    1982-01-01

    As part of the plan to control the natural salt pollution in the upper Brazos River basin of Texas, the U.S. Army Corps of Engineers recommended construction of three impoundment and retention reservoirs. In connection with the proposed reservoirs, the U.S. Geological Survey was requested to define the existing ground-water conditions in the shallow ground-water system of the area and to project the post-construction effects of the reservoirs on the shallow aquifer, especially in relation to aquifer-head changes but also with respect to possible changes in the chemical quality of the ground water.

  20. 2002 Water-Table Contours of the Mojave River and the Morongo Ground-Water Basins, San Bernardino County, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a...

  1. Nitrate retention in riparian ground water at natural and elevated nitrate levels in North Central Minnesota

    Science.gov (United States)

    Duff, J.H.; Jackman, A.P.; Triska, F.J.; Sheibley, R.W.; Avanzino, R.J.

    2007-01-01

    The relationship between local ground water flows and NO3- transport to the channel was examined in three well transects from a natural, wooded riparian zone adjacent to the Shingobee River, MN. The hillslope ground water originated as recharge from intermittently grazed pasture up slope of the site. In the hillslope transect perpendicular to the stream, ground water NO3- concentrations decreased from ???3 mg N L-1 beneath the ridge (80 m from the channel) to 0.01 to 1.0 mg N L-1 at wells 1 to 3 m from the channel. The Cl- concentrations and NO3/Cl ratios decreased toward the channel indicating NO3- dilution and biotic retention. In the bankside well transect parallel to the stream, two distinct ground water environments were observed: an alluvial environment upstream of a relict beaver dam influenced by stream water and a hillslope environment downstream of the relict beaver dam. Nitrate was elevated to levels representative of agricultural runoff in a third well transect looted ???5 m from the stream to assess the effectiveness of the riparian zone as a NO3- sink. Subsurface NO3- injections revealed transport of up to 15 mg N L-1 was nearly conservative in the alluvial riparian environment. Addition of glucose stimulated dissolved oxygen uptake and promoted NO3- retention under both background and elevated NO 3- levels in summer and winter. Disappearance of added NO3- was followed by transient NO2- formation and, in the presence of C2H2, by N2O formation, demonstrating potential denitrification. Under current land use, most NO3- associated with local ground water is biotically retained or diluted before reaching the channel. However, elevating NO 3- levels through agricultural cultivation would likely result in increased NO3- transport to the channel. ?? ASA, CSSA, SSSA.

  2. Monitoring of coalbed water retention ponds in the Powder River Basin using Google Earth images and an Unmanned Aircraft System

    Science.gov (United States)

    Zhou, X.; Zhou, Z.; Apple, M. E.; Spangler, L.

    2016-12-01

    To extract methane from unminable seams of coal in the Powder River Basin of Montana and Wyoming, coalbed methane (CBM) water has to be pumped and kept in retention ponds rather than discharged to the vadose zone to mix with the ground water. The water areal coverage of these ponds changes due to evaporation and repetitive refilling. The water quality also changes due to growing of microalgae (unicellular or filamentous including green algae and diatoms), evaporation, and refilling. To estimate the water coverage changes and monitor water quality becomes important for monitoring the CBM water retention ponds to provide timely management plan for the newly pumped CBM water. Conventional methods such as various water indices based on multi-spectral satellite data such as Landsat because of the small pond size ( 100mx100m scale) and low spatial resolution ( 30m scale) of the satellite data. In this study we will present new methods to estimate water coverage and water quality changes using Google Earth images and images collected from an unmanned aircraft system (UAS) (Phantom 2 plus). Because these images have only visible bands (red, green, and blue bands), the conventional water index methods that involve near-infrared bands do not work. We design a new method just based on the visible bands to automatically extract water pixels and the intensity of the water pixel as a proxy for water quality after a series of image processing such as georeferencing, resampling, filtering, etc. Differential GPS positions along the water edges were collected the same day as the images collected from the UAS. Area of the water area was calculated from the GPS positions and used for the validation of the method. Because of the very high resolution ( 10-30 cm scale), the water areal coverage and water quality distribution can be accurately estimated. Since the UAS can be flied any time, water area and quality information can be collected timely.

  3. Supplementary report on surface-water and ground-water surveys, Nueces River Basin, Texas

    Science.gov (United States)

    Broadhurst, W.L.; Ellsworth, C.E.

    1950-01-01

    A report on the ground-water and surface-water surveys of the Nueces River Basin was included in a report by the Bureau of Reclamation, entitled "Comprehensive plan for water-resources development of the Nueces River Basin project planning report number 5-14.04-3, February 1946".

  4. Ground water in the southeastern Uinta Basin, Utah and Colorado

    Science.gov (United States)

    Holmes, Walter F.; Kimball, Briant A.

    1987-01-01

    The potential for developing oil-shale resources in the southeastern Uinta Basin of Utah and Colorado has created the need for information on the quantity and quality of water available in the area. This report describes the availability and chemical quality of ground water, which might provide a source or supplement of water supply for an oil-shale industry. Ground water in the southeastern Uinta Basin occurs in three major aquifers. Alluvial aquifers of small areal extent are present in valley-fill deposits of six major drainages. Consolidated-rock aquifers include the bird?s-nest aquifer in the Parachute Creek Member of the Green River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer, which includes parts of the Douglas Creek Member of the Green River Formation and parts of the intertonguing Renegade Tongue of the Wasatch Formation; this aquifer underlies most of the study area. The alluvial aquifers are recharged by infiltration of streamflow and leakage from consolidated-rock aquifers. Recharge is estimated to average about 32,000 acre-feet per year. Discharge from alluvial aquifers, primarily by evapotranspiration, also averages about 32,000 acre-feet per year. The estimated volume of recoverable water in storage in alluvial aquifers is about 200,000 acre-feet. Maximum yields to individual wells are less than 1,000 gallons per minute. Recharge to the bird's-nest aquifer, primarily from stream infiltration and downward leakage from the overlying Uinta Formation, is estimated to average 670 acre-feet per year. Discharge from the bird's-nest aquifer, which is primarily by seepage to Bitter Creek and the White River, is estimated to be at 670 acre-feet per year. The estimated volume of recoverable water in storage in the bird's-nest aquifer is 1.9 million acre-feet. Maximum yields to individual wells in some areas may be as much as 5,000 gallons per minute. A digital-computer model of the flow system was used to

  5. An overview of experiences of basin artificial recharge of ground water in Japan

    Science.gov (United States)

    Hida, Noboru

    In this paper, the author reviews the present situation of basin artificial recharge of ground water (MAR: managed aquifer recharge) as of 2007 in Japan. Most of the artificial recharge of basin method is carried out using alluvial fans. The enhancing groundwater resources in the Rokugo alluvial aquifer has resulted in sustainability for the groundwater environment, especially in the distal fan. As a general judgment, the basin artificial recharge contributes to sustainable aquifer management in alluvium. As a result of this review, the basin artificial recharge will be utilized more in the future, not only in Japan, but in monsoon Asian countries as well.

  6. Potential ground water resources of Hat Yai Basin in Peninsular Thailand by gravity study

    Directory of Open Access Journals (Sweden)

    Warawutti Lohawijarn

    2005-05-01

    Full Text Available Residual gravity anomaly with a minimum of about -140 mm s-2 with approximately NS trend and a limited axial length was observed over Hat Yai Basin in Peninsular Thailand. The modeled Hat Yai basin is about 1 km deep at its deepest, 60 km long and 20 km wide. The porosity of basin sediment and the amount of potential ground water reserves within the basin are estimated to be 39% and 121.7±0.8 km3 respectively, assuming full saturation. Within the topmost 80 m of ground where the present extraction is concentrated, the estimated ground water reserve is 12.5±0.5 km3.

  7. Optimization of wetland restoration siting and zoning in flood retention areas of river basins in China: A case study in Mengwa, Huaihe River Basin

    Science.gov (United States)

    Zhang, Xiaolei; Song, Yuqin

    2014-11-01

    Wetland restoration in floodplains is an ecological solution that can address basin-wide flooding issues and minimize flooding and damages to riverine and downstream areas. High population densities, large economic outputs, and heavy reliance on water resources make flood retention and management pressing issues in China. To balance flood control and sustainable development economically, socially, and politically, flood retention areas have been established to increase watershed flood storage capacities and enhance the public welfare for the populace living in the areas. However, conflicts between flood storage functions and human habitation appear irreconcilable. We developed a site-specific methodology for identifying potential sites and functional zones for wetland restoration in a flood retention area in middle and eastern China, optimizing the spatial distribution and functional zones to maximize flood control and human and regional development. This methodology was applied to Mengwa, one of 21 flood retention areas in China's Huaihe River Basin, using nine scenarios that reflected different flood, climatic, and hydraulic conditions. The results demonstrated improved flood retention and ecological functions, as well as increased economic benefits.

  8. Strong ground motion in the Taipei basin from the 1999 Chi-Chi, Taiwan, earthquake

    Science.gov (United States)

    Fletcher, Joe B.; Wen, K.-L.

    2005-01-01

    The Taipei basin, located in northwest Taiwan about 160 km from the epicenter of the Chi-Chi earthquake, is a shallow, triangular-shaped basin filled with low-velocity fluvial deposits. There is a strong velocity contrast across the basement interface of about 600 m/sec at a depth of about 600-700 m in the deeper section of the basin, suggesting that ground motion should be amplified at sites in the basin. In this article, the ground-motion recordings are analyzed to determine the effect of the basin both in terms of amplifications expected from a 1D model of the sediments in the basin and in terms of the 3D structure of the basin. Residuals determined for peak acceleration from attenuation curves are more positive (amplified) in the basin (average of 5.3 cm/ sec2 compared to - 24.2 cm/sec2 for those stations outside the basin and between 75 and 110 km from the surface projection of the faulted area, a 40% increase in peak ground acceleration). Residuals for peak velocity are also significantly more positive at stations in the basin (31.8 cm/sec compared to 20.0 cm/sec out). The correlation of peak motion with depth to basement, while minor in peak acceleration, is stronger in the peak velocities. Record sections of ground motion from stations in and around the Taipei basin show that the largest long-period arrival, which is coherent across the region, is strongest on the vertical component and has a period of about 10-12 sec. This phase appears to be a Rayleigh wave, probably associated with rupture at the north end of the Chelungpu fault. Records of strong motion from stations in and near the basin have an additional, higher frequency signal: nearest the deepest point in the basin, the signal is characterized by frequencies of about 0.3 - 0.4 Hz. These frequencies are close to simple predictions using horizontal layers and the velocity structure of the basin. Polarizations of the S wave are mostly coherent across the array, although there are significant

  9. Ground-Water Temperature, Noble Gas, and Carbon Isotope Data from the Espanola Basin, New Mexico

    Science.gov (United States)

    Manning, Andrew H.

    2009-01-01

    Ground-water samples were collected from 56 locations throughout the Espanola Basin and analyzed for general chemistry (major ions and trace elements), carbon isotopes (delta 13C and 14C activity) in dissolved inorganic carbon, noble gases (He, Ne, Ar, Kr, Xe, and 3He/4He ratio), and tritium. Temperature profiles were measured at six locations in the southeastern part of the basin. Temperature profiles suggest that ground water generally becomes warmer with distance from the mountains and that most ground-water flow occurs at depths 50 years old, consistent with the 14C ages. Terrigenic He (Heterr) concentrations in ground water are high (log Delta Heterr of 2 to 5) throughout much of the basin. High Heterr concentrations are probably caused by in situ production in the Tesuque Formation from locally high concentrations of U-bearing minerals (Northeast zone only), or by upward diffusive/advective transport of crustal- and mantle-sourced He possibly enhanced by basement piercing faults, or by both. The 3He/4He ratio of Heterr (Rterr) is commonly high (Rterr/Ra of 0.3-2.0, where Ra is the 3He/4He ratio in air) suggesting that Espanola Basin ground water commonly contains mantle-sourced He. The 3He/4He ratio of Heterr is generally the highest in the western and southern parts of the basin, closest to the western border fault system and the Quaternary to Miocene volcanics of the Jemez Mountains and Cerros del Rio.

  10. Data evaluation technical memorandum on the K-1407C Retention Basin at the Oak Ridge K-25 Site, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Beal, D.; Bock, J.; Hatmaker, T.; Zolyniak, J.; Goddard, P. [Oak Ridge K-25 Site, TN (United States); Kucsmas, D. [Oak Ridge National Lab., TN (United States)

    1991-10-01

    The K-1407-C Retention Basin was a surface impoundment at the Oak Ridge K-25 Site. The basin was used primarily for storing potassium hydroxide scrubber sludge generated at the K-25 Site. In addition, from 1960 to 1973, metal hydroxide sludges that were removed from the K-1407-B Holding Pond were discharged to the K-1407-C Retention Basin. The sludge in the K-1407-B Pond contained discharge from the K-1420 Decontamination and Uranium Recovery, the K-1501 Steam Plant, the K-1413 Laboratory, and the K-1401 Maintenance Building. Radioactive material is also present in the K-1407-C Retention Basin, probably the result of cleaning and decontamination activities at some of the aforementioned facilities. The discharge of waste materials to K-1407-C was discontinued before November of 1988, and all sludge was removed from the retention basin. Some of the sludge was stored, and the remainder was fixed in concrete. This report is specific to the K-1407-C Retention Basin and includes information pertinent to the evaluation of soil contamination. The focus of this evaluation is the effectiveness of the Phase 1 investigation of the K-1407-C Retention Basin to define site conditions adequately to support decisions regarding appropriate closure alternatives. This includes the physical characterization of the site area and the characterization of the nature and extent of contamination at the site in relation to risk characterization and statistical evaluation.

  11. Data evaluation technical memorandum on the K-1407C Retention Basin at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Beal, D.; Bock, J.; Hatmaker, T.; Zolyniak, J.; Goddard, P. (Oak Ridge K-25 Site, TN (United States)); Kucsmas, D. (Oak Ridge National Lab., TN (United States))

    1991-10-01

    The K-1407-C Retention Basin was a surface impoundment at the Oak Ridge K-25 Site. The basin was used primarily for storing potassium hydroxide scrubber sludge generated at the K-25 Site. In addition, from 1960 to 1973, metal hydroxide sludges that were removed from the K-1407-B Holding Pond were discharged to the K-1407-C Retention Basin. The sludge in the K-1407-B Pond contained discharge from the K-1420 Decontamination and Uranium Recovery, the K-1501 Steam Plant, the K-1413 Laboratory, and the K-1401 Maintenance Building. Radioactive material is also present in the K-1407-C Retention Basin, probably the result of cleaning and decontamination activities at some of the aforementioned facilities. The discharge of waste materials to K-1407-C was discontinued before November of 1988, and all sludge was removed from the retention basin. Some of the sludge was stored, and the remainder was fixed in concrete. This report is specific to the K-1407-C Retention Basin and includes information pertinent to the evaluation of soil contamination. The focus of this evaluation is the effectiveness of the Phase 1 investigation of the K-1407-C Retention Basin to define site conditions adequately to support decisions regarding appropriate closure alternatives. This includes the physical characterization of the site area and the characterization of the nature and extent of contamination at the site in relation to risk characterization and statistical evaluation.

  12. Preliminary Crater Retention Ages for an Expanded Inventory of Large Lunar Basins

    Science.gov (United States)

    Frey, H. V.

    2012-01-01

    Based on LOLA topography and a new crustal thickness model, the number of candidate lunar basins greater than 300 km in diameter is at least a factor 2 larger than the traditional number based on photogeology alone, and may be as high as 95. Preliminary N(50) crater retention ages for this population of candidate basins shows two distinct peaks. Frey [1] suggested, based on Clementine-era topography (ULCN2005) and a crustal thickness model based on Lunar Prospector data [2], that there could be as many as 98 lunar basins greater than 300 km diameter. Many of the weaker cases have not stood up to recent testing [3,4,5] using LOLA data and a newer crustal thickness model based on Kaguya gravity data and LOLA topography data [6]. As described in companion abstracts [4,5], we have deleted from the earlier inventory 1 more named feature (Sikorsky- Rittenhouse; LOLA data show that its diameter is actually less than 300 km), 11 Quasi-Circular Depressions (QCDs) identified in the ULCN topography, and 11 Circular Thin Areas (CTAs) found in the earlier crustal thickness model [2]. We did this by repeating the scoring exercise originally done in [1] but with the new data [4,5]. Topographic Expression (TE) and Crustal Thickness Expression (CTE) scores were determined for each candidate on a scale of 0 to 5 (5 being a strong, circular signature, 0 for those with no discernible circular topographic or crustal thickness signature). These scores are added together to produce a Summary Score which has a range of 0 to 10. We eliminated all candidates with a Summary Score less than 3, as well as other cases where, for example, the TE went to zero because what looked like a single large circular QCD in the lower resolution ULCN data was in fact a cluster of smaller deep impacts readily apparent in the newer higher resolution LOLA data. This process reduced the original inventory from 98 to 75 candidates.

  13. Quality of ground water in the Payette River basin, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1986-01-01

    As part of a study to obtain groundwater quality data in areas of Idaho were land- and water-resource development is expected to increase, water quality, geologic, and hydrologic data were collected for 74 wells in the Payette River basin, west-central Idaho, from July to October 1982. Historical (pre-1982) data from 13 wells were compiled with more recent (1982) data to define, on a reconnaissance level, water quality conditions in major aquifers and to identify factors that may have affected groundwater quality. Water from the major aquifers generally contains predominantly calcium, magnesium, and bicarbonate plus carbonate ions. Sodium and bicarbonate or sulfate are the predominant ions in groundwater from 25% of the 1982 samples. Areally, groundwater from the upper Payette River basin has proportionately lower ion concentrations than water from the lower Payette River basin. Water samples from wells 100 ft deep. Variations in groundwater quality probably are most affected by differences in aquifer composition and proximity to source(s) of recharge. Groundwater in the study area is generally suitable for most uses. In localized areas, pH and concentrations of hardness, alkalinity, dissolved solids, or dissolved nitrite plus nitrate as nitrogen, sulfate, fluoride, iron, or manganese exceed Federal drinking water limits and may restrict some uses of the water.

  14. Assessment of retention basin volume and outlet capacity in urban stormwater drainage systems with respect to water quality

    Indian Academy of Sciences (India)

    Mehmet A Yurdusev; Ahmet A Kumanlioğlu; Bekir Solmaz

    2005-12-01

    The quality of river water or other surface waters is detrimentally affected by the contaminants carried by the rainfall runoff in urban areas. The control of pollution moved by rainfall runoff is achieved by installing outlets and small retention basins in stormwater collection systems, thereby allowing only a certain amount of rainfall water to overflow and leading the remaining to treatment plants. This study analyses the effect of concentration time on surface water pollution caused by rainfall runoff. For this purpose, a linear -curve is assumed for the flow hydrograph arising from the collection system, based on parameters of rainfall considered and the catchment area. An independent code is developed to analyse such a system and this is applied to an urban area using nine-year single-discrete rainfall records of Izmir Station, Turkey. The system is capable of tackling situations where there is only a basin or a basin with outlet.

  15. Ground water in selected areas in the Klamath Basin, Oregon

    Science.gov (United States)

    Leonard, A.R.; Harris, A.B.

    1973-01-01

    GROUNDWATER FEATURES OF SIX LOWLAND AREAS IN THE KLAMATH BASIN OF OREGON--KLAMATH MARSH AREA, AND SPRAGUE RIVER, SWAN LAKE, YONNA, POE, AND LANGELL VALLEYS--ARE DESCRIBED. RUGGED MOUNTAINS AND RIDGES SURROUND AND SEPARATE THESE LOWLANDS WHERE FLOORS RANGE IN ALTITUDE FROM 4,100 FEET IN POE VALLEY TO 4,600 FEET NORTH OF KLAMATH MARSH. THE SIX AREAS EXTEND OVER A NORTH-SOUTH DISTANCE OF 70 MILES, AN EAST-WEST DISTANCE OF 40 MILES, AND INCLUDE AN AREA OF APPROXIMATELY 600 SQUARE MILES. THE AREA IS SEMIARID AND RECEIVED ABOUT 14 TO 18 INCHES OF PRECIPITATION A YEAR. EXTINCT VOLCANOES AND THEIR EXTRUSIONS CHARACTERIZE THE AREA. MOST WELLS TAP PERMEABLE BASALT OR CINDERY RUBBLE BENEATH THE LACUSTRINE BEDS. THE DEPTHS OF WELLS RANGE FROM LESS THAN 50 TO NEARLY 2,000 FEET--MOST ARE BETWEEN 100 AND 1,000 FEET DEEP. FLOWING WELLS OCCUR IN ALL AREAS EXCEPT SWAN LAKE VALLEY. THE MOST EXTENSIVE AREA OF FLOWING WELLS IS IN THE SPRAGUE RIVER VALLEY, WHERE ABOUT 25 WELLS, SOME FLOWING MORE THAN 2,000 GPM, SUPPLY WATER FOR IRRIGATION. WATER LEVELS IN WELLS FLUCTUATE SEASONALLY FROM 1 TO 4 FEET. GROUNDWATER IN THE BASIN IS OF EXCELLENT QUALITY FOR DRINKING, IRRIGATION, AND MOST INDUSTRIAL USES.

  16. Ground water budget analysis and cross-formational leakage in an arid basin.

    Science.gov (United States)

    Hutchison, William R; Hibbs, Barry J

    2008-01-01

    Ground water budget analysis in arid basins is substantially aided by integrated use of numerical models and environmental isotopes. Spatial variability of recharge, storage of water of both modern and pluvial age, and complex three-dimensional flow processes in these basins provide challenges to the development of a good conceptual model. Ground water age dating and mixing analysis with isotopic tracers complement standard hydrogeologic data that are collected and processed as an initial step in the development and calibration of a numerical model. Environmental isotopes can confirm or refute a priori assumptions of ground water flow, such as the general assumption that natural recharge occurs primarily along mountains and mountain fronts. Isotopes also serve as powerful tools during postaudits of numerical models. Ground water models provide a means of developing ground water budgets for entire model domains or for smaller regions within the model domain. These ground water budgets can be used to evaluate the impacts of pumping and estimate the magnitude of capture in the form of induced recharge from streams, as well as quantify storage changes within the system. The coupled analyses of ground water budget analysis and isotope sampling and analysis provide a means to confirm, refute, or modify conceptual models of ground water flow.

  17. Maps showing ground-water levels, springs, and depth to ground water, Basin and Range Province, Texas

    Science.gov (United States)

    Brady, B.T.; Bedinger, M.S.; Mulvihill, D.A.; Mikels, John; Langer, W.H.

    1984-01-01

    This report on ground-water levels, springs, and depth to ground water in the Basin and Range province of Texas (see index map) was prepared as part of a program of the U.S. Geological Survey to identify prospective regions for further study relative to isolation of high-level nuclear waste (Bedinger, Sargent, and Reed, 1984), utilizing program guidelines defined in Sargent and Bedinger (1984). Also included in this report are selected references on pertinent geologic and hydrologic studies of the region. Other map reports in this series contain detailed data on ground-water quality, surface distribution of selected rock types, tectonic conditions, areal geophysics, Pleistocene lakes and marshes, and mineral and energy resources.

  18. First conference on ground control problems in the Illinois Coal Basin: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Y. P.; Van Besien, A. [eds.

    1980-06-01

    The first conference on ground control problems in the Illinois Coal Basin was held at the Southern Illinois University at Carbondale, Illinois, August 22-24, 1979. Twenty-one papers from the proceedings have been entered individually into EDB; one had been entered previously from other sources. (LTN)

  19. Transport and Retention of Nitrogen, Phosphorus and Carbon in North America’s Largest River Swamp Basin, the Atchafalaya River Basin

    Directory of Open Access Journals (Sweden)

    Y. Jun Xu

    2013-04-01

    Full Text Available Floodplains and river corridor wetlands may be effectively managed for reducing nutrients and carbon. However, our understanding is limited to the reduction potential of these natural riverine systems. This study utilized the long-term (1978–2004 river discharge and water quality records from an upriver and a downriver location of the Atchafalaya River to quantify the inflow, outflow, and inflow–outflow mass balance of total Kjeldahl nitrogen (TKN = organic nitrogen + ammonia nitrogen, nitrate + nitrite nitrogen (NO3 + NO2, total phosphorous (TP, and total organic carbon (TOC through the largest river swamp basin in North America. The study found that, over the past 27 years, the Atchafalaya River Basin (ARB acted as a significant sink for TKN (annual retention: 24%, TP (41%, and TOC (12%, but a source for NO3 + NO2 nitrogen (6%. On an annual basis, ARB retained 48,500 t TKN, 16,900 t TP, and 167,100 t TOC from the river water. The retention rates were closely and positively related to the river discharge with highs during the winter and spring and lows in the late summer. The higher NO3 + NO2 mass outflow occurred throughout spring and summer, indicating an active role of biological processes on nitrogen as water and air temperatures in the basin rise.

  20. 2.5D Simulation of basin-edge effects on the ground motion characteristics

    Indian Academy of Sciences (India)

    J P Narayan

    2003-09-01

    The effects of basin-edge and soil velocity on the ground motion characteristics have been simulated using 2.5D modeling. One of the most significant advantages of the 2.5D simulation is that 3D radiation pattern can be generated in a 2D numerical grid using double-couple shear dislocation source. Further, 2.5D numerical modeling avoids the extensive computational cost of 3D modeling. The responses of basin-edge model using different soil velocities revealed that surface waves were generated near the edge of the basin and propagated normal to the edge, towards the basin. Further, the results depict increase of amplification, duration and surface wave generation with the decrease in soil velocity.

  1. Spatial and temporal variability of nutrient retention in river basins: A global inventory

    NARCIS (Netherlands)

    Tysmans, D.J.J.; Löhr, A.J.; Kroeze, C.; Ivens, W.P.M.F.; Wijnen, van T.K.

    2013-01-01

    Nutrient export by rivers may cause coastal eutrophication. Some river basins, however, export more nutrients than others. We model the Basin-Wide Nutrient Export (BWNE) Index, defined as nutrient export by rivers as percentage of external nutrient inputs in the basins. We present results for rivers

  2. Ten-year responses of ground-dwelling spiders to retention harvest in the boreal forest.

    Science.gov (United States)

    Pinzon, Jaime; Spence, John R; Langor, David W; Shorthouse, David P

    2016-12-01

    The Ecosystem Management Emulating Natural Disturbances (EMEND) project tests the hypothesis that varying levels of green tree retention maintain and retain forest biodiversity better than conventional clear-cutting. We studied epigaeic spiders to assess biodiversity changes 2, 5, and 10 yr following a range of partial retention harvests (clear-cut, 10-75% retention) and unharvested controls in four boreal mixedwood cover types. A total of 56 371 adult spiders representing 220 species was collected using pitfall traps. Lasting effects on forest structure were proportional to harvest intensity. These changes strongly influenced spider richness, abundance, and species composition, as well as assemblage recovery. Distinctive assemblages were associated with disturbance level, especially with partial harvests (≤50% retention), and these were dominated by open-habitat species even 10 yr after harvest. Assemblages were more similar to those of controls in the highest (75%) retention treatment, but significant recovery toward the structure of pre-disturbance assemblages was not detected for any prescription in any cover type. Although early responses to retention harvest suggested positive effects on spider assemblages, these are better explained as lag effects after harvest because assemblages were less similar to those of unharvested controls 5 yr post-harvest, and only minor recovery was observed 10 yr following harvest. Retention of forest biodiversity decreased over time, especially in conifer stands and the lower (10-50%) retention treatments. Overall, retention harvests retained biodiversity and promoted landscape heterogeneity somewhat better than clear-cutting; however, there was a clear gradient of response and no retention "threshold" for conservation can be recommended on the basis of our data. Furthermore, results suggest that retention harvest prescriptions should be adjusted for cover type. We show that low retention ameliorated impacts in broadleaved

  3. Retention efficiencies of halogenated and non-halogenated hydrocarbons in selected wetland ecosystem in Lake Victoria Basin

    Directory of Open Access Journals (Sweden)

    Shadrack Mule

    2015-06-01

    Full Text Available The determination of retention efficiencies of halogenated and non-halogenated hydrocarbon in selected wetland ecosystems in Lake Victoria basin was carried out. Qualitative and quantitative determination of the presence of residual hydrocarbons in Kigwal/Kimondi, Nyando and Nzoia wetland ecosystems using Gas Chromatography - Mass Spectrometer (GC-MS instrument indicated the presence of residual organochlorines, organophosphorus, carbamates and synthetic pyrethroid hydrocarbons in water, sediment and plant materials. In order to compare the retention efficiencies of the wetlands, the wetland ecosystems were divided into three different sections, namely: inlet, mid and outlet. Calculations of mass balances of residual halogenated and non-halogenated hydrocarbons at the respective sections was done taking into account the partition of the studied compounds in samples of water, sediments and papyrus reed plant materials and analyzed using validated Gas Chromatography - Mass Spectrometer (GC-MS method. From the analysis, several residual hydrocarbons namely: bendiocarb, benzene hexachloride (BHC, carbaryl, cypermethrin, decis, deltamethrin, diazinon, dieldrin, DDT, DDD, DDE, malathion, propoxur, sumithion, 5-phenylrhodanine, 1,3,5-trichlorobenzene, 1-(2-phenoxybenzylhydrazine were detected and quantified. The levels of the selected residual hydrocarbons in water samples were used to calculate the retention efficiencies of a specific hydrocarbon and the values recorded. Generally, River Nyando wetland recorded mean percentage retention efficiencies of 76 and 94% for dry and rainy seasons respectively; Kigwal/Kimondi wetland had seasonal mean percentage retention efficiencies of 63 to 78%. River Nzoia also had calculated seasonal mean percentage retention efficiencies of between 56 to 88%. Dry season had lower mean percentages retention efficiencies as compared to rainy season in the three wetlands of interest during the period of study. The study

  4. Application of nonlinear-regression methods to a ground-water flow model of the Albuquerque Basin, New Mexico

    Science.gov (United States)

    Tiedeman, C.R.; Kernodle, J.M.; McAda, D.P.

    1998-01-01

    This report documents the application of nonlinear-regression methods to a numerical model of ground-water flow in the Albuquerque Basin, New Mexico. In the Albuquerque Basin, ground water is the primary source for most water uses. Ground-water withdrawal has steadily increased since the 1940's, resulting in large declines in water levels in the Albuquerque area. A ground-water flow model was developed in 1994 and revised and updated in 1995 for the purpose of managing basin ground- water resources. In the work presented here, nonlinear-regression methods were applied to a modified version of the previous flow model. Goals of this work were to use regression methods to calibrate the model with each of six different configurations of the basin subsurface and to assess and compare optimal parameter estimates, model fit, and model error among the resulting calibrations. The Albuquerque Basin is one in a series of north trending structural basins within the Rio Grande Rift, a region of Cenozoic crustal extension. Mountains, uplifts, and fault zones bound the basin, and rock units within the basin include pre-Santa Fe Group deposits, Tertiary Santa Fe Group basin fill, and post-Santa Fe Group volcanics and sediments. The Santa Fe Group is greater than 14,000 feet (ft) thick in the central part of the basin. During deposition of the Santa Fe Group, crustal extension resulted in development of north trending normal faults with vertical displacements of as much as 30,000 ft. Ground-water flow in the Albuquerque Basin occurs primarily in the Santa Fe Group and post-Santa Fe Group deposits. Water flows between the ground-water system and surface-water bodies in the inner valley of the basin, where the Rio Grande, a network of interconnected canals and drains, and Cochiti Reservoir are located. Recharge to the ground-water flow system occurs as infiltration of precipitation along mountain fronts and infiltration of stream water along tributaries to the Rio Grande; subsurface

  5. Site response zones and short-period earthquake ground motion projections for the Las Vegas Basin

    Indian Academy of Sciences (India)

    Barbara Luke; Ying Liu

    2008-11-01

    A deterministic seismic hazard analysis was conducted to address the effect of local soil conditions on earthquake-induced strong ground motion in the Las Vegas Basin, Nevada (US). Using a large geological and geotechnical database, two response units were defined: a fine-grained unit, predominantly clay; and a coarse-grained unit, predominantly gravel. A moderate number of high-quality shallow shear wave velocity measurements were collected from which characteristic shear wave velocity profiles were developed for each response unit. An equivalent-linear one-dimensional site response model was used. The model was calibrated using a basin-wide, small-strain ground motion database. Calibration tests showed that ground motion projections become increasingly conservative with increasing ground-motion amplitude. Projections were overconservative for the coarsegrained response unit, likely due to the sparseness of the velocity database. For the earthquake response analyses, historical ground motions were used to model characteristic ‘bedrock’ motion for earthquakes on 10 faults judged to be critical. Response spectral envelopes were generated for each unit through Monte-Carlo simulations. For the fine-grained response unit, 95th percentile peak ground acceleration, peak spectral acceleration and predominant period were 310 cm/s2, 1100cm/s2, and 0.29 s, respectively. With respect to codified design spectra, projections are lower at short periods and higher at long periods. Projections of peak spectral accelerations for the coarsegrained response unit, were more than double that of codified spectra; however, they are believed to be overconservative. Near-fault effects and basin-edge effects, though potentially important, were not considered in these analyses.

  6. Ground water flow in a desert basin: challenges of simulating transport of dissolved chromium.

    Science.gov (United States)

    Andrews, Charles B; Neville, Christopher J

    2003-01-01

    A large chromium plume that evolved from chromium releases in a valley near the Mojave River was studied to understand the processes controlling fate and migration of chromium in ground water and used as a tracer to study the dynamics of a basin and range ground water system. The valley that was studied is naturally arid with high evapotranspiration such that essentially no precipitation infiltrates to the water table. The dominant natural hydrogeologic processes are recharge to the ground water system from the Mojave River during the infrequent episodes when there is flow in the river, and ground water flow toward a playa lake where the ground water evaporates. Agricultural pumping in the valley from the mid-1930s to the 1970s significantly altered ground water flow conditions by decreasing water levels in the valley by more than 20 m. This pumping declined significantly as a result of dewatering of the aquifer, and water levels have since recovered modestly. The ground water system was modeled using MODFLOW, and chromium transport was simulated using MT3D. Several innovative modifications were made to these modeling programs to simulate important processes in this ground water system. Modifications to MODFLOW include developing a new well package that estimates pumping rates from irrigation wells at each time step based on available drawdown. MT3D was modified to account for mass trapped above the water table when the water table declines beneath nonirrigated areas and to redistribute mass to the system when water levels rise.

  7. Ground water distillation by basin type solar still for different basin water depth under the climatic condition of Rewa

    Directory of Open Access Journals (Sweden)

    AbhayAgrawal

    2015-12-01

    Full Text Available Adequate quality and reliability of drinking water supply is a fundamental need. Without potable water or drinking water (less than about 500 ppm of salt human life is not possible. Only 1% of Earth's water is in a fresh, liquid state, and nearly all of this is polluted by both diseases and toxic chemicals. For this reason, purification of water supplies is extremely important. Keeping these things in mind, we have devised a model which will convert the saline ground water into pure and potable water using the renewable source of energy (i.e. solar energy. Solar energy is an abundant, never lasting, and available on site and pollution free energy.Solar Energy is freely available and can be used as a very cheap option to convert saline ground Water through Solar Distillation, by using Solar Stills. The conventional single basin and single slop Passive Solar Still can be used to purify water but the main problem is that the per square meter distillate output is less. So it is need to modify the design of solar still for high output of solar distillate Solar still is easy to construct, can be done by local people from locally available materials, simple in operation by unskilled Personnel, no hard maintenance requirements and almost no operation cost. Simplest basin type models of solar still in earlier days, researchers have progressed a lot to increase its efficiency. Suitable modification of solar still can produce high output using minimum areas of land and even in cloudy days. Experimental study is done at Rewa M.P. on two different basin water depth solar stills. Low water depth solar water still is produced more distillate than high water depth still by the experiment.

  8. Environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system technology demonstration plan for use at the Savannah River Site F-Area Retention Basin

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States); Gruebel, R.D. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drillbit data during drilling operations. This demonstration plan presents information on the EMWD-GRS technology, demonstration design, Cs-137 contamination at the Savannah River Site F-Area Retention Basin, responsibilities of demonstration participants, and the policies and procedures for the demonstration to be conducted at the Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration will consist of continuously monitoring for gamma-radiation contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes will pass near previously sampled vertical borehole locations where concentrations of contaminant levels are known. Contaminant levels continuously recorded by the EMWD-GRS system during drilling will be compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples.

  9. Ground motion prediction for the Vienna Basin area using the ambient seismic field

    Science.gov (United States)

    Schippkus, Sven; Zigone, Dimitri; Bokelmann, Götz; AlpArray Working Group

    2016-04-01

    The Vienna Basin is one of the most seismically active regions in Austria. Because of the population density and sensitive infrastructure, seismic hazard assessment in this area is of critical importance. An important part of seismic hazard analysis is ground motion prediction, which can in principle be done using either empirical studies to derive ground motion prediction equations (GMPEs) or using a physics-based approach to simulate ground motion by modelling surface wave propagation. Recently a new method has been presented that is based on the emergence of the inter-station Green's function from ambient noise cross-correlations (Denolle et al. 2013), which provides the impulse response of the Earth from a point source at the surface (from the site of one of the two receivers to the other). These impulse responses are dominated by surface waves, which would, in the case of a real earthquake, cause the major damages. The Green's function can in principle be modified to simulate a double couple dislocation at depth, i.e., a virtual earthquake. Using an adapted pre-processing method, the relative amplitudes of the ambient noise records of different inter-station paths are preserved in the correlation functions, and effects like attenuation and amplification of surface waves in sedimentary basins can be studied. This provides more precise information that will help improve seismic hazard evaluations. Here we present a preliminary study of such ground motion prediction for the Vienna Basin using about two dozen broadband stations from available networks in the area, e.g., stations from the University of Vienna (AlpArray) and Vienna Technical University. References Denolle, M. A., E. M. Dunham, G. A. Prieto, and G. C. Beroza (2013), Ground motion prediction of realistic earthquake sources using the ambient seismic field, J. Geophys. Res. Solid Earth, 118, 2102-2118, doi:10.1029/2012JB009603.

  10. Raster-based regolith thickness of the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of raster-based generalized thickness of regolith (unconsolidated sediments) overlying bedrock in the Lost Creek Designated Ground Water Basin,...

  11. Simulation of regional ground-water flow in the Upper Deschutes Basin, Oregon

    Science.gov (United States)

    Gannett, Marshall W.; Lite, Kenneth E.

    2004-01-01

    This report describes a numerical model that simulates regional ground-water flow in the upper Deschutes Basin of central Oregon. Ground water and surface water are intimately connected in the upper Deschutes Basin and most of the flow of the Deschutes River is supplied by ground water. Because of this connection, ground-water pumping and reduction of artificial recharge by lining leaking irrigation canals can reduce the amount of ground water discharging to streams and, consequently, streamflow. The model described in this report is intended to help water-management agencies and the public evaluate how the regional ground-water system and streamflow will respond to ground-water pumping, canal lining, drought, and other stresses. Ground-water flow is simulated in the model by the finite-difference method using MODFLOW and MODFLOWP. The finite-difference grid consists of 8 layers, 127 rows, and 87 columns. All major streams and most principal tributaries in the upper Deschutes Basin are included. Ground-water recharge from precipitation was estimated using a daily water-balance approach. Artificial recharge from leaking irrigation canals and on-farm losses was estimated from diversion and delivery records, seepage studies, and crop data. Ground-water pumpage for irrigation and public water supplies, and evapotranspiration are also included in the model. The model was calibrated to mean annual (1993-95) steady-state conditions using parameter-estimation techniques employing nonlinear regression. Fourteen hydraulic-conductivity parameters and two vertical conductance parameters were determined using nonlinear regression. Final parameter values are all within expected ranges. The general shape and slope of the simulated water-table surface and overall hydraulic-head distribution match the geometry determined from field measurements. The fitted standard deviation for hydraulic head is about 76 feet. The general magnitude and distribution of ground-water discharge to

  12. Availability of ground water in the lower Pawcatuck River basin, Rhode Island

    Science.gov (United States)

    Gonthier, Joseph B.; Johnston, Herbert E.; Malmberg, Glenn T.

    1974-01-01

    The lower Pawcatuck River basin in southwestern Rhode Island is an area of about 169 square miles underlain by crystalline bedrock over which lies a relatively thin mantle of glacial till and stratified drift. Stratified drift, consisting dominantly of sand and gravel, occurs in irregularly shaped linear deposits that are generally less than a mile wide and less than 125 feet thick; these deposits are found along the Pawcatuck River, its tributaries, and abandoned preglacial channels. Deposits of stratified sand and gravel constitute the principal aquifer in the lower Pawcatuck basin and the only one capable of sustaining yields of 100 gallons per minute or more to individual wells. Water available for development in this aquifer consists of water in storage--potential ground-water runoff to streams--plus infiltration that can be induced from streams. Minimum annual ground-water runoff from the sand and gravel aquifer is calculated to be at least 1.17 cubic feet per second per square mile, or 0.76 million gallons per day per square mile. Potential recharge by induced infiltration is estimated to range from about 250 to 600 gallons per day per linear foot of streambed for the principal streams. In most areas, induced infiltration from streams constitutes the major source of water potentially available for development by wells. Because subsurface hydraulic connection in the sand and gravel aquifer is poor in several places, the deposits are conveniently divisible into several ground-water reservoirs. The potential yield from five of the most promising ground-water reservoirs is evaluated by means of mathematical models. Results indicate that continuous withdrawals ranging from 1.3 to 10.3 million gallons per day, and totaling 31 million gallons per day, are obtainable from these reservoirs. Larger yields may be recovered by different well placement, spacing, construction and development, pumping practice, and so forth. Withdrawals at the rates indicated will reduce

  13. Physical and chemical data for ground water in the Michigan basin, 1986-89

    Science.gov (United States)

    Dannemiller, G.T.; Baltusis, M.A.

    1990-01-01

    Ground-water samples were collected from 459 wells located in the Michigan basin as part of a Regional Aquifer-System Analysis. Data on the physical and chemical characteristics of 476 ground-water samples from these wells represent ground-water characteristics in the Berea Sandstone, Coldwater Shale, Marshall Sandstone, Michigan Formation, Bayport Limestone, Saginaw Formation, Grand River Formation, and glacial deposits. Ground-water samples were measured in the Geld for specific conductance, temperature, and alkalinity. Analyses of ground water for concentrations of dissolved oxygen, ferrous iron, total iron, and sulfide were also done in the field. Additional laboratory analysis provided data on eight major and 18 minor inorganic constituents. Twenty-one samples were analyzed for tritium, 140 samples were analyzed for carbon-13, and 19 samples were analyzed for carbon-14. The stable-isotope ratio of deuterium to hydrogen was determined for 408 samples; the ratio of oxygen-18 to oxygen-16 was determined for 433 samples; and the ratio of sulfur-34 to sulfur-32 was determined for 20 samples. Sixteen samples were analyzed for the unstable isotopes of uranium; 13 samples were analyzed for radium-226; and the ratio of radium-228 to radium-226 was determined for 13 samples.

  14. Simulation of Ground-Water Flow in the Irwin Basin Aquifer System, Fort Irwin National Training Center, California

    Science.gov (United States)

    Densmore, Jill N.

    2003-01-01

    Ground-water pumping in the Irwin Basin at Fort Irwin National Training Center, California resulted in water-level declines of about 30 feet from 1941 to 1996. Since 1992, artificial recharge from wastewater-effluent infiltration and irrigation-return flow has stabilized water levels, but there is concern that future water demands associated with expansion of the base may cause a resumption of water-level declines. To address these concerns, a ground-water flow model of the Irwin Basin was developed to help better understand the aquifer system, assess the long-term availability and quality of ground water, and evaluate ground-water conditions owing to current pumping and to plan for future water needs at the base. Historical data show that ground-water-level declines in the Irwin Basin between 1941 and 1996, caused the formation of a pumping depression near the pumped wells, and that recharge from the wastewater-treatment facility and disposal area caused the formation of a recharge mound. There have been two periods of water-level recovery in the Irwin Basin since the development of ground water in this basin; these periods coincide with a period of decreased pumpage from the basin and a period of increased recharge of water imported from the Bicycle Basin beginning in 1967 and from the Langford Basin beginning in 1992. Since 1992, artificial recharge has exceeded pumpage in the Irwin Basin and has stabilized water-level declines. A two-layer ground-water flow model was developed to help better understand the aquifer system, assess the long-term availability and quality of ground water, and evaluate ground-water conditions owing to current pumping and to plan for future water needs at the base. Boundary conditions, hydraulic conductivity, altitude of the bottom of the layers, vertical conductance, storage coefficient, recharge, and discharge were determined using existing geohydrologic data. Rates and distribution of recharge and discharge were determined from

  15. Tritium/Helium-3 Apparent Ages of Shallow Ground Water, Portland Basin, Oregon, 1997-98

    Science.gov (United States)

    Hinkle, Stephen R.

    2009-01-01

    Water samples for tritium/helium-3 age dating were collected from 12 shallow monitoring wells in the Portland basin, Oregon, in 1997, and again in 1998. Robust tritium/helium-3 apparent (piston-flow) ages were obtained for water samples from 10 of the 12 wells; apparent ages ranged from 1.1 to 21.2 years. Method precision was demonstrated by close agreement between data collected in 1997 and 1998. Tritium/helium-3 apparent ages generally increase with increasing depth below the water table, and agree well with age/depth relations based on assumptions of effects of recharge rate on vertical ground-water movement.

  16. Maps showing ground-water units and withdrawal, Basin and Range Province, Texas

    Science.gov (United States)

    Brady, B.T.; Bedinger, M.S.; Mikels, John

    1984-01-01

    This report on ground-water units and withdrawal in the Basin and Range province of Texas (see index map) was prepared as part of a program of the U.S. Geological Survey to identify prospective regions for further study relative to isolation of high-level nuclear waste (Bedinger, Sargent, and Reed, 1984), utilizing program guidelines defined in Sargent and Bedinger (1984). Also included in this report are selected references on pertinent geologic and hydrologic studies of the region. Other map reports in this series contain detailed data on ground-water quality, surface distribution of selected rock types, tectonic conditions, areal geophysics, Pleistocene lakes and marshes, and mineral and energy resources.

  17. N(50) Crater Retention Ages for an Expanded Inventory of Lunar Basins: Evidence for an Early Heavy Bombardment and a Late Heavy Bombardment?

    Science.gov (United States)

    Frey, Herbert; Burgess, Emily

    2012-01-01

    LOLA topography and LOLA-derived crustal thickness data provide evidence for a population of impact basins on the Moon that is likely a factor 2 larger than the classical lists based on photogeology. Frey (2012) determined N(50) crater retention ages (CRAs) for 83 candidate basins > 300 km in diameter by counting LOLA-identified craters superimposed over the whole area of the basins. For some basins identified in topography or model crustal thickness it is not possible to unambiguously identify the crater rim as is traditionally done. Also, Quasi-Circular Depressions (QCDs) > 50 km in diameter are recognizable in the mare-filled centers of many basins. Even though these are not apparent in image data, they likely represent buried impact craters superimposed on the basin floor prior to mare infilling and so should be counted in determining the age of the basin. Including these as well as the entire area of the basins improves the statistics, though the error bars are still large when using only craters > 50 km in diameter. The distribution of N(50) CRAs had two distinct peaks which did not depend on whether the basins were named (based on photogeology) or recognized first in topography or crustal thickness data. It also did not depend on basin diameters (both larger and smaller basins made up both peaks) and both peaks persisted even when weaker candidates were excluded. Burgess (2012, unpublished data) redid the counts for 85 basins but improved on the earlier effort by adjusting the counting area where basins overlap. The two peak distribution of N(50) ages was confirmed, with a younger peak at N(50) 40-50 and an older peak at N(50) 80-90 (craters > 50 km diameter per million square km). We suggest this could represent two distinct populations of impactors on the Moon: one producing an Early Heavy Bombardment (EHB) that predates Nectaris and the second responsible for the more widely recognized Late Heavy Bombardment (LHB).

  18. Comparison between agricultural and urban ground-water quality in the Mobile River Basin

    Science.gov (United States)

    Robinson, James L.

    2003-01-01

    The Black Warrior River aquifer is a major source of public water supply in the Mobile River Basin. The aquifer outcrop trends northwest - southeast across Mississippi and Alabama. A relatively thin shallow aquifer overlies and recharges the Black Warrior River aquifer in the flood plains and terraces of the Alabama, Coosa, Black Warrior, and Tallapoosa Rivers. Ground water in the shallow aquifer and the Black Warrior River aquifer is susceptible to contamination due to the effects of land use. Ground-water quality in the shallow aquifer and the shallow subcrop of the Black Warrior River aquifer, underlying an agricultural and an urban area, is described and compared. The agricultural and urban areas are located in central Alabama in Autauga, Elmore, Lowndes, Macon, Montgomery, and Tuscaloosa Counties. Row cropping in the Mobile River Basin is concentrated within the flood plains of major rivers and their tributaries, and has been practiced in some of the fields for nearly 100 years. Major crops are cotton, corn, and beans. Crop rotation and no-till planting are practiced, and a variety of crops are grown on about one-third of the farms. Row cropping is interspersed with pasture and forested areas. In 1997, the average farm size in the agricultural area ranged from 196 to 524 acres. The urban area is located in eastern Montgomery, Alabama, where residential and commercial development overlies the shallow aquifer and subcrop of the Black Warrior River aquifer. Development of the urban area began about 1965 and continued in some areas through 1995. The average home is built on a 1/8 - to 1/4 - acre lot. Ground-water samples were collected from 29 wells in the agricultural area, 30 wells in the urban area, and a reference well located in a predominately forested area. The median depth to the screens of the agricultural and urban wells was 22.5 and 29 feet, respectively. Ground-water samples were analyzed for physical properties, major ions, nutrients, and pesticides

  19. Summary appraisals of the Nation's ground-water resources; Missouri Basin region

    Science.gov (United States)

    Taylor, O. James

    1978-01-01

    The Missouri Basin Region lies in the north-central part of the United States and southern Canada. It includes parts of Alberta and Saskatchewan in Canada; parts of Montana, Wyoming, North Dakota, South Dakota, Minnesota, Iowa, Colorado, Kansas, and Missouri, and all of Nebraska in the United States. The region includes about one-sixth of the contiguous United States and requires large water supplies for irrigation, industrial, public, and rural uses. Climate ranges from semiarid to subhumid. Normal annual precipitation increases generally eastward in the downstream direction, but precipitation is not a dependable source of supply. The Missouri River and its tributaries furnish water to many users, but surface water is often inadequate to meet large demands. Numerous surface reservoirs help to regulate streamflow and provide storage, but they also allow an increase in evapotranspiration, which in some areas exceeds normal precipitation. Ground water occurs in aquifers classified as alluvial deposits of sand and gravel, glacial deposits, dune-sand deposits, basin-fill deposits of sand and gravel, sandstone, siltstone, fractured sandy clay, limestone, and dolomite. Ground water can be developed and managed in an orderly manner provided adequate geologic and hydrologic data are available to determine aquifer characteristics and response to pumping and other hydraulic stresses. These data and determinations are essential to design, testing, and implementation of water management plans.

  20. Ground-water geology and pump irrigation in Frenchman Creek Basin above Palisade, Nebraska

    Science.gov (United States)

    Cardwell, W.D.E.; Jenkins, Edward D.

    1963-01-01

    This report describes the geography, geology, and ground-water resources of that part of the Frenchman Creek basin upstream from Palisade, Nebr., an area of about 4,900 square miles. The basin includes all of Phillips County, Colo., and Chase County, Nebr., and parts of Logan, Sedgwick, Washington, and Yuma Counties, Colo., and Dundy, Hayes, Hitchcock, and Perkins Counties, Nebr. The land surface ranges from nearly flat to rolling; choppy hills and interdune saddles are common in the areas of dune sand, and steep bluffs and gullies cut the edges of the relatively flat loess plateaus. Most of the basin is drained by tributaries of Frenchman Creek, but parts of the sandhills are undrained. Farming and livestock raising are the principal industries. Irrigation with ground water has expanded rapidly since 1934. The rocks exposed in the basin are largely unconsolidated and range in age from Pliocene to Recent. They comprise the Ogallala formation (Pliocene), the Sanborn formation (Pleistocene and Recent?), dune sand (Pleistocene and Recent), and alluvium (Recent). The rocks underlying the Ogallala are the Pierre shale (Late Cretaceous) and the White River group (Oligocene). The Pierre shale is relatively impermeable and yields little or no water to wells. The White River group also is relatively impermeable and yields little or no water to wells; however, small to moderate quantities of water possibly may be obtained from wells that penetrate fractured or 'porous' zones in the upper part of the White River group or permeable channel deposits within the group. The Ogallala formation is the main aquifer in the basin and yields moderate to large quantities of water to wells. The Sanborn formation and the dune sand generally lie above the water table, but in areas of high water table the dune sand yields small quantities of water to wells for domestic and stock supplies. The alluvium, which includes the low terrace deposits bordering the major streams, yields small to large

  1. New age control on a mid-shelf grounding event in Eastern Basin, Ross Sea

    Science.gov (United States)

    Cone, A. N.; Bart, P. J.

    2009-12-01

    It is widely accepted that the West Antarctic Ice Sheet (WAIS) was grounded at the continental shelf edge in the eastern Ross Sea during the Last Glacial Maximum (LGM), but the precise chronology is debated. Post-LGM ice retreat chronologies have been developed using radiocarbon dating, mainly of acid-insoluble organics (AIO). Foraminifer tests yield more accurate radiocarbon dates than AIO because forams are less likely to be contaminated by allochthonous carbon, but unfortunately forams are sparse in Antarctic marine sediment cores. Here we show four consistent radiocarbon dates from forams in cored intervals within the foreset of a mid-continental-shelf grounding-zone wedge in Eastern Basin, Ross Sea. Our new radiocarbon dates reveal that the WAIS was grounded on the mid continental shelf circa 32,000 14C yr B.P., suggesting that retreat from this position began more than 10,000 years prior to the maximum sea level fall and global cooling associated with LGM. The dates contradict previous studies, which concluded that the WAIS was at its maximum shelf edge extent during LGM.

  2. Modelling the spatial pattern of ground thaw in a small basin in the arctic tundra

    Directory of Open Access Journals (Sweden)

    S. Endrizzi

    2011-01-01

    Full Text Available In the arctic tundra the ground is normally composed by a relatively thin organic soil layer, overlying mineral sediment. Subsurface water drainage generally occurs in the organic layer for its high hydraulic conductivity. However, the organic layer shows significant decrease of hydraulic conductivity with depth. The position and the topography of the frost table, which here acts as a relatively impermeable surface, are therefore crucial in determining the hillslope drainage rate. This work aims at understanding how the topography of the ground surface affects the spatial variability of the depth of thaw in a 1 km2 low-elevation arctic tundra basin with a fine resolution model that fully couples energy and water flow processes. The simulations indicate that the spatial patterns of ground thaw are not dominated by slope and aspect, but are instead entirely controlled by the spatial distribution of soil moisture, which is determined by subsurface flow patterns. Measured thaw depths have a similar range of variability to the simulated values for each stage of active layer development, although the model slightly overestimated the depth of thaw.

  3. Well-response model of the confined area, Bunker Hill ground-water basin, San Bernardino County, California

    Science.gov (United States)

    Durbin, Timothy J.; Morgan, Charles O.

    1978-01-01

    The Bunker Hill ground-water basin, in the vicinity of San Bernardino, Calif., is being artificially recharged with imported water. Current and future artificial recharge of the basin may cause the potentiometric surface in an area of confined ground water to rise above land surface and water to flow from uncapped and unplugged wells. This could cause damage to structures where the soil becomes waterlogged and where buried wells begin to flow beneath the structures. A well-response model was used to generate a series of water-level hydrographs representing the response of the ground-water basin to six possible combinations of conditions for each well; one pumping rate, two artificial-recharge rate, and three natural-recharge rates. Inflow to the ground-water basin exceeds outflow for all tested combinations. According to model predictions, the accumulation of stored ground water resulting from the excess of inflow is sufficient to cause the water level in the selected wells to rise above land surface for all but one of the combinations of conditions tested. Water levels in wells are predicted to rise above the land surface as early as 1981 for the combination with the greatest excess of inflow. (Woodard-USGS)

  4. Observations of basin ground motions from a dense seismic array in San Jose, California

    Science.gov (United States)

    Frankel, A.; Carver, D.; Cranswick, E.; Bice, T.; Sell, R.; Hanson, S.

    2001-01-01

    We installed a dense array of 41 digital seismographs in San Jose, California, to evaluate in detail the effects of a deep sedimentary basin and shallow sedimentary deposits on earthquake ground motions. This urban array is located near the eastern edge of the Santa Clara Valley and spans the Evergreen sedimentary basin identified by gravity data. Average station spacing is 1 km, with three stations initially spaced 110 m apart. Despite the high-noise urban environment, the stations of the array successfully triggered on and recorded small local earthquakes (M 2.5-2.8 at 10-25 km distance) and larger regional events such as the M 5.0 Bolinas earthquake (90 km distance), M 4.6-5.6 earthquakes near Mammoth Lakes (270 km distance), M 4.9-5.6 events in western Nevada (420 km distance) and the M 7.1 Hector Mine earthquake (590 km distance). Maps of spectral ratios across the array show that the highest amplitudes in all frequency bands studied (0.125-8 Hz) are generally observed at stations farther from the eastern edge of the Santa Clara Valley. Larger spectral amplitudes are often observed above the western edge of the Evergreen Basin. Snapshots of the recorded wavefield crossing the array for regional events to the east reveal that large, low-frequency (0.125-0.5 Hz) arrivals after the S-wave travel from south to north across the array. A moving-window, cross-correlation analysis finds that these later arrivals are surface waves traveling from the south. The timing and propagation direction of these arrivals indicates that they were likely produced by scattering of incident S waves at the border of the Santa Clara Valley to the south of the array. It is remarkable that the largest low-frequency phases at many of the valley sites for regional events to the east are basin surface waves coming from a direction about 70 degrees different from that of the epicenters. Basin surface waves emanating from the eastern edge of the valley are also identified by the cross

  5. Reconnaissance of ground-water quality, eastern Snake River basin, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1982-01-01

    Water-quality, geologic, and hydrologic data were collected for 165 wells in the eastern Snake River basin, Idaho. Water-quality characteristics analyzed include specific conductance, pH, water temperature, major dissolved cations and anions, and coliform bacteria. Ground water from aquifers in all rock units is generally composed of calcium, magnesium, and bicarbonate type and contains carbonate ions. Changes in area trends of ground-water composition probably are most directly related to variability in aquifer composition and proximity to varying sources of recharge, especially those related to man 's land- and water-use activities. In the uplands subareas, median values for selected ground-water characteristics from current analyses are 2000 mg/l hardness; 7.6, pH; 200 mg/l alkalinity; 13C; 0.2 mg/l fluoride; 15 mg/l silica; 0.51 mg/l nitrite (as nitrogen); less than 1 colony per 100 milliliters of water coliform bacteria; 0.02 mg/l phosphorus (total); and 25 mg/l hardness; 7.7, pH; 180 mg/l alkalinity; 11C; 0.4 mg/l fluoride; 26 mg/l silica; 1.2 mg/l nitrite plus nitrate; less than 1 colony per 100 milliliters of water coliform bacteria; 0.01 amg/l phosphorus; and 283 mg/l dissolved solids. Ground-water quality in most of the study area meets recommended standards or criteria for most uses. (USGS)

  6. Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-95, with projections to 2020

    Science.gov (United States)

    Kernodle, J.M.

    1998-01-01

    The ground-water-flow model of the Albuquerque Basin (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.) was updated to include new information on the hydrogeologic framework (Hawley, J.W., Haase, C.S., and Lozinsky, R.P., 1995, An underground view of the Albuquerque Basin: Proceedings of the 39th Annual New Mexico Water Conference, November 3-4, 1994, p. 37-55). An additional year of ground-water-withdrawal data was appended to the simulation of the historical period and incorporated into the base for future projections to the year 2020. The revised model projects the simulated ground-water levels associated with an aerally enlarged occurrence of the relatively high hydraulic conductivity in the upper part of the Santa Fe Group east and west of the Rio Grande in the Albuquerque area and north to Bernalillo. Although the differences between the two model versions are substantial, the revised model does not contradict any previous conclusions about the effect of City of Albuquerque ground-water withdrawals on flow in the Rio Grande or the net benefits of an effort to conserve ground water. Recent revisions to the hydrogeologic model (Hawley, J.W., Haneberg, W.C., and Whitworth, P.M., in press, Hydrogeologic investigations in the Albuquerque Basin, central New Mexico, 1992-1995: Socorro, New Mexico Bureau of Mines and Mineral Resources Open- File Report 402) of the Albuquerque Basin eventually will require that this model version also be revised and updated.

  7. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  8. Ground-Water Quality in the Mohawk River Basin, New York, 2006

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2008-01-01

    Water samples were collected from 27 wells from August through November 2006 to characterize ground-water quality in the Mohawk River Basin. The Mohawk River Basin covers 3,500 square miles in central New York; most of the basin is underlain by sedimentary bedrock, including shale, sandstone, and carbonates. Sand and gravel form the most productive aquifers in the basin. Samples were collected from 13 sand and gravel wells and 14 bedrock wells, including production and domestic wells. The samples were collected and processed through standard U.S. Geological Survey procedures and were analyzed for 226 physical properties and constituents, including physical properties, major ions, nutrients, trace elements, radon-222, pesticides, volatile organic compounds, and bacteria. Many constituents were not detected in any sample, but concentrations of some constituents exceeded current or proposed Federal or New York State drinking-water quality standards, including color (1 sample), pH (2 samples), sodium (11 samples), chloride (2 samples), fluoride (1 sample), sulfate (1 sample), aluminum (2 samples), arsenic (2 samples), iron (10 samples), manganese (10 samples), radon-222 (12 samples), and bacteria (6 samples). Dissolved oxygen concentrations were greater in samples from sand and gravel wells (median 5.6 milligrams per liter [mg/L]) than from bedrock wells (median 0.2 mg/L). The pH was typically neutral or slightly basic (median 7.3); the median water temperature was 11?C. The ions with the highest concentrations were bicarbonate (median 276 mg/L), calcium (median 58.9 mg/L), and sodium (median 41.9 mg/L). Ground water in the basin is generally very hard (180 mg/L as CaCO3 or greater), especially in the Mohawk Valley and areas with carbonate bedrock. Nitrate-plus-nitrite concentrations were generally higher samples from sand and gravel wells (median concentration 0.28 mg/L as N) than in samples from bedrock wells (median radon-222 activities were in samples from bedrock

  9. Geology and ground-water resources of the Douglas basin, Arizona, with a section on chemical quality of the ground water

    Science.gov (United States)

    Coates, Donald Robert; Cushman, R.L.; Hatchett, James Lawrence

    1955-01-01

    The Douglas basin is part of a large northwest-trending intermontane valley, known as the Sulphur Spring Valley, which lies in southeastern Arizona, and extends into northeastern Sonora, Mexico. Maturely dissected mountains rise abruptly from long alluvial slopes and culminate in peaks 3,000 to 4,000 feet above the valley floor, Bedrock in the mountain areas confines drainage on the east and west, and an arc of low hills to the north separates the basin from the Willcox basin of the Sulphur Spring Valley. Drainage of the 1,200 square miles in the Douglas basin is southward into Mexico through Whitewater Draw. The mountains include igneous, metamorphic, and sedimentary rocks ranging in age from pre-Cambrian to Tertiary, including Paleozoic and Mesozoic sedimentary rocks that total about 10,000 feet in thickness. The older rocks have been metamorphosed, and all the bedrock has been affected by igneous intrusion, largely in Mesozoic time, and by structural movements, largely in Cenozoic time and extending into the Quaternary period. By the early part of Cenozoic time the major structural features were formed, and mountain ranges had been uplifted above the valley trough along northwest-trending fault zones. Since that time the physiographic features have resulted through erosion of the mountain blocks and the deposition, in places, of more than 2,800 feet of unconsolidated rock debris in the valley. Ground-water supplies of the Douglas basin are developed largely in the saturated zone of the valley-fill sediments. The ground water in the valley fill occurs in thin lenses and strata of sand and gravel, which are interbedded with large thicknesses of silt and day. Scattered gypsum beds and extensive caliche deposits appear at the surface and occur within the valley fill at various depths. Although the valley-fill sediments are as much as 2,800 feet thick, the uppermost 300 feet or so are the most permeable. Ground water originates as precipitation in the mountain areas

  10. Ground-Water Quality in the St. Lawrence River Basin, New York, 2005-06

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2007-01-01

    The Federal Clean Water Act requires that States monitor and report on the quality of ground water and surface water. To satisfy part of these requirements, the U.S. Geological Survey and New York State Department of Environmental Conservation have developed a program in which ground-water quality is assessed in 2 to 3 of New York State's 14 major river basins each year. To characterize the quality of ground water in the St. Lawrence River Basin in northern New York, water samples were collected from 14 domestic and 11 production wells between August 2005 and January 2006. Eight of the wells were finished in sand and gravel and 17 wells were finished in bedrock. Ground-water samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 229 constituents and physical properties, including inorganic constituents, nutrients, trace elements, radon-222, pesticides and pesticide degradates, volatile organic compounds, and bacteria. Sixty-six constituents were detected above laboratory reporting levels. Concentrations of most compounds at most sites were within drinking water standards established by the U.S. Environmental Protection Agency and New York State Department of Health, but a few compounds exceeded drinking water standards at some sites. Water in the basin is generally hard to very hard (hardness equal to 121 mg/L as CaCO3 or greater); hardness and alkalinity were generally higher in the St. Lawrence Valley than in the Adirondack Mountains. The cation with the highest median concentration was calcium; the anion with the highest median concentration was bicarbonate. The concentration of chloride in one sample exceeded the 250 milligrams per liter U.S. Environmental Protection Agency Secondary Drinking Water Standard; the concentration of sulfate in one sample also exceeded the 250 milligrams per liter U.S. Environmental Protection Agency Secondary Drinking Water Standard. Nitrate was the predominant nutrient detected

  11. Ground-Water Quality in the Delaware River Basin, New York, 2001 and 2005-2006

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2007-01-01

    The Federal Clean Water Act Amendments of 1977 require that States monitor and report on the quality of ground water and surface water. To satisfy part of these requirements, the U.S. Geological Survey and New York State Department of Environmental Conservation have developed a program in which ground-water quality is assessed in 2 to 3 of New York State's 14 major basins each year. To characterize the quality of ground water in the Delaware River Basin in New York, water samples were collected from December 2005 to February 2006 from 10 wells finished in bedrock. Data from 9 samples collected from wells finished in sand and gravel in July and August 2001 for the National Water Quality Assessment Program also are included. Ground-water samples were collected and processed using standard U.S. Geological Survey procedures. Samples were analyzed for more than 230 properties and compounds, including physical properties, major ions, nutrients, trace elements, radon-222, pesticides and pesticide degradates, volatile organic compounds, and bacteria. Concentrations of most compounds were less than drinking-water standards established by the U.S. Environmental Protection Agency and New York State Department of Health; many of the organic analytes were not detected in any sample. Drinking-water standards that were exceeded at some sites include those for color, turbidity, pH, aluminum, arsenic, iron, manganese, radon-222, and bacteria. pH ranged from 5.6 to 8.3; the pH of nine samples was less than the U.S. Environmental Protection Agency secondary drinking-water standard range of 6.5 to 8.5. Water in the basin is generally soft to moderately hard (hardness 120 milligrams per liter as CaCO3 or less). The cation with the highest median concentration was calcium; the anion with the highest median concentrations was bicarbonate. Nitrate was the predominant nutrient detected but no sample exceeded the 10 mg/L U.S. Environmental Protection Agency maximum contaminant level. The

  12. Geochemical characterization of ground-water flow in the Santa Fe Group aquifer system, Middle Rio Grande Basin, New Mexico

    Science.gov (United States)

    Plummer, L. Niel; Bexfield, Laura M.; Anderholm, Scott K.; Sanford, Ward E.; Busenberg, Eurybiades

    2004-01-01

    Chemical and isotopic data were obtained from ground water and surface water throughout the Middle Rio Grande Basin (MRGB), New Mexico, and supplemented with selected data from the U.S. Geological Survey (USGS) National Water Information System (NWIS) and City of Albuquerque water-quality database in an effort to refine the conceptual model of ground-water flow in the basin. The ground-water data collected as part of this study include major- and minor-element chemistry (30 elements), oxygen-18 and deuterium content of water, carbon-13 content and carbon-14 activity of dissolved inorganic carbon, sulfur-34 content of dissolved sulfate, tritium, and dissolved atmospheric gases including nitrogen, argon, helium, chlorofluorocarbons,

  13. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    Science.gov (United States)

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  14. Ground-Water Quality in the Upper Hudson River Basin, New York, 2007

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2009-01-01

    Water samples were collected from 25 production and domestic wells in the Upper Hudson River Basin (north of the Federal Dam at Troy, N.Y.) from August through November 2007 to characterize the ground-water quality. The Upper Hudson River Basin covers 4,600 square miles in upstate New York, Vermont, and Massachusetts; the study area encompasses the 4,000 square miles that lie within New York. The basin is underlain by crystalline and sedimentary bedrock, including gneiss, shale, and slate; some sandstone and carbonate rocks are present locally. The bedrock in some areas is overlain by surficial deposits of saturated sand and gravel. Of the 25 wells sampled, 13 were finished in sand and gravel deposits, and 12 were finished in bedrock. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 225 physical properties and constituents, including major ions, nutrients, trace elements, radon-222, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Water quality in the study area is generally good, but concentrations of some constituents exceeded current or proposed Federal or New York State drinking-water standards; these were: color (1 sample), pH (2 samples), sodium (5 samples), nitrate plus nitrite (2 samples), aluminum (3 samples), iron (1 sample), manganese (7 samples), radon-222 (11 samples), and bacteria (1 sample). Dissolved-oxygen concentrations in samples from wells finished in sand and gravel [median 5.4 milligrams per liter (mg/L)] were greater than those from wells finished in bedrock (median 0.4 mg/L). The pH of all samples was typically neutral or slightly basic (median 7.6); the median water temperature was 9.7 deg C. The ions with the highest concentrations were bicarbonate (median 123 mg/L) and calcium (median 33.9 mg/L). Ground water in the basin is generally soft to moderately hard (less than or equal to 120 mg/L as CaCO3) (median hardness 110 mg/L as CaCO3). Concentrations of

  15. Wetland vegetation and nutrient retention in Nakivubo and Kirinya wetlands in the Lake Victoria basin of Uganda

    Science.gov (United States)

    Mugisha, P.; Kansiime, F.; Mucunguzi, P.; Kateyo, E.

    Wetlands form an important part of the catchment area of the African Great Lakes and protect water resources therein. One of the most important functions is the retention of nutrients from the inflowing water from the catchment, by wetland plants which store them in their phytomass. An assessment of the capacity in storing nutrients by dominant plants ( Cyeprus papyrus, Miscanthus violaceus, Phragmites mauritianus and Colocasia C. esculenta), of Nakivubo and Kirinya wetlands at the shores of Lake Victoria in Uganda, was studied through the determination of phytomass production and nutrient concentration in the plant parts at different stages of growth. The above ground phytomass production increased rapidly during the exponential growth for C. papyrus and P. mauritianus. In all the dominant plants, nitrogen concentration was highest in juvenile plants and decreased with increasing age. The most pronounced nitrogen level occurred in the young umbels of C. papyrus during the first month of growth with total nitrogen content of 1.95% DW which dropped to 0.62% DW after the fifth month in Nakivubo wetland. Corms (tubers) of yams had the highest nitrogen content in Kirinya and Nakivubo wetlands exhibiting respective values of 4.8% DW and 3.7% DW. There is a close relationship between nutrient content and increase in phytomass. In Nakivubo and Kirinya wetlands, the rapid increase in phytomass during the third and fourth month corresponded with high nutrient levels. Since plants store significant amounts of nitrogen during their growth, periodic harvesting of above ground plant parts can remove significant amounts of nutrients (during the first five months of growth) from the wastewater flowing into the two wetlands. Wetland plant species with high phytomass productivity and well developed root systems and ability to withstand flooding are the best in nutrient removal.

  16. Multivariate indications between environment and ground water recharge in a sedimentary drainage basin in northwestern China

    Science.gov (United States)

    Zhu, Bingqi; Wang, Xunming; Rioual, Patrick

    2017-06-01

    A paucity of studies on the interaction between environment and ground water recharge severely restricts the ability of people to assess future water resources under changing environment. In this study, an effort to explore the relationship between the arid environment and ground water recharge was carried out using multivariate statistical techniques in a sedimentary drainage basin (the Jungar) in northwestern China. Hierarchical cluster analysis (HCA) and principal components analysis (PCA) were performed based on hydrogeochemical data to assess the ground water recharge and its governing factors. Observation of the HCA and PCA analytical results revealed a division of seven clusters (C1 to C7) and three principal components (PC1 to PC3), which explained 59.6%, 16.6% and 10.9% of the variance, respectively, and thus, accounted for the majority of the total variance in the original dataset. Based on these Q-mode HCA clusters and R-mode PAC scores, dominant environmental processes influencing recharge regimes were identified, i.e., geogenic, geomorphoclimatic, and anthropogenic, which separated the recharge regimes into four zones (Zone I to Zone IV). Zones I and II (C4 + C1) were associated to ;elevated hydroclimate degree; coupled to ;low salinity;. Zone III (C2 + C3) was associated to ;moderately elevated salinity; and evidently ;elevated contamination; but coupled to ;low hydroclimate degree;. Zone IV (C5 + C6 + C7) was associated mainly to ;elevated salinity; coupled to ;low or inverse hydroclimate degree;. It revealed that the geogenic processes are more significant (60%) than the geomorphoclimatic (17%) and anthropogenic (11%) processes. As a result, the overall recharge process is rather heterogeneous and is strongly environment dominated in the Jungar drainage system. Compared with other watersheds in arid environment, a distinctive feature of the Jungar waters is that they are affected by a combination of natural and non-natural events, rather than

  17. S2-Project: Near-fault earthquake ground motion simulation in the Sulmona alluvial basin

    Science.gov (United States)

    Faccioli, E.; Stupazzini, M.; Galadini, F.; Gori, S.

    2008-12-01

    Recently the Italian Department of Civil Protection (DPC), in cooperation with Istituto Nazionale di Geofisica e Vulcanologia (INGV) has promoted the 'S2' research project (http://nuovoprogettoesse2.stru.polimi.it/) aimed at the design, testing and application of an open-source code for seismic hazard assessment (SHA). The tool envisaged will likely differ in several important respects from an existing international initiative (Open SHA, Field et al., 2003). In particular, while "the OpenSHA collaboration model envisions scientists developing their own attenuation relationships and earthquake rupture forecasts, which they will deploy and maintain in their own systems" , the main purpose of S2 project is to provide a flexible computational tool for SHA, primarily suited for the needs of DPC, which not necessarily are scientific needs. Within S2, a crucial issue is to make alternative approaches available to quantify the ground motion, with emphasis on the near field region. The SHA architecture envisaged will allow for the use of ground motion descriptions other than those yielded by empirical attenuation equations, for instance user generated motions provided by deterministic source and wave propagation simulations. In this contribution, after a brief presentation of Project S2, we intend to illustrate some preliminary 3D scenario simulations performed in the alluvial basin of Sulmona (Central Italy), as an example of the type of descriptions that can be handled in the future SHA architecture. In detail, we selected some seismogenic sources (from the DISS database), believed to be responsible for a number of destructive historical earthquakes, and derive from them a family of simplified geometrical and mechanical source models spanning across a reasonable range of parameters, so that the extent of the main uncertainties can be covered. Then, purely deterministic (for frequencies Element (SE) method, extensively published by Faccioli and his co-workers, and

  18. Simulated effects of proposed ground-water pumping in 17 basins of east-central and southern Nevada

    Science.gov (United States)

    Schaefer, D.H.; Harrill, J.R.

    1995-01-01

    The Las Vegas Valley Water District filed 146 applications in 1989 to pump about 180,800 acre- ft/yr in 17 basins for use in Las Vegas Valley. A previously constructed, two-layer computer model of the carbonate-rock province area was configured to simulate transient conditions and used to develop first approximations of the possible effects of these withdrawals. Simulations were made using the phased pumping schedule proposed by the water district. Ground-water-level declines of several hundred feet could ultimately develop in the basins scheduled to supply most of the pumped ground water. Simulated declines in the carbonate-rock aquifer were somewhat larger than simulated declines in the overlying basin-fill deposits. Decreases in simulated regional spring flow were shown in several cells including those representing the Muddy River Springs, Hiko-Crystal-Ash spring area, and the Ash Meadows spring area. Model simulations show flow decreases of about 11 percent, 14 percent, and 2 percent, respectively, at these springs after almost 100 years of pumping. Simulated evapotranspiration also decreased in many basins, with the largest decreases occurring in the basins where ground-water withdrawals were greatest. These basins include Railroad, Spring, and Snake Valleys. The largest decrease in simulated evapotranspiration occurred in Railroad Valley, 64 percent after almost 100 years of pumpage. Model-sensitivity tests indicate that long-term results were relatively insensitive to variations in values used for aquifer storage. The adequacy of the model to simulate the effects of this proposed pumping will remain untested until actual pumping stresses have been in place long enough to cause measurable effects within the system.

  19. Estimating nitrogen loading to ground water and assessing vulnerability to nitrate contamination in a large karstic springs Basin, Florida

    Science.gov (United States)

    Katz, B.G.; Sepulveda, A.A.; Verdi, R.J.

    2009-01-01

    A nitrogen (N) mass-balance budget was developed to assess the sources of N affecting increasing ground-water nitrate concentrations in the 960-km 2 karstic Ichetucknee Springs basin. This budget included direct measurements of N species in rainfall, ground water, and spring waters, along with estimates of N loading from fertilizers, septic tanks, animal wastes, and the land application of treated municipal wastewater and residual solids. Based on a range of N leaching estimates, N loads to ground water ranged from 262,000 to 1.3 million kg/year; and were similar to N export from the basin in spring waters (266,000 kg/year) when 80-90% N losses were assumed. Fertilizers applied to cropland, lawns, and pine stands contributed about 51% of the estimated total annual N load to ground water in the basin. Other sources contributed the following percentages of total N load to ground water: animal wastes, 27%; septic tanks, 12%; atmospheric deposition, 8%; and the land application of treated wastewater and biosolids, 2%. Due to below normal rainfall (97.3 cm) during the 12-month rainfall collection period, N inputs from rainfall likely were about 30% lower than estimates for normal annual rainfall (136 cm). Low N-isotope values for six spring waters (??15N-NO3 = 3.3 to 6.3???) and elevated potassium concentrations in ground water and spring waters were consistent with the large N contribution from fertilizers. Given ground-water residence times on the order of decades for spring waters, possible sinks for excess N inputs to the basin include N storage in the unsaturated zone and parts of the aquifer with relatively sluggish ground-water movement and denitrification. A geographical-based model of spatial loading from fertilizers indicated that areas most vulnerable to nitrate contamination were located in closed depressions containing sinkholes and other dissolution features in the southern half of the basin. ?? 2009 American Water Resources Association.

  20. Observed and simulated ground motions in the San Bernardino basin region for the Hector Mine, California, earthquake

    Science.gov (United States)

    Graves, R.W.; Wald, D.J.

    2004-01-01

    During the MW 7.1 Hector Mine earthquake, peak ground velocities recorded at sites in the central San Bernardino basin region were up to 2 times larger and had significantly longer durations of strong shaking than sites just outside the basin. To better understand the effects of 3D structure on the long-period ground-motion response in this region, we have performed finite-difference simulations for this earthquake. The simulations are numerically accurate for periods of 2 sec and longer and incorporate the detailed spatial and temporal heterogeneity of source rupture, as well as complex 3D basin structure. Here, we analyze three models of the San Bernardino basin: model A (with structural constraints from gravity and seismic reflection data), model F (water well and seismic refraction data), and the Southern California Earthquake Center version 3 model (hydrologic and seismic refraction data). Models A and F are characterized by a gradual increase in sediment thickness toward the south with an abrupt step-up in the basement surface across the San Jacinto fault. The basin structure in the SCEC version 3 model has a nearly uniform sediment thickness of 1 km with little basement topography along the San Jacinto fault. In models A and F, we impose a layered velocity structure within the sediments based on the seismic refraction data and an assumed depth-dependent Vp/Vs ratio. Sediment velocities within the SCEC version 3 model are given by a smoothly varying rule-based function that is calibrated to the seismic refraction measurements. Due to computational limitations, the minimum shear-wave velocity is fixed at 600 m/sec in all of the models. Ground-motion simulations for both models A and F provide a reasonably good match to the amplitude and waveform characteristics of the recorded motions. In these models, surface waves are generated as energy enters the basin through the gradually sloping northern margin. Due to the basement step along the San Jacinto fault, the

  1. Chemistry of ground water in the Silver Springs basin, Florida, with an emphasis on nitrate

    Science.gov (United States)

    Phelps, G.G.

    2004-01-01

    The Silver Springs group, in central Marion County, Florida, has a combined average discharge rate of 796 cubic feet per second and forms the headwaters of the Silver River. The springs support a diverse ecosystem and are an important cultural and economic resource. Concentrations of nitrite-plus-nitrate (nitrate-N) in water from the Main Spring increased from less than 0.5 milligrams per liter (mg/L) in the 1960s to about 1.0 mg/L in 2003. The Upper Floridan aquifer supplies the ground water to support spring discharge. This aquifer is at or near land surface in much of the ground-water basin; nutrients leached at land surface can easily percolate downward into the aquifer. Sources of nitrogen in ground water in the Silver Springs basin include atmospheric deposition, fertilizers used by agricultural and urban activities, and human and animal wastes. During 2000-2001, 56 wells in the area contributing recharge to Silver Springs were sampled for major ions, nutrients, and some trace constituents. Selected wells also were sampled for a suite of organic constituents commonly found in domestic and industrial wastewater and for the ratio of nitrogen isotopes (15N/14N) to better understand the sources of nitrate. Wells were selected to be representative of both confined and unconfined conditions of the Upper Floridan aquifer, as well as a variety of land-use types. Data from this study were compared to data collected from 25 wells in 1989-90. Concentrations of nitrate-N in ground water during this study ranged from less than the detection limit of 0.02 to 12 mg/L, with a median of 1.2 mg/L. For data from 1989-90, the range was from less than 0.02 to 3.6 mg/L, with a median of 1.04 mg/L. Water from wells in agricultural land-use areas had the highest median nitrate-N concentration (1.7 mg/L), although it is uncertain if the 12 mg/L maximum concentration was influenced by land-use activities or proximity to a septic tank. The median value for all urban land-use areas was

  2. California GAMA Program: Ground-Water Quality Data in the Northern San Joaquin Basin Study Unit, 2005

    Science.gov (United States)

    Bennett, George L.; Belitz, Kenneth; Milby Dawson, Barbara J.

    2006-01-01

    Growing concern over the closure of public-supply wells because of ground-water contamination has led the State Water Board to establish the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. With the aid of the U.S. Geological Survey (USGS) and Lawrence Livermore National Laboratory, the program goals are to enhance understanding and provide a current assessment of ground-water quality in areas where ground water is an important source of drinking water. The Northern San Joaquin Basin GAMA study unit covers an area of approximately 2,079 square miles (mi2) across four hydrologic study areas in the San Joaquin Valley. The four study areas are the California Department of Water Resources (CADWR) defined Tracy subbasin, the CADWR-defined Eastern San Joaquin subbasin, the CADWR-defined Cosumnes subbasin, and the sedimentologically distinct USGS-defined Uplands study area, which includes portions of both the Cosumnes and Eastern San Joaquin subbasins. Seventy ground-water samples were collected from 64 public-supply, irrigation, domestic, and monitoring wells within the Northern San Joaquin Basin GAMA study unit. Thirty-two of these samples were collected in the Eastern San Joaquin Basin study area, 17 in the Tracy Basin study area, 10 in the Cosumnes Basin study area, and 11 in the Uplands Basin study area. Of the 32 samples collected in the Eastern San Joaquin Basin, 6 were collected using a depth-dependent sampling pump. This pump allows for the collection of samples from discrete depths within the pumping well. Two wells were chosen for depth-dependent sampling and three samples were collected at varying depths within each well. Over 350 water-quality field parameters, chemical constituents, and microbial constituents were analyzed and are reported as concentrations and as detection frequencies, by compound classification as well as for individual constituents, for the Northern San Joaquin Basin study unit as a whole and for each individual study area

  3. Ground Penetrating Radar (GPR) Signatures of Lacustrine Soils in Volcanic Basins of Mexico

    Science.gov (United States)

    Carreon-Freyre, D.; Oleschko, K.; Cerca, M.

    2002-12-01

    Ground Penetrating Radar (GPR) profiles have been collected in volcanic and lacustrine basins of Mexico in order to obtain radar signatures and correlate electromagnetic wave propagation with their near-surface stratigraphy. Study sites included Pleistocene to Recent lacustrine sequences in Chalco and Texcoco, near Mexico City, and a Pliocene to Quaternary fluvio-lacustrine sequence in the Queretaro Valley, 250 Km to the northwest. All the sequences present alterning layers of soils, fluvio-lacustrine sediments, pyroclastic and volcanic rocks. GPR method is used because of the sensitivity of the propagation of electromagnetic waves to the granulometric variations and water content of sediments (water molecules polarization). Profiles were carried out with a Zond 12c GPR (Radar Systems Inc.), using four main prospecting frequencies: 2000, 900, 300 and 100 MHz. The purpose of using these frequencies is to evaluate different ranges of depths of investigation and resolution for each site and to relate attenuation and variations in amplitude with impedances and reflection coefficients for stratigraphic associations such as clay-sand, silt-clay and pyroclastics-silt. The analysis of multiple sets of profiles in the studied areas and their correlation with the observed near-surface stratigraphy permits the identification of radar signatures for each depositional condition. GPR characterization also allowed to associate radar signatures with the evolution of fracturing within the sequence. In particular, the Chalco and Queretaro sites are affected by fracturing, an increasing problem in several urbanized areas of Mexico and the world. This phenomenon is generally associated to ground-water withdrawal but its geometry is related closely to the regional structural pattern. Another factor that influences the propagation and morphology of near-surface fracturing in volcanic valleys is their highly heterogeneous stratigraphy. Therefore, the propagation of electromagnetic waves

  4. Records of wells, ground-water levels, and ground-water withdrawals in the lower Goose Creek Basin, Cassia County, Idaho

    Science.gov (United States)

    Mower, R.W.

    1954-01-01

    Investigations by the United States Geological Survey of Ground Water in the Southern border area of the Snake Rive Plain, south of the Snake River, a re concerned at the present time with delineation of the principal ground-water districts, the extent and location of existing ground-water developments, the possibilities for additional development, and the effects of ground-water development on the regimen of streams and reservoirs whose waters are appropriate for beneficial use. The lower part of the Goose Creek Basin is one of the important ground-water districts of the southern plains area and there are substantial but spotty developments of ground water for irrigation in the basin. Several thousand irrigable acres that are now dry could be put under irrigation if a dependable supply of ground water could be developed. The relations of the ground-water reservoirs to the regime of the Snake River and Goose Cree, and to the large body of ground water in the Snake River Plain north of the Snake, are poorly known. A large amount of geologic and hydrologic study remains to be done before those relations can be accurately determined. Investigations will be continued in the future but file work and preparation of a comprehensive report inevitably will be delayed. Therefore the available records are presented herein in order to make them accessible to farmers, well drillers, government agencies, and the general public. Interpretation of the records is not attempted in this report and is deferred pending the accumulation of additional and quantitative information. The data summarized herein include records of the locations and physical characteristics of wells, the depth to water in wells, fluctuations of water levels in observation wells, and estimated rates and volumes of seasonal ans yearly ground-water pumpage for irrigation, municipal, and other uses. This information is complete for work done as of December 31, 1952. The investigations upon which this report is

  5. Estimation of snow cover distribution in Beas basin, Indian Himalaya using satellite data and ground measurements

    Indian Academy of Sciences (India)

    H S Negi; A V Kulkarni; B S Semwal

    2009-10-01

    In the present paper,a methodology has been developed for the mapping of snow cover in Beas basin,Indian Himalaya using AWiFS (IRS-P6)satellite data.The complexities in the mapping of snow cover in the study area are snow under vegetation,contaminated snow and patchy snow. To overcome these problems,field measurements using spectroradiometer were carried out and reflectance/snow indices trend were studied.By evaluation and validation of different topographic correction models,it was observed that,the normalized difference snow index (NDSI)values remain constant with the variations in slope and aspect and thus NDSI can take care of topography effects.Different snow cover mapping methods using snow indices are compared to find the suitable mapping technique.The proposed methodology for snow cover mapping uses the NDSI (estimated using planetary re flectance),NIR band reflectance and forest/vegetation cover information.The satellite estimated snow or non-snow pixel information using proposed methodology was validated with the snow cover information collected at three observatory locations and it was found that the algorithm classify all the sample points correctly,once that pixel is cloud free.The snow cover distribution was estimated using one year (2004 –05)cloud free satellite data and good correlation was observed between increase/decrease areal extent of seasonal snow cover and ground observed fresh snowfall and standing snow data.

  6. Geohydrology, Geochemistry, and Ground-Water Simulation-Optimization of the Central and West Coast Basins, Los Angeles County, California

    Science.gov (United States)

    Reichard, Eric G.; Land, Michael; Crawford, Steven M.; Johnson, Tyler D.; Everett, Rhett; Kulshan, Trayle V.; Ponti, Daniel J.; Halford, Keith L.; Johnson, Theodore A.; Paybins, Katherine S.; Nishikawa, Tracy

    2003-01-01

    Historical ground-water development of the Central and West Coast Basins in Los Angeles County, California through the first half of the 20th century caused large water-level declines and induced seawater intrusion. Because of this, the basins were adjudicated and numerous ground-water management activities were implemented, including increased water spreading, construction of injection barriers, increased delivery of imported water, and increased use of reclaimed water. In order to improve the scientific basis for these water management activities, an extensive data collection program was undertaken, geohydrological and geochemical analyses were conducted, and ground-water flow simulation and optimization models were developed. In this project, extensive hydraulic, geologic, and chemical data were collected from new multiple-well monitoring sites. On the basis of these data and data compiled and collected from existing wells, the regional geohydrologic framework was characterized. For the purposes of modeling, the three-dimensional aquifer system was divided into four aquifer systems?the Recent, Lakewood, Upper San Pedro, and Lower San Pedro aquifer systems. Most pumpage in the two basins is from the Upper San Pedro aquifer system. Assessment of the three-dimensional geochemical data provides insight into the sources of recharge and the movement and age of ground water in the study area. Major-ion data indicate the chemical character of water containing less than 500 mg/L dissolved solids generally grades from calcium-bicarbonate/sulfate to sodium bicarbonate. Sodium-chloride water, high in dissolved solids, is present in wells near the coast. Stable isotopes of oxygen and hydrogen provide information on sources of recharge to the basin, including imported water and water originating in the San Fernando Valley, San Gabriel Valley, and the coastal plain and surrounding hills. Tritium and carbon-14 data provide information on relative ground-water ages. Water with

  7. Projected effects of proposed chloride-control projects on shallow ground water; preliminary results for the Wichita River basin, Texas

    Science.gov (United States)

    Garza, Sergio

    1983-01-01

    The U.S. Army Corps of Engineers' plan to control the natural chloride pollution in the Wichita River basin includes the construction of Truscott Brine Lake on a tributary of the North Wichita River. In connection with the proposed brine lake, the U.S. Geological Survey was requested to: (1) Define the existing ground-water conditions in the shallow fresh-water system of the project area; and (2) project the post-construction effects of the proposed lake on the fresh-water aquifer, especially in relation to hydraulic-head changes but also with respect to possible changes in the chemical quality of the ground water.

  8. Ground-Water Quality Data in the Coastal Los Angeles Basin Study Unit, 2006: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Land, Michael; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 860 square-mile Coastal Los Angeles Basin study unit (CLAB) was investigated from June to November of 2006 as part of the Statewide Basin Assessment Project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment was developed in response to the Ground-Water Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Coastal Los Angeles Basin study was designed to provide a spatially unbiased assessment of raw ground-water quality within CLAB, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 69 wells in Los Angeles and Orange Counties. Fifty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (?grid wells?). Fourteen additional wells were selected to evaluate changes in ground-water chemistry or to gain a greater understanding of the ground-water quality within a specific portion of the Coastal Los Angeles Basin study unit ('understanding wells'). Ground-water samples were analyzed for: a large number of synthetic organic constituents [volatile organic compounds (VOCs), gasoline oxygenates and their degradates, pesticides, polar pesticides, and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicators]; constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), 1,4-dioxane, and 1,2,3-trichloropropane (1,2,3-TCP)]; inorganic constituents that can occur naturally [nutrients, major and minor ions, and trace elements]; radioactive constituents [gross-alpha and gross-beta radiation, radium isotopes, and radon-222]; and microbial indicators. Naturally occurring isotopes [stable isotopic ratios of hydrogen and oxygen, and activities of tritium and carbon-14

  9. Water resources and potential effects of ground-water development in Maggie, Marys, and Susie Creek basins, Elko and Eureka counties, Nevada

    Science.gov (United States)

    Plume, R.W.

    1995-01-01

    The basins of Maggie, Marys, and Susie Creeks in northeastern Nevada are along the Carline trend, an area of large, low-grade gold deposits. Pumping of ground water, mostly for pit dewatering at one of the mines, will reach maximum rates of about 70,000 acre-ft/yr (acre-feet per year) around the year 2000. This pumping is expected to affect ground-water levels, streamflow, and possibly the flow of Carlin spring, which is the water supply for the town of Carlin, Nev. Ground water in the upper Maggie Creek Basin moves from recharge areas in mountain ranges toward the basin axis and discharges as evapotranspiration and as inflow to the stream channel. Ground water in the lower Maggie, Marys, and Susie Creek Basins moves southward from recharge areas in mountain ranges and along the channel of lower Maggie Creek to the discharge area along the Humboldt River. Ground-water underflow between basins is through permeable bedrock of Schroeder Mountain from the upper Maggie Creek Basin to the lower Maggie Creek Basin and through permeable volcanic rocks from lower Maggie Creek to Carlin spring in the Marys Creek Basin. The only source of water to the combined area of the three basins is an estimated 420,000 acre-ft/yr of precipitation. Water leaves as runoff (38,000 acre-ft/yr) and evapotranspiration of soil moisture and ground water (380,000 acre-ft/yr). A small part of annual precipitation (about 25,000 acre-ft/yr) infiltrates the soil zone and becomes ground-water recharge. This ground water eventually is discharged as evapotranspiration (11,000 acre-ft/yr) and as inflow to the Humboldt River channel and nearby springflow (7,000 acre-ft/yr). Total discharge is estimated to be 18,000 acre-ft/yr.

  10. Earthquake ground motion prediction for real sedimentary basins: which numerical schemes are applicable?

    Science.gov (United States)

    Moczo, P.; Kristek, J.; Galis, M.; Pazak, P.

    2009-12-01

    Numerical prediction of earthquake ground motion in sedimentary basins and valleys often has to account for P-wave to S-wave speed ratios (Vp/Vs) as large as 5 and even larger, mainly in sediments below groundwater level. The ratio can attain values larger than 10 in unconsolidated sediments (e.g. in Ciudad de México). In a process of developing 3D optimally-accurate finite-difference schemes we encountered a serious problem with accuracy in media with large Vp/Vs ratio. This led us to investigate the very fundamental reasons for the inaccuracy. In order to identify the very basic inherent aspects of the numerical schemes responsible for their behavior with varying Vp/Vs ratio, we restricted to the most basic 2nd-order 2D numerical schemes on a uniform grid in a homogeneous medium. Although basic in the specified sense, the schemes comprise the decisive features for accuracy of wide class of numerical schemes. We investigated 6 numerical schemes: finite-difference_displacement_conventional grid (FD_D_CG) finite-element_Lobatto integration (FE_L) finite-element_Gauss integration (FE_G) finite-difference_displacement-stress_partly-staggered grid (FD_DS_PSG) finite-difference_displacement-stress_staggered grid (FD_DS_SG) finite-difference_velocity-stress_staggered grid (FD_VS_SG) We defined and calculated local errors of the schemes in amplitude and polarization. Because different schemes use different time steps, they need different numbers of time levels to calculate solution for a desired time window. Therefore, we normalized errors for a unit time. The normalization allowed for a direct comparison of errors of different schemes. Extensive numerical calculations for wide ranges of values of the Vp/Vs ratio, spatial sampling ratio, stability ratio, and entire range of directions of propagation with respect to the spatial grid led to interesting and surprising findings. Accuracy of FD_D_CG, FE_L and FE_G strongly depends on Vp/Vs ratio. The schemes are not

  11. Simulation of ground-water/surface-water flow in the Santa Clara-Calleguas ground-water basin, Ventura County, California

    Science.gov (United States)

    Hanson, Randall T.; Martin, Peter; Koczot, Kathryn M.

    2003-01-01

    Ground water is the main source of water in the Santa Clara-Calleguas ground-water basin that covers about 310 square miles in Ventura County, California. A steady increase in the demand for surface- and ground-water resources since the late 1800s has resulted in streamflow depletion and ground-water overdraft. This steady increase in water use has resulted in seawater intrusion, inter-aquifer flow, land subsidence, and ground-water contamination. The Santa Clara-Calleguas Basin consists of multiple aquifers that are grouped into upper- and lower-aquifer systems. The upper-aquifer system includes the Shallow, Oxnard, and Mugu aquifers. The lower-aquifer system includes the upper and lower Hueneme, Fox Canyon, and Grimes Canyon aquifers. The layered aquifer systems are each bounded below by regional unconformities that are overlain by extensive basal coarse-grained layers that are the major pathways for ground-water production from wells and related seawater intrusion. The aquifer systems are bounded below and along mountain fronts by consolidated bedrock that forms a relatively impermeable boundary to ground-water flow. Numerous faults act as additional exterior and interior boundaries to ground-water flow. The aquifer systems extend offshore where they crop out along the edge of the submarine shelf and within the coastal submarine canyons. Submarine canyons have dissected these regional aquifers, providing a hydraulic connection to the ocean through the submarine outcrops of the aquifer systems. Coastal landward flow (seawater intrusion) occurs within both the upper- and lower-aquifer systems. A numerical ground-water flow model of the Santa Clara-Calleguas Basin was developed by the U.S. Geological Survey to better define the geohydrologic framework of the regional ground-water flow system and to help analyze the major problems affecting water-resources management of a typical coastal aquifer system. Construction of the Santa Clara-Calleguas Basin model required

  12. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin

    Science.gov (United States)

    Zhang, L.; Lu, Zhiming; Ding, X.; Jung, H.-S.; Feng, G.; Lee, C.-W.

    2012-01-01

    Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool to detect long-term seismotectonic motions by reducing the atmospheric artifacts, thereby providing more precise deformation signal. The commonly used approaches such as persistent scatterer InSAR (PSInSAR) and small baseline subset (SBAS) algorithms need to resolve the phase ambiguities in interferogram stacks either by searching a predefined solution space or by sparse phase unwrapping methods; however the efficiency and the success of phase unwrapping cannot be guaranteed. We present here an alternative approach - temporarily coherent point (TCP) InSAR (TCPInSAR) - to estimate the long term deformation rate without the need of phase unwrapping. The proposed approach has a series of innovations including TCP identification, TCP network and TCP least squares estimator. We apply the proposed method to the Los Angeles Basin in southern California where structurally active faults are believed capable of generating damaging earthquakes. The analysis is based on 55 interferograms from 32 ERS-1/2 images acquired during Oct. 1995 and Dec. 2000. To evaluate the performance of TCPInSAR on a small set of observations, a test with half of interferometric pairs is also performed. The retrieved TCPInSAR measurements have been validated by a comparison with GPS observations from Southern California Integrated GPS Network. Our result presents a similar deformation pattern as shown in past InSAR studies but with a smaller average standard deviation (4.6. mm) compared with GPS observations, indicating that TCPInSAR is a promising alternative for efficiently mapping ground deformation even from a relatively smaller set of interferograms. ?? 2011.

  13. Hydrogeologic Framework and Ground Water in Basin-Fill Deposits of the Diamond Valley Flow System, Central Nevada

    Science.gov (United States)

    Tumbusch, Mary L.; Plume, Russell W.

    2006-01-01

    The Diamond Valley flow system, an area of about 3,120 square miles in central Nevada, consists of five hydrographic areas: Monitor, Antelope, Kobeh, and Diamond Valleys and Stevens Basin. Although these five areas are in a remote part of Nevada, local government officials and citizens are concerned that the water resources of the flow system eventually could be further developed for irrigation or mining purposes or potentially for municipal use outside the study area. In order to better understand the flow system, the U.S. Geological Survey in cooperation with Eureka, Lander, and Nye Counties and the Nevada Division of Water Resources, is conducting a multi-phase study of the flow system. The principal aquifers of the Diamond Valley flow system are in basin-fill deposits that occupy structural basins comprised of carbonate rocks, siliciclastic sedimentary rocks, igneous intrusive rocks, and volcanic rocks. Carbonate rocks also function as aquifers, but their extent and interconnections with basin-fill aquifers are poorly understood. Ground-water flow in southern Monitor Valley is from the valley margins toward the valley axis and then northward to a large area of discharge by evapotranspiration (ET) that is formed south of a group of unnamed hills near the center of the valley. Ground-water flow from northern Monitor Valley, Antelope Valley, and northern and western parts of Kobeh Valley converges to an area of ground-water discharge by ET in central and eastern Kobeh Valley. Prior to irrigation development in the 1960s, ground-water flow in Diamond Valley was from valley margins toward the valley axis and then northward to a large discharge area at the north end of the valley. Stevens Basin is a small upland basin with internal drainage and is not connected with other parts of the flow system. After 40 years of irrigation pumping, a large area of ground-water decline has developed in southern Diamond Valley around the irrigated area. In this part of Diamond

  14. Radionuclides in ground water of the Carson River Basin, western Nevada and eastern California, U.S.A.

    Science.gov (United States)

    Thomas, J.M.; Welch, A.H.; Lico, M.S.; Hughes, J.L.; Whitney, R.

    1993-01-01

    Ground water is the main source of domestic and public supply in the Carson River Basin. Ground water originates as precipitation primarily in the Sierra Nevada in the western part of Carson and Eagle Valleys, and flows down gradient in the direction of the Carson River through Dayton and Churchill Valleys to a terminal sink in the Carson Desert. Because radionuclides dissolved in ground water can pose a threat to human health, the distribution and sources of several naturally occurring radionuclides that contribute to gross-alpha and gross-beta activities in the study area were investigated. Generally, alpha and beta activities and U concentration increase from the up-gradient to down-gradient hydrographic areas of the Carson River Basin, whereas 222Rn concentration decreases. Both 226Ra and 228Ra concentrations are similar throughout the study area. Alpha and beta activities and U concentration commonly exceed 100 pCi/l in the Carson Desert at the distal end of the flow system. Radon-222 commonly exceeds 2,000 pCi/l in the western part of Carson and Eagle Valleys adjacent to the Sierra Nevada. Radium-226 and 228Ra concentrations are oxide coatings on fracture surfaces and fine-grained sediment, by adsorption on organic matter, and by coprecipitation with Fe and Mn oxides. These coated sediments are transported throughout the basin by fluvial processes. Thus, U is transported as dissolved and adsorbed species. A rise in the water table in the Carson Desert because of irrigation has resulted in the oxidation of U-rich organic matter and dissolution of U-bearing coatings on sediments, producing unusually high U concentration in the ground water. Alpha activity in the ground water is almost entirely from the decay of U dissolved in the water. Beta activity in ground water samples is primarily from the decay of 40K dissolved in the water and ingrowth of 238U progeny in the sample before analysis. Approximately one-half of the measured beta activity may not be present

  15. Ground water heat pumps and cooling with ground water basins as seasonal storage; Grundvandsvarmepumper og -koeling med grundvandsmagasiner som saesonlager

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    Ground water temperature is constant all the year round, in Denmark approximately 9 deg. C, which is ideal for a number of cooling purposes including cooling of buildings. The structures in which the ground water flows (sand, gravel and chalk) are efficient for storing coldness and heat over longer periods. By using seasonal storage of low-temperature heat and coldness in ground water layers close to the terrain it is feasible to reach profitable energy savings of up to 90% for cooling and heating of e.g. hotels, airports, shopping malls, office buildings and other larger buildings. At the same time the large energy savings means major reduction of CO{sub 2} emissions. (BA)

  16. Ground water heat pumps and cooling with ground water basins as seasonal storage; Grundvandsvarmepumper og -koeling med grundvandsmagasiner som saesonlager

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    Ground water temperature is constant all the year round, in Denmark approximately 9 deg. C, which is ideal for a number of cooling purposes including cooling of buildings. The structures in which the ground water flows (sand, gravel and chalk) are efficient for storing coldness and heat over longer periods. By using seasonal storage of low-temperature heat and coldness in ground water layers close to the terrain it is feasible to reach profitable energy savings of up to 90% for cooling and heating of e.g. hotels, airports, shopping malls, office buildings and other larger buildings. At the same time the large energy savings means major reduction of CO{sub 2} emissions. (BA)

  17. Anthropogenic constituents in shallow ground water in the Upper Illinois River Basin

    Science.gov (United States)

    Morrow, William S.

    2003-01-01

    /L, with a median concentration of 0.06 ?g/L. Deethylatrazine was most common with detections in 43 percent (18 of 42) of the well samples. Using information-rich method reporting levels, pesticides were detected in 74 percent (31 of 42) of the well samples with 134 detections of 29 pesticides. Deethylatrazine was most common with detections in 45 percent (19 of 42) of the well samples.Nitrate concentrations ranged from less than 0.047 to 12.5 milligrams per liter (mg/L) with a median concentration of 0.068 mg/L. Nitrate concentrations were greater than 2 mg/L in 30 percent (13 of 43) of the wells sampled. Total VOC detections did not correlate well (less than Spearman Rank correlation value of plus or minus 0.10) with well depth, age, or dissolved oxygen. Total pesticide detections did correlate with dissolved oxygen and negatively correlated with well depth. Nitrate concentrations correlated with dissolved oxygen and apparent recharge date.No VOC or pesticide concentrations exceeded U.S. Environmental Protection Agency drinking-water standards and only one nitrate 2 Anthropogenic Constituents in Shallow Ground Water in the Upper Illinois River Basin detection exceeded the standards. However, of the 43 wells sampled for VOCs or pesticides using information-rich methods, or nitrate at laboratory reporting levels, 40 of 43 (93 percent) well samples had at least one detection of a VOC or pesticide, or a detection of nitrate above 2.0 mg/L. This result indicates that most of these wells are anthropogenically affected, but presently not at U.S. Environmental Protection Agency drinking-water regulation levels of concern. The wells sampled were not public drinking-water supplies; therefore, these wells were not subject to U.S. Environmental Protection Agency drinking-water regulations.

  18. Ground-water use, locations of production wells, and areas irrigated using ground water in 1998, middle Humboldt River basin, north-central Nevada

    Science.gov (United States)

    Plume, Russell W.

    2003-01-01

    In 1998, ground water was being pumped from about 420 production wells in the middle Humboldt River Basin for a variety of uses. Principal uses were for agriculture, industry, mining, municipal, and power plant purposes. This report presents a compilation of the number and types of production wells, areas irrigated by ground water, and ground-water use in 14 hydrographic areas of the middle Humboldt River Basin in 1998. Annual pumping records for production wells usually are reported to the Nevada Division of Water Resources. However, operators of irrigation wells are not consistently required to report annual pumpage. Daily power-consumption and pump-discharge rates measured at 20 wells during the 1998 irrigation season and total power use at each well were used to estimate the amount of water, in feet of depth, applied to 20 alfalfa fields. These fields include about 10 percent of the total area, 36,700 acres, irrigated with ground water in the middle Humboldt River Basin. In 1998 an average of 2.0 feet of water was applied to 14 fields irrigated using center-pivot sprinkler systems, and an average of 2.6 feet of water was applied to 6 fields irrigated using wheel-line sprinkler systems. A similar approach was used to estimate the amount of water pumped at three wells using pumps powered by diesel engines. The two fields served by these three wells received 3.9 feet of water by flood irrigation during the 1998 irrigation season. The amount of water applied to the fields irrigated by center-pivot and wheel-line irrigation systems during the 1998 irrigation season was less than what would have been applied during a typical irrigation season because late winter and spring precipitation exceeded long-term monthly averages by as much as four times. As a result, the health of crops was affected by over-saturated soils, and most irrigation wells were only used sporadically in the first part of the irrigation season. Power consumption at 19 of the 20 wells in the 1994

  19. Ground water/surface water responses to global climate simulations, Santa Clara-Calleguas Basin, Ventura, California

    Science.gov (United States)

    Hanson, R.T.; Dettinger, M.D.

    2005-01-01

    Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa ClaraCalleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Nin??o Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate-driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/??C, compared to 0.9 m/??C in observations. This close agreement shows that the GCM-RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM-RGWM combination could be used for planning purposes and - when the GCM forecast skills are adequate - for near term predictions.

  20. Seismic investigation of the buried horst between the Jornada del Muerto and Mesilla ground-water basins near Las Cruces, Dona Ana County, New Mexico

    Science.gov (United States)

    Woodward, D.G.; Myers, R.G.

    1997-01-01

    Six seismic reflection profiles were collected in the vicinity of the Jornada Horst between Goat Mountain and Tortugas Mountain (northeast and east of Las Cruces, New Mexico) to delineate more precisely the geometry of the horst and to determine whether large, buried channels have been incised into the top of the horst. The Jornada fault zone separates the southern Jornada del Muerto ground-water basin from the Mesilla ground-water basin in the Mesilla drainage basin. The upper part of the Jornada Horst is composed of Tertiary volcanic and volcaniclastic rocks; these rocks overlie Permian sedimentary rocks. The horst, in turn, is overlain by unconsolidated sediments of the upper Santa Fe Group. Some test holes indicate that little or no ground water flows from the Jornada del Muerto ground-water basin to the Mesilla ground-water basin over some portions of the horst. However, some ground water flows through the upper Santa Fe Group deposits above some portions of the horst. Ground-water flow immediately east of the horst near U.S. Highway 70 is deflected northward in the southern Jornada del Muerto ground-water basin presumably because of the change from higher hydraulic-conductivity values of aquifer materials in the southern basin to lower hydraulic-conductivity values of materials in the horst. Incised, buried channels, if present on the horst, could be filled with alluvial material with higher hydraulic- conductivity values than those of the material in the horst. Incised, buried channels would allow ground water to readily move from the Jornada del Muerto ground-water basin to the Mesilla ground-water basin. The gross geometry of the horst--eastern extent, constraints on the western extent, and general altitude of the top--was discerned by interpretations of the seismic profiles. The presence or absence of large channels incised into the top of the horst could not be confirmed by these interpretations. However, the seismic interpretations suggest that the

  1. Evaluation of baseline ground-water conditions in the Mosteiros, Ribeira Paul, and Ribeira Faja Basins, Republic of Cape Verde, West Africa, 2005-06

    Science.gov (United States)

    Heilweil, Victor M.; Earle, John D.; Cederberg, Jay R.; Messer, Mickey M.; Jorgensen, Brent E.; Verstraeten, Ingrid M.; Moura, Miguel A.; Querido, Arrigo; Spencer,; Osorio, Tatiana

    2006-01-01

    This report documents current (2005-06) baseline ground-water conditions in three basins within the West African Republic of Cape Verde (Mosteiros on Fogo, Ribeira Paul on Santo Ant?o, and Ribeira Faj? on S?o Nicolau) based on existing data and additional data collected during this study. Ground-water conditions (indicators) include ground-water levels, ground-water recharge altitude, ground-water discharge amounts, ground-water age (residence time), and ground-water quality. These indicators are needed to evaluate (1) long-term changes in ground-water resources or water quality caused by planned ground-water development associated with agricultural projects in these basins, and (2) the feasibility of artificial recharge as a mitigation strategy to offset the potentially declining water levels associated with increased ground-water development. Ground-water levels in all three basins vary from less than a few meters to more than 170 meters below land surface. Continuous recorder and electric tape measurements at three monitoring wells (one per basin) showed variations between August 2005 and June 2006 of as much as 1.8 meters. Few historical water-level data were available for the Mosteiros or Ribeira Paul Basins. Historical records from Ribeira Faj? indicate very large ground-water declines during the 1980s and early 1990s, associated with dewatering of the Galleria Faj? tunnel. More-recent data indicate that ground-water levels in Ribeira Faj? have reached a new equilibrium, remaining fairly constant since the late 1990s. Because of the scarcity of observation wells within each basin, water-level data were combined with other techniques to evaluate ground-water conditions. These techniques include the quantification of ground-water discharge (well withdrawals, spring discharge, seepage to springs, and gallery drainage), field water-quality measurements, and the use of environmental tracers to evaluate sources of aquifer recharge, flow paths, and ground

  2. Sedimentary basin effects in Seattle, Washington: Ground-motion observations and 3D simulations

    Science.gov (United States)

    Frankel, Arthur; Stephenson, William; Carver, David

    2009-01-01

    Seismograms of local earthquakes recorded in Seattle exhibit surface waves in the Seattle basin and basin-edge focusing of S waves. Spectral ratios of Swaves and later arrivals at 1 Hz for stiff-soil sites in the Seattle basin show a dependence on the direction to the earthquake, with earthquakes to the south and southwest producing higher average amplification. Earthquakes to the southwest typically produce larger basin surface waves relative to S waves than earthquakes to the north and northwest, probably because of the velocity contrast across the Seattle fault along the southern margin of the Seattle basin. S to P conversions are observed for some events and are likely converted at the bottom of the Seattle basin. We model five earthquakes, including the M 6.8 Nisqually earthquake, using 3D finite-difference simulations accurate up to 1 Hz. The simulations reproduce the observed dependence of amplification on the direction to the earthquake. The simulations generally match the timing and character of basin surface waves observed for many events. The 3D simulation for the Nisqually earth-quake produces focusing of S waves along the southern margin of the Seattle basin near the area in west Seattle that experienced increased chimney damage from the earthquake, similar to the results of the higher-frequency 2D simulation reported by Stephenson et al. (2006). Waveforms from the 3D simulations show reasonable agreement with the data at low frequencies (0.2-0.4 Hz) for the Nisqually earthquake and an M 4.8 deep earthquake west of Seattle.

  3. Questa Baseline and Pre-Mining Ground-Water-Quality Investigation 22 - Ground-Water Budget for the Straight Creek Drainage Basin, Red River Valley, New Mexico

    Science.gov (United States)

    McAda, Douglas P.; Naus, Cheryl A.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley. The Molycorp mine has been in operation since the 1920s. Because ground-water conditions prior to mining are not available, sites analogous to the pre-mining conditions at the mine site must be studied to infer those pre-mining conditions. The Straight Creek drainage basin (watershed) was selected as the primary analog site for this study because of its similar terrain and geology to the mine site, accessibility, potential for well construction, and minimal anthropogenic activity. The purpose of this report is to present results of a water-budget analysis of the debris-flow aquifer in the Straight Creek watershed. The water budget is based on mean annual conditions and is assumed to be steady state. For this study, the Straight Creek watershed was divided into sub-watersheds on the basis of locations of seismic lines, which were used to calculate cross-section area through the Straight Creek debris-flow deposits and underlying fractured and weathered bedrock (regolith). Water-budget components were calculated for areas upstream from and between the seismic lines. Components of the water budget were precipitation, evapotranspiration, surface-water flow, and ground-water flow under a steady-state mean annual condition. Watershed yield, defined as precipitation minus evapotranspiration, was separated into surface-water flow, ground-water flow through the debris-flow deposits and regolith, and ground-water flow through fractured bedrock. The approach to this calculation was to use Darcy?s Law to calculate the flow through the cross-section area of the saturated debris-flow deposits and underlying regolith as defined by the interpreted seismic data. The amount of watershed yield unaccounted for through this section then was attributed to

  4. Ground water investigations in Lower Kelantan River's Basin, Malaysia, using environmental isotope, Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad, D.; Ali, R.M. (PUSPATI, Bangi (Malaysia))

    1983-03-01

    Variation in the stable isotopes and tritium compositions of water were used to define the mechanism of recharge to the ground water system in the Lower Kelantan River Basin, Malaysia. The isotopic data demonstrate that the first aquifer is recharged either by precipitation and/or river water and in some places by the second and third aquifers. Recharged of the second aquifer seems to be from the first and third aquifers. Whilst the recharge mechanism of the third aquifer is still unable to establish with the present data, a more detailed investigation is needed. Tritium data confirm that all ground water samples of the third aquifer are older than 25 years and most waters from the first and second aquifers are recent (<25 years).

  5. Amplification of seismic ground motion in the Tunis basin: Numerical BEM simulations vs experimental evidences

    CERN Document Server

    Kham, Marc; Bouden-Romdhane, Nejla

    2013-01-01

    This paper aims at the analysis of seismic wave amplification in a deep alluvial basin in the city of Tunis in Tunisia. This sedimentary basin is 3000m wide and 350m deep. Since the seismic hazard is significant in this area, the depth of the basin and the strong impedance ratio raise the need for an accurate estimation of seismic motion amplification. Various experimental investigations were performed in previous studies to characterize site effects. The Boundary Element Method is considered herein to assess the parameter sensitivity of the amplification process and analyse the prevailing phenomena. The various frequencies of maximum amplification are correctly estimated by the BEM simulations. The maximum amplification level observed in the field is also well retrieved by the numerical simulations but, due to the sensitivity of the location of maximum amplification in space, the overall maximum amplification has to be considered. The influence of the wave-field incidence and material damping is also discuss...

  6. Ground-water quality in the central part of the Passaic River basin, northeastern New Jersey, 1959-88

    Science.gov (United States)

    Czarnik, T.S.; Kozinski, Jane

    1994-01-01

    Ground-water samples were collected from 71 wells screened in or open to three aquifers in the central part of the Passaic River basin during 1959-88. Water samples from aquifers in glacial sediments and aquifers in sedimentary and igneous bedrock of the Newark Supergroup were analyzed for major ions. Most samples were analyzed for metals, nutrients, and tritium; 38 samples were analyzed for purgeable organic compounds. Calcium and bicarbonate were the predominant ions in ground water in the study area. Ground water was dilute (median dissolved-solids concentration 239 milligrams per liter) and slightly basic (median pH 7.89). Concentrations of inorganic constituents were within U.S. Environmental Protection Agency (USEPA) primary drinking-water regulations. Concentrations of benzene, tetrachloroethylene, and trichloroethylene, however, were greater than USEPA primary drinking-water regulations in six samples. Ground-water samples from aquifers in sedimentary bedrock were enriched in barium, calcium, magnesium, strontium,and sulfate relative to samples form the other aquifers. Such ion enrichment can be attributed either to disolution of carbonate and sulfate-containing minerals or to human activities. Ground-water samples from two wells screened in glacial sediments near swamps contained sulfate in concentrations higher than the median for the aquifer. Sulfate enrichment could result from downward leaching of water enriched in sulfur from the decay of organic matter in the swamps, from the disolution of sulfate-containing minerals, or from human activities. No regional trends in the chemical composition of the ground water in the study area were identified. Sulfate concentrations in ground- water samples from the sedimentary bedrock tended to increase with decreasing altitude of the deepest opening of the well; the correlation coefficient for the ranks of sulfate concentration and the altitude of the deepest opening of the well for 17 pairs of data is -0

  7. Particle-tracking investigation of the retention of sucker larvae emerging from spawning grounds in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Wood, Tamara M.; Wherry, Susan A.; Simon, David C.; Markle, Douglas F.

    2014-01-01

    This study had two objectives: (1) to use the results of an individual-based particle-tracking model of larval sucker dispersal through the Williamson River delta and Upper Klamath Lake, Oregon, to interpret field data collected throughout Upper Klamath and Agency Lakes, and (2) to use the model to investigate the retention of sucker larvae in the system as a function of Williamson River flow, wind, and lake elevation. This is a follow-up study to work reported in Wood and others (2014) in which the hydrodynamic model of Upper Klamath Lake was combined with an individual-based, particle-tracking model of larval fish entering the lake from spawning areas in the Williamson River. In the previous study, the performance of the model was evaluated through comparison with field data comprising larval sucker distribution collected in 2009 by The Nature Conservancy, Oregon State University (OSU), and the U.S. Geological Survey, primarily from the (at that time) recently reconnected Williamson River Delta and along the eastern shoreline of Upper Klamath Lake, surrounding the old river mouth. The previous study demonstrated that the validation of the model with field data was moderately successful and that the model was useful for describing the broad patterns of larval dispersal from the river, at least in the areas surrounding the river channel immediately downstream of the spawning areas and along the shoreline where larvae enter the lake. In this study, field data collected by OSU throughout the main body of Upper Klamath Lake, and not just around the Williamson River Delta, were compared to model simulation results. Because the field data were collected throughout the lake, it was necessary to include in the simulations larvae spawned at eastern shoreline springs that were not included in the earlier studies. A complicating factor was that the OSU collected data throughout the main body of the lake in 2011 and 2012, after the end of several years of larval drift

  8. Ground-Water Quality Data in the Central Eastside San Joaquin Basin 2006: Results from the California GAMA Program

    Science.gov (United States)

    Landon, Matthew K.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 1,695-square-mile Central Eastside study unit (CESJO) was investigated from March through June 2006 as part of the Statewide Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The study was designed to provide a spatially unbiased assessment of raw ground-water quality within CESJO, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 78 wells in Merced and Stanislaus Counties. Fifty-eight of the 78 wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells). Twenty of the wells were selected to evaluate changes in water chemistry along selected lateral or vertical ground-water flow paths in the aquifer (flow-path wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), gasoline oxygenates and their degradates, pesticides and pesticide degradates], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3-trichloropropane (1,2,3-TCP)], inorganic constituents that can occur naturally [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, carbon-14, and uranium isotopes and stable isotopes of hydrogen, oxygen, nitrogen, sulfur, and carbon], and dissolved noble and other gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected

  9. Hydro-economic modeling of conjunctive ground and surface water use to guide sustainable basin management

    Science.gov (United States)

    Taher Kahil, Mohamed; Ward, Frank A.; Albiac, Jose; Eggleston, Jack; Sanz, David

    2016-04-01

    Water demands for irrigation, urban and environmental uses in arid and semiarid regions continue to grow, while freshwater supplies from surface and groundwater resources are becoming scarce and are expected to decline with climate change. Policymakers in these regions face hard choices on water management and policies. Hydro-economic modeling is the state-of-the art tool that could be used to guide the design and implementation of sustainable water management policies in basins. The strength of hydro-economic modeling lies in its capacity to integrate key biophysical and socio-economic components within a unified framework. A major gap in developments on hydro-economic modeling to date has been the weak integration of surface and groundwater flows, based on the theoretically correct Darcy equations used by the hydrogeological community. The modeling approach taken here is integrated, avoiding the single-tank aquifer assumption, avoiding simplified assumptions on aquifer-river linkages, and bypassing iterations among separate hydrological and economic models. The groundwater flow formulation used in this paper harnesses the standard finite difference expressions for groundwater flow and groundwater-surface water exchange developed in the USGS MODFLOW groundwater model. The methodological contribution to previous modeling efforts is the explicit specification of aquifer-river interactions, important when aquifer systems make a sizable contribution to basin resources. The modeling framework is solved completely, and information among the economic and hydrological components over all periods and locations are jointly and simultaneously determined. This novel framework is applied to the Jucar basin (Spain), which is a good experimental region for an integrated basin scale analysis. The framework is used for assessing the impacts of a range of climate change scenarios and policy choices, especially the hydrologic, land use, and economic outcomes. The modeling framework

  10. Simulation of Regional Ground-Water Flow in the Suwannee River Basin, Northern Florida and Southern Georgia

    Science.gov (United States)

    Planert, Michael

    2007-01-01

    The Suwannee River Basin covers a total of nearly 9,950 square miles in north-central Florida and southern Georgia. In Florida, the Suwannee River Basin accounts for 4,250 square miles of north-central Florida. Evaluating the impacts of increased development in the Suwannee River Basin requires a quantitative understanding of the boundary conditions, hydrogeologic framework and hydraulic properties of the Floridan aquifer system, and the dynamics of water exchanges between the Suwannee River and its tributaries and the Floridan aquifer system. Major rivers within the Suwannee River Basin are the Suwannee, Santa Fe, Alapaha, and Withlacoochee. Four rivers west of the Suwannee River are the Aucilla, the Econfina, the Fenholloway, and the Steinhatchee; all drain to the Gulf of Mexico. Perhaps the most notable aspect of the surface-water hydrology of the study area is that large areas east of the Suwannee River are devoid of channelized, surface drainage; consequently, most of the drainage occurs through the subsurface. The ground-water flow system underlying the study area plays a critical role in the overall hydrology of this region of Florida because of the dominance of subsurface drain-age, and because ground-water flow sustains the flow of the rivers and springs. Three principal hydrogeologic units are present in the study area: the surficial aquifer system, the intermediate aquifer system, and the Floridan aquifer system. The surficial aquifer system principally consists of unconsoli-dated to poorly indurated siliciclastic deposits. The intermediate aquifer system, which contains the intermediate confining unit, lies below the surficial aquifer system (where present), and generally consists of fine-grained, uncon-solidated deposits of quartz sand, silt, and clay with interbedded limestone of Miocene age. Regionally, the intermediate aquifer system and intermediate con-fining unit act as a confining unit that restricts the exchange of water between the over

  11. Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-1994, with projections to 2020

    Science.gov (United States)

    Kernodle, J.M.; McAda, D.P.; Thorn, C.R.

    1995-01-01

    This report describes a three-dimensional finite-difference ground-water-flow model of the Santa Fe Group aquifer system in the Albuquerque Basin, which comprises the Santa Fe Group (late Oligocene to middle Pleistocene age) and overlying valley and basin-fill deposits (Pleistocene to Holocene age). The model is designed to be flexible and adaptive to new geologic and hydrologic information as it becomes available by using a geographic information system as a data-base manager to interface with the model. The aquifer system was defined and quantified in the model consistent with the current (July 1994) understanding of the structural and geohydrologic framework of the basin. Rather than putting the model through a rigorous calibration process, dis- crepancies between simulated and measured responses in hydraulic head were taken to indicate that the understanding of a local part of the aquifer system was incomplete or incorrect. The model simulates ground-water flow over an area of about 2,400 square miles to a depth of 1,730 to about 2,020 feet below the water table with 244 rows, 178 columns, and 11 layers. Of the 477,752 cells in the model, 310,376 are active. The top four model layers approximate the 80-foot thickness of alluvium in the incised and refilled valley of the Rio Grande to provide detail of the effect of ground-water withdrawals on the surface- water system. Away from the valley these four layers represent the interval within the Santa Fe Group aquifer system between the com- puted predevelopment water table and a level 80 feet below the grade of the Rio Grande. The simulations include initial condi- tions (steady-state), the 1901-1994 historical period, and four possible ground-water withdrawal scenarios from 1994 to 2020. The model indicates that for the year ending in March 1994, net surface-water loss in the basin resulting from the City of Albuquerque's ground-water withdrawal totaled about 53,000 acre- feet. The balance of the about 123

  12. Appraisal of ground-water quality in the Bunker Hill Basin of San Bernardino Valley, California

    Science.gov (United States)

    Duell, L.F.; Schroeder, R.A.

    1989-01-01

    Water samples were collected from 47 wells and analyzed for concentration of major inorganic ions, nitrogen species, and volatile (purgeable) organic priority pollutants to assess groundwater quality in the Bunker Hill basin, California. Data were supplemented with additional analysis of nitrate, tetrachloroethylene, and trichloroethylene made by other agencies. The organic quality of groundwater in the basin generally is suitable for most uses, although fluoride concentration exceeded the California public drinking water standard of 1.4 mg/L in water from 5 of 47 wells. Nitrate (as nitrogen) concentration equaled or exceeded the public drinking water standard of 10 mg/L in water from 13 of 47 wells sampled for this study and in an additional 19 of 120 samples analyzed by other agencies. Concentration generally decreased with increasing depth below land surface. Twenty-four of the 33 volatile organic priority pollutants were detected in water from wells sampled during this study. When supplemental data from other agencies are included, tetrachloroethylene concentration exceeded the standard of 5 micrograms/L in water from 49 of 128 wells. No basinwide relation between contamination by these two chemicals and well depth or land use was discerned. A network of 11 observation wells that could be sampled twice a year would enhance the monitoring of changes groundwater quality in the Bunker Hill basin. (USGS)

  13. Characterisation of hydraulic head changes and aquifer properties in the London Basin using Persistent Scatterer Interferometry ground motion data

    Science.gov (United States)

    Bonì, R.; Cigna, F.; Bricker, S.; Meisina, C.; McCormack, H.

    2016-09-01

    In this paper, Persistent Scatterer Interferometry was applied to ERS-1/2 and ENVISAT satellite data covering 1992-2000 and 2002-2010 respectively, to analyse the relationship between ground motion and hydraulic head changes in the London Basin, United Kingdom. The integration of observed groundwater levels provided by the Environment Agency and satellite-derived displacement time series allowed the estimation of the spatio-temporal variations of the Chalk aquifer storage coefficient and compressibility over an area of ∼1360 km2. The average storage coefficient of the aquifer reaches values of 1 × 10-3 and the estimated average aquifer compressibility is 7.7 × 10-10 Pa-1 and 1.2 × 10-9 Pa-1 for the periods 1992-2000 and 2002-2010, respectively. Derived storage coefficient values appear to be correlated with the hydrogeological setting, where confined by the London Clay the storage coefficient is typically an order of magnitude lower than where the chalk is overlain by the Lambeth Group. PSI-derived storage coefficient estimates agree with the values obtained from pumping tests in the same area. A simplified one-dimensional model is applied to simulate the ground motion response to hydraulic heads changes at nine piezometers. The comparison between simulated and satellite-observed ground motion changes reveals good agreement, with errors ranging between 1.4 and 6.9 mm, and being 3.2 mm on average.

  14. Effect of urban stormwater runoff on ground water beneath recharge basins on Long Island, New York

    Science.gov (United States)

    Ku, H.F.; Simmons, D.L.

    1986-01-01

    Urban stormwater runoff was monitored during 1980-82 to investigate the source, type, quantity, and fate of contaminants routed to the more than 3,000 recharge basins on Long Island and to determine whether this runoff might be a significant source of contamination to the groundwater reservoir. Forty-six storms were monitored at five recharge basins in representative land use areas (strip commercial, shopping-mall parking lot, major highway, low-density residential, and medium-density residential). Runoff:precipitation ratios indicate that all storm runoff is derived from precipitation on impervious surfaces in the drainage area, except during storms of high intensity or long duration, when additional runoff can be derived from precipitation on permeable surfaces. Lead was present in highway runoff in concentrations up to 3300 micrograms/L, and chloride was found in parking lot runoff concentrations up to 1,100 mg/L during winter, when salt is used for deicing. In the five composite stormwater samples and nine groundwater grab samples that were analyzed for 113 EPA-designated ' priority pollutants, ' four constituents were detected in concentrations exceeding New York State guidelines of 50 micrograms/L for an individual organic compound in drinking water: p-chloro-m-cresol (79 micrograms/L); 2 ,4-dimethylphenol (96 micrograms/L); 4-nitrophenol (58 micrograms/L); and methylene chloride (230 micrograms/L in either groundwater or stormwater at the highway basin). One stormwater sample and two groundwater samples exceeded New York State guidelines for total organic compounds in drinking water (100 micrograms/L). The presence of these constituents is attributed to contamination from point sources rather than to the quality of runoff from urban areas. The median number of indicator bacteria in stormwater ranged from 0.1 to 10 billion MPN/100 ml. Fecal coliforms and fecal streptococci increased by 1 to 2 orders of magnitude during the warm season. The use of recharge

  15. Structural mapping of Chikotra River basin in the Deccan Volcanic Province of Maharashtra, India from ground magnetic data

    Indian Academy of Sciences (India)

    S P Anand; Vinit C Erram; J D Patil; N J Pawar; Gautam Gupta; R A Suryavanshi

    2016-03-01

    Ground magnetic data collected over Chikotra River in the peripheral region of Deccan Volcanic Province (DVP) of Maharashtra located in Kolhapur district was analysed to throw light on the structural pattern and distribution of magnetic sources within the basin. In order to isolate the magnetic anomalies showing varying trend and amplitude, several transformation operations including wavelength filtering, and upward continuation has been carried out on the reduced to pole anomaly map. Qualitative interpretation of these products help identify the distribution of magnetic sources, viz., the Deccan basalts, dolerite intrusives and older greenstone and schist belts in the subsurface. Present study suggests that the Chikotra basin is composed of three structural units; a NE–SW unit superposed on deeper NW–SE unit with randomly distributed trap flows on the surface. One of the major outcome of the present study is the delineation of almost 900-m thick Proterozoic Kaladgi sediments below the Deccan trap flows. The NE–SW magnetic sources may probably represent intrusives into the Kaladgi sediments, while the deeper NW–SE trends are interpreted as the northward extension of the Dharwars, underneath theDeccan lava flows, that forms the basement for the deposition of Kaladgi sediments.

  16. Delineation of rockburst fractures with ground penetrating radar in the Witwatersrand Basin, South Africa

    CSIR Research Space (South Africa)

    Grodner, M

    2001-09-01

    Full Text Available into the excavation) is preconditioning. Ground Penetrating Radar (GPR) is used to quantify the change in fracture pattern with preconditioning. It is found that both the intensity and depth to which fracturing occurs ahead of the mining face increased, thereby...

  17. [Geochemistry of surface and ground water in the Lijang basin, Northwest Yunnan].

    Science.gov (United States)

    Pu, Tao; He, Yuan-Qing; Zhu, Guo-Feng; Zhang, Wei; Cao, Wei-Hong; Chang, Li; Wang, Chun-Feng

    2012-01-01

    The study focused on the chemical element compositions of river water and groundwater in Lijiang Basin. Water samples were collected in Baishui, Sanshu, Geji and Shuhe rivers in Lijiang Basin to analyze pH, conductivity and ion concentration, in order to understand the contributions of anthropogenic activities and rock weathering to river solutes. The results show that all water samples are mildly alkaline and are rich in Ca2+ and HCO3-, which account for 54.8 and 92.4 percentage of total ion concentration respectively. Obvious variations have been perceived during monsoon and westward wind season. The ion concentration of river water is lower than that of groundwater. With decreasing elevation, the ion concentrations are found to increase considerably in the study region. According to source study of major ions, water chemistry is mainly influenced by precipitation rock weathering and dissolving processes. In addition, precipitation is an important factor in monsoon seasons whereas the anthropogenic inputs have lead to light pollution on water in residential district.

  18. Surface and Ground Water Quality in Köprüören Basin (Kütahya), Turkey

    Science.gov (United States)

    Arslan, Şebnem; Çelik, Mehmet; Erdem Dokuz, Uǧur; Abadi Berhe, Berihu

    2014-05-01

    In this study, quality of the water resources in Köprüören Basin, located to the west of Kütahya city in western Anatolia, were investigated. The total catchment area of the basin is 275 km2 and it is located upstream of Kütahya and Eskişehir plains. Therefore, besides 6,000 people residing in the basin, a much larger population will be impacted by the quality of surface and groundwater resources. Groundwater occurs under confined conditions in the limestones of Pliocene units. Groundwater flow is from north to south and south to north towards Kocasu stream, which flows to Enne Dam. The surface and ground water quality in this area are negatively affected by the mining activities. In the northern part of the area, there are coal deposits present in Miocene Tunçbilek formation. Ground waters in contact with the coal deposits contain low concentrations of arsenic (up to 30 µg/l). In the southern part, the only silver deposit of Turkey is present, which is developed in metamorphic basement rocks, Early Miocene volcanics and Pliocene units near Gümüşköy (Gümüş means silver, köy means village in Turkish). The amount of silver manufactured annually in this silver plant is huge and comprises about 1% of the World's Silver Production. The wastes, enriched in cyanide, arsenic, stibnite, lead and zinc, are stored in waste pools and there is extensive leakage of these heavy metals from these pools. Therefore, surface waters, soils and plants in the affected areas contain high concentrations of arsenic, stibnite and lead. The As, Sb, Pb and Zn concentrations are up to 733 µg/l, 158 µg/l, 48 µg/l, and 286 µg/l in surface waters (in dry season), 6180 ppm, 410 ppm, 4180 ppm, 9950 ppm in soils and 809 ppm, 399 ppm, 800 ppm, 2217 ppm in plants, respectively. Today, most of the As, Sb, Pb and Zn are absorbed by the soils and only a small part are dissolved in water. However, conditions might change in future leading to desorption of these contaminants. Therefore

  19. Questa baseline and pre-mining ground-water quality investigation. 21. Hydrology and water balance of the Red River basin, New Mexico 1930-2004

    Science.gov (United States)

    Naus, Cheryl A.; McAda, Douglas P.; Myers, Nathan C.

    2006-01-01

    A study of the hydrology of the Red River Basin of northern New Mexico, including development of a pre- mining water balance, contributes to a greater understanding of processes affecting the flow and chemistry of water in the Red River and its alluvial aquifer. Estimates of mean annual precipitation for the Red River Basin ranged from 22.32 to 25.19 inches. Estimates of evapotranspiration for the Red River Basin ranged from 15.02 to 22.45 inches or 63.23 to 94.49 percent of mean annual precipitation. Mean annual yield from the Red River Basin estimated using regression equations ranged from 45.26 to 51.57 cubic feet per second. Mean annual yield from the Red River Basin estimated by subtracting evapotranspiration from mean annual precipitation ranged from 55.58 to 93.15 cubic feet per second. In comparison, naturalized 1930-2004 mean annual streamflow at the Red River near Questa gage was 48.9 cubic feet per second. Although estimates developed using regression equations appear to be a good representation of yield from the Red River Basin as a whole, the methods that consider evapotranspiration may more accurately represent yield from smaller basins that have a substantial amount of sparsely vegetated scar area. Hydrograph separation using the HYSEP computer program indicated that subsurface flow for 1930-2004 ranged from 76 to 94 percent of streamflow for individual years with a mean of 87 percent of streamflow. By using a chloride mass-balance method, ground-water recharge was estimated to range from 7 to 17 percent of mean annual precipitation for water samples from wells in Capulin Canyon and the Hansen, Hottentot, La Bobita, and Straight Creek Basins and was 21 percent of mean annual precipitation for water samples from the Red River. Comparisons of mean annual basin yield and measured streamflow indicate that streamflow does not consistently increase as cumulative estimated mean annual basin yield increases. Comparisons of estimated mean annual yield and

  20. A design study for the isolation of the 281-3H retention basin at the Savannah River Site using the viscous liquid barrier technology

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J.; Persoff, P.; Apps, J.; James, A.; Oldenburg, C.; McGrath, A.; Myer, L.; Pellerin, L.; Pruess, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1996-11-01

    This report is a description of the design study for a pilot-scale field demonstration of the Viscous Liquid Barrier (VLB) technology, a new subsurface containment technology for waste isolation using a new generation of barrier liquids. The demonstration site was Retention Basin 281-3H, a shallow catchment basin at the Savannah River Site, which is contaminated mainly by radionuclides ({sup 137}Cs, {sup 90}Sr, and {sup 238}Pu). The goals of the field demonstration were (a) to demonstrate the ability to create a continuous subsurface barrier in order to isolate the contaminants, and (b) to demonstrate the continuity, performance, and integrity of the barrier. The site was characterized, and preliminary hydraulic conductivity data were obtained from core samples. Based on the site characteristics and the functional requirements, a conceptual model was developed, the barrier specifications were defined, and lance injection was selected as the emplacement method. The injection strategy for the subsurface conditions at the site was determined using numerical simulations. An appropriate variant of Colloidal Silica (CS) was selected as the barrier liquid based on its relative insensitivity to interactions with the site soils, and the formulation for optimum site performance was determined. A barrier verification strategy, including hydraulic, pneumatic, tracer, and geophysical methods, was developed. A lance water injection test was conducted in order to obtain representative estimates of the hydraulic conductivity and its distribution for the design of the barrier emplacement. The water injection test demonstrated the lack of permeable zones for CS injection, and a decision not to proceed with the barrier emplacement was reached.

  1. First comparison between ground-based and satellite-borne measurements of tropospheric nitrogen dioxide in the Po basin

    Science.gov (United States)

    Petritoli, Andrea; Bonasoni, Paolo; Giovanelli, Giorgio; Ravegnani, Fabrizio; Kostadinov, Ivan; Bortoli, Daniele; Weiss, Andrea; Schaub, Daniel; Richter, Andreas; Fortezza, Francesco

    2004-08-01

    In this paper we present in situ and tropospheric column measurements of NO2 in the Po river basin (northern Italy). The aim of the work is to provide a quantitative comparison between ground-based and satellite measurements in order to assess the validity of spaceborne measurements for estimating NO2 emissions and evaluate possible climatic effects. The study is carried out using in situ chemiluminescent instrumentation installed in the Po valley, a UV/Vis spectrometer installed at Mount Cimone (44.2°N, 10.7°E, 2165 m asl), and tropospheric column measurements obtained from the Global Ozone Monitoring Experiment (GOME) spectrometer. Results show that the annual cycle in surface concentrations and also some specific pollution periods observed by the air quality network are well reproduced by the GOME measurements. However, tropospheric columns derived from the surface measurements assuming a well-mixed planetary boundary layer (PBL) are much larger than the GOME columns and also have a different seasonal cycle. This is interpreted as indication of a smaller and less variable mixing height for NO2 in the boundary layer. Under particular meteorological conditions the agreement between UV/Vis tropospheric column observations and GOME measurements in the Mount Cimone area is good (R2 = 0.9) with the mixing properties of the atmosphere being the most important parameter for a valid comparison of the measurements. However, even when the atmospheric mixing properties are optimal for comparison, the ratio between GOME and ground-based tropospheric column data may not be unity. It is demonstrated that the values obtained (less than 1) are related to the fraction of the satellite ground pixel occupied by the NO2 hot spot.

  2. Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003

    Science.gov (United States)

    Schaefer, Donald H.; Thiros, Susan A.; Rosen, Michael R.

    2005-01-01

    The carbonate-rock aquifer of the Great Basin is named for the thick sequence of Paleozoic limestone and dolomite with lesser amounts of shale, sandstone, and quartzite. It lies primarily in the eastern half of the Great Basin and includes areas of eastern Nevada and western Utah as well as the Death Valley area of California and small parts of Arizona and Idaho. The carbonate-rock aquifer is contained within the Basin and Range Principal Aquifer, one of 16 principal aquifers selected for study by the U.S. Geological Survey’s National Water- Quality Assessment Program.Water samples from 30 ground-water sites (20 in Nevada and 10 in Utah) were collected in the summer of 2003 and analyzed for major anions and cations, nutrients, trace elements, dissolved organic carbon, volatile organic compounds (VOCs), pesticides, radon, and microbiology. Water samples from selected sites also were analyzed for the isotopes oxygen-18, deuterium, and tritium to determine recharge sources and the occurrence of water recharged since the early 1950s.Primary drinking-water standards were exceeded for several inorganic constituents in 30 water samples from the carbonate-rock aquifer. The maximum contaminant level was exceeded for concentrations of dissolved antimony (6 μg/L) in one sample, arsenic (10 μg/L) in eleven samples, and thallium (2 μg/L) in one sample. Secondary drinking-water regulations were exceeded for several inorganic constituents in water samples: chloride (250 mg/L) in five samples, fluoride (2 mg/L) in two samples, iron (0.3 mg/L) in four samples, manganese (0.05 mg/L) in one sample, sulfate (250 mg/L) in three samples, and total dissolved solids (500 mg/L) in seven samples.Six different pesticides or metabolites were detected at very low concentrations in the 30 water samples. The lack of VOC detections in water sampled from most of the sites is evidence thatVOCs are not common in the carbonate-rock aquifer. Arsenic values for water range from 0.7 to 45.7

  3. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  4. Long Term Monitoring of Ground Motions in Upper Silesia Coal Basin (USCB) Using Satellite Radar Interferometry

    Science.gov (United States)

    Graniczny, Marek; Przylucka, Maria; Kowalski, Zbigniew

    2016-08-01

    Subsidence hazard and risk within the USCB are usually connected with the deep coal mining. In such cases, the surface becomes pitted with numerous collapse cavities or basins which depth may even reach tens of meters. The subsidence is particularly dangerous because of causing severe damage to gas and water pipelines, electric cables, and to sewage disposal systems. The PGI has performed various analysis of InSAR data in this area, including all three SAR bands (X, C and L) processed by DInSAR, PSInSAR and SqueeSAR techniques. These analyses of both conventional and advanced DInSAR approaches have proven to be effective to detect the extent and the magnitude of mining subsidence impact on urban areas. In this study an analysis of two series of subsequent differential interferograms obtained in the DInSAR technique are presented. SAR scenes are covering two periods and were acquired by two different satellites: ALOS-P ALSAR data from 22/02/2007- 27/05/2008 and TerraSAR-X data from 05/07/2011-21/06/2012. The analysis included determination of the direction and development of subsidence movement in relation to the mining front and statistic comparison between range and value of maximum subsidence detected for each mining area. Detailed studies were performed for Bobrek-Centrum mining area. They included comparison of mining fronts and location of the extracted coal seams with the observed subsidence on ALOS-P ALSAR InSAR interferograms. The data can help in estimation not only the range of the subsidence events, but also its value, direction of changes and character of the motion.

  5. Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico

    Science.gov (United States)

    Pool, D.R.; Dickinson, Jesse E.

    2007-01-01

    A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.

  6. Novel approach for quantitatively estimating element retention and material balances in soil profiles of recharge basins used for wastewater reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Eshel, Gil, E-mail: eshelgil@gmail.com [Soil Erosion Research Station, Ministry of Agriculture and Rural Development, HaMaccabim Road, Rishon-Lezion. P.O.B. 30, Beit-Dagan, 50250 (Israel); Lin, Chunye [School of Environment, Beijing Normal University, 19 Xinjiekouwaidajie St., Beijing, 100875 (China); Banin, Amos [Department of Soil and Water Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot (Israel)

    2015-01-01

    We investigated changes in element content and distribution in soil profiles in a study designed to monitor the geochemical changes accruing in soil due to long-term secondary effluent recharge, and its impact on the sustainability of the Soil Aquifer Treatment (SAT) system. Since the initial elemental contents of the soils at the studied site were not available, we reconstructed them using scandium (Sc) as a conservative tracer. By using this approach, we were able to produce a mass-balance for 18 elements and evaluate the geochemical changes resulting from 19 years of effluent recharge. This approach also provides a better understanding of the role of soils as an adsorption filter for the heavy metals contained in the effluent. The soil mass balance suggests 19 years of effluent recharge cause for a significant enrichment in Cu, Cr, Ni, Zn, Mg, K, Na, S and P contents in the upper 4 m of the soil profile. Combining the elements lode record during the 19 years suggest that Cr, Ni, and P inputs may not reach the groundwater (20 m deep), whereas the other elements may. Conversely, we found that 58, 60, and 30% of the initial content of Mn, Ca and Co respectively leached from the upper 2-m of the soil profile. These high percentages of Mn and Ca depletion from the basin soils may reduce the soil's ability to buffer decreases in redox potential pe and pH, respectively, which could initiate a reduction in the soil's holding capacity for heavy metals. - Highlights: • Sc proved as a reliable tracer for reconstructing the initial soil elemental contents. • Mass-balance for 18 elements resulting from 19 years of SAT operation is presented. • After 19 years of operation Cr, Ni, and P inputs may not reach the groundwater. • The inputs of other 15 elements may reach the groundwater. • 58, 60, 30% of initial soil content of Mn, Ca, Co res. leached from the upper 2-m.

  7. Hydrogeology, water quality, water budgets, and simulated responses to hydrologic changes in Santa Rosa and San Simeon Creek ground-water basins, San Luis Obispo County, California

    Science.gov (United States)

    Yates, Eugene B.; Van Konyenburg, Kathryn M.

    1998-01-01

    Santa Rosa and San Simeon Creeks are underlain by thin, narrow ground-water basins that supply nearly all water used for local agricultural and municipal purposes. The creeks discharge to the Pacific Ocean near the northwestern corner of San Luis Obispo County, California. The basins contain heterogeneous, unconsolidated alluvial deposits and are underlain by relatively impermeable bedrock. Both creeks usually stop flowing during the summer dry season, and most of the pumpage during that time is derived from ground-water storage. Annual pumpage increased substantially during 1956?88 and is now a large fraction of basin storage capacity. Consequently, dry-season water levels are lower and the water supply is more vulnerable to drought. The creeks are the largest source of ground-water recharge, and complete basin recharge can occur within the first few weeks of winter streamflow. Agricultural and municipal pumpages are the largest outflows and cause dry-season water-level declines throughout the San Simeon Basin. Pumping effects are more localized in the Santa Rosa Basin because of subsurface flow obstructions. Even without pumpage, a large quantity of water naturally drains out of storage at the upper ends of the basins during the dry season. Ground water is more saline in areas close to the coast than in inland areas. Although seawater intrusion has occurred in the past, it probably was not the cause of high salinity in 1988?89. Ground water is very hard, and concentrations of dissolved solids, chloride, iron, and manganese exceed drinking-water standards in some locations. Probability distributions of streamflow were estimated indirectly from a 120-year rainfall record because the periods of record for local stream-gaging stations were wetter than average. Dry-season durations with recurrence intervals between 5 and 43 years are likely to dry up some wells but not cause seawater intrusion. A winter with no streamflow is likely to occur about every 32 years and to

  8. Subsurface structure of the East Bay Plain ground-water basin: San Francisco Bay to the Hayward fault, Alameda County, California

    Science.gov (United States)

    Catchings, R.D.; Borchers, J.W.; Goldman, M.R.; Gandhok, G.; Ponce, D.A.; Steedman, C.E.

    2006-01-01

    The area of California between the San Francisco Bay, San Pablo Bay, Santa Clara Valley, and the Diablo Ranges (East Bay Hills), commonly referred to as the 'East Bay', contains the East Bay Plain and Niles Cone ground-water basins. The area has a population of 1.46 million (2003 US Census), largely distributed among several cities, including Alameda, Berkeley, Fremont, Hayward, Newark, Oakland, San Leandro, San Lorenzo, and Union City. Major known tectonic structures in the East Bay area include the Hayward Fault and the Diablo Range to the east and a relatively deep sedimentary basin known as the San Leandro Basin beneath the eastern part of the bay. Known active faults, such as the Hayward, Calaveras, and San Andreas pose significant earthquake hazards to the region, and these and related faults also affect ground-water flow in the San Francisco Bay area. Because most of the valley comprising the San Francisco Bay area is covered by Holocene alluvium or water at the surface, our knowledge of the existence and locations of such faults, their potential hazards, and their effects on ground-water flow within the alluvial basins is incomplete. To better understand the subsurface stratigraphy and structures and their effects on ground-water and earthquake hazards, the U.S. Geological Survey (USGS), in cooperation with the East Bay Municipal Utility District (EBMUD), acquired a series of high-resolution seismic reflection and refraction profiles across the East Bay Plain near San Leandro in June 2002. In this report, we present results of the seismic imaging investigations, with emphasis on ground water.

  9. Evaluation of the toxicological properties of ground- and surface-water samples from the Aral Sea Basin

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, K. [University of Salzburg, Department of Cell Biology, Hellbrunnerstr. 34, A-5020 Salzburg (Austria); Erdinger, L. [University of Heidelberg, Department for Hygiene and Medical Microbiology, Heidelberg (Germany); Ingel, F. [Russian Academy of Medical Sciences, A.N.Sysin Institute of Human Ecology and Environmental Hygiene, Moscow (Russian Federation); Khussainova, S. [Scientific Center of Pediatrics and Chrildren' s Surgery, Almaty (Kazakhstan); Utegenova, E. [Kazakh Sanitary-Epidemiological Station, Almaty (Kazakhstan); Bresgen, N. [University of Salzburg, Department of Cell Biology, Hellbrunnerstr. 34, A-5020 Salzburg (Austria); Eckl, P.M. [University of Salzburg, Department of Cell Biology, Hellbrunnerstr. 34, A-5020 Salzburg (Austria)]. E-mail: peter.eckl@sbg.ac.at

    2007-03-01

    In order to determine whether there is a potential health risk associated with the water supply in the Aral Sea Basin, ground- and surface-water samples were collected in and around Aralsk and from the Aral Sea in 2002. Water samples from Akchi, a small town close to Almaty, served as controls. Bioassays with different toxicological endpoints were employed to assess the general toxicological status. Additionally, the samples were analysed for microbial contamination. The samples were tested in the primary hepatocyte assay for their potential to induce micronuclei and chromosomal aberrations as cumulative indicators for genotoxicity. In parallel, the effects on cell proliferation evidenced by mitotic index and cytotoxicity such as the appearance of necrotic and apoptotic cells, were determined. Furthermore, samples were examined using the Microtox assay for general toxicity. Chemical analysis according to European regulations was performed and soil and water samples were analysed for DDT and DDE. The results obtained indicated no increased cyto- or genotoxic potential of the water samples, nor levels of DDT or DDE exceeding the thresholds levels suggested by WHO. Our data therefore do not support the hypothesis that the contamination of the drinking water in and around Aralsk is responsible for the health effects previously described such as increased rates of liver disease and in particular liver cancer. Microbiological analysis, however, revealed the presence of contamination in most samples analysed.

  10. Ground-based radar reflectivity mosaic of mei-yu precipitation systems over the Yangtze River-Huaihe River basins

    Science.gov (United States)

    Luo, Yali; Qian, Weimiao; Gong, Yu; Wang, Hongyan; Zhang, Da-Lin

    2016-11-01

    The 3D radar reflectivity produced by a mosaic software system, with measurements from 29 operational weather radars in the Yangtze River-Huaihe River Basins (YRHRB) during the mei-yu season of 2007, is compared to coincident TRMM PR observations in order to evaluate the value of the ground-based radar reflectivity mosaic in characterizing the 3D structures of mei-yu precipitation. Results show reasonable agreement in the composite radar reflectivity between the two datasets, with a correlation coefficient of 0.8 and a mean bias of -1 dB. The radar mosaic data at constant altitudes are reasonably consistent with the TRMM PR observations in the height range of 2-5 km, revealing essentially the same spatial distribution of radar echo and nearly identical histograms of reflectivity. However, at altitudes above 5 km, the mosaic data overestimate reflectivity and have slower decreasing rates with height compared to the TRMM PR observations. The areas of convective and stratiform precipitation, based on the mosaic reflectivity distribution at 3-km altitude, are highly correlated with the corresponding regions in the TRMM products, with correlation coefficients of 0.92 and 0.97 and mean relative differences of -7.9% and -2.5%, respectively. Finally, the usefulness of the mosaic reflectivity at 3-km altitude at 6-min intervals is illustrated using a mesoscale convective system that occurred over the YRHRB.

  11. Shallow ground-water quality beneath cropland in the Red River of the North Basin, Minnesota and North Dakota, 1993-95

    Science.gov (United States)

    Cowdery, Timothy K.

    1997-01-01

    During 1993-95, the agriculture on two sandy, surficial aquifers in the Red River of the North Basin affected the quality of shallow ground water in each aquifer differently. The Sheyenne Delta aquifer, in the western part of the basin, had land-use, hydrogeological, and rainfall characteristics that allowed few agricultural chemicals to reach or remain in the shallow ground water. The Otter Tail outwash aquifer, in the eastern part of the basin, had characteristics that caused significant amounts of nutrients and pesticides to reach and remain in the shallow ground water. Shallow ground water from both aquifers is dominated by calcium, magnesium, and bicarbonate ions. During the respective sampling periods, water from the Sheyenne Delta aquifer was mostly anoxic and water from the Otter Tail outwash aquifer had a median dissolved oxygen concentration of 3.6 mg/L (milligrams per liter). The median nitrate concentration was 0.03 mg/L as nitrogen (mg/L-N) in shallow ground water from the Sheyenne Delta aquifer and 6.1 mg/L-N in that from the Otter Tail outwash aquifer. Of 18 herbicides and 4 insecticides commonly used in the aquifer areas and for which analyses were done, 5 herbicides and 1 herbicide metabolite were detected in the shallow ground water from the Sheyenne Delta aquifer and 8 herbicides and 2 metabolites were detected in that from the Otter Tail outwash aquifer. The total herbicide concentration median was less than the detection limit in shallow ground water from the Sheyenne Delta aquifer and 0.023 μg/L (micorgrams per liter) in that from the Otter Tail outwash aquifer. Triazine herbicides were the most commonly detected herbicides and were detected at the highest concentrations in the shallow ground water from both study areas. One sample from the Sheyenne Delta aquifer contained a high concentration of picloram. Agricultural chemicals in both aquifers were stratified vertically and their concentration correlated inversely with ground-water age. The

  12. Structure and diversity of ground mesofauna inUlmus and Populus consortia in the industrial areas of mining and smelting complex of krivyi rig basin

    Directory of Open Access Journals (Sweden)

    V. V. Kachinskaya

    2010-05-01

    Full Text Available The structure and biological diversity of ground mesofauna on a consortium level of organisation of ecosystems are considered. Indicators of structural organisation and biodiversity of ground mesofauna were analised in Ulmus and Populus consortia in the conditions of industrial territories of mining and smelting complex of Krivyi Rig Basin. It is established that taxonomical structure of ground mesofauna is characterised by insignificant number and quantity of taxonomical groups. Prevalence of hortobionts and herpetobionts in morpho-ecological structure of the community testifies to their attachment to consortium’s determinants and influence of steppe climate on its structure. Dominance of phytophages and polyphages in trophic structure is caused by a combination of consortium determinants specificity and «a zone source» of the fauna formations. The structural organisation of ground mesofauna in consortia of Ulmus and Populus in the conditions of industrial sites is characterised by simplified taxonomical structure with low biodiversity at all levels.

  13. The Italian Project S2 - Task 4:Near-fault earthquake ground motion simulation in the Sulmona alluvial basin

    Science.gov (United States)

    Stupazzini, M.; Smerzini, C.; Cauzzi, C.; Faccioli, E.; Galadini, F.; Gori, S.

    2009-04-01

    Recently the Italian Department of Civil Protection (DPC), in cooperation with Istituto Nazionale di Geofisica e Vulcanologia (INGV) has promoted the 'S2' research project (http://nuovoprogettoesse2.stru.polimi.it/) aimed at the design, testing and application of an open-source code for seismic hazard assessment (SHA). The tool envisaged will likely differ in several important respects from an existing international initiative (Open SHA, Field et al., 2003). In particular, while "the OpenSHA collaboration model envisions scientists developing their own attenuation relationships and earthquake rupture forecasts, which they will deploy and maintain in their own systems", the main purpose of S2 project is to provide a flexible computational tool for SHA, primarily suited for the needs of DPC, which not necessarily are scientific needs. Within S2, a crucial issue is to make alternative approaches available to quantify the ground motion, with emphasis on the near field region. The SHA architecture envisaged will allow for the use of ground motion descriptions other than those yielded by empirical attenuation equations, for instance user generated motions provided by deterministic source and wave propagation simulations. In this contribution, after a brief presentation of Project S2, we intend to illustrate some preliminary 3D scenario simulations performed in the alluvial basin of Sulmona (Central Italy), as an example of the type of descriptions that can be handled in the future SHA architecture. In detail, we selected some seismogenic sources (from the DISS database), believed to be responsible for a number of destructive historical earthquakes, and derive from them a family of simplified geometrical and mechanical source models spanning across a reasonable range of parameters, so that the extent of the main uncertainties can be covered. Then, purely deterministic (for frequencies Element (SE) method, extensively published by Faccioli and his co-workers, and

  14. Geohydrology and simulation of ground-water flow in the Red Clay Creek Basin, Chester County, Pennsylvania, and New Castle County, Delaware

    Science.gov (United States)

    Vogel, K.L.; Reif, A.G.

    1993-01-01

    The 54-square-mile Red Clay Creek Basin, located in the lower Delaware River Basin, is underlain primarily by metamorphic rocks that range from Precambrian to Lower Paleozoic in age. Ground water flows through secondary openings in fractured crystalline rock and through primary openings below the water table in the overlying saprolite. Secondary porosity and permeability vary with hydrogeologic unit, topographic setting, and depth. Thirty-nine percent of the water-bearing zones are encountered within 100 feet of the land surface, and 79 percent are within 200 feet. The fractured crystalline rock and overlying saprolite act as a single aquifer under unconfined conditions. The water table is a subdued replica of the land surface. Local ground-water flow systems predominate in the basin, and natural ground-water discharge is to streams, comprising 62 to 71 percent of streamflow. Water budgets for 1988-90 for the 45-square-mile effective drainage area above the Woodale, Del., streamflow-measurement station show that annual precipitation ranged from 43.59 to 59.14 inches and averaged 49.81 inches, annual streamflow ranged from 15.35 to 26.33 inches and averaged 20.24 inches, and annual evapotranspiration ranged from 27.87 to 30.43 inches and averaged 28.98 inches. The crystalline rocks of the Red Clay Creek Basin were simulated two-dimensionally as a single aquifer under unconfined conditions. The model was calibrated for short-term steady-state conditions on November 2, 1990. Recharge was 8.32 inches per year. Values of aquifer hydraulic conductivity in hillside topographic settings ranged from 0.07 to 2.60 feet per day. Values of streambed hydraulic conductivity ranged from 0.08 to 26.0 feet per day. Prior to simulations where ground-water development was increased, the calibrated steady-state model was modified to approximate long-term average conditions in the basin. Base flow of 11.98 inches per year and a ground-water evapotranspiration rate of 2.17 inches per

  15. Quality-control results for ground-water and surface-water data, Sacramento River Basin, California, National Water-Quality Assessment, 1996-1998

    Science.gov (United States)

    Munday, Cathy; Domagalski, Joseph L.

    2003-01-01

    Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near

  16. Above-ground sulfur cycling in adjacent coniferous and deciduous forest and watershed sulfur retention in the Georgia Piedmont, U.S.A.

    Science.gov (United States)

    Cappellato, R.; Peters, N.E.; Meyers, T.P.

    1998-01-01

    Atmospheric deposition and above-ground cycling of sulfur (S) were evaluated in adjacent deciduous and coniferous forests at the Panola Mountain Research Watershed (PMRW), Georgia U.S.A. Total atmospheric S deposition (wet plus dry) was 12.9 and 12.7 kg ha-1 yr-1 for the deciduous and coniferous forests, respectively, from October 1987 through November 1989. Dry deposition contributes more than 40% to the total atmospheric S deposition, and SO2 is the major source (~55%) of total dry S deposition. Dry deposition to these canopies is similar to regional estimates suggesting that 60-km proximity to emission sources does not noticeably impact dry deposition at PMRW. Below-canopy S fluxes (throughfall plus stemflow) in each forest are 37% higher annually in the deciduous forest than in the coniferous forest. An excess in below-canopy S flux in the deciduous forest is attributed to leaching and higher dry deposition than in the coniferous forest. Total S deposition to the forest floor by throughfall, stemflow and litterfall was 2.4 and 2.8 times higher in the deciduous and coniferous forests, respectively, than annual S growth requirement for foliage and wood. Although A deposition exceeds growth requirement, more than 95% of the total atmospheric S deposition was retained by the watershed in 1988 and 1989. The S retention at PMRW is primarily due to SO2+4 adsorption by iron oxides and hydroxides in watershed soils. The S content in while oak and loblolly pine boles have increased more than 200% in the last 20 yr, possibly reflecting increases in emissions.

  17. Geohydrology and numerical simulation of ground-water flow in the central Virgin River basin of Iron and Washington Countries, Utah

    Science.gov (United States)

    Heilweil, V.M.; Freethey, G.W.; Wilkowske, C.D.; Stolp, B.J.; Wilberg, D.E.

    2000-01-01

    Because rapid growth of communities in Washington and Iron Counties, Utah, is expected to cause an increase in the future demand for water resources, a hydrologic investigation was done to better understand ground-water resources within the central Virgin River basin. This study focused on two of the principal ground-water reservoirs within the basin: the upper Ash Creek basin ground-water system and the Navajo and Kayenta aquifer system. The ground-water system of the upper Ash Creek drainage basin consists of three aquifers: the uppermost Quaternary basin-fill aquifer, the Tertiary alluvial-fan aquifer, and the Tertiary Pine Valley monzonite aquifer. These aquifers are naturally bounded by the Hurricane Fault and by drainage divides. On the basis of measurements, estimates, and numerical simulations of reasonable values for all inflow and outflow components, total water moving through the upper Ash Creek drainage basin ground-water system is estimated to be about 14,000 acre-feet per year. Recharge to the upper Ash Creek drainage basin ground-water system is mostly from infiltration of precipitation and seepage from ephemeral and perennial streams. The primary source of discharge is assumed to be evapotranspiration; however, subsurface discharge near Ash Creek Reservoir also may be important. The character of two of the hydrologic boundaries of the upper Ash Creek drainage basin ground-water system is speculative. The eastern boundary provided by the Hurricane Fault is assumed to be a no-flow boundary, and a substantial part of the ground-water discharge from the system is assumed to be subsurface outflow beneath Ash Creek Reservoir along the southern boundary. However, these assumptions might be incorrect because alternative numerical simulations that used different boundary conditions also proved to be feasible. The hydrogeologic character of the aquifers is uncertain because of limited data. Difference in well yield indicate that there is considerable

  18. Teale Ground Water Basins

    Data.gov (United States)

    California Department of Resources — California Spatial Information System (CaSIL) is a project designed to improve access to geo-spatial and geo-spatial related data information throughout the state of...

  19. New determination of the shape of the Seattle basin, Washington from gravity and magnetic data: Implications for seismic ground motion and crustal faults

    Science.gov (United States)

    Anderson, M. L.; Waters, K.; Dragovich, J. D.; Blakely, R. J.; Wells, R. E.

    2015-12-01

    . The new data also define local minima in basin depth that could complicate wavefields passing through it. The eventual goal of this work is generation of new simulations of ground motion amplification within the basin from both subduction zone events and crustal earthquakes on previously known and the newly-characterized faults.

  20. A ground-water model of the upper San Pedro Basin from the Mexico-United States International Boundary to Fairbank, Arizona

    Science.gov (United States)

    Freethey, G.W.

    1982-01-01

    A definition of the hydrologic system of the upper San Pedro basin was obtained by developing a numerical ground-water model to evaluate a conceptual model of the system. Information on hydraulic properties of the basin fill, recharge from bordering mountain ranges, discharge by evapotranspiration, and exchange of water between aquifer and stream was available from previous measurements or estimates. The steady-state calibration procedure and subsequent transient simulations demonstrated that the original conceptualization can be reasonably simulated. An analysis of model sensitivity to increases and decreases in certain hydraulic properties indicated a low sensitivity to aquifer anisotropy and a low to moderate sensitivity to stream leakance and evapotranspiration rate. An analysis to investigate the effects of generalizing aquifer conductivity and recharge showed that flow components and water-level response to stress could be simulated adequately but that steady-state water-level conditions could not. During equilibrium conditions, recharge to and discharge from the basin was about 16,500 acre-feet per year. Modeling results indicated that by 1978 the storage depletion rate had reached 5,600 acre-feet per year resulting from a ground-water withdrawal rate of 10,500 acre-feet per year. (USGS)

  1. Hydrogeology and simulation of ground-water flow in the thick regolith-fractured crystalline rock aquifer system of Indian Creek basin, North Carolina

    Science.gov (United States)

    Daniel, Charles C.; Smith, Douglas G.; Eimers, Jo Leslie

    1997-01-01

    The Indian Creek Basin in the southwestern Piedmont of North Carolina is one of five type areas studied as part of the Appalachian Valleys-Piedmont Regional Aquifer-System analysis. Detailed studies of selected type areas were used to quantify ground-water flow characteristics in various conceptual hydrogeologic terranes. The conceptual hydrogeologic terranes are considered representative of ground-water conditions beneath large areas of the three physiographic provinces--Valley and Ridge, Blue Ridge, and Piedmont--that compose the Appalachian Valleys-Piedmont Regional Aquifer-System Analysis area. The Appalachian Valleys-Piedmont Regional Aquifer-System Analysis study area extends over approximately 142,000 square miles in 11 states and the District of Columbia in the Appalachian highlands of the Eastern United States. The Indian Creek type area is typical of ground-water conditions in a single hydrogeologic terrane that underlies perhaps as much as 40 percent of the Piedmont physiographic province. The hydrogeologic terrane of the Indian Creek model area is one of massive and foliated crystalline rocks mantled by thick regolith. The area lies almost entirely within the Inner Piedmont geologic belt. Five hydrogeologic units occupy major portions of the model area, but statistical tests on well yields, specific capacities, and other hydrologic characteristics show that the five hydrogeologic units can be treated as one unit for purposes of modeling ground-water flow. The 146-square-mile Indian Creek model area includes the Indian Creek Basin, which has a surface drainage area of about 69 square miles. The Indian Creek Basin lies in parts of Catawba, Lincoln, and Gaston Counties, North Carolina. The larger model area is based on boundary conditions established for digital simulation of ground-water flow within the smaller Indian Creek Basin. The ground-water flow model of the Indian Creek Basin is based on the U.S. Geological Survey?s modular finite

  2. Retention half times in the skeleton of plutonium and 90Sr from above-ground nuclear tests: a retrospective study of the Swiss population.

    Science.gov (United States)

    Froidevaux, Pascal; Bochud, François; Haldimann, Max

    2010-07-01

    Plutonium and (90)Sr are considered to be among the most radiotoxic nuclides produced by the nuclear fission process. In spite of numerous studies on mammals and humans there is still no general agreement on the retention half time of both radionuclides in the skeleton in the general population. Here we determined plutonium and (90)Sr in human vertebrae in individuals deceased between 1960 and 2004 in Switzerland. Plutonium was measured by sensitive SF-ICP-MS techniques and (90)Sr by radiometric methods. We compared our results to the ones obtained for other environmental compartments to reveal the retention half time of NBT fallout (239)Pu and (90)Sr in trabecular bones of the Swiss population. Results show that plutonium has a retention half time of 40+/-14 years. In contrast (90)Sr has a shorter retention half time of 13.5+/-1.0 years. Moreover (90)Sr retention half time in vertebrae is shown to be linked to the retention half time in food and other environmental compartments. These findings demonstrate that the renewal of the vertebrae through calcium homeostatic control is faster for (90)Sr excretion than for plutonium excretion. The precise determination of the retention half time of plutonium in the skeleton will improve the biokinetic model of plutonium metabolism in humans.

  3. Hydrogeology and steady-state numerical simulation of groundwater flow in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    Science.gov (United States)

    Arnold, L.R.

    2010-01-01

    The Lost Creek Designated Ground Water Basin (Lost Creek basin) is an important alluvial aquifer for irrigation, public supply, and domestic water uses in northeastern Colorado. Beginning in 2005, the U.S. Geological Survey, in cooperation with the Lost Creek Ground Water Management District and the Colorado Water Conservation Board, collected hydrologic data and constructed a steady-state numerical groundwater flow model of the Lost Creek basin. The model builds upon the work of previous investigators to provide an updated tool for simulating the potential effects of various hydrologic stresses on groundwater flow and evaluating possible aquifer-management strategies. As part of model development, the thickness and extent of regolith sediments in the basin were mapped, and data were collected concerning aquifer recharge beneath native grassland, nonirrigated agricultural fields, irrigated agricultural fields, and ephemeral stream channels. The thickness and extent of regolith in the Lost Creek basin indicate the presence of a 2- to 7-mile-wide buried paleovalley that extends along the Lost Creek basin from south to north, where it joins the alluvial valley of the South Platte River valley. Regolith that fills the paleovalley is as much as about 190 ft thick. Average annual recharge from infiltration of precipitation on native grassland and nonirrigated agricultural fields was estimated by using the chloride mass-balance method to range from 0.1 to 0.6 inch, which represents about 1-4 percent of long-term average precipitation. Average annual recharge from infiltration of ephemeral streamflow was estimated by using apparent downward velocities of chloride peaks to range from 5.7 to 8.2 inches. Average annual recharge beneath irrigated agricultural fields was estimated by using passive-wick lysimeters and a water-balance approach to range from 0 to 11.3 inches, depending on irrigation method, soil type, crop type, and the net quantity of irrigation water applied

  4. Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders

    Directory of Open Access Journals (Sweden)

    Bidegaray-Batista Leticia

    2011-10-01

    Full Text Available Abstract Background The major islands of the Western Mediterranean--Corsica, Sardinia, and the Balearic Islands--are continental terrenes that drifted towards their present day location following a retreat from their original position on the eastern Iberian Peninsula about 30 million years ago. Several studies have taken advantage of this well-dated geological scenario to calibrate molecular rates in species for which distributions seemed to match this tectonic event. Nevertheless, the use of external calibration points has revealed that most of the present-day fauna on these islands post-dated the opening of the western Mediterranean basin. In this study, we use sequence information of the cox1, nad1, 16S, L1, and 12S mitochondrial genes and the 18S, 28S, and h3 nuclear genes, along with relaxed clock models and a combination of biogeographic and fossil external calibration points, to test alternative historical scenarios of the evolutionary history of the ground-dweller spider genus Parachtes (Dysderidae, which is endemic to the region. Results We analyse 49 specimens representing populations of most Parachtes species and close relatives. Our results reveal that both the sequence of species formation in Parachtes and the estimated divergence times match the geochronological sequence of separation of the main islands, suggesting that the diversification of the group was driven by Tertiary plate tectonics. In addition, the confirmation that Parachtes diversification matches well-dated geological events provides a model framework to infer substitution rates of molecular markers. Divergence rates estimates ranged from 3.5% My-1 (nad1 to 0.12% My-1 (28S, and the average divergence rate for the mitochondrial genes was 2.25% My-1, very close to the "standard" arthropod mitochondrial rate (2.3% My-1. Conclusions Our study provides the first unequivocal evidence of terrestrial endemic fauna of the major western Mediterranean islands, whose origin can

  5. Low-Level Volatile Organic Compounds in Active Public Supply Wells as Ground-Water Tracers in the Los Angeles Physiographic Basin, California, 2000

    Science.gov (United States)

    Shelton, Jennifer L.; Burow, Karen R.; Belitz, Kenneth; Dubrovsky, Neil M.; Land, Michael; Gronberg, JoAnn

    2001-01-01

    Data were collected to evaluate the use of low-level volatile organic compounds (VOC) to assess the vulnerability of public supply wells in the Los Angeles physiographic basin. Samples of untreated ground water from 178 active public supply wells in the Los Angeles physiographic basin show that VOCs were detected in 61 percent of the ground-water samples; most of these detections were low, with only 29 percent above 1 mg/L (microgram per liter). Thirty-nine of the 86 VOCs analyzed were detected in at least one sample, and 11 VOCs were detected in 7 percent or more of the samples. The six most frequently detected VOCs were trichloromethane (chloroform) (46 percent); trichloroethene (TCE) (28 percent); tetrachloro-ethene (PCE) (19 percent); methyl tert-butyl ether (MTBE) (14 percent); 1,1-dichloroethane (11 percent); and 1,1,1-trichloroethane (TCA) (11 percent). These VOCs were also the most frequently detected VOCs in ground water representative of a wide range of hydrologically conditions in urban areas nationwide. Only two VOCs (TCE and PCE) exceeded state and federal primary maximum contaminant levels (MCL) for drinking water in a total of seven samples. Because samples were collected prior to water treatment, sample concentrations do not represent the concentrations entering the drinking-water system.Ground water containing VOCs may be considered to be a tracer of postindustrial-aged water-water that was recharged after the onset of intense urban development. The overall distribution of VOC detections is related to the hydrological and the engineered recharge facilities in the Coastal Los Angeles Basin and the Coastal Santa Ana Basin that comprise the Los Angeles physiographic basin. Most of the ground-water recharge occurs at engineered recharge facilities in the generally coarse-grained northeastern parts of the study area (forebay areas). Ground-water recharge from the land surface is minimal in the southwestern part of the basins, distal from the recharge

  6. Ground-water flow, geochemistry, and effects of agricultural practices on nitrogen transport at study sites in the Piedmont and Coastal Plain physiographic provinces, Patuxent River basin, Maryland

    Science.gov (United States)

    McFarland, Randolph E.

    1997-01-01

    In an effort to improve water quality in Chesapeake Bay, agricultural practices are being promoted that are intended to reduce contaminant transport to the Bay. The effects of agricultural practices on nitrogen transport were assessed at two 10-acre study sites in the Patuxent River basin, Maryland, during 1986-92. Nitrogen load was larger in ground water than in surface runoff at both sites. At the study site in the Piedmont Province, nitrogen load in ground water decreased from 12 to 6 (lb/acre)/yr (pound per acre per year) as corn under no-till cultivation was replaced by no-till soybeans, continuous alfalfa, and contoured strip crops alternated among corn, alfalfa, and soybeans. At the study site in the Coastal Plain Province, no-till soybeans resulted in a nitrogen load in ground water of 12.55 (lb/acre)/yr, whereas conventional-till soybeans resulted in a nitrogen load in ground water of 11.51 (lb/acre)/yr.

  7. Simulation of ground-water flow and evaluation of water-management alternatives in the upper Charles River basin, eastern Massachusetts

    Science.gov (United States)

    DeSimone, Leslie A.; Walter, Donald A.; Eggleston, John R.; Nimiroski, Mark T.

    2002-01-01

    Ground water is the primary source of drinking water for towns in the upper Charles River Basin, an area of 105 square miles in eastern Massachusetts that is undergoing rapid growth. The stratified-glacial aquifers in the basin are high yield, but also are thin, discontinuous, and in close hydraulic connection with streams, ponds, and wetlands. Water withdrawals averaged 10.1 million gallons per day in 1989?98 and are likely to increase in response to rapid growth. These withdrawals deplete streamflow and lower pond levels. A study was conducted to develop tools for evaluating water-management alternatives at the regional scale in the basin. Geologic and hydrologic data were compiled and collected to characterize the ground- and surface-water systems. Numerical flow modeling techniques were applied to evaluate the effects of increased withdrawals and altered recharge on ground-water levels, pond levels, and stream base flow. Simulation-optimization methods also were applied to test their efficacy for management of multiple water-supply and water-resource needs. Steady-state and transient ground-water-flow models were developed using the numerical modeling code MODFLOW-2000. The models were calibrated to 1989?98 average annual conditions of water withdrawals, water levels, and stream base flow. Model recharge rates were varied spatially, by land use, surficial geology, and septic-tank return flow. Recharge was changed during model calibration by means of parameter-estimation techniques to better match the estimated average annual base flow; area-weighted rates averaged 22.5 inches per year for the basin. Water withdrawals accounted for about 7 percent of total simulated flows through the stream-aquifer system and were about equal in magnitude to model-calculated rates of ground-water evapotranspiration from wetlands and ponds in aquifer areas. Water withdrawals as percentages of total flow varied spatially and temporally within an average year; maximum values were

  8. 1:500,000-scale dissolved solids in ground water in the Basin and Range Province of Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of 1:500,000-scale areas of dissolved solids in the Basin and Range Province of Nevada. The sources of this data set are sheets 3 and 4 of a...

  9. Airborne and ground-based transient electromagnetic mapping of groundwater salinity in the Machile–Zambezi Basin, southwestern Zambia

    DEFF Research Database (Denmark)

    Chongo, Mkhuzo; Vest Christiansen, Anders; Tembo, Alice;

    2015-01-01

    is an efficient tool for mapping groundwater quality variations and has been used extensively to explore the Kalahari sediments, e.g., in Botswana and Namibia. Recently, airborne and groundbased mapping of groundwater salinity was conducted in the Machile–Zambezi Basin, southwestern Zambia, using the versatile...

  10. Combined land use and climate change impact on Surface and Ground water resources in the Rio Cobre and Great River basin, Jamaica

    Science.gov (United States)

    Setegn, S. G.; Melesse, A. M.; Grey, O.; Webber, D.

    2011-12-01

    Possible adverse impacts of land use and climate change on one hand and population pressure, extended droughts, and environmental degradation on the other hand are major factors limiting water resources availability in the watersheds of Jamaica. The main objective of this study is to analyze the combined impact of land use/ land cover changes as well as climate change on the hydrological processes and water recourses availability in the Rio Cobre and Great River basins. A spatially distributed model SWAT was calibrated and validated in the basin and used for the study of land use and climate change impacts in the watersheds. Different land cover types were tested to analyze its impact on the hydrology of the watershed. The main land cover parameters considered within the Great and Rio Cobre River Watershed includes Agriculture, Tourism, Water, Road Infrastructure, Population, Forestry and land cover Information. The outputs of different Global climate model (GCM) were downscaled to the watershed level and used for assessing the impact of climate change on water resources availability in the area. The analysis of climate change impact on the surface and ground water resources of the basin indicated that the basin will experience a change in water balance due to changes in the major climate variables in the forthcoming decades. The direction of streamflow change follows mainly the direction of changes in rainfall. Many of the models show statistically-significant declines in mean annual streamflow (up to 60% reduction in streamflow) for the different time-periods and scenarios. The combined effect of climate and land-use/land-cover change on the hydrological processes and water recourses variability is an important step to develop sustainable adaptation strategy.

  11. Analyses of freshwater stress with a couple ground and surface water model in the Pra Basin, Ghana

    Science.gov (United States)

    Owusu, George; Owusu, Alex B.; Amankwaa, Ebenezer Forkuo; Eshun, Fatima

    2015-04-01

    The optimal management of water resources requires that the collected hydrogeological, meteorological, and spatial data be simulated and analyzed with appropriate models. In this study, a catchment-scale distributed hydrological modeling approach is applied to simulate water stress for the years 2000 and 2050 in a data scarce Pra Basin, Ghana. The model is divided into three parts: The first computes surface and groundwater availability as well as shallow and deep groundwater residence times by using POLFLOW model; the second extends the POLFLOW model with water demand (Domestic, Industrial and Agricultural) model; and the third part involves modeling water stress indices—from the ratio of water demand to water availability—for every part of the basin. On water availability, the model estimated long-term annual Pra river discharge at the outflow point of the basin, Deboase, to be 198 m3/s as against long-term average measurement of 197 m3/s. Moreover, the relationship between simulated discharge and measured discharge at 9 substations in the basin scored Nash-Sutcliffe model efficiency coefficient of 0.98, which indicates that the model estimation is in agreement with the long-term measured discharge. The estimated total water demand significantly increases from 959,049,096 m3/year in 2000 to 3,749,559,019 m3/year in 2050 (p < 0.05). The number of districts experiencing water stress significantly increases (p = 0.00044) from 8 in 2000 to 21 out of 35 by the year 2050. This study will among other things help the stakeholders in water resources management to identify and manage water stress areas in the basin.

  12. Effects of uranium-mining releases on ground-water quality in the Puerco River Basin, Arizona and New Mexico

    Science.gov (United States)

    Van Metre, Peter C.; Wirt, Laurie; Lopes, T.J.; Ferguson, S.A.

    1997-01-01

    Shallow ground water beneath the Puerco River of Arizona and New Mexico was studied to determine the effects of uranium-mining releases on water quality. Ground-water samples collected from 1989 to 1991 indicate that concentrations of dissolved uranium have decreased. Most samples from the alluvial aquifer downstream from Gallup, New Mexico, met with U.S. Environmental Protection Agency's maximum contaminant levels for gross alpha, gross beta, and radium and the proposed maximum contaminant level for uranium.

  13. Characterization of lake water and ground water movement in the littoral zone of Williams Lake, a closed-basin lake in North central Minnesota

    Science.gov (United States)

    Schuster, P.F.; Reddy, M.M.; LaBaugh, J.W.; Parkhurst, R.S.; Rosenberry, D.O.; Winter, T.C.; Antweiler, R.C.; Dean, W.E.

    2003-01-01

    Williams Lake, Minnesota is a closed-basin lake that is a flow-through system with respect to ground water. Ground-water input represents half of the annual water input and most of the chemical input to the lake. Chemical budgets indicate that the lake is a sink for calcium, yet surficial sediments contain little calcium carbonate. Sediment pore-water samplers (peepers) were used to characterize solute fluxes at the lake-water-ground-water interface in the littoral zone and resolve the apparent disparity between the chemical budget and sediment data. Pore-water depth profiles of the stable isotopes ??18O and ??2H were non-linear where ground water seeped into the lake, with a sharp transition from lake-water values to ground-water values in the top 10 cm of sediment. These data indicate that advective inflow to the lake is the primary mechanism for solute flux from ground water. Linear interstitial velocities determined from ??2H profiles (316 to 528 cm/yr) were consistent with velocities determined independently from water budget data and sediment porosity (366 cm/yr). Stable isotope profiles were generally linear where water flowed out of the lake into ground water. However, calcium profiles were not linear in the same area and varied in response to input of calcium carbonate from the littoral zone and subsequent dissolution. The comparison of pore-water calcium profiles to pore-water stable isotope profiles indicate calcium is not conservative. Based on the previous understanding that 40-50 % of the calcium in Williams Lake is retained, the pore-water profiles indicate aquatic plants in the littoral zone are recycling the retained portion of calcium. The difference between the pore-water depth profiles of calcium and ??18O and ??2H demonstrate the importance of using stable isotopes to evaluate flow direction and source through the lake-water-ground-water interface and evaluate mechanisms controlling the chemical balance of lakes. Published in 2003 by John Wiley

  14. The ion chemistry of surface and ground waters in the Taklimakan Desert of Tarim Basin, western China

    Institute of Scientific and Technical Information of China (English)

    ZHU BingQi; YANG XiaoPing

    2007-01-01

    The physio-chemical and chemical features of water in natural conditions are controlled by the weathering of bedrocks, local climate, landforms and other geo-environmental parameters. In order to understand the characteristics of water and the origins of the dissolved loads in the rivers and in the ground waters of the Taklimakan Desert, western China, we studied the ions in the water samples collected from rivers and wells. We collected water samples from four rivers (Keriya River, Cele River, Tumiya River and Yulongkashi River) in the southern desert and ground water samples from many parts of the desert. Major cations and anions were measured using ion-chromatograph and titration with HCl. The total dissolved solids (TDS), pH and conductivity were examined on site by a portable multi-parameter analyzer. The data show that the water in the rivers of southern Taklimakan is still of fresh water quality and slight alkalinity, although the TDS is comparatively higher than that of many other rivers of the world. The ground water is fresh to slightly saline, with TDS a little higher than that of river water in the study area. The concentration of ions is slightly different between the four rivers in the southern Taklimakan. However, the chemistries of ground water in all samples are to a large degree controlled by sodium and chloride. The ions in the ground water are concluded to be mainly from dissolving of evaporites, consistent with the dry climate in the region, whereas the ions in the rivers are mainly from rock weathering. Low-level human imprints are recognized in the ground water samples also.

  15. Study of underground structure of Osaka basin and seismic ground motions; Osaka bonchi no chika kozo chosa to Hyogoken nanbu jishin ni yoru jishindo

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Y. [Geo-Research Institute, Osaka, Osaka (Japan)

    1996-05-01

    This paper describes the following matters on the study of underground structure of Osaka Basin and seismic ground motions caused by the Hyogoken-Nanbu Earthquake. Elastic wave investigations using reflections intended for deep structures were carried out in the Hyogo prefectural area and the Osaka bay area by an association of the Geological Survey Institute, Hyogo Prefectural Government, Kobe Municipality and Universities. Reflection investigations were conducted in the Osaka land areas using the east-west traverse line along Yamato River (by the Geological Survey Institute), the south-north traverse line along the Naniwa street in the city of Osaka, and the east-west traverse line at the south end of the Uemachi fault. In addition, investigations using shallow bed reflections were performed in the Osaka bay area by the Hydrographic Office. Results of the active fault investigations using the reflection method may not agree with positions of faults which are estimated topographically. An existing structure model of the Osaka basin (something like of a primary approximation) and the result of inverse analysis on epicenter faults in the Hyogoken-Nanbu Earthquake were used as the base for calculating seismic motions in the Abeno area in Osaka City. The result agreed relatively well with observations if the calculation is intended for waves having cycles longer than about two seconds. 6 figs.

  16. Availability and chemical quality of ground water in the Crystal River and Cattle Creek Drainage Basins near Glenwood Springs, west-central Colorado

    Science.gov (United States)

    Brogden, Robert E.; Giles, T.F.

    1976-01-01

    Parts of the Crystal River and cattle Creek drainage basins near Glenwood Springs, Colo., have undergone rapid population growth in recent years. This growth has resulted in an increased demand for information for additional domestic, industrial, and municipal water supplies. A knowledge of the occurrence of ground water will permit a more efficient allocation of the resource. Aquifers in the two drainage basins include: alluvium, basalts, the Mesa Verde Formation, Mancos Shale, Dakota Sandstone, Morrison Formation, Entrada Sandstone, Maroon Formation, Eagle Valley Evaporite, and undifferentiated formations. Except for aquifers in the alluvium, and basalt, well yields are generally low and are less than 25 gallons per minute. Well yields form aquifers in the alluvium and basalt can be as much as several hundred gallons per minute. Water quality is dependent of rock type. Calcium bicarbonate is the predominant type of water in the study area. However, calcium sulfate type water may be found in aquifers in the Eagle Valley Evaporite and in the alluvium where the alluvial material has been derived from the Eagle Valley Evaporite. Concentrations of selenium in excess of U.S. Public Health Service standards for drinking water can be found locally in aquifers in the Eagle Valley Evaporite. (Woodard-USGS)

  17. Hydrogeology, water quality, and potential for contamination of the Upper Floridan aquifer in the Silver Springs ground-water basin, central Marion County, Florida

    Science.gov (United States)

    Phelps, G.G.

    1994-01-01

    The Upper Floridan aquifer, composed of a thick sequence of very porous limestone and dolomite, is the principal source of water supply in the Silver Springs ground-water basin of central Marion County, Florida. The karstic nature of the local geology makes the aquifer susceptible to contaminants from the land surface. Contaminants can enter the aquifer by seepage through surficial deposits and through sinkholes and drainage wells. Potential contaminants include agricultural chemicals, landfill leachates and petroleum products from leaking storage tanks and accidental spills. More than 560 sites of potential contamination sources were identified in the basin in 1990. Detailed investigation of four sites were used to define hydrologic conditions at representative sites. Ground-water flow velocities determined from dye trace studies ranged from about 1 foot per hour under natural flow conditions to about 10 feet per hour under pumping conditions, which is considerably higher than velocities estimated using Darcy's equation for steady-state flow in a porous medium. Water entering the aquifer through drainage wells contained bacteria, elevated concentrations of nutrients, manganese and zinc, and in places, low concentrations of organic compounds. On the basis of results from the sampling of 34 wells in 1989 and 1990, and from the sampling of water entering the Upper Floridan aquifer through drainage wells, there has been no widespread degradation of water quality in the study area. In an area of karst, particularly one in which fracture flow is significant, evaluating the effects from contaminants is difficult and special care is required when interpolating hydrogeologic data from regional studies to a specific. (USGS)

  18. Comparing TRMM 3B42, CFSR and ground-based rainfall estimates as input for hydrological models, in data scarce regions: the Upper Blue Nile Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    A. W. Worqlul

    2015-02-01

    Full Text Available Accurate prediction of hydrological models requires accurate spatial and temporal distribution of rainfall observation network. In developing countries rainfall observation station network are sparse and unevenly distributed. Satellite-based products have the potential to overcome these shortcomings. The objective of this study is to compare the advantages and the limitation of commonly used high-resolution satellite rainfall products as input to hydrological models as compared to sparsely populated network of rain gauges. For this comparison we use two semi-distributed hydrological models Hydrologiska Byråns Vattenbalansavdelning (HBV and Parameter Efficient Distributed (PED that performed well in Ethiopian highlands in two watersheds: the Gilgel Abay with relatively dense network and Main Beles with relatively scarce rain gauge stations. Both are located in the Upper Blue Nile Basin. The two models are calibrated with the observed discharge from 1994 to 2003 and validated from 2004 to 2006. Satellite rainfall estimates used includes Climate Forecast System Reanalysis (CFSR, Tropical Rainfall Measuring Mission (TRMM 3B42 version 7 and ground rainfall measurements. The results indicated that both the gauged and the CFSR precipitation estimates were able to reproduce the stream flow well for both models and both watershed. TRMM 3B42 performed poorly with Nash Sutcliffe values less than 0.1. As expected the HBV model performed slightly better than the PED model, because HBV divides the watershed into sub-basins resulting in a greater number of calibration parameters. The simulated discharge for the Gilgel Abay was better than for the less well endowed (rain gauge wise Main Beles. Finally surprisingly, the ground based gauge performed better for both watersheds (with the exception of extreme events than TRMM and CFSR satellite rainfall estimates. Undoubtedly in the future, when improved satellite products will become available, this will change.

  19. Ground-water quality and its relation to hydrogeology, land use, and surface-water quality in the Red Clay Creek basin, Piedmont Physiographic Province, Pennsylvania and Delaware

    Science.gov (United States)

    Senior, Lisa A.

    1996-01-01

    The Red Clay Creek Basin in the Piedmont Physiographic Province of Pennsylvania and Delaware is a 54-square-mile area underlain by a structurally complex assemblage of fractured metamorphosed sedimentary and igneous rocks that form a water-table aquifer. Ground-water-flow systems generally are local, and ground water discharges to streams. Both ground water and surface water in the basin are used for drinking-water supply. Ground-water quality and the relation between ground-water quality and hydrogeologic and land-use factors were assessed in 1993 in bedrock aquifers of the basin. A total of 82 wells were sampled from July to November 1993 using a stratified random sampling scheme that included 8 hydrogeologic and 4 land-use categories to distribute the samples evenly over the area of the basin. The eight hydrogeologic units were determined by formation or lithology. The land-use categories were (1) forested, open, and undeveloped; (2) agricultural; (3) residential; and (4) industrial and commercial. Well-water samples were analyzed for major and minor ions, nutrients, volatile organic compounds (VOC's), pesticides, polychlorinated biphenyl compounds (PCB's), and radon-222. Concentrations of some constituents exceeded maximum contaminant levels (MCL) or secondary maximum contaminant levels (SMCL) established by the U.S. Environmental Protection Agency for drinking water. Concentrations of nitrate were greater than the MCL of 10 mg/L (milligrams per liter) as nitrogen (N) in water from 11 (13 percent) of 82 wells sampled; the maximum concentration was 38 mg/L as N. Water from only 1 of 82 wells sampled contained VOC's or pesticides that exceeded a MCL; water from that well contained 3 mg/L chlordane and 1 mg/L of PCB's. Constituents or properties of well-water samples that exceeded SMCL's included iron, manganese, dissolved solids, pH, and corrosivity. Water from 70 (85 percent) of the 82 wells sampled contained radon-222 activities greater than the proposed MCL of

  20. Ground-water quality and its relation to hydrogeology, land use, and surface-water quality in the Red Clay Creek basin, Piedmont Physiographic Province, Pennsylvania and Delaware

    Science.gov (United States)

    Senior, Lisa A.

    1996-01-01

    The Red Clay Creek Basin in the Piedmont Physiographic Province of Pennsylvania and Delaware is a 54-square-mile area underlain by a structurally complex assemblage of fractured metamorphosed sedimentary and igneous rocks that form a water-table aquifer. Ground-water-flow systems generally are local, and ground water discharges to streams. Both ground water and surface water in the basin are used for drinking-water supply. Ground-water quality and the relation between ground-water quality and hydrogeologic and land-use factors were assessed in 1993 in bedrock aquifers of the basin. A total of 82 wells were sampled from July to November 1993 using a stratified random sampling scheme that included 8 hydrogeologic and 4 land-use categories to distribute the samples evenly over the area of the basin. The eight hydrogeologic units were determined by formation or lithology. The land-use categories were (1) forested, open, and undeveloped; (2) agricultural; (3) residential; and (4) industrial and commercial. Well-water samples were analyzed for major and minor ions, nutrients, volatile organic compounds (VOC's), pesticides, polychlorinated biphenyl compounds (PCB's), and radon-222. Concentrations of some constituents exceeded maximum contaminant levels (MCL) or secondary maximum contaminant levels (SMCL) established by the U.S. Environmental Protection Agency for drinking water. Concentrations of nitrate were greater than the MCL of 10 mg/L (milligrams per liter) as nitrogen (N) in water from 11 (13 percent) of 82 wells sampled; the maximum concentration was 38 mg/L as N. Water from only 1 of 82 wells sampled contained VOC's or pesticides that exceeded a MCL; water from that well contained 3 mg/L chlordane and 1 mg/L of PCB's. Constituents or properties of well-water samples that exceeded SMCL's included iron, manganese, dissolved solids, pH, and corrosivity. Water from 70 (85 percent) of the 82 wells sampled contained radon-222 activities greater than the proposed MCL of

  1. Reconnaissance of ground-water resources in a part of the Yampa River basin between Craig and Steamboat Springs, Moffat and Routt counties, Colorado

    Science.gov (United States)

    Brogden, R.E.; Giles, T.F.

    1977-01-01

    Parts of the Yampa River basin near the towns of Steamboat Springs and Craig, Colo., have undergone rapid population growth in recent years. Aquifers in the study area include: alluvium; the Browns Park, Wasatch, Fort Union, Lance, Williams Fork, and Iles Formations; and the Lewis and Mancos Shales. Well yields are generally less than 25 gpm (gallons per minute). In the alluvium of the Yampa River, well yields may be as much as 900 gpm. Where the sandstones of the Williams Fork and Iles Formations are fractured, well yields have been reported to be as much as 100 gpm. Well yields from the Lewis and Mancos Shales are less than 5 gpm. The quality of the ground water is variable and dependent on rock type. Most of the waters are calcium and sodium bicarbonate types. Calcium sulfate type waters are found where water in the aquifer has been in contact with gypsum, organic materials, or coals. Dissolved-solids concentrations of ground water range from as little as 82 to as much as 4,230 milligrams per liter. (Woodard-USGS)

  2. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, Annual Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.P.; Bradbury, S.M.; Arnsberg, B.D.

    2004-08-01

    Redd counts were used to document the spawning distribution of fall chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2003; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992) and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2003 was funded by the Bonneville Power Administration (Projects 199801003, 199801004, 199403400, 198335003), Idaho Power Company, and Bureau of Land Management.

  3. Identifying the origin of differences between 3D numerical simulations of ground motion in sedimentary basins: lessons from stringent canonical test models in the E2VP framework

    Science.gov (United States)

    Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Priolo, Enrico; Klin, Peter; De Martin, Florent; Zhang, Zenghuo; Hollender, Fabrice; Bard, Pierre-Yves

    2013-04-01

    Numerical simulation is playing a role of increasing importance in the field of seismic hazard by providing quantitative estimates of earthquake ground motion, its variability, and its sensitivity to geometrical and mechanical properties of the medium. Continuous efforts to develop accurate and computationally efficient numerical methods, combined with increasing computational power have made it technically feasible to calculate seismograms in 3D realistic configurations and for frequencies of interest in seismic design applications. Now, in order to foster the use of numerical simulations in practical prediction of earthquake ground motion, it is important to evaluate the accuracy of current numerical methods when applied to realistic 3D sites. This process of verification is a necessary prerequisite to confrontation of numerical predictions and observations. Through the ongoing Euroseistest Verification and Validation Project (E2VP), which focuses on the Mygdonian basin (northern Greece), we investigated the capability of numerical methods to predict earthquake ground motion for frequencies up to 4 Hz. Numerical predictions obtained by several teams using a wide variety of methods were compared using quantitative goodness-of-fit criteria. In order to better understand the cause of misfits between different simulations, initially performed for the realistic geometry of the Mygdonian basin, we defined five stringent canonical configurations. The canonical models allow for identifying sources of misfits and quantify their importance. Detailed quantitative comparison of simulations in relation to dominant features of the models shows that even relatively simple heterogeneous models must be treated with maximum care in order to achieve sufficient level of accuracy. One important conclusion is that the numerical representation of models with strong variations (e.g. discontinuities) may considerably vary from one method to the other, and may become a dominant source of

  4. Soil Water Retention Curve

    Science.gov (United States)

    Johnson, L. E.; Kim, J.; Cifelli, R.; Chandra, C. V.

    2016-12-01

    Potential water retention, S, is one of parameters commonly used in hydrologic modeling for soil moisture accounting. Physically, S indicates total amount of water which can be stored in soil and is expressed in units of depth. S can be represented as a change of soil moisture content and in this context is commonly used to estimate direct runoff, especially in the Soil Conservation Service (SCS) curve number (CN) method. Generally, the lumped and the distributed hydrologic models can easily use the SCS-CN method to estimate direct runoff. Changes in potential water retention have been used in previous SCS-CN studies; however, these studies have focused on long-term hydrologic simulations where S is allowed to vary at the daily time scale. While useful for hydrologic events that span multiple days, the resolution is too coarse for short-term applications such as flash flood events where S may not recover its full potential. In this study, a new method for estimating a time-variable potential water retention at hourly time-scales is presented. The methodology is applied for the Napa River basin, California. The streamflow gage at St Helena, located in the upper reaches of the basin, is used as the control gage site to evaluate the model performance as it is has minimal influences by reservoirs and diversions. Rainfall events from 2011 to 2012 are used for estimating the event-based SCS CN to transfer to S. As a result, we have derived the potential water retention curve and it is classified into three sections depending on the relative change in S. The first is a negative slope section arising from the difference in the rate of moving water through the soil column, the second is a zero change section representing the initial recovery the potential water retention, and the third is a positive change section representing the full recovery of the potential water retention. Also, we found that the soil water moving has traffic jam within 24 hours after finished first

  5. Ground-water resources of the South Platte River Basin in western Adams and southwestern Weld Counties, Colorado

    Science.gov (United States)

    Smith, Rex O.; Schneider, P.A.; Petri, Lester R.

    1964-01-01

    The area described in this report consists of about 970 square miles in western Adams and southwestern Weld Counties in northeastern Colorado. It includes that part of the South Platte River valley between Denver and Kuner, Colo., all of Beebe Draw, and the lower part of the valley of Box Elder Creek. The stream-valley lowlands are separated by rolling uplands. The climate is semiarid, the normal annual precipitation being about 13 inches; thus, irrigation is essential for stable agricultural development. The area contains about 220,000 acres of irrigated land in the stream valleys. Most of the remaining 400,000 acres of land is used for dry farming or grazing because it lacks irrigation water. Most of the lowlands were brought under irrigation with surface water during the early 1900's, and now nearly all the surface water in the area is appropriated for irrigation within and downstream from the area. Because the natural flow of the streams is sometimes less than the demand for water, ground water is used to supplement the surface-water supply. Wells, drilled chiefly since 1930, supply the supplemental water and in some places are the sole supply for irrigation use. Rocks exposed in the area are of sedimentary origin and range in age from Lato Cretaceous to Recent. Those that are consolidated, called 'bedrock' in this report, consist of the Fox Hills sandstone and the Laramie and Arapahoe formations, all of Late Cretaceous age, and the Denver formation and Dawson arkose of Late Cretaceous and Tertiary age. The surface of the bedrock was shaped by ancestral streams, the valleys of which are reflected by the present surface topography. Dune sand, slope wash, and thin upland deposits of Quaternary age mantle the bedrock in the divide areas, and stream deposits ranging in thickness from 0 to about 125 feet partly fill the ancestral valleys. The valley-fill deposits consist of beds and lenses of clay, silt, sand, gravel, cobbles, and boulders. Abundant supplies of

  6. Correlation of near-surface stratigraphy and physical properties of clayey sediments from Chalco Basin, Mexico, using Ground Penetrating Radar

    Science.gov (United States)

    Carreón-Freyre, Dora; Cerca, Mariano; Hernández-Marín, Martín.

    2003-08-01

    Detailed measurements of water content, liquid and plastic limits, electric conductivity, grain-size distribution, specific gravity, and compressibility were performed on the upper 7 m of the lacustrine sequence from the Chalco Basin, Valley of Mexico. Eight stratigraphic units consisting of alternating layers of clay, silt, sand, and gravel of volcanic origin are described for this sequence. The analysis of contrasts in the physical properties permitted to identify potential reflectors of radar waves: (i) change in the electrical conductivity at 0.4 m depth; (ii) increment in the clay and water content at 0.8 m depth; (iii) bimodal behavior of the water content at 1.3 m depth; (iv) increment in the sand content and decrease in water content at 2.6 m depth; and (v) the presence of a pyroclastic unit at 3.7 m depth. Radargrams with frequencies of 900 and 300 MHz were collected on a grid of profiles covering the study area. Correlation of radargrams with the reference section permitted the spatial interpolation of variations in the physical properties and the near-surface stratigraphy. Contrary to the expected in these clayey sediments, electric contrast enhanced by variations in water content and grain size permitted the recording of the near-surface sedimentary structures. Distinctive radar signatures were identified between reflectors. Furthermore, lateral discontinuities of the reflectors and their vertical displacements permitted the identification of deformational features within the sequence.

  7. Effects of soil moisture retention on ice distribution and active layer thickness subject to seasonal ground temperature variations in a dry loess terrace in Adventdalen, Svalbard.

    Science.gov (United States)

    Schuh, Carina; Frampton, Andrew; Christiansen, Hanne

    2017-04-01

    The active layer constitutes an important part of permafrost environments. Thermal and hydrological processes in the active layer determine local phenomena such as erosion and hydrological and ecosystem changes, and can have important implications for the global carbon-climate feedback. Permafrost degradation usually starts with a deepening of the active layer, followed by the formation of a talik and the subsequent thawing of permafrost. An increasing active layer thickness is therefore regarded as an indicator of permafrost degradation. The importance of hydrology for active layer processes is generally well acknowledged on a conceptual level, however the in general non-linear physical interdependencies between soil moisture, subsurface water and heat fluxes and active layer thaw progression are not fully understood. In this study, high resolution field data for the period 2000-2014 consisting of active layer and permafrost temperature, active layer soil moisture, and thaw depth progression from the UNISCALM research site in Adventdalen, Svalbard, is combined with a physically-based coupled cryotic and hydrogeological model to investigate active layer dynamics. The site is a loess-covered river terrace characterized by dry conditions with little to no summer infiltration and an unsaturated active layer. A range of soil moisture characteristic curves consistent with loess sediments is considered and their effects on ice and moisture redistribution, heat flux, energy storage through latent heat transfer, and active layer thickness is investigated and quantified based on hydro-climatic site conditions. Results show that soil moisture retention characteristics exhibit notable control on ice distribution and circulation within the active layer through cryosuction and are subject to seasonal variability and site-specific surface temperature variations. The retention characteristics also impact unfrozen water and ice content in the permafrost. Although these effects

  8. New results on ground deformation in the Upper Silesian Coal Basin (southern Poland) obtained during the DORIS Project (EU-FP 7)

    Science.gov (United States)

    Graniczny, Marek; Colombo, Davide; Kowalski, Zbigniew; Przyłucka, Maria; Zdanowski, Albin

    2015-11-01

    This paper presents application of satellite interferometric methods (persistent scatterer interferometric synthetic aperture radar (PSInSAR™) and differential interferometric synthetic aperture radar (DInSAR)) for observation of ground deformation in the Upper Silesian Coal Basin (USCB) in Southern Poland. The presented results were obtained during the DORIS project (EC FP 7, Grant Agreement n. 242212, www.doris-project.eu). Several InSAR datasets for this area were analysed. Most of them were processed by Tele-Rilevamento Europa - T.R.E. s.r.l. Italy. Datasets came from different SAR satellites (ERS 1 and 2, Envisat, ALOS- PALSAR and TerraSAR-X) and cover three different SAR bands (L, C and X). They were processed using both InSAR techniques: DInSAR, where deformations are presented as interferometric fringes on the raster image, and PSInSAR, where motion is indentified on irregular set of persistent scatterer (PS) points. Archival data from the C-band European Space Agency satellites ERS and ENVISAT provided information about ground movement since 1992 until 2010 in two separate datasets (1992-2000 and 2003-2010). Two coal mines were selected as examples of ground motion within inactive mining areas: Sosnowiec and Saturn, where mining ceased in 1995 and 1997, respectively. Despite well pumping after closure of the mines, groundwater rose several dozen meters, returning to its natural horizon. Small surface uplift clearly indicated on satellite interferometric data is related to high permeability of the hydrogeological subregion and insufficient water withdrawal from abandoned mines. The older 1992-2000 PSInSAR dataset indicates values of ground motion ranging from -40.0 to 0.0 mm. The newer 2003-2010 dataset shows values ranging from -2.0 to +7.0 mm. This means that during this period of time subsidence was less and uplift greater in comparison to the older dataset. This is even more evident in the time series of randomly selected PS points from both coal

  9. Performance evaluation of a ground-source heat pump system utilizing a flowing well and estimation of suitable areas for its installation in Aizu Basin, Japan

    Science.gov (United States)

    Shrestha, Gaurav; Uchida, Youhei; Kuronuma, Satoru; Yamaya, Mutsumi; Katsuragi, Masahiko; Kaneko, Shohei; Shibasaki, Naoaki; Yoshioka, Mayumi

    2017-08-01

    Development of a ground-source heat pump (GSHP) system with higher efficiency, and evaluation of its operating performance, is essential to expand the growth of GSHP systems in Japan. A closed-loop GSHP system was constructed utilizing a flowing (artesian) well as a ground heat exchanger (GHE). The system was demonstrated for space-heating and space-cooling of a room (area 126.7 m2) in an office building. The average coefficient of performance was found to be 4.5 for space-heating and 8.1 for space-cooling. The maximum heat exchange rate was 70.8 W/m for space-heating and 57.6 W/m for space-cooling. From these results, it was determined that a GSHP system with a flowing well as a GHE can result in higher performance. With this kind of highly efficient system, energy saving and cost reduction can be expected. In order to assess appropriate locations for the installation of similar kinds of GSHP systems in Aizu Basin, a suitability map showing the distribution of groundwater up-flowing areas was prepared based on the results of a regional-scale three-dimensional analytical model. Groundwater up-flowing areas are considered to be suitable because the flowing well can be constructed at these areas. Performance evaluation of the GSHP system utilizing the flowing well, in conjunction with the prepared suitability map for its installation, can assist in the promotion of GSHP systems in Japan.

  10. Performance evaluation of a ground-source heat pump system utilizing a flowing well and estimation of suitable areas for its installation in Aizu Basin, Japan

    Science.gov (United States)

    Shrestha, Gaurav; Uchida, Youhei; Kuronuma, Satoru; Yamaya, Mutsumi; Katsuragi, Masahiko; Kaneko, Shohei; Shibasaki, Naoaki; Yoshioka, Mayumi

    2017-02-01

    Development of a ground-source heat pump (GSHP) system with higher efficiency, and evaluation of its operating performance, is essential to expand the growth of GSHP systems in Japan. A closed-loop GSHP system was constructed utilizing a flowing (artesian) well as a ground heat exchanger (GHE). The system was demonstrated for space-heating and space-cooling of a room (area 126.7 m2) in an office building. The average coefficient of performance was found to be 4.5 for space-heating and 8.1 for space-cooling. The maximum heat exchange rate was 70.8 W/m for space-heating and 57.6 W/m for space-cooling. From these results, it was determined that a GSHP system with a flowing well as a GHE can result in higher performance. With this kind of highly efficient system, energy saving and cost reduction can be expected. In order to assess appropriate locations for the installation of similar kinds of GSHP systems in Aizu Basin, a suitability map showing the distribution of groundwater up-flowing areas was prepared based on the results of a regional-scale three-dimensional analytical model. Groundwater up-flowing areas are considered to be suitable because the flowing well can be constructed at these areas. Performance evaluation of the GSHP system utilizing the flowing well, in conjunction with the prepared suitability map for its installation, can assist in the promotion of GSHP systems in Japan.

  11. Grain size, morphometry and mineralogy of airborne input in the Canary basin: evidence of iron particle retention in the mixed layer

    Directory of Open Access Journals (Sweden)

    Alfredo Jaramillo-Vélez

    2016-09-01

    Full Text Available Aeolian dust plays an important role in climate and ocean processes. Particularly, Saharan dust deposition is of importance in the Canary Current due to its content of iron minerals, which are fertilizers of the ocean. In this work, dust particles are characterized mainly by granulometry, morphometry and mineralogy, using image processing and scanning northern Mauritania and the Western Sahara. The concentration of terrigenous material was measured in three environments: the atmosphere (300 m above sea level, the mixed layer at 10 m depth, and 150 m depth. Samples were collected before and during the dust events, thus allowing the effect of Saharan dust inputs in the water column to be assessed. The dominant grain size was coarse silt. Dominant minerals were iron oxy-hydroxides, silicates and Ca-Mg carbonates. A relative increase of iron mineral particles (hematite and goethite was detected in the mixed layer, reflecting a higher permanence of iron in the water column despite the greater relative density of these minerals in comparison with the other minerals. This higher iron particle permanence does not appear to be explained by physical processes. The retention of this metal by colloids or microorganisms is suggested to explain its long residence time in the mixed layer.

  12. Ground-based remote sensing of O3 by high- and medium-resolution FTIR spectrometers over the Mexico City basin

    Science.gov (United States)

    Plaza-Medina, Eddy F.; Stremme, Wolfgang; Bezanilla, Alejandro; Grutter, Michel; Schneider, Matthias; Hase, Frank; Blumenstock, Thomas

    2017-07-01

    We present atmospheric ozone (O3) profiles measured over central Mexico between November 2012 and February 2014 from two different ground-based FTIR (Fourier transform infrared) solar absorption experiments. The first instrument offers very high-resolution spectra and contributes to NDACC (Network for the Detection of Atmospheric Composition Change). It is located at a mountain observatory about 1700 m above the Mexico City basin. The second instrument has a medium spectral resolution and is located inside Mexico City at a horizontal distance of about 60 km from the mountain observatory. It is documented that the retrieval with the high- and medium-resolution experiments provides O3 variations for four and three independent atmospheric altitude ranges, respectively, and the theoretically estimated errors of these profile data are mostly within 10 %. The good quality of the data is empirically demonstrated above the tropopause by intercomparing the two FTIR O3 data, and for the boundary layer by comparing the Mexico City FTIR O3 data with in situ O3 surface data. Furthermore, we develop a combined boundary layer O3 remote sensing product that uses the retrieval results of both FTIR experiments, and we use theoretical and empirical evaluations to document the improvements that can be achieved by such a combination.

  13. Ground-based remote sensing of O3 by high- and medium-resolution FTIR spectrometers over the Mexico City basin

    Directory of Open Access Journals (Sweden)

    E. F. Plaza-Medina

    2017-07-01

    Full Text Available We present atmospheric ozone (O3 profiles measured over central Mexico between November 2012 and February 2014 from two different ground-based FTIR (Fourier transform infrared solar absorption experiments. The first instrument offers very high-resolution spectra and contributes to NDACC (Network for the Detection of Atmospheric Composition Change. It is located at a mountain observatory about 1700 m above the Mexico City basin. The second instrument has a medium spectral resolution and is located inside Mexico City at a horizontal distance of about 60 km from the mountain observatory. It is documented that the retrieval with the high- and medium-resolution experiments provides O3 variations for four and three independent atmospheric altitude ranges, respectively, and the theoretically estimated errors of these profile data are mostly within 10 %. The good quality of the data is empirically demonstrated above the tropopause by intercomparing the two FTIR O3 data, and for the boundary layer by comparing the Mexico City FTIR O3 data with in situ O3 surface data. Furthermore, we develop a combined boundary layer O3 remote sensing product that uses the retrieval results of both FTIR experiments, and we use theoretical and empirical evaluations to document the improvements that can be achieved by such a combination.

  14. Spatial extent of new particle formation events over the Mediterranean Basin from multiple ground-based and airborne measurements

    Science.gov (United States)

    Berland, Kevin; Rose, Clémence; Pey, Jorge; Culot, Anais; Freney, Evelyn; Kalivitis, Nikolaos; Kouvarakis, Giorgios; Cerro, José Carlos; Mallet, Marc; Sartelet, Karine; Beckmann, Matthias; Bourriane, Thierry; Roberts, Greg; Marchand, Nicolas; Mihalopoulos, Nikolaos; Sellegri, Karine

    2017-08-01

    Over the last two decades, new particle formation (NPF), i.e., the formation of new particle clusters from gas-phase compounds followed by their growth to the 10-50 nm size range, has been extensively observed in the atmosphere at a given location, but their spatial extent has rarely been assessed. In this work, we use aerosol size distribution measurements performed simultaneously at Ersa (Corsica) and Finokalia (Crete) over a 1-year period to analyze the occurrence of NPF events in the Mediterranean area. The geographical location of these two sites, as well as the extended sampling period, allows us to assess the spatial and temporal variability in atmospheric nucleation at a regional scale. Finokalia and Ersa show similar seasonalities in the monthly average nucleation frequencies, growth rates, and nucleation rates, although the two stations are located more than 1000 km away from each other. Within this extended period, aerosol size distribution measurements were performed during an intensive campaign (3 July to 12 August 2013) from a ground-based station on the island of Mallorca, as well as onboard the ATR-42 research aircraft. This unique combination of stationary and mobile measurements provides us with detailed insights into the horizontal and vertical development of the NPF process on a daily scale. During the intensive campaign, nucleation events occurred simultaneously both at Ersa and Mallorca over delimited time slots of several days, but different features were observed at Finokalia. The results show that the spatial extent of the NPF events over the Mediterranean Sea might be as large as several hundreds of kilometers, mainly determined by synoptic conditions. Airborne measurements gave additional information regarding the origin of the clusters detected above the sea. The selected cases depicted contrasting situations, with clusters formed in the marine boundary layer or initially nucleated above the continent or in the free troposphere (FT) and

  15. Water-quality assessment of the Trinity River basin, Texas : ground-water quality of the Trinity, Carrizo-Wilcox, and Gulf Coast aquifers, February-August 1994

    Science.gov (United States)

    Reutter, David C.; Dunn, David D.

    2000-01-01

    Ground-water samples were collected from wells in the outcrops of the Trinity, Carrizo-Wilcox, and Gulf Coast aquifers during February-August 1994 to determine the quality of ground water in the three major aquifers in the Trinity River Basin study unit, Texas. These samples were collected and analyzed for selected properties, nutrients, major inorganic constituents, trace elements, pesticides, dissolved organic carbon, total phenols, methylene blue active substances, and volatile organic compounds as part of the U.S. Geological Survey National Water-Quality Assessment Program. Quality-control practices included the collection and analysis of blank, duplicate, and spiked samples. Samples were collected from 12 shallow wells (150 feet or less) and from 12 deep wells (greater than 150 feet) in the Trinity aquifer, 11 shallow wells and 12 deep wells in the Carrizo-Wilcox aquifer, and 14 shallow wells and 10 deep wells in the Gulf Coast aquifer. The three aquifers had similar water chemistries-calcium was the dominant cation and bicarbonate the dominant anion. Statistical tests relating well depths to concentrations of nutrients and major inorganic constituents indicated correlations between well depth and concentrations of ammonia nitrogen, nitrite plus nitrate nitrogen, bicarbonate, sodium, and dissolved solids in the Carrizo-Wilcox aquifer and between well depth and concentrations of sulfate in the Gulf Coast aquifer. The tests indicated no significant correlations for the Trinity aquifer. Concentrations of dissolved solids were larger than the secondary maximum contaminant level of 500 milligrams per liter established for drinking water by the U.S. Environmental Protection Agency in 12 wells in the Trinity aquifer, 4 wells in the Carrizo-Wilcox aquifer, and 6 wells in the Gulf Coast aquifer. Iron concentrations were larger than the secondary maximum contaminant level of 300 micrograms per liter in at least 3 samples from each aquifer, and manganese concentrations

  16. Estimates of evapotranspiration for riparian sites (Eucalyptus) in the Lower Murray -Darling Basin using ground validated sap flow and vegetation index scaling techniques

    Science.gov (United States)

    Doody, T.; Nagler, P. L.; Glenn, E. P.

    2014-12-01

    Water accounting is becoming critical globally, and balancing consumptive water demands with environmental water requirements is especially difficult in in arid and semi-arid regions. Within the Murray-Darling Basin (MDB) in Australia, riparian water use has not been assessed across broad scales. This study therefore aimed to apply and validate an existing U.S. riparian ecosystem evapotranspiration (ET) algorithm for the MDB river systems to assist water resource managers to quantify environmental water needs over wide ranges of niche conditions. Ground-based sap flow ET was correlated with remotely sensed predictions of ET, to provide a method to scale annual rates of water consumption by riparian vegetation over entire irrigation districts. Sap flux was measured at nine locations on the Murrumbidgee River between July 2011 and June 2012. Remotely sensed ET was calculated using a combination of local meteorological estimates of potential ET (ETo) and rainfall and MODIS Enhanced Vegetation Index (EVI) from selected 250 m resolution pixels. The sap flow data correlated well with MODIS EVI. Sap flow ranged from 0.81 mm/day to 3.60 mm/day and corresponded to a MODIS-based ET range of 1.43 mm/day to 2.42 mm/day. We found that mean ET across sites could be predicted by EVI-ETo methods with a standard error of about 20% across sites, but that ET at any given site could vary much more due to differences in aquifer and soil properties among sites. Water use was within range of that expected. We conclude that our algorithm developed for US arid land crops and riparian plants is applicable to this region of Australia. Future work includes the development of an adjusted algorithm using these sap flow validated results.

  17. Advanced interpretation of ground motion using Persistent Scatterer Interferometry technique: the Alto Guadalentín Basin (Spain) case of study

    Science.gov (United States)

    Bonì, Roberta; Herrera, Gerardo; Meisina, Claudia; Notti, Davide; Zucca, Francesco; Bejar, Marta; González, Pablo; Palano, Mimmo; Tomás, Roberto; Fernandez, José; Fernández-Merodo, José; Mulas, Joaquín; Aragón, Ramón; Mora, Oscar

    2014-05-01

    Subsidence related to fluid withdrawal has occurred in numerous regions of the world. The phenomena is an important hazard closely related to the development of urban areas. The analysis of the deformations requires an extensive and continuous spatial and temporal monitoring to prevent the negative effects of such risks on structures and infrastructures. Deformation measurements are fundamental in order to identify the affected area extension, to evaluate the temporal evolution of deformation velocities and to identify the main control mechanisms. Differential SAR interferometry represents an advanced remote sensing tool, which can map displacements at very high spatial resolution. The Persistent Scatterer Interferometry (PSI) technique is a class of SAR interferometry that uses point-wise radar targets (PS) on the ground whose phase is not interested by temporal and geometrical decorrelation. This technique generates starting from a set of images two main products: the displacement rate along line of sight (LOS) of single PS; and the LOS displacement time series of individual PS. In this work SAR data with different spatio-temporal resolution were used to study the displacements that occur from 1992 to 2012 in the Alto Guadalentin Basin (southern Spain), where is located the city of Lorca The area is affected by the highest rate of subsidence measured in Europe (>10 cm/yr-1) related to long-term exploitation of the aquifer (González et al. 2011). The objectives of the work were 1) to analyse land subsidence evolution over a 20-year period with PSI technique; 2) to compare the spatial and temporal resolution of SAR data acquired by different sensors, 3) to investigate the causes that could explain this land motion. The SAR data have been obtained with ERS-1/2 & ENVISAT (1992-2007), ALOS PALSAR (2007-2010) and COSMO-SkyMed (2011-2012) images, processed with the Stable Point Network (SPN) technique. The PSI data obtained from different satellite from 1992 to 2012

  18. Simulated effects of ground-water withdrawals and artificial recharge on discharge to streams, springs, and riparian vegetation in the Sierra Vista Subwatershed of the Upper San Pedro Basin, southeastern Arizona

    Science.gov (United States)

    Leake, Stanley A.; Pool, Donald R.; Leenhouts, James M.

    2008-01-01

    In the context of ground-water resources, “capture” or “streamflow depletion” refers to withdrawal-induced changes in inflow to or outflow from an aquifer. These concepts are helpful in understanding the effects of long-term development of ground-water resources. For the Upper San Pedro Basin in Arizona, USA and Sonora, Mexico, a recently developed ground-water flow model is available to help quantify capture of water from the river and riparian system. A common method of analysis is to compute curves of capture and aquifer-storage change for a range of time at select points of interest. This study, however, presents results of a method to show spatial distributions of total change in inflow and outflow from withdrawal or injection for select times of interest. The mapped areal distributions show the effect of a single well in terms of the ratio of the change in boundary flow rate to rate of withdrawal or injection by the well. To the extent that the system responds linearly to ground-water withdrawal or injection, fractional responses in the mapped distributions can be used to quantify response for any withdrawal or injection rate. Capture distributions calculated using the Upper San Pedro model include response to (1) withdrawal in the lower basin-fill aquifer for times of 10 and 50 years following the initiation of pumping from predevelopment conditions and (2) artificial recharge to the water table in the area underlain by the lower basin-fill aquifer after 10 and 50 years. The mapped distributions show that response to withdrawals and injections is greatest near the river/riparian system. Presence of clay layers in the vertical interval between withdrawal locations and the river/riparian system, however, can delay the response.

  19. Geology and ground water in the Platte-Republican Rivers watershed and the Little Blue River basin above Angus, Nebraska, with a section on chemical quality of the ground water

    Science.gov (United States)

    Johnson, C.R.; Brennan, Robert

    1960-01-01

    saturation because the ground water, as it percolates southeastward beneath the area, moves out of the Tertiary and into the Quaternary deposits without apparent hindrance. The water that enters the area as underflow from the west is augmented within the area by water that infiltrates from the land surface. The principal sources of irrigating water are precipitation, seepage from canals and reservoirs, and applied irrigation water. Except for the water withdrawn through wells or discharged by natural processes where valleys have been cut into the zone of saturation, ground water leaves the area as underflow into the Platte River valley on the north, the Blue River drainage basin on the east, or the Republican River valley on the south. Part of the water used for irrigation and watering livestock and all the water used in rural and urban homes, in public buildings, and for industrial purposes is obtained from wells, To date (1952) there is no indication that the supply of ground water is being depleted faster than it is being replenished; instead, studies indicate that greater quantities can be withdrawn without causing an excessive decline of the water table. An increase of ground-water withdrawals to a sustainable maximum, however, will be possible only if the points of withdrawal are scattered fairly uniformly. It is estimated that annual withdrawals per township should not exceed 2,100 acre-feet where infiltrating precipitation is the only source of recharge, or 3,000 acre-feet where other sources of recharge are significant. Although perennial withdrawals of this amount could be sustained indefinitely, they would cause some lowering of the water table and eventually a decrease in the amount of water discharged from the area by natural means. The ground water is of the calcium bicarbonate type. In much of the area it is hard or very hard, and in places it contains excessive amounts of iron. In all other respects the water is chemically suitable for domesti

  20. CAUSATIVE RELATIONSHIP BETWEEN BASEMENT STRETCHING AND GROUND FISSURES FORMATION IN WEIHE BASIN%渭河盆地基底伸展与地裂缝成因关系探讨

    Institute of Scientific and Technical Information of China (English)

    邓亚虹; 彭建兵; 李丽; 慕焕东

    2013-01-01

    渭河盆地是我国乃至世界上地裂缝最为发育,灾害最为严重的地区.本文以渭河盆地为原型,采用有限元数值分析方法,分析了基底伸展作用下盆地浅表层岩土介质和多级破裂系统的应力和变形响应特征,从而揭示基底伸展变形与该区域地裂缝之间的成因关系.结果表明,盆地基底的伸展作用可以引起近地表岩土介质的拉张变形,当这种拉张作用与盆地断裂的上盘正断倾滑式伸展拉张叠加时,必然形成或加剧地表土层的张剪性破裂,从而为地裂缝的发育奠定了构造基础.%The Weihe Basin can be the most developed area of ground fissures and the associated geo-hazard in China and even in the world. Taking the Weihe Basin as the prototype, a numerical analysis with finite element method is made to study the stress and strain response characteristics of superficial ground and multistage fracture system subjected to the action of basement stretching. The germination relationship between deep structure activities and ground fissures development is revealed. Results show that the basement stretching can cause the tensile deformation of superficial ground. When this kind of action is coupled with normal dip-slipping tension of faults, it can inevitably form or aggravate the tension-shear fracturing, and establish the tectonic foundation for the development of ground fissures.

  1. Water-soluble organic aerosol in the Los Angeles Basin and outflow regions: Airborne and ground measurements during the 2010 CalNex field campaign

    OpenAIRE

    Duong, Hanh T.; Sorooshian, Armin; Craven, Jill S.; Hersey, Scott P.; Metcalf, Andrew R.; Zhang, Xiaolu; Weber, Rodney J.; Jonsson, Haflidi; Flagan, Richard C.; Seinfeld, John H.

    2011-01-01

    A particle‐into‐liquid sampler coupled to a total organic carbon analyzer (PILS‐TOC) quantified particulate water‐soluble organic carbon (WSOC) mass concentrations during the May 2010 deployment of the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter in the CalNex field study. WSOC data collected during 16 flights provide the first spatiotemporal maps of WSOC in the San Joaquin Valley, Los Angeles Basin, and outflow regions of the Basin. WSOC w...

  2. Effects of streambank fencing of pasture land on benthic macroinvertebrates and the quality of surface water and shallow ground water in the Big Spring Run basin of Mill Creek watershed, Lancaster County, Pennsylvania, 1993-2001

    Science.gov (United States)

    Galeone, Daniel G.; Brightbill, Robin A.; Low, Dennis J.; O'Brien, David L.

    2006-01-01

    Streambank fencing along stream channels in pastured areas and the exclusion of pasture animals from the channel are best-management practices designed to reduce nutrient and suspended-sediment yields from drainage basins. Establishment of vegetation in the fenced area helps to stabilize streambanks and provides better habitat for wildlife in and near the stream. This study documented the effectiveness of a 5- to 12-foot-wide buffer strip on the quality of surface water and near-stream ground water in a 1.42-mi2 treatment basin in Lancaster County, Pa. Two miles of stream were fenced in the basin in 1997 following a 3- to 4-year pre-treatment period of monitoring surface- and ground-water variables in the treatment and control basins. Changes in surface- and ground-water quality were monitored for about 4 years after fence installation. To alleviate problems in result interpretation associated with climatic and hydrologic variation over the study period, a nested experimental design including paired-basin and upstream/downstream components was used to study the effects of fencing on surface-water quality and benthic-macroinvertebrate communities. Five surface-water sites, one at the outlet of a 1.77-mi2 control basin (C-1), two sites in the treatment basin (T-3 and T-4) that were above any fence installation, and two sites (one at an upstream tributary site (T-2) and one at the outlet (T-1)) that were treated, were sampled intensively. Low-flow samples were collected at each site (approximately 25-30 per year at each site), and stormflow was sampled with automatic samplers at all sites except T-3. For each site where stormflow was sampled, from 35 to 60 percent of the storm events were sampled over the entire study period. Surface-water sites were sampled for analyses of nutrients, suspended sediment, and fecal streptococcus (only low-flow samples), with field parameters (only low-flow samples) measured during sample collection. Benthic-macroinvertebrate samples

  3. Precarious rock and overturned transformer evidence for ground shaking in the Ms 7.7 Kern County earthquake: An analog for disastrous shaking from a major thrust fault in the Los Angeles basin

    Science.gov (United States)

    Brune, J.N.; Anooshehpoor, A.; Shi, B.; Zheng, Yen

    2004-01-01

    Precariously balanced rocks and overturned transformers in the vicinity of the White Wolf fault provide constraints on ground motion during the 1952 Ms 7.7 Kern County earthquake, a possible analog for an anticipated large earthquake in the Los Angeles basin (Shaw et al., 2002; Dolan et al., 2003). On the northeast part of the fault preliminary estimates of ground motion on the footwall give peak accelerations considerably lower than predicted by standard regression curves. On the other hand, on the hanging-wall, there is evidence of intense ground shattering and lack of precarious rocks, consistent with the intense hanging-wall accelerations suggested by foam-rubber modeling, numerical modeling, and observations from previous thrust fault earthquakes. There is clear evidence of the effects of rupture directivity in ground motions on the hanging-wall side of the fault (from both precarious rocks and numerical simulations). On the southwest part of the fault, which is covered by sediments, the thrust fault did not reach the surface ("blind" thrust). Overturned and damaged transformers indicate significant transfer of energy from the hanging wall to the footwall, an effect that may not be as effective when the rupture reaches the surface (is not "blind"). Transformers near the up-dip projection of the fault tip have been damaged or overturned on both the hanging-wall and footwall sides of the fault. The transfer of energy is confirmed in a numerical lattice model and could play an important role in a similar situation in Los Angeles. We suggest that the results of this study can provide important information for estimating the effects of a large thrust fault rupture in the Los Angeles basin, specially given the fact that there is so little instrumental data from large thrust fault earthquakes.

  4. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin - Ground-water quality in three different land-use areas, 1996-98

    Science.gov (United States)

    Fong, Alison L.

    2000-01-01

    The surficial sand and gravel aquifer is susceptible to effects from land-use in the Upper Mississippi River Basin study unit of the National Water-Quality Assessment (NAWQA) Program. The purpose of this report is to describe the ground-water quality and the assessment of how different land-uses affect the shallow ground-water quality in the surficial sand and gravel aquifer. Ground-water quality was compared in three different land-use areas; an urban residential/commercial area on the edge of the Anoka Sand Plain in a portion of the Twin Cities metropolitan area (urban study), an intensive agricultural area in the Anoka Sand Plain (agricultural study), and a forested area in the Bemidji-Bagley Sand Plain (forested study). Ground water was sampled and analyzed for about 200 constituents, including physical parameters, major ions, selected trace elements, nutrients, dissolved organic carbon, selected pesticides, selected volatile organic compounds (VOCs), and tritium. The urban study wells were sampled during June and July 1996. The agricultural study wells were sampled during May and September 1998. The forested study wells were sampled during June 1998.

  5. Amplification effects of soil sites on ground motion in the Weihe basin%渭河盆地中土层场地对地震动的放大作用

    Institute of Scientific and Technical Information of China (English)

    王海云

    2011-01-01

    Effects of soil sites on ground motion are relatively serious, their amplification effects on ground motion must be considered in site selection and seismic fortification of buildings to prevent or mitigate seismic hazard of buildings. The mainshock's acceleration time histories of 27 stations (including 2 bedrock stations and 25 soil stations) in the digital strong motion seismograph network installed in the Weihe basin in Wenchuan great earthquake were recorded.Utilizing the acceleration time histories, the amplification effects of 25 soil stations are studied and analyzed by traditional spectral ratio method with geometric attenuation while Tangyu station is seclected as reference site. The results are as follows. (1) Peak ground accelerations (PGAs)on the soil sites in the Weihe basin in the Wenchuan great earthquake have decreasing trends with the epicentral distances regardless of the soil thickness. (2) According to the characteristics of both acceleration response spectra of soil sites and amplification effects of soil sites on ground motions in the Weihe basin in the Wenchuan great earthquake, the soil sites in Weihe basin can be classified into 3 categories, i. e. , deep, intermediate, and shollow soil sites, which respectively amplifies the low frequency components, components in the vicinity of 1 Hz, and high frequency components of ground motions significantly. It is noteworthy that high frequency components of ground motions are also amplified to a centain extent for deep soil sites, but the amplification factors of high frequency components are smaller than those of low frequency components. (3)The amplification effects of soil sites on different direction (i. e. EW, NS and UD) ground motions in the Weihe basin in the Wenchuan great earthquake are different. Generally, EW>NS>UD. (4) Abnormal area of intensity Ⅶ along basin edge from Baoji to Meixian in the Weihe basin in the Wenchuan great earthquake resulted from combined amplification effects

  6. Computer input and output files associated with ground-water-flow simulations of the Albuquerque Basin, central New Mexico, 1901-95, with projections to 2020; (supplement three to U.S. Geological Survey Water-resources investigations report 94-4251)

    Science.gov (United States)

    Kernodle, J.M.

    1996-01-01

    This report presents the computer input files required to run the three-dimensional ground-water-flow model of the Albuquerque Basin, central New Mexico, documented in Kernodle and others (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-1994, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.) and revised by Kernodle (Kernodle, J.M., 1998, Simulation of ground-water flow in the Albuquerque Basin, 1901-95, with projections to 2020 (supplement two to U.S. Geological Survey Water-Resources Investigations Report 94-4251): U.S. Geological Survey Open-File Report 96-209, 54 p.). Output files resulting from the computer simulations are included for reference.

  7. Selected aquifer-test and specific-capacity data for wells in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This point dataset contains estimates of aquifer transmissivity and hydraulic conductivity at selected well locations in the Lost Creek Designated Ground Water...

  8. Potential areas of ground-water discharge in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent parts of Nevada and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent potential areas of ground-water discharge for selected hydrographic areas in eastern Nevada and western Utah. The data are based on phreatophyte...

  9. Well installation, single-well testing, and particle-size analysis for selected sites in and near the Lost Creek Designated Ground Water Basin, north-central Colorado, 2003-2004

    Science.gov (United States)

    Beck, Jennifer A.; Paschke, Suzanne S.; Arnold, L. Rick

    2011-01-01

    This report describes results from a groundwater data-collection program completed in 2003-2004 by the U.S. Geological Survey in support of the South Platte Decision Support System and in cooperation with the Colorado Water Conservation Board. Two monitoring wells were installed adjacent to existing water-table monitoring wells. These wells were installed as well pairs with existing wells to characterize the hydraulic properties of the alluvial aquifer and shallow Denver Formation sandstone aquifer in and near the Lost Creek Designated Ground Water Basin. Single-well tests were performed in the 2 newly installed wells and 12 selected existing monitoring wells. Sediment particle size was analyzed for samples collected from the screened interval depths of each of the 14 wells. Hydraulic-conductivity and transmissivity values were calculated after the completion of single-well tests on each of the selected wells. Recovering water-level data from the single-well tests were analyzed using the Bouwer and Rice method because test data most closely resembled those obtained from traditional slug tests. Results from the single-well test analyses for the alluvial aquifer indicate a median hydraulic-conductivity value of 3.8 x 10-5 feet per second and geometric mean hydraulic-conductivity value of 3.4 x 10-5 feet per second. Median and geometric mean transmissivity values in the alluvial aquifer were 8.6 x 10-4 feet squared per second and 4.9 x 10-4 feet squared per second, respectively. Single-well test results for the shallow Denver Formation sandstone aquifer indicate a median hydraulic-conductivity value of 5.4 x 10-6 feet per second and geometric mean value of 4.9 x 10-6 feet per second. Median and geometric mean transmissivity values for the shallow Denver Formation sandstone aquifer were 4.0 x 10-5 feet squared per second and 5.9 x 10-5 feet squared per second, respectively. Hydraulic-conductivity values for the alluvial aquifer in and near the Lost Creek Designated

  10. Fuel nozzle tube retention

    Energy Technology Data Exchange (ETDEWEB)

    Cihlar, David William; Melton, Patrick Benedict

    2017-02-28

    A system for retaining a fuel nozzle premix tube includes a retention plate and a premix tube which extends downstream from an outlet of a premix passage defined along an aft side of a fuel plenum body. The premix tube includes an inlet end and a spring support feature which is disposed proximate to the inlet end. The premix tube extends through the retention plate. The spring retention feature is disposed between an aft side of the fuel plenum and the retention plate. The system further includes a spring which extends between the spring retention feature and the retention plate.

  11. Strategies for protecting ground water used for human consumption in the Guadalquivir basin; Estrategias de proteccion del agua subterranea destinada al consumo humano en la cuenca del Guadalquivir

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Madrid, A.; Martinez, C.; Luque, J. a.; Rubio-Campos, J. C.; Carrasco, F.

    2013-02-01

    We propose a way of defining safeguard zones for groundwater protection according to the requirements of the Water Framework Directive (WFD). Taking into account the peculiarities of the groundwater bodies in the region of the Mediterranean arch, we chose to conduct our study in the Guadalquivir basin in southern Spain, an area of special interest because it combines the influence of rain fronts and the mixed characteristics of both Mediterranean and Atlantic climates, together with the fact that a large percentage of water for human consumption is provided by groundwater, especially at the head of the basin, where this percentage may account for up to 80%. Safeguard zones are defined by an initial delimitation of quality-protection perimeters using the Reduced DRASTIC and COP methods, designed specifically for detrital and karstic aquifers respectively, to assess the potential impact of the existing pressures upon them and study their intrinsic vulnerability. An analysis of all this spatial information using a geographical information system allowed us to test and validate the method used and to obtain an initial definition of safeguard zones in the basin in question. (Author) 37 refs.

  12. Computer input and output files associated with ground-water-flow simulations of the Albuquerque Basin, central New Mexico, 1901-94, with projections to 2020; (supplement one to U.S. Geological Survey Water-resources investigations report 94-4251)

    Science.gov (United States)

    Kernodle, J.M.

    1996-01-01

    This report presents the computer input files required to run the three-dimensional ground-water-flow model of the Albuquerque Basin, central New Mexico, documented in Kernodle and others (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-1994, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.). Output files resulting from the computer simulations are included for reference.

  13. Ground-water-level monitoring, basin boundaries, and potentiometric surfaces of the aquifer system at Edwards Air Force Base, California, 1992

    Science.gov (United States)

    Rewis, D.L.

    1995-01-01

    A ground-water-level monitoring program was implemented at Edwards Air Force Base, California, from January through December 1992 to monitor spatial and temporal changes in poten-tiometric surfaces that largely are affected by ground-water pumping. Potentiometric-surface maps are needed to determine the correlation between declining ground- water levels and the distribution of land subsidence. The monitoring program focused on areas of the base where pumping has occurred, especially near Rogers Lake, and involved three phases of data collection: (1) well canvassing and selection, (2) geodetic surveys, and (3) monthly ground-water-level measurements. Construction and historical water- level data were compiled for 118 wells and pi-ezometers on or near the base, and monthly ground-water-level measurements were made in 82 wells and piezometers on the base. The compiled water-level data were used in conjunction with previously collected geologic data to identify three types of no-flow boundaries in the aquifer system: structural boundaries, a principal-aquifer boundary, and ground-water divides. Heads were computed from ground-water-level measurements and land-surface altitudes and then were used to map seasonal potentiometric surfaces for the principal and deep aquifers underlying the base. Pumping has created a regional depression in the potentiometric surface of the deep aquifer in the South Track, South Base, and Branch Park well-field area. A 15-foot decline in the potentiometric surface from April to September 1992 and 20- to 30-foot drawdowns in the three production wells in the South Track well field caused locally unconfined conditions in the deep aquifer.

  14. Ground-Water Quality Data in the Monterey Bay and Salinas Valley Basins, California, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth

    2007-01-01

    Ground-water quality in the approximately 1,000-square-mile Monterey Bay and Salinas Valley study unit was investigated from July through October 2005 as part of the California Ground-Water Ambient Monitoring and Assessment (GAMA) program. The study was designed to provide a spatially unbiased assessment of raw ground-water quality, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 94 public-supply wells and 3 monitoring wells in Monterey, Santa Cruz, and San Luis Obispo Counties. Ninety-one of the public-supply wells sampled were selected to provide a spatially distributed, randomized monitoring network for statistical representation of the study area. Six wells were sampled to evaluate changes in water chemistry: three wells along a ground-water flow path were sampled to evaluate lateral changes, and three wells at discrete depths from land surface were sampled to evaluate changes in water chemistry with depth from land surface. The ground-water samples were analyzed for volatile organic compounds (VOCs), pesticides, pesticide degradates, nutrients, major and minor ions, trace elements, radioactivity, microbial indicators, and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory). Naturally occurring isotopes (tritium, carbon-14, helium-4, and the isotopic composition of oxygen and hydrogen) also were measured to help identify the source and age of the sampled ground water. In total, 270 constituents and water-quality indicators were investigated for this study. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain water quality. In addition, regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. In this study, only six constituents, alpha radioactivity, N

  15. Three-dimensional model simulation of steady-state ground-water flow in the Albuquerque-Belen Basin, New Mexico

    Science.gov (United States)

    Kernodle, J.M.; Scott, W.B.

    1986-01-01

    As part of the Southwest Alluvial Basins study, model was constructed to simulate the alluvial aquifer system underlying the Albuquerque-Belen Basin. The model was used to simulate the steady-state flow condition assumed to have existed prior to 1960. Until this time there apparently were no long-term groundwater level changes of a significant magnitude outside the immediate vicinity of Albuquerque. Therefore, the construction of a steady-state flow model of the aquifer system based on reported hydrologic data predating 1960 was justified. During construction of the steady-state model, simulated hydraulic conductivity values were adjusted, within acceptable physical limits, until a best fit between measured or reported and computed heads at 34 control wells was achieved. The modeled area was divided into six sub-areas, or zones, within each of which hydraulic conductivity was assumed to be uniform. The model consisted of six layers for each of which simulated transmissivity was proportional to the layer thickness. Adjustments to simulated hydraulic conductivity values in the different zones resulted in final values that ranged from a low of 0.25 ft/day in the west to 50 ft/day in the eastern part of the basin. The error of the simulation, defined as the absolute difference between the computed and the measured or reported water level at the corresponding point in the physical system being modeled, ranged from 0.6 ft to 36 ft, with an average of 14.6 ft for the 34 control wells. (Author 's abstract)

  16. 渭河盆地深部构造活动的地裂缝孕育机理%Ground Fissures Germination Mechanism of Deep Structure Activities in Weihe Basin

    Institute of Scientific and Technical Information of China (English)

    邓亚虹; 彭建兵; 慕焕东; 李丽; 孙振峰

    2013-01-01

    渭河盆地是我国乃至世界上地裂缝最发育、灾害最严重的地区.基于渭河盆地深部构造模式,采用有限元数值分析方法,分析了上地幔上隆、中地壳流展和上地壳拉张3种深部构造作用下盆地浅表岩土介质的应力和变形响应特征,从而揭示了渭河盆地深部构造活动与该区域地裂缝群发之间的孕育关系.结果表明:上地幔的隆起和中地壳侧向流展形成了浅部拉张应力环境,这种效应与盆地周边块体运动形成的伸展引张构造应力场叠加,再附加断裂伸展倾滑形成的局部拉伸应力场构成了地裂缝形成的主要动力来源.%Weihe basin is the most developed area of ground fissures and its hazard is also the most serious in China, even in the world. Based on the deep structure mode of Weihe basin, a numerical analysis with finite element method is made to study the stress and strain response of superficial ground subjected to the deep tectonization of upper mantle uplifting, middle crust lateral stretching and upper crust tension. The germination relationship between deep structure activities and ground fissures development is revealed. Results show that the tensile tress environment is formed by upper mantle uplifting and middle crust lateral stretching, which combines with stretching stress fields induced by surrounding blocks activity and faults dipslip, constitute the main motive resource of ground fissures development.

  17. Using SW4 for 3D Simulations of Earthquake Strong Ground Motions: Application to Near-Field Strong Motion, Building Response, Basin Edge Generated Waves and Earthquakes in the San Francisco Bay Are

    Science.gov (United States)

    Rodgers, A. J.; Pitarka, A.; Petersson, N. A.; Sjogreen, B.; McCallen, D.; Miah, M.

    2016-12-01

    Simulation of earthquake ground motions is becoming more widely used due to improvements of numerical methods, development of ever more efficient computer programs (codes), and growth in and access to High-Performance Computing (HPC). We report on how SW4 can be used for accurate and efficient simulations of earthquake strong motions. SW4 is an anelastic finite difference code based on a fourth order summation-by-parts displacement formulation. It is parallelized and can run on one or many processors. SW4 has many desirable features for seismic strong motion simulation: incorporation of surface topography; automatic mesh generation; mesh refinement; attenuation and supergrid boundary conditions. It also has several ways to introduce 3D models and sources (including Standard Rupture Format for extended sources). We are using SW4 to simulate strong ground motions for several applications. We are performing parametric studies of near-fault motions from moderate earthquakes to investigate basin edge generated waves and large earthquakes to provide motions to engineers study building response. We show that 3D propagation near basin edges can generate significant amplifications relative to 1D analysis. SW4 is also being used to model earthquakes in the San Francisco Bay Area. This includes modeling moderate (M3.5-5) events to evaluate the United States Geologic Survey's 3D model of regional structure as well as strong motions from the 2014 South Napa earthquake and possible large scenario events. Recently SW4 was built on a Commodity Technology Systems-1 (CTS-1) at LLNL, new systems for capacity computing at the DOE National Labs. We find SW4 scales well and runs faster on these systems compared to the previous generation of LINUX clusters.

  18. Recruitment and Retention with a Spin

    Science.gov (United States)

    Lindgren, Rita; Hixson, Carla Braun

    2010-01-01

    Strategic planning and innovation at Bismarck State College (BSC) found common ground in the college's goal to recruit and retain employees in an environment of low unemployment and strong competition for skilled employees. BSC's strategic plan for 2007-09 included the objective "to increase retention of employees." One of the strategies…

  19. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin - Ground-water quality in an agricultural area of Sherburne County, Minnesota, 1998

    Science.gov (United States)

    Ruhl, James F.; Fong, Alison L.; Hanson, Paul E.; Andrews, William J.

    2000-01-01

    The quality of shallow ground water in a 75-mi2 agricultural area of the Anoka Sand Plain aquifer in central Minnesota is described as part of the National Water Quality Assessment (NAWQA) Program - a national-scale assessment of the quality of water resources within large study units in various hydrologic settings. Data were collected during 1998 from 29 wells completed in the aquifer, which predominantly consists of surficial glacial sand and gravel sediments.

  20. Water quality of the Apalachicola-Chattahoochee-Flint and Ocmulgee river basins related to flooding from Tropical Storm Alberto; pesticides in urban and agricultural watersheds, and nitrate and pesticides in ground water, Georgia, Alabama, and Florida

    Science.gov (United States)

    Hippe, D.J.; Wangsness, D.J.; Frick, E.A.; Garrett, J.W.

    1994-01-01

    This report presents preliminary water-quality information from three studies that are part of the National Water-Quality Assessment (NAWQA) Program in the Apalachicola-Chattahoochee-Flint (ACF) River basin and the adjacent Ocmulgee River basin. During the period July 3-7, 1994, heavy rainfall from tropical storm Alberto caused record flooding on the Ocmulgee and Flint Rivers and several of their tributaries. Much of the nitrogen load transported during the flooding was as organic nitrogen generally derived from organic detritus, rather than nitrate derived from other sources, such as fertilizer. More than half the mean annual loads of total phosphorus and organic nitrogen were trans- ported in the Flint and Ocmulgee Rivers during the flood. Fourteen herbicides, five insecticides, and one fungicide were detected in floodwaters of the Ocmulgee, Flint, and Apalachicola Rivers. In a second study, water samples were collected at nearly weekly intervals from March 1993 through April 1994 from one urban and two agricultural watersheds in the ACF River basin, and analyzed for 84 commonly used pesticides. More pesticides were detected and at generally higher concentrations in water from the urban watershed than the agricultural water- sheds, and a greater number of pesticides were persistent throughout much of the year in the urban watershed. Simazine exceeded U.S. Environmental Protection Agency (EPA) drinking-water standards in one of 57 samples from the urban watershed. In a third study, 38 wells were installed in surficial aquifers adjacent to and downgradient of farm fields within agricultural areas in the southern ACF River basin. Even though regional aquifers are generally used for irrigation and domestic- and public-water supplies, degradation of water quality in the surficial aquifers serves as an early warning of potential contamination of regional aquifers. Nitrate concentrations were less than 3 mg/L as N (indicating minimal effect of human activities) in water

  1. Current (2004-07) Conditions and Changes in Ground-Water Levels from Predevelopment to 2007, Southern High Plains Aquifer, East-Central New Mexico-Curry County, Portales, and Causey Lingo Underground Water Basins

    Science.gov (United States)

    Tillery, Anne

    2008-01-01

    The Southern High Plains aquifer is the principal aquifer in Curry and Roosevelt Counties, N. Mex., and primary source of water in southeastern New Mexico. Successful water-supply planning for New Mexico's Southern High Plains requires knowledge of the current aquifer conditions and a context to estimate future trends given current aquifer-management policy. This report provides a summary of the current (2007) water-level status of the Southern High Plains aquifer in New Mexico, including a basis for estimating future trends by comparison with historical conditions. This report includes estimates of the extent of ground-water level declines in the Curry County, Portales, and Causey-Lingo Ground-water Management Area parts of the High Plains Aquifer in eastern New Mexico since predevelopment. Maps representing 2007 water levels, water-level declines, aquifer saturated thickness, and depth to water accompanied by hydrographs from representative wells for the Southern High Plains aquifer in the Curry County, Portales, and Causey Lingo Underground Water Basins were prepared in cooperation with the New Mexico Office of the State Engineer. The results of this mapping show the water level declined as much as 175 feet in the study area at rates as high as 1.76 feet per year.

  2. Facies and depositional architecture according to a jet efflux model of a late Paleozoic tidewater grounding-line system from the Itararé Group (Paraná Basin), southern Brazil

    Science.gov (United States)

    Aquino, Carolina Danielski; Buso, Victoria Valdez; Faccini, Ubiratan Ferrucio; Milana, Juan Pablo; Paim, Paulo Sergio Gomes

    2016-04-01

    During the Late Paleozoic, the Gondwana supercontinent was affected by multiple glacial and deglacial episodes known as "The Late Paleozoic Ice Age" (LPIA). In Brazil, the evidence of this episode is recorded mainly by widespread glacial deposits preserved in the Paraná Basin that contain the most extensive record of glaciation (Itararé Group) in Gondwana. The Pennsylvanian to early Permian glaciogenic deposits of the Itararé Group (Paraná Basin) are widely known and cover an extensive area in southern Brazil. In the Doutor Pedrinho area (Santa Catarina state, southern Brazil), three glacial cycles of glacier advance and retreat were described. The focus of this article is to detail the base of the second glacial episodes or Sequence II. The entire sequence records a deglacial system tract that is represented by a proximal glacial grounding-line system covered by marine mudstones and shales associated with a rapid flooding of the proglacial area. This study deals with the ice proximal grounding-line systems herein interpreted according to lab model named plane-wall jet with jump. Detailed facies analysis allowed the identification of several facies ranging from boulder-rich conglomerates to fine-grained sandstones. No fine-grained deposits such as siltstone or shale were recorded. According to this model, the deposits are a product of a supercritical plane-wall outflow jet that changes to a subcritical jet downflow from a hydraulic jump. The hydraulic jump forms an important energy boundary that is indicated by an abrupt change in grain size and cut-and-fill structures that occur at the middle-fan. The sedimentary facies and facies associations show a downflow trend that can be subdivided into three distinct stages of flow development: (1) a zone of flow establishment (ZFE), (2) a zone of transition (ZFT), and (3) an established zone (ZEF). The proximal discharge is characterized by hyperconcentrated-to-concentrated flow due to the high energy and sediment

  3. Psychologist Retention Factors.

    Science.gov (United States)

    RETENTION(PSYCHOLOGY), *JOB SATISFACTION, *ALL VOLUNTEER, MANAGEMENT PLANNING AND CONTROL, ATTITUDES(PSYCHOLOGY), DEMOGRAPHY, ATTRITION, SURVEYS, QUESTIONNAIRES, PERCEPTION (PSYCHOLOGY), PSYCHOLOGISTS .

  4. Precipitation and Runoff Simulations of the Carson Range and Pine Nut Mountains, and Updated Estimates of Ground-Water Inflow and the Ground-Water Budgets for Basin-Fill Aquifers of Carson Valley, Douglas County, Nevada, and Alpine County, California

    Science.gov (United States)

    Jeton, Anne E.; Maurer, Douglas K.

    2007-01-01

    Recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, Nevada, and California, from the adjacent Carson Range and Pine Nut Mountains ranged from 22,000 to 40,000 acre-feet per year using water-yield and chloride-balance methods. In this study, watershed models were developed for watersheds with perennial streams and for watersheds with ephemeral streams in the Carson Range and Pine Nut Mountains to provide an independent estimate of ground-water inflow. This report documents the development and calibration of the watershed models, presents model results, compares the results with recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, and presents updated estimates of the ground-water budget for basin-fill aquifers of Carson Valley. The model used for the study was the Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Geographic Information System software was used to manage spatial data, characterize model drainages, and to develop Hydrologic Response Units. Models were developed for * Two watersheds with gaged perennial streams in the Carson Range and two watersheds with gaged perennial streams in the Pine Nut Mountains using measured daily mean runoff, * Ten watersheds with ungaged perennial streams using estimated daily mean runoff, * Ten watershed with ungaged ephemeral streams in the Carson Range, and * A large area of ephemeral runoff near the Pine Nut Mountains. Models developed for the gaged watersheds were used as index models to guide the calibration of models for ungaged watersheds. Model calibration was constrained by daily mean runoff for 4 gaged watersheds and for 10 ungaged watersheds in the Carson Range estimated in a previous study. The models were further constrained by annual precipitation volumes estimated in a previous study to provide

  5. Losses of the potential in methane formation during the storage of sugar beet pulp in open ground basins; Verluste an Methanbildungspotenzial bei der Lagerung von Zuckerruebenmus in offenen Erdbecken

    Energy Technology Data Exchange (ETDEWEB)

    Parr, Klaus [Gut Dummerstorf GmbH, Dummerstorf (Germany); Reinsdorf, Uwe; Warnke-Gurgel, Christina [NAWARO BioEnergie Park Guestrow GmbH, Guestrow (Germany); Losand, Bernd [Landesforschungsanstalt fuer Landwirtschaft und Fischerei Mecklenburg-Vorpommern, Dummerstorf (Germany); Weissbach, Friedrich

    2013-10-01

    For the use as a substrate in biogas production, it has been proposed to pulpify sugar beets and to store this material in open ground basins (lagoons) which are lined with plastic film. In the inner regions of the lagoon, the material is preserved by anaerobic conditions and lactic acid fermentation. In the surface layer, which is exposed to the atmosphere, however, additional losses are generated by aerobic substrate degradation and evaporation of volatile compounds. The objective of this joined experimental study was to examine the losses of methane forming potential (MFP) during storage of pulpified sugar beets in lagoons. For this purpose, a method was developed enabling the quantification of these losses without the need of a mass balance. This method uses the changes of ash content of dry matter as an internal marker. The results obtained in this way are suitable to calculate the losses which are to be expected during conservation of pulpified sugar beets in open storage facilities of any volume and geometric form. The losses during an all year round storage of pulpified beet mass in lagoons proved to be higher than commonly assumed. In lagoons of 3 to 4 m of depth, the losses according to this study amounted to about 25% of organic matter and about 20% of MFP. (orig.)

  6. Geological and Geophysical Analysis of the Processes Ground Cracking and Associated Risks in Urban Basins in the Eastern and Northern of Jalisco Block, Mexico.

    Science.gov (United States)

    Suarez-Plascencia, C.

    2016-12-01

    The Jalisco Block (JB) is located in the western sector of Mexican Volcanic Belt; it is bounded on the east by the Colima graben-Zacoalco and apparently the north by the River Grande de Santiago. Three landform are regionally identified: mountain areas, piedmont and plains formed by deposits of tuffs, volcanic ash and sediment filled. These plains have been progressively urbanized since the sixteenth century; they were built in around the Guadalajara Metropolitan Area, as well as small towns like Sayula, Ciudad Guzman, Zacoalco, Jocotepec and nearby villages, in which all together are populated by about 6 million people. Since 1912 there are records of damages by the continuous formation of ground cracking, this process has increased over the past two decades, affecting natural soil, agricultural areas, urban areas and infrastructure of roads and highways. These cracks generally have a SW-NE orientation similar with the alignment of regional geological structures. They are characterized by settlements and forming steps of a few centimeters, with lengths from 300 to 1000 m and depths of a few centimeters to 15 meters and width of up to 2.5 m. Formed mainly during the rainy season from June to October each year. Recent damages have generated losses of several hundreds of thousands of dollars, especially in Ciudad Guzman, located in southern BJ, where a crack of 2.5 km was observed in 2012 and it has long affected the downtown area, the town of Nextipac-Tesistan, municipality of Zapopan in the northern sector of JB. This territory is formed by a thick deposit of pumice tuffs, which has presented cracks in the years 1912, 1975, 1987, 2004 and 2015, affecting also agricultural and urban areas. The paper will presents results which will analyze and discern through geological, geophysical and with technology of geographic information, the origin of these cracks, which can be associated with active tectonic structures, geo-hydrological processes, extraction of underground

  7. Drug Retention Times

    Energy Technology Data Exchange (ETDEWEB)

    Center for Human Reliability Studies

    2007-05-01

    The purpose of this monograph is to provide information on drug retention times in the human body. The information provided is based on plausible illegal drug use activities that might be engaged in by a recreational drug user.

  8. Drug Retention Times

    Energy Technology Data Exchange (ETDEWEB)

    Center for Human Reliability Studies

    2007-05-01

    The purpose of this monograph is to provide information on drug retention times in the human body. The information provided is based on plausible illegal drug use activities that might be engaged in by a recreational drug user

  9. Liquid Effluent Retention Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Liquid Effluent Retention Facility (LERF) is located in the central part of the Hanford Site. LERF is permitted by the State of Washington and has three liquid...

  10. Geographic information system datasets of regolith-thickness data, regolith-thickness contours, raster-based regolith thickness, and aquifer-test and specific-capacity data for the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    Science.gov (United States)

    Arnold, L. Rick

    2010-01-01

    These datasets were compiled in support of U.S. Geological Survey Scientific-Investigations Report 2010-5082-Hydrogeology and Steady-State Numerical Simulation of Groundwater Flow in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. The datasets were developed by the U.S. Geological Survey in cooperation with the Lost Creek Ground Water Management District and the Colorado Geological Survey. The four datasets are described as follows and methods used to develop the datasets are further described in Scientific-Investigations Report 2010-5082: (1) ds507_regolith_data: This point dataset contains geologic information concerning regolith (unconsolidated sediment) thickness and top-of-bedrock altitude at selected well and test-hole locations in and near the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Data were compiled from published reports, consultant reports, and from lithologic logs of wells and test holes on file with the U.S. Geological Survey Colorado Water Science Center and the Colorado Division of Water Resources. (2) ds507_regthick_contours: This dataset consists of contours showing generalized lines of equal regolith thickness overlying bedrock in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Regolith thickness was contoured manually on the basis of information provided in the dataset ds507_regolith_data. (3) ds507_regthick_grid: This dataset consists of raster-based generalized thickness of regolith overlying bedrock in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Regolith thickness in this dataset was derived from contours presented in the dataset ds507_regthick_contours. (4) ds507_welltest_data: This point dataset contains estimates of aquifer transmissivity and hydraulic conductivity at selected well locations in the Lost Creek Designated Ground Water Basin, Weld, Adams, and

  11. Processing, Analysis, and General Evaluation of Well-Driller Logs for Estimating Hydrogeologic Parameters of the Glacial Sediments in a Ground-Water Flow Model of the Lake Michigan Basin

    Science.gov (United States)

    Arihood, Leslie D.

    2009-01-01

    In 2005, the U.S. Geological Survey began a pilot study for the National Assessment of Water Availability and Use Program to assess the availability of water and water use in the Great Lakes Basin. Part of the study involves constructing a ground-water flow model for the Lake Michigan part of the Basin. Most ground-water flow occurs in the glacial sediments above the bedrock formations; therefore, adequate representation by the model of the horizontal and vertical hydraulic conductivity of the glacial sediments is important to the accuracy of model simulations. This work processed and analyzed well records to provide the hydrogeologic parameters of horizontal and vertical hydraulic conductivity and ground-water levels for the model layers used to simulated ground-water flow in the glacial sediments. The methods used to convert (1) lithology descriptions into assumed values of horizontal and vertical hydraulic conductivity for entire model layers, (2) aquifer-test data into point values of horizontal hydraulic conductivity, and (3) static water levels into water-level calibration data are presented. A large data set of about 458,000 well driller well logs for monitoring, observation, and water wells was available from three statewide electronic data bases to characterize hydrogeologic parameters. More than 1.8 million records of lithology from the well logs were used to create a lithologic-based representation of horizontal and vertical hydraulic conductivity of the glacial sediments. Specific-capacity data from about 292,000 well logs were converted into horizontal hydraulic conductivity values to determine specific values of horizontal hydraulic conductivity and its aerial variation. About 396,000 well logs contained data on ground-water levels that were assembled into a water-level calibration data set. A lithology-based distribution of hydraulic conductivity was created by use of a computer program to convert well-log lithology descriptions into aquifer or

  12. Nitrogen Saturation in Highly Retentive Watersheds?

    Science.gov (United States)

    Daley, M. L.; McDowell, W. H.

    2009-12-01

    Watershed managers are often concerned with minimizing the amount of N delivered to N-limited estuaries and coastal zones. A major concern is that watersheds might reach N saturation, in which N delivered to coastal zones increases due to declines in the efficiency of N retention despite constant or even reduced N inputs. We have quantified long-term changes in N inputs (atmospheric deposition, imported food and agricultural fertilizers), outputs (N concentration and export) and retention in the urbanizing Lamprey River watershed in coastal NH. Overall, the Lamprey watershed is 70% forested, receives about 13.5 kg N/ha/yr and has a high rate of annual N retention (85%). Atmospheric deposition (8.7 kg/ha/yr) is the largest N input to the watershed. Of the 2.2 kg N/ha/yr exported in the Lamprey River, dissolved organic N (DON) is the dominant form (50% of total) and it varies spatially throughout the watershed with wetland cover. Nitrate accounts for 30% of the N exported, shows a statistically significant increase from 1999 to 2009, and its spatial variability in both concentration and export is related to human population density. In sub-basins throughout the Lamprey, inorganic N retention is high (85-99%), but the efficiency of N retention declines sharply with increased human population density and associated anthropogenic N inputs. N assimilation in the vegetation, denitrification to the atmosphere and storage in the groundwater pool could all be important contributors to the current high rates of N retention. The temporal and spatial patterns that we have observed in nitrate concentration and export are driven by increases in N inputs and impervious surfaces over time, but the declining efficiency of N retention suggests that the watershed may also be reaching N saturation. The downstream receiving estuary, Great Bay, already suffers from low dissolved oxygen levels and eelgrass loss in part due to N loading from the Lamprey watershed. Targeting and reducing

  13. Meningitis retention syndrome

    Directory of Open Access Journals (Sweden)

    Abhishek Krishna

    2012-04-01

    Full Text Available A 50-year-old Caucasian woman presented with signs and symptoms of meningitis preceded by a 3 day history of flu-like symptoms and progressive difficulty with urination. Cerebrospinal Fluid (CSF analysis was consistent with aseptic meningitis. She was found to have a significant urinary retention secondary to atonic bladder. MRI of the brain and spine were normal and CSF-PCR (polymerase chain reaction was positive for HSV-2. Urinary retention in the context of meningitis and CSF pleocytosis is known as Meningitis Retention Syndrome (MRS. MRS is a rare but important complication of meningitis most commonly associated with HSV-2. Involvement of central pathways may have a role in the pathogenesis of MRS but this is poorly documented. MRS is different from Elsberg syndrome wherein patients display features of lumbosacral polyradiculitis or radiculomyelitis. Early treatment with antiviral therapy was associated with a favorable outcome in our patient.

  14. RAINWATER RETENTION ON THE HEAVILY INDUSTRIALIZED AREAS

    Directory of Open Access Journals (Sweden)

    Bartosz Kaźmierczak

    2016-06-01

    Full Text Available The paper presents the dimensioning of retention reservoirs indicator method regarding to the German DWA-A 117 guideline, recommended for small rainfall catchments (with an area of 200 ha. A comparative calculation of the retention reservoirs overflow useful volume were conducted for 4 variants of catchment development (degree sealing surface varied from 60% to 90%, under the assumed sewage outflow from the tank at the level of the urban basin natural runoff. At given conditions required unit volume of retention reservoirs, from 145.4 m3 to 206.7 m3 for each 1 ha of catchment area were determined. The obtained results confirmed the fact that useful volume of the tanks were decreased, when Blaszczyk’s pattern reliable rainwater streams were used for calculations. Because the DWA-A 117 guideline method should be applied to a small rainfall catchments, it is recommended to verify the hydraulic capacity of dimensioned channels and objects using hydrodynamic simulations at different load of rainfall catchment scenarios, variable in time and space.

  15. Atrazine retention and degradation in the vadose zone at a till plain site in central Indiana

    Science.gov (United States)

    Bayless, E.R.

    2001-01-01

    The vadose zone was examined as an environmental compartment where significant quantities of atrazine and its degradation compounds may be stored and transformed. The vadose zone was targeted because regional studies in the White River Basin indicated a large discrepancy between the mass of atrazine applied to fields and the amount of the pesticide and its degradation compounds that are measured in ground and surface water. A study site was established in a rotationally cropped field in the till plain of central Indiana. Data were gathered during the 1994 growing season to characterize the site hydrogeology and the distribution of atrazine, desethylatrazine, deisopropylatrazine, didealkylatrazine and hydroxyatrazine in runoff, pore water, and ground water. The data indicated that atrazine and its degradation compounds were transported from land surface to a depth of 1.5 m within 60 days of application, but were undetected in the saturated zone at nearby monitoring wells. A numerical model was developed, based on the field data, to provide information about processes that could retain and degrade atrazine in the vadose zone. Simulations indicated that evapotranspiration is responsible for surface directed soil-moisture flow during much of the growing season. This process causes retention and degradation of atrazine in the vadose zone. Increased residence time in the vadose zone leads to nearly complete transformation of atrazine and its degradation products to unquantified degradation compounds. As a result of mascropore flow, small quantities of atrazine and its degradation compounds may reach the saturated zone.

  16. General Reviews of Vocabulary Retention

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan

    2013-01-01

    This paper will try to review two important theories (repletion and retrieval) which are crucial for vocabulary retention. These two methods are well connected and each of them cannot lead to successful vocabulary retention without sensible utilization of the other.

  17. phosphorus retention data and metadata

    Data.gov (United States)

    U.S. Environmental Protection Agency — phosphorus retention in wetlands data and metadata. This dataset is associated with the following publication: Lane , C., and B. Autrey. Phosphorus retention of...

  18. Grounded theory.

    Science.gov (United States)

    Harris, Tina

    2015-04-29

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  19. Enhancing retention of partial dentures using elastomeric retention rings

    Directory of Open Access Journals (Sweden)

    Kakkirala Revathi

    2015-01-01

    Full Text Available This report presents an alternative method for the retention of partial dentures that relies on the engagement of tooth undercuts by a lining material. The lab procedures are also presented. A new maxillary and mandibular acrylic partial dentures were fabricated using elastomeric retention technique for a partially dentate patient. A partially dentate man reported difficulty in retaining his upper removable partial denture (RPD. The maxillary RPD was designed utilizing elastomeric retention technique. During follow-up, it was necessary to replace the retention rings due to wear. The replacement of the retention rings, in this case, was done through a chairside reline technique. Elastomeric retention technique provides exceptionally good retention can be indicated to stabilize, cushion, splint periodontally involved teeth, no enough undercut for clasps, eliminate extractions, single or isolated teeth.

  20. Geospatial Data Used in Water-Level and Land-Subsidence Studies in the Mojave River and Morongo Groundwater Basins for 2004

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground-water from these basins supplies a...

  1. Grounded cognition.

    Science.gov (United States)

    Barsalou, Lawrence W

    2008-01-01

    Grounded cognition rejects traditional views that cognition is computation on amodal symbols in a modular system, independent of the brain's modal systems for perception, action, and introspection. Instead, grounded cognition proposes that modal simulations, bodily states, and situated action underlie cognition. Accumulating behavioral and neural evidence supporting this view is reviewed from research on perception, memory, knowledge, language, thought, social cognition, and development. Theories of grounded cognition are also reviewed, as are origins of the area and common misperceptions of it. Theoretical, empirical, and methodological issues are raised whose future treatment is likely to affect the growth and impact of grounded cognition.

  2. Determining Spatial Distribution And Air-Water Exchange Of Polycyclic Aromatic Hydrocarbons In Stormwater Runoff Catchment Basins

    Science.gov (United States)

    Kasaraneni, V. K.; Schifman, L. A.; Craver, V.; Boving, T. B.

    2014-12-01

    Stormwater runoff is a conduit for several pollutants such as polycyclic aromatic hydrocarbons (PAHs) in to surface and ground water bodies. The control of runoff and pollutants is typically addressed by best management practices (BMPs), such as retention/detention ponds or catchment basins in general. The effectiveness of catchment basins in reducing the volume of runoff and removal of some contaminants has been established. However, very little is known about the fate of the contaminants settled within these structures. In coastal regions and places with shallow groundwater tables accumulation of high concentrations of PAHs in the bottom sediments poses a potential threat for groundwater contamination. The concentrations of PAHs accumulated in the sediments of these catchment basins will primarily depend on the sources of runoff origin and the surrounding land use. Due to the physico-chemical characteristics of PAHs, their transport not only can occur in the liquid and solid phase, but it is also possible that gaseous emissions can be produced from BMP systems. For the purpose of this study, five stormwater catchment basins along the I-95 corridor in Rhode Island were selected based on the stormwater runoff origin and covering (industrial, urban, highway, and commercial) land uses. To study the stratification of PAHs sediment cores one foot were collected and analyzed for 31PAHs (16 EPA parent PAH and 15 methylated PAHs). In order to determine whether the catchment basins are a source of atmospheric pollution polyethylene passive samplers were deployed to determine the freely dissolved PAHs in the water column and gas phase PAHs at the air-water interface. This presentation will describe how PAH fluxes move between three environmental compartments (sediments, water column, atmosphere) within the five stormwater catchment basins. Further, it will be investigated whether these BMP structures can act as contaminant sources rather than sinks and whether BMP

  3. Potential possibilities of water retention in agricultural loess catchments

    Directory of Open Access Journals (Sweden)

    Zubala Tomasz

    2016-09-01

    Full Text Available The growing water deficit and the increased demand for water, as well as economic problems and inadequate spatial planning in many regions indicate a necessity of developing more effective rules of programming and realisation of works concerning the water management in small catchments. The paper presents a sample analysis of the possibilities of increasing water retention in the agricultural loess catchments with periodic streams. The scope of the study included the determination of physical parameters of selected sub-catchments (geometry, soil cover, land use, etc. and of the sources of threat to water resources, resulting from construction and geomorphological conditions. Pre-design assumptions of dammings were developed, taking into account anti-erosion protective measures, and treatments increasing the landscape retention of water were proposed. Creating surface retention objects should be an important source of water in simplified agroecosystems, especially in regions, where productivity to a great extent depends on natural weather conditions. Proper management of the fourth-order loess basin of the Ciemięga River (area of about 150 km2, the presence of 50 lateral valleys could give a temporary reservoir retention reaching 500 thousand m3. Farmers should be encouraged to seek “own water sources” (including the accumulation of water within wasteland, using appropriate economic instruments (tax reliefs for the documented volume of retained water, e.g. in small retention reservoirs.

  4. Ground Wars

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Kleis

    Political campaigns today are won or lost in the so-called ground war--the strategic deployment of teams of staffers, volunteers, and paid part-timers who work the phones and canvass block by block, house by house, voter by voter. Ground Wars provides an in-depth ethnographic portrait of two...... infrastructures that utilize large databases with detailed individual-level information for targeting voters, and armies of dedicated volunteers and paid part-timers. Nielsen challenges the notion that political communication in America must be tightly scripted, controlled, and conducted by a select coterie...... of professionals. Yet he also quashes the romantic idea that canvassing is a purer form of grassroots politics. In today's political ground wars, Nielsen demonstrates, even the most ordinary-seeming volunteer knocking at your door is backed up by high-tech targeting technologies and party expertise. Ground Wars...

  5. Strong ground motion prediction using virtual earthquakes.

    Science.gov (United States)

    Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C

    2014-01-24

    Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.

  6. Drug Retention Times

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-05-01

    The purpose of this monograph is to provide information on drug retention times in the human body. The information provided is based on plausible illegal drug use activities that might be engaged in by a recreational drug user. Based on anecdotal evidence, most people “party” during extended time away from the work environment. Therefore, the following scenarios were envisioned: (1) a person uses an illicit drug at a party on Saturday night (infrequent user); (2) a person uses a drug one time on Friday night and once again on Saturday night (infrequent user); and (3) a person uses a drug on Friday night, uses a drug twice on Saturday night, and once again on Sunday (frequent user).

  7. 5 CFR 9901.356 - Pay retention.

    Science.gov (United States)

    2010-01-01

    ... retention. (b) Pay retention will be based on the employee's rate of base salary in effect immediately... the range of rates of base salary applicable to the employee's position. (c) Pay retention will be... the 104-week retention limit. (d) Under NSPS, pay retention will be granted when an employee's base...

  8. Toward a Record Retention Policy

    Science.gov (United States)

    Vaughan, Jason

    2007-01-01

    An academic library working group was charged in 2005 to create a records retention schedule and policy applicable to records containing personally identifiable information of library patrons. This group conducted a survey and extensive research, culminating in an adopted library records retention schedule and policy implemented in 2006.

  9. Military Retention. A Comparative Outlook

    Directory of Open Access Journals (Sweden)

    Vasile Sminchise

    2016-06-01

    Full Text Available One of the main goals for human resources management structures and for armed forces leaders is to maintain all necessary personnel, both qualitatively and quantitatively for operational needs or for full required capabilities. The retention of military personnel is essential to keep morale and unit readiness and to reduce the costs for recruiting, training, replacement of manpower. Retention rates depend not only on money or other social measures. The goal for retention is to keep in use the most valuable resource that belongs to an organization: the human beings and their knowledge. The aim pf this paper is to provide a comparative analysis of retention measures in various countries based on Research and Technology Organisation report released in 2007 and, thus, provide more examples of retention measures as far as the Romanian military system is concerned.

  10. Water-quality assessment of part of the upper Mississippi River basin, Minnesota and Wisconsin - Ground-water quality in an urban part of the Twin Cities Metropolitan area, Minnesota, 1996

    Science.gov (United States)

    Andrews, W.J.; Fong, A.L.; Harrod, Leigh; Dittes, M.E.

    1998-01-01

    In the spring of 1996, the Upper Mississippi River Basin Study Unit of the National Water-Quality Assessment Program drilled 30 shallow monitoring wells in a study area characterized by urban residential and commercial land uses. The monitoring wells were installed in sandy river-terrace deposits adjacent to the Mississippi River in Anoka and Hennepin Counties, Minnesota, in areas where urban development primarily occurred during the past 30 years.

  11. Analysis of a hailstorm event in the middle Yangtze River basin using ground microwave radiometers%地基微波辐射计对咸宁一次冰雹天气过程的监测分析

    Institute of Scientific and Technical Information of China (English)

    唐仁茂; 李德俊; 向玉春; 徐桂荣; 李跃清; 陈英英

    2012-01-01

    A hailstorm event in the middle basin of the Yangtze River on 12 April 2010 is observed by the ground microwave radiometer located at Xianning, Hubei Province, China. The results show:(1) In the hail cloud very strong the updraft caused volatility of the cloud base height, while continuous upward transport of low-level air sensible heat and latent heat lead isotherms to upward lifting, with the other processes associated with the Bergeron effect and ice crystal depletion. Because of these macro and micro processes, the integrated water vapor and integrated liquid water content experinced continuous decline or rise, resulting in a multi-peak structure. (2) It is clear that, in the 4. 2 -8 km supercooled layer of hail cloud, dynamic exchange among water solid, liquid and vapor phases is very complex during the period of 08:40- 13:00 UTC. characterized by alternating among droplet-ice depletion, Bergeron process and droplet-ice growth, causing an area of relative humidity less than 80% below 6 km with the liquid water content large value area of 0. 7 - 1. 8 g/m3 occuring in the height of 4. 2 - 8 km, which results in forming the hail growth environment of alternating between wet and dry growth, conducive to the hail particles rapid accumulation and growth in stratified groups. (3) Using the microwave radiometer data to calculate the four instability indices MKI, KI, TT and HI, we find these indicators have a good indication to severe convective weather, and show a potential to severe weather nowcasting. If KI ≥38 is selected as early warning indicators of severe convective weather in the region, early warning can be issued 45 min ahead for the first hail severe convective weather, and it can issue early warning of the 2nd, 3rd, 4th convective cell that will impact the region, 20 min, 40 min and 42 min ahead of time, respectively.%利用咸宁MP-3000A地基微波辐射计探测资料对2010年4月12日发生在咸宁的一次冰雹天气过程进

  12. Degradation of frozen ground in Hailaer River basin and its impact on hydrologic processes%冻土退化对海拉尔河流域水文过程的影响

    Institute of Scientific and Technical Information of China (English)

    陆胤昊; 叶柏生; 李翀

    2013-01-01

    The effect of frost degradation on runoff variability in cold regions has become a hot issue under a changing climate.However,most existing researches on the subject have focused on exploring the relationship between permafrost degradation and runoff.In this study,the relationship between frost degradation and runoff and its variability over the last 30 years are investigated.The study uses the frozen depth data from the Manzhouli meteorological station for the period 1974-2006 and the monthly runoff data from four hydrological stations on the Hailaer River basin for the period 1974-2008.The result shows that the winter discharge has increased 13%-20% at the Hailaer,Bahou,and Honghuaerji three hydrologic stations,and no significant change is found at the fourth one (Yakeshi).The discharge ratio of February to November (Q2/Q.) has increased significantly,while the maximum frozen depth at the Manzhouli meteorological station has decreased about 50cm for the same time period.These results imply that the winter recession curve has shown a slowing trend mainly due to the effect of frost degradation under climate warming.The hydrologic impact of frost degradation would be explainable by the following three aspects.First,the degradation of frozen ground will lead to the increases in aquifer thicknesses,surface water infiltration amounts,and groundwater storages.Subsequently,the groundwater increment will increase the winter discharge.Second,the circulation of groundwater is moving much more slowly than the surface water does.The enlarged groundwater reservoir will lead to a longer river runoff recession.Third,the response of frost degradation to climate warming is a slow process and its effect on runoff variability is also a gradual one.%利用海拉尔河流域内气象站点1974-2006年冻土冻结深度资料和水文站点1974-2008年的径流资料,通过建立冻结深度和径流的关系,研究了区域近30年来冻土变化对径流

  13. Desert basins of the Southwest

    Science.gov (United States)

    Leake, Stanley A.; Konieczki, Alice D.; Rees, Julie A.H.

    2000-01-01

    Ground water is among the Nation’s most important natural resources. It provides drinking water to urban and rural communities, supports irrigation and industry, sustains the flow of streams and rivers, and maintains riparian and wetland ecosystems. In many areas of the Nation, the future sustainability of ground-water resources is at risk from overuse and contamination. Because ground-water systems typically respond slowly to human actions, a long-term perspective is needed to manage this valuable resource. This publication is one in a series of fact sheets that describe ground-water-resource issues across the United States, as well as some of the activities of the U.S. Geological Survey that provide information to help others develop, manage, and protect ground-water resources in a sustainable manner. Ground-water resources in the Southwest are among the most overused in the United States. Natural recharge to aquifers is low and pumping in many areas has resulted in lowering of water tables. The consequences of large-scale removal of water from storage are becoming increasingly evident. These consequences include land subsidence; loss of springs, streams, wetlands and associated habitat; and degradation of water quality. Water managers are now seeking better ways of managing ground-water resources while looking for supplemental sources of water. This fact sheet reviews basic information on ground water in the desert basins of the Southwest. Also described are some activities of the U.S. Geological Survey (USGS) that are providing scientific information for sustainable management of ground-water resources in the Southwest. Ground-water sustainability is defined as developing and using ground water in a way that can be maintained for an indefinite time without causing unacceptable environmental, economic, or social consequences.

  14. Retention in orthodontics.

    Science.gov (United States)

    Johnston, C D; Littlewood, S J

    2015-02-16

    Retention is necessary following orthodontic treatment to prevent relapse of the final occlusal outcome. Relapse can occur as a result of forces from the periodontal fibres around the teeth which tend to pull the teeth back towards their pre-treatment positions, and also from deflecting occlusal contacts if the final occlusion is less than ideal. Age changes, in the form of ongoing dentofacial growth, as well as changes in the surrounding soft tissues, can also affect the stability of the orthodontic outcome. It is therefore essential that orthodontists, patients and their general dental practitioners understand the importance of wearing retainers after orthodontic treatment. This article will update the reader on the different types of removable and fixed retainers, including their indications, duration of wear, and how they should be managed in order to minimise any unwanted effects on oral health and orthodontic outcomes. The key roles that the general dental practitioner can play in supporting their patients wearing orthodontic retainers are also emphasised.

  15. A reinforcement learning approach to gait training improves retention.

    Science.gov (United States)

    Hasson, Christopher J; Manczurowsky, Julia; Yen, Sheng-Che

    2015-01-01

    Many gait training programs are based on supervised learning principles: an individual is guided towards a desired gait pattern with directional error feedback. While this results in rapid adaptation, improvements quickly disappear. This study tested the hypothesis that a reinforcement learning approach improves retention and transfer of a new gait pattern. The results of a pilot study and larger experiment are presented. Healthy subjects were randomly assigned to either a supervised group, who received explicit instructions and directional error feedback while they learned a new gait pattern on a treadmill, or a reinforcement group, who was only shown whether they were close to or far from the desired gait. Subjects practiced for 10 min, followed by immediate and overnight retention and over-ground transfer tests. The pilot study showed that subjects could learn a new gait pattern under a reinforcement learning paradigm. The larger experiment, which had twice as many subjects (16 in each group) showed that the reinforcement group had better overnight retention than the supervised group (a 32% vs. 120% error increase, respectively), but there were no differences for over-ground transfer. These results suggest that encouraging participants to find rewarding actions through self-guided exploration is beneficial for retention.

  16. Data Retention and Anonymity Services

    Science.gov (United States)

    Berthold, Stefan; Böhme, Rainer; Köpsell, Stefan

    The recently introduced legislation on data retention to aid prosecuting cyber-related crime in Europe also affects the achievable security of systems for anonymous communication on the Internet. We argue that data retention requires a review of existing security evaluations against a new class of realistic adversary models. In particular, we present theoretical results and first empirical evidence for intersection attacks by law enforcement authorities. The reference architecture for our study is the anonymity service AN.ON, from which we also collect empirical data. Our adversary model reflects an interpretation of the current implementation of the EC Directive on Data Retention in Germany.

  17. Interbasin underflow between closed Altiplano basins in Chile.

    Science.gov (United States)

    Montgomery, Errol L; Rosko, Michael J; Castro, Santiago O; Keller, Barry R; Bevacqua, Paolo S

    2003-01-01

    Interbasin ground water movement of 200 to 240 L/sec occurs as underflow beneath a mountainous surface water divide separating the topographically higher Salar de Michincha from the topographically lower Salar de Coposa internally drained basins in the Altiplano of northern Chile. Salt-encrusted flats (salars) and saline lakes occur on the lowest parts of the basin floors and comprise the principal evaporative discharge areas for the basins. Because a surface water divide separates the basins, surface water drainage boundaries do not coincide with ground water drainage boundaries. In the region, interbasin ground water movement is usually not recognized, but occurs for selected basins, and at places is an important component of ground water budgets. With increasing development of water for mining industry and potential exportation of ground water from the Altiplano for use at coastal cities, demonstration and quantification of interbasin movement is important for assessment of sustainable ground water development in a region of extreme aridity. Recognition and quantification of interbasin ground water underflow will assist in management of ground water resources in the arid Chilean Altiplano environment.

  18. Assessing the effect of mobilization on enlisted reserve retention

    OpenAIRE

    Krispin, Sean J.

    2010-01-01

    Approved for public release; distribution is unlimited Retention of personnel is as important for United States military organizations as it is for any organization to ensure continuity and effectiveness. The demands that the current long-term conflicts place on the military have affected the Navy, both Active and Reserves. Naval personnel are asked to do missions on shore with ground units in an Individual Augmentation (IA) billet. Many of these IA billets have been filled by mobilized re...

  19. Program directors' perceptions of undergraduate athletic training student retention.

    Science.gov (United States)

    Bowman, Thomas G; Hertel, Jay; Mazerolle, Stephanie M; Dodge, Thomas M; Wathington, Heather D

    2015-02-01

    The average retention rate for students enrolled in undergraduate athletic training programs (ATPs) nationwide has been reported to be 81%, and slightly more than half of program directors (PDs) have indicated that retention of athletic training students (ATSs) is a problem. However, why PDs do or do not believe ATS retention is problematic is unknown. To determine why PDs do or do not believe ATS retention is problematic. Qualitative study. Undergraduate ATPs. We obtained responses from 177 of the 343 PDs (51.6%). Using data saturation as a guide, we randomly selected 16 PDs from the survey responses to participate in follow-up telephone interviews; 8 believed retention was a problem and 8 did not. During audio-recorded telephone interviews, we asked PDs why they thought retention was or was not a problem for athletic training education. Following verbatim transcription, we used grounded theory to analyze the interview data and maintained trustworthiness by using intercoder agreement, member checks, and peer review. Program directors believed that retaining ATSs was a problem because students lack information regarding athletic training and the rigor of the ATP. Program directors were consistent in their perception that ATPs do not have a retention challenge because of the use of a secondary admissions process. This finding was likely based on personal use of a secondary admissions process in the ATPs these PDs lead. Program directors who lead ATPs that struggle to retain ATSs should consider using a secondary admissions process. During the preprofessional phase of the ATP, faculty and staff should work to socialize students to the demands of the ATP and the professional lives of athletic trainers.

  20. Radionuclide Retention in Concrete Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Wood, Marcus I.

    2010-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. The information presented in the report provides data that 1) quantify radionuclide retention within concrete waste form materials similar to those used to encapsulate waste in the Low-Level Waste Burial Grounds (LLBG); 2) measure the effect of concrete waste form properties likely to influence radionuclide migration; and 3) quantify the stability of uranium-bearing solid phases of limited solubility in concrete.

  1. Fuzzy indicators for customer retention

    National Research Council Canada - National Science Library

    Valenzuela-Fernández, Leslier; Nicolas, Carolina; Gil-Lafuente, Jaime; Merigó, José M

    2016-01-01

    .... Nevertheless, one cannot ignore the existence of a gap on how to measure this relationship. Following this idea, this study proposes six fuzzy key performance indicators that aims to measure customer retention and loyalty of the portfolio...

  2. Post-operative urinary retention.

    Science.gov (United States)

    Steggall, Martin; Treacy, Colm; Jones, Mark

    Urinary retention is a common complication of surgery and anaesthesia. The risk of post-operative urinary retention is increased following certain surgical procedures and anaesthetic modalities, and with patients' advancing age. Patients at increased risk of post-operative urinary retention should be identified before surgery or the condition should be identified and treated in a timely manner following surgery. If conservative measures do not help the patient to pass urine, the bladder will need to be drained using either an intermittent catheter or an indwelling urethral catheter, which can result in catheter-associated urinary tract infections. This article provides an overview of normal bladder function, risk factors for developing post-operative urinary retention, and treatment options. Guidance drawn from the literature aims to assist nurses in identifying at-risk patients and inform patient care.

  3. Turnover: strategies for staff retention.

    Science.gov (United States)

    SnowAntle, S

    1990-01-01

    This discussion has focused on a number of areas where organizations may find opportunities for more effectively managing employee retention. Given the multitude of causes and consequences, there is no one quick fix. Effective management of employee retention requires assessment of the entire human resources process, that is, recruitment, selection, job design, compensation, supervision, work conditions, etc. Regular and systematic diagnosis of turnover and implementation of multiple strategies and evaluation are needed (Mobley, 1982).

  4. Review of Selected References and Data sets on Ambient Ground- and Surface-Water Quality in the Metedeconk River, Toms River, and Kettle Creek Basins, New Jersey, 1980-2001

    Science.gov (United States)

    Nicholson, Robert S.; Hunchak-Kariouk, Kathryn; Cauller, Stephen J.

    2003-01-01

    Surface water and ground water from unconfined aquifers are the primary sources of drinking water for much of the population, about 391,000, in the Metedeconk River, Toms River, and Kettle Creek watersheds in the New Jersey Coastal Plain. The quality of these sources of drinking water is a concern because they are vulnerable to contamination. Indications of the occurrence, distribution, and likely sources and transport mechanisms of certain contaminants were obtained from 48 selected reports and 2 selected data sets on water quality in or near the watersheds (1980-2001). These indications are described and briefly summarized in this report. The findings of studies on ground-water quality indicate that shallow ground water within the study area generally meets primary drinking-water standards, with notable exceptions. Volatile organic compounds, mercury, arsenic, radionuclides, nitrate, and coliform bacteria have been detected in shallow ground water in some areas at levels that exceed Federal and State drinking-water standards. For example, results of analyses of untreated samples collected from more than 13,000 private wells during 1983-99 indicated that concentrations of volatile organic compounds in samples from 7.3 percent of the wells exceeded at least 1 of 11 drinking-water standards, according to records maintained by the Ocean County Health Department. In cases of exceedances, however, water treatment, well replacement, and (or) retesting assured that applicable drinking-water standards were being met at the tap. Reported concentrations of the pesticide chlordane in some areas exceeded the drinking-water standard; few data are available on the occurrence of other pesticides. Studies of nearby areas, however, indicate that pesticide concentrations generally could be expected to be below drinking-water standards. The combination of low pH and low dissolved solids in many areas results in shallow ground water that is highly corrosive and, if untreated, able to

  5. Review of Selected References and Data sets on Ambient Ground- and Surface-Water Quality in the Metedeconk River, Toms River, and Kettle Creek Basins, New Jersey, 1980-2001

    Science.gov (United States)

    Nicholson, Robert S.; Hunchak-Kariouk, Kathryn; Cauller, Stephen J.

    2003-01-01

    Surface water and ground water from unconfined aquifers are the primary sources of drinking water for much of the population, about 391,000, in the Metedeconk River, Toms River, and Kettle Creek watersheds in the New Jersey Coastal Plain. The quality of these sources of drinking water is a concern because they are vulnerable to contamination. Indications of the occurrence, distribution, and likely sources and transport mechanisms of certain contaminants were obtained from 48 selected reports and 2 selected data sets on water quality in or near the watersheds (1980-2001). These indications are described and briefly summarized in this report. The findings of studies on ground-water quality indicate that shallow ground water within the study area generally meets primary drinking-water standards, with notable exceptions. Volatile organic compounds, mercury, arsenic, radionuclides, nitrate, and coliform bacteria have been detected in shallow ground water in some areas at levels that exceed Federal and State drinking-water standards. For example, results of analyses of untreated samples collected from more than 13,000 private wells during 1983-99 indicated that concentrations of volatile organic compounds in samples from 7.3 percent of the wells exceeded at least 1 of 11 drinking-water standards, according to records maintained by the Ocean County Health Department. In cases of exceedances, however, water treatment, well replacement, and (or) retesting assured that applicable drinking-water standards were being met at the tap. Reported concentrations of the pesticide chlordane in some areas exceeded the drinking-water standard; few data are available on the occurrence of other pesticides. Studies of nearby areas, however, indicate that pesticide concentrations generally could be expected to be below drinking-water standards. The combination of low pH and low dissolved solids in many areas results in shallow ground water that is highly corrosive and, if untreated, able to

  6. 'Grounded' Politics

    DEFF Research Database (Denmark)

    Schmidt, Garbi

    2012-01-01

    play within one particular neighbourhood: Nørrebro in the Danish capital, Copenhagen. The article introduces the concept of grounded politics to analyse how groups of Muslim immigrants in Nørrebro use the space, relationships and history of the neighbourhood for identity political statements....... The article further describes how national political debates over the Muslim presence in Denmark affect identity political manifestations within Nørrebro. By using Duncan Bell’s concept of mythscape (Bell, 2003), the article shows how some political actors idealize Nørrebro’s past to contest the present...

  7. Mobile Learning and Student Retention

    Directory of Open Access Journals (Sweden)

    Bharat Inder Fozdar

    2007-06-01

    Full Text Available Student retention in open and distance learning (ODL is comparatively poor to traditional education and, in some contexts, embarrassingly low. Literature on the subject of student retention in ODL indicates that even when interventions are designed and undertaken to improve student retention, they tend to fall short. Moreover, this area has not been well researched. The main aim of our research, therefore, is to better understand and measure students’ attitudes and perceptions towards the effectiveness of mobile learning. Our hope is to determine how this technology can be optimally used to improve student retention at Bachelor of Science programmes at Indira Gandhi National Open University (IGNOU in India. For our research, we used a survey. Results of this survey clearly indicate that offering mobile learning could be one method improving retention of BSc students, by enhancing their teaching/ learning and improving the efficacy of IGNOU’s existing student support system. The biggest advantage of this technology is that it can be used anywhere, anytime. Moreover, as mobile phone usage in India explodes, it offers IGNOU easy access to a larger number of learners. This study is intended to help inform those who are seeking to adopt mobile learning systems with the aim of improving communication and enriching students’ learning experiences in their ODL institutions.

  8. Ground water recharge and flow characterization using multiple isotopes.

    Science.gov (United States)

    Chowdhury, Ali H; Uliana, Matthew; Wade, Shirley

    2008-01-01

    Stable isotopes of delta(18)O, delta(2)H, and (13)C, radiogenic isotopes of (14)C and (3)H, and ground water chemical compositions were used to distinguish ground water, recharge areas, and possible recharge processes in an arid zone, fault-bounded alluvial aquifer. Recharge mainly occurs through exposed stream channel beds as opposed to subsurface inflow along mountain fronts. This recharge distribution pattern may also occur in other fault-bounded aquifers, with important implications for conceptualization of ground water flow systems, development of ground water models, and ground water resource management. Ground water along the mountain front near the basin margins contains low delta(18)O, (14)C (percent modern carbon [pmC]), and (3)H (tritium units [TU]), suggesting older recharge. In addition, water levels lie at greater depths, and basin-bounding faults that locally act as a flow barrier may further reduce subsurface inflow into the aquifer along the mountain front. Chemical differences in ground water composition, attributed to varying aquifer mineralogy and recharge processes, further discriminate the basin-margin and the basin-center water. Direct recharge through the indurated sandstones and mudstones in the basin center is minimal. Modern recharge in the aquifer is mainly through the broad, exposed stream channel beds containing coarse sand and gravel where ground water contains higher delta(18)O, (14)C (pmC), and (3)H (TU). Spatial differences in delta(18)O, (14)C (pmC), and (3)H (TU) and occurrences of extensive mudstones in the basin center suggest sluggish ground water movement, including local compartmentalization of the flow system.

  9. Source or Sink: Investigating the role of storm water retention ponds in the urban landscape (Invited)

    Science.gov (United States)

    Lev, S.; Casey, R.; Ownby, D.; Snodgrass, J.

    2009-12-01

    The impact of human activities on surface water, groundwater and soil is nowhere more apparent than in urban and suburban systems. Dramatic changes to watersheds in urbanizing areas have led to changes in hydrology and an associated increase in the flux of sediment and contaminants to surface and ground waters. In an effort to mediate these impacts, Best Management Practices (BMP) have been established in order to increase infiltration of runoff and trap sediment and particulates derived from impervious surfaces before they enter surface waters. Perhaps the most ubiquitous BMP are storm water retention ponds. While these structures are designed to reduce runoff and particulate loading to urban streams, their addition to the urban landscape has created a large number of new wetland habitats. In the Red Run watershed, just outside of Baltimore, Maryland, 186 discrete natural or man-made wetland areas have been identified. Of these 186 wetland areas, 165 were created to manage stormwater and most were specifically designed as stormwater management ponds (i.e., human-created basins or depressions that hold runoff for some period during the annual hydrological year). Despite their abundance in the landscape, very little is known about how these systems impact the flux of stormwater pollutants or affect the organisms using these ponds as habitat. Results from a series of related projects in the Red Run watershed are presented here in an effort to summarize the range of issues associated with stormwater management ponds. The Red Run watershed is situated inside the Urban-Rural Demarcation Line (URDL) around Baltimore City and has been identified as a smart growth corridor by Baltimore County. This region is one of two areas in Baltimore County where new development is focused. In a series of investigations of soils, surface and ground waters, and amphibian and earthworm use of 68 randomly selected stormwater retention ponds from the Red Run watershed, a range of

  10. Factors Affecting Nitrate Delivery to Streams from Shallow Ground Water in the North Carolina Coastal Plain

    Science.gov (United States)

    Harden, Stephen L.; Spruill, Timothy B.

    2008-01-01

    An analysis of data collected at five flow-path study sites between 1997 and 2006 was performed to identify the factors needed to formulate a comprehensive program, with a focus on nitrogen, for protecting ground water and surface water in the North Carolina Coastal Plain. Water-quality protection in the Coastal Plain requires the identification of factors that affect the transport of nutrients from recharge areas to streams through the shallow ground-water system. Some basins process or retain nitrogen more readily than others, and the factors that affect nitrogen processing and retention were the focus of this investigation to improve nutrient management in Coastal Plain streams and to reduce nutrient loads to coastal waters. Nitrate reduction in ground water was observed at all five flow-path study sites in the North Carolina Coastal Plain, although the extent of reduction at each site was influenced by various environmental, hydrogeologic, and geochemical factors. Denitrification was the most common factor responsible for decreases in nitrate along the ground-water flow paths. Specific factors, some of which affect denitrification rates, that appeared to influence ground-water nitrate concentrations along the flow paths or in the streams include soil drainage, presence or absence of riparian buffers, evapotranspiration, fertilizer use, ground-water recharge rates and residence times, aquifer properties, subsurface tile drainage, sources and amounts of organic matter, and hyporheic processes. The study data indicate that the nitrate-reducing capacity of the buffer zone combined with that of the hyporheic zone can substantially lower the amount of ground-water nitrate discharged to streams in agricultural settings of the North Carolina Coastal Plain. At the watershed scale, the effects of ground-water discharge on surface-water quality appear to be greatly influenced by streamflow conditions and the presence of extensive riparian vegetation. Streamflow statistics

  11. Morphology of drainage basins as an indicator of climate on early Mars

    Science.gov (United States)

    Stepinski, T. F.; Stepinski, A. P.

    2005-12-01

    We show that drainage basin morphology correlates with climate. Computational analysis of the 46 basins extracted from the western slopes of the Andes reveals the existence of four different basin morphologic classes. This purely geomorphic partition correlates with division of the same basins on the grounds of climate types. Basins are compared using circularity functions as their formal representations. Self-organizing maps and dendrograms are employed to provide basin classification. One class of basin morphologies corresponds to sites in the arid Atacama Desert, and the other class corresponds to sites in the Atacama exhibiting groundwater sapping landforms. Using the same technique, we study a larger sample of 94 basins that, in addition to the Andean basins, includes other terrestrial basins and 26 basins from Martian sites that show prominent valley networks. The classification of this larger set shows that morphologies of Martian and terrestrial basins bifurcate at the root of the dendrogram, forming two separate domains of basin morphologies. The similarity map reveals that, of all the terrestrial basins, the Atacama Desert basins are morphologically closest to the Martian basins. Extrapolating the terrestrial morphology-climate linkage to Mars points to formation of valley networks in a hyperarid climatic environment. We submit that the Atacama Desert provides the best possible terrestrial morphologic analog to valley network sites on Mars. We discuss climatic and hydrologic particularities of the Atacama Desert and hypothesize that a similar environment existed on early Mars.

  12. Spatial and Temporal Distribution of Polycyclic Aromatic Hydrocarbons and Heavy Metals in Stormwater Detention Basin Sediments

    Science.gov (United States)

    Schifman, L. A.; Kasaraneni, V. K.; Boving, T. B.; Craver, V.

    2015-12-01

    Stormwater runoff is a conduit for several pollutants such as polycyclic aromatic hydrocarbons (PAHs) into surface and ground water bodies. The control of runoff and pollutants is typically addressed by best management practices, such as retention/detention ponds. While the effectiveness of catchment basins in runoff volume reduction and removal of some contaminants has been established, very little is known about contaminant fate within these structures. Particularly in coastal regions and places with shallow groundwater tables PAH accumulation in the bottom sediments poses a potential threat for groundwater contamination. The concentrations of PAHs accumulated in the sediments of these catchment basins will primarily depend on the sources of runoff origin and the surrounding land use. Here, five stormwater catchment basins along the I-95 corridor in Rhode Island were selected based on the stormwater runoff origin and land use (industrial, urban, highway, and commercial). To study the stratification of PAHs one foot sediment cores were collected and analyzed for 17 PAHs (16 EPA parent PAH and Retene). The concentrations of PAHs in sediments of detention ponds in urban and industrial land use areas ranged from 20 μg/g to 200 μg/g. Generally higher concentrations of contaminants were found in sediments near the pond inlet and a decreasing concentration gradient is observed laterally and vertically throughout the pond. To compare stormwater ponds in various land use settings a new index based on sediment contamination, pond size and age, and catchment area will be presented. Further, it will be investigated whether BMP maintenance has to be targeted towards pollutant removal to maintain an effective stormwater treatment system.

  13. Characteristics of nitrogen and phosphate retention in the headwater stream of Shiwulihe in Lake Chaohu basin based on OTIS model%基于OTIS模型的巢湖十五里河源头段氮磷滞留特征

    Institute of Scientific and Technical Information of China (English)

    李如忠; 丁贵珍

    2014-01-01

    为揭示巢湖十五里河源头河段氮磷营养盐滞留特征,选择NH4Cl、KH2PO4及NaCl作为示踪剂,开展野外现场示踪实验.根据获得的氯离子浓度和营养盐浓度穿透曲线数据信息,利用OTIS与OTIS-P计算软件,估算水文参数(D、A、As、α等)和营养盐一阶吸收系数(λ、λs).在此基础上,计算暂态存储指标和营养盐吸收相关参数值,定量评估主河道流动水体与暂态存储对NH4+和SRP的损失贡献.结果表明,主河道与暂态存储区 NH4+吸收系数平均值分别为3.88×10-6,8.81×10-4s-1,SRP 分别为7.80×10-6,7.98×10-8s-1;综合衰减系数 k-NH4平均值为1.64×10-4s-1,k-SRP为7.80×10-6s-1;NH4+和SRP的吸收长度Sw-NH4、Sw-SRP相当大,分别为1632.88,25471.32m,意味着该河段经由物理或生态过程去除N、P的可能性低;该河段Vf-NH4、Vf-SRP 值较营养盐浓度低的溪流或小河流偏小,但U-NH4、U-SRP则明显偏大;暂态存储对于NH4+损失的平均贡献率为93.82%,主河道水流对SRP损失的平均贡献率高达99.70%.%To investigate the basic characteristics of nitrogen and phosphate nutrient retention in the headwater stream of Shiwulihe, Lake Chaohu basin, a solution containing NH4Cl or KH2PO4 addition and a conservative tracer (NaCl) was used to conduct field experiments by slug injection. According to the data sets of breakthrough curves of chloride and nutrient concentration, the OTIS model code and OTIS-P software, proposed by Runkel (United States Geological Survey, USGS), were employed to estimate hydrological parameters (e.g. D, A, As,α) and first-order uptake rate coefficients (i.e.λ and λs). And on this basis the reach-scale transient storage metrics and nutrient uptake parameters were calculated as well as the fraction of uptake contribute to NH and SRP between the main channel and transient storage zone was+4 estimated. Study results showed that the mean values of first-order uptake rate coefficients for NH in main

  14. Maslow's Hierarchy and Student Retention.

    Science.gov (United States)

    Brookman, David M.

    1989-01-01

    Abraham Maslow's hierarchy of needs offers perspective on student motivation and a rationale for college retention programing. Student affairs and faculty interventions addressing student safety needs and engaging students' sense of purpose reinforce persistence. A mentor program is a possible cooperative effort between student personnel and…

  15. Lake retention of manufactured nanoparticles

    NARCIS (Netherlands)

    Koelmans, A.A.; Quik, J.T.K.; Velzeboer, I.

    2015-01-01

    For twenty-five world lakes and three engineered nanoparticles (ENP), lake retention was calculated using a uniformly mixed lake mass balance model. This follows similar approaches traditionally used in water quality management. Lakes were selected such that lake residence times, depths and areal hy

  16. Strategies for improving employee retention.

    Science.gov (United States)

    Verlander, Edward G; Evans, Martin R

    2007-03-28

    This article proposes a solution to the perennial problem of talent retention in the clinical laboratory. It includes the presentation of 12 strategies that may be used to significantly improve institutional identity formation and establishment of the psychological contract that employees form with laboratory management. Identity formation and psychological contracting are deemed as essential in helping reduce employee turnover and increase retention. The 12 conversational strategies may be used as a set of best practices for all employees, but most importantly for new employees, and should be implemented at the critical moment when employees first join the laboratory. This time is referred to as "retention on-boarding"--the period of induction and laboratory orientation. Retention on-boarding involves a dialogue between employees and management that is focused on the psychological, practical, cultural, and political dimensions of the laboratory. It is placed in the context of the modern clinical laboratory, which is faced with employing and managing Generation X knowledge workers. Specific topics and broad content areas of those conversations are outlined.

  17. Lake retention of manufactured nanoparticles

    NARCIS (Netherlands)

    Koelmans, A.A.; Quik, J.T.K.; Velzeboer, I.

    2015-01-01

    For twenty-five world lakes and three engineered nanoparticles (ENP), lake retention was calculated using a uniformly mixed lake mass balance model. This follows similar approaches traditionally used in water quality management. Lakes were selected such that lake residence times, depths and areal hy

  18. Institutionalization of a Retention Model

    Science.gov (United States)

    Davis, E. J.; Campbell, A.

    2006-05-01

    Bowie State University and NASA Goddard Space Flight Center have, for the past 10 years, worked diligently together to enhance the science, mathematics, engineering and technology (SMET) domain. Efforts made, because of a Model Institutions for Excellence (MIE) Award, have changed the landscape of the SMET domain by increasing the retention and graduation rates, the number of students entering graduate and professional schools, and the number of students entering SMET related careers for minorities and women. Several initiatives a Scholarship Program, PRISEM Tutoring Center, Safety-net Program, Research emphasis, Focused Mentoring, a Summer Academy for accepted incoming students, a Bridge Program for students needing assistance being admitted to the University, the RISE Program and the Bowie State Satellite Operations and Control Center (BSOCC) provide the nurturing, mentoring, and opportunities for our students. As a result of efforts made, the retention rate has increase to approximately 80%, the graduation rate has increased 40%, and 85% of the SMET students are now interested or entering graduate and professional schools. Successes that have been documented by various assessment activities have led to the institutionalization of the Retention Model of the MIE Initiative. It is anticipated that University-wide application of the retention model will prove the incentives necessary to obtain similar results as the MIE Initiative.

  19. Maslow's Hierarchy and Student Retention.

    Science.gov (United States)

    Brookman, David M.

    1989-01-01

    Abraham Maslow's hierarchy of needs offers perspective on student motivation and a rationale for college retention programing. Student affairs and faculty interventions addressing student safety needs and engaging students' sense of purpose reinforce persistence. A mentor program is a possible cooperative effort between student personnel and…

  20. 丽江盆地地表-地下水的水化学特征及其控制因素%Geochemistry of Surface and Ground Water in the Lijang Basin, Northwest Yunnan

    Institute of Scientific and Technical Information of China (English)

    蒲焘; 何元庆; 朱国锋; 张蔚; 曹伟宏; 常丽; 王春凤

    2012-01-01

    2008年11月~2009年10月在丽江盆地-玉龙雪山地区采集白水河、三束河、哥吉河、束河河水及流域内地下水样品,使用离子色谱法分析了样品主要阴阳离子含量,研究了岩溶地区地表及地下水体的水化学特征、季节变化及其控制因素.结果表明,研究区水体均呈现弱碱性,主要离子组成以Ca2+和HCO3-为主,分别占阳离子和阴离子总量的54.8%和92.4%; 不同季节河水的离子浓度差别较大,季风期离子浓度仅为西风期离子浓度的80%左右,表明季风期丰沛的大气降水输入对河水离子特征有较为显著的影响; 河水离子浓度普遍低于盆地地下水主要阴阳离子浓度; 河水和地下水的无机离子浓度都呈现出从高海拔到低海拔离子含量递增的规律.碳酸盐的风化溶解作用是水体离子的主要来源,季风期降水对水体的离子特征也有一定的影响,人类活动对人类聚居区部分天然水体已造成轻度污染.%The study focused on the chemical element compositions of river water and groundwater in Lijiang Basin. Water samples were collected in Baishui, Sanshu, Geji and Shuhe rivers in Lijiang Basin to analyze pH, conductivity and ion concentration, in order to understand the contributions of anthropogenic activities and rock weathering to river solutes. The results show that all water samples are mildly alkaline and are rich in Ca2+and HCO3-, which account for 54.8 and 92.4 percentage of total ion concentration respectively. Obvious variations have been perceived during monsoon and westward wind season. The ion concentration of river water is lower than that of groundwater. With decreasing elevation, the ion concentrations are found to increase considerably in the study region. According to source study of major ions, water chemistry is mainly influenced by precipitation rock weathering and dissolving processes. In addition, precipitation is an important factor in monsoon seasons

  1. Environmental Setting of the Morgan Creek Basin, Maryland, 2002-04

    Science.gov (United States)

    Hancock, Tracy Connell; Brayton, Michael J.

    2006-01-01

    The Morgan Creek Basin is a 31-square-kilometer watershed in Kent County, Maryland on the Delmarva Peninsula. The Delmarva Peninsula covers about 15,500 square kilometers and includes most of the State of Delaware and parts of Maryland and Virginia east of the Chesapeake Bay. The Morgan Creek Basin is one of five sites selected for the study of sources, transport, and fate by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program's: Agricultural Chemicals: Sources, Transport and Fate study team (Agricultural Chemicals Team, ACT). A key component of the study is identifying the natural factors and human influences affecting water quality in the Morgan Creek Basin. The Morgan Creek Basin is in the Coastal Plain Physiographic Province, which is a nearly level seaward-sloping lowland with areas of moderate topographic relief. The study area lies within a well-drained upland region with permeable and porous soils and aquifer sediments. The soils are well suited to most field crops. Agriculture is the principal land use in the Morgan Creek Basin, as well as throughout the entire Delmarva Peninsula. Most agricultural land is used for row crops such as corn, soybeans, and small grains, and slightly less land is used for pasture and hay production involving alfalfa, clover, and various perennial grasses. There are several animal operations in the study area. Farm management practices include fertilizer and herbicide applications, different tillage practices, addition of lime, forested riparian buffers, grassed waterways, and sediment retention ponds. Irrigation in the study area is minimal. The climate of the Morgan Creek Basin is humid and subtropical, with an average annual precipitation of 1.12 meters. Overall annual precipitation is evenly distributed throughout the year, from 76 to 101 millimeters per month; however, the spring and summer (March - September) tend to be slightly wetter than the autumn and winter (October - February

  2. Designing Online Courses to Promote Student Retention

    Science.gov (United States)

    Dietz-Uhler, Beth; Fisher, Amy; Han, Andrea

    2008-01-01

    Although the issue of student retention is a campus-wide one, it is of special interest in online distance learning courses, where retention rates are reported to be lower than in face-to-face classes. Among the explanations and theories of retention rates in online courses, one that struck us as most useful is a structural one, namely, course…

  3. 5 CFR 351.404 - Retention register.

    Science.gov (United States)

    2010-01-01

    ... FORCE Scope of Competition § 351.404 Retention register. (a) When a competing employee is to be released from a competitive level under this part, the agency shall establish a separate retention register for... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Retention register. 351.404 Section 351...

  4. Retention of Root Canal Posts

    DEFF Research Database (Denmark)

    Sahafi, A; Benetti, Ana Raquel; Flury, S;

    2015-01-01

    The aim of this study was to investigate the effect of the cement film thickness of a zinc phosphate or a resin cement on retention of untreated and pretreated root canal posts. Prefabricated zirconia posts (CosmoPost: 1.4 mm) and two types of luting cements (a zinc phosphate cement [DeTrey Zinc......] and a self-etch adhesive resin cement [Panavia F2.0]) were used. After removal of the crowns of 360 extracted premolars, canines, or incisors, the root canals were prepared with a parallel-sided drill system to three different final diameters. Half the posts did not receive any pretreatment. The other half...... received tribochemical silicate coating according to the manufacturer's instructions. Posts were then luted in the prepared root canals (n=30 per group). Following water storage at 37°C for seven days, retention of the posts was determined by the pull-out method. Irrespective of the luting cement...

  5. Nitrate retention in a sand plains stream and the importance of groundwater discharge

    Science.gov (United States)

    Robert S. Stelzer; Damion R. Drover; Susan L. Eggert; Maureen A. Muldoon

    2011-01-01

    We measured net nitrate retention by mass balance in a 700-m upwelling reach of a third-order sand plains stream, Emmons Creek, from January 2007 to November 2008. Surface water and ground-water fluxes of nitrate were determined from continuous records of discharge and from nitrate concentrations based on weekly and biweekly sampling at three surface water stations and...

  6. Recording ground motions where people live

    Science.gov (United States)

    Cranswick, E.; Gardner, B.; Hammond, S.; Banfill, R.

    The 1989 Loma Prieta, Calif., earthquake caused spectacular damage to structures up to 100 km away in the San Francisco Bay sedimentary basin, including the Cypress Street viaduct overpass, the Bay Bridge, and buildings in the San Francisco Marina district. Although the few mainshock ground motions recorded in the northern San Francisco Bay area were “significantly larger … than would be expected from the pre-existing data set,” none were recorded at the sites of these damaged structures [Hanks and Krawinkler, 1991].Loma Prieta aftershocks produced order-of-magnitude variations of ground motions related to sedimentary basin response over distances of 1-2 km and less [Cranswick et al., 1990]. In densely populated neighborhoods, these distances can encompass the residences of thousands of people, but it is very unlikely that these neighborhoods are monitored by even one seismograph. In the last decade, the complexity of computer models used to simulate high-frequency ground motions has increased by several orders of magnitude [e.g., Frankel and Vidale, 1992], but the number of seismograph stations—hence, the spatial density of the sampling of ground motion data—has remained relatively unchanged. Seismologists must therefore infer the nature of the ground motions in the great unknown regions between observation points.

  7. An economic assessment of local farm multi-purpose surface water retention systems in a Canadian Prairie setting

    Science.gov (United States)

    Berry, Pamela; Yassin, Fuad; Belcher, Kenneth; Lindenschmidt, Karl-Erich

    2017-07-01

    There is a need to explore more sustainable approaches to water management on the Canadian Prairies. Retention pond installation schemes designed to capture surface water may be a viable option that would reduce water stress during drought periods by providing water for irrigation. The retention systems would serve to capture excess spring runoff and extreme rainfall events, reducing flood potential downstream. Additionally, retention ponds may be used for biomass production and nutrient retention. The purpose of this research was to investigate the economic viability of adopting local farm surface water retention systems as a strategic water management strategy. A retention pond was analyzed using a dynamic simulation model to predict its storage capacity, installation and upkeep cost, and economic advantage to farmers when used for irrigation. While irrigation application increased crop revenue, the cost of irrigation and reservoir infrastructure and installation costs were too high for the farmer to experience a positive net revenue. Farmers who harvest cattails from retention systems for biomass and available carbon offset credits can gain 642.70/hectare of harvestable cattail/year. Cattail harvest also removes phosphorus and nitrogen, providing a monetized impact of 7014/hectare of harvestable cattail/year. The removal of phosphorus, nitrogen, carbon, and avoided flooding damages of the retention basin itself provide an additional 17,730-18,470/hectare of retention system/year. The recommended use of retention systems is for avoided flood damages, nutrient retention, and biomass production. The revenue gained from these functions can support farmers wanting to invest in irrigation while providing economic and environmental benefits to the region.

  8. Selected Basin Characterization Model Parameters for the Great Basin Carbonate and Alluvial Aquifer System of Nevada, Utah, and Parts of Adjacent States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a study focusing on ground-water resources in the Great Basin carbonate and alluvial aquifer system (GBCAAS). The GBCAAS is a...

  9. Strontium isotopic identification of water-rock interaction and ground water mixing.

    Science.gov (United States)

    Frost, Carol D; Toner, Rachel N

    2004-01-01

    87Sr/86Sr ratios of ground waters in the Bighorn and Laramie basins' carbonate and carbonate-cemented aquifer systems, Wyoming, United States, reflect the distinctive strontium isotope signatures of the minerals in their respective aquifers. Well water samples from the Madison Aquifer (Bighorn Basin) have strontium isotopic ratios that match their carbonate host rocks. Casper Aquifer ground waters (Laramie Basin) have strontium isotopic ratios that differ from the bulk host rock; however, stepwise leaching of Casper Sandstone indicates that most of the strontium in Casper Aquifer ground waters is acquired from preferential dissolution of carbonate cement. Strontium isotope data from both Bighorn and Laramie basins, along with dye tracing experiments in the Bighorn Basin and tritium data from the Laramie Basin, suggest that waters in carbonate or carbonate-cemented aquifers acquire their strontium isotope composition very quickly--on the order of decades. Strontium isotopes were also used successfully to verify previously identified mixed Redbeds-Casper ground waters in the Laramie Basin. The strontium isotopic compositions of ground waters near Precambrian outcrops also suggest previously unrecognized mixing between Casper and Precambrian aquifers. These results demonstrate the utility of strontium isotopic ratio data in identifying ground water sources and aquifer interactions.

  10. Paleohydrogeology of the San Joaquin basin, California

    Science.gov (United States)

    Wilson, A.M.; Garven, G.; Boles, J.R.

    1999-01-01

    Mass transport can have a significant effect on chemical diagenetic processes in sedimentary basins. This paper presents results from the first part of a study that was designed to explore the role of an evolving hydrodynamic system in driving mass transport and chemical diagenesis, using the San Joaquin basin of California as a field area. We use coupled hydrogeologic models to establish the paleohydrogeology, thermal history, and behavior of nonreactive solutes in the basin. These models rely on extensive geological information and account for variable-density fluid flow, heat transport, solute transport, tectonic uplift, sediment compaction, and clay dehydration. In our numerical simulations, tectonic uplift and ocean regression led to large-scale changes in fluid flow and composition by strengthening topography-driven fluid flow and allowing deep influx of fresh ground water in the San Joaquin basin. Sediment compaction due to rapid deposition created moderate overpressures, leading to upward flow from depth. The unusual distribution of salinity in the basin reflects influx of fresh ground water to depths of as much as 2 km and dilution of saline fluids by dehydration reactions at depths greater than ???2.5 km. Simulations projecting the future salinity of the basin show marine salinities persisting for more than 10 m.y. after ocean regression. Results also show a change from topography-to compaction-driven flow in the Stevens Sandstone at ca. 5 Ma that coincides with an observed change in the diagenetic sequence. Results of this investigation provide a framework for future hydrologic research exploring the link between fluid flow and diagenesis.

  11. Natural flood retention in mountain areas by forests and forest like short rotation coppices

    Science.gov (United States)

    Reinhardt-Imjela, Christian; Schulte, Achim; Hartwich, Jens

    2017-04-01

    Natural water retention is an important element of flood risk management in flood generating headwater areas in the low mountain ranges of Central Europe. In this context forests are of particular interest because of the high infiltration capacities of the soils and to increase water retention reforestation of agricultural land would be worthwhile. However competing claims for land use in intensely cultivated regions in Central Europe impede reforestation plans so the potential for a significant increase of natural water retention in forests is strongly limited. Nevertheless the development of innovative forms of land use and crop types opens new perspectives for a combination of agricultural land use with the water retention potential of forests. Recently the increasing demand for renewable energy resources leads to the cultivation of fast growing poplar and willow hybrids on agricultural land in short rotation coppices (SRC). Harvested in cycles of three to six years the wood from the plantations can be used as wood chips for heat and electricity production in specialized power plants. With short rotation plantations a crop type is established on arable land which is similar to forests so that an improvement of water retention can be expected. To what extend SRC may contribute to flood attenuation in headwater areas is investigated for the Chemnitzbach watershed (48 km2) in the Eastern Ore Mountains (Free State of Saxony, Germany), a low mountain range which is an important source of flood runoff in the Elbe basin. The study is based on a rainfall-runoff model of flood events using the conceptual modelling system NASIM. First results reveal a significant reduction of the flood peaks after the implementation of short rotation coppices. However the effect strongly depends on two factors. The first factor is the availability of areas for the plantations. For a substantial impact on the watershed scale large areas are required and with decreasing percentages of SRC

  12. DIN retention-transport through four hydrologically connected zones in a headwater catchment of the Upper Mississippi River

    Science.gov (United States)

    Triska, F.J.; Duff, J.H.; Sheibley, R.W.; Jackman, A.P.; Avanzino, R.J.

    2007-01-01

    Dissolved inorganic nitrogen (DIN) retention-transport through a headwater catchment was synthesized from studies encompassing four distinct hydrologic zones of the Shingobee River Headwaters near the origin of the Mississippi River. The hydrologic zones included: (1) hillslope ground water (ridge to bankside riparian); (2) alluvial riparian ground water; (3) ground water discharged through subchannel sediments (hyporheic zone); and (4) channel surface water. During subsurface hillslope transport through Zone 1, DIN, primarily nitrate, decreased from ???3 mg-N/l to <0.1 mg-N/l. Ambient seasonal nitrate:chloride ratios in hillslope flow paths indicated both dilution and biotic processing caused nitrate loss. Biologically available organic carbon controlled biotic nitrate retention during hillslope transport. In the alluvial riparian zone (Zone 2) biologically available organic carbon controlled nitrate depletion although processing of both ambient and amended nitrate was faster during the summer than winter. In the hyporheic zone (Zone 3) and stream surface water (Zone 4) DIN retention was primarily controlled by temperature. Perfusion core studies using hyporheic sediment indicated sufficient organic carbon in bed sediments to retain ground water DIN via coupled nitrification-denitrification. Numerical simulations of seasonal hyporheic sediment nitrification-denitrification rates from perfusion cores adequately predicted surface water ammonium but not nitrate when compared to 5 years of monthly field data (1989-93). Mass balance studies in stream surface water indicated proportionally higher summer than winter N retention. Watershed DIN retention was effective during summer under the current land use of intermittently grazed pasture. However, more intensive land use such as row crop agriculture would decrease nitrate retention efficiency and increase loads to surface water. Understanding DIN retention capacity throughout the system, including special channel

  13. Gastro retention using polymer cocoons.

    Science.gov (United States)

    Arnold, Julien; Hunkeler, David

    2015-02-01

    A gastro-retentive capsule has been prepared which is retained in the stomach for a period of 24h, providing a vehicle for the controlled delivery to the upper intestines. These "gastro cocoons" can resist passage through the sphincter of the stomach, and can retain a high drug payload (30%). They are made from oppositely charged polyelectrolytes and can swell to twice their initial volume. They are strong and also can resist 550 N of compressive force. They are based on filled pharmaceutical capsules which are visible to X-rays. Using ambroxol hydrochloride as a model drug linear, zero-order, release curves were obtained.

  14. Basement topography of the Kathmandu Basin using microtremor observation

    Science.gov (United States)

    Paudyal, Youb Raj; Yatabe, Ryuichi; Bhandary, Netra Prakash; Dahal, Ranjan Kumar

    2013-01-01

    Kathmandu Valley, an intermontane basin of the Himalaya, has experienced many destructive earthquakes in the past. The observations of the damage pattern during the 1934 Earthquake (Mw = 8.1), in particular, suggest that the spectral ground amplification due to fluvio-lacustrine sediments plays a major role in intensifying the ground motion in the basin. It is, therefore, imperative to conduct a detailed study about the floor variation of sediments in the basin. In this paper, a preliminary attempt was made to estimate the thickness of soft sediment in the Kathmandu Basin using microtremor observations. The measurements of microtremors were carried out at 172 sites spaced at a grid interval of 1 km. The results showed that the predominant frequency varies from 0.488 Hz to 8.9 Hz. A non-linear regression relationship between resonance frequency and sediment depth was proposed for the Kathmandu Basin. The thickness of lacustrine sediments at various points in the basin was estimated using the proposed equation, and then the estimated thickness was used to plot a digital elevation model of the basement topography and cross profiles of the sediment distribution in the basin. The results were validated by correlating the estimated sediment thickness with geology and geomorphology of the study area.

  15. Radionuclide Retention in Concrete Wasteforms

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.; Cordova, Elsa A.

    2012-09-24

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

  16. Fission-product retention in HTGR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed.

  17. A Study on Employee Retention Techniques

    OpenAIRE

    Savarimuthu, Dr. A; Hemalatha, N

    2013-01-01

    The objective of perusing this study is to assess the level of satisfaction of employee retention techniques at GB Engineering Enterprises PVT Limited., Trichy.This study gains significance because of employee retention techniques can be approached from various angles. It is desirable state of existence involving retention strategies generally fall in to one of four categories salary, working conditions, job enrichment and education. These four elements together constitute. The structure of e...

  18. Tree retention in boreal pine forest

    OpenAIRE

    Santaniello, Francesca

    2017-01-01

    Tree retention forestry aims at increasing structural diversity in managed forests. In this study, I have investigated the influence of tree retention forestry on delivery of two ecosystem services (wood production and carbon sequestration) and dead wood (as a proxy for biodiversity). Furthermore, habitat requirements of lichens dependent on dead wood were investigated. The study was conducted in 15 Scots pine forest stands with five various tree retention levels, in which four...

  19. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Structural Features

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following publication: Anna, L.O., 1986, Geologic framework of the ground water...

  20. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  1. Dissolved nutrient retention dynamics in river networks: A modeling investigation of transient flows and scale effects

    Science.gov (United States)

    Ye, Sheng; Covino, Timothy P.; Sivapalan, Murugesu; Basu, Nandita B.; Li, Hong-Yi; Wang, Shao-Wen

    2012-06-01

    We have used a dynamic hydrologic network model, coupled with a transient storage zone solute transport model, to simulate dissolved nutrient retention processes during transient flow events at the channel network scale. We explored several scenarios with a combination of rainfall variability, and biological and geomorphic characteristics of the catchment, to understand the dominant factors that control the transport of dissolved nutrients (e.g., nitrate) along channel networks. While much experimental work has focused on studying nutrient retention during base flow periods in headwater streams, our model-based theoretical analyses, for the given parameter combinations used, suggest that high-flow periods can contribute substantially to overall nutrient retention, and that bulk nutrient retention is greater in larger rivers compared to headwaters. The relative efficiencies of nutrient retention during high- and low-flow periods vary due to changes in the relative sizes of the main channel and transient storage zones, as well as due to differences in the relative strengths of the various nutrient retention mechanisms operating in both zones. Our results also indicate that nutrient retention efficiency at all spatial scales of observation has strong dependence on within-year variability of streamflow (e.g., frequency and duration of high and low flows), as well as on the relative magnitudes of the coefficients that govern biogeochemical uptake processes: the more variable the streamflow, the greater the export of nutrients. Despite limitations of the model parameterizations, our results suggest that increased attention must be paid to field observations of the interactions between process hydrology and nutrient transport and reaction processes at a range of scales to assist with extrapolation of understandings and estimates gained from site-specific studies to ungauged basins across gradients in climate, human impacts, and landscape characteristics.

  2. Repository site definition in basalt: Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Guzowski, R.V.; Nimick, F.B.; Muller, A.B.

    1982-03-01

    Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi/sup 2/ (5180 km/sup 2/) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process.

  3. Use of real-time monitoring to predict concentrations of select constituents in the Menomonee River drainage basin, Southeast Wisconsin, 2008-9

    Science.gov (United States)

    Baldwin, Austin K.; Graczyk, David J.; Robertson, Dale M.; Saad, David A.; Magruder, Christopher

    2012-01-01

    The Menomonee River drainage basin in southeast Wisconsin is undergoing changes that may affect water quality. Several rehabilitation and flood-management projects are underway, including removal of concrete channels and the construction of floodwater retention basins. The city of Waukesha may begin discharging treated wastewater into Underwood Creek, thus approximately doubling the current base-flow discharge. In addition, the headwater basins, historically dominated by agriculture and natural areas, are becoming increasingly urbanized.

  4. Breastfeeding reduces postpartum weight retention

    DEFF Research Database (Denmark)

    Baker, Jennifer Lyn; Gamborg, Michael; Heitmann, Berit L

    2008-01-01

    BACKGROUND: Weight gained during pregnancy and not lost postpartum may contribute to obesity in women of childbearing age. OBJECTIVE: We aimed to determine whether breastfeeding reduces postpartum weight retention (PPWR) in a population among which full breastfeeding is common and breastfeeding...... duration is long. DESIGN: We selected women from the Danish National Birth Cohort who ever breastfed (>98%), and we conducted the interviews at 6 (n = 36 030) and 18 (n = 26 846) mo postpartum. We used regression analyses to investigate whether breastfeeding (scored to account for duration and intensity......) reduced PPWR at 6 and 18 mo after adjustment for maternal prepregnancy body mass index (BMI) and gestational weight gain (GWG). RESULTS: GWG was positively (P Breastfeeding was negatively associated with PPWR in all women but those...

  5. The Medical School Retention Game

    DEFF Research Database (Denmark)

    O'Neill, Lotte Dyhrberg; Hartvigsen, Jan; Wallstedt, Birgitta

    2011-01-01

    grades (quota 1), while the other half went through a composite non-grade based admission test (quota 2). Educational as well as social predictor variables (doctor parent, origin in the developed world, parenthood, parents live together, parent on benefit, university educated parents) were also examined...... association between admission-test survival and program retention – a program specific admission test survivability factor - regardless of admission-test content, prior education, and program priority. The generalisability and other important limitations of the results (e.g. missing data, potential...... scores and dropout. REFERENCES 1.O’Neill L, Wallstedt B, Eika B, Hartvigsen J. Factors associated with dropout in medical education: a literature review. Med Educ (In press). 2.Urlings-Strop LC, Stijnen T, Themmen APN, Splinter TAW. Selection of medical students: a controlled experiment. Med Educ 2009...

  6. MONTHLY AVERAGE FLOW IN RÂUL NEGRU HYDROGRAPHIC BASIN

    Directory of Open Access Journals (Sweden)

    VIGH MELINDA

    2014-03-01

    Full Text Available Râul Negru hydrographic basin represents a well individualised and relatively homogenous physical-geographical unity from Braşov Depression. The flow is controlled by six hydrometric stations placed on the main collector and on two of the most powerful tributaries. Our analysis period is represented by the last 25 years (1988 - 2012 and it’s acceptable for make pertinent conclusions. The maximum discharge month is April, that it’s placed in the high flow period: March – June. Minimum discharges appear in November - because of the lack of pluvial precipitations; in January because of high solid precipitations and because of water volume retention in ice. Extreme discharge frequencies vary according to their position: in the mountain area – small basin surface; into a depression – high basin surface. Variation coefficients point out very similar variation principles, showing a relative homogeneity of flow processes.

  7. 12 CFR 609.945 - Records retention.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Records retention. 609.945 Section 609.945 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM ELECTRONIC COMMERCE Standards for Boards and Management § 609.945 Records retention. Records stored electronically must be accurate,...

  8. 5 CFR 353.302 - Retention protections.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Retention protections. 353.302 Section... TO DUTY FROM UNIFORMED SERVICE OR COMPENSABLE INJURY Compensable Injury § 353.302 Retention protections. An injured employee enjoys no special protection in a reduction in force. Separation by reduction...

  9. Managing human resources to improve employee retention.

    Science.gov (United States)

    Arnold, Edwin

    2005-01-01

    Managers face increased challenges as the demand for health care services increases while the supply of employees with the requisite skills continues to lag. Employee retention will become more important in the effort to service health care needs. Appropriate human resource management strategies and policies implemented effectively can significantly assist managers in dealing with the employee retention challenges ahead.

  10. 76 FR 24089 - Credit Risk Retention

    Science.gov (United States)

    2011-04-29

    ... Department of Housing and Urban Development 24 CFR Part 267 Credit Risk Retention; Proposed Rule #0;#0..., and HUD (the Agencies) are proposing rules to implement the credit risk retention requirements of... securitizer of asset-backed securities to retain not less than five percent of the credit risk of the...

  11. Positive Youth Development and Undergraduate Student Retention

    Science.gov (United States)

    Demetriou, Cynthia; Powell, Candice

    2014-01-01

    The primary theoretical tradition in the study of college retention has been sociological. A review and synthesis of common themes of development among traditional-age, college students suggests that a developmental perspective on the retention of youth in college may have more to offer than the dominant sociological paradigm. This article argues…

  12. 12 CFR 219.24 - Retention period.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Retention period. 219.24 Section 219.24 Banks...) Recordkeeping and Reporting Requirements for Funds Transfers and Transmittals of Funds § 219.24 Retention period. All records that are required to be retained by this subpart shall be retained for a period of five...

  13. Novel Word Retention in Sequential Bilingual Children

    Science.gov (United States)

    Kan, Pui Fong

    2014-01-01

    Children's ability to learn and retain new words is fundamental to their vocabulary development. This study examined word retention in children learning a home language (L1) from birth and a second language (L2) in preschool settings. Participants were presented with sixteen novel words in L1 and in L2 and were tested for retention after…

  14. African Retentions in Blues and Jazz.

    Science.gov (United States)

    Meadows, Eddie S.

    1979-01-01

    The perseverance of African musical characteristics among American Blacks is an historic reality. African retentions have been recorded in Black music of the antebellum period. Various African scales and rhythms permeate Black American music today as evidenced in the retentions found in blues and jazz. (RLV)

  15. Tectonic evolution of the Tualatin basin, northwest Oregon, as revealed by inversion of gravity data

    Science.gov (United States)

    McPhee, Darcy K.; Langenheim, Victoria E.; Wells, Ray; Blakely, Richard J.

    2014-01-01

    The Tualatin basin, west of Portland (Oregon, USA), coincides with a 110 mGal gravity low along the Puget-Willamette lowland. New gravity measurements (n = 3000) reveal a three-dimensional (3-D) subsurface geometry suggesting early development as a fault-bounded pull-apart basin. A strong northwest-trending gravity gradient coincides with the Gales Creek fault, which forms the southwestern boundary of the Tualatin basin. Faults along the northeastern margin in the Portland Hills and the northeast-trending Sherwood fault along the southeastern basin margin are also associated with gravity gradients, but of smaller magnitude. The gravity low reflects the large density contrast between basin fill and the mafic crust of the Siletz terrane composing basement. Inversions of gravity data indicate that the Tualatin basin is ∼6 km deep, therefore 6 times deeper than the 1 km maximum depth of the Miocene Columba River Basalt Group (CRBG) in the basin, implying that the basin contains several kilometers of low-density pre-CRBG sediments and so formed primarily before the 15 Ma emplacement of the CRBG. The shape of the basin and the location of parallel, linear basin-bounding faults along the southwest and northeast margins suggest that the Tualatin basin originated as a pull-apart rhombochasm. Pre-CRBG extension in the Tualatin basin is consistent with an episode of late Eocene extension documented elsewhere in the Coast Ranges. The present fold and thrust geometry of the Tualatin basin, the result of Neogene compression, is superimposed on the ancestral pull-apart basin. The present 3-D basin geometry may imply stronger ground shaking along basin edges, particularly along the concealed northeast edge of the Tualatin basin beneath the greater Portland area.

  16. Impact assessment of measures in the upstream part of Dutch basins to reduce flooding

    NARCIS (Netherlands)

    Querner, E.P.; Rakhorst, M.

    2006-01-01

    Flooding in the northern part of The Netherlands has caused serious economic threats to densely populated areas. Therefore a project has been carried out in a 1200 km2 area to assess the retention of water in the upper parts of river basins as a way to reduce the downstream flooding. The

  17. Staff nurse retention: strategies for success.

    Science.gov (United States)

    Lassiter, S S

    1989-04-01

    At the same time the demand for nurses is on the rise, the supply is dwindling. Recruitment and retention are the two main factors which can be adjusted to affect supply. Recruitment has become increasingly difficult in the past two or three years due to decreasing enrollment in nursing education programs and increased demand for nurses in alternative delivery systems. Therefore staff nurse retention has become an issue of major importance. This article will begin by briefly delineating need and expectancy theories which in part explain job satisfaction and, hence, retention. Secondly, findings from the Magnet Hospital Study are summarized. Creative retention strategies will then be explored, concluding with a framework for developing a strategic plan for successful staff nurse retention.

  18. Ground-water resources of Catron County, New Mexico

    Science.gov (United States)

    Basabilvazo, G.T.

    1997-01-01

    This report describes the occurrence, availability, and quality of ground-water and related surface-water resources in Catron County, the largest county in New Mexico. The county is located in the Lower Colorado River Basin and the Rio Grande Basin, and the Continental Divide is the boundary between the two river basins. Increases in water used for mining activities (coal, mineral, and geothermal), irrigated agriculture, reservoir construction, or domestic purposes could affect the quantity or quality of ground- water and surface-water resources in the county. Parts of seven major drainage basins are within the two regional river basins in the county--Carrizo Wash, North Plains, Rio Salado, San Agustin, Alamosa Creek, Gila, and San Francisco Basins. The San Francisco, Gila, and Tularosa Rivers typically flow perennially. During periods of low flow, most streamflow is derived from baseflow. The stream channels of the Rio Salado and Carrizo Wash Basins are commonly perennial in their upper reaches and ephemeral in their lower reaches. Largo Creek in the Carrizo Wash Basin is perennial downstream from Quemado Lake and ephemeral in the lower reaches. Aquifers in Catron County include Quaternary alluvium and bolson fill; Quaternary to Tertiary Gila Conglomerate; Tertiary Bearwallow Mountain Andesite, Datil Group, and Baca Formation; Cretaceous Mesaverde Group, Crevasse Canyon Formation, Gallup Sandstone, Mancos Shale, and Dakota Sandstone; Triassic Chinle Formation; and undifferentiated rocks of Permian age. Water in the aquifers in the county generally is unconfined; however, confined conditions may exist where the aquifers are overlain by other units of lower permeability. Yields of ground water from the Quaternary alluvium in the county range from 1 to 375 gallons per minute. Yields of ground water from the alluvium in the Carrizo Wash Basin are as much as 250 gallons per minute for short time periods. North of the Plains of San Agustin, ground-water yields from the

  19. Basin Structure and Numerical Simulation for the Mechanisms of Seismic Disasters

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhixin; XU Jiren

    2004-01-01

    In the present study seismic wave propagation in heterogeneous media is numerically simulated by using the pseudospectral method with the staggered grid RFFT differentiation in order to clarify the cause for the complicated distribution characteristics of strong ground motion in regions with basin structure. The results show that the maximum amplitudes of simulated ground acceleration waveforms are closely related to the basin structure. Interference of seismic waves in the basin strongly affects the distribution of maximum seismic waveforms, which may result in peak disasters during earthquakes. Peak disasters might be away from basin boundaries or earthquake faults. Seismic energy transmitted into the basin from the bedrock can hardly penetrate the bottom of the basin and then travel back into the bedrock region.The seismic energy is absorbed by basin media, and transferred into the kinematical energy of seismic waves with great amplitude in the basin. Seismic waves between basins may result in serious damage to buildings over the basin. This is significant for aseismatic research. Geological surveys in and around urban areas would benefit aseismatic research and mitigation of seismic disasters of a city. Such geological surveys should involve seismic velocity structure in the media above the bedrock besides such subjects as active faults and geological structure.

  20. Hydrologic landscapes on the Delmarva Peninsula Part 1: Drainage basin type and base-flow chemistry

    Science.gov (United States)

    Phillips, P.J.; Bachman, L.J.

    1996-01-01

    The relation between landscape characteristics and water chemistry on the Delmarva Peninsula can be determined through a principal-component analysis of basin characteristics. Two basin types were defined by factor scores: (1) well-drained basins, characterized by combinations of a low percentage of forest cover, a low percentage of poorly drained soil, and elevated channel slope; and (2) poorly drained basins, characterized by a combinations of an elevated percentage of forest cover, an elevated percentage of poorly drained soil, and low channel slopes. Results from base- flow sampling of 29 basins during spring 1991 indicate that water chemistry of the two basin types differ significantly. Concentrations of calcium, magnesium, potassium, alkalinity, chloride, and nitrate are elevated in well- drained basins, and specific conductance is elevated. Concentrations of aluminum, dissolved organic carbon, sodium, and silica are elevated in poorly drained basins whereas specific conductance is low. The chemical patterns found in well-drained basins can be attributed to the application of agricultural chemicals, and those in poorly drained basins can be attributed to ground-water flowpaths. These results indicate that basin types determined by a quantitative analysis of basin characteristics can be related statistically to differences in base-flow chemistry, and that the observed statistical differences can be related to major processes that affect water chemistry.

  1. Waveform simulation of predominant periods in Osaka basin

    Science.gov (United States)

    Petukhin, A.; Tsurugi, M.

    2016-12-01

    Predominant period of strong ground motions is an important parameter in earthquake engineering practice. Resonance at predominant period may result in collapse of building. Usually, predominant periods are associated with the soil resonances. However, considering that strong ground motions are composed from source, path and site effects, predominant periods are affected by source and propagation path too. From another side, 3D basin interferences may amplify quite different periods, depending on site location relatively to the basin edges and independently on the soil depth. Moreover, constructive or destructive interference of waves from different asperities of a large source may enhance or diminish amplitudes at a particular predominant period respectively. In this study, to demonstrate variations of predominant periods due to complicated effects above, we simulated wavefield snapshots and waveforms at a few representative sites of Osaka basin, Japan. Seismic source is located in Nankai trough, hosting anticipated M9 earthquake. 3D velocity structure is combined from JIVSM velocity structure (Koketsu et al., 2012) and Osaka basin structure of Iwaki and Iwata, 2011. 3D-FDM method is used to simulate waveforms. Simulation results confirm some previous results that due to elongated elliptical shape of Osaka basin, interference effects are strong and peak amplitudes has characteristic stripped pattern elongated in parallel to the long axis of basin. We demonstrate that predominant periods have similar pattern and value of predominant period may strongly depend on the location of site and azimuthal orientation of waveform component.

  2. Avian cholera in Nebraska's Rainwater Basin

    Science.gov (United States)

    Windingstad, R.M.; Hurt, J.J.; Trout, A.K.; Cary, J.

    1984-01-01

    The first report of avian cholera in North America occurred in northwestern Texas in winter 1944 (Quortrup et al. 1946). In 1975, mortality from avian cholera occurred for the first time in waterfowl in the Rainwater Basin of Nebraska when an estimated 25,000 birds died (Zinkl et al. 1977). Avian cholera has continued to cause mortality in wild birds in specific areas of the Basin each spring since. Losses of waterfowl from avian cholera continue to be much greater in some of the wetlands in the western part of the Basin than in the east. Several wetlands in the west have consistently higher mortality and are most often the wetlands where initial mortality is noticed each spring (Figure 1). The establishment of this disease in Nebraska is of considerable concern because of the importance of the Rainwater Basin as a spring staging area for waterfowl migrating to their breeding grounds. The wetlands in this area are on a major migration route used by an estimated 5 to 9 million ducks and several hundred thousand geese. A large portion of the western mid-continental greater white-fronted goose (Anser albifrons) population stage in the Basin each spring. Occasionally, whooping cranes (Grus americana) use these wetlands during migration, and lesser sandhill cranes (Grus canadensis) staging on the nearby Platte River sometimes use wetlands where avian cholera occurs (Anonymous 1981). Our objectives were to determine whether certain water quality variables in the Rainwater Basin differed between areas of high and low avian cholera incidence. These results would then be used for laboratory studies involving the survivability of Pasteurella multocida, the causative bacterium of avian cholera. Those studies will be reported elsewhere.

  3. A Case Study of the Densu Basin, Ghana

    African Journals Online (AJOL)

    komla

    Natural geochemical and biochemical, as well as anthropogenic impact on ground-water ... transported to the CSIR-Water Research Institute laboratory, stored in a ..... values in the waters of the basin could originate from the use of ammonia and manure as ... environment (Evans et al., 1977) and often occurs with iron (Fe).

  4. Clay particle retention in small constructed wetlands.

    Science.gov (United States)

    Braskerud, B C

    2003-09-01

    Constructed wetlands (CWs) can be used to mitigate non-point source pollution from arable fields. Previous investigations have shown that the relative soil particle retention in small CWs increases when hydraulic load increases. This paper investigates why this phenomenon occurs, even though common retention models predict the opposite, by studying clay and silt particle retention in two Norwegian CWs. Retention was measured with water flow proportional sampling systems in the inlet and outlet of the wetlands, and the texture of the suspended solids was analyzed. The surface area of the CWs was small compared to the watershed area (approximately 0.07%), giving high average hydraulic loads (1.1 and 2.0 md(-1)). One of the watersheds included only old arable land, whereas the other included areas with disturbed topsoil after artificial land leveling. Clay particle retention was 57% for the CW in the first watershed, and 22% for the CW in the disturbed watershed. The different behavior of the wetlands could be due to differences in aggregate size and stability of the particles entering the wetlands. Results showed that increased hydraulic loads did affect CW retention negatively. However, as runoff increased, soil particles/aggregates with higher sedimentation velocities entered the CWs (e.g., the clay particles behaved as silt particles). Hence, clay particle settling velocity is not constant as assumed in many prediction models. The net result was increased retention.

  5. Retention Models on Core-Shell Columns.

    Science.gov (United States)

    Jandera, Pavel; Hájek, Tomáš; Růžičková, Marie

    2017-07-13

    A thin, active shell layer on core-shell columns provides high efficiency in HPLC at moderately high pressures. We revisited three models of mobile phase effects on retention for core-shell columns in mixed aqueous-organic mobile phases: linear solvent strength and Snyder-Soczewiński two-parameter models and a three-parameter model. For some compounds, two-parameter models show minor deviations from linearity due to neglect of possible minor retention in pure weak solvent, which is compensated for in the three-parameter model, which does not explicitly assume either the adsorption or the partition retention mechanism in normal- or reversed-phase systems. The model retention equation can be formulated as a function of solute retention factors of nonionic compounds in pure organic solvent and in pure water (or aqueous buffer) and of the volume fraction of an either aqueous or organic solvent component in a two-component mobile phase. With core-shell columns, the impervious solid core does not participate in the retention process. Hence, the thermodynamic retention factors, defined as the ratio of the mass of the analyte mass contained in the stationary phase to its mass in the mobile phase in the column, should not include the particle core volume. The values of the thermodynamic factors are lower than the retention factors determined using a convention including the inert core in the stationary phase. However, both conventions produce correct results if consistently used to predict the effects of changing mobile phase composition on retention. We compared three types of core-shell columns with C18-, phenyl-hexyl-, and biphenyl-bonded phases. The core-shell columns with phenyl-hexyl- and biphenyl-bonded ligands provided lower errors in two-parameter model predictions for alkylbenzenes, phenolic acids, and flavonoid compounds in comparison with C18-bonded ligands.

  6. Reserves in western basins

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, R.H.; Cotton, B.W. [Scotia Group, Dallas, TX (United States)

    1995-04-01

    The objective of this project is to investigate the reserves potential of tight gas reservoirs in three Rocky Mountain basins: the Greater Green River (GGRB), Uinta and Piceance basins. The basins contain vast gas resources that have been estimated in the thousands of Tcf hosted in low permeability clastic reservoirs. This study documents the productive characteristics of these tight reservoirs, requantifies gas in place resources, and characterizes the reserves potential of each basin. The purpose of this work is to promote understanding of the resource and to encourage its exploitation by private industry. At this point in time, the GGRB work has been completed and a final report published. Work is well underway in the Uinta and Piceance basins which are being handled concurrently, with reports on these basins being scheduled for the middle of this year. Since the GGRB portion of the project has been completed, this presentation win focus upon that basin. A key conclusion of this study was the subdivision of the resource, based upon economic and technological considerations, into groupings that have distinct properties with regard to potential for future producibility, economics and risk profile.

  7. Long-term tritium monitoring to study river basin dynamics: case of the Danube River basin

    Science.gov (United States)

    Aggarwal, Pradeep; Araguas, Luis; Groening, Manfred; Newman, Brent; Kurttas, Turker; Papesch, Wolfgang; Rank, Dieter; Suckow, Axel; Vitvar, Tomas

    2010-05-01

    During the last five decades, isotope concentrations (O-18, D, tritium) have been extensively measured in precipitation, surface- and ground-waters to derive information on residence times of water in aquifers and rivers, recharge processes, and groundwater dynamics. The unique properties of the isotopes of the water molecule as tracers are especially useful for understanding the retention of water in river basins, which is a key parameter for assessing water resources availability, addressing quality issues, investigating interconnections between surface- and ground-waters, and for predicting possible hydrological shifts related to human activities and climate change. Detailed information of the spatial and temporal changes of isotope contents in precipitation at a global scale was one of the initial aims of the Global Network of Isotopes in Precipitation (GNIP), which has provided a detailed chronicle of tritium and stable isotope contents in precipitation since the 1960s. Accurate information of tritium contents resulting of the thermonuclear atmospheric tests in the 1950s and 1960s is available in GNIP for stations distributed world-wide. Use of this dataset for hydrological dating or as an indicator of recent recharge has been extensive in shallow groundwaters. However, its use has been more limited in surface waters, due to the absence of specific monitoring programmes of tritium and stable isotopes in rivers, lakes and other surface water bodies. The IAEA has recently been compiling new and archival isotope data measured in groundwaters, rivers, lakes and other water bodies as part of its web based Water Isotope System for Data Analysis, Visualization and Electronic Retrieval (WISER). Recent additions to the Global Network of Isotopes in Rivers (GNIR) contained within WISER now make detailed studies in rivers possible. For this study, we are re-examining residence time estimates for the Danube in central Europe. Tritium data are available in GNIR from 15

  8. A strategic approach to employee retention.

    Science.gov (United States)

    Gering, John; Conner, John

    2002-11-01

    A sound retention strategy should incorporate a business plan, a value proposition, progress measures, and management influences. The business plan will indicate whether a healthcare organization will achieve a return on investment for its effort. A value proposition will showcase an organization's strengths and differentiate it from its competitors. Measuring progress toward meeting retention goals at regular intervals will help keep an organization on track. The best managers require accountability, rewarding employees for their successes and taking corrective action as necessary. Retention rate targets must be at a level that will achieve a competitive advantage in the served market.

  9. Water-use analysis program for the Neshaminy Creek basin, Bucks and Montgomery counties, Pennsylvania

    Science.gov (United States)

    Schreffler, Curtis L.

    1996-01-01

    A water-use analysis computer program was developed for the Neshaminy Creek Basin to assist in managing and allocating water resources in the basin. The program was developed for IBM-compatible personal computers. Basin analysis and the methodologies developed for the Neshaminy Creek Basin can be transferred to other watersheds. The development and structure of the water-use analysis program is documented in this report. The report also serves as a user's guide. The program uses common relational database-management software that allows for water use-data input, editing, updating and output and can be used to generate a watershed water-use analysis report. The watershed-analysis report lists summations of public-supply well withdrawals; a combination of industrial, commercial, institutional, and ground-water irrigation well withdrawals; spray irrigation systems; a combination of public, industrial, and private surface-water withdrawals; wastewater-tratement-facility dishcarges; estimates of aggregate domestic ground-water withdrawals on an areal basin or subbasin basis; imports and exports of wastewater across basin or subbasin divides; imports and exports of public water supplies across basin or subbasin divides; estimates of evaporative loss and consumptive loss from produce incorporation; industrial septic-system discharges to ground water; and ground-water well-permit allocations.

  10. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    Science.gov (United States)

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  11. Would a Value-Added System of Retention Improve the Distribution of Teacher Quality? A Simulation of Alternative Policies

    Science.gov (United States)

    Winters, Marcus A.; Cowen, Joshua M.

    2013-01-01

    In this paper, we consider several features of teacher-retention policies based on value-added measures of effectiveness under a variety of empirically grounded rules and parameters. We consider the effects of policy design by varying the standard above which satisfactory teachers are expected to perform. We simulate recently adopted policies that…

  12. Sleep physiology predicts memory retention after reactivation

    National Research Council Canada - National Science Library

    Macdonald, Kevin J; Cote, Kimberly A

    2016-01-01

    ...) received reminders designed to leave these memories in a stable state. No significant differences in memory retention were found between blocks or groups the following morning. Frontal delta (0.5–4 Hz...

  13. International perspectives on retention and persistence

    Directory of Open Access Journals (Sweden)

    Gary Burkholder

    2014-06-01

    Full Text Available Access to higher education globally is increasing dramatically; attainment of tertiary degrees is a high priority, as educational attainment is associated with increased personal incomes as well as growth of the middle class in developing countries. The purpose of this essay is to briefly examine retention and persistence issues from a global perspective, review some retention strategies that have been employed at schools outside the United States, and to identify several key factors that related to retention and persistence globally, including access, infrastructure, financial consideration, and readiness for tertiary education.  There exists an opportunity to utilize knowledge gained in the evolution of the higher education system in the United States to help address the problems associated with retention and persistence.   DOI: 10.18870/hlrc.v4i2.208

  14. Employee Retention Strategies And Organizational Performance ...

    African Journals Online (AJOL)

    The study empirically examines the relationship between employee retention ... in form of enhanced and regular monthly Salary package, workers participation in ... and provision of incentives that bothers on staff family welfare retains and ...

  15. Retention practices in education human resources management ...

    African Journals Online (AJOL)

    The review of retention practices for teachers is premised on the principles of quality ... of business principles and public service management principles based on legal and statutory provision. An increase in customer satisfaction is necessary.

  16. Retention models for programmed gas chromatography.

    Science.gov (United States)

    Castello, G; Moretti, P; Vezzani, S

    2009-03-06

    The models proposed by many authors for the prediction of retention times and temperatures, peak widths, retention indices and separation numbers in programmed temperature and pressure gas chromatography by starting from preliminary measurements of the retention in isothermal and isobaric conditions are reviewed. Several articles showing the correlation between retention data and thermodynamic parameters and the determination of the optimum programming rate are reported. The columns of different polarity used for the experimental measurement and the main equations, mathematical models and calculation procedures are listed. An empirical approach was used in the early models, followed by the application of thermodynamic considerations, iterative calculation procedures and statistical methods, based on increased computing power now available. Multiple column arrangements, simultaneous temperature and pressure programming, applications of two-dimensional and fast chromatography are summarised.

  17. Spinal morphine anesthesia and urinary retention.

    Science.gov (United States)

    Mahan, K T; Wang, J

    1993-11-01

    Spinal anesthetic is a common form of surgical anesthetic used in foot and ankle surgery. Spinal morphine anesthetic is less common, but has the advantage of providing postoperative analgesia for 12 to 24 hr. A number of complications can occur with spinal anesthesia, including urinary retention that may be a source of severe and often prolonged discomfort and pain for the patient. Management of this problem may require repeated bladder catheterization, which may lead to urinary tract infections or impairment of urethrovesicular function. This study reviews the incidence of urinary retention in 80 patients (40 after general anesthesia and 40 after spinal anesthesia) who underwent foot and ankle surgery at Saint Joseph's Hospital, Philadelphia, PA. Twenty-five percent of the patients who had spinal anesthesia experienced urinary retention, while only 7 1/2% of the group who had general anesthesia had this complication. Predisposing factors, treatment regimen, and recommendations for the prevention and management of urinary retention are presented.

  18. Mitigation : Closed Basin Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The upcoming meeting on waterfowl mitigation for the Closed Basin Project will have several people talk about possible changes to the waterfowl mitigation program. A...

  19. Tulare Basin protection plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Tulare Basin Protection Plan has been initiated by The Nature Conservancy to elucidate the problems and opportunities of natural diversity protection....

  20. BASINS Framework and Features

    Science.gov (United States)

    BASINS enables users to efficiently access nationwide environmental databases and local user-specified datasets, apply assessment and planning tools, and run a variety of proven nonpoint loading and water quality models within a single GIS format.

  1. California Air Basins

    Data.gov (United States)

    California Department of Resources — Air ResourcesCalifornia Air Resources BoardThe following datasets are from the California Air Resources Board: * arb_california_airbasins - California Air BasinsThe...

  2. Watershed Planning Basins

    Data.gov (United States)

    Vermont Center for Geographic Information — The Watershed Planning Basin layer is part of a larger dataset contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset includes...

  3. Best practices in doctoral retention: Mentoring

    OpenAIRE

    Brill, Judie L.; Balcanoff, Karen K.; Denise Land; Maurice Gogarty; Freda Turner

    2014-01-01

    The aim of this critical literature review is to outline best practices in doctoral retention and the successful approach of one university to improve graduation success by providing effective mentorship for faculty and students alike. The focus of this literature review is on distance learning relationships between faculty and doctoral students, regarding retention, persistence, and mentoring models. Key phrases and words used in the search and focusing on mentoring resulted in over 20,000 s...

  4. K Basin Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  5. K Basins Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    WEBB, R.H.

    1999-12-29

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  6. Simulating retention in gas-liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.G.; Siepmann, J.I.; Schure, M.R.

    1999-12-16

    Accurate predictions of retention times, retention indices, and partition constants are a long sought-after goal for theoretical studies in chromatography. Configurational-bias Monte Carlo (CBMC) simulations in the Gibbs ensemble using the transferable potentials for phase equilibria-united atom (TraPPE-UA) force field have been carried out to obtain a microscopic picture of the partitioning of 10 alkane isomers between a helium vapor phase and a squalane liquid phase, a protypical gas-liquid chromatography system. The alkane solutes include some topological isomers that differ only in the arrangement of their building blocks (e.g., 2,5-dimethylhexane and 3,4-dimethylhexane), for which the prediction of the retention order is particularly difficult. The Kovats retention indices, a measure of the relative retention times, are calculated directly from the partition constants and are in good agreement with experimental values. The calculated Gibbs free energies of transfer for the normal alkanes conform to Martin's equation which is the basis of linear free energy relationships used in many process modeling packages. Analysis of radial distribution functions and the corresponding energy integrals does not yield evidence for specific retention structures and shows that the internal energy of solvation is not the main driving force for the separation of topological isomers in this system.

  7. Retention Benefit Based Intelligent Cache Replacement

    Institute of Scientific and Technical Information of China (English)

    李凌达; 陆俊林; 程旭

    2014-01-01

    The performance loss resulting from different cache misses is variable in modern systems for two reasons: 1) memory access latency is not uniform, and 2) the latency toleration ability of processor cores varies across different misses. Compared with parallel misses and store misses, isolated fetch and load misses are more costly. The variation of cache miss penalty suggests that the cache replacement policy should take it into account. To that end, first, we propose the notion of retention benefit. Retention benefits can evaluate not only the increment of processor stall cycles on cache misses, but also the reduction of processor stall cycles due to cache hits. Then, we propose Retention Benefit Based Replacement (RBR) which aims to maximize the aggregate retention benefits of blocks reserved in the cache. RBR keeps track of the total retention benefit for each block in the cache, and it preferentially evicts the block with the minimum total retention benefit on replacement. The evaluation shows that RBR can improve cache performance significantly in both single-core and multi-core environment while requiring a low storage overhead. It also outperforms other state-of-the-art techniques.

  8. Best practices in doctoral retention: Mentoring

    Directory of Open Access Journals (Sweden)

    Judie L. Brill

    2014-06-01

    Full Text Available The aim of this critical literature review is to outline best practices in doctoral retention and the successful approach of one university to improve graduation success by providing effective mentorship for faculty and students alike. The focus of this literature review is on distance learning relationships between faculty and doctoral students, regarding retention, persistence, and mentoring models. Key phrases and words used in the search and focusing on mentoring resulted in over 20,000 sources. The search was narrowed to include only doctoral study and mentoring. Research questions of interest were: Why do high attrition rates exist for doctoral students? What are the barriers to retention? What are the benefits of doctoral mentoring? What programs do institutions have in place to reduce attrition? The researchers found a key factor influencing doctoral student retention and success is effective faculty mentorship. In particular, the design of a mentoring and faculty training program to increase retention and provide for success after graduation is important. This research represents a key area of interest in the retention literature, as institutions continue to search for ways to better support students during their doctoral programs and post-graduation. DOI: 10.18870/hlrc.v4i2.186

  9. The Aquitaine basin

    Energy Technology Data Exchange (ETDEWEB)

    Biteau, J.-J.; Le Marrec, A.; Le Vot, M.; Masset, J.-M.

    2006-07-01

    The Aquitaine Basin is located in the southwest of France, between the Gironde Arch in the north and the Pyrenean Mountain Chain in the south. It is a triangular-shaped domain, extending over 35000km{sup 2}. From north to south, six main geological provinces can be identified: (1) the Medoc Platform located south of the Gironde Arch; (2) the Parentis sub-basin; (3) the Landes Saddle; (4) the North Aquitaine Platform; (5) the foreland of the Pyrenees (also known as the Adour, Arzacq and Comminges sub-basins); and (6) the Pyrenean fold-and-thrust belt. Only the Parentis sub-basin, the foreland of the Pyrenean Chain and a minor part of the fold-and-thrust belt itself are proven hydrocarbon provinces. The Aquitaine Basin, in turn, is subdivided into four sub-basins - the Parentis, Adour-Arzacq, Tarbes and Comminges areas. The lozenge shape of these depocentres is related to the Hercynian tectonic framework of the Palaeozoic basement, reactivated during Early Cretaceous rifting. This rift phase aborted at the end of the Albian (prior to the development of an oceanic crust) in response to the beginning of the subduction of the Iberian plate under the European plate. During the Upper Cretaceous, continued subduction led to the creation of northwards-migrating flexural basins. In the Eocene, a paroxysmal phase of compression was responsible for the uplift of the Pyrenean Mountain Chain and for the thin-skinned deformation of the foreland basin. The resulting structuration is limited to the south by the internal core of the chain and to the north by the leading edge of the fold-and-thrust belt, where the Lacq and Meillon gas fields are located. Four main petroleum provinces have been exploited since the Second World War: (1) the oil-prone Parentis sub-basin and (2) salt ridges surrounding the Arzacq and Tarbes sub-basins; and (3) the gas-prone southern Arzacq sub-basin (including the external Pyrenean fold-and-thrust belt and the proximal foreland sub-basin) and (4

  10. EVALUASI RENCANA KINERJA KOLAM RETENSI (RETARDING BASIN DALAM UPAYA PENGENDALIAN BANJIR TUKAD MATI DI KOTA DENPASAR

    Directory of Open Access Journals (Sweden)

    I G. Suryadinata P

    2013-03-01

    Full Text Available Tukad Mati is one of the rivers in the province of Bali that unfolds and flows in Badung regency and Denpasar. Inundation due to flooding is a problem that often occurs in this region during the rainy season. In an effort to overcome problems of flooding have been many studies carried out so as to produce flood control alternatives such as normalization, diversion channels and retarding basins. Retarding basin is one of flood control alternative that has not been much studied. In this study conducted a simulation of flood prevention alternative with retarding basin at Tukad Mati, by the hydrology approach method and hydraulics using HEC-RAS 4.0 program applications. Simulations performed on the current river flow conditions (existing condition and to the existing conditions with the retarding basin, according to the detail design of retarding basin in the city of Denpasar and evaluate the effectiveness of the retarding basin in the river basin flood control of Tukad Mati. Flood control by retarding basin based on simulations with the 2 (two years flood return period, resulting in a reduction of water level by an average of 0.42 meters or an average of 12% of the maximum water level in the conditions without retarding basin, which occurred in along the grooves on the lower reaches of the retarding basin and inundation waters still occur in some places, particularly in the downstream of Umadui Dam. Economic analysis of both the analysis of Benefits/Cost produces a parameter of BCR, NPV and IRR are not meet the feasibility requirements. The effective retention of retarding basin based on simulation results are 282,630.00 m3 with the ability to flood accommodate for 3-4 hours. In terms of economic development retarding basin is not feasible in terms of comparative costs and benefits

  11. EVALUASI RENCANA KINERJA KOLAM RETENSI (RETARDING BASIN DALAM UPAYA PENGENDALIAN BANJIR TUKAD MATI DI KOTA DENPASAR

    Directory of Open Access Journals (Sweden)

    I G. Suryadinata P

    2013-01-01

    Full Text Available Tukad Mati is one of the rivers in the province of Bali that unfolds and flows in Badung regency and Denpasar. Inundation due to flooding is a problem that often occurs in this region during the rainy season. In an effort to overcome problems of flooding have been many studies carried out so as to produce flood control alternatives such as normalization, diversion channels and retarding basins. Retarding basin is one of flood control alternative that has not been much studied. In this study conducted a simulation of flood prevention alternative with retarding basin at Tukad Mati, by the hydrology approach method and hydraulics using HEC-RAS 4.0 program applications. Simulations performed on the current river flow conditions (existing condition and to the existing conditions with the retarding basin, according to the detail design of retarding basin in the city of Denpasar and evaluate the effectiveness of the retarding basin in the river basin flood control of Tukad Mati. Flood control by retarding basin based on simulations with the 2 (two years flood return period, resulting in a reduction of water level by an average of 0.42 meters or an average of 12% of the maximum water level in the conditions without retarding basin, which occurred in along the grooves on the lower reaches of the retarding basin and inundation waters still occur in some places, particularly in the downstream of Umadui Dam. Economic analysis of both the analysis of Benefits/Cost produces a parameter of BCR, NPV and IRR are not meet the feasibility requirements. The effective retention of retarding basin based on simulation results are 282,630.00 m3 with the ability to flood accommodate for 3-4 hours. In terms of economic development retarding basin is not feasible in terms of comparative costs and benefits

  12. Artificial Ground Water Recharge with Surface Water

    Science.gov (United States)

    Heviánková, Silvie; Marschalko, Marian; Chromíková, Jitka; Kyncl, Miroslav; Korabík, Michal

    2016-10-01

    With regard to the adverse manifestations of the recent climatic conditions, Europe as well as the world have been facing the problem of dry periods that reduce the possibility of drawing drinking water from the underground sources. The paper aims to describe artificial ground water recharge (infiltration) that may be used to restock underground sources with surface water from natural streams. Among many conditions, it aims to specify the boundary and operational conditions of the individual aspects of the artificial ground water recharge technology. The principle of artificial infiltration lies in the design of a technical system, by means of which it is possible to conduct surplus water from one place (in this case a natural stream) into another place (an infiltration basin in this case). This way, the water begins to infiltrate into the underground resources of drinking water, while the mixed water composition corresponds to the water parameters required for drinking water.

  13. Airport Ground Staff Scheduling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    travels safely and efficiently through the airport. When an aircraft lands, a significant number of tasks must be performed by different groups of ground crew, such as fueling, baggage handling and cleaning. These tasks must be complete before the aircraft is able to depart, as well as check......-in and security services. These tasks are collectively known as ground handling, and are the major source of activity with airports. The business environments of modern airports are becoming increasingly competitive, as both airports themselves and their ground handling operations are changing to private...... ownership. As airports are in competition to attract airline routes, efficient and reliable ground handling operations are imperative for the viability and continued growth of both airports and airlines. The increasing liberalization of the ground handling market prompts ground handling operators...

  14. [Introduction to grounded theory].

    Science.gov (United States)

    Wang, Shou-Yu; Windsor, Carol; Yates, Patsy

    2012-02-01

    Grounded theory, first developed by Glaser and Strauss in the 1960s, was introduced into nursing education as a distinct research methodology in the 1970s. The theory is grounded in a critique of the dominant contemporary approach to social inquiry, which imposed "enduring" theoretical propositions onto study data. Rather than starting from a set theoretical framework, grounded theory relies on researchers distinguishing meaningful constructs from generated data and then identifying an appropriate theory. Grounded theory is thus particularly useful in investigating complex issues and behaviours not previously addressed and concepts and relationships in particular populations or places that are still undeveloped or weakly connected. Grounded theory data analysis processes include open, axial and selective coding levels. The purpose of this article was to explore the grounded theory research process and provide an initial understanding of this methodology.

  15. 5 CFR 575.309 - Payment of retention incentives.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Payment of retention incentives. 575.309... RECRUITMENT, RELOCATION, AND RETENTION INCENTIVES; SUPERVISORY DIFFERENTIALS; AND EXTENDED ASSIGNMENT INCENTIVES Retention Incentives § 575.309 Payment of retention incentives. (a) An authorized agency official...

  16. 5 CFR 575.306 - Authorizing a retention incentive.

    Science.gov (United States)

    2010-01-01

    ... a retention incentive; (2) Determine when a group or category of employees has unusually high or... in the absence of a retention incentive; (3) Approve a retention incentive for an employee (or group... the limitation on the maximum amount of a retention incentive for an employee (or group or category of...

  17. Interactions between surface water and ground water and effects on mercury transport in the north-central Everglades

    Science.gov (United States)

    Harvey, Judson W.; Krupa, Steven L.; Gefvert, Cynthia; Mooney, Robert H.; Choi, Jungyill; King, Susan A.; Giddings, Jefferson B.

    2002-01-01

    The hydrology of the north-central Everglades was altered substantially in the past century by canal dredging, land subsidence, ground-water pumping, and levee construction. Vast areas of seasonal and perennial wetlands were converted to uses for agriculture, light industry, and suburban development. As the catchment area for the Everglades decreased, so did the sources of water from local precipitation and runoff from surrounding uplands. Partly in response to those alterations, water-resources managers compartmentalized the remaining wetlands in the north-central Everglades into large retention basins, called Water Conservation Areas (WCAs). In spite of efforts to improve how water resources are managed, the result has been frequent periods of excessive drying out or flooding of the WCAs because the managed system does not have the same water-storage capacity as the pre-drainage Everglades. Linked to the hydrological modifications are ecological changes including large-scale invasions of cattail, loss of tree islands, and diminishing bird populations in the Everglades. Complex interactions among numerous physical, chemical, and biological factors are responsible for the long-term degradation of the ecological character of the Everglades.Over the past 15 years, a new set of smaller wetland basins, called Stormwater Treatment Areas (STAs), have been designed and constructed by water-resources engineers on the former wetlands adjacent to WCAs. The purpose of STAs is to remove excess nutrients from agricultural drainage water prior to its input to WCAs. STAs tend to be about one-tenth the size of a WCA, and they are located on former wetlands on the northwestern side of WCAs on sites that were managed as farmland for much of the twentieth century in an area referred to as the Everglades Agricultural Area, or EAA. The objective of the present investigation was to quantify interactions between surface water and ground water in the Everglades Nutrient Removal Project

  18. Ground Vehicle Robotics

    Science.gov (United States)

    2013-08-20

    Ground Vehicle Robotics Jim Parker Associate Director, Ground Vehicle Robotics UNCLASSIFIED: Distribution Statement A. Approved for public...DATE 20 AUG 2013 2. REPORT TYPE Briefing Charts 3. DATES COVERED 09-05-2013 to 15-08-2013 4. TITLE AND SUBTITLE Ground Vehicle Robotics 5a...Willing to take Risk on technology -User Evaluated -Contested Environments -Operational Data Applied Robotics for Installation & Base Ops -Low Risk

  19. Geohydrologic summary of the Pearl River basin, Mississippi and Louisiana

    Science.gov (United States)

    Lang, Joseph W.

    1972-01-01

    Fresh water in abundance is contained in large artesian reservoirs in sand and gravel deposits of Tertiary and Quaternary ages in the Pearl River basin, a watershed of 8,760 square miles. Shallow, water-table reservoirs occur in Quarternary deposits (Pleistocene and Holocene) that blanket most of the uplands in .the southern half of the basin and that are present in smaller upland areas and along streams elsewhere. The shallow reservoirs contribute substantially to dry-weather flow of the Strong River and Bogue Chitto and of Holiday, Lower Little, Silver, and Whitesand Creeks, among others. About 3 billion acre-feet of ground water is in storage in the fresh-water section, which extends from the surface to depths ranging from about sea level in the extreme northern part of the basin to more than 3,000 feet below sea level in the southern part of the basin. Variations in low flow for different parts of the river basin are closely related to geologic terrane and occurrence of ground water. The upland terrace belt that crosses the south-central part of the basin is underlain by permeable sand and gravel deposits and yields more than 0.20 cubic feet per second per square mile of drainage area to streamflow, whereas the northern part of the basin, underlain by clay, marl, and fine to medium sand, yields less than 0.05 cubic feet per second per square mile of drainage area (based on 7-day Q2 minimum flow computed from records). Overall, the potential surface-water supplies are large. Because water is available at shallow depths, most of the deeper aquifers have not been developed anywhere in the basin. At many places in the south, seven or more aquifers could be developed either by tapping one sand in each well or by screening two or more sands in a single well. Well fields each capable, of producing several million gallons of water a day are feasible nearly anywhere in the Pearl River basin. Water in nearly all the aquifers is of good to excellent quality and requires

  20. Complex Deformation Monitoring over the Linfen–Yuncheng Basin (China with Time Series InSAR Technology

    Directory of Open Access Journals (Sweden)

    Cheng-sheng Yang

    2016-03-01

    Full Text Available The Linfen–Yuncheng basin is an area prone to geological disasters, such as surface subsidence, ground fissuring, fault activity, and earthquakes. For the purpose of disaster prevention and mitigation, Interferometric Synthetic Aperture Radar (InSAR was used to map ground deformation in this area. After the ground deformation characteristics over the Linfen–Yuncheng basin were obtained, the cross-correlations among regional ground subsidence, fault activity, and underground water level were analyzed in detail. Additionally, an area of abnormal deformation was found and examined. Through time series deformation monitoring and mechanism inversion, we found that the abnormal deformation was related mainly to excessive groundwater exploitation.

  1. The Grounded Theory Bookshelf

    Directory of Open Access Journals (Sweden)

    Vivian B. Martin, Ph.D.

    2005-03-01

    Full Text Available Bookshelf will provide critical reviews and perspectives on books on theory and methodology of interest to grounded theory. This issue includes a review of Heaton’s Reworking Qualitative Data, of special interest for some of its references to grounded theory as a secondary analysis tool; and Goulding’s Grounded Theory: A practical guide for management, business, and market researchers, a book that attempts to explicate the method and presents a grounded theory study that falls a little short of the mark of a fully elaborated theory.Reworking Qualitative Data, Janet Heaton (Sage, 2004. Paperback, 176 pages, $29.95. Hardcover also available.

  2. STUDY ON A NEW NONIONIC MICRIOPARTICLE RETENTION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Xiuwu Hou; Xiaofan Zhou; Rui Peng; Fei Wang

    2004-01-01

    The retention and drainage performances of microparticle retention system were studied in this paper, through measuring the improvement of beaten degree and retention ratio of slurry. The effects the retention system on paper sheet were discussed by measuring physical properties of paper. Compared with the influence of Hydrocol system (CPAM/bentonite) on the aspects of retention aid and drainage properties as well as increased product cost per ton paper, the developed nonionic system has some superiority and better practicability.

  3. Nursing Student Retention in Associate Degree Nursing Programs Utilizing a Retention Specialist

    Science.gov (United States)

    Schrum, Ronna A.

    2014-01-01

    The purpose of this study was to examine specific variables associated with nursing student retention in Associate Degree Nursing (ADN) Programs. Jeffreys (2004) Nursing Undergraduate Retention and Success (NURS) conceptual model provided the framework for this descriptive correlational study. One hundred sixty eight pre-licensure associate degree…

  4. Employee retention: a customer service approach.

    Science.gov (United States)

    Gerson, Richard F

    2002-01-01

    Employee retention is a huge problem. There are staff shortages in radiology because not enough people are entering the profession; too many people are leaving the profession for retirement, higher-paying jobs or jobs with less stress; and there are not enough opportunities for career advancement. Staff shortages are exacerbated by difficulty in retaining people who enter the profession. While much work has been focused on recruitment and getting more people "in the front door," I suggest that the bulk of future efforts be focused on employee retention and "closing the back door." Employee retention must be an ongoing process, not a program. Approaches to employee retention that focus on external things, i.e., things that the company can do to or for the employee, generally are not successful. The truth is that employee retention processes must focus on what the employee gets out of the job. The process must be a benefits-based approach that helps employees answer the question, "What's in it for me?" The retention processes must be ongoing and integrated into the daily culture of the company. The best way to keep your employees is to treat them like customers. Customer service works for external customers. We treat them nicely. We work to satisfy them. We help them achieve their goals. Why not do the same for our employees? If positive customer service policies and practices can satisfy and keep external customers, why not adapt these policies and practices for employees? And, there is a service/satisfaction link between employee retention and higher levels of customer satisfaction. Customers prefer dealing with the same employees over and over again. Employee turnover destroys a customer's confidence in the company. Just like a customer does not want to have to "train and educate" a new provider, they do not want to do the same for your "revolving door" employees. So, the key is to keep employees so they in turn will help you keep your customers. Because the

  5. Healthcare Learning Community and Student Retention

    Directory of Open Access Journals (Sweden)

    Sherryl W. Johnson, PhD

    2014-08-01

    Full Text Available Teaching, learning, and retention processes have evolved historically to include multifaceted techniques beyond the traditional lecture. This article presents related results of a study using a healthcare learning community in a southwest Georgia university. The value of novel techniques and tools in promoting student learning and retention remains under review. This study includes a healthcare learning community as a cutting-edge teaching and learning modality. The results of an introspective survey of 22 students in a learning community explore strategies to enhance culturally relevant teaching, learning, and retention. Although learning and retention studies have been conducted at numerous universities, few have included feedback from students in a healthcare learning community. Frequencies from student responses were tabulated using five thematic factors: social support, career knowledge/opportunities, academic support, networking and faculty rapport/relationship building. Of the five theme areas, social support was identified most frequently by students as a means to support their learning and retention in the university setting.

  6. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  7. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  8. Aquifer recharge from infiltration basins in a highly urbanized area: the river Po Plain (Italy)

    Science.gov (United States)

    Masetti, M.; Nghiem, S. V.; Sorichetta, A.; Stevenazzi, S.; Santi, E. S.; Pettinato, S.; Bonfanti, M.; Pedretti, D.

    2015-12-01

    Due to the extensive urbanization in the Po Plain in northern Italy, rivers need to be managed to alleviate flooding problems while maintaining an appropriate aquifer recharge under an increasing percentage of impermeable surfaces. During the PO PLain Experiment field campaign in July 2015 (POPLEX 2015), both active and under-construction infiltration basins have been surveyed and analyzed to identify appropriate satellite observations that can be integrated to ground based monitoring techniques. A key strategy is to have continuous data time series on water presence and level within the basin, for which ground based monitoring can be costly and difficult to be obtained consistently.One of the major and old infiltration basin in the central Po Plain has been considered as pilot area. The basin is active from 2003 with ground based monitoring available since 2009 and supporting the development of a calibrated unsaturated-saturated two-dimensional numerical model simulating the infiltration dynamics through the basin.A procedure to use satellite data to detect surface water change is under development based on satellite radar backscatter data with an appropriate incidence angle and polarization combination. An advantage of satellite radar is that it can observe surface water regardless of cloud cover, which can be persistent during rainy seasons. Then, the surface water change is correlated to the reservoir water stage to determine water storage in the basin together with integrated ground data and to give quantitative estimates of variations in the local water cycle.We evaluated the evolution of the infiltration rate, to obtain useful insights about the general recharge behavior of basins that can be used for informed design and maintenance. Results clearly show when the basin becomes progressively clogged by biofilms that can reduce the infiltration capacity of the basin by as much as 50 times compared to when it properly works under clean conditions.

  9. Modeling effects of secondary tidal basins on estuarine morphodynamics

    Science.gov (United States)

    Nnafie, Abdel; Van Oyen, Tomas; De Maerschalck, Bart

    2017-04-01

    Many estuaries are situated in very densely populated areas with high economic activities that often conflict with their ecological values. For centuries, geometry and bathymetry of estuaries have been drastically modified trough engineering works such as embanking, sand extraction, channel deepening, land reclamations, etc. It is generally recognized that these works may increase the tidal range (e.g., Scheldt, Ems, Elbe) and turbidity (e.g., Loire, Ems) in estuaries [cf. Kerner, 2007; Wang et al., 2009; Winterwerp and Wang, 2013; Van Maren et al., 2015b,a]. In recent years, construction of secondary basins (also called retention basins) has gained increasing popularity among coastal managers to reduce tidal range and turbidity [Donner et al., 2012]. Previous studies have shown that location, geometry and number of secondary basins have a significant impact on tidal characteristics and sediment transport [Alebregtse and de Swart, 2014; Roos and Schuttelaars, 2015]. However, knowledge on how these secondary basins affect the morphodynamic development of estuaries on long time scales (order decades to centuries) is still lacking. The specific objectives of this study are twofold. First, to investigate effects of secondary basins on the long-term morphodynamic evolution of estuaries. In particular, effects of the presence of such a basin on the morphodynamic evolution of the main channel in the estuary and the physics underlying channel migration will be examined. For this, the Western Scheldt estuary (situated in the Netherlands) is used as a case study, which used to consist of multiple secondary tidal basins that were located at different positions in the estuary, and which have been gradually closed off between 1800 and 1968. Second, to systematically quantify sensitivity of model results to location, geometry, and to number of secondary basins. To this end, the state-of-the- art numerical model Delft3D is used, which has been successfully applied to

  10. Communication, concepts and grounding.

    Science.gov (United States)

    van der Velde, Frank

    2015-02-01

    This article discusses the relation between communication and conceptual grounding. In the brain, neurons, circuits and brain areas are involved in the representation of a concept, grounding it in perception and action. In terms of grounding we can distinguish between communication within the brain and communication between humans or between humans and machines. In the first form of communication, a concept is activated by sensory input. Due to grounding, the information provided by this communication is not just determined by the sensory input but also by the outgoing connection structure of the conceptual representation, which is based on previous experiences and actions. The second form of communication, that between humans or between humans and machines, is influenced by the first form. In particular, a more successful interpersonal communication might require forms of situated cognition and interaction in which the entire representations of grounded concepts are involved.

  11. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  12. Ground energy coupling

    Science.gov (United States)

    Metz, P. D.

    The feasibility of ground coupling for various heat pump systems was investigated. Analytical heat flow models were developed to approximate design ground coupling devices for use in solar heat pump space conditioning systems. A digital computer program called GROCS (GRound Coupled Systems) was written to model 3-dimensional underground heat flow in order to simulate the behavior of ground coupling experiments and to provide performance predictions which have been compared to experimental results. GROCS also has been integrated with TRNSYS. Soil thermal property and ground coupling device experiments are described. Buried tanks, serpentine earth coils in various configurations, lengths and depths, and sealed vertical wells are being investigated. An earth coil used to heat a house without use of resistance heating is described.

  13. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    Science.gov (United States)

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  14. Water resources of the Ipswich River basin, Massachusetts

    Science.gov (United States)

    Sammel, Edward A.; Baker, John Augustus; Brackley, Richard A.

    1966-01-01

    Water resources of the Ipswich River basin are at resent {1960) used principally for municipal supply to about 379,000 person's in 16 towns and cities in or near the river basin. By the year 2000 municipal use of water in this region will probably be more than twice the current use, and subsidiary uses of water, especially for recreation, also will have increased greatly. To meet the projected needs, annual pumpage of water from the Ipswich River could be increased from current maximums of about 12 mgd (million galleons a day) to about 45 mgd without reducing average base flows in the river, provided that the increased withdrawals would be restricted to periods of high streamflow. In addition, considerably more pumpage could be derived from streamflow by utilizing base-flow discharge; however, the magnitude of such use could be determined only in relation to factors such as concurrent ground-water use, the disposal of waste water, and the amount of streamflow required to dilute the pollution load to acceptable levels. Under present conditions, little or no increase in diversion of streamflow would be warranted in the upstream rafts of the basin during the summer and early fall of each year, and only a moderate increase could be made in the lower reaches of the stream during the same period. Annual rainfall in the basin averages about 42.5 inches, and represents the water initially available for use. Of this amount, an average of about 20.5 inches is returned to the a.tmosphere by evapotranspiration. The remainder, about 22 inches, runs off as streamflow in the Ipswich River or is diverted from the basin by pumpage. The average annual stream runoff, amounting to about 47 billion gallons, is a measure of the water actually available for man's use. The amounts of water used by municipalities in recent years are less than 10 percent of the available supply. Large supplies of ground water may be obtained under water-table conditions from the stratified glacial drift

  15. Retention and failure morphology of prefabricated posts

    DEFF Research Database (Denmark)

    Sahafi, Alireza; Peutzfeldt, Anne; Asmussen, Erik;

    2004-01-01

    PURPOSE: This study evaluated the effect of cement, post material, surface treatment, and shape (1) on the retention of posts luted in the root canals of extracted human teeth and (2) on the failure morphology. MATERIALS AND METHODS: Posts of titanium alloy (ParaPost XH), glass fiber (Para......Post Fiber White), and zirconia (Cerapost) received one of several surface treatments-sandblasting, CoJet treatment, application of Metalprimer II, or sandblasting followed by silane application-and were then luted in the prepared root canal of human incisors and canines (n = 10). Following water storage...... at 37 degrees C for 7 days, retention was determined by extraction of the posts. Failure morphology of extracted posts was analyzed and quantified stereomicroscopically. RESULTS: Type of luting cement, post material, and shape of post influenced the retention and failure morphology of the posts. Because...

  16. Safeguards Workforce Repatriation, Retention and Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Gallucci, Nicholas [Brookhaven National Lab. (BNL), Upton, NY (United States); Poe, Sarah [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-01

    Brookhaven National Laboratory was tasked by NA-241 to assess the transition of former IAEA employees back to the United States, investigating the rate of retention and overall smoothness of the repatriation process among returning safeguards professionals. Upon conducting several phone interviews, study authors found that the repatriation process went smoothly for the vast majority and that workforce retention was high. However, several respondents expressed irritation over the minimal extent to which their safeguards expertise had been leveraged in their current positions. This sentiment was pervasive enough to prompt a follow-on study focusing on questions relating to the utilization rather than the retention of safeguards professionals. A second, web-based survey was conducted, soliciting responses from a larger sample pool. Results suggest that the safeguards workforce may be oversaturated, and that young professionals returning to the United States from Agency positions may soon encounter difficulties finding jobs in the field.

  17. Mercury retention, a trait of chickens

    Energy Technology Data Exchange (ETDEWEB)

    Miller, V.L.; Bearse, G.E.; Hammermeister, K.E.

    1959-01-01

    Experiments were performed in order to gain further information on the mercury retention of two strains of chickens, the reciprocal crosses of these lines and sex differences in retention. White Leghorns were selected for resistance and susceptibility to the avian leukosis complex. Approximately 6 males and 6 females from each of the strains and reciprocal crosses were injected in the breast muscle with phenylmercury acetate at the rate of 3.0 mg. mercury per kg. body weight. The kidneys were excised and analyzed for total mercury. Results indicate that the first generation cross chicks resembled the parent that retained mercury poorly more closely than they did the one retaining large amounts of mercury. There was no significant differences between sexes in mercury retention. 4 references, 1 table.

  18. Height, Relationship Satisfaction, Jealousy, and Mate Retention

    Directory of Open Access Journals (Sweden)

    Gayle Brewer

    2009-07-01

    Full Text Available Male height is associated with high mate value. In particular, tall men are perceived as more attractive, dominant and of a higher status than shorter rivals, resulting in a greater lifetime reproductive success. Female infidelity and relationship dissolution may therefore present a greater risk to short men. It was predicted that tall men would report greater relationship satisfaction and lower jealousy and mate retention behavior than short men. Ninety eight heterosexual men in a current romantic relationship completed a questionnaire. Both linear and quadratic relationships were found between male height and relationship satisfaction, cognitive and behavioral jealousy. Tall men reported greater relationship satisfaction and lower levels of cognitive or behavioral jealousy than short men. In addition, linear and quadratic relationships were found between male height and a number of mate retention behaviors. Tall and short men engaged in different mate retention behaviors. These findings are consistent with previous research conducted in this area detailing the greater attractiveness of tall men.

  19. Modifed Great Basin Extent (Buffered)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Two different great basin perimeter files were intersected and dissolved using ArcGIS 10.2.2 to create the outer perimeter of the great basin for use modeling...

  20. Basin Hopping Graph

    DEFF Research Database (Denmark)

    Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter

    2014-01-01

    Motivation RNA folding is a complicated kinetic process. The minimum free energy structure provides only a static view of the most stable conformational state of the system. It is insufficient to give detailed insights into the dynamic behavior of RNAs. A sufficiently sophisticated analysis...... of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...

  1. Intensity attenuation in the Pannonian Basin

    Science.gov (United States)

    Győri, Erzsébet; Gráczer, Zoltán; Szanyi, Gyöngyvér

    2015-04-01

    Ground motion prediction equations play a key role in seismic hazard assessment. Earthquake hazard has to be expressed in macroseismic intensities in case of seismic risk estimations where a direct relation to the damage associated with ground shaking is needed. It can be also necessary for shake map generation where the map is used for prompt notification to the public, disaster management officers and insurance companies. Although only few instrumental strong motion data are recorded in the Pannonian Basin, there are numerous historical reports of past earthquakes since the 1763 Komárom earthquake. Knowing the intensity attenuation and comparing them with relations of other areas - where instrumental strong motion data also exist - can help us to choose from the existing instrumental ground motion prediction equations. The aim of this work is to determine an intensity attenuation formula for the inner part of the Pannonian Basin, which can be further used to find an adaptable ground motion prediction equation for the area. The crust below the Pannonian Basin is thin and warm and it is overlain by thick sediments. Thus the attenuation of seismic waves here is different from the attenuation in the Alp-Carpathian mountain belt. Therefore we have collected intensity data only from the inner part of the Pannonian Basin and defined the boundaries of the studied area by the crust thickness of 30 km (Windhoffer et al., 2005). 90 earthquakes from 1763 until 2014 have sufficient number of macroseismic data. Magnitude of the events varies from 3.0 to 6.6. We have used individual intensity points to eliminate the subjectivity of drawing isoseismals, the number of available intensity data is more than 3000. Careful quality control has been made on the dataset. The different types of magnitudes of the used earthquake catalogue have been converted to local and momentum magnitudes using relations determined for the Pannonian Basin. We applied the attenuation formula by Sorensen

  2. USAR Nurse Referral and Retention Program.

    Science.gov (United States)

    Foley, J E; Foley, B J

    1992-09-01

    In 1987, the 804th Hospital Center made alleviating the shortfall of registered nurses in the Command a priority. The Command had only 79% of its registered nurse positions filled at the time. Using the recruitment strategies of an employee referral program and a mailing list, the Command reached 100% fill in 2 years and maintained those gains for an additional year. Retention strategies were also implemented which lowered the attrition rate. This paper describes the Army Nurse Referral and Retention Program developed and implemented at the 804th Hospital Center that relieved the shortfall of registered nurses in the United States Army Reserve in New England.

  3. Meteorological, stream-discharge, and water-quality data for 1986 through 1991 from two small basins in central Nevada

    Energy Technology Data Exchange (ETDEWEB)

    McKinley, P.W.; Oliver, T.A.

    1994-04-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is investigating the volcanic tuffs of Yucca Mountain, Nevada, for their suitability as storage sites for nuclear waste. Two small basins, measuring less than 2 square miles, were studied to determine the volume of precipitation available for recharge to the ground water. The semiarid 3 Springs Basin is located to the east of Kawich Peak in the Kawich Range east of Tonopah, Nevada. Stewart Basin is a subalpine drainage basin north of Arc Dome in the Toiyabe Range north of Tonopah, Nevada. This publication presents the meteorological, stream-discharge, and water-quality data collected during the study. Meteorological data collected include air temperature, soil temperature, solar radiation, and relative humidity. Stream-discharge data were collected from the surface-water outlet of each basin. Water-quality data are chemical analyses of water samples collected from surface- and ground-water sources. Data were collected throughout the two basins. Each basin has a meteorological station located in the lower and upper reaches of the basin. Hydrologic records include stream-discharge and water-quality data from the lower meteorological site and water-quality data from springs within the basins. Meteorological data are available from the lower sites from the winter of 1986 through the fall of 1991. Periods of data collection were shorter for additional sites in the basin.

  4. High-resolution digital elevation model of Mount St. Helens crater and upper North Fork Toutle River basin, Washington, based on an airborne lidar survey of September 2009

    Science.gov (United States)

    Mosbrucker, Adam

    2014-01-01

    The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the North Fork Toutle River basin, which drains the northern flank of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, built a sediment retention structure on the North Fork Toutle River in 1989 to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From September 16–20, 2009, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 214 square kilometers (83 square miles) of Mount St. Helens and the upper North Fork Toutle River basin from the sediment retention structure to the volcano's crater. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at Castle, Coldwater, and Spirit Lakes. Final results averaged about five laser last

  5. Transient electromagnetic study of basin fill sediments in the Upper San Pedro Basin, Mexico

    Science.gov (United States)

    Bultman, M.W.; Gray, F.

    2011-01-01

    The Upper San Pedro River Basin in Mexico and the United States is an important riparian corridor that is coming under increasing pressure from growing populations and the associated increase in groundwater withdrawal. Several studies have produced three-dimensional maps of the basin fill sediments in the US portion of the basin but little work has been done in the Mexican portion of the basin. Here, the results of a ground-based transient electromagnetic (TEM) survey in the Upper San Pedro Basin, Mexico are presented. These basin fill sediments are characterized by a 10-40 m deep unsaturated surficial zone which is composed primarily of sands and gravels. In the central portion of the basin this unsaturated zone is usually underlain by a shallow clay layer 20-50 m thick. Beneath this may be more clay, as is usually the case near the San Pedro River, or interbedded sand, silt, and clay to a depth of 200-250 m. As you move away from the river, the upper clay layer disappears and the amount of sand in the sediments increases. At 1-2 km away from the river, sands can occupy up to 50% of the upper 200-250 m of the sediment fill. Below this, clays are always present except where bedrock highs are observed. This lower clay layer begins at a depth of about 200 m in the central portion of the basin (250 m or more at distances greater than 1-2 km from the river) and extends to the bottom of most profiles to depths of 400 m. While the depth of the top of this lower clay layer is probably accurate, its thickness observed in the models may be overestimated due to the relatively low magnetic moment of the TEM system used in this study. The inversion routine used for interpretation is based on a one-dimensional geologic model. This is a layer based model that is isotropic in both the x and y directions. Several survey soundings did not meet this requirement which invalidates the inversion process and the resulting interpretation at these locations. The results from these

  6. LAKE VICTORIA BASIN

    African Journals Online (AJOL)

    selected satellite lakes and Mara River in Lake Victoria basin, during wet and dry seasons in. 2002. Samples ... The wet season recorded higher biomass in all satellite lakes than during the dry season (t = 2.476, DF ..... communication. Urbana ...

  7. Single-basined choice

    NARCIS (Netherlands)

    Bossert, W.; Peters, H.J.M.

    2013-01-01

    Single-basined preferences generalize single-dipped preferences by allowing for multiple worst elements. These preferences have played an important role in areas such as voting, strategy-proofness and matching problems. We examine the notion of single-basinedness in a choice-theoretic setting. In co

  8. Ground Motion in Central Mexico: A Comprehensive Analysis

    Science.gov (United States)

    Ramirez-Guzman, L.; Juarez, A.; Rábade, S.; Aguirre, J.; Bielak, J.

    2015-12-01

    This study presents a detailed analysis of the ground motion in Central Mexico based on numerical simulations, as well as broadband and strong ground motion records. We describe and evaluate a velocity model for Central Mexico derived from noise and regional earthquake cross-correlations, which is used throughout this research to estimate the ground motion in the region. The 3D crustal model includes a geotechnical structure of the Valley of Mexico (VM), subduction zone geometry, and 3D velocity distributions. The latter are based on more than 200 low magnitude (Mw Valley of Mexico originating from intra-slab deep events and temblors located along the Pacific coast. Also, we quantify the effects Trans-Mexican Volcanic Belt (TMVB) and the low-velocity deposits on the ground motion. The 3D octree-based finite element wave propagation computations, valid up to 1 Hz, reveal that the inclusion of a basin with a structure as complex as the Valley of Mexico dramatically enhances the regional effects induced by the TMVB. Moreover, the basin not only produces ground motion amplification and anomalous duration, but it also favors the energy focusing into zones of Mexico City where structures typically undergo high levels of damage.

  9. Can geotextiles modify the transfer of heavy metals transported by stormwater in infiltration basins?

    Science.gov (United States)

    Lassabatère, L; Winiarski, T; Galvez-Cloutier, R

    2005-01-01

    Geotextiles are fibrous materials increasingly employed for the design of infiltration basins. However, their influence on the transfer of contaminants carried by stormwater has not been fully investigated. This study, based on column leaching experiments, aims at showing the effect of geotextiles on the transfer of three heavy metals (Zn, Pb and Cd) in a reactive soil (simulating an infiltration basin at laboratory scale). This effect depends on several factors, such as type of geotextile, hydric conditions (geotextile water content), hydraulic conditions (flow-rates) and the number of geotextiles installed. In all cases, geotextiles influence heavy metal retention by modifying flow and thus regulating contact between these metals and the reactive soil.

  10. Ground State Spin Logic

    CERN Document Server

    Whitfield, J D; Biamonte, J D

    2012-01-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground state subspace encoding the truth tables of Boolean formulas. The ground state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  11. The Case for Focusing on Millennial Retention.

    Science.gov (United States)

    Koppel, Jenna; Deline, Marisa; Virkstis, Katherine

    A concern for nurse leaders is rapid turnover of engaged, early-tenure millennial nurses. In this 1st article in a 2-part series, the authors describe why leaders should supplement their organization's current investments in engagement with retention strategies targeted at millennial nurses.

  12. 5 CFR 293.511 - Retention schedule.

    Science.gov (United States)

    2010-01-01

    ... RECORDS Employee Medical File System Records § 293.511 Retention schedule. (a) Temporary EMFS records must... accordance with General Records Schedule (GRS) 1, item 21, issued by the National Archives and Records Administration (NARA). (b) Occupational Medical Records considered to be long-term records must be maintained...

  13. Studies on nitrogen retention in growing pigs

    DEFF Research Database (Denmark)

    Thorbek, G; Henckel, S; Chwalibog, André;

    1987-01-01

    Nitrogen retention (RN) was measured in 60 barrows of Danish Landrace and a total of 470 balance periods was carried out during the growth period from 20 to 85 kg live weight. In the first serie (Expt A) six different feed compounds of high biological value (HBV) were fed to 48 barrows, while...... in the second serie (Expt B) 12 barrows were measured on feed compounds of HBV or low biological value (LBV). Three different levels of gross energy were used in Expt B. Individual differences of 10-20% in the pigs capability for nitrogen retention were observed. Nitrogen retention increased from 12 to 21 g N....../d on the HBV-compounds and was not influenced by increasing nitrogen or energy intake. Nitrogen retention was curvilinear in relation to metabolic live weight (kg0.75) in both series. A parabolic function on kg0.75 gave the best fit to the data with the following regression equations: Expt A + B: RN, g/d = 1...

  14. Relationship of Personality Traits to Student Retention

    Science.gov (United States)

    Liang, John Paul

    2010-01-01

    Carl Jung's theory of psychological types has been the basis for the development of personality categorization, including tests such as Myers-Briggs Type Indicator (MBTI). This study analyzed the extent of the relationship between MBTI and Tinto (1993) retention factors that influence Oriental medicine students' choice of staying or dropping out…

  15. Relationship of Personality Traits to Student Retention

    Science.gov (United States)

    Liang, John Paul

    2010-01-01

    Carl Jung's theory of psychological types has been the basis for the development of personality categorization, including tests such as Myers-Briggs Type Indicator (MBTI). This study analyzed the extent of the relationship between MBTI and Tinto (1993) retention factors that influence Oriental medicine students' choice of staying or dropping out…

  16. Healthcare Learning Community and Student Retention

    Science.gov (United States)

    Johnson, Sherryl W.

    2014-01-01

    Teaching, learning, and retention processes have evolved historically to include multifaceted techniques beyond the traditional lecture. This article presents related results of a study using a healthcare learning community in a southwest Georgia university. The value of novel techniques and tools in promoting student learning and retention…

  17. Water retention in mushroom during sustainable processing

    NARCIS (Netherlands)

    Paudel, E.

    2015-01-01

    This thesis deals with the understanding of the water holding capacity of mushroom, in the context of a redesign of their industrial processing. For designing food process the retention of food quality is of the utmost importance. Water holding capacity is an important quality aspect of mushrooms. A

  18. Structural Information Retention in Visual Art Processing.

    Science.gov (United States)

    Koroscik, Judith Smith

    The accuracy of non-art college students' longterm retention of structural information presented in Leonardo da Vinci's "Mona Lisa" was tested. Seventeen female undergraduates viewed reproductions of the painting and copies that closely resembled structural attributes of the original. Only 3 of the 17 subjects reported having viewed a reproduction…

  19. Employee Retention: A Challenge of the Nineties.

    Science.gov (United States)

    Zeiss, Tony

    1990-01-01

    Considers ways in which community colleges can help employers implement programs to improve the work environment and retain trained workers. Presents a model for employee retention that has worked effectively in Pueblo, Colorado. Describes Pueblo Community College's cooperative program with the Wats Marketing Group to help reduce employee…

  20. 5 CFR 293.404 - Retention schedule.

    Science.gov (United States)

    2010-01-01

    ... RECORDS Employee Performance File System Records § 293.404 Retention schedule. (a)(1) Except as provided... in this system, including transfer with the employee who changes positions, shall be as agencies... performance-related documents five years old or less shall be forwarded in the Employee Performance File...

  1. Managing talent retention: an ROI approach

    National Research Council Canada - National Science Library

    Phillips, Jack J; Edwards, Lisa

    2009-01-01

    .... Employee retention will continue to be an important issue for most job groups in the next decade. Unwanted talent departure continues to be one of the most unappreciated and undervalued issues facing business leaders. This stems from several important assumptions and conclusions about turnover: 1. All stakeholders involved in the issue, including human ...

  2. Water retention in mushroom during sustainable processing

    NARCIS (Netherlands)

    Paudel, E.

    2015-01-01

    This thesis deals with the understanding of the water holding capacity of mushroom, in the context of a redesign of their industrial processing. For designing food process the retention of food quality is of the utmost importance. Water holding capacity is an important quality aspect of mushrooms. A

  3. Structural Information Retention in Visual Art Processing.

    Science.gov (United States)

    Koroscik, Judith Smith

    The accuracy of non-art college students' longterm retention of structural information presented in Leonardo da Vinci's "Mona Lisa" was tested. Seventeen female undergraduates viewed reproductions of the painting and copies that closely resembled structural attributes of the original. Only 3 of the 17 subjects reported having viewed a reproduction…

  4. Tribune: Retention Policy for Ethnic Minority Students

    NARCIS (Netherlands)

    Herfs, Paul

    2003-01-01

    The question of the retention of ethnic minority university students in universities in the Netherlands, especially at the University of Utrecht, is examined. In particular, the cases of Surinamese, Antillian, and Aruban students, foreign refugee students, particularly medical doctors, and Turkish a

  5. Nigerian Federal Civil Service: Employee Recruitment, Retention ...

    African Journals Online (AJOL)

    This study delved into the recruitment and retention of employees in the ... Civil Service (NFCS), to establish their impact on the effectiveness of the service. ... the study found that the service lagged behind in providing adequate incentives to ... its application should also pay attention to the merit of prospective employees.

  6. Testing to Enhance Retention in Human Anatomy

    Science.gov (United States)

    Logan, Jessica M.; Thompson, Andrew J.; Marshak, David W.

    2011-01-01

    Recent work in cognitive psychology has shown that repeatedly testing one's knowledge is a powerful learning aid and provides substantial benefits for retention of the material. To apply this in a human anatomy course for medical students, 39 fill-in-the-blank quizzes of about 50 questions each, one for each region of the body, and four about the…

  7. Effects of Emotional Intelligence on Teacher Retention

    Science.gov (United States)

    Gerald, Grant Ronald

    2010-01-01

    This mixed methods, explanatory design study focused on determining if the emotional intelligence of principals affects the retention of new teachers. In phase one, a non-random cluster sample of 138 public school principals in the state of Louisiana was surveyed using a quantitative instrument. A Factor Analysis, Analysis of Variance (ANOVA), and…

  8. Conjoint Retention of Maps and Related Discourse.

    Science.gov (United States)

    Kulhavy, Raymond, W.; And Others

    1985-01-01

    Two experiments used fifth grade students to test the hypothesis that conjointly presented verbal/spatial information facilitates retrieval from either stimulus format. Results support the notion of conjoint retention which assumes that related verbal/spatial arrays are stored in a fashion which allows separate use of both formats during…

  9. 78 FR 57927 - Credit Risk Retention

    Science.gov (United States)

    2013-09-20

    .... Asset-Backed Commercial Paper Conduits 5. Commercial Mortgage-Backed Securities 6. Government-Sponsored... purchaser in commercial mortgage-backed securities (CMBS) transactions and an exemption that would permit... purchasers to hold risk retention in commercial mortgage-backed securitizations instead of sponsors (as...

  10. Retention--A Pseudo-Problem?

    Science.gov (United States)

    Geis, George L.

    1999-01-01

    Discusses retention of learning; training methods; maintenance issues; the effect of punishment; reinforcement; the performance environment; transfer of training; forgetting; implications for designers of instructional materials or designers of training programs; and the division between training and on-the-job performance. (LRW)

  11. Attrition and Retention among Special Education Paraprofessionals

    Science.gov (United States)

    Hall, Kimberly D.

    2009-01-01

    The purpose of the study was to obtain information about issues of turnover and retention among former and current special education paraprofessionals in one school district. Survey data and findings indicated ways to retain staff and reduce turnover. Information from this study was shared within the district and will be considered in creating…

  12. Ground Vehicle Robotics Presentation

    Science.gov (United States)

    2012-08-14

    Mr. Jim Parker Associate Director Ground Vehicle Robotics Distribution Statement A. Approved for public release Report Documentation Page...Briefing 3. DATES COVERED 01-07-2012 to 01-08-2012 4. TITLE AND SUBTITLE Ground Vehicle Robotics Presentation 5a. CONTRACT NUMBER 5b. GRANT...ABSTRACT Provide Transition-Ready, Cost-Effective, and Innovative Robotics and Control System Solutions for Manned, Optionally-Manned, and Unmanned

  13. Groundwater Surface Trends at Van Norden Meadow, California, from Ground Penetrating Radar Profiles

    Science.gov (United States)

    Tadrick, N. I.; Blacic, T. M.; Yarnell, S. M.

    2014-12-01

    Van Norden meadow in the Donner Summit area west of Lake Tahoe is one of the largest sub-alpine meadows in the Sierra Nevada mountain range. As natural water retention basins, meadows attenuate floods, improve water quality and support vegetation that stabilizes stream banks and promotes high biodiversity. Like most meadows in the Sierras however, over-grazing, road-building, and development has resulted in localized stream incision, degradation, and partial conversion from wet to dry conditions in Van Norden. Additionally, a small dam at the base of the meadow has partially flooded the lower meadow creating reservoir conditions. Privately owned since the late 1800s, Van Norden was recently purchased by a local land trust to prevent further development and return the area to public ownership. Restoration of the natural meadow conditions will involve notching the dam in 2016 to reduce currently impounded water volumes from 250 to less than 50 acre-feet. To monitor the effects of notching the dam on the upstream meadow conditions, better understanding of the surface and groundwater hydrology both pre- and post-restoration is required. We surveyed the meadow in summer 2014 with ground penetrating radar (GPR) to map the groundwater surface prior to restoration activities using a 270MHz antenna to obtain a suite of longitudinal and transverse transects. Groundwater level within the meadow was assessed using both piezometer readings and sweeps of the GPR antenna. Seventeen piezometers were added this year to the 13 already in place to monitor temporal changes in the groundwater surface, while the GPR profiles provided information about lateral variations. Our results provide an estimate of the groundwater depth variations across the upper portion of the meadow before notching. We plan to return in 2015 to collect GPR profiles during wetter conditions, which will provide a more complete assessment of the pre-notching groundwater hydrology.

  14. Bransfield Basin and Cordilleran Orogenesis

    Science.gov (United States)

    Dalziel, I. W.; Austin, J. A.; Barker, D. H.; Christensen, G. L.

    2003-12-01

    Tectonic uplift of the Andean Cordillera was initiated in the mid-Cretaceous with inversion of a composite marginal basin along 7500 km of the continental margin of South America, from Peru to Tierra del Fuego and the North Scotia Ridge. In the southernmost Andes, from 50-56 degrees S, the quasi-oceanic floor of this basin is preserved in the obducted ophiolitic rocks of the Rocas Verdes (Green Rocks) basin. We suggest that the basin beneath Bransfield Strait, 61-64 degrees S, separating the South Shetland Islands from the Antarctic Peninsula, constitutes a modern analog for the Rocas Verdes basin. Marine geophysical studies of Bransfield basin have been undertaken over the past 12 years by the Institute for Geophysics, University of Texas at Austin, under the auspices of the Ocean Sciences Division and United States Antarctic Program, National Science Foundation. These studies have elucidated the structure and evolution of Bransfield basin for comparison with the Rocas Verdes basin, with a view to eventual forward modeling of the evolution of a hypothetical cordilleran orogen by compression and inversion of the basin. These are the processes that can be observed in the tectonic transformation of the Rocas Verdes basin into the southernmost Andean cordillera, as South America moved rapidly westward in an Atlantic-Indian ocean hot-spot reference frame during the mid-Cretaceous. Multi-channel reflection seismic data from the Bransfield basin reveal an asymmetric structural architecture characterized by steeply-dipping normal faults flanking the South Shetlands island arc and gently dipping listric normal faults along the Antarctic Peninsula margin. Normal fault polarity reversals appear to be related to distributed loci of magmatic activity within the basin. This architecture is remarkably similar to that deduced from field structural studies of the Rocas Verdes basin. Notably, the oceanward-dipping, low angle normal faults along the Antarctic Peninsula margin

  15. Hydrogeologic setting and conceptual hydrologic model of the Spring Creek basin, Centre County, Pennsylvania

    Science.gov (United States)

    Fulton, John W.; Koerkle, Edward H.; McAuley, Steven D.; Hoffman, Scott A.; Zarr, Linda F.

    2005-01-01

    The Spring Creek Basin, Centre County, Pa., is experiencing some of the most rapid growth and development within the Commonwealth. This trend has resulted in land-use changes and increased water use, which will affect the quantity and quality of stormwater runoff, surface water, ground water, and aquatic resources within the basin. The U.S. Geological Survey (USGS), in cooperation with the ClearWater Conservancy (CWC), Spring Creek Watershed Community (SCWC), and Spring Creek Watershed Commission (SCWCm), has developed a Watershed Plan (Plan) to assist decision makers in water-resources planning. One element of the Plan is to provide a summary of the basin characteristics and a conceptual model that incorporates the hydrogeologic characteristics of the basin. The report presents hydrogeologic data for the basin and presents a conceptual model that can be used as the basis for simulating surface-water and ground-water flow within the basin. Basin characteristics; sources of data referenced in this text; physical characteristics such as climate, physiography, topography, and land use; hydrogeologic characteristics; and water-quality characteristics are discussed. A conceptual model is a simplified description of the physical components and interaction of the surface- and ground-water systems. The purpose for constructing a conceptual model is to simplify the problem and to organize the available data so that the system can be analyzed accurately. Simplification is necessary, because a complete accounting of a system, such as Spring Creek, is not possible. The data and the conceptual model could be used in development of a fully coupled numerical model that dynamically links surface water, ground water, and land-use changes. The model could be used by decision makers to manage water resources within the basin and as a prototype that is transferable to other watersheds.

  16. Frontier petroleum basins of Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Keith, J.F. Jr.; Perez, V.E.

    1989-03-01

    The frontier basins of Colombia with hydrocarbon potential are numerous, have varying geological histories, and are in different stages of exploration development. In this paper, sedimentary or structural basins are classified as frontier petroleum basins if commercial discoveries of hydrocarbons are lacking, if the basin has not attained a high degree of exploration development, or if a new play concept has been perceived or developed for a portion of a mature exploration basin. Using these criteria for classification, the authors discuss the Cauca-Patia Choco-Pacifico, and Lower Magdalena basin complexes; the Cordillera Oriental foreland basin; and the Cesar-Rancheria, Sabana, and Amazonas basins. A comprehensive geological and structural setting of each of these frontier basins will be presented. The depositional and tectonic evolution of the basins will be highlighted, and the play concepts for each will be inventoried, catalogued, and categorized as to whether they are theoretical or established. The discussion of the available plays in each of these basins will include the main play concept elements of reservoirs traps, seals, source rocks, maturation, and timing. When detailed data permit, the reservoir and trap geometry will be presented.

  17. Simulation of arsenic retention in constructed wetlands.

    Science.gov (United States)

    Valles-Aragón, M C; Alarcón-Herrera, M T; Llorens, E; Obradors-Prats, J; Leyva, A

    2017-01-01

    The software RCB-arsenic was developed previously to simulate the metalloid behavior in a constructed wetland (CW). The model simulates water flow and reactive transport by contemplating the major processes of arsenic (As) retention inside of CW. The objective of this study was to validate the RCB-arsenic model by simulating the behavior of horizontal flow CW for As removal from water. The model validation was made using data from a 122-day experiment. Two CWs prototypes were used: one planted with Eleocharis macrostachya (CW_planted) and another one unplanted (CW_unplanted) as a control. The prototypes were fed with synthetic water prepared using well water and sodium arsenite (NaAsO2). In the RCB-arsenic model, a CW prototype was represented using a 2D mesh sized in accordance with the experiment. For simulation of As retention in CW, data addition was established in two stages that considered the mechanisms in the system: (1) aqueous complexation, precipitation/dissolution, and adsorption on granular media and (2) retention by plants: uptake (absorption) and rhizofiltration (adsorption). Simulation of As outlet (μg/L) in stage_1 was compared with CW_unplanted; the experimental mean was 40.79 ± 7.76 and the simulated 39.96 ± 6.32. As concentration (μg/L) in stage_2 was compared with CW_planted, the experimental mean was 9.34 ± 4.80 and the simulated 5.14 ± 0.72. The mass-balance simulation and experiment at 122 days of operation had a similar As retention rate (94 and 91%). The calibrated model RCB-arsenic adequately simulated the As retention in a CW; therefore, it constitutes a powerful tool of design.

  18. Surface-water hydrology and runoff simulations for three basins in Pierce County, Washington

    Science.gov (United States)

    Mastin, M.C.

    1996-01-01

    The surface-water hydrology in Clear, Clarks, and Clover Creek Basins in central Pierce County, Washington, is described with a conceptual model of the runoff processes and then simulated with the Hydrological Simulation Program-FORTRAN (HSPF), a continuous, deterministic hydrologic model. The study area is currently undergoing a rapid conversion of rural, undeveloped land to urban and suburban land that often changes the flow characteristics of the streams that drain these lands. The complex interactions of land cover, climate, soils, topography, channel characteristics, and ground- water flow patterns determine the surface-water hydrology of the study area and require a complex numerical model to assess the impact of urbanization on streamflows. The U.S. Geological Survey completed this investigation in cooperation with the Storm Drainage and Surface Water Management Utility within the Pierce County Department of Public Works to describe the important rainfall-runoff processes within the study area and to develop a simulation model to be used as a tool to predict changes in runoff characteristics resulting from changes in land use. The conceptual model, a qualitative representation of the study basins, links the physical characteristics to the runoff process of the study basins. The model incorporates 11 generalizations identified by the investigation, eight of which describe runoff from hillslopes, and three that account for the effects of channel characteristics and ground-water flow patterns on runoff. Stream discharge was measured at 28 sites and precipitation was measured at six sites for 3 years in two overlapping phases during the period of October 1989 through September 1992 to calibrate and validate the simulation model. Comparison of rainfall data from October 1989 through September 1992 shows the data-collection period beginning with 2 wet water years followed by the relatively dry 1992 water year. Runoff was simulated with two basin models-the Clover

  19. Natural frequency of regular basins

    Science.gov (United States)

    Tjandra, Sugih S.; Pudjaprasetya, S. R.

    2014-03-01

    Similar to the vibration of a guitar string or an elastic membrane, water waves in an enclosed basin undergo standing oscillatory waves, also known as seiches. The resonant (eigen) periods of seiches are determined by water depth and geometry of the basin. For regular basins, explicit formulas are available. Resonance occurs when the dominant frequency of external force matches the eigen frequency of the basin. In this paper, we implement the conservative finite volume scheme to 2D shallow water equation to simulate resonance in closed basins. Further, we would like to use this scheme and utilizing energy spectra of the recorded signal to extract resonant periods of arbitrary basins. But here we first test the procedure for getting resonant periods of a square closed basin. The numerical resonant periods that we obtain are comparable with those from analytical formulas.

  20. Response to Memorandum by Rowley and Dixon Regarding U.S. Geological Survey Report Titled "Characterization of Surface-Water Resources in the Great Basin National Park Area and Their Susceptibility to Ground-Water Withdrawals in Adjacent Valleys, White Pine County, Nevada"

    Science.gov (United States)

    2006-01-01

    several faults. Declines of more than 50 feet were observed at wells near Marigold mine and a couple of miles closer to Lone Tree mine. The observed...Ground-water declines at Marigold mine are of particular interest because seldom do hydrologists have streamflow and ground-water data in the...Land Management, 2003, Final supplemental environmental impact statement, Glamis Marigold Mining Company’s millennium expansion project: Bureau of Land

  1. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins

    Science.gov (United States)

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Harris, Willie G.; Xuan, Zhemin

    2012-01-01

    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L-1 and decreases in nitrate nitrogen (NO3-–N) from 2.7 mg L-1 to -1, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0–7.8 mg L-1), resulting in NO3-–N of 1.3 to 3.3 mg L-1 in shallow groundwater. Enrichment of d15N and d18O of NO3- combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO3- transport beneath the sandy basin. Soil-extractable NO3-–N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO3- impacts.

  2. The effect of podcast lectures on nursing students' knowledge retention and application.

    Science.gov (United States)

    Abate, Karen S

    2013-01-01

    This pilot study sought to evaluate the effectiveness of academic podcasts in promoting knowledge retention and application in nursing students. Nursing education no longer simply occurs in a fixed location or time. Computer-enhanced mobile learning technologies, such as academic podcasts, must be grounded in pedagogically sound characteristics to ensure effective implementation and learning in nursing education. A convenience sample of 35 female undergraduate nursing students was randomized into three groups: a traditional face-to-face lecture group, an unsegmented (non-stop) podcast lecture group, and a segmented podcast lecture group. Retention and application of information were measured through a multiple-choice quiz and a case study based on lecture content. Students in the segmented podcast lecture group demonstrated higher scores on multiple-choice and case-study assessments than those in the other two groups. Nurse educators should be aware of this finding when seeking to employ podcast lectures in nursing education.

  3. Distinguishing sources of ground water recharge by using delta2H and delta18O.

    Science.gov (United States)

    Blasch, Kyle W; Bryson, Jeannie R

    2007-01-01

    Stable isotope values of hydrogen and oxygen from precipitation and ground water samples were compared by using a volumetrically based mixing equation and stable isotope gradient to estimate the season and location of recharge in four basins. Stable isotopes were sampled at 11 precipitation sites of differing elevation during a 2-year period to quantify seasonal stable isotope contributions as a function of elevation. Supplemental stable isotope data collected by the International Atomic Energy Association during a 14-year period were used to reduce annual variability of the mean seasonal stable isotope data. The stable isotope elevation relationships and local precipitation elevation relationships were combined by using a digital elevation model to calculate the total volumetric contribution of water and stable isotope values as a function of elevation within the basins. The results of these precipitation calculations were compared to measured ground water stable isotope values at the major discharge points near the terminus of the basins. Volumetric precipitation contributions to recharge were adjusted to isolate contributing elevations. This procedure provides an improved representation of recharge contributions within the basins over conventional stable isotope methods. Stable isotope values from wells and springs at the terminus of each basin were used to infer the elevations of precipitation important for recharge of the regional ground water flow system. Ancillary climatic, geologic, and stable isotope values were used to further constrain the location where precipitation is entering the ground water flow system.

  4. Simulations of Precipitation Variability over the Upper Rio Grande Basin

    Energy Technology Data Exchange (ETDEWEB)

    Costigan, Keeley R.; Bossert, James E.; Langley, David L.

    1997-12-31

    In this research, we study Albuquerque`s water and how it may be affected by changes in the regional climate, as manifested by variations in Rio Grande water levels. To do this, we rely on the use of coupled atmospheric, runoff, and ground water models. Preliminary work on the project has focused on uncoupled simulations of the aquifer beneath Albuquerque and winter precipitation simulations of the upper Rio Grande Basin. The latter is discussed in this paper.

  5. Exploring The Benefits Of Staff Retention Strategies And ...

    African Journals Online (AJOL)

    Exploring The Benefits Of Staff Retention Strategies And Performance In The ... between staff retention strategies (rewards) and organizational performance. Further ... and provision of appropriate incentives that favoured welfare of employees' ...

  6. The drivers of student enrolment and retention: A stakeholder ...

    African Journals Online (AJOL)

    ... and retention: A stakeholder perception analysis in higher education. ... and tuition, institutional performance, inconsistency in teaching quality and the relative ... retention, higher education, Q methodology, student development strategy, ...

  7. Satisfaction with retention factors as predictors of the job ...

    African Journals Online (AJOL)

    2013-05-03

    May 3, 2013 ... scarce skills in a South African client services company. Retention ... satisfaction with retention factors and their job embeddedness have been shown to influence their ..... 'Quality of working life and turnover intention in ...

  8. Memory Vocabulary Learning Strategies and Long-Term Retention ...

    African Journals Online (AJOL)

    Memory Vocabulary Learning Strategies and Long-Term Retention. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... The results were reflected in the students' short-term and long-term memory retention.

  9. The influence of frozen soil change on water balance in the upper Yellow River Basin, China

    Science.gov (United States)

    Cuo, L.; Zhao, L.; Zhou, B.

    2013-12-01

    Yellow River supports 30% of China's population and 13% of China's total cultivated area. About 35% of the Yellow River discharge comes from the upper Yellow River Basin. Seasonally frozen, continuous and isolated permafrost soils coexist and cover the entire upper Yellow River Basin. The spatial distribution of various frozen soisl is primarily determined by the elevation in the basin. Since the past five decades, air temperature has increased by a rate of 0.03 C/year in the upper Yellow River Basin. Many studies reported the conversions of continuous to isolated permafrost soil, permafrost soil to seasonally frozen soil and the thickening of the active layer due to rising temperature in the basin. However, very few studies reported the impact of the change of frozen soil on the water balance in the basin. In this study, the Variable Infiltration Capacity (VIC) model is applied in the upper Yellow River Basin to study the change of frozen soil and its impact on the water balance. Soil temperature and soil liquid content measured up to 3 m below ground surface at a number of sites in the upper Yellow River Basin and the surroundings are used to evaluate the model simulation. Streamflow is also calibrated and validated using historical streamflow records. The validated VIC model is then used to investigate the frozen soil change and the impact of the change on water balance terms including surface runoff, baseflow, evapotranspiration, soil water content, and streamflow in the basin.

  10. Ground Enterprise Management System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Emergent Space Technologies Inc. proposes to develop the Ground Enterprise Management System (GEMS) for spacecraft ground systems. GEMS will provide situational...

  11. DRAINAGE AND RETENTION ENHANCEMENT OF A WHEAT STRAW PULP CONTAINING FURNISH USING MICROPARTICLE RETENTION AIDS

    Directory of Open Access Journals (Sweden)

    Tom Hultholm

    2011-02-01

    Full Text Available The usage of non-wood pulps in furnishes for the production of various paper grades is a real alternative for the substitution of wood pulp in papermaking. In terms of the papermaking process, the main limiting factor for non-wood pulp utilization is poor dewatering. This problem can be partially solved by means of retention aids, and the modern microparticle-based retention aids are very promising for this application. In this study the main aim was to characterize how the microparticle retention systems affect the retention, dewatering, and formation of a non-wood pulp furnish and how these effects and mechanisms differ when compared to normal wood pulp. The performance of several commercially available retention aids was studied by making dynamic sheet forming tests for reference and an organosolv wheat straw furnish. The emphasis in the experiments was on drainage enhancement. The maximum drainage gain obtained with the bentonite-CPAM retention aid system was about 5%. Despite the improved drainage, dewatering of the reference furnish was better than for the non-wood containing furnish.

  12. 5 CFR 536.202 - Optional grade retention.

    Science.gov (United States)

    2010-01-01

    ... §§ 536.102 and 536.203, an authorized agency official may provide grade retention to an employee moving... lower-graded position. (c) When an employee is offered a position with grade retention under this... entitlement to grade retention under § 536.201 if the agency actually moves the employee to the lower-graded...

  13. 5 CFR 536.302 - Optional pay retention.

    Science.gov (United States)

    2010-01-01

    ....102 and this section, an authorized agency official may provide pay retention to an employee not... employee to pay retention under paragraph (a) of this section, the agency must apply the geographic... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Optional pay retention. 536.302 Section...

  14. 5 CFR 536.208 - Termination of grade retention.

    Science.gov (United States)

    2010-01-01

    ... grade retention benefits (except that, if an employee's election specifically provides that the... grade retention terminates under this section, the employee's rate of basic pay must be set in... CFR part 531, subpart B, for GS positions). An employee is not entitled to pay retention under subpart...

  15. 5 CFR 351.401 - Determining retention standing.

    Science.gov (United States)

    2010-01-01

    ... REDUCTION IN FORCE Scope of Competition § 351.401 Determining retention standing. Each agency shall determine the retention standing of each competing employee on the basis of the factors in this subpart and... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Determining retention standing. 351.401...

  16. 4 CFR 5.2 - Grade and pay retention.

    Science.gov (United States)

    2010-01-01

    ... terminate. (e) Pay retention. (1) Any GAO employee: who ceases to be entitled to a retained grade by reason... 4 Accounts 1 2010-01-01 2010-01-01 false Grade and pay retention. 5.2 Section 5.2 Accounts GOVERNMENT ACCOUNTABILITY OFFICE PERSONNEL SYSTEM COMPENSATION § 5.2 Grade and pay retention. (a) Change of...

  17. 5 CFR 536.301 - Mandatory pay retention.

    Science.gov (United States)

    2010-01-01

    ... § 536.102 and this section, an agency must provide pay retention to an employee who moves between... action that may entitle the employee to pay retention under paragraph (a) of this section, the agency.... Optional pay retention under § 536.302 may apply when an employee transfers to a different agency as a...

  18. 5 CFR 536.204 - Period of grade retention.

    Science.gov (United States)

    2010-01-01

    ... that provides entitlement to grade retention for 2 years beginning on the date the employee is placed... reduces an employee in grade under circumstances also entitling the employee to grade retention, the...-year grade retention period if the employee's grade was retained under this part in the appointment...

  19. 5 CFR 351.506 - Effective date of retention standing.

    Science.gov (United States)

    2010-01-01

    ... the performance factor as provided in § 351.504: (a) The retention standing of each employee released... is so released. (b) The retention standing of each employee retained in a competitive level as an... been released had the exception not been used. The retention standing of each employee retained under...

  20. Reinventing Grounded Theory: Some Questions about Theory, Ground and Discovery

    Science.gov (United States)

    Thomas, Gary; James, David

    2006-01-01

    Grounded theory's popularity persists after three decades of broad-ranging critique. In this article three problematic notions are discussed--"theory," "ground" and "discovery"--which linger in the continuing use and development of grounded theory procedures. It is argued that far from providing the epistemic security promised by grounded theory,…

  1. Estimation of nutrient contributions from the ocean across a river basin using stable isotope analysis

    Science.gov (United States)

    Nakayama, K.; Maruya, Y.; Matsumoto, K.; Komata, M.; Komai, K.; Kuwae, T.

    2015-11-01

    Total nitrogen (TN), which consists of total particulate nitrogen (TPN) and total dissolved nitrogen (TDN), is transported with not only in river channels but also across the entire river basin, including via ground water and migratory animals. In general, TPN export from an entire river basin to the ocean is larger than TDN in a mountainous region. Since marine derived nutrients (MDN) are hypothesized to be mainly transported as suspended matters from the ground surface, it is necessary to investigate the contribution of MDN to the forest floor (soils) in order to quantify the true role of MDN at the river ecosystem scale. This study investigated TN export from an entire river basin, and also we estimated the contribution of pink (Oncorhynchus gorbuscha) and chum salmon (O. keta) to total oceanic nitrogen input across a river basin. The maximum potential contribution of TN entering the river basin by salmon was found to be 23.8 % relative to the total amount of TN exported from the river basin. The contribution of particulate nitrogen based on suspended sediment from the ocean to the river basin soils was 22.9 % with SD of 3.6 % by using stable isotope analysis (SIA) of nitrogen (δ15N).

  2. Basin Hopping Graph

    DEFF Research Database (Denmark)

    Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter

    2014-01-01

    basins when the direct transitions between them are “energetically favorable”. Edge weights endcode the corresponding saddle heights and thus measure the difficulties of these favorable transitions. BHGs can be approximated accurately and efficiently for RNA molecules well beyond the length range...... accessible to enumerative algorithms. Availability The algorithms described here are implemented in C++ as standalone programs. Its source code and supplemental material can be freely downloaded from http://www.tbi.univie.ac.at/bhg.html....

  3. Who governs climate adaptation? Getting green roofs for stormwater retention off the ground

    NARCIS (Netherlands)

    Mees, H.L.P.; Driessen, P.P.J.; Runhaar, H.A.C.; Stamatelos, J.

    2013-01-01

    Green roofs are an innovative solution for urban stormwater management. This paper examines governance arrangements for green roofs as a ‘no-regrets’ climate adaptation measure in five cities. We analysed who governs green roofs, why and with what outcome. Our results show that hierarchical and mark

  4. Polish legal regulations considering recovery of secondary materials from coal mining dumping grounds

    Directory of Open Access Journals (Sweden)

    Gawor Łukasz

    2014-12-01

    Full Text Available In the article there is presented temporary situation of coal mining dumping grounds in Poland – their inventarization, localization and environmental impacts. The coal mining dumping grounds in Poland are situated in three coal basins: Upper Silesian Coal Basin, Lower Silesian Coal Basin and Lublin Coal Basin. In all mentioned areas occur ca. 270 coal mining waste dumps, covering surface of over 4400 ha. The main environmental impacts connected with dumping grounds are fire hazards, water pollution and a danger of slope sliding. The question of recovery of coal from disposed wastes with regard to legal regulations is discussed. There are presented technical methods of coal recovery considering environmental protection issues. There is a necessity and technical possibility of recovery of coal from the coal-mining waste dumps. The coal recovery reduces hazards of self-ignition and fires of the dump. It is also economically justified. The analysis of required regulations in legal system in Poland for safe exploitation of secondary materials from coal mining dumps is done. Socio-economic aspects of recovery of coal are discussed. The valid legal regulations in Poland regulate the issues connected with coal mining dumping grounds in a very general way. It is necessary to prepare supplements to the legal provisions or new regulations concerning post-mining dumping grounds.

  5. Ground water in Oklahoma

    Science.gov (United States)

    Leonard, A.R.

    1960-01-01

    One of the first requisites for the intelligent planning of utilization and control of water and for the administration of laws relating to its use is data on the quantity, quality, and mode of occurrence of the available supplies. The collection, evaluation and interpretation, and publication of such data are among the primary functions of the U.S. Geological Survey. Since 1895 the Congress has made appropriations to the Survey for investigation of the water resources of the Nation. In 1929 the Congress adopted the policy of dollar-for-dollar cooperation with the States and local governmental agencies in water-resources investigations of the U.S. Geological Survey. In 1937 a program of ground-water investigations was started in cooperation with the Oklahoma Geological Survey, and in 1949 this program was expanded to include cooperation with the Oklahoma Planning and Resources Board. In 1957 the State Legislature created the Oklahoma Water Resources Board as the principal State water agency and it became the principal local cooperator. The Ground Water Branch of the U.S. Geological Survey collects, analyzes, and evaluates basic information on ground-water resources and prepares interpretive reports based on those data. Cooperative ground-water work was first concentrated in the Panhandle counties. During World War II most work was related to problems of water supply for defense requirements. Since 1945 detailed investigations of ground-water availability have been made in 11 areas, chiefly in the western and central parts of the State. In addition, water levels in more than 300 wells are measured periodically, principally in the western half of the State. In Oklahoma current studies are directed toward determining the source, occurrence, and availability of ground water and toward estimating the quantity of water and rate of replenishment to specific areas and water-bearing formations. Ground water plays an important role in the economy of the State. It is

  6. Water Use, Ground-Water Recharge and Availability, and Quality of Water in the Greenwich Area, Fairfield County, Connecticut and Westchester County, New York, 2000-2002

    Science.gov (United States)

    Mullaney, John R.

    2004-01-01

    Ground-water budgets were developed for 32 small basin-based zones in the Greenwich area of southwestern Connecticut, where crystalline-bedrock aquifers supply private wells, to determine the status of residential ground-water consumption relative to rates of ground-water recharge and discharge. Estimated residential ground-water withdrawals for small basins (averaging 1.7 square miles (mi2) ranged from 0 to 0.16 million gallons per day per square mile (Mgal/d/mi2). To develop these budgets, residential ground-water withdrawals were estimated using multiple-linear regression models that relate water use from public water supply to data on residential property characteristics. Average daily water use of households with public water supply ranged from 219 to 1,082 gallons per day (gal/d). A steady-state finite-difference ground-water-flow model was developed to track water budgets, and to estimate optimal values for hydraulic conductivity of the bedrock (0.05 feet per day) and recharge to the overlying till deposits (6.9 inches) using nonlinear regression. Estimated recharge rates to the small basins ranged from 3.6 to 7.5 inches per year (in/yr) and relate to the percentage of the basin underlain by coarse-grained glacial stratified deposits. Recharge was not applied to impervious areas to account for the effects of urbanization. Net residential ground-water consumption was estimated as ground-water withdrawals increased during the growing season, and ranged from 0 to 0.9 in/yr. Long-term average stream base flows simulated by the ground-water-flow model were compared to calculated values of average base flow and low flow to determine if base flow was substantially reduced in any of the basins studied. Three of the 32 basins studied had simulated base flows less than 3 in/yr, as a result of either ground-water withdrawals or reduced recharge due to urbanization. A water-availability criteria of the difference between the 30-day 2-year low flow and the recharge rate

  7. Improving student retention in computer engineering technology

    Science.gov (United States)

    Pierozinski, Russell Ivan

    The purpose of this research project was to improve student retention in the Computer Engineering Technology program at the Northern Alberta Institute of Technology by reducing the number of dropouts and increasing the graduation rate. This action research project utilized a mixed methods approach of a survey and face-to-face interviews. The participants were male and female, with a large majority ranging from 18 to 21 years of age. The research found that participants recognized their skills and capability, but their capacity to remain in the program was dependent on understanding and meeting the demanding pace and rigour of the program. The participants recognized that curriculum delivery along with instructor-student interaction had an impact on student retention. To be successful in the program, students required support in four domains: academic, learning management, career, and social.

  8. Teacher professionalisation in relation to retention strategies

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne

    2014-01-01

    pedagogical strategies have any impact on retention? The project started in 2010 and includes annual interventions and measurements of the output of these inventions. The intervention includes various teacher training programs e.g. about training in cooperative learning, classroom management, conflict......Teacher professionalization in relation to retention strategies Bjarne Wahlgren, professor, director National Centre of Competence Development, University of Aarhus, Denmark The research project ‘New roles for the teacher’ was initiated due to a concern about the increasing number of dropouts...... within Danish VET. The main research questions are: Is it possible to train teachers to be able to focus on the students’ completion of the program and not only on the subject matter? Do teachers change their attitudes and actual performance in the classroom after training programs? And do new...

  9. Retention technique #1. Developing managerial warmth.

    Science.gov (United States)

    Davidhizar, R

    1989-01-01

    A manager who has interpersonal warmth is not simply gullible or naive, but instead possesses a valuable skill in reaching others. In most manager-employee relationships, some degree of limit-setting and judgment are necessary; however, warmth integrated with limit-setting is more satisfying for both employee and manager. Although warmth as an interpersonal phenomenon is affected by the employee's perception, certain managerial actions can increase the likelihood of being perceived as warm; yet, in spite of careful adherence to the guidelines for communicating warmth, managerial warmth will still be rejected in some situations. As is true of any managerial technique, the effective use of warmth requires an assessment of the employee's personality and the approach most appropriate for the situation at hand. The excellent manager is able to quickly adapt, matching the level of warmth to the situation. See Nurse Manager Retention Factors for viewpoints from nurses themselves. Interpersonal management style is an important retention factor.

  10. Selective Surface Modification on Lubricant Retention

    Science.gov (United States)

    Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.

    2016-11-01

    While surface patterns are effective in improving tribological properties, nevertheless they alter the surface wettability, which will in turn affect the surface-lubricant interactions. When there is a shortage of lubricant on a patterned surface, the lubricant stored inside the cavities will be extracted to compensate the surface lubricant dissipation. Additionally, the lubricant retention effect provided by the cavities is competing with the release of the lubricant. With weak surface-lubricant interaction, the retention is limited. Therefore, the lubrication will have a sudden failure, giving a dramatic transition to abrasive wear. To improve the performance of polar lubricants on hydrophobic polymer surfaces, both topographical and selective surface modifications were incorporated on injection molded polypropylene surfaces. Distinctive lubrication improvement was observed when the surface structure density for the lubricant storage was high, and the release of the lubricant was controlled by the interaction with the selectively modified surfaces.

  11. Detection of ground ice using ground penetrating radar method

    Institute of Scientific and Technical Information of China (English)

    Gennady M. Stoyanovich; Viktor V. Pupatenko; Yury A. Sukhobok

    2015-01-01

    The paper presents the results of a ground penetrating radar (GPR) application for the detection of ground ice. We com-bined a reflection traveltime curves analysis with a frequency spectrogram analysis. We found special anomalies at specific traces in the traveltime curves and ground boundaries analysis, and obtained a ground model for subsurface structure which allows the ground ice layer to be identified and delineated.

  12. Collison and Grounding

    DEFF Research Database (Denmark)

    Wang, G.; Ji, C.; Kuhala, P.;

    2006-01-01

    COMMITTEE MANDATE Concern for structural arrangements on ships and floating structures with regard to their integrity and adequacy in the events of collision and grounding, with the view towards risk assessment and management. Consideration shall be given to the frequency of occurrence, the proba......COMMITTEE MANDATE Concern for structural arrangements on ships and floating structures with regard to their integrity and adequacy in the events of collision and grounding, with the view towards risk assessment and management. Consideration shall be given to the frequency of occurrence...

  13. Push Vs Pull: Factors Influence Student Retention

    OpenAIRE

    Matthew Leone; Robert G. Tian

    2009-01-01

    Problem statement: Student retention becomes one of the most significant issues that administrators of colleges and universities must deal with in todays highly competitive market. Approach: In fact retaining a student is fundamental to the ability of an institution to carry out its mission. A high rate of attrition is not only a fiscal problem for schools, but a symbolic failure of an institution to achieve its purpose. Results: There are many ways to keep students retain at the same college...

  14. Maximizing Female Retention In the Navy

    Science.gov (United States)

    2014-03-01

    GUARD guaranteed assignment retention detailing JAG judge advocate general corps JAMRS joint advertising market research and studies LT lieutenant...Secretary of Defense, Personnel and Readiness, 2011). Furthermore, women are half as likely to continue to serve according to the Joint Advertising ... stereotypes will occur, thus leading to better intergroup relations (Tolbert et al., 1995). Critical mass is related to social contact theory in that

  15. 300 Area Building Retention Evaluation Mitigation Plan

    Energy Technology Data Exchange (ETDEWEB)

    D. J. McBride

    2007-07-03

    Evaluate the long-term retention of several facilities associated with the PNNL Capability Replacement Laboratory and other Hanfor mission needs. WCH prepared a mitigation plan for three scenarios with different release dates for specific buildings. The evaluations present a proposed plan for providing utility services to retained facilities in support of a long-term (+20 year) lifespan in addition to temporary services to buildings with specified delayed release dates.

  16. The Combinatorial Retention Auction Mechanism (CRAM)

    OpenAIRE

    Coughlan, Peter; Gates, William (Bill); Myung, Noah

    2013-01-01

    Approved for public release; distribution is unlimited. Revised version We propose a reverse uniform price auction called Combinatorial Retention Auction Mechanism (CRAM) that integrates both monetary and non-monetary incentives (NMIs). CRAM computes the cash bonus and NMIs to a single cost parameter, retains the lowest cost employees and provides them with compensation equal to the cost of the first excluded employee. CRAM is dominant strategy incentive compatible. We provide optimal b...

  17. POSSIBLE RECESSION CURVE APPLICATIONS FOR RETENTION EVALUATION

    Directory of Open Access Journals (Sweden)

    Daniel Liberacki

    2015-11-01

    Full Text Available The objective of the article was to present possible applications of recession flow curve in a small lowland watershed retention discharge size evaluation. The examined woodland micro catchment area of 0.52 sq km is located in Puszcza Zielonka in central Wielkopolska. The Hutka catchment is typically woody with high retention abilities. The catchment of the Hutka watercourse is forested in 89%, the other 11% is covered by swamps and wasteland. The predominant sites are fresh mixed coniferous forest (BMśw, fresh coniferous forest (Bśw and alder carr forest (Ol. Landscape in catchment is characterized by a large number of interior depressions, filled partly with rainwater or peatbogs, with poorly developed natural drainage. The watercourses do not exceed 1 km in length, the mean width is approx. 0.5 m, while mean depth ranges from 0.2 to 0.3 m. During hydrological research conducted in 1997/1998–1999/2000, 35 major (characteristic raised water stages were observed in Hutka after substantial precipitation. The recession curve dating from 18–24 September 2000 has the α and n rates nearest to average. Comparing the model curve and the curve created by observing watercourse flow, one can notice their resemblance and that they have similar ordinate values as well as shape. In the case of other recession curves, the maximum differences of ordinate values are also about 0.1–0.2 l/s/km2. The measuured α and n rates do not reveal any regularities. There are no significant statistical Horton model parameter (for recession flow curves dependencies between α and n and e.g. initial flows (Qo or the whole period of high water waves (Qp. Consequently, calculated relation between these parameters is only an approximation for the general evaluation of the retention discharge in the catchment area towards retention with flow function.

  18. Evapotranspiration units in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent parts of Nevada and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Accurate estimates of ground-water discharge are crucial in the development of a water budget for the Basin and Range Carbonate-rock Aquifer System (BARCAS) study...

  19. Geospatial Data Used in Water-Level and Land-Subsidence Studies in the Mojave River and Morongo Groundwater Basins for 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — During 2006, the U.S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and Morongo ground-water basins....

  20. Utilizing Gravity Methods for Regional Studies in Basin Delineation: Case Study at Jornada del Muerto basin, New Mexico

    Science.gov (United States)

    Villalobos, J. I.

    2005-12-01

    The modeling of basin structures is an important step in the development of plans and policies for ground water management. To facilitate in the analysis of large scale regional structures, gravity data is implemented to examine the overall structural trend of the region. The gravitational attraction of structures in the upper mantle and crust provide vital information about the possible structure and composition of a region. Improved availability of gravity data via internet has promoted extensive construction and interpretation of gravity maps in the analysis of sub-surface structural anomalies. The utilization of gravity data appears to be particularly worthwhile because it is a non-invasive and inexpensive means of addressing the subsurface tectonic framework of large scale regions. In this paper, the author intends to illustrate 1) acquisition of gravity data and its processing; 2) interpretation of gravity data; and 3) sources of uncertainty and errors by using a case study of the Jornada del Muerto basin in South-Central New Mexico where integrated gravity data inferred several faults, sub-basins and thickness variations within the basins structure. The author also explores the integration of gravity method with other geophysical methods to further refine the delineation of basins.

  1. Coding Issues in Grounded Theory

    Science.gov (United States)

    Moghaddam, Alireza

    2006-01-01

    This paper discusses grounded theory as one of the qualitative research designs. It describes how grounded theory generates from data. Three phases of grounded theory--open coding, axial coding, and selective coding--are discussed, along with some of the issues which are the source of debate among grounded theorists, especially between its…

  2. Coding Issues in Grounded Theory

    Science.gov (United States)

    Moghaddam, Alireza

    2006-01-01

    This paper discusses grounded theory as one of the qualitative research designs. It describes how grounded theory generates from data. Three phases of grounded theory--open coding, axial coding, and selective coding--are discussed, along with some of the issues which are the source of debate among grounded theorists, especially between its…

  3. Improved motor sequence retention by motionless listening.

    Science.gov (United States)

    Lahav, Amir; Katz, Tal; Chess, Roxanne; Saltzman, Elliot

    2013-05-01

    This study examined the effect of listening to a newly learned musical piece on subsequent motor retention of the piece. Thirty-six non-musicians were trained to play an unfamiliar melody on a piano keyboard. Next, they were randomly assigned to participate in three follow-up listening sessions over 1 week. Subjects who, during their listening sessions, listened to the same initial piece showed significant improvements in motor memory and retention of the piece despite the absence of physical practice. These improvements included increased pitch accuracy, time accuracy, and dynamic intensity of key pressing. Similar improvements, though to a lesser degree, were observed in subjects who, during their listening sessions, were distracted by another task. Control subjects, who after learning the piece had listened to nonmusical sounds, showed impaired motoric retention of the piece at 1 week from the initial acquisition day. These results imply that motor sequences can be established in motor memory without direct access to motor-related information. In addition, the study revealed that the listening-induced improvements did not generalize to the learning of a new musical piece composed of the same notes as the initial piece learned, limiting the effects to musical motor sequences that are already part of the individual's motor repertoire.

  4. Determinants of feedback retention in soccer players

    Directory of Open Access Journals (Sweden)

    Januário Nuno

    2016-06-01

    Full Text Available This study analyzed soccer players’ retention of coaches’ feedback during training sessions. We intended to determine if the retention of information was influenced by the athletes’ personal characteristic (age, gender and the sports level, the quantity of information included in coach’s feedback (the number of ideas and redundancy, athletes’ perception of the relevance of the feedback information and athletes’ motivation as well as the attention level. The study that was conducted over the course of 18 sessions of soccer practice, involved 12 coaches (8 males, 4 females and 342 athletes (246 males, 96 females, aged between 10 and 18 years old. All coach and athlete interventions were transposed to a written protocol and submitted to content analysis. Descriptive statistics and multiple linear regression were calculated. The results showed that a substantial part of the information was not retained by the athletes; in 65.5% of cases, athletes experienced difficulty in completely reproducing the ideas of the coaches and, on average, the value of feedback retention was 57.0%. Six variables with a statistically significant value were found: gender, the athletes’ sports level, redundancy, the number of transmitted ideas, athletes’ perception of the relevance of the feedback information and the athletes’ motivation level.

  5. Retention of perceptual generalization of fear extinction.

    Science.gov (United States)

    Pappens, Meike; Schroijen, Mathias; Van den Bergh, Omer; Van Diest, Ilse

    2015-12-01

    Fear reduction obtained during a fear extinction procedure can generalize from the extinction stimulus to other perceptually similar stimuli. Perceptual generalization of fear extinction typically follows a perceptual gradient, with increasing levels of fear reduction the more a stimulus resembles the extinction stimulus. The current study aimed to investigate whether perceptual generalization of fear extinction can be observed also after a retention interval of 24h. Fear was acquired to three geometrical figures of different sizes (CS(+), CS1(+) and CS2(+)) by consistently pairing them with a short-lasting suffocation experience (US). Three other geometrical figures that were never followed by the US served as control stimuli (CS(-), CS1(-), CS2(-)). Next, only the CS(+) was extinguished by presenting it in the absence of the US. One day later, fear responses to all stimuli were assessed without any US-presentation. Outcome measures included startle blink EMG, skin conductance, US expectancy, respiratory rate and tidal volume. On day 2 spontaneous recovery of fear was observed in US expectancy and tidal volume, but not in the other outcomes. Evidence for the retention of fear extinction generalization was present in US expectancy and skin conductance, but a perceptual gradient in the retention of generalized fear extinction could not be observed.

  6. Leadership training to improve nurse retention.

    Science.gov (United States)

    Wallis, Allan; Kennedy, Kathy I

    2013-05-01

    This paper discusses findings from an evaluation of a training programme designed to promote collaborative, team-based approaches to improve nurse retention within health care organizations. A year-long leadership training programme was designed and implemented to develop effective teams that could address retention challenges in a diverse set of organizations in Colorado ranging from public, private to non-profit. An evaluation, based on a combination of participant observation, group interviews, and the use of standardized tests measuring individual emotional intelligence and team dynamics was conducted to assess the effectiveness of the training programme. What role do the emotional intelligence of individual members and organizational culture play in team effectiveness? Out of five teams participating in the training programme, two performed exceptionally well, one experienced moderate success and two encountered significant problems. Team dynamics were significantly affected by the emotional intelligence of key members holding supervisory positions and by the existing culture and structure of the participating organizations. Team approaches to retention hold promise but require careful development and are most likely to work where organizations have a collaborative problem-solving environment. © 2012 Blackwell Publishing Ltd.

  7. Measuring Predictors of Student Retention Rates

    Directory of Open Access Journals (Sweden)

    Allen L. Webster

    2011-01-01

    Full Text Available Problem statement: Colleges and universities place more emphasis on student retention rates than ever before. Educational institutions are intensifying efforts to discourage student departure and preserve their established student base. Economic pressures that bear heavily on academic administration make such efforts highly critical for institutional success. Research on this vital issue is especially important due to the vigorous competition among college and universities to recruit students and maintain enrollment levels. This pressure is heightened by the fact that it costs more to attract students than it does to retain them. Approach: This study uses institutional-based data to examine student attrition levels with the intent to identify their chief determinants and provide the foundation for post-secondary institutions to explore the viability of their own retention programs. Discriminant analysis is used to distinguish those schools that exhibit a higher degree of success in retaining student enrollments from those who suffer higher departure trends. Results: Tuition, student/teacher ratio and the amount of dollar aid offered the students all play substantial roles in encouraging persistence. The acceptance rate and enrollment levels were found to provide less discriminatory power. Conclusion: Students are influenced by the personal attention they receive and the manner in which their chosen institution of higher education caters to their individual needs, problems and concerns. Colleges and universities concerned with student retention would benefit from concentrated programs designed to provide individualized student services that address immediate student needs.

  8. High efficiency diffusion molecular retention tumor targeting.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Here we introduce diffusion molecular retention (DMR tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding and RAD (control probes were synthesized bearing DOTA (for (111 In(3+, a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or i.v. methods was assessed by surface fluorescence, biodistribution of [(111In] RGD and [(111In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [(111In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by i.v.. The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide, which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters for radiotherapy, or the delivery of photosensitizers to tumors accessible to light.

  9. Measuring the value of customer retention

    Energy Technology Data Exchange (ETDEWEB)

    Monts, K.; Bonevac, B.; Lauer, J.; Tessema, D.

    1997-05-01

    Competition will require changes in how market research is conducted and how customers are pursued. The question remains: How does one approach customer retention in a way that provides meaningful guidelines? The conventional wisdom is that {open_quotes}the business of business is selling.{close_quotes} There is some truth to this, but the key question today is: What bearing does this have on how to run a business in a competitive environment? A recent article in the Harvard Business Review noted that, {open_quotes}Increasingly, companies are less focused on selling products and more interested in keeping customers.{close_quotes} Indeed, some observers have posited a natural societal evolutionary trend toward a shift of emphasis toward customer retention vis-a-vis customer acquisition, as a consequence of the primary marketing communication technology shifting from {open_quotes}broadcast{close_quotes} (where messages are sent out to inchoate masses) to {open_quotes}interactive{close_quotes} (where relationships are cultivated with precisely defined market niches or individual customers). The business of growing a business, then, can be framed as a matter of getting customers and keeping them so as to grow the value of the customer base to its fullest potential. In these terms, setting a marketing budget becomes the task of balancing what is spent on customer acquisition with what is spent on retention.

  10. A proposed ground-water quality monitoring network for Idaho

    Science.gov (United States)

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  11. Characteristics of soil water retention curve at macro-scale

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Scale adaptable hydrological models have attracted more and more attentions in the hydrological modeling research community, and the constitutive relationship at the macro-scale is one of the most important issues, upon which there are not enough research activities yet. Taking the constitutive relationships of soil water movement--soil water retention curve (SWRC) as an example, this study extends the definition of SWRC at the micro-scale to that at the macro-scale, and aided by Monte Carlo method we demonstrate that soil property and the spatial distribution of soil moisture will affect the features of SWRC greatly. Furthermore, we assume that the spatial distribution of soil moisture is the result of self-organization of climate, soil, ground water and soil water movement under the specific boundary conditions, and we also carry out numerical experiments of soil water movement at the vertical direction in order to explore the relationship between SWRC at the macro-scale and the combinations of climate, soil, and groundwater. The results show that SWRCs at the macro-scale and micro-scale presents totally different features, e.g., the essential hysteresis phenomenon which is exaggerated with increasing aridity index and rising groundwater table. Soil property plays an important role in the shape of SWRC which will even lead to a rectangular shape under drier conditions, and power function form of SWRC widely adopted in hydrological model might be revised for most situations at the macro-scale.

  12. Mechanics of Ship Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1996-01-01

    In these notes first a simplified mathematical model is presented for analysis of ship hull loading due to grounding on relatively hard and plane sand, clay or rock sea bottoms. In a second section a more rational calculation model is described for the sea bed soil reaction forces on the sea bottom...

  13. Grounding Anger Management

    Directory of Open Access Journals (Sweden)

    Odis E. Simmons, PhD

    2017-06-01

    Full Text Available One of the things that drew me to grounded theory from the beginning was Glaser and Strauss’ assertion in The Discovery of Grounded Theory that it was useful as a “theoretical foothold” for practical applications (p. 268. From this, when I was a Ph.D student studying under Glaser and Strauss in the early 1970s, I devised a GT based approach to action I later came to call “grounded action.” In this short paper I’ll present a very brief sketch of an anger management program I developed in 1992, using grounded action. I began my research by attending a two-day anger management training workshop designed for training professionals in the most commonly used anger management model. Like other intervention programs I had seen, this model took a psychologizing and pathologizing approach to the issue. Following this, I sat through the full course of an anger management program that used this model, observing the reactions of the participants and the approach of the facilitator. Following each session I conducted open-ended interviews with most of the participants, either individually or in groups of two or three. I had also done previous research in counseling and social work contexts that turned out to be very relevant to an anger management program design.

  14. Grounding in Instant Messaging

    Science.gov (United States)

    Fox Tree, Jean E.; Mayer, Sarah A.; Betts, Teresa E.

    2011-01-01

    In two experiments, we investigated predictions of the "collaborative theory of language use" (Clark, 1996) as applied to instant messaging (IM). This theory describes how the presence and absence of different grounding constraints causes people to interact differently across different communicative media (Clark & Brennan, 1991). In Study 1, we…

  15. Informed Grounded Theory

    Science.gov (United States)

    Thornberg, Robert

    2012-01-01

    There is a widespread idea that in grounded theory (GT) research, the researcher has to delay the literature review until the end of the analysis to avoid contamination--a dictum that might turn educational researchers away from GT. Nevertheless, in this article the author (a) problematizes the dictum of delaying a literature review in classic…

  16. TARDEC Ground Vehicle Robotics

    Science.gov (United States)

    2013-05-30

    UNCLASSIFIED UNCLASSIFIED 10 Optionally Manned Vehicles OMV can be driven by a soldier; OMV can drive a soldier; OMV can be remotely operated; OMV can be...all missions for OMV (i.e. shared driving) (i.e. remotely operated) 2 m od al iti es Mission Payloads UNCLASSIFIED UNCLASSIFIED 11 Ground

  17. Intracontinental basins and strong earthquakes

    Institute of Scientific and Technical Information of China (English)

    邓起东; 高孟潭; 赵新平; 吴建春

    2004-01-01

    The September 17, 1303 Hongtong M=8 earthquake occurred in Linfen basin of Shanxi down-faulted basin zone. It is the first recorded M=8 earthquake since the Chinese historical seismic records had started and is a great earthquake occurring in the active intracontinental basin. We had held a Meeting of the 700th Anniversary of the 1303 Hongtong M=8 Earthquake in Shanxi and a Symposium on Intracontinental Basins and Strong Earthquakes in Taiyuan City of Shanxi Province on September 17~18, 2003. The articles presented on the symposium discussed the relationships between active intracontinental basins of different properties, developed in different regions, including tensional graben and semi-graben basins in tensile tectonic regions, compression-depression basins and foreland basins in compressive tectonic regions and pull-apart basins in strike-slip tectonic zones, and strong earthquakes in China. In this article we make a brief summary of some problems. The articles published in this special issue are a part of the articles presented on the symposium.

  18. Earthquake Source and Ground Motion Characteristics of Great Kanto Earthquakes

    Science.gov (United States)

    Somerville, P. G.; Sato, T.; Wald, D. J.; Graves, R. W.; Dan, K.

    2003-12-01

    This paper describes the derivation of a rupture model of the 1923 Kanto earthquake, and the estimation of ground motions that occurred during that earthquake and that might occur during future great Kanto earthquakes. The rupture model was derived from the joint inversion of geodetic and teleseismic data. The leveling and triangulation data place strong constraints on the distribution and orientation of slip on the fault. The most concentrated slip is in the shallow central and western part of the fault. The location of the hypocenter on the western part of the fault gives rise to strong near fault rupture directivity effects, which are largest toward the east in the Boso Peninsula. To estimate the ground motions caused by this earthquake, we first calibrated 1D and 3D wave propagation path effects using the Odawara earthquake of 5 August 1990 (M 5.1), the first earthquake larger than M 5 in the last 60 years near the hypocenter of the 1923 Kanto earthquake. The simulation of the moderate-sized Odawara earthquake demonstrates that the 3D velocity model works quite well at reproducing the recorded long-period (T > 3.33 sec) strong motions, including basin-generated surface waves, for a number of sites located throughout the Kanto basin region. Using this validated 3D model along with the rupture model described above, we simulated the long-period (T > 4 sec) ground motions in this region for the 1923 Kanto earthquake. The largest ground motions occur east of the epicenter along the central and southern part of the Boso Peninsula. These large motions arise from strong rupture directivity effects and are comprised of relatively simple, source-controlled pulses with a dominant period of about 10 sec. Other rupture models and hypocenter locations generally produce smaller long period ground motion levels in this region that those of the 1923 event. North of the epicentral region, in the Tokyo area, 3D basin-generated phases are quite significant, and these phases

  19. Simulated ground motion in Santa Clara Valley, California, and vicinity from M≥6.7 scenario earthquakes

    Science.gov (United States)

    Harmsen, Stephen C.; Hartzell, Stephen

    2008-01-01

    Models of the Santa Clara Valley (SCV) 3D velocity structure and 3D finite-difference software are used to predict ground motions from scenario earthquakes on the San Andreas (SAF), Monte Vista/Shannon, South Hayward, and Calaveras faults. Twenty different scenario ruptures are considered that explore different source models with alternative hypocenters, fault dimensions, and rupture velocities and three different velocity models. Ground motion from the full wave field up to 1 Hz is exhibited as maps of peak horizontal velocity and pseudospectral acceleration at periods of 1, 3, and 5 sec. Basin edge effects and amplification in sedimentary basins of the SCV are observed that exhibit effects from shallow sediments with relatively low shear-wave velocity (330 m/sec). Scenario earthquakes have been simulated for events with the following magnitudes: (1) M 6.8–7.4 Calaveras sources, (2) M 6.7–6.9 South Hayward sources, (3) M 6.7 Monte Vista/Shannon sources, and (4) M 7.1–7.2 Peninsula segment of the SAF sources. Ground motions are strongly influenced by source parameters such as rupture velocity, rise time, maximum depth of rupture, hypocenter, and source directivity. Cenozoic basins also exert a strong influence on ground motion. For example, the Evergreen Basin on the northeastern side of the SCV is especially responsive to 3–5-sec energy from most scenario earthquakes. The Cupertino Basin on the southwestern edge of the SCV tends to be highly excited by many Peninsula and Monte Vista fault scenarios. Sites over the interior of the Evergreen Basin can have long-duration coda that reflect the trapping of seismic energy within this basin. Plausible scenarios produce predominantly 5-sec wave trains with greater than 30 cm/sec sustained ground-motion amplitude with greater than 30 sec duration within the Evergreen Basin.

  20. Seismic amplification within the Seattle Basin, Washington State: Insights from SHIPS seismic tomography experiments

    Science.gov (United States)

    Snelson, C.M.; Brocher, T.M.; Miller, K.C.; Pratt, T.L.; Trehu, A.M.

    2007-01-01

    Recent observations indicate that the Seattle sedimentary basin, underlying Seattle and other urban centers in the Puget Lowland, Washington, amplifies long-period (1-5 sec) weak ground motions by factors of 10 or more. We computed east-trending P- and S-wave velocity models across the Seattle basin from Seismic Hazard Investigations of Puget Sound (SHIPS) experiments to better characterize the seismic hazard the basin poses. The 3D tomographic models, which resolve features to a depth of 10 km, for the first time define the P- and S-wave velocity structure of the eastern end of the basin. The basin, which contains sedimentary rocks of Eocene to Holocene, is broadly symmetric in east-west section and reaches a maximum thickness of 6 km along our profile beneath north Seattle. A comparison of our velocity model with coincident amplification curves for weak ground motions produced by the 1999 Chi-Chi earthquake suggests that the distribution of Quaternary deposits and reduced velocity gradients in the upper part of the basement east of Seattle have significance in forecasting variations in seismic-wave amplification across the basin. Specifically, eastward increases in the amplification of 0.2- to 5-Hz energy correlate with locally thicker unconsolidated deposits and a change from Crescent Formation basement to pre-Tertiary Cascadia basement. These models define the extent of the Seattle basin, the Seattle fault, and the geometry of the basement contact, giving insight into the tectonic evolution of the Seattle basin and its influence on ground shaking.

  1. Geohydrology of the San Agustin Basin, Alamosa Creek Basin upstream from Monticello Box, and upper Gila Basin in parts of Catron, Socorro, and Sierra counties, New Mexico

    Science.gov (United States)

    Myers, R.G.; Everheart, J.T.; Wilson, C.A.

    1994-01-01

    The San Agustin Basin, the Alamosa Creek Basin upstream from Monticello Box, and the upper Gila Basin are located in parts of Catron, Socorro, and Sierra Counties in west-central New Mexico. Four major aquifers are within the study area: (1) the San Agustin bolson-fill aquifer; (2) the Datil aquifer; (3) the shallow upland aquifers; and (4) the Alamosa Creek shallow aquifer. Two minor aquifers, the Baca Formation at the northern edge of the San Agustin Basin and a basalt to basaltic andesite unit overlying the Datil Group, yield some water to wells. Sixty-three vertical electrical- resistivity soundings were used to estimate the depth to bedrock and the saline/freshwater interface in the San Agustin bolson-fill aquifer. The dissolved-solids concentration of ground-water samples ranged from 74 to 23,500 milligrams per liter. The dominant cations varied; the dominant anion of freshwater generally was bicarbonate. Point-of-discharge temperatures of well or spring water that exceed 21 degrees Celsius are associated with faults in the areas of shallow or exposed bedrock. The dissolved-solids concentration of this warm water ranged from 120 to 1,200 milligrams per liter.

  2. Thermokarst lakes, drainage, and drained basins

    Science.gov (United States)

    Grosse, G.; Jones, B.; Arp, C.; Shroder, John F.

    2013-01-01

    Thermokarst lakes and drained lake basins are widespread in Arctic and sub-Arctic permafrost lowlands with ice-rich sediments. Thermokarst lake formation is a dominant mode of permafrost degradation and is linked to surface disturbance, subsequent melting of ground ice, surface subsidence, water impoundment, and positive feedbacks between lake growth and permafrost thaw, whereas lake drainage generally results in local permafrost aggradation. Thermokarst lakes characteristically have unique limnological, morphological, and biogeochemical characteristics that are closely tied to cold-climate conditions and permafrost properties. Thermokarst lakes also have a tendency toward complete or partial drainage through permafrost degradation and erosion. Thermokarst lake dynamics strongly affect the development of landscape geomorphology, hydrology, and the habitat characteristic of permafrost lowlands.

  3. Basins of Attraction for Generative Justice

    Science.gov (United States)

    Eglash, Ron; Garvey, Colin

    It has long been known that dynamic systems typically tend towards some state - an "attractor" - into which they finally settle. The introduction of chaos theory has modified our understanding of these attractors: we no longer think of the final "resting state" as necessarily being at rest. In this essay we consider the attractors of social ecologies: the networks of people, technologies and natural resources that makeup our built environments. Following the work of "communitarians" we posit that basins of attraction could be created for social ecologies that foster both environmental sustainability and social justice. We refer to this confluence as "generative justice"; a phrase which references both the "bottom-up", self-generating source of its adaptive meta stability, as well as its grounding in the ethics of egalitarian political theory.

  4. East Central Uplift Belt of Junggar Basin

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    @@ Mosuowandong ( Z3 ) and Dongdaohaizi (Z4) are two bidding blocks located in the east part of central uplift Belt, the hinterland of Junggar Basin. Xinjiang Uygur Autonomous Region. It totally covers an area of 8 100km2. Topographically, the two blocks are quite gentle with elevation of 380-400 m on average. The north part is desert and the south area is good for farming. There are three ephemeral streams flowing across the desert from south to north. The ground water is buried at the depth ranging from 6 to 8 m. It belongs to continental climate with the annually averaged precipitation of 80 mm. The traffic is rather convenient in the south part of both blocks. There are several sand-paved roads and two asphalt roads connected with the highway from Karamay to Urumqi City.

  5. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska

    Science.gov (United States)

    Liu, Lin; Schaefer, Kevin; Gusmeroli, Alessio; Grosse, Guido; Jones, Benjamin M.; Zhang, Tinjun; Parsekian, Andrew; Zebker, Howard

    2014-01-01

    Drained thermokarst lake basins (DTLBs) are ubiquitous landforms on Arctic tundra lowland. Their dynamic states are seldom investigated, despite their importance for landscape stability, hydrology, nutrient fluxes, and carbon cycling. Here we report results based on high-resolution Interferometric Synthetic Aperture Radar (InSAR) measurements using space-borne data for a study area located on the North Slope of Alaska near Prudhoe Bay, where we focus on the seasonal thaw settlement within DTLBs, averaged between 2006 and 2010. The majority (14) of the 18 DTLBs in the study area exhibited seasonal thaw settlement of 3–4 cm. However, four of the DTLBs examined exceeded 4 cm of thaw settlement, with one basin experiencing up to 12 cm. Combining the InSAR observations with the in situ active layer thickness measured using ground penetrating radar and mechanical probing, we calculated thaw strain, an index of thaw settlement strength along a transect across the basin that underwent large thaw settlement. We found thaw strains of 10–35% at the basin center, suggesting the seasonal melting of ground ice as a possible mechanism for the large settlement. These findings emphasize the dynamic nature of permafrost landforms, demonstrate the capability of the InSAR technique to remotely monitor surface deformation of individual DTLBs, and illustrate the combination of ground-based and remote sensing observations to estimate thaw strain. Our study highlights the need for better description of the spatial heterogeneity of landscape-scale processes for regional assessment of surface dynamics on Arctic coastal lowlands.

  6. GRACE captures basin mass dynamic changes in China based on a multi-basin inversion method

    Science.gov (United States)

    Yi, Shuang; Wang, Qiuyu; Sun, Wenke

    2016-04-01

    Complex landform, miscellaneous climate and enormous population have enriched China with geophysical phenomena ranging from water depletion in the underground to glaciers retreat on the high mountains and have aroused large scientific interests. This paper, utilizing gravity observations 2003-2014 from the Gravity Recovery and Climate Experiment (GRACE), intends to make a comprehensive estimation of mass status in 16 drainage basins in the whole region. We proposed a multi-basin inversion method, which is featured by resistance to the stripe noise and ability to alleviate signal attenuation due to truncation and smoothing of GRACE data. The results show both positive and negative trends: there is a tremendous mass accumulation spreading from the Tibetan plateau (12.2 ± 0.6 Gt/yr) to the Yangtze River (7.6 ± 1.3 Gt/yr), and further to the southeast coastal areas, which is suggested to involve an increase in the ground water storage, lake and reservoir water volume and likely materials flowed in by tectonic process; a mass loss is occurring in Huang-Huai-Hai-Liao River Basin (-10.5 ± 0.8 Gt/yr), as well as the Brahmaputra-Nujiang-Lancang River Basin (-15.0 ± 0.9 Gt/yr) and Tienshan Mountain (-4.1 ± 0.3 Gt/yr), which is a result of groundwater pumping and glacier melting. The groundwater depletion area is well consistent with the distribution of land subsidence in North China. In the end, we find intensified precipitation can alter the local water supply and GRACE is proficient to capture this dynamics, which could be instructive for the South-to-North Water Diversion - one China's giant hydrologic project.

  7. Infrasonic induced ground motions

    Science.gov (United States)

    Lin, Ting-Li

    On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body

  8. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    : Belcher, Wayne R.

    2004-01-01

    provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional ground-water flow system. Ground-water flow in the Death Valley region is composed of several interconnected, complex ground-water flow systems. Ground-water flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional ground-water flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and evapotranspiration (ET) are the dominant natural ground-water discharge processes. Ground water also is withdrawn for agricultural, commercial, and domestic uses. Ground-water flow in the DVRFS was simulated using MODFLOW-2000, a 3D finite-difference modular ground-water flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 m on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins, also simulated by drains. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient model gener

  9. IBIEM modelling of the amplification of seismic waves by a three-dimensional layered alluvial basin

    Science.gov (United States)

    Liu, Zhongxian; Liang, Jianwen; Huang, Yihe; Liu, Lei

    2016-02-01

    We develop an indirect boundary integral equation method (IBIEM) to solve the scattering of seismic waves by a 3-D layered alluvial basin. We adopt the dynamic Green's functions for concentrated loads for a layered half-space derived from the modified stiffness method. This new algorithm of Green's function can solve the near-source response efficiently and accurately, and also facilitates the meshless implementation of the IBIEM. The numerical accuracy and stability of the IBIEM are tested for a homogeneous, hemispherical alluvial basin, and a two-layered model. Based on the IBIEM, the effects of several important parameters, such as the incident frequency, the angle of incidence and the properties of the alluvial layers are investigated for incident plane P and SV waves, respectively. The results show that the local amplification effects of a 3-D layered alluvial basin on the ground motion are strikingly significant, and that the spatial variation of the displacement response is drastic. We also find that the thickness of the near-surface low-velocity alluvial layer has a pronounced influence on the frequency spectrum of ground motion within the basin. As for the thick low-velocity layer, the amplification effect on the displacement amplitude spectrum appears in a wide range of frequencies, with more resonant models in the same frequency range. As for the thin low-velocity layer, in contrast, the amplification effect is close to the homogeneous case but becomes more significant for high-frequency waves. The displacement amplification for a basin with a soft intermediate layer is larger than that of the homogeneous basin for the lower frequencies, but seems to be weakened for high-frequency waves. Additionally, the damping ratio of the alluvial layer can substantially reduce the displacement amplitude in the basin, especially in the range of resonant frequencies. Our results provide a better understanding of the 3-D wave focusing and basin-edge effect within 3-D

  10. Decentralized Ground Staff Scheduling

    DEFF Research Database (Denmark)

    Sørensen, M. D.; Clausen, Jens

    2002-01-01

    Typically, ground staff scheduling is centrally planned for each terminal in an airport. The advantage of this is that the staff is efficiently utilized, but a disadvantage is that staff spends considerable time walking between stands. In this paper a decentralized approach for ground staff...... scheduling is investigated. The airport terminal is divided into zones, where each zone consists of a set of stands geographically next to each other. Staff is assigned to work in only one zone and the staff scheduling is planned decentralized for each zone. The advantage of this approach is that the staff...... work in a smaller area of the terminal and thus spends less time walking between stands. When planning decentralized the allocation of stands to flights influences the staff scheduling since the workload in a zone depends on which flights are allocated to stands in the zone. Hence solving the problem...

  11. Ibis ground calibration

    Energy Technology Data Exchange (ETDEWEB)

    Bird, A.J.; Barlow, E.J.; Tikkanen, T. [Southampton Univ., School of Physics and Astronomy (United Kingdom); Bazzano, A.; Del Santo, M.; Ubertini, P. [Istituto di Astrofisica Spaziale e Fisica Cosmica - IASF/CNR, Roma (Italy); Blondel, C.; Laurent, P.; Lebrun, F. [CEA Saclay - Sap, 91 - Gif sur Yvette (France); Di Cocco, G.; Malaguti, E. [Istituto di Astrofisica Spaziale e Fisica-Bologna - IASF/CNR (Italy); Gabriele, M.; La Rosa, G.; Segreto, A. [Istituto di Astrofisica Spaziale e Fisica- IASF/CNR, Palermo (Italy); Quadrini, E. [Istituto di Astrofisica Spaziale e Fisica-Cosmica, EASF/CNR, Milano (Italy); Volkmer, R. [Institut fur Astronomie und Astrophysik, Tubingen (Germany)

    2003-11-01

    We present an overview of results obtained from IBIS ground calibrations. The spectral and spatial characteristics of the detector planes and surrounding passive materials have been determined through a series of calibration campaigns. Measurements of pixel gain, energy resolution, detection uniformity, efficiency and imaging capability are presented. The key results obtained from the ground calibration have been: - optimization of the instrument tunable parameters, - determination of energy linearity for all detection modes, - determination of energy resolution as a function of energy through the range 20 keV - 3 MeV, - demonstration of imaging capability in each mode, - measurement of intrinsic detector non-uniformity and understanding of the effects of passive materials surrounding the detector plane, and - discovery (and closure) of various leakage paths through the passive shielding system.

  12. Monitoring micropollutants in the Swist river basin.

    Science.gov (United States)

    Christoffels, Ekkehard; Brunsch, Andrea; Wunderlich-Pfeiffer, Jens; Mertens, Franz Michael

    2016-11-01

    Micropollutant pathways were studied for the Swist river basin (Western Germany). The aim was to verify the effectiveness of a monitoring approach to detect micropollutants entering the river. In a separate sewer system, water was frequently found to be contaminated with micropollutants. Improper connections of sewage canals to the stormwater network seemed to be the cause of pollution. Wastewater treatment plants (WWTPs) exerted the largest influence on micropollutants for the receiving river. During a flu outbreak, antibiotics in the Swist stemming from WWTPs increased remarkably. Elevated levels of pharmaceuticals were measured in discharges from a combined sewer overflow (CSO). The study showed that the pharmaceutical load of a CSO was significantly reduced by advanced treatment with a retention soil filter. Painkillers, an anticonvulsant and beta blockers were the most often detected pharmaceuticals in the sewage of urban areas. Herbicides, flame retardants and industrial compounds were also observed frequently. On cropland, Chloridazon and Terbuthylazine compounds were often found in landscape runoff. Fungicides and insecticides were the most frequent positive findings in runoff from orchards. The paper shows that a coherent approach to collecting valid information regarding micropollutants and to addressing relevant pathways as a basis for appropriate management strategies could be established.

  13. Ground-motion modeling of Hayward fault scenario earthquakes, part II: Simulation of long-period and broadband ground motions

    Science.gov (United States)

    Aagaard, Brad T.; Graves, Robert W.; Rodgers, Arthur; Brocher, Thomas M.; Simpson, Robert W.; Dreger, Douglas; Petersson, N. Anders; Larsen, Shawn C.; Ma, Shuo; Jachens, Robert C.

    2010-01-01

    We simulate long-period (T>1.0–2.0 s) and broadband (T>0.1 s) ground motions for 39 scenario earthquakes (Mw 6.7–7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault, we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions, compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area, with about 50% of the urban area experiencing modified Mercalli intensity VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland earthquake and the 2007 Mw 5.45 Alum Rock earthquake show that the U.S. Geological Survey’s Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area for Hayward fault earthquakes, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions for the suite of scenarios exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute much of this difference to the seismic velocity structure in the San Francisco Bay area and how the NGA models account for basin amplification; the NGA relations may underpredict amplification in shallow sedimentary basins. The simulations also suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by increasing the areal extent of rupture directivity with period.

  14. Multiple Family Groups for Child Behavior Difficulties Retention Among Child Welfare-Involved Caregivers.

    Science.gov (United States)

    Gopalan, Geetha; Fuss, Ashley; Wisdom, Jennifer P

    2015-09-01

    Among children who remain at home with their permanent caregivers following a child welfare investigation, few who manifest emotional and behavioral difficulties actually engage in mental health treatment. The Multiple Family Group service delivery model to reduce childhood disruptive behavior disorders (MFG) has shown promise in engaging child welfare-involved families. This qualitative study examines caregiver perceptions of factors that influence retention in MFGs among child welfare-involved families. Twenty-five predominantly Black and Hispanic adult (ages 26-57) female caregivers with child welfare services involvement participated in individual, in-depth interviews about their experience with MFGs. Transcribed interview data were thematically coded guided by grounded theory methodology. Emergent themes were subsequently organized into a conceptual framework. Within the overarching influence of child welfare services involvement, specific components of MFGs influencing retention included the quality of interaction among group members, group facilitators' attentive approach with caregivers, supports designed to overcome logistical barriers (i.e., child care, transportation expenses, meals), and perceptions of MFG content and activities as fun and helpful. Caregiver factors, including their mental health and personal characteristics, as well as children's behavior, (i.e., observed changes in behavioral difficulties) were also associated with retention. High acceptability suggest utility for implementing MFGs within settings serving child welfare involved families, with additional modifications to tailor to setting and client features.

  15. Multiple Family Groups for Child Behavior Difficulties Retention Among Child Welfare–Involved Caregivers

    Science.gov (United States)

    Gopalan, Geetha; Fuss, Ashley; Wisdom, Jennifer P.

    2013-01-01

    Among children who remain at home with their permanent caregivers following a child welfare investigation, few who manifest emotional and behavioral difficulties actually engage in mental health treatment. The Multiple Family Group service delivery model to reduce childhood disruptive behavior disorders (MFG) has shown promise in engaging child welfare-involved families. This qualitative study examines caregiver perceptions of factors that influence retention in MFGs among child welfare-involved families. Methods Twenty-five predominantly Black and Hispanic adult (ages 26–57) female caregivers with child welfare services involvement participated in individual, in-depth interviews about their experience with MFGs. Transcribed interview data were thematically coded guided by grounded theory methodology. Emergent themes were subsequently organized into a conceptual framework. Results Within the overarching influence of child welfare services involvement, specific components of MFGs influencing retention included the quality of interaction among group members, group facilitators’ attentive approach with caregivers, supports designed to overcome logistical barriers (i.e., child care, transportation expenses, meals), and perceptions of MFG content and activities as fun and helpful. Caregiver factors, including their mental health and personal characteristics, as well as children’s behavior, (i.e., observed changes in behavioral difficulties) were also associated with retention. Conclusions High acceptability suggest utility for implementing MFGs within settings serving child welfare involved families, with additional modifications to tailor to setting and client features. PMID:26527856

  16. Mechanics of Ship Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1996-01-01

    In these notes first a simplified mathematical model is presented for analysis of ship hull loading due to grounding on relatively hard and plane sand, clay or rock sea bottoms. In a second section a more rational calculation model is described for the sea bed soil reaction forces on the sea bottom....... Finally, overall hull failure is considered first applying a quasistatic analysis model and thereafter a full dynamic model....

  17. Student retention in athletic training education programs.

    Science.gov (United States)

    Dodge, Thomas M; Mitchell, Murray F; Mensch, James M

    2009-01-01

    The success of any academic program, including athletic training, depends upon attracting and keeping quality students. The nature of persistent students versus students who prematurely leave the athletic training major is not known. Understanding the profiles of athletic training students who persist or leave is important. To (1) explore the relationships among the following variables: anticipatory factors, academic integration, clinical integration, social integration, and motivation; (2) determine which of the aforementioned variables discriminate between senior athletic training students and major changers; and (3) identify which variable is the strongest predictor of persistence in athletic training education programs. Descriptive study using a qualitative and quantitative mixed-methods approach. Thirteen athletic training education programs located in District 3 of the National Athletic Trainers' Association. Ninety-four senior-level athletic training students and 31 college students who changed majors from athletic training to another degree option. Data were collected with the Athletic Training Education Program Student Retention Questionnaire (ATEPSRQ). Data from the ATEPSRQ were analyzed via Pearson correlations, multivariate analysis of variance, univariate analysis of variance, and a stepwise discriminant analysis. Open-ended questions were transcribed and analyzed using open, axial, and selective coding procedures. Member checks and peer debriefing techniques ensured trustworthiness of the study. Pearson correlations identified moderate relationships among motivation and clinical integration (r = 0.515, P students. Understanding student retention in athletic training is important for our profession. Results from this study suggest 3 key factors associated with student persistence in athletic training education programs: (1) student motivation, (2) clinical and academic integration, and (3) the presence of a peer-support system. Educators and program

  18. THE DYNAMICS OF WATER RESERVES ON POST MINING GROUNDS

    Directory of Open Access Journals (Sweden)

    Piotr Stachowski

    2014-11-01

    Full Text Available The report shows the results of investigations and analyses on four experimental areas located at the “Kazimierz” quarry (in Pojezierze Kujawskie latitude 52o20’ N, longitude 18o05’ E. The results of the investigations show the dynamics of moisture in the upper layer of post mining grounds are formed under metrological conditions. It shows that the most important dynamic of water retention occurred on the upper cultivated layer of post mining grounds in which there was a moisture reaction to the water precipitation. An unprofitable distribution of precipitation during the vegetation period 2013 caused this water deficit to the plants cultivated on post mining grounds. The longest water deficit (63 days occurred in profiles typical to crop cultivation (average 12 mm. The results of the investigation confirm that post mining grounds should cultivate plants which are resistant to water deficit and which would benefit from the water reserves in the deeper layers of post mining grounds and which have deep roots system, such as lucerne.

  19. Outdoor ground impedance models.

    Science.gov (United States)

    Attenborough, Keith; Bashir, Imran; Taherzadeh, Shahram

    2011-05-01

    Many models for the acoustical properties of rigid-porous media require knowledge of parameter values that are not available for outdoor ground surfaces. The relationship used between tortuosity and porosity for stacked spheres results in five characteristic impedance models that require not more than two adjustable parameters. These models and hard-backed-layer versions are considered further through numerical fitting of 42 short range level difference spectra measured over various ground surfaces. For all but eight sites, slit-pore, phenomenological and variable porosity models yield lower fitting errors than those given by the widely used one-parameter semi-empirical model. Data for 12 of 26 grassland sites and for three beech wood sites are fitted better by hard-backed-layer models. Parameter values obtained by fitting slit-pore and phenomenological models to data for relatively low flow resistivity grounds, such as forest floors, porous asphalt, and gravel, are consistent with values that have been obtained non-acoustically. Three impedance models yield reasonable fits to a narrow band excess attenuation spectrum measured at short range over railway ballast but, if extended reaction is taken into account, the hard-backed-layer version of the slit-pore model gives the most reasonable parameter values.

  20. Estancia Basin dynamic water budget.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Richard P.

    2004-09-01

    The Estancia Basin lies about 30 miles to the east of Albuquerque, NM. It is a closed basin in terms of surface water and is somewhat isolated in terms of groundwater. Historically, the primary natural outlet for both surface water and groundwater has been evaporation from the salt lakes in the southeastern portion of the basin. There are no significant watercourses that flow into this basin and groundwater recharge is minimal. During the 20th Century, agriculture grew to become the major user of groundwater in the basin. Significant declines in groundwater levels have accompanied this agricultural use. Domestic and municipal use of the basin groundwater is increasing as Albuquerque population continues to spill eastward into the basin, but this use is projected to be less than 1% of agricultural use well into the 21st Century. This Water Budget model keeps track of the water balance within the basin. The model considers the amount of water entering the basin and leaving the basin. Since there is no significant surface water component within this basin, the balance of water in the groundwater aquifer constitutes the primary component of this balance. Inflow is based on assumptions for recharge made by earlier researchers. Outflow from the basin is the summation of the depletion from all basin water uses. The model user can control future water use within the basin via slider bars that set values for population growth, water system per-capita use, agricultural acreage, and the types of agricultural diversion. The user can also adjust recharge and natural discharge within the limits of uncertainty for those parameters. The model runs for 100 years beginning in 1940 and ending in 2040. During the first 55 years model results can be compared to historical data and estimates of groundwater use. The last 45 years are predictive. The model was calibrated to match to New Mexico Office of State Engineer (NMOSE) estimates of aquifer storage during the historical period by

  1. The Influence of Ground Water on Stream Restoration Following Dam Removal

    Science.gov (United States)

    Constantz, J.; Essaid, H.

    2003-12-01

    With the exception of ground-water seepage beneath dams and the resulting impact on structural failure, there is a void of work directly examining the downstream impacts of dams from the perspective of ground-water/surface-water interaction. This work considers alterations in an alluvial basin caused by: (1) erection of a dam upstream, (2) followed by ground-water pumping in the basin, and (3) dam removal. Theoretical results predict that when dams are removed in developed ground-water basins, downstream baseflows may be greatly reduced relative to natural baseflows, as a result of lower water table elevations in the developed basin relative to the natural setting. Without the dam as a `safety valve' providing extra streamflow during low-flow seasons, there is a real potential for ephemeral conditions downstream of the previous location of the dam as the dry season progresses. MODFLOW simulations are used to test these theoretical results, by quantifying the impact of dam removal on downstream surface water and ground water. The simulations incorporate an improved stream-aquifer interaction and streamflow routing package to represent movement of water in the vadose zone between the stream and a lowered water table. An idealized MODFLOW model with the new stream package has been constructed, which extends from the upland bedrock headwaters of a stream to the downstream sediment-filled basin. The model domain is 180 km long, 15 km wide, and 2.2 km deep, including a stream with a potential length of 180 km. In the upper reaches, the stream is divided into a north, south, and main stem with their confluence upstream of a dam situated in the domain above the bedrock/basin contact. Horizontal discretization is 1000 m in the direction parallel to the stream, 200 to 600 m perpendicular to the stream, and vertical discretization is 100 m. This modeling framework affords the opportunity to examine a variety of cases with and without the presence of an upstream dam. Initial

  2. Psychogenic urine retention during doping controls

    DEFF Research Database (Denmark)

    Elbe, Anne-Marie; Schlegel, Marius M.; Brand, Ralf

    2012-01-01

    relation to recovery, performance, and self-perception of professionalism and athletic excellence. Furthermore, a scale developed especially for the close description and measurement of PURD is presented. A questionnaire was used for measuring paruresis. The results are based on two online and one paper...... and pencil study involving 222 German-speaking athletes from various sports. The results indicate that 60% of these athletes have experienced psychogenic urine retention during doping controls, with only 39% of them showing symptoms of paruresis. PURD impacts athlete recovery and self...

  3. Clasp retention and composites: an abrasion study.

    Science.gov (United States)

    Davenport, J C; Hawamdeh, K; Harrington, E; Wilson, H J

    1990-08-01

    An in vitro test for screening the abrasion resistance and abrasivity of composite resins when used to provide tooth undercuts for removable partial denture clasps is described. In the present study nine composite resins were tested against wrought stainless steel round clasps. The results indicated that the abrasion of any of the composites tested was unlikely to cause a noticeable loss of retention in the clinical situation. However, there was marked abrasion of the clasps by two of the composites which would be likely to be clinically relevant.

  4. Retention and failure morphology of prefabricated posts

    DEFF Research Database (Denmark)

    Sahafi, Alireza; Peutzfeldt, Anne; Asmussen, Erik

    2004-01-01

    PURPOSE: This study evaluated the effect of cement, post material, surface treatment, and shape (1) on the retention of posts luted in the root canals of extracted human teeth and (2) on the failure morphology. MATERIALS AND METHODS: Posts of titanium alloy (ParaPost XH), glass fiber (Para......Post Fiber White), and zirconia (Cerapost) received one of several surface treatments-sandblasting, CoJet treatment, application of Metalprimer II, or sandblasting followed by silane application-and were then luted in the prepared root canal of human incisors and canines (n = 10). Following water storage...

  5. Population spatial structuring on the feeding grounds in North Atlantic humpback whales (Megaptera novaeangliae)

    NARCIS (Netherlands)

    Stevick, P. T.; Allen, J.; Clapham, P. J.; Katona, S. K.; Larsen, F.; Lien, J.; Mattila, D. K.; Palsboll, P. J.; Sears, R.; Sigurjonsson, J.; Smith, T. D.; Vikingsson, G.; Oien, N.; Hammond, P. S.

    2006-01-01

    Population spatial structuring among North Atlantic humpback whales Megaptera novaeangliae on the summer feeding grounds was investigated using movement patterns of identified individuals. We analysed the results from an intensive 2-year ocean-basin-scale investigation resulting in 1658 individuals

  6. Uncertainty in peat volume and soil carbon estimated using ground-penetrating radar and probing

    Science.gov (United States)

    Andrew D. Parsekian; Lee Slater; Dimitrios Ntarlagiannis; James Nolan; Stephen D. Sebestyen; Randall K. Kolka; Paul J. Hanson

    2012-01-01

    Estimating soil C stock in a peatland is highly dependent on accurate measurement of the peat volume. In this study, we evaluated the uncertainty in calculations of peat volume using high-resolution data to resolve the three-dimensional structure of a peat basin based on both direct (push probes) and indirect geophysical (ground-penetrating radar) measurements. We...

  7. Methods and Indicators for Assessment of Regional Ground-Water Conditions in the Southwestern United States

    Science.gov (United States)

    Tillman, Fred D; Leake, Stanley A.; Flynn, Marilyn E.; Cordova, Jeffrey T.; Schonauer, Kurt T.; Dickinson, Jesse E.

    2008-01-01

    Monitoring the status and trends in the availability of the Nation's ground-water supplies is important to scientists, planners, water managers, and the general public. This is especially true in the semiarid to arid southwestern United States where rapid population growth and limited surface-water resources have led to increased use of ground-water supplies and water-level declines of several hundred feet in many aquifers. Individual well observations may only represent aquifer conditions in a limited area, and wells may be screened over single or multiple aquifers, further complicating single-well interpretations. Additionally, changes in ground-water conditions may involve time scales ranging from days to many decades, depending on the timing of recharge, soil and aquifer properties, and depth to the water table. The lack of an easily identifiable ground-water property indicative of current conditions, combined with differing time scales of water-level changes, makes the presentation of ground-water conditions a difficult task, particularly on a regional basis. One approach is to spatially present several indicators of ground-water conditions that address different time scales and attributes of the aquifer systems. This report describes several methods and indicators for presenting differing aspects of ground-water conditions using water-level observations in existing data-sets. The indicators of ground-water conditions developed in this study include areas experiencing water-level decline and water-level rise, recent trends in ground-water levels, and current depth to ground water. The computer programs written to create these indicators of ground-water conditions and display them in an interactive geographic information systems (GIS) format are explained and results illustrated through analyses of ground-water conditions for selected alluvial basins in the Lower Colorado River Basin in Arizona.

  8. Larval fish assemblages across an upwelling front: Indication for active and passive retention

    Science.gov (United States)

    Tiedemann, Maik; Brehmer, Patrice

    2017-03-01

    In upwelling areas, enrichment, concentration and retention are physical processes that have major consequences for larval fish survival. While these processes generally increase larval survival, strong upwelling can also increase mortality due to an offshore transport of larvae towards unfavorable habitats. In 2013 a survey was conducted along the Senegalese coast to investigate the upwelling effect with regard to larval fish assemblages and possible larval fish retention. According to water column characteristics two distinct habitats during an upwelling event were discriminated, i.e. the inshore upwelled water and the transition area over the deepest part of the Senegalese shelf. Along the two areas 42,162 fish larvae were collected representing 133 species within 40 families. Highest larval fish abundances were observed in the inshore area and decreasing abundances towards the transition, indicating that certain fish species make use of the retentive function of the inner shelf area as spawning grounds. Two larval fish assemblages overlap both habitats, which are sharply delimited by a strong upwelling front. One assemblage inhabited the inshore/upwelling area characterized by majorly neritic and pelagic species (Sparidae spp., Sardinella aurita), that seem to take the advantage of a passive retention on the shelf. The second assemblage consisted of a mix of pelagic and mesopelagic species (Engraulis encrasicolus, Carangidae spp. and Myctophidae spp.). Some species of the second assemblage, e.g. horse mackerels (Trachurus trachurus and Trachurus trecae), large finned-lantern fish (Hygophum macrochir) and foureyed sole (Microchirus ocellatus), revealed larval peak occurrences at intermediate and deep water layers, where the near-ground upwelling layer is able to transport larvae back to the shelf. This indicates active larval retention for species that are dominant in the transition area. Diel vertical migration patterns of S. aurita, E. encrasicolus and M

  9. Ground-state structures of Hafnium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Wei Chun; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technoloty, Multimedia University, Melaca Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  10. Distribution of Aboveground Live Biomass in the Amazon Basin

    Science.gov (United States)

    Saatchi, S. S.; Houghton, R. A.; DosSantos Alvala, R. C.; Soares, J. V.; Yu, Y.

    2007-01-01

    The amount and spatial distribution of forest biomass in the Amazon basin is a major source of uncertainty in estimating the flux of carbon released from land-cover and land-use change. Direct measurements of aboveground live biomass (AGLB) are limited to small areas of forest inventory plots and site-specific allometric equations that cannot be readily generalized for the entire basin. Furthermore, there is no spaceborne remote sensing instrument that can measure tropical forest biomass directly. To determine the spatial distribution of forest biomass of the Amazon basin, we report a method based on remote sensing metrics representing various forest structural parameters and environmental variables, and more than 500 plot measurements of forest biomass distributed over the basin. A decision tree approach was used to develop the spatial distribution of AGLB for seven distinct biomass classes of lowland old-growth forests with more than 80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous savanna and secondary forests, was directly estimated with a regression based on satellite data. Results show that AGLB is highest in Central Amazonia and in regions to the east and north, including the Guyanas. Biomass is generally above 300Mgha(sup 1) here except in areas of intense logging or open floodplains. In Western Amazonia, from the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150 to 300Mgha(sup 1). Most transitional and seasonal forests at the southern and northwestern edges of the basin have biomass ranging from 100 to 200Mgha(sup 1). The AGLB distribution has a significant correlation with the length of the dry season. We estimate that the total carbon in forest biomass of the Amazon basin, including the dead and below ground biomass, is 86 PgC with +/- 20% uncertainty.

  11. Conductivity models for the North Perth Basin, Western Australia

    Science.gov (United States)

    Hoskin, T. E.; Regenauer-Lieb, K.; Jones, A. G.

    2013-12-01

    Exploration for geothermal resources in the North Perth basin, Western Australia, led to acquisition of new, high resolution Magnetotelluric (MT) and Audio-Magnetotelluric (AMT) data, the first of its kind in the area. Electromagnetic (EM) techniques are widely used in geothermal exploration and ground water investigations and they are well suited for application in the Perth basin. Two east-west transects investigating the structure of the onshore basin and its eastern margin, the Darling Fault Zone, are compared with existing geological models and geophysical data. Down-hole temperature data and depth-to-basement models were used to define areas of investigation in the basin, but there are limited geophysical data available. 1D, 2D and 3D modeling of electromagnetic data have been used to produce new conductivity models using existing data to constrain modelling. EM data complement existing gravity and seismic data and support published models in the upper 4-6km. However in deeper parts of the basin, MT data provide additional information allowing for revision of depth-to-basement. In addition to this, we clearly identify a conductivity anomaly associated with the Darling Fault Zone and are able to image this anomaly penetrating into the upper mantle. Fault zone conductors have been imaged on other lithosphere faults around the world, with one explanation being fluids in the enhanced permeability of the damage zone. Evidence to explain the fault zone conductor of the Darling Fault is presented and discussed as it could have significant implications in the identification of new areas, prospective for geothermal resources in the basin.

  12. Football and Freshmen Retention: Examining the Impact of College Football on Institutional Retention Rates

    Science.gov (United States)

    Jones, Willis A.

    2010-01-01

    Student retention has been one of the more researched topics in the study of American higher education over the past 20 years (Braxton, Hirschy, & McClendon, 2004; Pascarella & Terenzini, 2005). Very little of this research, however, has attempted to examine the impact of college athletics on an institution's ability to retain students. This…

  13. Football and Freshmen Retention: Examining the Impact of College Football on Institutional Retention Rates

    Science.gov (United States)

    Jones, Willis A.

    2010-01-01

    Student retention has been one of the more researched topics in the study of American higher education over the past 20 years (Braxton, Hirschy, & McClendon, 2004; Pascarella & Terenzini, 2005). Very little of this research, however, has attempted to examine the impact of college athletics on an institution's ability to retain students.…

  14. Football and Freshmen Retention: Examining the Impact of College Football on Institutional Retention Rates

    Science.gov (United States)

    Jones, Willis A.

    2010-01-01

    Student retention has been one of the more researched topics in the study of American higher education over the past 20 years (Braxton, Hirschy, & McClendon, 2004; Pascarella & Terenzini, 2005). Very little of this research, however, has attempted to examine the impact of college athletics on an institution's ability to retain students.…

  15. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: introduction.

    Science.gov (United States)

    Chris Maser; Jack Ward. Thomas

    1983-01-01

    The need for a way by which rangeland managers can account for wildlife in land-use planning, in on-the-ground management actions, and in preparation of environmental impact statements is discussed. Principles of range-land-wildlife interactions and management are described along with management systems. The Great Basin of southeastern Oregon was selected as a well-...

  16. 1:1,000,000-scale areas of evapotranspiration in the Great Basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of 1:1,000,000-scale areas where shallow ground water is consumed by evapotranspiration (ET) in the Great Basin. The source of this data set...

  17. Mechanistic failure mode investigation and resolution of parvovirus retentive filters.

    Science.gov (United States)

    LaCasse, Daniel; Lute, Scott; Fiadeiro, Marcus; Basha, Jonida; Stork, Matthew; Brorson, Kurt; Godavarti, Ranga; Gallo, Chris

    2016-07-01

    Virus retentive filters are a key product safety measure for biopharmaceuticals. A simplistic perception is that they function solely based on a size-based particle removal mechanism of mechanical sieving and retention of particles based on their hydrodynamic size. Recent observations have revealed a more nuanced picture, indicating that changes in viral particle retention can result from process pressure and/or flow interruptions. In this study, a mechanistic investigation was performed to help identify a potential mechanism leading to the reported reduced particle retention in small virus filters. Permeate flow rate or permeate driving force were varied and analyzed for their impact on particle retention in three commercially available small virus retentive filters. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:959-970, 2016.

  18. Gender differences in problem severity at assessment and treatment retention.

    Science.gov (United States)

    Arfken, C L; Klein, C; di Menza, S; Schuster, C R

    2001-01-01

    Women in treatment for substance abuse have been reported to have more severe problems at assessment than men but not to differ in treatment retention. To examine gender differences in problems at assessment, 30-day retention, and treatment completion, data from Detroit's publicly funded substance abuse treatment system were used. Women had significantly more severe problems at assessment, lower 30-day retention, and lower treatment completion rates than men. These gender differences in retention remained significant even after controlling for problem severity, primary drug of abuse, and referred treatment setting. There was no evidence of improvements in women's problems at assessment or retention over time during this period. Women presented with more severe problems at assessment and were less likely to stay in treatment for 30 days or to complete treatment than men. Monitoring gender differences in problems at presentation and retention outcomes is recommended to assess local need for interventions.

  19. Hydrology of the Estancia Basin, central New Mexico

    Science.gov (United States)

    White, R.R.

    1993-01-01

    The Estancia Basin of central New Mexico is a topographically closed basin that ranges in altitude from 6,000 feet to more than 10,000 feet above sea level. In the center of the basin a valley-fill aquifer of Quaternary age is as much as 400 feet thick. Limestone of the Madera Group of Pennsylvanian and Permian age crops out over most of the southwestern part of the basin. Large-scale ground-water withdrawals for irrigation began about 1950. Between 1950 and 1985, water levels declined 50 to 60 feet in a number of places. From 1985 to the present (1989), however, a small rise in water level has been measured in a number of wells; this rise can be attributed to decreased ground-water withdrawals resulting from a government crop- reduction program and also to several years of heavy winter snowfall. Continuous water-level recorders were placed on three wells from 1986 to 1988. Two of these wells showed short-term water-level changes characteristic of unconfined aquifers, whereas the other showed changes characteristic of confined aquifers. All three wells showed water-level changes caused by barometric-pressure changes. Six series of miscellaneous measurements and two gain-and-loss (seepage) studies were made in streams in the south- western part of the basin. These measurements showed an extreme variability in discharge under different climatic conditions. The specific conductance of water in much of the southwestern part of the basin ranges from 350 to 550 microsiemens per centimeter at 25 degrees Celsius. East of State Highway 41 in the area of the salt lakes, water quality is highly dependent on depth in the aquifer. Specific- conductance values ranging from about 4,000 to 6,000 microsiemens were measured in water samples from wells in the center of the basin during this study, but previous studies have identified water samples having specific-conductance values of as much as 187,000 microsiemens. A comparison of specific- conductance measurements and laboratory

  20. Micromechanical analysis of water retention phenomenon

    Science.gov (United States)

    Gras, J.-P.; Delenne, J.-Y.; Soulié, F.; El Youssoufi, M. S.

    2009-06-01

    We investigate the water distribution and the link between suction and water content in granular media. Firstly, we examine the effect of suction on the shape and the volume of the liquid bridge for different parameters (grain radius, inter-particle distance, contact angle, surface tension). This local behaviour is then used in a discrete element study of a sample composed of several thousands of grains. We focus our study on the pendular state. The existence of a liquid film around the grains which involves the continuity of the liquid phase is assumed. The water distribution and the water content associated with a given suction are calculated. Then retention curves of the granular media are built. Four different methods are used. The first is based on the local expression of the capillary force coupled with the "gorge method," the second is based on the Laplace equation, and the third and the fourth are based on the integration of the differential equation that defines the liquid bridge shape. A parametric study is made to bring to light the effect of macroscopic parameters (grain-size distribution, density) and physical parameters (liquid/air surface tension, contact angle) on the water retention curve. Finally, numerical data are compared to experimental results.